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Abstract: Brain-Computer Interfaces (BCIs) enable people to control appliances without in-
volving the normal output pathways of peripheral nerves and muscles. A particu-
larly promising type of BCI is based on the Steady-State Visual Evoked Potential
(SSVEP). Users can select commands by focusing their attention on repetitive vi-
sual stimuli (RVSi) that change one of their properties (e.g. color or pattern) with a
certain frequency. These properties as well as the device the RVSi are rendered on,
can greatly affect the performance, applicability, comfort and safety of the BCI.

Despite this fact, stimulation properties have received fairly little attention in the
BCI literature to this date. Furthermore, a heavy emphasis is placed on BCI perfor-
mance to the detriment of other important factors such as comfort and safety. The
research reported in this document aims at studying the effects of stimulation prop-
erties on performance as well as comfort of SSVEP-based BCIs. Research was per-
formed in both offline and online settings, using a custom made high-performance
BCI. Comfort was measured using a custom questionnaire.

A large variability across subjects was found, but the results confirm that stimu-
lation properties have a considerable impact on performance and comfort of SSVEP-
based BCIs. In general, a large difference between stimulation states is beneficial
for BCI performance, but detrimental to user comfort. A couple of configurations
were found that provide a good compromise between comfort and performance.

Conclusions: Both the performance and comfort of SSVEP-based BCIs depend significantly on
the properties of the RVSi employed in them. In general, more pronounced differ-
ences between stimulus states result in better performance, but less comfort. Some
property combinations were found that provide a good compromise between com-
fort and performance. Color stimulation on a dark background seems especially
promising.

These findings suggest that the choice of stimulation properties should be made
with great care when designing an SSVEP-based BCI. More research is necessary
to determine what settings of properties and combinations thereof generally provide
the best results. Stimulation property optimization for individual users can also yield
great advantages for the usefulness of a BCI.
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Chapter 1

Introduction

Controlling the environment with the sheer power of one’s mind is something you used to only find in
science-fiction and fantasy stories. Brain-Machine Interfaces or Brain-Computer Interfaces (BCIs) allow
us to do just that. The field is still in its infancy, so it might still be some time before we can Force
Pull a cup of coffee from across the room, but systems for controlling wheelchairs [1], prostheses [2],
cursors [3], communication [4, 5, 6, 7] and even games [8, 9] already exist.

It is not yet possible to read someone’s mind based on signals extracted from the brain. Most BCIs
therefore ‘listen’ to these signals and determine if they match some predetermined template, associated
with a command which depends on the specific application. Because of its high time resolution, nonin-
vasiveness, ease of acquisition, and cost effectiveness, the electroencephalogram (EEG) is the preferred
brain monitoring method in current BCIs [10]. An application specifies a number of commands that the
user can execute by completing associated tasks (such as imagining the movement of a body part, focus-
ing on a stimulus, or simply by relaxing or concentrating). Since these tasks involve little to no muscle
activity, even users who are severely disabled may be able to control such an application [11].

Making sense of a person’s brain signals is a complicated task. The signals depend on the person, the
time of day, his/her state of mind, the task, the environment, the measuring equipment and many other
factors [11, 10]. One type of response that is relatively easy to measure is the steady-state visual evoked
potential (SSVEP) [12, 13, 14, 15]. This potential occurs when the user focuses on a visual stimulus that
is oscillating at a fixed frequency. In SSVEP-based BCIs each command is associated with a repetitive
visual stimulus (RVS) oscillating at a different frequency or phase and the user selects the command by
focusing on the associated RVS. BCIs based on the SSVEP provide a relatively high speed of operation
when compared to most other BCIs and are therefore very promising [16, 17]. Furthermore, SSVEP-
based BCIs can be used by more than 90% of users without much training, in contrast to most current
systems that use other brain activity [18, 3, 19]. It is for these reasons that the research in this thesis
focuses on improving SSVEP-based BCIs.

Project motivation and objectives

Although using the SSVEP has many benefits, there are also some disadvantages. The first is that looking
at a flickering stimulus causes fatigue and can be very annoying. The second is that it may even induce
seizures in epileptic users [20, 21, 22, 23, 24]. The literature to this date has largely ignored these issues
and instead focused on how to increase BCI performance, mainly by studying different signal processing
techniques. However, properties of the stimuli such as size, color and contrast can also have a big impact
on performance. Additionally, these properties also greatly affect how comfortable and safe a BCI is to
use.

The main goal of this project is to help improve SSVEP-based BCIs in terms of performance as well
as applicability, comfort and safety by studying the SSVEP phenomenon. It is likely that no combination
of properties exists that optimizes all evaluation criteria and it is important to understand the tradeoffs that
can be made. This is done primarily by researching the effects of several different stimulation properties
in both online and offline settings. This research can also increase our knowledge of certain physiological
aspects of the SSVEP and the part of the brain that it is elicited in.

Stimulation Effects in SSVEP-Based BCIs 1
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Main contributions

The main contributions of this thesis can be summarized as follows:

• An overview of the most important properties of repetitive visual stimulation used in SSVEP-based
BCIs, and how their values affect SSVEP strength, BCI performance and user comfort and safety.

• The development of a short questionnaire to measure how comfortable the stimulation in a BCI is.

• Suggestions on how to improve SSVEP-based BCIs for future applications, both in terms of com-
fort and performance.

• The development of a high-performance SSVEP-based BCI for experimentation and demonstra-
tion.

Outline

The rest of this thesis is organized as follows: Chapter 2 provides an overview of the technologies and
neural phenomena that are relevant to SSVEP-based BCIs. Chapter 3 discusses the methods and exper-
imental setups used for acquiring and analyzing the data. In Chapter 4 the most important stimulation
properties are presented along with findings of how they affect performance and comfort of SSVEP-
based BCIs. Introduction, experiments, results and discussions are interleaved here in order to keep all
information about each property in one place. The conclusions about the found results are reported in
Chapter 5.

Appendix A discusses how human-computer interfaces in general (and BCIs in specific) could be
enhanced by tapping into the human error-detection system using EEG. Three articles were published
based on work reported in this thesis and are included in Appendix B. Appendix B.1 contains a survey
of which stimulation properties have been used in SSVEP-based BCIs to date. Appendix B.2 presents
the most important results of the main research presented in this thesis. Appendix B.3 discusses how
the human error-detection mechanism can be recognized by a computer system and is mostly related to
Appendix A.

2 Stimulation Effects in SSVEP-Based BCIs
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Chapter 2

Concepts

The systems discussed in this thesis are brain-computer interfaces that measure the brain’s steady-state
visual evoked potential response to the user’s focus on a repetitive visual stimulus and convert it into
commands that are useful to the user. This chapter provides an introduction for the most important
notions that are relevant to these systems. First, methods of brain activity measurement are introduced
(Section 2.1), followed by a discussion of visual evoked potentials (Section 2.2) and repetitive visual
stimulation (Section 2.3). Finally, an introduction is given to brain-computer interfaces (Section 2.4).

Stimulation Effects in SSVEP-Based BCIs 3
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2.1 Brain activity measurement
There are a number of neuroimaging techniques which can measure the brain activity required for brain-
computer interfacing. Brain activity is characterized by the firing of neurons. When an area in the brain
is active, the firing pattern changes and it is the goal of neuroimaging methods to detect this. When a
neuron fires, it uses energy to send an ionic current with a negative charge along its axon (tail) to con-
nected neurons, which in turn alters their probability of firing. This firing costs energy, which needs to
be replenished (a little later) through the bloodstream. Hemodynamic techniques measure the amount of
oxygen, or a tracer compound, in the blood, at each location in the brain. This allows for high spatial
resolution, but temporal resolution is usually low, because the blood flow to an active part of the brain
comes after the activity. Hemodynamic methods include functional magnetic resonance imaging (fMRI),
positron emission tomography (PET) and near infrared spectroscopy (NIRS). The electrical activity that
can be measured from the firing of neurons directly corresponds to the brain activity, and therefore allows
a very high temporal resolution, but generally lower spatial resolution, because the electrical activity is
distorted by brain, skull and skin tissue. It is the basis for electroencephalography (EEG), electrocor-
ticography (ECoG) and magnetoencephalography (MEG). It can therefore be said that hemodynamic
techniques are particularly useful for visualizing where neural activity occurs and electrophysiological
methods are better at determining when activity occurs.

Depending on the specific application and the target demographic of a BCI, the characteristics of
neuroimaging techniques have different priorities. In casual applications the emphasis may be on speed
and robustness, whereas safety critical applications need to focus on robustness. For severely disabled
people a properly working BCI can increase their value of life so significantly, that it warrants brain
surgery and makes invasive methods such as ECoG feasible. For most people, however, the addition of
an extra (relatively low-bandwidth) communication channel does not nearly outweigh the cost and risk of
such surgery.

BCIs need a way to distinguish between commands based on associated brain activity. If different
commands are associated with different brain areas, brain monitoring methods with a high spatial resolu-
tion, like MEG or fMRI, could be used. However, these methods require large and expensive equipment
and need a magnetically shielded environment. Different commands can also be recognized by detection
of brain signals in time. To measure the onset time or waveform shape of such brain waves (e.g. the
SSVEP) a high temporal resolution is needed, as provided by EEG, ECoG and MEG methods. Because
of its high time resolution, noninvasiveness, ease of acquisition, and cost effectiveness, the electroen-
cephalogram (EEG) is the preferred brain monitoring method in current BCIs [10]. Therefore, EEG is
the only neuroimaging technique considered in this thesis.

EEG

When a neuron fires, it causes post-synaptic currents in the post-synaptic neurons it is connected to, from
the receiving dendrite to the cell body. EEG cannot measure these intercellular currents, but instead
measures the opposite extracellular current that occurs in response. The electrical potentials generated
by single neurons are far too small to be measured with EEG, but when thousands or millions of neurons
with the same spatial orientation, radial to the scalp, become active it is detectable [25, 26]. Because
voltage fields fall off with the fourth power of the radius, activity from deep sources is more difficult to
detect than currents near the skull [27].

EEG measurements are done by applying electrodes to the user’s scalp, often combined with the
use of conductive gel or water in order to reduce the impedance. Although nowadays it is possible to
do without these conductive products, “dry” alternatives do not provide nearly the same signal-to-noise
ratio (SNR). Standard electrode locations are specified by the international 10-20 system, which is based
on easily identified skull landmarks (see Figure 2.1). Electrodes and electrode locations are also often
referred to as “channels”. At each electrode location, the voltage difference between the electrode at that
location and a ground electrode is measured. The ground electrode can be placed anywhere on the body
where no brain activity is measured.

The subject’s body can pick up electromagnetic interference, specially 50 Hz noise from electrical
power lines (60 Hz in some countries). Interference that appears in both ground and measuring circuit is

4 Stimulation Effects in SSVEP-Based BCIs
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(a) (b)

Figure 2.1: The international 10-20 system of electrode placement owes its name to the 10% and 20%
location differences between electrodes. a) Side view of the head showing the distance between groups of
electrodes. b) The electrode locations at which an EEG signal was measured in this thesis. A Common
Mode Sense (CMS) active electrode is connected to C1 and a Driven Right Leg (DRL) passive electrode
is connected to C2.

called “common-mode interference”. Although this noise should theoretically be canceled out because
voltages are measured relative to the ground, they are not in practice. Common-mode interference can
be mitigated by a “driven right leg (DRL)” circuit, which actively cancels some of the interference by
sensing the noise and negatively feeding it back into the circuit. By introducing a feedback loop between
a “common mode sense (CMS)” active electrode and DRL passive electrode, the common mode rejec-
tion ratio can be greatly increased while the subject is protected from excessive flow of currents due to
amplifier and/or electrode defects [28].

Because the ground (or DRL) electrode can be anywhere on the body, it might introduce broad body
movement artifacts into the measurement. It is therefore useful to make use of a reference that is sub-
tracted from the measured signal. This reference can be one other electrode (e.g. the center one; Cz), or
a linear combination of a group of electrodes (e.g. the mean signal over the entire scalp). If one mea-
surement electrode Em and one reference electrode Er are used, this will be referred to as “Em−Er”. An
ideal reference would pick up all of the noise that the measurement electrodes pick up and nothing else.
If it picks up (part of) the desired signal, this is also subtracted out of the result, and if it picks up another
signal that is neither desired nor picked up by the measurement electrodes, this is “subtracted in”.

Electrodes can be active or passive. Passive electrodes are metal discs with a connecting wire to
the electronic circuitry that amplifies the signal. This means that any interference occurring between the
measurement at the electrode and the signal’s arrival at the amplifier is amplified. Active electrodes have
amplifiers on them, which ensures that as little noise as possible is amplified along with the signal. Using
active electrodes increases the SNR and decreases interference and the influence of impedance, so skin
preparation is not necessary.

Stimulation Effects in SSVEP-Based BCIs 5
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2.2 Visual Evoked Potentials
An evoked potential, contrary to spontaneous potentials, is an electrical potential recorded from the brain
following presentation of a stimulus. Evoked potentials are time-locked to the stimulus and can be either
transient (one time) or steady-state (repetitive). A “visual evoked potential (VEP)” is simply an evoked
potential that is elicited by a visual stimulus.

Visually evoked responses are substantially enhanced if the visual stimulus falls within the area of
spatial attention [29]. This effect is more prominent in the right frontal hemisphere than in the left one;
however, this hemispheric asymmetry disappears after long repetition of the stimuli [30].

When light hits the human retina, it is absorbed by two types of photoreceptors: rods and cones. The
rods are more numerous and sensitive, but are incapable of perceiving color. Furthermore, there are very
few rods in the center of the eye, (i.e. the fovea). There are three different kinds of cones that are sensitive
to light of different wavelengths (colors). The red and green cones are mostly concentrated around the
fovea. Approximately 64% are sensitive to green, 32% to red and only 2% to blue light. However, the
blue cones are relatively more sensitive.

Activation from each visual field is then sent contralaterally to the lateral geniculate nucleus (LGN)
along three different pathways [12]. The M-pathway (named after the magnocellular neurons it is con-
nected to) goes through brain areas V1, V3, V4 and IT, and represents the “where” part of visual infor-
mation. It is involved in the detection of coarse and dynamic shapes, motion and depth, and is primarily
associated with the rods in the retina. The P-pathway (after “parvocellular”) is mostly connected to the
red and green cones and is involved in the detection of high spatial contrasts, color information (specif-
ically red and green) and details. Moving through the V1, V2, MT and STS/PP areas of the brain, it is
slower than the M-pathway and represents the “what” part of visual information [31]. Fairly recently, a
third K-pathway (after “koniocellular”) was discovered that has properties that are roughly in between
those of the M- and P-pathways in terms of speed and contrast perception. Originating mainly from the
blue cones, the K-pathway also carries blue and yellow color information.

2.2.1 Transient Visual Evoked Potentials

(a) Flash VEP. (b) Pattern onset/offset VEP. (c) Pattern reversal VEP.

Figure 2.2: Transient visual evoked potentials (tVEPs) elicited by different stimulation methods. These
tVEPs can be elicited by any change in the visual field (figure from [32]). The most frequently used
techniques are flashing a light (a), letting a pattern appear on a screen (b), or reversing the phase of a
pattern (c). The evoked responses differ based on the stimulus used to elicit them. Characteristic peaks
and valleys are given names for convenience.

Transient visual evoked potentials (tVEPs) can be elicited by any change in the visual field. The
most often used techniques are flashing a light (flash VEP), letting a pattern appear on a screen (pattern
onset/offset VEP), or reversing the phase of a pattern (pattern reversal VEP). The evoked responses differ
based on the stimulus used to elicit them [32] (see Figure 2.2). Flash VEPs consist of a series of negative
and positive waves, most prominently are the N2 (90 ms) and P2 (120 ms) peaks. Pattern onset/offset
VEPs have three main peaks: C1 (positive, 75 ms), C2 (negative, 125 ms) and C3 (positive, 150 ms).
Pattern reversal VEPs consist of the N75, P100, and N135 components. Peaks in an evoked potential are
often numbered (C1, C2, C3, ...) or named after the time at which they occur and the sign of the voltage
(e.g. the N75 is a negative peak occurring 75 ms after stimulus onset). Transient VEPs can have many
diagnostic uses for both cognitive and vision disorders [12].

6 Stimulation Effects in SSVEP-Based BCIs
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The most well-known transient evoked potential is the P300 oddball response. It is elicited by in-
frequent (unexpected), task-relevant stimuli. Although the EEG signal is most strongly acquired around
the parietal electrodes (contrary to most VEPs, which are most active over the visual/occipital cortex),
interactions involving the frontal and temporal regions as well as several deep brain loci have been sug-
gested [33]. The P300 can be used to aid in some forms of lie detection. In a proposed ”guilty knowledge
test [34]” a subject is interrogated via the oddball paradigm much as they would be in a typical lie-detector
situation. This practice has recently enjoyed increased legal permissibility while conventional polygraphy
has seen its use diminish, in part owing to the unconscious and uncontrollable aspects of the P300. Since
the response is greatly modulated by attention, the P300 can also be used in brain-computer interfacing,
where the system can detect what stimulus the user is attending to.

Detecting and evaluating transient VEPs is complicated because there may be significant inter and
intra subject variation in responses to the same stimulation. Because of this, it is often necessary to
average data from multiple trials in order to get the characteristic waveform. This can be problematic
in applications where a one-time event is signalled by the stimulus, and in applications where this is
possible, it can make detection and evaluation of tVEPs slow and complex.

2.2.2 Steady-State Visual Evoked Potentials
About 40 years ago, Regan [35] started experimenting with long stimulus trains, consisting of sinusoidally
modulated monochromatic light. These stimuli produced a stable VEP of small amplitude, which could
be extracted by averaging over multiple trials. These EEG waves were termed as “steady-state” visually
evoked potentials of the human visual system.

Focusing on a repetitive visual stimulus that oscillates at a frequency between 1 and 100 Hz [36], a
“steady-state visual evoked potential (SSVEP)” is elicited in the brain at the frequency of the stimulus
and its harmonics. If the stimulus is not flashing, but rather reversing a pattern, the SSVEP occurs at the
reversal rate and harmonics. SSVEPs can be distinguished from tVEPs because their constituent discrete
frequency components remain closely constant in amplitude and phase over a long time period [37].

The SSVEP starts approximately 300 ms after stimulus onset and is preceded by a tVEP of that
length. The nature and source of this response is a matter of debate. Some research has suggested that
this phenomenon is nothing more than a sequence of VEPs elicited by each of the state changes in the
RVS [20]. However, a lot of research is operating under the assumption that it is safer to assume a less
linear relationship between the stimulation and the SSVEP response.

On the other hand, the SSVEP, much like tVEPs, can also be used for diagnostic goals [12]. Its
amplitude is also greatly modulated by attention, which makes it suitable for use in BCIs. Because of their
nature, it is possible to evaluate the presence or absence of an SSVEP response in the frequency domain,
rather than or in addition to in the time domain. This makes detection of the signal much more robust than
simply detecting single trial tVEPs and faster than detecting tVEPs averaged over multiple trials. SSVEPs
are less susceptible to artifacts produced by blink and eye movements [13] and to electromyographic noise
contamination [14]. SSVEPs can be relatively easily quantified and reproduced; in contrast, it is hard to
describe, quantify, and reproduce transient VEPs [15].

Medium- and high-frequency components in SSVEPs have been attributed to two different but poten-
tially overlapping visual cortex sources, located primarily in V1 [38]. Conversely, low-frequency compo-
nents of SSVEPs may be generated not only by cortical regions [39]. On the ground of topographical dis-
tribution, several authors have suggested that low-frequency SSVEPs originate in subcortical structures,
at the retinal level or in fiber tracts. Recently, an early low-frequency SSVEP response was observed in
the LGN, recorded by implanted electrodes in a human patient [40]. This confirms that low-frequency
SSVEPs originate prior to cortical areas.

Different parts of the cortex besides the occipital area may play an important role in the generation of
SSVEPs: a recent fMRI study reported 3-5 Hz SSVEPs in the medial frontal cortex as well (Brodmann
areas 11 and 10, just above the eyes). Therefore, SSVEPs seem to occur in a large-scale functional occip-
itofrontal cortical network, which may be functionally connected to certain extracortical structures [41].

The strongest local source of SSVEPs is located in the striate cortex (V1), but this source does not
seem to be entirely responsible for SSVEP generation [42, 41]. Figure 2.3 shows the propagation of the
SSVEP response throughout the head [12].
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Figure 2.3: SSVEP propagation by the combination of locally and broadly distributed sources. The
concentric circles with red colors represent dipoles, and the arrows their propagation. a) Preliminary
local activities in primary visual areas, observable with PET/fMRI, start propagating. b) The activity
propagation, in turn, activates secondary broad sources (observable with EEG). c) The VEP reaches its
steady-state with a succession of local and broad dipoles. These dipoles depend on stimuli characteristics,
which explains the complex patterns observed in EEG topography. Figure adapted from [12].

8 Stimulation Effects in SSVEP-Based BCIs



Chapter 2. Concepts 2.3. Repetitive visual stimulationChapter 2. Concepts 2.3. Repetitive visual stimulationChapter 2. Concepts 2.3. Repetitive visual stimulation

2.3 Repetitive visual stimulation
A “repetitive visual stimulus (RVS; plural: RVSi)” (also known as “intermittent photic stimulus”) repeat-
edly cycles through a number of extreme states (e.g. light on and off). The number of states is almost
always 2. The transition between these states is defined by the waveform of the stimulus (see Section 4.5).
For instance, a square wave is used for instant transitions, whereas a sine wave or triangle wave can be
used for smoother transitions. Smoother transitions require that the stimulation device can render inter-
mediate states. The time spent in each state does not necessarily need to be the same. The “duty cycle”
of an RVS denotes the percentage of time spent at (or near) one of the states.

The frequency that is most often reported is the “cycle frequency” and denotes the number of times
that the entire set of states is repeated per second. The “change frequency” or “alternation frequency” de-
notes the number of state changes per second. In this thesis “10 Hz stimulation frequency” always refers
to the situation where both states are shown 10 times in one second, in which time 20 state changes oc-
curred. When one of the states is a simple unpatterned stimulus and the other closely resembles the back-
ground, the stimulus in a sense elicits a series of flash VEPs (see Figure 2.2(a)) at the (cycle) frequency.
When pattern reversal is used (e.g. a checkerboard changing phase) the SSVEP is evoked primarily at the
change/alternation frequency (i.e. the cycle frequency’s second harmonic).

RVSi can elicit epileptic seizures with luminance or chromatic stimuli in about 0.01% of the pop-
ulation [43]. The most famous case happened in Japan during the Pokémon TV show in 1997, where
flashing red-blue images induced massive photoepilepsy and photosensible migraines [21, 22]. Epileptic
responses were reported from 3 Hz and up to 84 Hz but with predominance between 10 and 20 Hz. The
chromaticity of the stimulus also has a strong impact on the response effect, and especially low luminance
chromatic stimuli using red colors can induce epileptic responses [23]. A large size or bright stimulus is
also more likely to evoke seizures [43]. Furthermore, repetitive visual stimuli can be very annoying and
tiring to look at, making it less likely that someone would want to use the BCI in the first place.

Brainwave entrainment

By evoking an SSVEP response, RVSi introduce activity in the brain at a certain frequency. When brain
rhythms form of their own accord, they have been associated with certain mental states (see Table 2.1). It
is currently not definitively known if introducing a certain frequency of activity in the brain – by means
of repetitive stimuli – actually elicits these mental states, but this is being actively researched [44].

Rhythm Frequencies Mental states
delta δ 0-4 Hz slow wave sleep, continuous attention
theta θ 4-7 Hz drowsiness, arousal, idling
alpha α 8-12 Hz relaxation
beta β 12-30 Hz alertness, working, concentration
gamma γ 30-100 Hz meditation, memory matching, cross-modal sensory processing

Table 2.1: Examples of different brain rhythms and the mental states with which they are commonly
associated.

“Brainwave entrainment” is the process of purposely inducing a certain brain rhythm by means of
repetitive stimulation. Simply put, the assumption of the therapeutic application of brainwave entrainment
is that if a certain brain rhythm becomes more prominent in a certain mental state, eliciting that brain
rhythm (e.g. an SSVEP with the right frequency) will cause the user to slip into that mental state. If
this assumption is true, it has tremendous implications for all sources of rhythmic stimulation like CRT
monitors, lighting and sound-making machinery.

If used purposefully, brainwave entrainment can produce very useful results enhancing mood, perfor-
mance, memory and attention or decreasing stress, pain and behavioral problems [44]. These results are
all very promising, but they also imply that great care should be taken with rhythmic stimulation, because
otherwise there might be a risk of inducing the wrong brain states. Long term effects on the brain and
cognition should be researched.

Stimulation Effects in SSVEP-Based BCIs 9



Chapter 2. Concepts 2.4. Brain-Computer InterfacesChapter 2. Concepts 2.4. Brain-Computer InterfacesChapter 2. Concepts 2.4. Brain-Computer Interfaces

2.4 Brain-Computer Interfaces
A brain-computer interface (BCI) or brain-machine interface detects the presence of specific patterns in
a person’s ongoing brain activity that relates to the person’s intention to initiate control and translates
these activity into meaningful commands. It gives users communication and control channels that can be
used instead of or in addition to the normal output channels of peripheral nerves and muscles [11, 45].
Applications range from enhancing the experience of playing a video game, to driving a wheelchair, to
writing messages. BCIs are currently mostly used to enhance the quality of life for nearly locked-in
patients to allow them to communicate and to control devices that would normally require the muscle
control that they have lost.

Because it is currently not yet feasible to determine what a user is thinking about by analyzing his
brain signals, BCIs have a number N of predefined commands that the user must choose from. The
manner in which this choice is made depends on the type of BCI. For instance, a user could concentrate
on a stimulus or imagine moving a body part associated with the desired command. The BCI system
needs to detect that a command was issued and determine which command it was.

Applications and target demographics

Applications of SSVEP-based BCIs are generally focused on disabled people [45]. These people have
often lost control over most of their muscles and struggle with basic tasks such as driving their wheelchair,
controlling home appliances and sometimes even communicating with health care professionals and loved
ones.

In order to expand the target demographic, researchers are now also investigating the application of
SSVEP-based and other BCIs into more mainstream areas like video gaming [9]. Although BCIs are
currently not nearly fast enough to compete with more traditional input devices such as the keyboard,
the mouse and the controller, having an additional channel can be beneficial. In some games proficient
players perform over 200 actions per minute, and it is suggested that the bottleneck in speed might very
well be physical, suggesting that additional use of a BCI can be beneficial. It might also be more fun due
to the novelty or even because of increased immersion. Situations where the user literally or figuratively
has their hands full are called “induced disability” and can be improved by BCI use [45]. This means
that military personnel, surgeons, astronauts and many others might benefit [46, 47].

Another possible application could be to provide additional information to a user based on what he
is looking at. People in a museum could for instance be provided with auditory information about the
painting they’re looking at.

SSVEP can also potentially be used in passive BCIs. These system make use of the information
extracted from the brain in order to make the interaction with them smoother. Links have been found
between the SSVEP and alertness and emotion [48, 49] and research is currently being done in how to
incorporate this knowledge in BCIs. It is also easy to imagine using the SSVEP to set things such as
screen brightness and contrast automatically.

Before thinking of who might want to use BCIs, it is important to consider who can use them effec-
tively. Inter-subject variability often leads to the well-documented “BCI illiteracy” phenomenon; across
different BCI approaches (SSVEP, P300, motor imagery), about 10-25% of users are unable to attain
effective control [50, 51, 52, 53, 54, 7, 55]. SSVEP-based BCIs can be used by more than 90% of users
without much training, in contrast to most current systems that use other brain activity [18, 3, 19]. Being
young, female and having a gaming background correlates positively with SSVEP-based BCI perfor-
mance [56]. Older subjects often have smaller evoked potentials in visual attention tasks.

BCI aspects

There are several dimensions along which a BCI can be qualified. For instance, they can be endoge-
nous/active or exogenous/reactive [11, 10]. “Endogenous”/active BCIs utilize the brain activity corre-
sponding to intended actions as electrophysiological source of control. This category comprises BCIs
using sensorimotor activity, slow cortical potentials, and mental tasks. Endogenous BCIs provide a bet-
ter fit to a control model because the trained user exercises direct control over the environment. On the
other hand, these systems often require extensive training. These BCIs are necessarily “asynchronous”,
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which means that the system has no way of knowing a priori when a command might be issued. “Exoge-
nous”/reactive operation refers to the utilization of brain responses to external stimuli as electrophysio-
logical source of control. SSVEP and P300 based BCIs are in this category. Exogenous BCI’s may not
require extensive training, but do require a somewhat structured environment (e.g. stereotyped visual in-
put). These systems can be “synchronous”, because they control the stimulation that the brain is reacting
to.

Applications relying on the use of brain activity as an additional input, allowing the real time adap-
tation of the application according to the user’s mental state are categorized as “passive” BCIs [57]. In
contrast to more conventional (controlled) systems, the user is not consciously controlling a passive BCI.
Instead, the system is ‘eavesdropping’ on the user’s brain activity so that it can, for instance, make use of
the user’s finely tuned error detection capabilities (see Appendix A), notify the user of a lapse in alertness,
or make adjustments to the application in reaction to a change in the user’s mood [10].

A BCI is a communication system in which messages or commands that an individual sends to the
external world do not pass through the brain’s normal output pathways of peripheral nerves and mus-
cles [11]. A “dependent” BCI does not use the brain’s normal output pathways to carry the message,
but activity in these pathways is needed to generate the brain activity (e.g. EEG) that does carry it. Most
VEP-based BCIs are typical examples of dependent BCIs, because they require the user to shift his gaze
to the visual target associated with the desired command, which makes them dependent on the muscles
required to move the eyes. Since the primary target audience of BCIs consists of severely disabled people,
it is useful to try and make them “independent” of muscle activity.

2.4.1 Functional model

Figure 2.4: Functional model of a BCI system (adapted from [58]).

Figure 2.4 depicts the functional model of a BCI system that uses visual stimulation (adapted from [58]).
The “user” modifies his or her brain state in order to generate the control signals that operate the BCI
system. The “signal acquisitor” converts the user’s brain state into electrical signals. The acquisitor
usually amplifies the electrical signal measured with electrodes on the user’s scalp in order to increase
the quality of the signal. Active electrodes contain an amplifier themselves, whereas passive electrodes
rely on an external amplifier, which might then also amplify some of the noise that was introduced on the
way from the electrodes to the amplifier.

The “signal processing” component is responsible for converting the signals from the brain into
logical (device-independent) control signals. Three distinct components can be identified. The goal
of the “preprocessor” is to increase the signal-to-noise ratio of the signal. This can be accomplished by
filtering out power line interference and/or by detecting and handling artifacts (e.g. caused by movement).
The “feature extractor” then transforms the cleaned up signals into feature values that correspond to
the underlying neurological mechanism used for controlling the BCI. The “feature translator” finally
translates the feature vector into logical (device-independent) control signals.

The “BCI controller” translates the logical control signals from the classifier into semantic control
signals that are appropriate for a particular type of device. This mapping may be instantaneous (i.e. its
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output is calculated directly from the current logical control signal input) or by integrating inputs over
time (e.g. if a letter is typed by selecting its X and Y coordinates in a letter matrix of a speller program).
The controller is the central unit in the BCI as it is connected to most other components. It can receive
input signals from the user, their brain and the device so that it knows exactly what is going on. Using
this information, it can display the system state to the user to give them feedback. In addition, it also
has control over the stimulator and the signal processing component. Imagine a primarily SSVEP-based
BCI that has a command to turn it partially off. If this command is issued, the controller could turn off
the control display, stimulator and device and swap the SSVEP signal processing unit out for a signal
processing component that detects imagined movement, so the user can turn the whole system back on.

All of these components can be device-independent to a degree. In order to finally control an actual
device, a “device driver” is needed to map the commands from the system onto inputs that the specific
device accepts. If the device has outputs, it is also the device driver’s task to translate those back so
that the controller may know about the state of the device. The device or application finally executes the
commands and the user observes the behavior so he can decide what to do next.

Although these units can be viewed as separate components in a functional model. It is common for
several units to be integrated. For instance, the device can often be an application that runs on the same
computer as the rest of the system. Stimulation can be rendered by an external device, but can also be
displayed on the same computer screen that is used for displaying the system and the device state. It is
however useful to distinguish between these components, because it allows us to evaluate them separately.
Ideally, it should be possible to use the same system with, for instance, different feature translators in order
to determine which one works the best. This thesis focuses on properties of the stimulation and evaluates
them in the context of a BCI where all the other components remain constant.

2.4.2 Signal processing
The signal processing in a BCI consists of three steps: preprocessing, feature extraction and feature
translation. During the preprocessing step artifacts and noise can be removed from the signal. Next,
features are extracted from the data and translated into commands. In SSVEP-based BCIs the features
often consist of the energies of all the stimulation frequencies in the most recent part of the signal. Feature
translation could then be accomplished by determining thresholds for each frequency and selecting the
one where the energy exceeds this threshold.

Preprocessing

The goal of the preprocessing step is to enhance the signal-to-noise ratio (SNR) of the brain measure-
ments. The idea is to remove, reject, or repair parts of the signal that contain noise and artifacts that may
interfere with the later signal processing stages. These can be caused by muscle movements (e.g. eye
blinks), electrode movement, power line interference (50 Hz in Europe) and spontaneous brain activity
(e.g. alpha rhythms).

The preprocessing stage is somewhat dependent on the other signal processing stages. The feature
extraction stage determines what should be considered as signal and what should be considered as noise,
and the classification stage’s accuracy places a certain demand on the quality of the input it requires in
order to operate sufficiently well.

Power line interference can often have an amplitude that dwarfs that of the relevant signal, which
complicates analysis. It can be dealt with by applying a notching filter with the power line frequency. By
using a comb filter, all harmonics of the power line frequency are dealt with as well.

If the relevant parts of the signal are all in a known frequency range, it is possible to use a bandpass
filter to exclude frequencies outside that range in order to remove all of the noise that occurs outside
that range. Similarly, high pass and low pass filters can also be used. Filtering out low frequencies can
exclude some movement artifacts, and filtering higher frequencies can remove power line interference
and some muscle artifacts (such as teeth clenching). Sometimes it is also desirable to exclude a range of
frequencies (e.g. the alpha range), in which case a bandstop filter can be used.

Figure 2.5 shows how some of these filters transform the signal. They attenuate the (hopefully un-
desired) frequency components while leaving others intact. Unfortunately, it is impossible to only filter
the desired frequencies. Components with similar frequencies will always be affected. Furthermore, the
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(a) Peak filter
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(b) Notching filter

0 20 40 60 80 100 120
−300

−250

−200

−150

−100

−50

0

frequency (Hz)

m
ag

ni
tu

de
 (

dB
)

(c) Combing peak filter
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(d) Bandpass filter
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(f) Notching filter
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(g) Combing peak filter
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(h) Bandpass filter

Figure 2.5: Effects of different IIR filters on a signal. Top: effect on magnitude for each frequency, bottom:
effect on phase. The first three filters are centered around 30 Hz, the last is a bandpass filter between 5
and 30 Hz.

bottom row shows that these filters can also alter the phase of the signal in some frequency bands. Finally,
in order to determine the new value of a point in the signal, these filters use the values of preceding points.
Since in the beginning there are no preceding points, the effect is that the first values of the filtered signal
are not accurate. This effect diminishes gradually and the anomalous part is sometimes referred to as the
transient of the filter. This part should not be used in analysis.

Another way of dealing with spontaneous brain activity is to do baseline substraction in the frequency
domain [59, 60, 61, 62]. This baseline activity should contain (some of) the spontaneous brain activity
that will also occur during BCI operation. Baselines are often recorded during a period in which the
user is asked to do nothing (and sometimes even close their eyes). A disadvantage of this is that the task
might affect the spontaneous brain activity, which would render the substraction less useful. Another
approach is to take the baseline during execution of the task. Such an activity baseline contains more
relevant spontaneous activity, but also the relevant signal. This can be remedied by taking baselines
for all conditions of a task (e.g. focusing on all of the targets in an SSVEP-based BCI) and averaging
the spectra to get the activity baseline. This baseline still contains the relevant signal(s), but to a much
smaller degree than the actual signal should have.

The noise discussed up to now has been distributed over the entire (relevant) signal measured from the
brain. Artifacts are more local in time. Some will have already been filtered using previous means. For
instance, teeth clenching causes a fairly high frequency muscle artifact, which might already have been
dealt with by a lowpass filter, and low frequency head movements can be eliminated by highpass filters.
Often though, these artifacts are not filtered and need to be detected. There are many different ways to
do this that are beyond the scope of this thesis. A very simple approach is to simply see if the measured
signal exceeds some predefined amplitude threshold (which might work for some artifacts). Another –
more labor intensive – approach is to use visual inspection.

When an artifact is detected there are a number of possible actions. Ideally, only the artifact is re-
moved and the rest of the signal is left intact. This is relatively hard and beyond the scope of this thesis. It
is also possible to replace the segment containing the artifact by something else (e.g. the channel average)
so that the segment is unremarkable, but can still be used for processing. The segment or channel with
the artifact can also simply be rejected or ignored. In that case, it only makes the BCI slightly slower, but
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does not otherwise affect the processing.

Spatial filtering In many BCIs, the goal is to find some known evoked potential embedded in the EEG
signal. It is likely that this potential is not distributed over the entire brain, but that it is primarily caused by
one or more sources. Ideally, the system would get the signal from that source, and nothing else. However,
multiple electrodes pick up information from the relevant source(s) as well as from other sources. The
goal of a “spatial filter” is to convert the EEG signals obtained from each electrode location into source
signals. This problem is called the “inverse problem” and is technically unsolvable [63]. However, using
some assumptions, spatial filters can be constructed with sources that have significantly increased the
signal-to-noise ratios compared to simply using a single electrode’s measurements. A spatial filter takes
the form of a weight matrix that determines how much each EEG signal contributes to each source.

The weight matrix can be determined using several different algorithms. Beamforming methods use
information available a priori about signal sources, electrode locations and properties in the environment
that might affect transmission of the signal from a source to a detector (e.g. density and composition of the
head). Examples include linearly constrained minimum variance (LCMV) [64, 65], low resolution brain
electromagnetic tomography (LORETA) [66] and Bayesian beamforming [67]. Independent component
analysis (ICA) on the other hand makes no assumptions about the source locations in the brain and effects
from the environment, but instead assumes that the sources are all statistically independent, which is not
entirely correct [68]. The weight matrix is then estimated so that this assumption will hold. These
methods are all independent of the extracted features and knowledge of the BCI task is not necessary.

Common spatial patterns (CSP) is a method that ensures that source power varies maximally between
classes in the BCI [69]. In an SSVEP-based BCI with two targets for instance, the spatial filter would
ensure that the difference in power between the two classes is as large as possible (or alternatively, a
spatial filter could be constructed for each class, that maximizes the power difference between that class
and “no class”). It works best in narrow frequency bands, relies on robust channel covariance matrix
estimates and can be prone to overfitting. Furthermore, it requires a calibration phase in order to obtain a
train set with labeled data.

Some spatial filters can also take into account the specific feature(s) that will be extracted in the feature
extraction phase. In the case of SSVEP-based BCIs, the primary feature will most likely involve harmon-
ics of each stimulation frequency. Constructing a spatial filter for each of the stimulation frequencies,
can significantly increase the SNR for each target. Noise can be reduced simply by averaging the signal
over a couple of electrode locations, but phase differences of the actual signal over multiple locations
causes the signal to be severely diminished as well. The minimum energy combination (MEC) attempts
to minimize the energy of the signals after having subtracted the relevant frequency components, thereby
greatly diminishing the noise [70]. The maximum contrast combination (MCC) goes one step further and
in addition also maximizes the energy of these relevant frequencies.

Feature extraction

In the feature extraction phase the elements that are used for classification are extracted from the pre-
processed signal. Ideally, a feature is used that contains all relevant information and that maximizes the
difference between classes. Often used examples include the energies of the frequency components for
each of the targets in an SSVEP-based BCI, or the height of a peak 300 ms after the onset of a stimulus
in a P300-based BCI. The feature extraction phase is the one that depends the most on the BCI paradigm
used.

The feature used in the BCI used for experiments reported in this thesis (described in Section 3.4) is
based on the energy of the (first four) harmonics of a target’s frequency. For each harmonic, the signal
is peak filtered and squared in order to get the energy. The energy is then summed over a certain time
segment (1 second) and added to the summed energies of the other harmonics. This process results in a
feature vector containing one energy value for each target. Another way to get a similar result is to sum
the peaks of the harmonics in a Fourier spectrum.
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Feature translation

In the feature translation phase, the feature vector from the previous phase is translated into something
that the control interface can make sense of. The output of the translator can have discrete and continuous
components. Imagine a wheelchair BCI that has a separate motor for each big wheel. The translation
algorithm could have two purely continuous outputs, determining the speeds at which each wheel should
turn (negative numbers mean backwards). The feature vector could also be translated into a discrete set,
corresponding to commands for going backward or forward, or turning left or right. A hybrid could in
addition have a continuous output value that determines the speed with which that happens.

Translations can be done using any number of algorithms. Continuous components are likely to be
very application specific. For discrete components, the problem boils down to a general classification
problem. Any classification algorithm can be used, from neural networks, to support vector machines, to
simple comparison of feature strengths and thresholds.

Depending on the predictability of the feature vector and the specific translation algorithm used,
calibration may be needed to determine appropriate parameters. The calibration period generally involves
the subject performing a constrained version of the task where the data can be labeled. The length and
amount of necessary repetitions of calibration should be kept to a minimum. Ideally, if the system allows
for it, calibration could occur during the operation of the BCI. This allows the system to be adaptive, even
during operation, which is a great advantage, because a user’s brain signals may change over time due
to factors like fatigue, habituation, motivation, training and distraction. The easiest way for the system
to be adaptive is if it has a way of determining whether the actions it takes are correct. Another method
could be to assume that it is correct most of the time and adjust parameters based on that assumption. For
instance, if the second-last step of the classification algorithm calculates probabilities that each class is
correct, the algorithm could be adjusted in such a way that the next time that it is presented with the same
data, the difference between the highest probability and the lower ones has become larger.

2.4.3 Evaluation
BCIs can be evaluated on several different characteristics and measurements: performance, comfort,
safety, usability (i.e. how many, and which, people can use it), ease of use, training time, robustness and
cost. Most research focuses on improving the performance of BCIs. The performance can be represented
in a number of ways. The simplest (and least informative), is to just report the accuracy of the system,
which is defined as the probability P that the system correctly classifies the user’s intent. What we actually
want to know, however, is how much information can be communicated in a certain period of time.

A more informative performance measure is the “bitrate ” B which measures the amount of informa-
tion transmitted per symbol/target/choice/command/selection that the system makes.The calculation of
the bitrate is based on Shannon’s information theory and in the most general form can be reduced to the
mutual information between the actual and expected classifications of the system. Nykopp’s definition of
the bitrate follows from this:

B = I(X ;Y ) = H(Y )−H(Y |X)

H(Y ) =−
M

∑
j=1

p(y j) · log2 p(y j)

p(y j) =
N

∑
i=1

p(xi) · p(y j|xi)

H(Y |X) =−
N

∑
i=1

M

∑
j=1

p(xi) · p(y j|xi) · log2 p(y j|xi)

(2.1)

, where X and Y represent the expected and actual outcomes, p(xi) gives the probability that the ith symbol
is expected (a priori probability), p(y j) gives the probability that any signal is classified as the jth symbol
and p(y j|xi) gives the probability that the system classifies a signal as the jth symbol, given that it is
actually the ith. I and H are the mutual information and the entropy.

Most research that reports a bitrate however, uses the simplifying assumptions first made by Wolpaw
et al. [71]. First, it is assumed that all symbols have the same a priori probability (i.e. p(xi) = 1/N).
Second, that the classifier accuracy P is the same for all symbols (i.e. p(y j|xi) = P for i = j). And third,
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that the classification error 1−P is equally distributed amongst all remaining symbols (i.e. p(y j|xi) =
1−P
N−1

for i 6= j):

B = log2 N +P log2 P+(1−P) log2
1−P
N−1

(2.2)

These assumptions can be very reasonable. If the effects of all commands/symbols are equivalent, it
should not matter which one can be classified more accurately (assumption 2). Similarly, if erroneous
classifications are all equally bad, it should not matter which symbol is selected instead (assumption 3).
Obviously, equal a priori probability of all symbols can be intended, or a useful estimate when the real
probability distribution is unknowable (assumption 1). Furthermore, if these attributes are desired, using
Wolpaw’s definition will enforce them in the bitrate calculation, so that artifacts from a (bad) test run have
a smaller effect (e.g. a run where the symbols were not all selected equally often by chance). Finally, it
seems that using Wolpaw’s calculation for the bitrate, multiplied by the average classification time, gives
a better estimate of the information transfer rate in our experiments.

The “information transfer rate (ITR)” R represents the amount of information that can be commu-
nicated in one minute and can be estimated by dividing the bitrate by the average number of minutes
it takes to make a classification. The notions of bitrate and ITR are often used interchangeably in the
literature, but in this thesis “bitrate” will specifically refer to the amount of information communicated in
one symbol, whereas “ITR” will refer to the information communicated in one minute.

The ITR can also be calculated more directly by multiplying the total number of correct symbols C
with the number of bits needed to represent each symbol and dividing by the number of minutes T that
were used:

R =C log2 N/T (2.3)

This more accurately gives an estimate of how long it would take to complete certain tasks. However,
many experiments are done offline in which the total running time of the task is not informative.

Almost every article about brain-computer interfacing mentions the performance of the considered
system. Evaluation measures that represent subjective traits like user friendliness, comfort and safety are
often overlooked. Most BCIs are exhausting to operate and the ones considered in this thesis can even
induce epileptic seizures. Little attention is payed to these aspects, even though a user may perceive a
user friendly and comfortable BCI as more valuable than a BCI with a higher ITR.

There are many other important aspects. It should be fast and simple to set the user up for BCI
operation. Preferably, the user should require as little assistance as possible. The amount of training time
needed to get the system working should be minimized. The measuring equipment should not be too big
of a burden. Finally, and perhaps most importantly, the user needs to be able to use the BCI. This means
that it is good to focus on systems that require as little muscle control as possible (independent BCIs) and
that the measured feature should be easy to determine in most potential users. Ideally, the system should
also be fun and rewarding to use.

2.4.4 VEP-based BCI
There are many different brain activity paradigms that can be used in brain-computer interfacing. Most
BCIs provide the user with the ability to select one of a number of predefined commands by executing
a task associated with the desired command. This task depends on the employed BCI paradigm. Users
may be asked to imagine movement of a limb, remember a fond memory, or look at a visual stimulus.

VEP-based BCIs fall into the last category. In general, a number N of visual stimuli, called targets,
are presented on the screen. Each is associated with a command and can be selected by focusing on
it. Most VEP-based BCIs require that the user does this by actively gazing at the desired target, which
makes these BCIs dependent on eye or neck muscles. However, because VEP amplitudes are enhanced
by attention, it can also be sufficient to covertly focus on a target [72].

This is one of the main advantages VEP-based BCIs have over eye tracking systems, since these
systems do require gaze shifting [55]. These systems can also not judge whether the person is actually in-
terested in a target. Pupillary dilation and other measures available to eye tracking systems can sometimes
tell if someone is zoning out, but this may require a more expensive system, significant calibration, or
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limited functional environments. If there are multiple targets at the same location or even gaze direction,
only an VEP-based BCIs could determine which target is of interest. Finally, as BCIs are becoming more
ubiquitous, some people might have access to a BCI, but not to an eye tracker.

VEP-based BCIs are reactive (exogenous). It can technically be argued that they are independent of
muscle movement, since they work based on attention rather than gaze direction, but in practice many
systems would not work without looking at the targets. VEP-based BCIs are mostly synchronous, since
the system determines when the user can issue commands, although a perception of asynchrony can be
achieved when these moments follow each other quickly and constantly. Since VEP responses occur in
virtually everyone and happen involuntary, usually not a lot of training time is required and almost every-
one can use them easily. Measuring VEPs usually only requires a couple of EEG electrodes, making such
systems potentially relatively cheap and not extremely hard or costly to set up. Performance depends on
the individual system and application, but tends to be good compared to BCIs based on other paradigms.
VEP-based BCIs on the other hand are generally fairly uncomfortable to operate.

The following subsections focus on particular subparadigms of VEP-based BCIs.

P300

One of the first BCIs that was made was a system that allowed a user to spell a message by focusing on
the individual letters [73]. Imagine a 5×6 matrix of greyed-out letters (and some punctuation) where one
briefly lights up at a time. When the letter that the user was focusing on lights up, this causes a P300
response to be measured.

Especially in the early days, it was impossible to detect this response in a single trial [74]. Therefore
the responses to multiple trials were averaged together until a P300 response could robustly be distin-
guished. Since there is some intra subject variability in P300 latency, the flashes of the letters have to be
spaced sufficiently far apart in time. Even if we underestimate the inter-stimulus-interval (ISI) at 50 ms
and the number of trials necessary for robust classification at 5, it would take at least 7.5 seconds to clas-
sify one character. In [74] the ISI was 100 ms and the number of trials necessary to get 80% classification
accuracy was approximately 10.

There are a number of ways in which this process can be sped up. The letters can be rearranged
and selected by moving a cursor in four directions and confirming the current selection [75]. Since there
are only five targets (four arrows and a confirmation button), it would appear that one round of flashes
would take only 250 ms (5 ·50), so selection would take 1250 ms, and since at most 5 buttons have to be
selected for one selection, this would lead to a total selection time that is likely to be lower. However,
depending on the classification algorithm, a time of at least 400 ms should be between two flashes of the
same target, because of the length of the P300 response. This means that the worst-case scenario would
take 10 seconds, although the average letter selection time may still be lower than that of the original
system. It appears however, that P300 systems lose some of their strength when the number of targets is
smaller than the P300 response duration divided by the required inter stimulus duration.

Alternatively, it is possible to light up multiple letters at a time (e.g. an entire row or column in a
matrix) [74]. If the flash sequence of each letter remains unique, the P300 should still be detectable, but
since more than one letter is flashed at a time, the time it takes for a letter to flash the required number of
times is decreased. A really simple design could sequentially flash all the 5 rows first, wait 400 ms, flash
all the 6 rows, again wait 400 ms, and repeat. In the example, it would take 2.5 of these rounds to get 5
trials, so the selection of one letter should take at least 3.25 seconds.

SSVEP

In SSVEP-based BCIs all of the targets are repetitive visual stimuli that oscillate at a (usually) different
frequency. When the user focuses his attention (overtly or covertly) on the desired target, the measured
brain activity’s frequency components for the target’s frequency and harmonics increases. This allows the
system to determine which target the user was focusing on. This method is called “frequency tagging”,
since each target is tagged by a frequency. Since all targets are generally on all the time and simultane-
ously, there is no waiting time for a flash. Analysis of frequency components is easier and more robust
than the analysis needed in tVEP-based BCIs and there is less inter- and intra subject variability in the

Stimulation Effects in SSVEP-Based BCIs 17



Chapter 2. Concepts 2.4. Brain-Computer InterfacesChapter 2. Concepts 2.4. Brain-Computer InterfacesChapter 2. Concepts 2.4. Brain-Computer Interfaces

SSVEP response. Since averaging over multiple trials is generally not necessary, SSVEP-based BCIs can
get higher performance than other BCIs.

Looking at RVSi can be annoying, tiring and epilepsy inducing. Furthermore, when a lot of targets
are present in the BCI, a lot of different frequencies are needed. Consequently, some of these frequencies
will be very close to each other, which means that classification errors become more likely and that the
time segment needed for classification is large (because the frequency resolution of the Fourier transform
is inversely correlated with the length of the data). The first problem is even worse on stimulation devices
with low framerates, like computer monitors, since these can only generate a limited set of frequencies
accurately (see Section 4.2).

There are a number of ways in which this can be remedied. Instead of, or in addition to, using fre-
quency tagging, it is also possible to use “phase tagging”. Multiple targets with the same frequency, but
phase difference ϕ , elicit SSVEP responses with the same phase difference ϕ . Phase analysis appears to
be a little harder and less robust than frequency analysis, but it has great potential, because frequencies
that the user responds to well can be used multiple times. Using phase information on low framerate
devices is still problematic however, since only few different phases can be rendered for accurately dis-
playable frequencies. Especially if the frequencies are high. Another possible remedy is to combine
frequencies (see Section 4.3.2 for more information).

Noise tagging

“Noise tagging” [76] can be considered a mix of the previous two paradigms. Like in the tVEP-based
BCIs (e.g. P300), each target’s flash pattern is unique. However, in the noise tagging paradigm, the goal is
not to extract a certain waveform. The flashes in this paradigm generally follow each other very quickly
(like when eliciting an SSVEP) [77], which makes it impossible for a proper and characteristic P300
potential to form. Compared to the constant-frequency SSVEP eliciting stimuli, the seemingly random
blinking sequences used in noise tagging stimuli look like noise. The sequences of the targets are however
not random, but carefully selected to be unique and have the largest possible inter target distance. Since
there is no constant frequency, and no time for a proper waveform to form, frequency and waveform
analysis cannot be used. Instead, noise tagging approaches work by determining the correlation between
the signals from the brain and the known sequences of the targets [77].

Noise tagging has some advantages compared to the other paradigms. It can more easily be used in
systems with a lot of targets than SSVEP-based approaches, because the latter often have to choose from
a certain number of suitable frequencies. Furthermore, it might be easier to design noise sequences that
have a larger distance to each other than it is to select distant frequencies, making these systems more
robust. Compared to P300 systems, it seems that noise tagging could potentially be faster, because the
unique sequence of each target is presented more quickly.

The main disadvantage of this method is that fairly little is known about it, especially in the visual
domain. It is not yet clear if correlation analysis can compete with frequency and waveform analysis
methods that are available for SSVEP and P300 paradigms. Furthermore, it is unknown if these systems
can be made independent, like P300 and SSVEP systems. Finally, it seems likely that noise tagging BCIs
will not be able to compete with SSVEP-based BCIs in terms of speed.
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Summary
Brain-computer interfaces are systems that give users the ability to communicate and control without
using their muscles, by measuring activity from the brain. There are many different techniques for mea-
suring brain activity. Because of its high time resolution, noninvasiveness, ease of acquisition, and cost
effectiveness, the electroencephalogram (EEG) is the preferred brain monitoring method for SSVEP-
based BCIs. When the eye detects a visual stimulus, a visual evoked potential can be measured. The
strength of this response is modulated by attention as well as properties of the stimulus. Repetitive visual
stimuli cycle between a number of states (usually 2) at a (usually) fixed frequency and thereby elicit an
SSVEP response with the same frequency and harmonics. By analyzing the measured brain activity, the
BCI can deduce which of several targets the user was focusing on. By executing a command associated
with that target, the user is provided with an additional channel for control or communication.

This can be especially useful to patients who have lost control of some of their more conventional
output pathways. However, healthy people can also benefit from having extra output channels. For
instance when their conventional output channels are already fully occupied, or when system control
using the brain is simply more convenient or fun. BCI performance (i.e. the speed and accuracy of the
system) is very important to achieve this, and so are user comfort and safety.

BCIs based on the SSVEP have been shown to provide high performance, low training times, robust-
ness and usability. On the other hand, the repetitive visual stimulation they require can be uncomfortable
and even induce seizures in photosensitive epileptics. By carefully choosing the properties of stimulation,
these disadvantages might be decreased, while the promising nature of this paradigm in brain-computer
interfacing is preserved.
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Chapter 3

Experimental setups and methods

This chapter outlines several experimental setups that were often used in the research for this thesis.
Details of the actual experiments are not discussed here, but in the sections of Chapter 4 corresponding
to the subject of these experiments. This chapter lists the hardware (Section 3.1), software (Section 3.2)
and analysis methods (Section 3.3) used in the experiments. Furthermore, it gives a detailed description
of the Experimentation BCI, which was used in many of the experiments (Section 3.4) as well as some
general properties of the other, offline experiments that were carried out (Section 3.5).
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3.1 Hardware
In order to carry out all experiments, a number of different stimulation devices were used in conjunction
with either a signal generator or a computer. Additionally, a system for doing the EEG measurements
is also necessary. This section describes the hardware used in the experiments that are reported in this
thesis.

Stimulation devices For this research there were four stimulation devices available to us: an LCD,
a CRT, a set of four green LED boxes (see Figure 3.1) and a white LED panel (see Figure 3.2). The
white LED panel could be obscured so that only a 5×5 cm part of it was visible. The most important
characteristics of the devices are summarized in Table 3.1. The refresh rates of the LEDs are determined
by the Agilent signal generator used to drive them (see Section 3.1).

LCD CRT Green LEDs White LED panel
Brand Philips Philips - -
Type 180P2 107P - -
Refresh rates 60/75 Hz 60/75/85 Hz 20 MHz 20 MHz
Size (cm) 36×28.8 32.4×24.7 8×8 50×30 / 5×5

Table 3.1: Light stimulation devices

(a) (b) (c)

Figure 3.1: The green led box that was used.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: The white led panel that was used.
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Agilent signal generator Whereas the computer screens can simply be driven by a computer, the LEDs
receive their signal from a dedicated signal generator. The Agilent 33220a arbitrary waveform generator
can generate sine, square, pulse, triangular and arbitrary custom-programmed waves. It has a TCP/IP
interface that allows for automatic control.

BioSemi acquisition system A BioSemi ActiveTwo system was used to acquire all of the EEG signals
from the brain. It has 32 active EEG electrodes in addition to a ground and a driven right-leg, which
are connected to C1 and C2 on the 10-20 international system for electrode placement. The remaining
electrodes are also placed according to the 10-20 system as shown in Figure 2.1.

In addition to acquiring EEG data, a light sensor could also be attached to the ActiveTwo system.
This made it possible to exactly synchronize the EEG data with the stimulation.
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3.2 Software
MATLAB Extensive use was made of The MathWorks’ MATLAB development environment (version
7.8.0.347 (R2009a) [78]) for signal processing, data analysis, visualization and experiment design. The
Filter Design toolbox was used for filtering the data, and the Statistics toolbox was used for statistical
analysis, using especially the Student’s t-test.

Psychtoolbox Psychtoolbox is an open source toolbox for MATLAB that, amongst other things, offers
tools for fast and accurate visual stimulation [79]. It was not used for online experiments, because MAT-
LAB lacks the threading support necessary for simultaneous (dynamic) stimulation and signal processing.

Neurostim Neurostim is an open source, OpenGL based, OS-independent C++ library for the pre-
sentation of visual stimuli in Neuroscience experiments [80]. It is used for the implementation of the
Experimentation BCI (see Section 3.4), because it has good graphical and TCP support and allows for
easy integration of stimulation and application modules.

BCI2000 BCI2000 is a general-purpose system for BCI research, written in C++ [81]. A BCI created
with BCI2000 consists of four programs that communicate through the TCP protocol. There is a main
controller, as well as separate programs for data acquisition, signal processing, and the application. In
the Experimentation BCI, we used third-party modules for data acquisition using the BioSemi device and
for delegating the signal processing task to MATLAB. The application module was left empty (a no-op),
because a custom interaction with a Neurostim application was used directly from the signal processing
module.

Java The Java programming language (version 6) was used to create a TCP networking module that
could be called from the command line. This enabled easy use of TCP networking in MATLAB.

LabVIEW National Instruments’ LabVIEW [82] was used by BioSemi to make the program ActiView
to control their ActiveTwo acquisition system. Additionally, LabVIEW was used to run some of the
earliest experiments that were done in this thesis.
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3.3 Analysis methods
3.3.1 Fourier transform
Most signals are first considered in the time domain, because it is the way that the signals are gathered
in the physical world: e.g. voltages at different time points. The time domain can be converted to the
frequency domain, since frequency is simply “per amount of time”. Where the time domain shows the
amplitude of a function at each point in time, the frequency domain shows the amplitudes of sine and
cosine waves modulated at each frequency. The (repeating) signal can be reconstructed in the time domain
by adding all these sines and cosines back together. The Fourier spectrum shows for each frequency the
sum of sine and cosine amplitudes (called the magnitude), or the square thereof (called the power).

Collections of neurons are continuously firing, often at fixed frequencies. This makes frequency anal-
ysis of the EEG signal very useful. The amplitudes of frequencies in different ranges, gives information
about different states of mind, like idling (theta), relaxing (alpha) and working (beta and gamma). It
is also extremely useful for SSVEP analysis since it directly shows the strength of the response for all
harmonics over a certain period of time.

The range of frequencies that can be represented in the Fourier spectrum depends on the time resolu-
tion and duration of the source signal. The highest frequency in the spectrum is 1

2·time resolution and the
frequency resolution is 1

duration .

3.3.2 Energy calculation
Sometimes we want to know the “size” of a signal. We know for instance that movement causes the
EEG signal to get much “bigger” and we might want to filter parts of the signal where that happens
(see Section 2.4.2). The “energy” E of a signal x measures the sum of the squared amplitudes at each
time point i in the signal of duration D seconds sampled at R samples a second (see Equation 3.1). The
“power” P is defined as the amount of energy per time unit (see Equation 3.2).

E =
D·R

∑
i=1

x2
i (3.1)

P =
E

D ·R
(3.2)

Instead of doing a Fourier transformation to measure the SSVEP strength, it is also possible to apply
a peak filter at the stimulation frequency, or a harmonic, to the signal and then calculate the energy of
the remainder. One advantage of this approach is that it is faster than computing a Fourier transform,
especially when it can be calculated continuously. If the system receives new data every 250 ms, but it
uses a window of 1 second for analysis, the Fourier transform would have to be recomputed in its entirety,
whereas the peak filter and energy calculation could just be applied to the new segment. Furthermore, if
the BCI uses a targets oscillating at 7.5 and 8 Hz, a Fourier-based analysis would need 2 seconds worth
of data in order to distinguish between these two, whereas the energies for those frequencies could be
calculated with much less data. The main disadvantage of this approach is that the peak filter introduces
a big transient in the signal. It is our experience that this does not affect the data by much after a couple
of seconds, but it does imply that it is hard to analyze only a small piece of data in isolation.

3.3.3 Signal-to-noise ratio
The signal-to-noise ratio (SNR) can intuitively be obtained by dividing the energy of the relevant signal
by the energy of everything else. In the case of the SSVEP, we first obtain the SSVEP energy, calculated
as stated above using a peak filter. The SSVEP energy can consist of just the energy of the EEG signal
at the stimulation frequency, or can be the sum of the energies at several harmonics. The SSVEP energy
can then be divided by the energy of the entire signal, or by the energy of a notch filtered signal. If it is
divided by the entire signal, we obtain a number resembling the percentage of the signal that is relevant
to our goal. If the SSVEP energy is divided by the energy of the signal after removal of the SSVEP
components, an actual SNR is obtained.
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The SNR can be calculated in a similar way using the Fourier transform. Instead of comparing the
SSVEP power to all of the (other) power in the spectrum, a commonly used approach is to only divide it
by the power of surrounding frequencies (see Equation 3.3) [12].

SNR( f ) =
nF( f )

∑
n/2
k=s F( f + k∆ f )+∑

n/2
k=s F( f − k∆ f )

(3.3)

, where f is frequency, n is the number of surrounding frequencies to use, F is the Fourier power of
the signal, and ∆ f is the Fourier transform precision (∆ f = 1/D). In the case of SSVEP analysis f is
generally the stimulation frequency or one of its harmonics.

3.3.4 Time-frequency analysis
The energy of each frequency can be expected to change over time. However, the above mentioned peak
energy analysis only measures the energy of one (combination of) component(s) of the signal, and the
Fourier transform only shows the power or magnitude of a frequency component in the entire signal. A
time-frequency representation is a three dimensional plot that shows how strong each frequency compo-
nent is at each point in time.

A couple of time-frequency analysis methods are used. In the “Short-Time Fourier Transform (STFT)”
the signal is multiplied a window function and Fourier transformed for multiple points in time. The result-
ing Fourier spectra are associated with their center time points and juxtaposed to get the time-frequency
spectrum. Since this method uses the Fourier transform it has the same tradeoffs with respect to resolu-
tion. A wide window results in a longer time sample for the Fourier transform and thus a higher frequency
resolution, but a lower time resolution. In order to improve the time localization of the spectrum, the used
window often has a bell shape (Gaussian, Hann, or Hamming).

These shortcomings are not shared by the “Matching Pursuit (MP)” technique [83]. This method
chooses a subset of atoms from an extremely redundant, overcomplete dictionary to represent the signal
in both the time and the frequency domain. These atoms are two-dimensional Gaussians with different
values for the mean and variance in both dimensions. The MP algorithm greedily chooses the atom
from the dictionary whose inner product with the rest of the signal is the largest, until the energy of
the remaining signal falls below a predefined threshold. The main disadvantage of this method is that it
executes slowly, because in each iteration it has to search a large dictionary.

3.3.5 ROC curve
At some point the BCI will need to make a classification. For the classification of one class (i.e. whether it
is currently active or not), it is often possible to adjust the classifiers sensitivity. For instance, classification
may depend on whether a certain value exceeds a certain threshold. By lowering the threshold (i.e.
increasing the sensitivity), more instances are correctly classified as active (more true positives), but
more instances are wrongfully classified as active as well (more false positives).

The “receiver operating characteristic (ROC) curve” plots the false positive rate on the X-axis and
the true positive rate on the Y-axis for different threshold values. The optimal threshold will depend on
the application. Some applications will simply try to strive for the highest accuracy, while others will
want to minimize the number of false positives at all costs. The ROC curve can provide insight into
the tradeoffs that are available. The area under the ROC curve (AUC) provides an objective measure
of how well the classification algorithm works on the current data, as it is equal to the probability that
a randomly chosen positive instance will be ranked higher than a randomly chosen negative one. In a
training or calibration phase, this number can help in selecting the best settings for the experiment or the
classification algorithm.
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3.4 Experimentation BCI
Most experiments were done with a custom made BCI running on a computer, which will be referred to
as the “Experimentation BCI” and is depicted in Figure 3.6. The goal is to move the red arrow to the
blue square by concentrating on the targets in the corners (more details in Section 3.4.4). Since LCD
monitors are more common than CRTs nowadays, an LCD monitor was used most of the time. Subjects
were seated approximately 70 cm from the display. Because online and offline evaluation of BCIs can
be very different, we wanted to do both in order to get a good understanding of stimulation properties in
SSVEP-based BCIs. These experiments therefore featured both an online and an offline part.

3.4.1 Frequency selection

Figure 3.3: During frequency selection the user was prompted to focus on the top right target with a white
arrow and an auditory cue.

Because the targets need to be distinguishable from each other, the system requires four different
frequencies. Different people respond well to different frequencies so the performance of an SSVEP-
based BCI system depends greatly on the used frequencies. In order to select the four that would work
best, a frequency selection procedure was performed the first time the user participated in an experiment.

In the corners of the screen four 6×6 cm targets separated 16 cm horizontally and 12 cm vertically
were flickered at a certain (equal) frequency. For conditions in which the stimulus was a square (and not
a checkerboard) integer frequencies between 13 and 20 Hz were tested. These frequencies were chosen
because preliminary experiments had shown that most people have little response in the lower frequency
ranges, our monitor could not reliably display high frequencies and we wanted to avoid the alpha range.
For checkerboard conditions we additionally tested 6.5-10 Hz with a 0.5 Hz step because the literature
shows that they elicit responses at twice this frequency.

The frequency selection procedure started with 10 seconds of black screen where the user was allowed
to rest. After 9 seconds an auditory cue was given to indicate that the user should start paying attention
again. A second later the four stimuli would appear for 5 seconds and the user was asked to pay attention
to the top right one (see Figure 3.3). This was repeated for each tested frequency in a randomized order.

Stimulation Effects in SSVEP-Based BCIs 27



Chapter 3. Experimental setups and methods 3.4. Experimentation BCIChapter 3. Experimental setups and methods 3.4. Experimentation BCIChapter 3. Experimental setups and methods 3.4. Experimentation BCI

Each frequency was analyzed by computing a spatial filter based on EEG signals obtained during the
time that that frequency was displayed. After the spatial filter was applied, the whole signal was peak
filtered at this frequency and the energy was computed with a sliding window of half a second. Then
the area under the ROC curve (AUC) of the energy of the 5 seconds of stimulation and the 5 seconds
before the cue was computed after which the experimenter picked out which 4 should be used in later
phases of the experiment. Simply taking the 4 frequencies with the highest AUCs is not optimal because
the distance between frequencies (the probability of confusing one with another) is also important and
not properly reflected in this number. For instance, taking frequencies where one is the other’s harmonic
does not work and taking frequencies that are too close together is riskier than taking ones that are very
different. The picked frequencies were then used in all experiments of the same kind (i.e. using flashes
versus pattern reversal; see Section 4.8).

3.4.2 Questionnaire
Each experiment tested multiple related conditions in a random order. Each of the four corners of the
screen displayed one stimulus. In the beginning of the experiment, the user was asked to fill out a ques-
tionnaire with questions about each of the conditions, in order to find out how comfortable they were.
They had to give a score between 1 (not) and 7 (very) for each of the following four questions while
watching each of the conditions in turn:

• How much do you like this stimulus?

• How much will this stimulus increase your tiredness?

• How long could you look at this stimulus?

• How annoying is this stimulus?

These questions were asked again after the experiment. Additionally, users had to score their level of
tiredness on a seven point scale both before and after the experiment.

3.4.3 Calibration
The testing of each condition consisted of a calibration phase and an operation phase. The goal of the cal-
ibration phase is to determine how to set certain parameters during the operation phase. In the calibration
phase the subject was asked to pay attention to one (or none) of each stimuli 4 times in a random order
(see Figure 3.4). Each trial consisted of a rest period of 4-4.5 seconds after which an auditory cue was
given and an arrow appeared on the screen indicating which target to focus on. After another 4 seconds
the screen was flashed for 1 screen refresh period (i.e. 1/75 = 0.013 s when the refresh rate was 75 Hz)
with a red or green color and another auditory cue was given (either low or high pitched). This indicated
the end of the trial and was done for consistency with the operation phase (see Section 3.4.4). During the
rest period the subject was allowed to do anything, so in order to get ‘no stimulation’ trials, the subject
was also occasionally asked to focus on a diamond shape in the center of the screen that would appear
instead of an arrow. Four repetitions for each of the five targets (4 stimuli + 1 no stimulation) of on
average 8.25 seconds gives a total calibration time of 165 seconds or almost 3 minutes.

The goal of the calibration is to obtain good spatial filters and energy thresholds for each of the used
frequencies. In order to determine a suitable spatial filter from the calibration data, we first calculate
the energy based on the occipital channels ( O1+Oz+O2

3 −Cz). Then, for each of the 4 trials, we select the
second where the energy was consistently the highest and use this interval to calculate the spatial filter
for channels P3, Pz, P4, PO3, PO4, O1, Oz and O2. Then, we apply the filter to the signal and calculate the
energy (see Figure 3.5(c) and (d)). A ROC curve is computed using windowed data from target intervals
versus that from non-target intervals (see Figure 3.5(a) and (b)). Using the area under this curve is a good
measure for how distinct the target class is from the others.

However, selecting a threshold from this curve that gives satisfying results with respect to the number
of true and falsely positive classifications that the system will likely make, is not straightforward. Since
misclassifications can be frustrating and in some applications hard to fix, we have focused on correctness
rather than speed of operation. We took the maximum energy value from each of the 4 target trials and
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Figure 3.4: During calibration the user was prompted to focus on a target with a white arrow and an
auditory cue.

computed the number of true and false positives taking these values as thresholds would generate. The
threshold that could classify the largest number of targets while still exceeding a true-to-false positive
ratio of 3 was selected. This was repeated for each of the spatial filters (that were computed for each
trial) in order to find the one that would allow correct classification of the most target intervals while
minimizing the number of false positives.

3.4.4 Operation
The goal for the operation task was to give the user a sense of freedom, autonomy and accomplishment
in order to prevent boredom, while not imposing any difficult mental tasks on the user and still being able
to judge if the BCI was making correct classifications or not. The result was a task where the user had
to move an avatar (red arrow) along a curvy path or corridor to a goal (see Figure 3.6). There were no
branches, so there really was only one way to go, which means that there was little mental effort required
and it was easy to judge right decisions from wrong ones. Nevertheless, the task is a lot less boring than
the calibration (although it is not exactly a thrill ride).

The user could move the avatar by focusing their attention on the target associated with the intended
direction. If the energy for exactly one frequency would exceed the threshold, the avatar would turn
towards the signified direction and try to move there. If the avatar bumps into a wall, he does not change
position. Good moves are accompanied by a green screen flash and a high pitched tone and bad moves
are identified by a red flash and a lower tone. After a move, no classification is made for at least one
second in order to prevent making many subsequent classifications that can likely be incorrect after the
first one. This gives the user some time to react to the move and the SSVEP response for the (previously)
attended frequency to decrease.

Every corridor consists of 24 steps and it should be possible to complete it in under one minute. After
this time, the subject gets a break of 20 seconds in which stimulation ceases and the subject can relax.
After this, he/she is given another minute followed by a 20 second break. If in the minute after this the
corridor can not be completed, the rest of the level is skipped.

For each condition there are two levels of 24 steps. Each direction should in principle be taken 12
times. If moves in the wrong direction occur, this number changes. Furthermore, this only ensures that
the number of true positives for each target is roughly the same. The a priori probabilities of each target
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Figure 3.5: ROC curves (a and b) and energy plots (c and d) obtained from the calibration data for two
different targets. The left ROC curve (a) is associated with the first energy plot (c) and the right one
(b) with the second (d). Each point on the ROC curves shows the true to false positive classification
ratio that would be obtained based on the calibration data. The blue mark on the ROC curves mark the
threshold at which the true and false positive rate is equal, the red marks show the thresholds at which
a new correct interval can be distinguished and correspond to the black dotted horizontal lines in the
energy plots. The boxes in the energy plots (c and d) mark the times where the user was asked to pay
attention (green for when the user was attending to the currently classified target, red for when he was
attending to another target and purple for when he was attending to the center of the screen). The dots
show the times at which the system can actually measure and the black solid horizontal line shows where
the classification threshold was set. The black dotted horizontal lines indicate where the thresholds would
be if one more (or less) trial should be classified and clearly show that this would result in more false
positive classifications as well.
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Figure 3.6: The interface of the Experimentation BCI used for experimentation. The user can move
the avatar to the goal by focusing on the white flickering targets associated with the desired directions.
Distances are reported in terms of the visual angle that they stretch when the subject sits 70 cm from the
screen.

are however heavily biased towards targets that cannot be classified accurately, because upon a wrong
classification, this target is asked again.

One of the problems of this setup is that every step has to be completed in order to get to the next. If
for some reason the system cannot detect focus on one specific target, the avatar might be stuck forever.
In order to counter this, after 10 seconds of no classification the system cheats and move the avatar in
the right direction. Unfortunately, this measure is not completely sufficient, because the level design is
such that multiple equal targets often occur in succession and false positives for the move in the opposite
direction can sometimes still cause the subject to get stuck.

Signal processing Because the focus of the experiments was on finding differences between stimulation
property values, a simple signal processing technique was used that is based on thresholding the energy
of the SSVEP response for each target. Any increase in performance should come from the stimulation
properties and not from sophisticated signal processing techniques. Although the performance of the
Experimentation BCI is satisfactory when good stimuli are used, it can likely be enhanced by using better
signal processing algorithms.

When the system first receives a new chunk of the signal (every 0.25 seconds) it is preprocessed using
a 50 Hz IIR notching comb filter in order to remove the power line interference. Then an energy measure
for each of the targets (frequencies) is calculated based on last second of the signal. The maximum
contrast spatial filters [70] calculated after calibration are applied for the first 4 harmonics of the target
frequency, based on coefficients obtained in the calibration phase. For each harmonic, the result is peak
filtered, squared and averaged. The sum of these averages is roughly the energy in the first four harmonics
of the stimulation frequency. It is compared to a threshold that was determined for each target in the
calibration phase. If the energy for exactly one target exceeds the associated threshold, the system moves
the avatar in the corresponding direction and the system does not make another classification for the next
second in order to allow the user to respond to the changed system state. If the threshold for more than one
target is exceeded, the system does not make a classification. This behavior can eliminate some sudden
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artifacts, because they can cause massive energy increases across most used frequencies simultaneously.

Implementation The Experimentation BCI was implemented using BCI2000, Neurostim, MATLAB
and Java and ran on two different personal computers. The experimenter would start by executing a MAT-
LAB function that would prepare Neurostim and BCI2000 configuration files and then start BCI2000.
Third-party modules were used for BioSemi acquisition and for delegating the signal processing phase to
an instance of MATLAB. The application module was left empty (a no-op), because a custom interaction
with a Neurostim application was used directly from the signal processing module.

The Neurostim program contained all of the presentation logic and was run on a different computer.
This has a number of advantages: first of all, the load of presenting the stimuli (and application) and
doing the signal processing is divided over two computers. Secondly, it enabled the experimenter to
have his own screen to operate the experiment and monitor the subject’s brain signals from the subject.
The Neurostim component has two separate modules that were simultaneously presented. One for the
stimulation and a separate one for the application. This ensures that different applications can easily be
plugged into the system. For instance, in the calibration and frequency selection phases, the application
was replaced by the arrow indicating where to look.

Each part of the experiment was manually started by the experimenter after asking the subject if
they were ready. In the calibration and frequency selection phases, the Neurostim component simply
ran uninterrupted while the signal processing module only gathered the data (without doing anything
with it) so that it could be analyzed shortly after. In the operation phase, the Neurostim program and
the signal processing (and data acquisition) module ran simultaneously. Whenever the signal processing
module was able to make a classification, a TCP message would be sent to the Neurostim program, which
would deal with it by giving the user feedback about the classification (by changing the game state and
presenting the cues that were discussed before).
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3.5 Offline experiments
All other experiments were carried out offline and their goal was generally to see what would happen to
strength of the SSVEP response under various conditions. These experiments were also carried out using
the BioSemi ActiveTwo EEG acquisition system while the subject was seated approximately 70 cm from
the stimulation device. All subjects had corrected-to-normal vision and did not suffer from epilepsy or
migraines. The lighting in the room was generally on for these experiments.

These experiments were often carried out in order to test small hypotheses and were not done on the
scale of the Experimentation BCI experiments. Each experiment was generally unique and is described
in the sections where the results are also reported.
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Chapter 4

Stimulation properties

In this chapter several properties of SSVEP stimuli are introduced, discussed and evaluated.
Property Description Section
Stimulation
device

The choice of stimulation device (LED, LCD or CRT) has a great impact on the possibility to change
other properties as well as the cost and flexibility of the whole system.

4.1

Framerate A device’s framerate specifies the number of changes it can render per second. When it is not an integer
multiple of the stimulation frequency, errors will necessarily be made in the rendering of the stimulus.

4.2

Frequency The speed at which the two states are cycled expressed in Hertz. This should be a number between 1 and
100 Hz in order to elicit an SSVEP.

4.3

Frequency
change

The frequency of a single target can change during stimulation. This can potentially reduce the number
of frequencies that have to be used in the entire system.

4.3.1

Frequency
combination

Two different signals with different frequencies are combined. This can also decrease the total number of
used frequencies.

4.3.2

Phase It is possible to use targets with the same frequency but different phase. This limits the number of used
frequencies.

4.4

Waveform Specifies the way in which the transition between states happens over time. Examples include sine, square
and triangle waves.

4.5

Contrast In general, the contrast can be thought of as the difference between stimulus states as well as the back-
ground. However, brightness (expressed in cad/m2) is often the measured feature.

4.6

Environment The amount of noise, light and distractions in the environment can have an impact on SSVEP response. 4.7
Spatial
frequency

On patterned stimuli (e.g. checkerboards) the spatial frequency is given by the size of each instance as
expressed in degrees per alternation.

4.8

Blur Blurring a stimulus makes the edges less sharp and thus easier to look at. Furthermore, it introduces
(extra) noise to the interaction.

4.9

Size The angle that a stimulus occupies in the visual field of the user, expressed in degrees. This number is
calculated from the actual measurements of the stimulus and the distance between it and the user.

4.10

Color Color can have an impact on emotion, comfort and SSVEP response strength. 4.11
Shape Different shapes can include squares, circles and diamonds as well as semantically meaningful stimuli,

such as an arrow pointing in the intended direction.
4.12

Texture Stimuli can have checkerboards, lines, dots and other shapes on them in any orientation. Furthermore,
the stimulus might be an image that either elicits a certain emotion or is meaningful to the associated
command.

4.12

Number of
targets

The number of targets that the BCI uses. 4.13.1

Target spacing The spacing between targets as measured by the visual angle between the edges of the targets. 4.13.2
Target
movement

Whether the targets in the BCI move during operation. 4.13.3

Target overlap Overlapping targets saves screen space, but more importantly means that the subject only needs to look
at one area. This makes the system independent of muscle movement.

4.13.4

State number The number of states in the stimulus. The default is 2, but instead of cycling between (for instance) red
and blue, it might as well cycle between red, green and blue.

4.14

State order The order in which the states are presented can be either random, sequential (one state after the other in a
fixed order and no repetitions) or in some other fixed order (e.g. 1 cycle could be red-blue-red-green).

4.14

Stimulation Effects in SSVEP-Based BCIs 35



Chapter 4. Stimulation properties 4.1. Stimulation devicesChapter 4. Stimulation properties 4.1. Stimulation devicesChapter 4. Stimulation properties 4.1. Stimulation devices

4.1 Stimulation devices
In order to obtain an SSVEP, the user needs to focus on an RVS. Because visual stimulation is required,
a device that can emit light is needed. Additionally, the stimulation device needs to be able to rapidly
change a characteristic of this light (e.g. luminance or color). The most obvious choice for such a device
is the Light Emitting Diode (LED), because it can be highly customized and is capable of adjusting to
change very rapidly. Other lamps, like Xe-lights have also been used [84]. The advantage of lamps
like these is that they can be highly customizable and accurate. However, big disadvantages are that
they require specific and dedicated hardware, cannot be adjusted after production and require custom
assembly for every BCI unit that is not mass produced (i.e. every BCI unit). Using computer monitors
for stimulation solves these problems, but adds some new ones. This section describes and compares the
most often used stimulation devices (LEDs, CRTs, and LCDs).

Light Emitting Diodes

Light emitting diodes (LEDs) are light sources based on electroluminescence, rather than incandescence
(i.e. the light is a byproduct of electrical current rather than produced heat). When an LED is turned
on, electrons move through a semiconducting material where they may recombine with electron holes,
causing them to fall to a lower energy level. The extra energy is released in the form of photons (light)
moving with a wavelength (color) depending on the energy gap in the semiconducting material.

LEDs present many advantages over incandescent light sources including lower energy consumption,
smaller size, longer lifetime, improved robustness, and greater durability and reliability. However, they
are relatively expensive and require more precise current and heat management than traditional light
sources. Their main advantage with respect to eliciting SSVEP responses is that they can be switched on
and off extremely fast without being worn down.

Computer displays

Because of the ubiquity of computers and the flexibility with which they can be programmed, computer
displays are also often used as stimulation rendering devices. The most often used types of rendering
devices are the cathode ray tube (CRT) monitor and the liquid crystal display (LCD).

Cathode Ray Tubes

A “Cathode Ray Tube (CRT)” is a vacuum tube with an electron gun that shoots electrodes at a fluorescent
screen, causing it to light up. There are electron guns and phosphors for red, green and blue colors.
Whenever a phosphor is hit by electrons from the right gun it lights up in the corresponding color for
a brief moment. Due to the human vision’s trichromatic nature the illusion of a continuous spectrum
of hues is provided from small and closely packed the red, green and blue lights. The entire screen is
rendered from the top right, going horizontally first, to the bottom left. The number of times that the
entire screen is rendered in one second is called the “refresh rate”.

Liquid Crystal Displays

“Liquid Crystal Displays (LCDs)” are flat panel computer monitors that make use of the way that light
passes through liquid crystals. To explain exactly how these monitors work is beyond the scope of this
thesis, but a simplified explanation is given here in order to be able to discuss important characteristics
of these displays. LCDs have a backlight (usually a cold cathode fluorescent lamp (CCFL) but nowadays
LEDs are also used) that shines through layers of filters and liquid crystals. The way light passes through
these crystals can be altered by passing an electrical current through these crystals. In a color LCD, each
pixel has subpixels for red, green and blue that are created by placing colored filters over separate parts
of the liquid crystals. The amount of current that goes through each subpixel and thereby the amount of
light passed through the red, green or blue filter can be controlled separately.
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Comparison
There are a number of important differences between LEDs, CRTs and LCDs. First of all, computer
monitors are ubiquitous, especially LCDs. LCDs are cheaper, lighter, smaller and more friendly to the
environment than CRTs. CRTs usually support higher refresh rates and contrast ratio’s though, which can
be beneficial to SSVEP response strength. However, CRTs flicker at their refresh rates, because the screen
is redrawn every time, which may elicit an unwanted SSVEP response. LCDs do not need to redraw the
screen, because the backlight is on constantly and the state of the screen is relatively persistent.

LEDs and the equipment required to operate them are not available in every home and are often
custom made or selected. LEDs can often reach brightnesses far exceeding that of computer monitors and
have framerates so high that they can almost be ignored. This means that it is often possible to accurately
display any frequency relevant for eliciting SSVEPs using any desired waveform. For standard CRT
displays operating at 85 Hz and standard LCDs with a 60 Hz refresh rate, there are only 9 respectively 6
frequencies higher than 8 Hz that can be displayed in this manner. To make matters worse, some of these
frequencies are each other’s harmonics, which is usually undesirable for SSVEP experiments. Because
of this limited number of frequencies that can accurately be displayed, other frequencies are often used
in practice as well (for more about the limitations imposed by framerates see Section 4.2).

A computer monitor can be thought of as a huge collection of light sources, whereas an LED is just
one. In that sense, we can say that monitors have good spatial resolution, whereas LEDs have good
temporal resolution. However, research has shown that computer performance greatly affects how much
stimuli can be on the screen at once [75].

Computer monitors have a number of practical advantages above LEDs, some of which have already
been mentioned. Obviously, if the application is computer based, a monitor is already present and incor-
porating the stimulation into the same device makes for a simple setup. Furthermore, stimuli can more
easily convey the semantics of the command that it is associated with (see Section 4.12). Although tech-
nically it would be possible to illuminate pictures with LEDs, it is much harder to create more complex
stimuli, and virtually impossible to change them dynamically using LEDs. Dynamic change might be
required when multiple pictures have to be alternated, or when the number, location or other properties
of the stimulation depends on the application state. Also, during development, use of monitors is easier
when an agile development method is used where the design of the system may evolve over time. If LEDs
are used, their characteristics have to be decided at the start of the design cycle and are much harder to
change afterwards.

(a) CRT (b) LED

Figure 4.1: Experimental setup for conditions with LEDs and computer monitors. Setup with LCD moni-
tor not pictured here.

It was found that LEDs outperform computer monitors when it comes to eliciting SSVEPs and that
CRTs are better than LCDs [85]. The effect of stimulation device on BCI performance was also tested
in the Experimentation BCI, using the four green LEDs and both monitors described in Section 3.1 (see
Figure 4.1(a)). In order to make the conditions as similar as possible, both computer monitors used green
squares of the same size as the LEDs (10×10 cm). The luminance of the LCD monitor was 112.4 cd/m2

for green and 0.86 cd/m2 for black. The CRT was configured so that it would emit 0.024 cd/m2 for black
and 110.5 cd/m2 for green. Due to our hardware, it was impossible to get the luminance of the LEDs
much lower than 300 cd/m2 because then it would turn completely off. In order to have a similar contrast,
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luminances of 300 and 400 cd/m2 were used. For the condition with the LEDs, the LEDs were taped
onto the CRT monitor over the positions where the stimuli would normally appear on the screen (see
Figure 4.1(b)).
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Figure 4.2: Accuracies, bitrates and ITRs of the Experimentation BCI obtained when using different
stimulation devices. CRT stimulation significantly outperforms LCD stimulation at the p < 0.1 level.

The results are summarized in Figure 4.2 and suggest that the stimulation device is not a major factor
for BCI performance. The most obvious explanation for this is that it really does not matter what device
is used. However, the result could also very well be due to our attempt to make the conditions as equal
as possible. The fact remains that LEDs can have a far greater modulation depth and brightness than
both monitors. On the other hand, the monitors would probably have done better with white stimuli
rather than green ones. A third explanation is that benefits in SSVEP response do not always translate to
BCI performance because of interference from non-target stimuli. Given these results it is hard to draw
any definite conclusions. However, the experiment was set up in such a way as to avoid the strengths
and weaknesses of each device, even though when selecting a device these strengths are what matters. It
might have been better then, to compare the devices using settings that are optimal for them. However, this
might have told us more about the settings than about the devices. The other sections discuss properties
of stimulation that can make a difference on BCI performance. The flexibility of the devices with respect
to these properties will likely determine which is the most suitable.
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4.2 Framerate
Most SSVEP-based BCIs use stimuli that are alternating with just one frequency. These frequencies can
either be pure or polluted. Signals of a pure frequency have a constant period of length 1/F . Polluted
signals do not have a constant period, either because of noise, or because the rendering device cannot
display the desired frequency in a pure manner.

Figure 4.3: The difference between which states (black and white) are desired at each point in time and
which states can actually be rendered. The length of each rendering alternates between being too long
or too short, but is never quite correct. The example shown was derived from a 60 Hz device trying to
render 24 Hz stimulation over the course of a half second.

Stimulation devices generally have a framerate or refresh rate that prevents them from accurately
rendering most frequencies. This is not very important when the framerate is very high (as with the LEDs
driven by the Agilent), but can have a significant effect when it is low, such as with computer monitors (see
Figure 4.3). Rendering waveforms other than square waves requires an even higher framerate, because
intermediate states need to be displayed as well. When rendering square wave stimulation, one whole
stimulation period requires two state changes (back and forth). A device with framerate R can really only
render frequencies of R/k Hz where k ∈ {N ≥ 2} and the duty cycle is different than 50% for uneven k.

Only little research on this issue exists, although it appears that other researchers sometimes opt to
only use frequencies that can accurately be generated [86, 17]. It has been shown that using frequencies
that the monitor can accurately render, can greatly increase performance [87]. However, this research used
two different sets of frequencies for the tested conditions. In order to test the effect of a low framerate
on the SSVEP and BCI performance, two experiments were carried out. In the first, we compared the
difference in SSVEP response to square waves generated using the signal generator’s normal framerate of
20 MHz and an emulation of a 60 Hz refresh rate on the white LED board. There were 5 test subjects (all
male, between 23 and 29 years old) who had (corrected to) normal vision. Subjects were seated 70 cm
from the white LED board and were asked to pay attention to the 5×5 cm portion that was flickering at one
of 5 different stimulation frequencies (14, 16, 18, 28 and 29 Hz). There were 20 trials per condition per
frequency. Each trial started with a rest period during which the light was off of 5-7 seconds, followed
by a brief flash to indicate the user should start paying attention again. After another 2 seconds, the
stimulation would start and last for 3 seconds.

The results show that not using a proper square wave can significantly deteriorate the SSVEP response
strength. Figure 4.4(a) shows how the energy of the SSVEP response in the first two harmonics evolves
over time, averaged over all of the tested stimulation frequencies and test subjects. It is clear that the
20 MHz framerate is almost instantly elicits a significantly stronger SSVEP response. Figure 4.4(b) and
(c) show the frequency spectra for both conditions when an 18 Hz stimulus was used, averaged over all
subjects. The 60 Hz condition generally elicited a weaker SSVEP response, especially in the second
harmonic. The power of the response in the first harmonic was on average 20% smaller (p < 10−5) and
the response for the second harmonic was 34% smaller (p < 10−16) when a framerate of 60 Hz was
used. In addition to this weaker response, there was also more noise in the spectra and extra peaks can be
observed at other frequencies, which may confuse a BCI system. Frequency spectra for the other tested
frequencies show similar results.

In a second experiment, we tested actual BCI performance using the Experimentation BCI. This was
done by selecting two sets of frequencies, each optimized for a different refresh rate. The 60-Hz-set
contained {15,12,10,8 4

7} and the 75-Hz-set contained {18 3
4 ,15,12 1

2 ,10 5
7}. All combinations between

these frequency sets and the refresh rates (60 and 75 Hz) were tested and grouped into two conditions to
compare the situation where the frequencies were and were not optimized for the refresh rate. Figure 4.5
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Figure 4.4: Results obtained when comparing SSVEP responses elicited by accurate square waves
(20 MHz) versus those elicited on a device with a low framerate (60 Hz) in Oz−Cz. a) Energy of the
first two harmonics for both conditions averaged over all 5 subjects and 5 tested frequencies (14, 16, 18,
28 and 29 Hz). The background is colored when the difference is significant with Bonferroni corrections.
b) and c) Average frequency response to 18 Hz stimulation for framerates of 20 MHz (b) and 60 Hz (c),
averaged over all subjects. Both harmonics are generally larger when the framerate was high, and the
spectrum contains several additional peaks when it is low.
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Figure 4.5: Accuracies, bitrates and ITRs of the Experimentation BCI obtained when using frequencies
that did or did not match the device’s framerate. Using matching frequencies is significantly better
(p < 0.05).
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clearly shows that having frequencies that are optimized for the refresh rate can be beneficial.
However, other experiments in this thesis have also shown that choosing frequencies that are optimal

for the user may be even better. Compared to using manually selected frequencies determined in the
frequency selection phase on a per-subject basis (see Section 3.4.1), the average ITR decreases with 19%
when the frequencies are optimized for the refresh rate (p < 0.1). In many studies however, the monitor’s
refresh rate is not considered, so the used frequencies are not optimized for it. The frequencies used in
this experiment resulted in a 40% drop in ITR (p < 0.01) compared to frequencies optimized for each
individual user when they were displayed on a monitor with a mismatched refresh rate.
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4.3 Frequency
The frequency of the stimulus is one of the most important characteristics, since it is used in the iden-
tification of the user’s intention. Stimuli with frequencies between 1 and 100 Hz can elicit an SSVEP
response [36], but the strength of this response varies across different frequencies and per subject. The
existence of three distinct frequency bands was first reported by Regan [37], based on findings with one
test subject (see Figure 4.6(a)). The strength of the SSVEP response is highest towards the centers of
these bands and lowest towards the edges. Similar results were obtained by Pastor et al. [42] (16 subjects;
Figure 4.6(b)) and Wang et al. [19] (1 subject; Figure 4.6(c)). Although the exact locations of the regions
on the frequency axis seem to depend on the subject, it is custom to use Regan’s division of the frequency
space: low from 5-12 Hz, medium from 12-25 Hz and high for frequencies from 25-50 Hz.
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Figure 4.6: SSVEP response strengths depending on frequency. The individual points show actual mea-
surements, while the lines are second order polynomials fitted to the data for each of the three frequency
regions. a) Data from Regan [37], the scale of the amplitude is unknown. b) Data from Pastor et al. [42]
with less clear regions, possibly caused by the fact that data from 16 subjects was used. c) Data from
Wang et al. [19]. d) SNRs reported by Wang et al. showing that while the amplitude in higher frequency
regions is lower, the SNR is the same for each region.

Although the amplitude obtained in the higher frequency band(s) is clearly lower, Wang et al. also
found that the SNR is approximately the same for each frequency band, since there is little spontaneous
activity at higher frequencies (see Figure 4.6(d)). In the literature the low and medium bands have re-
ceived the most attention [88]. This is probably due to the fact that the SSVEP amplitude for these
frequencies is higher. Since the SNR for the high frequency band is the same however, it should not be
much harder to use and it has the added benefit of having a lower risk of inducing epileptic seizures [43]
and being less fatiguing than slower stimuli. A big disadvantage of computer displays is that they have a
lot of difficulty in displaying most high frequency stimuli (see Section 4.2).
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The choice of which frequencies to use can obviously have a big impact on BCI performance as well.
Choosing a frequency near the edge of a frequency range can severely impair the system’s ability to
recognize that the user is attending to it. Since the location of these regions is highly user-dependent, it is
wise to use a frequency selection procedure like the one reported in Section 3.4.1.

Since a lot of research has already been done by others on the effect of frequency on SSVEP amplitude
and SNR, and the result appears to be that it is highly subject-dependent, this thesis does not comment
on it any further. Instead, it was investigated how the brain would respond to changes in frequency or
combinations of multiple frequencies.

4.3.1 Changing frequencies
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Figure 4.7: Ways to change frequency

Experimenting with signals with changing frequencies can provide great insight into the workings of
the SSVEP response. There are a number of ways to change between two frequencies: jump, step and
chirp (see Figure 4.7). In addition, it should be possible to continuously change the signal’s frequency.

If the brain is able to quickly match the frequency of an RVS, this might make novel applications
possible where one BCI target does not just have one frequency, but a unique sequence of frequencies
that identifies it. This would decrease the number of required stimulating frequencies and potentially
increase the difference between the identifying characteristics of the targets.

If a change in stimulation frequency can be detected quick enough, this might also be used to dynam-
ically change the frequencies of the targets during BCI operation. If the system is for instance in doubt
about which of two targets the user is focusing on, quickly changing the frequency of one or both and
seeing what happens to the SSVEP might be a good way to quickly resolve such a conflict.

There are probably many more possible applications of a quickly adapting SSVEP response, but
before these can be devised and tested, it is necessary to find out if the SSVEP response can indeed
quickly follow the stimulation frequency.

An experiment was carried out to see if the SSVEP response of one subject would follow a jump
in frequency and if so, how quickly. The experiment used the 5×5 cm white LED configuration and
consisted of 30 trials where there were 3 seconds of 10 Hz stimulation, 3 seconds of 15 Hz stimulation,
again 3 seconds of 10 Hz stimulation, and a rest period of between 3 and 6 seconds. Figure 4.8 shows that
the SSVEP indeed follows a jump in stimulation frequency. Figure 4.8(a) shows the average EEG signals
from site Oz with reference Cz peak filtered at 10 and 15 Hz. The test subject had a strong response
to the stimulation, as the amplitude of the signals increased significantly when stimulation started. It
appears to take approximately 500 ms in order for the amplitude of the new frequency to overcome that
of the old frequency. The STFT spectrum in Figure 4.8(b) shows that there were strong first and second
harmonic responses and that the SSVEP frequency adaptation is very fast and accurate. After this, the
subject requested that we used higher frequencies because they are more comfortable. The experiment
was repeated with 30 and 35 Hz (see Figure 4.9). Although it might not be immediately clear from
Figure 4.9(a), Figure 4.9(b) clearly shows that SSVEP frequency adaptation happened as quickly as
before. But curiously, it appears that for this subject there is a large first harmonic response to 30 Hz and
little to no second harmonic response, while this is the other way around for 35 Hz.

When the RVSi oscillate at a certain frequency for a fairly long time, the SSVEP appears to be able to
follow the stimulation frequency. In order to see if this would also happen with more than two frequencies
that were presented for shorter amounts of time, another experiment was carried out that tested SSVEP
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Figure 4.8: Response to stimulation containing jumps from 10 to 15 Hz and back in Oz−Cz. a) Mean
energy for all constituent frequencies over time. b) Time-frequency (STFT) plot of the response to stimu-
lation with a changing frequency.
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Figure 4.9: Response to stimulation containing jumps from 30 to 35 Hz and back in Oz−Cz. a) Mean
energy for all constituent frequencies over time. b) Time-frequency (STFT) plot of the response to stimu-
lation with a changing frequency.
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Figure 4.10: Response to stimulation stepping from 28, via 30 to 32 Hz. a) Mean energy for all constituent
frequencies over time. b) Time-frequency (STFT) plot of the response to stimulation with a changing
frequency.
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behavior with respect to step functions (see Figure 4.7(b)). First, 20 trials with 28, 30 and 32 Hz were
carried out with stimulus presentation durations of 1.5, 1 and 1 second. The first period was longer in order
to make sure that a proper SSVEP response would have the chance of forming and the initial transient
VEP would have to be discarded. Figure 4.10 shows that in this case, the SSVEP quickly follows the
stimulation as well.

(a) (b)

Figure 4.11: Response to stimulation stepping from 30 to 34 Hz with 1 Hz steps (a) and back (b).

To find out if this would also work for smaller steps and larger ranges, the same experiment was
carried out with frequencies ranging from 30 to 34 Hz (and vice versa) with steps of 1 Hz per second.
The results in Figure 4.11 show that the subject’s response to the higher frequencies only manifested itself
in the second harmonic. Furthermore, energy appears to leak between frequencies (i.e. energy increases
for other frequencies than the stimulation frequency). Nevertheless, the SSVEP response follows the
stimulation fairly well and fast.
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Figure 4.12: Response to stimulation chirping from 35 to 40 Hz and back. a) Mean energy for all con-
stituent frequencies over time. b) Time-frequency (STFT) plot of the response to stimulation with a chang-
ing frequency. Due to many low frequency noise, the range between 0 and 10 Hz is not plotted here.

It was also tested if the brain would respond better to a chirp transition (see Figure 4.7(c)). Each
of the 20 trials consisted of 3 seconds of 35 Hz stimulation, followed by 1 second in which a linear
transition to 40 Hz was made, after which the stimulation remained at 40 Hz for another 3 seconds, took
1 second to decrease again and then oscillated at 35 Hz for 3 seconds again. Figure 4.12 (especially
4.12(b)) shows that while the stimulating frequency was constant, an SSVEP response was perceivable.
During the periods that the frequency was changing, the result is too noisy to say with confidence whether
the SSVEP is following. The low amplitude of the SSVEP and large amount of noise can probably be
attributed to a weak response to higher frequencies and the fact that the subject was getting tired.
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4.3.2 Combined frequencies
If a BCI requires a lot of targets, it has to distinguish between them. The classical way of doing this
for SSVEP-based BCIs is to alternate these targets at different frequencies (i.e. frequency tagging from
Section 2.4.4). More targets therefore require more frequencies, which means that frequencies must be
used that are either less optimal in terms of SSVEP response, or closer together, making them less distinct
and harder to separate during analysis.
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Figure 4.13: Sine waves and how they can be combined into a new stimulation signal. The frequency plots
on the bottom row shows that the resulting signal indeed only features the constituent components. a)
Sine waves for 7 Hz, 14 Hz, and a combined stimulation of 7&14 Hz. b) Sine waves for 9 Hz, 10 Hz, and
a combined stimulation of 9&10 Hz. Note that because these signals are not phase-locked, the amplitude
varies significantly over time.

In some cases it may possible to combine certain frequencies by adding or averaging multiple pure
frequency stimulations. Figure 4.13 shows how combined stimuli can be obtained from simple sine waves
with a single frequency. Such a stimulation method supposedly elicits SSVEP responses at all constituent
frequencies as well as linear combinations of those frequencies [37] (i.e. all frequencies mF1±nF2, where
m and n are integers). These extra peaks in the SSVEP frequency spectrum make it possible to distinguish
between stimuli that use the same frequencies, but in different combinations. Using this principle only N
frequencies are required to drive N(N−1)/2 stimuli, possibly in addition to using the N single frequencies
for N other stimuli.
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Figure 4.14: Fourier spectra of the averaged responses to RVS modulated to oscillate at multiple frequen-
cies. a) 28, 30 and 32 Hz. b) 29, 30 and 31 Hz.
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Figure 4.14 shows the Fourier spectra that were acquired from 20 trial averages where the user was
presented with stimuli oscillating at 28&30&32 Hz and 29&30&31 Hz, for 3.5 seconds at a time on
the white LED board. The spectra show peaks for each of the stimulating frequencies, as well as some
linear combinations. It should therefore potentially be possible to distinguish between targets based on a
specific combination of fixed frequencies. This might be interesting for systems with a large number of
targets, since the number of constituent frequencies may be decreased.
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Figure 4.15: Square waves of 9 and 10 Hz and how they can be combined into a new stimulation signal.
a) Both signals are simply added together. The frequency response shows peaks at the odd harmonics
of 9 and 10 Hz, but not at linear combinations, which is normal for square waves. b) The state of the
combined signal changes whenever a state change occurs in one of the component signals. This results in
a fairly noisy frequency response that appears to consist of linear combinations of the second harmonics
of the constituent frequencies.

While using combined frequency stimulation is fairly easy on a device that can generate sine waves
(i.e. LEDs), it is not when devices are constrained to using square wave stimulation because they have
low framerates (see Section 4.5 for more about waveforms and Section 4.2 for more about framerates).

Figure 4.16: Timing diagram from [89] for achieving stimulation at frequency F1 and F2 and dual stimu-
lation F1&F2. Figure from [89].

It is not as easy to combine square waves as it is to combine sine waves, because simply adding
or averaging two signals introduces a third state that the device needs to display (see Figure 4.15(a).
Since this may not be feasible, another method could be to simply look at the times of state change
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in the constituent signals and then use all of them in the combined signal [89] (see Figure 4.16 and
Figure 4.15(b)). It was found that when two signals with frequencies F1 and F2 = 1

2 F1 are combined,
energy peaks occur at mF1 +nF2, where m and n are integers [89], which is consistent with [37].

It is suggested that this property holds for any F1 and F2 and does not depend on the fact that in
the reported experiments F2 was exactly half of F1, however this is highly questionable. The way the
combined signal turns out depends in part on the phases of the constituent signals as well as the framerate
of the stimulation device. For instance, if there is a harmonic relation between F1 and F2 (i.e. F1 =
nF2, where n is an integer, assuming F1 > F2), and both signals have a phase shift of 0, the combined
signal simply has frequency F1, since all state changes in F2 occur at the exact same time as F1’s. If the
state changes in the constituent signals are not simultaneous, there are theoretically exactly F1 +F2 state
changes per second (with three different state display durations, instead of one for a normal signal of
F1 +F2 Hz). However, some state display durations may be so short that they cannot be rendered on a
device with a low refresh rate, which means that relative phase shifts can significantly alter the displayed
stimulation. This problem can get even worse when F1 and F2 do not have a harmonic relationship.
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4.4 Phase
The SSVEP is phase-locked to the visual stimulation. We verified this by doing an experiment where
the subject was asked to focus 20 times for 3 seconds on a sinusoidal stimulus modulated at 12 2

3 Hz,
each time with a different phase. When the SSVEP responses were added together, they canceled each
other out and the average signal showed (virtually) no response at the stimulation frequency. When FFTs
were computed for each trial separately, and then averaged, a clear peak was shown at the stimulation
frequency, indicating that there had in fact been a strong SSVEP response.

Because the SSVEP response has a fixed phase lag, phase can be used as a discriminating property
of a target [90, 91, 92]. Instead of using stimuli with different frequencies, it is also possible to use
stimuli with different phases. This approach will be referred to as “phase tagging”. Using phase tagging,
possibly in addition to the more common frequency tagging, requires the use of less different frequencies.
This generally means that the best frequencies (for either performance or comfort) can be used [92].

In order to determine the phase of the SSVEP, the stimulation frequency component needs to be
isolated. This thesis generally uses IIR filters, but since they destroy phase information, it is better to
use a FIR filter, which only transforms the phase in a linear manner. The resulting signal should be
almost perfectly sinusoidal and the phase can be extracted using a Hilbert transformation. Use of the
maximum contrast spatial filter was shown to significantly improve performance compared to just using
Oz−Cz [92].

Use of phase tagging requires that the phase difference between the stimulus and the SSVEP response
is known. This can probably best be obtained in a calibration period prior to BCI operation. The phase
characteristics of the SSVEP can be affected by a number of factors [37], but it is unclear how stable they
are over longer periods of time.

The phase lag can be obtained in a calibration period where the light from one of the targets is
measured with a photodiode [92]. Then, when operation starts, the SSVEP phase can be compared to the
phase measured by the photodiode to determine the phase of the RVS that the user is focusing on. Using
a photodiode to measure the light signal prevents problems with phase drift of the stimulation, although a
robust phase locking mechanism is always required between all the stimuli in a phase tagging paradigm.

Use of a photodiode is technically not necessary, because the BCI can operate without exact knowl-
edge of the stimulation phase. Instead of determining the phase lag with respect to one of the stimuli,
it can also be determined with respect to a signal with a fixed but arbitrarily chosen phase ϕ . Since
the “error” that is made using this approach is the same for each stimulus, it makes no difference. Not
requiring a photodiode is an obvious advantage, but this approach only works if the stimulation phase
does not change with regard to ϕ between calibration and operation. This means that, depending on the
stimulation device, it might not be possible to turn the stimulation off between calibration and operation.
Furthermore, if the phase of the stimulation drifts over time (as it does slightly on our hardware), the
calibration data can slowly become invalid.
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4.5 Waveform
The waveform of a signal defines the transitions between states of the stimulus. Sine and square waves
are used most often (see Figures 4.17(a) and 4.17(c)). Usually no reason is given, but both are logical
choices. A signal of a certain frequency F is usually thought of as the sine wave described by sin(2πFt),
where t is the represents the time in seconds. Such a signal has a sole peak at the stimulation frequency
in the time-frequency spectrum. Using a sine wave means that the signal spends some of its time at or
near the (extreme) states and some of the time in between, making the transitions fairly soft.

Because the brain often seems to react to change, a stronger SSVEP may be elicited by a square wave
(see Figure 4.17(c)), although this is likely also less comfortable. When a square wave is used, transitions
are instant. All of the time is spent in one of the extreme states of the stimulation (although in practice
the transition may still take a small amount of time). When using stimulation devices with low framerates
(like computer monitors), the square wave is the most logical choice. For lower frequencies it might be
possible to try and approximate other waveforms, but this approach does not seem to be popular.

In order to better understand the relationship between waveform and SSVEP response, seven wave-
forms (see Figure 4.17) were presented to test subjects at frequencies from each frequency band: 8, 15
and 40 Hz (see Section 4.3). Figure 4.18 shows that the higher the stimulation frequency is, the smaller
the SSVEP response is, especially in the higher harmonics. There appears to be little relation between
the Fourier spectra of the brain response and those of the stimulation depicted in Figure 4.17, suggesting
that the brain’s transformation of the input signal is nonlinear. For instance, there are pronounced peaks
at the harmonic frequencies of 8 Hz even when the stimulation was presented using a sine wave. The
strength of the SSVEP response appears to be highly dependent on the frequency and waveform of the
stimulation, as well as the interaction between those variables. Overall, it appears that a (non-narrow)
square wave elicits the robust SSVEP response across the tested frequencies.
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Figure 4.17: Waveforms and their Fourier transforms
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Figure 4.18: Mean power (a, c and e; left) and SNR (b, d and f; right) of the SSVEP response at the first
4 harmonics of the stimulation frequency.
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4.6 Luminance and contrast
Conventional wisdom says that more pronounced differences between the states of a stimulus will result
in a larger response in the brain. In most research, the difference in states is in luminance only. The
luminance contrast or “modulation depth” is defined as (lmax− lmin)/(lmax + lmin)× 100%, where lmin,
lmax are the minimum and maximum luminance, respectively [93].

The amplitude of the evoked potentials was found to be linearly increasing the logarithm of the con-
trast of a stimulus [94]. Brightness and modulation depth also tends to increase SSVEP amplitude [95].
Unfortunately, increasing the luminance or contrast of a stimulus is the easiest way to negatively affect
more photosensitive subjects [96, 43].

Luminance contrast information is critical for perception of form, motion and depth [97, 98, 99, 100,
101]. Differences have been observed psychophysically in brightness and darkness perception and also
in low and high-contrast perception [97, 102, 103, 104, 105]. Early neurophysiological studies demon-
strated a functional dichotomy in the processing of positive- and negative-contrast [97, 106, 107, 108].
On-center (ON) and off-center (OFF) cells form this pair of parallel pathways, which remain independent
up to primary visual cortex and which appear to mediate the separate perceptions of brightness and dark-
ness [97, 102, 107, 109]. VEPs to bright and dark checks demonstrate differences in ON and OFF-cell
activity [97]. The contrast sensitivity of cells in the M-pathway is nearly 10 times greater than that of
cells in the P-pathway [97, 110, 111].

It was found that a raster of dark squares emerging from a neutral background elicited larger responses
than did bright squares, especially when the spatial frequency was high [97]. The tested frequency was
10 Hz and a sine waveform was approximated on a computer monitor. Amplitude appeared to be a
parabolic function of the spatial frequency of the stimulus (see Section 4.8).

It was tried to verify the research by Zemon & Gordon [97] with the Experimentation BCI. Eight
conditions were tested, where both foreground and background luminance of the stimuli was varied:

Name Foreground
color

Background
color

Foreground
luminance

Background
luminance

Modulation
depth

w/k white black 175 0.86 99%
l/k light gray black 80.7 0.86 98%
n/k neutral gray black 31.8 0.86 95%
d/k dark gray black 8.6 0.86 82%
w/n white neutral gray 31.8 31.8 69%
k/n black neutral gray 0.86 31.8 -95%
n/w neutral gray white 31.8 175 -69%
k/w black white 0.86 175 -99%

Figure 4.19 shows the primary results in terms of comfort and performance. More details can be
found in Figure 4.20. Two trends in performance are noticeable: 1) contrary to Zemon’s work, it ap-
pears that bright stimuli work better than dark stimuli, and 2) there is a positive correlation between
modulation depth and performance. Bright backgrounds are considered less comfortable, but neutral and
black backgrounds are about equal. Brighter backgrounds are also more likely to invoke photosensitivity
problems [43].
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Figure 4.19: Comfort and performance results for stimuli with different contrasts and achromatic con-
figurations. The edge of the squares indicates the background color and the center depicts the stimulus
color.
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Figure 4.20: Comfort, performance and accuracy of the Experimentation BCI obtained stimuli with differ-
ent luminance and contrast characteristics. Left: means with standard errors (gray boxes) and medians
with first and third quartiles (white boxes). Right: significance p-values for the comparisons between
conditions (white is low; black is high). A star on row α and column β means that the mean for condition
α is significantly better than the mean of condition β .
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4.7 Environment
It is often observed that performance during demonstrations is worse than during carefully controlled ex-
periments. This might be explained by bad luck or subject nervousness, but it might also have something
to do with factors in the environment: lighting conditions, noise, and talking and moving people. Since
the SSVEP response strength is modulated by the user’s attention, distracting factors such as these are
likely to deteriorate performance.

Illuminated environments are more natural and convenient than dark ones, but when it is dark, it is
harder for the subject to perceive – and thus be distracted by – objects in the environment. In the dark
a bright stimulus can also seem much more pronounced. The notion of environmental illumination is
closely related to the contrast of the displayed RVSi (see Section 4.6). Pupil dilations caused by a dark
environment might cause the eye to catch more of the stimuli’s light. Furthermore, external light sources
might also flicker a little, interfering with the SSVEP response. All of these observations suggest that
BCI performance might be increased in dark environments [56].

off on
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ac
cu

ra
cy

(a) Accuracy

off on
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

bi
tr

at
e 

(b
its

/s
ym

bo
l)

(b) Bitrate

off on
0

10

20

30

40

50

60

70

80

IT
R

 (
bi

ts
/m

in
)

(c) ITR

Figure 4.21: Accuracies, bitrates and ITRs of the Experimentation BCI obtained when the lights in the
room were turned either on or off. The increase in ITR when the light is turned off is significant at the
p < 0.1 level.

A dark environment is shown to be slightly more advantageous (significant at the p < 0.1 level),
confirming the results from [56] (see Figure 4.21). Although no questionnaire was conducted, subjects
did comment that they preferred the more natural condition where the lights were on. Effects of other
environmental factors such as noise and movement should still be investigated.
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4.8 Pattern reversal and spatial frequency
Patterned stimuli such as checkerboards or lineboxes are often used as an alternative to single graphic
RVSi. The “spatial frequency” of such a stimulus defines how many changes there are within a certain
space. More specifically, the spatial frequency is expressed in the number of changes per angle degree
“cpd” of the visual field.

There are basically two ways in which patterned stimuli can be presented: by flickering them on
and off, or by reversing the cells or checks of the pattern. No examples of BCIs were found that used
flickering patterns, except those discussed in Section 4.13.4, so the remainder of this section focuses on
pattern reversal.

Pattern reversal elicits an SSVEP response at twice the stimulating frequency. It is therefore sug-
gested that pattern reversal stimuli work better at lower frequencies [112]. For this reason users of the
Experimentation BCI go through a separate frequency selection procedure that uses additional lower fre-
quencies. However, an interaction between frequency sensitivity and spatial frequency has also been
found, where stimuli with high spatial frequencies elicit stronger SSVEP responses at lower temporal
stimulation frequencies and vice versa [112].

The contrast of a pattern stimulus is defined between the luminance of the two kinds of cells it con-
tains. However, decreasing the spatial frequency to a number below the size of the stimulus results in
a simple square RVS and increasing it to infinity reduces it to a square with a constant color that is the
combination of the cell colors. The fact that cells are smaller and tend to blur together at higher spatial
frequencies, means that in any part of the visual field, changes between stimulus states are smaller than
at low spatial frequencies. This suggests that increases in spatial frequency might be comparable to de-
creases in contrast [113]. There is however also evidence for a relationship between spatial frequency
and contrast sensitivity that is not monotonically increasing [93, 114]. Results from [115] do confirm
that there appears to be a continuum from small checks, to larger checks, to flicker stimuli in terms of
frequency response strength. Figure 4.22 shows that SSVEP amplitudes for a checkerboard with high
spatial frequency only exceed those of a simple flash stimulus at very low frequencies.

Zemon & Gordon [97] found that SSVEP amplitude appeared to be a parabolic function of the spatial
frequency of the stimulus. This effect diminished when the contrast was smaller. It was also found that
the phase lag of the SSVEP response with respect to the stimulation increased when spatial frequency
and modulation depth decreased. Differences in phase lag between dark and bright stimuli were also the
largest at low spatial frequencies. Possibly because low spatial frequency stimuli primarily use the faster
M-pathway.
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Figure 4.22: SSVEP response amplitude as a function of temporal and spatial frequency. a) Simple flash
stimulation (solid line) and pattern reversal stimulation with checks smaller than 20′ (markers). The
dashed line also represents the pattern reversal condition, but is plotted with the alternation frequency
on the x-axis rather than the cycle frequency. b) SSVEP amplitude for a simple flash and checkerboards
with checks of 40′ and 12′ of the visual field. Both figures were taken from [37].
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Another salient observation is that if the pattern has an even (or large) number of cells, the entire
stimulus remains (almost) equiluminant during the whole stimulation period, which might not be as
fatigue inducing as stimuli with big luminance changes are.

Research suggests that the relation between spatial frequency and SSVEP response strength is non-
linear and color-dependent. Results in [116] suggest that for black-white checkerboards the response
strength at first slowly increases with the spatial frequency and then drops of fairly steeply. The response
strength for red-green checkerboards started off higher at low spatial frequencies for the second harmonic,
then remained roughly the same, until it started to deteriorate slightly earlier than black-white induced
activity did (see also [37]). The response for the fourth harmonic was roughly the same for lower spatial
frequencies but increased for black-white stimuli.

Although patterned stimuli take many forms, to the best of my knowledge only lineboxes and espe-
cially checkerboards have been used in SSVEP-based BCIs. In order to test the effects of spatial frequency
on performance and comfort the Experimentation BCI experiment was conducted with 6×6 cm black and
white checkerboards:

Check size (angle) Check size (mm) Check number
2◦27′ 30 2×2
1◦14′ 15 4×4
0◦37′ 7.5 8×8
0◦18′ 3.75 16×16
0◦09′ 1.875 32×32
0◦05′ 1.111 54×54

Figure 4.23: Comfort and performance results for stimuli with different spatial frequencies. Since the
figure is not large enough to show stimuli with the correct number of cells, the depicted number is smaller
and can only be used to determine which stimulus has a relatively higher spatial frequency.

It is hard to say anything definitive about the results, but it was found that using higher spatial frequen-
cies (and thus smaller cells) can sometimes be beneficial (Figure 4.23). However, the relationship with
performance appears to be nonlinear and strongly subject dependent. These findings contradict those
of Zemon & Gordon [97], who found a parabolic function which suggested that low and high spatial
frequencies were better than medium ones. User comfort is clearly positively related with the spatial
frequency, which is likely due to the smaller cell sizes. Using a spatial frequency of 6.5 cpd appears to
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provide the best tradeoff. However, the performance is worse than that achieved in most of the single
graphic conditions reported in Section 4.11 and Section 4.6.

Some studies have found that better brain responses are elicited by patterned stimuli [8, 12], while
others have found the contrary [117]. The experiment carried out in order to determine the effects of
RVS size on performance and comfort described more extensively in Section 4.10 also provides infor-
mation about how pattern reversal stimulation compares to single graphic flicker. The results show that
performance for single graphic flicker is vastly better than performance for pattern reversal.
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Figure 4.24: Comfort, performance and accuracy of the Experimentation BCI obtained pattern reversal
stimuli with different spatial frequencies. Left: means with standard errors (gray boxes) and medians
with first and third quartiles (white boxes). Right: significance p-values for the comparisons between
conditions (white is low; black is high). A star on row α and column β means that the mean for condition
α is significantly better than the mean of condition β .
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4.9 Blur
It seems intuitive to assume that the abrupt state changes of RVSi as well as the hard edges of the stimuli
are contributing to the fatigue inducing properties of these stimuli. Furthermore, they may also play
an important role in photosensitivity problems because spatial contrast is such a big factor [43]. Making
stimuli appear blurred can diminish these properties. Temporal blur is basically the same as using different
waveforms than square-waves or pulses and was already described in Section 4.5. In a sense, the patterned
stimuli described so far were described by square-waves in the spatial domain, i.e. all changes were
sudden. By using bilinear filtering this “waveform” can be smoothened and the cell transitions are blurred
spatially.

(a) No blur (b) Weak blur (c) Strong blur

Figure 4.25: Different levels of blur.

Bilinear filtering is a texture filtering method used to smooth textures when displayed larger or smaller
than they actually are. The texture in this case is the checkerboard and the most efficient way of repre-
senting it for rendering is to use one point, called a texel, per cell. If this texture is enlarged so that more
than one pixel is rendered for each texel, each pixel is normally colored based solely on the texel that
it is closest to (nearest neighbor principle). When bilinear filtering is used, each pixel’s color is given
by the average of the colors of the surrounding 4 texels, weighted by the distance to each texel, which
causes a blurring effect. It is clear that on a checkerboard only the pixels between texels of separate
cells are blurred and not the ones between texels within one cell. Assuming infinite resolution (i.e. no
pixel is exactly on a texel) the amount of blurring can be measured by the proportion of blurred pixels to
non-blurred pixels, which is given by 100%

T , where T ×T texels are used per cell.
The effect of spatial blur was investigated with the CRT monitor using a refresh rate of 85 Hz. One

test subject (right-handed male with corrected-to-normal vision) sat 70 cm away from the monitor that
displayed a 10×10 cm 16×16 cell checkerboard alternating at 10 Hz. Three levels of blur were defined:
no blur, weak blur (50%), and strong blur (100%) (see Figure 4.25). The subject reported that the weak
blur condition was the most comfortable, followed by the strong blur condition. There were 20 randomly
intermingled trials for each condition. Each trial started with a beep cueing the subject to pay attention.
One second later, the RVS would appear for 3 seconds. Stimulus presentation was followed by a resting
period of 3-5 seconds.

Figure 4.26 shows that blurring the stimulus can have a large impact on SSVEP response. The re-
sponse for the first two harmonics was significantly weaker than for the other two conditions (p < 0.05).
The fundamental frequency response was significantly larger for the weakly blurred stimulus than for the
normal checkerboard without the blurring effect (p < 0.05). This means that the condition with 50% blur
was the best in both performance and comfort.

Signals acquired during stimulus presentation for each condition were notch filtered to eliminate
50 Hz power line interference and then averaged. FFTs were computed for each condition and it was
found that the SSVEP response for the weak blur condition was slightly higher than when there was no
blur. Both conditions elicited significantly stronger SSVEPs than the strongly blurred stimulus did.
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Figure 4.26: Amplitudes of the SSVEP response to checkerboards with different levels of blur, oscillating
at 10 Hz. a) The energy of the first 4 harmonics over time. The dotted vertical lines show when the
stimulus turned on and off. b) Powers of the first 4 harmonics calculated over the entire interval using a
Fourier transform.
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4.10 Size
The larger the stimulus, the easier it is to notice, but the harder it might be to ignore. Research has sug-
gested that decreasing the area of a stimulus that must be attended to can decrease BCI performance [118].
Stimulus size can also affect the amount of light transmitted to the user and determines how large an ap-
plication needs to be or how much surface area remains for other purposes.

To test the effects of both simple and patterned stimuli on BCI performance and comfort, the following
eight conditions were tested:

Name Size (angle) Size (cm) Check number Check size (angle) Check size (cm)
1cm 0◦49′ 1×1
3cm 2◦27′ 3×3
6cm 4◦54′ 6×6
9cm 7◦21′ 9×9
2@3 2◦27′ 3×3 2×2 1◦14′ 1.5
2@6 4◦54′ 6×6 2×2 2◦27′ 3
4@3 2◦27′ 3×3 4×4 0◦37′ 0.75
4@6 4◦54′ 6×6 4×4 1◦14′ 1.5

Figure 4.27: Comfort and performance results for both single graphic and pattern reversal stimuli. The
relative size of the stimuli is analogous to the size of the markers in this figure.

The size of the stimulus seems to have a negative effect on user comfort for both checkerboards and
flashing squares (see Figure 4.27). Furthermore, photosensitivity problems also occur more often as the
stimulus size increases [43]. BCI performance was more positively impacted by an increase in stimulus
size. However, when the BCI used the largest tested stimulus (9×9 cm; 7◦21′23′′), performance was
lower than when 6×6 cm (4◦54′29′′) were used.

The simplest explanation is that there is an optimal stimulus size that makes up a relatively small area
of the visual field. A more likely explanation is that making the non-target stimuli larger and closer to
the one the subject was attending to, had a detrimental effect on performance. This could be either due to
increased interference in the eye, or increased difficulty to focus on the desired target. More experiments
have to be carried out to investigate the cause of this anomaly.
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Figure 4.28: Comfort, performance and accuracy of the Experimentation BCI obtained stimuli with dif-
ferent sizes. Left: means with standard errors (gray boxes) and medians with first and third quartiles
(white boxes). Right: significance p-values for the comparisons between conditions (white is low; black
is high). A star on row α and column β means that the mean for condition α is significantly better than
the mean of condition β .
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4.11 Color
It is well known that color can affect mood as well as SSVEP response [119, 120]. Furthermore, different
colors also have different luminance, so the choice of colors also affects the contrast. We tested different
combinations of primary colors to see if hue and luminance would affect the performance and comfort of
the system.

Figure 4.29: Comfort and performance results for stimuli with different color configurations. The edge of
the squares indicates the background color and the center depicts the stimulus color. When two colors are
shown, the stimulus alternated between those colors and was otherwise still a square (not two triangles).

In terms of color, the human eye is less sensitive to light in the red and blue parts of the light spectrum,
while optimally sensitive in the green area at 510 nm (at 1700 lumen/m2 of pupil area/Watt) and 555 nm
(at 683 lumen/m2 of pupil area/Watt) wavelengths for low light levels (below 0.003 cd/m2) and high light
levels (above 0.003 cd/m2) respectively [37, 121]. The relation between SSVEP response strength and
frequency is different for each color [119]. Furthermore, colors interact with the pattern (and spatial
frequency) of the stimulus as well [37, 122].

The role of color in photosensitivity problems sometimes caused by RVSi is debated [96]. Red and
alternating between red and blue seem to be most often mentioned as the colors that have the largest
response in patients [43]. Because our test subjects had declared that they were not photosensitive, we
were able to carry out our experiments anyway.

In order to discover the effects of color on actual performance and comfort in a real BCI, nine condi-
tions were tested with the Experimentation BCI:
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Name Color
1

Color
2

Background
color

Luminance
1

Luminance
2

Background
luminance

Modulation
depth

w/k white black 175 0.86 99%
g/k green black 112 0.86 98%
r/k red black 49.4 0.86 97%
b/k blue black 15.2 0.86 89%
gb/k green blue black 112 15.2 0.86 76%
rg/k red green black 49.4 112 0.86 39%
rg/b red green blue 49.4 112 175 39%
g/b green blue 112 15.2 76%
g/r green red 112 49.4 39%

The first observation that can be made from the results is that a black background appears to give
better performance than a colored one does (see Figure 4.29 and Figure 4.30). This meshes well with
the results of the contrast experiment (see Section 4.6), since colors are brighter than black. In fact,
most of the other results can also be explained in the same manner, because green is brighter than red,
which is brighter than blue. The fact that green was generally perceived as red might be caused by the
same underlying mechanism that seems to cause red stimuli to elicit more photosensitivity problems [43].
Brighter backgrounds are also more likely to cause problems [96].

It has also been shown that stimuli alternating between two colors can get more pronounced responses
than stimuli that appear from a background [37]. This can explain the success of the green/blue on black
RVS. The lower performance of red/green stimulation might be explained by Hering’s opposing-color
theory, which states that red and green, as well as blue and yellow, cancel each other out, although
that contradicts [37]. Another explanation could be that the luminance contrast between red and green
is simply smaller than that between blue and green, although that would not explain why blue/green
stimulation seems to work better than green on black. Finally, in a sense alternating between two colors
on a different colored background may not work the same as the normal flash VEPs elicited when a
stimulus continuously emerges from the background. It could be that like with pattern reversal stimuli,
the brain primarily picks up the alternation frequency rather than the entire cycle frequency. This might
suggest that these stimuli might work better when modulated at lower frequencies, which is also shown
in [37].
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Figure 4.30: Comfort, performance and accuracy of the Experimentation BCI obtained stimuli with dif-
ferent colors. Left: means with standard errors (gray boxes) and medians with first and third quartiles
(white boxes). Right: significance p-values for the comparisons between conditions (white is low; black
is high). A star on row α and column β means that the mean for condition α is significantly better than
the mean of condition β .
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4.12 Shape, orientation and texture
In the early stages of visual processing, the brain has (arrays of) cells that respond particularly to certain
low level properties of the visual signal in one part of the visual field [122]. For instance, some cells
may fire when a line with a certain orientation is perceived, whereas others may respond primarily to
corners. It stands to reason then that the different ways in which different stimulus shapes, orientations
and textures are processed at the start of visual perception affect the strength of the SSVEP response.

Figure 4.31: The Experimentation BCI using differently shaped stimuli.

Figure 4.31 shows the Experimentation BCI using differently shaped targets. Different shapes may
also carry different semantic meaning. The arrow in the top left for instance signifies exactly what focus-
ing on it will do, whereas a square is fairly neutral in terms of meaning. It would be interesting to see if
semantic meaning can influence BCI performance.

Even if these stimulation properties do not directly increase SSVEP amplitude, using heterogenous
stimuli might also enable a BCI to become more robust if these properties allow it to rely on more
than just frequency tagging. If particular brain activity patterns can be associated with different colors,
orientations or emotional valence of the stimuli [94], the BCI could incorporate this information into the
decision making process.

Stimuli might also be able to elicit emotional responses, which might in turn affect the SSVEP re-
sponse. The performance, comfort and training time in a BCI are subject to numerous external factors like
concentration, distraction, motivation, fatigue as well as emotional state (joy, frustration, etc.). It has been
shown that stimuli containing an affective component do elicit differences in the latency and amplitude
of the characteristic peaks of event related potentials [10]. Emotionally arousing pictures elicit higher
SSVEP amplitudes in the parietal regions compared to neutral stimuli. This convenient finding could be
utilized in a BCI where flickering affectively salient pictures are used as a stimulation. It was shown
that images with positive emotional valence can elicit stronger SSVEPs than others, using 6 seconds long
presentation of emotional pictures on a 13 Hz oscillating background [123].

Two experiments were carried out to see if this result could be reproduced and the SSVEP response
could be used for the detection of emotion. In the experiments, the subjects were shown pictures with
different valence values superimposed on a (weakly) 50% blurred (see Section 4.9) 16×16 checkerboard
with a pattern reversal frequency of 13 Hz (26 alternations per second), resulting in a spatial frequency of
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1◦37′44′′ per cell horizontally and 1◦15′3′′ vertically. The stimulation was presented on a 32.4×24.7 cm
CRT monitor with a refresh rate of 85 Hz. A small red cue square would be presented on a black back-
ground for 3 seconds, after which the stimulation started. One second into the checkerboard oscillation, a
picture was superimposed on the center 49% of the screen (70% horizontally and vertically) for 6 seconds
(see Figure 4.32), after which the picture was removed and the pattern reversal stopped for 3 to 5 seconds.

Figure 4.32: A positively valenced picture superimposed on a 16×16 50% blurred checkerboard.

The first experiment did not find any significant effect of image valence on SSVEP response, possibly
due to low sensitivity to the 13 Hz stimulus of the test subject or the limited number of trials per condition.
The second experiment used a different test subject (also male) and 20 neutral and 20 positive pictures.
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Figure 4.33: Energy and SNR evolving over time in position Oz−Cz when positive and neutral images
were superimposed on a blurred checkerboard RVS. The dashed lines correspond to the alternation fre-
quency (second harmonic of the cycle frequency) and clearly show that the (initial) SSVEP for pattern
reversal stimuli primarily responds to the alternation frequency. After a couple of seconds, the response
to the cycle frequency (solid lines) becomes significantly stronger for positive images (gray background).

Figure 4.33 shows how the energy and SNR of the SSVEP response evolve over time when a picture
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is superimposed on the RVS. After a couple of seconds, the response becomes stronger when a positive
image was used. This result shows that the presence of emotional content can affect the SSVEP, which is
important to consider when developing a BCI.

Furthermore, it shows that it is possible to detect some emotional content using EEG. Results from
this experiment (not reported in this thesis) indicate that this seems to be possible without using the
SSVEP as well, but since the BCI requires EEG anyway, this does not detract from the fact that having
insight into the user’s mental state can be tremendously useful in enhancing human-computer interaction.

Knowledge of the influence of emotional state on brain activity patterns can allow the BCI to adapt
its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal
deviations induced by the subject’s emotional state. BCI systems aware of the affective state of the user
can adjust their settings to keep the user motivated and involved. For example, an educational computer
system that adjusts the difficulty of the material based on the level of interest or irritation of the user [124];
or a computer game that adjusts its objectives to balance satisfaction and challenge.
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4.13 Target configuration
The targets of the BCI are another aspect that might influence BCI performance and possibly comfort.
The amount of targets, the way they are layed out and whether or not they move, can all have a great
effect on performance.

4.13.1 Number of targets
The number of targets in a BCI places an upper limit on the attainable bitrate. The more targets, the more
information is communicated by the selection of one. However, having a large number of targets places
high demands on both the stimulation device and the signal processing computer (which might be the
same machine) [125, 75].

Furthermore, it seems likely that having more targets will also result in lower accuracy or longer
classification times when all other things are equal. Given a certain frequency resolution, there is only a
finite set of frequencies that the stimulation device can render and that the user responds to well. When
more targets are used, it may become necessary to use less optimal frequencies, or make the classification
times longer in order to support a higher frequency resolution. Either way, the distance between the
targets in feature space will necessarily become smaller when more targets need to be used, which might
complicate distinguishing between them.

Finally, physical space should also be considered. An increase in the size of the BCI will likely
be accompanied with greater cost and less portability and convenience. If the BCI size is chosen to be
constant (e.g. it needs to fit on a computer display), then either the size of the stimuli or the amount of
spacing between them would have to be decreased in systems with more targets. Section 4.10 already
showed that a BCI with smaller stimuli generally has lower performance. The spacing of targets is
discussed next.

4.13.2 Spacing
Research has shown that SSVEP response power is mainly directed by attention. It is therefore not
strictly necessary for the user to change his gaze direction in order to select a target. Although covertly
directing attention towards the desired target works, a performance boost can definitely be gained from
also physically looking at that target [72]. Apparently, some part of the SSVEP response is not caused by
attention. This begs the question of whether targets, other than the desired one, that are within the field
of vision might still elicit small SSVEP responses. If this is the case, then BCIs can benefit by increasing
the space between targets. Section 4.10 showed that the largest tested stimuli did not lead to the best
performance, which may be caused by the fact that the stimuli in that condition were closer to each other.
This, in addition to their larger size, may have caused a larger interference from non-target stimuli in the
SSVEP response. Although this concern is shared in the literature, it appears that at least for good test
subjects, a small spacing between targets may not prevent the system from working properly [126, 60].

4.13.3 Movement
Eye movements can significantly influence EEG signals, because the amplitude of muscle movements
is usually far greater than that of brain activity. Many BCIs therefore use preprocessing algorithms to
remove, reject or repair signal segments that contain these artifacts. Minimizing eye movements can
therefore potentially increase the performance of a BCI. One way to help accomplish this, is to make the
application state easily visible at all times, even when the user is focusing on an RVS.

In the Experimentation BCI, the application was visible from the periphery of the field of vision, but
it was hard to determine which way the avatar should be sent while focusing on an RVS in a corner of the
screen. This setup is similar to the ones used in some applications that controlled cursor movement [127,
3]. The extra feedback after each classification therefore played an important role. Whenever the avatar
was moved in the correct direction, a high pitched beep was played and the screen flashed in green. If a
wrong move was made, the beep had a lower pitch and the screen flashed in red. Since it was fairly easy
to keep the next couple of moves in memory, the user could effectively switch focus to the next target
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when the system indicated that a correct classification was made. If a wrong classification was made,
however, the user had to pay attention to the application state in order to see if the avatar had moved back,
or was still in the same place. It was suggested that embedding the stimulus state in each stimulus might
have worked better, since then the user would have been able to concentrate on the desired RVS while
observing the application state (see Figure 4.34). There was no time to implement this idea.

Figure 4.34: The Experimentation BCI with the application state displayed on top of the RVSi so that the
user can easily see it at all times.

One downside of this solution is that it requires the application display to be much smaller. This may
be somewhat feasible in the Experimentation BCI, but it is likely not so in cursor control applications.
Another is that the application is obscuring the RVSi, although it would technically be possible to flicker
the application rendering as well at the same frequency that it was superimposed on. However, this
changes the appearance of the stimuli and it should be clear from the research presented in the rest of
this thesis, that this can have significant effects on performance and comfort. In the figure, the size of
each RVSi was increased in order to counter the fact that they are partially obscured, but Section 4.10
has shown that this may not always have the desired effects, possibly due to decreased spacing (see
Section 4.13.2).

Another solution might have been to simply use the four fields adjacent to the avatar as stimuli. This
would have made the RVSi far smaller than they were now, which Section 4.10 showed to be a big
disadvantage. This could have been overcome by making them larger than one square on the grid, but in
that case we would have to deal with the partial obscuration of the application. Furthermore, this would
have moved the targets along with the avatar, encouraging users to move their eyes as well. Despite these
disadvantages, this approach was successfully taken in applications for cursor movement [128] and for
moving a car over a race track in a game [129, 130, 131, 60].
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4.13.4 Overlap
In order to completely avoid eye movement artifacts caused by switching between targets, the targets can
be superimposed on each other. In addition to avoiding artifacts, such a setup would also intuitively enable
muscle-independent brain-computer interfacing. Note that in this case, the spacing between stimuli is 0.

When multiple targets overlap, they need a characteristic that distinguishes one from the other (e.g. color
or pattern). Furthermore, a decision needs to be made about the interaction of each part of the stimuli.
Often, at least part of the stimuli is defined as transparent. For instance, red and green stimuli where the
alternate “off” state is transparent can be used [126]. If no stimulus is “on”, the background is shown. If
one is on, the corresponding color is shown. Finally, if both are on the area could turn yellow (the sum of
red and green).

Lineboxes have also been used where one stimulus has horizontal lines and the other vertical ones [118,
53]. In this case, one set of lines is transparent. The intersection of two non-transparent lines can then
be the summation or average of those lines, or be turned transparent [53]. Of course, one stimulus’
non-transparent parts can also simply be given priority over the other one’s [132].
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4.14 Multiple states
Repetitive visual stimuli oscillate between several visual states. Usually the number of states is two and
the frequency of the RVS is described in terms of complete cycles (i.e. two state changes). The number of
state changes per second is actually double the described frequency. For flash stimuli (i.e. simple stimuli
that pop up out of the background) the main component of the SSVEP response is at the cycle frequency
of the RVS. For pattern reversal stimuli however, the main SSVEP component is at alternation frequency,
which is the second harmonic of the cycle frequency. It might be interesting to see if this SSVEP topology
can also be elicited with other stimuli than checkerboards and lineboxes.

Results obtained from the experiments in Section 4.11 show that red/green and blue/green alternating
stimuli primarily show a response on the fundamental frequency of the entire cycle. If another state were
added, this could still be the case. It seems likely however, that such a large number of states could be
used, that two occurrences of the same state are so far apart that the brain no longer responds to this. It
would be interesting to see if at this point the SSVEP response would simply vanish, or if there would be
an SSVEP response at the state change frequency.

When comparing the performance of BCIs with stimuli that elicit SSVEP responses at the cycle
frequency to systems that elicit a response at the transition frequency, it is important to ask whether the
cycle frequency of the first should be matched to the cycle frequency or the transition frequency of the
second. It is well known that pattern reversal stimuli elicit stronger SSVEPs at lower frequencies and it
has also been suggested that this is the case for stimuli changing between two colors [37].

, which means they can be modulated using a lower framerate, making them plausible on more stim-
ulation devices. Section 4.8 and Section 4.10 indicate that

Perhaps they are perceived as having a higher frequency, and are therefore more comfortable to watch.
Or perhaps the stimulation frequency should necessarily be kept low in order to still elicit significantly
strong SSVEPs.

Adding more states to a stimulus likely has consequences for both the comfort of looking at it and
the strength of the SSVEP response. There might also be interesting opportunities. For instance, it might
be possible to encode multiple commands using one stimulus. When attending to a green-red-green-blue
stimulus, it might be possible to ask the user to focus only on the red (or blue), only on the green or on
all transitions. This could potentially elicit SSVEPs at 1, 2 and 4 times the rotation frequency.

No research on this subject was found, but it is an interesting avenue for future work.
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Chapter 5

Conclusions

The goal of this study was to contribute to the improvement of SSVEP-based BCIs. Brain-computer
interfaces can significantly improve the quality of life for severely disabled people, but can also be useful
to the healthy. BCIs based on the SSVEP response are particularly promising, because they enable high
information transfer rates compared to BCIs using different paradigms. However, operating an SSVEP-
based BCI can be tiring, and looking at the required repetitive visual stimuli can be annoying and can
even induce epileptic seizures in those susceptible.

The primary contribution of this thesis is the investigation of the effects of stimulation properties on
the SSVEP response in the context of a BCI. Stimulation properties can have a significant impact on the
performance and robustness of a BCI as well as the comfort and safety for the user. Operating the system
in a dark and silent room can increase BCI performance. Stimulation contrast is positively correlated
with performance, but negatively with comfort. High frequencies elicit smaller SSVEP responses, but are
more comfortable to look at. The relationship between spatial frequency and performance is nonlinear,
but higher spatial frequencies appear to be more comfortable. Having large stimuli can help increase the
SSVEP response, but might also increase the interference coming from the targets in the BCI that the user
is not focusing on and is obviously less comfortable and safe. The color of the stimulation also affects
the comfort and performance. Colored or white backgrounds are perceived as uncomfortable and are
associated with poor performance. White stimuli have the best performance, followed closely by green,
and then red and blue. Comfort scores are roughly the other way around. Stimuli alternating between
green and blue appear to provide an ideal tradeoff.

The choice of stimulation device has ramifications for performance, comfort, flexibility, cost and
ease of development, as well as for the frequencies that can be used by the BCI, due to their framerate.
LEDs allegedly elicit stronger SSVEP responses (although this study did not reproduce that result), but
require additional hardware and are less flexible during development. Computers and their monitors are
ubiquitous and cheap, but cannot properly render most frequencies. This, and computer performance
limits the number of stimuli that can conveniently be used for SSVEP-based BCIs on monitors.

The effects of waveform, shape, texture, blur, target configurations and use of more than two stimulus
states need to be investigated further as well as the interactions between all stimulation properties. Addi-
tionally, larger studies are required in order to get statistically significant results. The research reported
in this thesis was generally done by varying the values of one stimulation property at a time. While
this is perfect for isolating the effect of that stimulation property, it ignores the fact that many properties
influence the response to each other. While it is impossible to test every possible combination of every
stimulation property, it is important to find out more about the most important interactions, particularly
how the stimulation frequency affects the response to other properties.

It would also greatly help if all researchers reporting studies with or for stimulus-driven BCIs would
provide in depth descriptions of the used stimuli and a rationale for using them. Researchers should be
aware of the great importance of the stimulation in these systems, and more insight into which stimuli
work well can be very valuable in making BCIs more robust, comfortable, fast, easy and fun to use.
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Appendix A

Error related potentials

The human ability to detect these errors is extremely quick and precise. Different physiological studies
have found “error-related potentials (ErrPs)” in the EEG signals of people detecting an error. ErrPs
are associated with the anterior cingulate cortex (ACC) [133], which is also responsible for regulating
emotional responses.

Three types of ErrPs are distinguished: response, feedback and interaction ErrPs. A response ErrP
occurs shortly after the user himself has made an error, and is often referred to as the error-related neg-
ativity (ERN). Other studies have discovered a feedback ErrP that appears after the user is presented
with feedback that indicates that he himself made an error. Both of these ErrPs are elicited when the
user makes the error. As we all know though, machines can make errors as well. Perfect recognition of
speech, handwriting, gestures and brain activity is not yet possible. When an error in these applications
is made, the user often spots it instantly, causing an interaction ErrP.

Errors can slow the interaction with the system down and be frustrating and even dangerous. Having
a robust error detection mechanism could make the system faster, safer, less frustrating and more user
friendly. The rest of this section reports our investigation into the possibility of using the human error
detection mechanism to notify the system of errors. Although detection of human errors can be useful,
the focus here is on the detection of machine errors through the recognition of interaction ErrPs.3 ……….….......……....……....……....……….….......……....……....……....1)2)3)4)
Figure A.1: A correct trial in the experiment protocol: 1) The stimulus (gray square) appears on screen
for 1700 ms. 2) A numerical and a visual (square with dots) indication of the expected next position are
presented for up to 2000 ms. 3) The expected position of the stimulus (the square with dots) stays on
screen for 1000 ms after a key is pressed. 4) The stimulus has moved to the new position.

Six volunteers (3 men and 3 women), aged between 23 and 29 participated in the experiment. All
were healthy, right-handed and had normal or corrected-to-normal vision. Subjects were asked to play
a simple game, designed to elicit ErrPs. They had to move a square (the stimulus) from the left of the
screen to the right. The subject was given 7 moves to move the square to the goal, 14 units to the right
from the start. The game would continue until the subject finished it, but if more than 7 moves were used,
the subject “lost”. At the beginning of each trial the subject was presented with a random proposal to
move either 1 or 3 squares to the right and the user could accept this proposal by pressing a button. If the
proposal was not accepted (e.g. when the square was 2 steps from the goal and the proposal was to move
3, which would cause the square to move back to the beginning), nothing would happen and the next
trial would start, possibly proposing to move a different number of steps. If the proposal was accepted,
the stimulus would move to the designated space in 75% of the cases. In 25% of the cases, the system
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would make an error and the stimulus would move 1 or 2 steps back. In order to reduce the effect of
habituation, no errors were made in the first two and every sixth game. The entire procedure is illustrated
in Figure A.1. All subjects played the game for about 30 minutes, completing between 23 and 31 games
(mean: 28).
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Figure A.2: Difference (bold line) between potentials for error (solid line) and correct (dashed line) trials
for all subjects (bipolar combination: Cz−Pz). Gray areas show the statistical significance (p < 0.0002).

The signals obtained using the usual EEG setup were subsampled to 256 Hz and then bandpass filtered
in the 0.5-25 Hz band using a Butterworth filter. In 5 of the 6 subjects, an ErrP was found around
the ACC area (near Cz, referenced to Pz) with a shape similar to previously reported results [134] (see
Figure A.2). A paired t-test with Bonferroni correction was computed in order to check the significance
of the difference between error and correct trials (the gray areas in Figure A.2). Clearly there is a lot of
inter-subject variability, which suggests that a calibration period is required for each subject in order to
get an acceptable error detection rate.

When the system knows that an error has been made, it can undo the erroneous action. This can make
the system faster, safer and less frustrating. The consequences of making an error will differ between
applications, but the constant factor is that it generally slows the interaction down. On the other hand,
undoing correct actions also slows the interaction down. Whether using an error-detection mechanism is
beneficial depends on a number of factors:

• The accuracy P of the original system without the mechanism

• The cost of an erroneous classification C without the mechanism, compared to a correct one. If the
error simply needs to be undone by a good classification, this cost is roughly 2 (1 wrong + 1 right
classification). If the user gets confused by the error, it might be 2.5. If the airplane the user was
just flying crashes due to an error, the cost might be several magnitudes larger.

• The true positive error detection rate T

• The false negative error detection rate F

• The cost the undo operation Cu itself

Using some simplifying assumptions, we can say that a certain task simply requires N correct clas-
sifications. We define the cost of a correct classification as 1 (the cost is most easily thought of as an
amount of time). The overhead O is defined as the extra cost per classification: O = T−N

N , where T is the
total cost expended during the task. O can be easily calculated for a system without an error detection
mechanism:

O =
1−P

P
(1+C) (A.1)
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The overhead with an error-based undo mechanism Oe is given by the following equation:

Oe =
F(Cu +1)+ 1−P

P (1+C−T (C−Cu))

1−F
=

F(Cu +1)+ 1−P
P (T (Cu−C))+O
1−F

(A.2)

Using these equations, we can calculate the minimum ratio of true to false positive rate R that the
error detection algorithm needs to achieve in order to keep the system’s performance the same:

T/F = R≥ (1−P)C+PCu +1
(1−P)C+PCu−Cu

= 1+
1+Cu

(1−P)(C−Cu)
(A.3)

If R is positive and the error detection algorithm’s ROC curve has a point above the line defined by
T = RF , error detection can be beneficial. When the cost of the manual correction of an error goes to
infinity, R goes to 1, meaning that the true positive error detection rate should always be higher than the
false positive rate. Figure A.3a plots the minimum required values for R for several different accuracies
and manual correction costs, assuming that the undo cost Cu is 0.
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Figure A.3: Whether it is beneficial to use an error detection based undo mechanism depends on the
performance of both the original and the error detection system, as well as the cost of an error and the
cost of the undo operation. Assuming an undo cost of 0, and given a range of error costs and original
accuracies, these figures show what is required of the error detection mechanism in order to be useful. a)
The ratio of true to false positives. b) The minimum true positive rate, given a false positive rate of .1.
The white area in the top left shows that given this false positive rate, low error cost and high original
accuracy, it is impossible to justify using an error detection mechanism. c) The highest allowable false
positive rate, given a true positive rate of .9.

It is obvious that incorporating an error correction mechanism is only effective if the cost of making
errors is high or the accuracy of the original system is low compared to the accuracy of error detection. It
is therefore imperative to have a high error detection rate. Since inter-subject variability is large, finding
the best parameters to use for each subject can significantly enhance classification accuracy.

The used classification algorithm used training examples to compute templates for correct and erro-
neous trials, as well as a vector of p-values (from the t-test) for the template differences at each point
in time. The correct and error templates were computed by averaging the EEG response to each correct
and erroneous trial for one bipolar combination. In order to classify one trial, the difference in distance
measures to each template is thresholded (see Equation A.4).

dc =
N

∑
i=1

(1− pi) · |tc,i− xi|

de =
N

∑
i=1

(1− pi) · |te,i− xi|

C = dc
dc+de

< T

(A.4)

Here N is the number of time samples in the template, dc and de are the distance to the correct and
error templates tc and te, weighted by the vector of p-values p in order to emphasize parts of the signal
where the difference between error and correct is significant. T is a threshold between 0 and 1 that
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determines the algorithms sensitivity and specificity. C is the classification result, “true” for a correct trial
and “false” for an erroneous one.
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S1; CP6−T8; AUC: 0.95864
S2; CP6−FC2; AUC: 0.90021
S3; O1−Oz; AUC: 0.94717
S4; CP2−FC6; AUC: 0.97809
S5; T8−FC2; AUC: 0.75093
S6; F8−FC5; AUC: 0.89127

Figure A.4: ROC curves for the BBC of each subject.

For each subject, every combination of two electrodes (a bipolar combination) was evaluated and the
best two electrodes were selected. Despite the fairly simple classification algorithm, this approach made
fairly high performance possible (see Figure A.4).

In the game from the experiment, the goal was to reach the target square in as few moves as possible. If
the system undid a move, the move did not count, which means that the cost of undoing in this system was
technically -1. This means that it is impossible for the error system to detect too much errors. Therefore,
it might be more useful to consider an example where the cost of undoing was 0 (in which case it would
optimize the number of button presses).

Since the best strategy in the game is to move 3 steps at a time most of the time (but not always),
and an erroneous trial moves the square back 1.5 steps on average, the cost c of an error in the game is
a little over 0.5. Applying Equation A.3 leads to an R value of 9. For all subjects except S5 the error
correction algorithm can be expected to increase system performance. The average percentage of saved
button presses is 4.4% over all subjects.
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Appendix B

Publications

This appendix contains all of the publications related to the work that was presented in this document:

Appendix B.1 Danhua Zhu, Jordi Bieger, Gary Garcia Molina, and Ronald M. Aarts. A Survey of Stimulation
Methods Used in SSVEP-Based BCIs. In Computational Intelligence and Neuroscience, 2010. [88]

Appendix B.3 Tsvetomira Kirova Tsoneva, Jordi Bieger, and Gary Garcia Molina. Towards error-free interaction.
In Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 2010. [135]

Appendix B.2 Jordi Bieger, Gary Garcia Molina, and Danhua Zhu. Effects of Stimulation Properties in Steady-
State Visual Evoked Potential-Based Brain-Computer Interfaces. In Proceedings of the 32nd An-
nual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010. [136]
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B.1 A Survey of Stimulation Methods Used in
SSVEP-Based BCIs

In this review article the authors perform a literature survey in order to find out what stimulation methods
are used in SSVEP-based BCIs to date (June 2009). Many publications omit important details about the
stimulation that is used in their experiments or BCIs. Even if the stimulation method is described in
detail, reasons for the chosen configurations are rarely mentioned.

As of June 2009 use of the computer monitor (especially CRTs) is slightly more popular than use of
LEDs. On these monitors flash stimuli (almost all rectangular) and pattern reversal stimuli (almost all
checkerboards) were used about equally often. Most research focuses on using fairly low frequencies.
When reported, the used colors were usually white, green or red for LEDs and black and white for
computer monitors.

The article was published in the 2010 volume of the Computational Intelligence and Neuroscience
journal by the Hindawi Publishing Corporation on January 4 of 2010. It is freely available at the following
address: http://www.hindawi.com/journals/cin/2010/702357.html
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Brain-computer interface (BCI) systems based on the steady-state visual evoked potential (SSVEP) provide higher information
throughput and require shorter training than BCI systems using other brain signals. To elicit an SSVEP, a repetitive visual stimulus
(RVS) has to be presented to the user. The RVS can be rendered on a computer screen by alternating graphical patterns, or with
external light sources able to emit modulated light. The properties of an RVS (e.g., frequency, color) depend on the rendering
device and influence the SSVEP characteristics. This affects the BCI information throughput and the levels of user safety and
comfort. Literature on SSVEP-based BCIs does not generally provide reasons for the selection of the used rendering devices or
RVS properties. In this paper, we review the literature on SSVEP-based BCIs and comprehensively report on the different RVS
choices in terms of rendering devices, properties, and their potential influence on BCI performance, user safety and comfort.

1. Introduction

A brain-computer interface (BCI) is a communication sys-
tem in which the user’s intention is conveyed to the external
world without involving the normal output pathways of
peripheral nerves and muscles [1]. BCIs are especially rele-
vant for users with reduced motor abilities. Yet, applications
for a wider range of users are emerging for entertainment,
safety, and security.

In noninvasive BCIs, electroencephalography (EEG) is
commonly employed because of its high time resolution,
ease of acquisition, and cost effectiveness as compared to
other brain activity monitoring modalities. Noninvasive
electrophysiological sources for BCI control include event-
related synchronization/desynchronization (ERS/ERD),
visual evoked potentials (VEP), steady-state visual evoked
potentials (SSVEP), slow cortical potentials (SCP), P300
evoked potentials and μ and β rhythms [2]. SSVEP-based
BCIs have received increased attention because they can
provide relatively higher bit rates of up to 70 bits/min while
requiring little training [3].

An SSVEP-based BCI (see the functional model in
Figure 1) enables the user to select among several commands
that depend on the application, for example, moving a cursor
on a computer screen. Each command is associated with a
repetitive visual stimulus (RVS) that has distinctive proper-
ties (e.g., frequency or phase). The stimuli are simultaneously
presented to the user who selects a command by focusing
his/her attention on the corresponding stimulus. When the
user focuses his/her attention on an RVS, an SSVEP is
elicited which manifests as oscillatory components in the
user’s EEG, especially in the signals from the primary visual
cortex, matching the frequency or harmonics of that RVS (see
Figure 2). SSVEPs can be elicited by repetitive visual stimuli
at frequencies in the 1 to 100 Hz range [4].

SSVEPs can be automatically detected through a series
of signal processing steps including preprocessing (e.g.,
band-pass filtering), artifact detection/correction, feature
extraction (e.g., spectral content at the stimulation frequen-
cies), and feature classification. BCI performance is usually
assessed in terms of classification accuracy, classification
speed, and the number of available choices. These can be
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aggregated into a single indicator, namely the bit rate [1, 5].
In SSVEP-based BCIs, the classification accuracy is primarily
influenced by the strength of the SSVEP response, the signal-
to-noise ratio (SNR), and the differences in the properties
of the stimuli. The classification speed depends on the
time it takes for the SSVEP to be of sufficient strength.
Increasing the number of targets offers a higher number of
possible commands but can decrease classification accuracy
and speed.

In addition to the bit rate, it is also important to consider
the safety and comfort of SSVEP-based BCIs. Repetitive
visual stimuli modulated at certain frequencies can provoke
epileptic seizures [6] and flashes that are excessively bright
may impair the user’s vision. Furthermore, certain stimula-
tion frequencies can induce fatigue.

The nature of the RVS in an SSVEP-based BCI influences
the performance in terms of bit rate and can also have
repercussions on user comfort and safety. In spite of
being such an essential element of SSVEP-based BCIs, RVS
selection is only superficially addressed in most SSVEP
publications. Existing review papers focus on general VEP-
based BCIs [7] and signal processing algorithms applied to
BCIs [2]. This paper reviews the stimuli that have been used
for SSVEP-based BCIs with the goals of: (1) categorizing
the stimulation strategies reported in literature, and (2)
providing a reference document to motivate the stimulus
selection for BCI applications.

This paper is organized as follows. Section 2 describes
the types of repetitive visual stimuli. Section 3 presents the
methods used to conduct the literature survey as well as the
inclusion criteria. A detailed categorization of currently used
RVS is presented in Section 4. The results are discussed in
Section 5 and the conclusions are presented in Section 6.

2. Repetitive Visual Stimuli

In SSVEP research, three main categories of repetitive visual
stimuli exist.

Light stimuli are rendered using light sources such as
LEDs, fluorescent lights, and Xe-lights, which are modulated
at a specified frequency. These devices are generally driven
by dedicated electronic circuitry which enables them to
accurately render any illumination sequence or waveform.
The intensity (time integrated luminance) of the light
stimulus is measured in photopic candela seconds per square
meter (cd · s · m−2 or nits · s) because the light luminance
changes over time, whereas the background luminance is
measured in candela per square meter (cd ·m−2 or nits) [8].
An important parameter to quantify the stimulus strength is
the modulation depth which is defined as (lmax− lmin)/(lmax +
lmin), where lmin, lmax are the minimum and maximum
luminance, respectively.

Single graphics stimuli (e.g., rectangle, square, or arrow)
are rendered on a computer screen and appear from and
disappear into the background at a specified rate (see
Figure 3(a)). The stimulation rate is reported as the number
of full cycles per second, normally simply referred to as the
frequency of the stimulus.

Pattern reversal stimuli are rendered on a computer
screen by oscillatory alternation of graphical patterns, for
example, checkerboards. They consist of at least two patterns
that are alternated at a specified number of alternations per
second [8]. Frequently used patterns include checkerboards
and lineboxes (see Figure 3(b)). Patterns are usually colored
in black and white. A checkerboard stimulus is characterized
by the subtended visual angle of each tile (spatial frequency),
the number of reversals per second, the mean luminance, the
field size, and the pattern contrast.

It is worth noting that single graphic stimuli could be
viewed as a special case of pattern reversal stimuli where
the graphic is the first pattern and the second pattern is the
background. An important difference is that single graphic
stimuli elicit an SSVEP response at the frequency of one
full cycle (i.e. two alternations), whereas real pattern reversal
stimuli elicit an SSVEP response at the frequency of one
alternation.

All repetitive visual stimuli have various properties
such as frequency, color, and contrast. Both the type and
properties of stimuli affect the elicited SSVEP response.

3. Literature Search and Inclusion Criteria

To conduct the literature survey on the stimulation strategies
in SSVEP-based BCIs, the following databases were con-
sulted: INSPEC, COMPENDEX, PASCAL, MESCAL, MED-
LINE, EMBASE, BIOSIS, BIOENG, HCAPLUS, LIFESCI,
TEMA, and Google Scholar. Papers were selected for review
if the following classes of terms are present in their title,
abstract or keyword list: (1) BCI, Brain-Computer Interfac?,
BMI and Brain Machine Interfac?; (2)SSVEP, Steady State
Visual Evoked Potential?, SSVER and Steady State Visual
Evoked Respons?; where the question mark “?” represents
arbitrary letters (e.g., “e”, “es” or “ing”). Figure 4 illustrates
the search strategy as well as the number of papers retrieved
at each step.

To be included in the review, papers had to distinctly
mention the used stimulus. Papers that used SSVEP to
research the visual pathway and attention as opposed to the
goal of building BCI systems were excluded. Only papers
written in English prior to June 2009 were considered.

4. State of the Art

Fifty-seven papers met the inclusion criteria. They are
categorized into three classes according to the type of RVS
they use: light, single graphic, and pattern reversal stimuli.
Tables 1, 2, and 3 detail the specific properties of the RVS
associated with the three classes.

In the remainder of this article we mainly consider the
rendering devices, stimulation frequencies, and colors. The
rendering device can significantly affect the strength of the
SSVEP signal [9]. The stimulation frequency is an important
property of the RVS. All the BCI systems reviewed in this
paper use stimulation frequencies in the 4 to 50 Hz range.
In [10] these frequencies were classified into three frequency
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Figure 1: Functional model of an SSVEP-based BCI.

bands: low (1–12 Hz), medium (12–30 Hz), and high (30–
60 Hz). In each table, these three bands are used to sub-
categorize the papers. Stimulus color also influences the
SSVEP because the SSVEP responses are different for red,
blue, and yellow light [11].

The history of the use of different stimuli in SSVEP-
based BCIs is summarized in Tables 1, 2, and 3. The first
known SSVEP-based BCI was presented in 1996 [12] and
used a fluorescent light to render the stimulation. This system
had only one stimulus and was based on the self-regulation
of the SSVEP amplitude. Stimuli displayed on computer
screens have been used since 1999. Single graphics were
used to mimic light stimuli. The graphics included squares
or rectangles [13] and arrows [14]. Since then, more than
one stimulus were used and each stimulus corresponded
to a different command. Although LEDs are popular in
current SSVEP-based BCIs, they were not used as rendering
devices until 2003 [15]. Pattern reversal is commonly used
in transient VEP research and can elicit more prominent
VEPs than other stimuli. It was first used in 2004 in an
SSVEP-based BCI [16]. For some clinical applications the
EEG recording equipment has its own visual stimulation
(e.g., Xe-light). This type of stimulation was also tested in
[17]. The color of the stimulus was first considered in 2001
[18].

Out of the 58 reviewed papers, 14 use checkerboards, 18
use rectangular stimuli on a computer screen, 1 uses arrows,
1 uses lineboxes, 24 use LEDs, 1 uses a fluorescent light and
1 uses an Xe-light. The sum exceeds the 58 reviewed papers
because some employ more than one stimulation method.

The low and medium-frequency bands are both used in
49 of the reviewed articles, while the high-frequency band
was only employed in 8. A combination of the low and
medium frequency bands is used by 30 of the papers, while
1 uses a combination of the low and high frequency bands, 2
use a combination of the medium and high frequency bands,
1 uses all three frequency bands and 1 does not mention the
frequency used.

Slightly more research has been conducted using com-
puter screens than with light stimuli (33 versus 26 articles).
More articles feature single graphic stimuli than pattern
reversal (19 versus 14 articles). LEDs are almost always used
for light stimuli, while plain rectangles and checkerboards
are the basic choices for single graphic and pattern reversal
stimuli. Other choices are rarely used [12, 14, 17, 62].

For stimulation on computer monitors, mostly black,
and white colors are used. For light stimuli the colors red,
white and green are frequently used. It is worth noticing that
the two best-performing BCIs in this category used green
lights [3, 15]. Further research on the influence of color on
the SSVEP is necessary.

Direct comparison of the performance of different
stimuli based on the performance of the BCIs that employed
them is difficult due to the large number of variables
that may influence a BCI’s performance in addition to
the stimulation properties. Furthermore, a large inter-
subject variability of SSVEP response exists. However, such
a comparison can still provide an indication on how
suitable different stimuli are for BCI. We therefore list
the best and median performance of SSVEP-based BCIs
using LEDs, checkerboards, and squares here to give an
indication: a system using LEDs achieved a bit rate of
68 bits/min with 48 choices [15], a pattern reversal system
reached a bit rate of 45.5 bits/min with 8 choices [57],
and a system using rectangle stimuli obtained a bit rate
of 58 bits/min with 6 choices [45]. The median bit rate
for systems using LED stimulation is 42 bits/min, while for
single graphics it is 35.075 bits/min and pattern reversal
systems achieve 26 bits/min. Unfortunately most articles
either did an offline analysis or failed to mention the
performance of the presented BCI systems in terms of bit
rate.

In addition to the bitrate, user safety and comfort are
important for the commercial applicability of SSVEP-based
BCIs. However, these aspects are very rarely mentioned in
the literature.
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Table 1: Characteristics of light stimuli.

Frequency band Study Stimulus
Bit rate (bits/min)

Device Frequency (Hz) Color

L
Maggi et al. 2006 [19] LED 6, 7, 8, 10 Hz Green —

Piccini et al. 2005 [20] LED 6–10 Hz — —

M

Lüth et al. 2007 [21] LED 13, 14, 15, 16,
17 Hz

Red —

Valbuena et al. 2007 [22] LED 13, 14, 15, 16 Hz — —

Leow et al. 2007 [23] LED 14–29 Hz Red —

Materka and Byczuk 2006 [24] LED
25, 26.5625,
28.125,
29.6875 Hz

— —

Calhoun et al. 1996 [12] Fluorescent light 13.25 Hz — —

H

Garcia Molina 2008 [25] LED 40–50 Hz White —

Huang et al. 2008 [17] Xe-light 30–50 Hz — —

Materka et al. 2007 [26] LED 32–40 Hz — —

Materka and Byczuk, 2006 [27] LED 34–40 Hz — —

L+M

Parini et al. 2009 [3] LED 6, 7, . . ., 17 Hz Green 51.47

Bin et al. 2008 [28] LED 10, 11, 12, 13 Hz — —

Wu and Yao 2008 [29] LED 8.3, 10 Hz White —

Wu et al. 2008 [9] LED 4.6, 10.8,
16.1 Hz

White —

Müller-Putz et al. 2008 [30] LED 6, 7, 8, 13 Hz Red —

Müller-Putz and Pfurtschelle 2008 [31] LED 6, 7, 8, 13 Hz Red —

Scherer et al. 2007 [32] LED

6.25, 7.25, 8.00,
13.00 Hz; 11.75,
13.00, 15.25,
17.25 Hz

Red —

Jia et al. 2007 [33] LED 6, 6.5, 7, . . .,
19 Hz

— 46.1

Friman et al. 2007 [34] LED 5, 7, 9, 11, 13,
15 Hz

— —

Friman et al. 2007 [35] LED 13, 14, 15, 16,
17 Hz

Red 27–30

Müller-Putz et al. 2005 [36] LED 6, 7, 8, 13 Hz Red 31.5

Wang et al. 2004 [37] LED 9–17 Hz — 42

Gao et al. 2003 [15] LED 6, 6.195, 6.390,
. . ., 15

Green 68

M+H Wang et al. 2005 [38] LED 21, 23, . . . , 43 Hz White —

L+M+H Ruen et al. 2007 [39] LED 7–35 Hz Red —

5. Discussion

In this section we first discuss the effect of the repetitive
visual stimuli that are regularly used in the reviewed litera-
ture on the SSVEP. We then present innovative stimulation
designs that were designed to address some of the most
relevant issues in BCI such as preventing loss of attention
during operation, increasing the number of stimuli, SNR
enhancement, and independent operation.

5.1. RVS Effect on SSVEP. Stimulation type, frequency, and
color have all an effect on the SSVEP response they elicit.

5.1.1. Stimulation Type. The reviewed papers were cate-
gorized into three tables according to whether they used
light, single graphic, or pattern reversal stimuli. The SSVEP
response to these three types of stimuli is different. Pattern
reversal stimuli can produce a more pronounced SSVEP
than single graphic stimuli modulated at the same frequency
[56]. In [9] light and single graphic stimuli were generated
at 4.6, 10.8, and 16.1 Hz. It was found that the SSVEP
response elicited by an LED was larger than that by a
rectangle stimulus on a computer screen. Also it was stated
that the SSVEP response for light stimuli was larger than
that for pattern reversal in [10]. This might explain why we
found that the bit rates of BCIs using LED stimuli appear
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Table 2: Characteristics of single graphic stimuli.

Frequency band Study Stimulus Bit rate (bits/min)

Device Shape Frequency (Hz) Color

L

Wang et al. 2008
[7]

— Square 10 Hz — —

Ren et al. 2008
[40]

— Square 10 Hz White/black —

Touyama and
Hirose, 2007
[41]

— Cube 4.80, 6.86 Hz — —

Touyama and
Hirose, 2007
[42]

— Cube 4.80, 6.86 Hz — —

Beverina et al.
2003 [14]

— Arrow 6, 10 Hz Green —

Cheng and Gao,
1999 [13]

— Block 6–9 Hz — —

M

Cecotti and
Graeser, 2008
[43]

LCD Box 15.5, 16, . . .,
17.5 Hz

— —

Kelly et al. 2005
[44]

CRT Rectangle 14, 17 Hz White/black 7.5

L+M

Bin et al. 2009
[45]

LCD Square 6.5, 7.5, 8.6, 10,
12, 15 Hz

White/black 58

Wu et al. 2008
[9]

LCD and CRT Square 4.6, 10.8,
16.1 Hz

White/black —

Wang et al. 2006
[46]

CRT Button 9–17 Hz — 43

Nielsen et al.
2006 [47]

CRT Square

5.0, 7.08, 7.73,
8.5, 9.44, 10.63,
12.14, 14.16,
17.0 Hz

— 21

Kelly et al. 2005
[48]

CRT Rectangle 9.45, 10.63 Hz;
14.17, 17.01 Hz

White/black —

Kelly et al. 2005
[49]

CRT Rectangle 10.03, 12.04 Hz White/black —

Wahnoun et al.
2002 [50]

— Block

5.000, 7.080,
7.727, 8.927,
11.087, 12.140,
12.750, 17.000,
21.250 Hz

White and a
small light gray
in the middle

—

Cheng et al.
2002 [51]

CRT Button 6–14 Hz — 27.15

Cheng et al.
2001 [18]

— Block 6.45, 7.23, 8.01,
13.87 Hz

Red, green, and
yellow

—

L+H
Sami and
Nielsen, 2004
[52]

CRT Rectangle 8.8, 35 Hz — —

M+H Lin et al. 2007
[53]

CRT Squares 27, 29, . . ., 43 Hz — —

to be higher compared to those of BCIs using computer
screens. For each of these results, most variables were
fixed (e.g., luminance, contrast, and color). At present, no
general conclusions can be drawn because many conditions
have not been tested and variables can interact with each
other. For instance, the power of the SSVEP response

is affected by both frequency and color of the stimuli
[11].

From the viewpoint of implementation, it is in general
easier to build a BCI that employs a computer screen as
it mainly relies on software development and no hardware
modification is necessary. Furthermore, BCI designers are
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Table 3: Characteristics of pattern reversal stimuli.

Frequency band Study Stimulus
Bit rate (bits/min)

Device Shape Frequency (Hz) Color

L Kluge and Hart-
mann,2007 [54]

TFT Checkerboard 10, 12 Hz — —

Trejo et al. 2006
[55]

LCD Checkerboard 5, 5.625, 6.4,
6.9 Hz

White/black —

Lalor et al. 2005
[56]

— Checkerboard 8.5, 10 Hz White/black 10.3

M Kelly et al. 2004
[16]

— Checkerboard 17, 20 Hz White/black —

L+M Vasquez et al.
2008 [57]

CRT Checkerboard
8.8, 9.4, 11.55,
12.5, 13.65, 15,
16.7, 18.8 Hz

White/black 45.5

Oehler et al.
2008 [58]

— Checkerboard 10–15 Hz White/black 12.5

Martinez et al.
(2008 [59], 2007
[60])

CRT Checkerboard 5, 6, 7, 8 Hz; 12,
13.3, 15, 17 Hz

White/black 26–30

Krusienski and
Allison, 2008
[61]

— Checkerboard 6, 15 Hz White/black —

Allison et al.
2008 [62]

CRT Lineboxes and checker-board 6, 15 Hz

White/black;
gray/white;
red/gray;
green/gray

—

Bakardjian et al.
2007 [63]

— Checkerboard 8, 12, 14, 28 Hz White/black —

Mukesh et al.
2006 [64]

— Checkerboard 6, 7, 12, 13,
14 Hz

White/black —

Jaganathan et al.
2005 [65]

— Checkerboard 6–15 Hz White/black —

— Lalor et al. 2004
[66]

— Checkerboard — White/black —

completely free in their choice of development platform
for the implementation of this software. Use of computer
monitors offers flexibility for combining BCI stimulation
with the controlled application and makes it possible for
the stimulation interface to easily be fine-tuned during BCI
development or even for it to change during a BCI session.

BCIs using light stimuli on the other hand usually
require the development of dedicated hardware in addition
to software. Also, the used hardware often restricts the
number of development platforms that can be used for
software development. In return for this investment comes
an extreme flexibility in the signals and frequencies that
can be generated, because LEDs are usually controlled by
waveform generators that are capable of generating many
different frequencies. LEDs are said to be preferable in
practical applications that require more than 20 choices,
because monitors have difficulties to accurately display
various stimuli at different frequencies [9].

Using a monitor severely limits the range of frequencies
that can be used for stimulation. The refresh rate R of the
monitor, that is, the number of times that the monitor
redraws the screen per second, is usually lower than 100 Hz

(for LCD monitors it is usually 60 Hz). Only frequencies
that are lower than R/2 Hz can be used [67] and only the
subharmonics of the screen refresh rate can be obtained [50].
Errors appear when rendering frequencies whose periods
are not multiples of 2/R. Such frequencies are either very
low to elicit an SSVEP or are each others harmonics. This
is often undesirable for SSVEP-based BCIs. Because of this,
these BCIs often use frequencies that can be displayed less
accurately. The rendering of the frequency can be further
hindered by the task scheduling that most operating systems
perform, which can cause unpredictable delays. Finally, if
a large number of target stimuli have to be used, the
computational load of generating or displaying them may
cause inaccuracies in the displayed stimulations.

Computer screens with higher refresh rates exist (e.g., a
screen refreshing at 120 Hz used in [59]), but are increasingly
difficult to obtain commercially. Such screens can increase
the available number of frequencies, but do not solve the
above problem completely.

5.1.2. Stimulus Frequency. As mentioned in Section 4, the
stimulus frequencies used in SSVEP research can be classified
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Figure 2: Typical waveform of an EEG signal (Oz-Cz) acquired
during visual light stimulation with a frequency of 15 Hz and its
frequency spectrum. (a) SSVEP waveform resulting from the time-
locked average of 10 realizations. A transient VEP can be observed
at the moment where the stimulation began and a clear oscillation
(the steady state VEP) can be seen afterwards; (b) Frequency content
of the signal in (a). The SSVEP manifests itself in oscillations at 15
Hz and higher harmonics.

into three frequency bands, that is, low (1–12 Hz), medium
(12–30 Hz) and high (30–60 Hz). The largest SSVEP ampli-
tudes were observed near 10 Hz followed by 16–18 Hz and
the high frequency subsystem showed the smallest response
[10]. As shown in Tables 1, 2, and 3, many SSVEP-based
BCIs used the low and medium frequency bands, although
the frequencies varied significantly. These two frequency
bands, however, have some disadvantages. First, subjective
evaluations showed that frequencies between 5 and 25 Hz
are more annoying than higher ones; visual fatigue would
easily occur. Second, flash and pattern reversal stimuli can
provoke epileptic seizures especially in the 15–25 Hz range
[6]. Third, the low frequency band covers the alpha band
(8–13 Hz) which can cause a considerable amount of false
positives. All of these disadvantages can be avoided by using
the high frequency band.

The disadvantage of a weak SSVEP response is mitigated
by the fact that there is less spontaneous brain activity

(a) Single graphic

(b) Pattern reversal

Figure 3: (a) In single graphic stimuli the graphical object
alternately appears and disappears in the background. (b) In pattern
reversal stimuli at least two patterns are alternated at a specified
frequency.

in the high frequency band compared to lower ones [46].
Additionally, spatial filters that combine several lead signals
into one channel [34] can be used to increase the SSVEP
energy enough so it can effectively be used in a BCI.
Furthermore, the SNR of the SSVEP response (calculated
as the ratio of EEG power at the stimulation frequency to
the mean power of the adjacent frequency bands) is similar
in all frequency bands [46]. An offline analysis showed that
utilizing the high frequency band can be very promising
[38]. Therefore, the high frequency band can be expected
to be applied in SSVEP-based BCIs in the future and should
definitely be researched further.

5.1.3. Stimulus Color. It was reported in [11] that red, yellow,
and blue light stimuli have different effects on the SSVEP
in combination with the used frequency. Red light elicited
the strongest response when modulated at 11 Hz, but SSVEP
strength went downhill fast for surrounding frequencies.
Blue light stimuli elicited a slightly weaker strongest response
around 13 Hz, but were less sensitive to the used frequency.
The SSVEP strength elicited by yellow light was lower and
less dependent on the used frequency. Another study that
focused on stimulus color showed that the second and fourth
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Database: INSPEC, COMPENDEX, PASCAL, MESCAL, MEDLINE, EMBASE, BIOSIS,
BIOENG, HCAPLUS, LIFESCI, TEMA, Google Scholar

K1 (BCI or brain computer
interfac?): 72780

K2 (BMI or brain machine
interfac?): 192456

K4 (SSVEP or steady
state visual evoked

potential?)

K5 (SSVEP or steady
state visual evoked

potential?)

Or

And And

Or

K3 (K1 or K2):
202325

K6 (K3 and K4): 509 K7 (K3 and K5): 49

K8 (K6 or K7): 558

Remove duplicates: 76

Limited to English: 75

Limited to the articles
mentioning stimuli: 58

Figure 4: Literature search strategy and the number of papers retrieved at each step. “K” indicates “keyword” and “?” refers to arbitrary
characters (e.g., e or es).

harmonic of the SSVEP are affected differently by chromatic
and achromatic checkerboard stimuli [68].

At present, green, red, gray, black, and white stimuli
have been used for SSVEP-based BCIs. It is difficult to
decide which color is the best, because at present there
is no comparison that shows how color influences the
performance of SSVEP-based BCIs. A good solution for
practical applications could be to use stimuli whose colors
can be dynamically adjusted in order to take circumstances
or the user’s characteristics into account.

5.2. Stimuli Improvements. Recent studies present some
new stimulus designs based on more standard stimulation
methods. Four important goals to be achieved with these
enhancements are: (1) to maximize selective attention and to
minimize the eye movements with respect to the controlled
element; (2) to increase the number of available frequencies;
(3) to enhance the SSVEP SNR; and (4) to change an SSVEP-
based BCI from dependent to independent.

5.2.1. Maintaining Attention on the Stimuli. The position
of the stimuli in current SSVEP-based BCIs is often fixed.
However, the user needs feedback during BCI operation.
While the user is moving an element (e.g., a cursor or a
virtual car), his/her eyes can occasionally move away from
the stimuli. Furthermore, the user can be distracted, which
can deteriorate the signal because the SSVEP strength is

strongly influenced by attention [69]. A possible solution for
mitigating this problem is to make the stimuli move along
with the controlled elements. In [57, 60], the stimulation unit
was designed as a smart multiple choice table in the form of
an array of small checkerboard images moving along with the
controlled elements and was applied to a real-time BCI with
a bit rate higher than 26 bits/min.

5.2.2. Increase the Number of Available Frequencies. Most
current SSVEP-based BCIs use one frequency per target.
Hence a large number of targets require a large number of
frequencies. However, the frequency range with relatively
high SSVEP responses is limited. Increasing the number
of targets then decreases the frequency resolution which in
turn makes classification more difficult. This is especially
problematic on computer screens, since we have difficulty
generating all but a select few frequencies accurately.

One solution is to differ the relative phases of the stimuli
so that phase information can also be used to distinguish
among targets. In [7, 54], all stimuli flickered at the same
frequency and differed only in relative phase.

A second solution attempts to mitigate the problem
by using dual-frequency stimulation: modulating a single
stimulus with two frequencies. By adding together two
frequencies F1 and F2 = F1/2 a third stimulus F1 + F2 was
obtained which would evoke peaks in the SSVEP signal at
F1, F2, F1 + F2 and their harmonics [64]. Thus three options
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could be obtained using only two frequencies. In [64], the
stimulus was a checkerboard rendered on a computer screen.
This solution can also be applicable with light sources such
as LEDs.

Unfortunately, these solutions have only been evaluated
with two or three targets and were so far not tested
thoroughly in online systems in which many targets exist.

5.2.3. Enhance the SSVEP SNR. High SSVEP SNR can
simplify the feature extraction and improve the classification
accuracy. In [27], a novel method based on half-field
alternate stimulation was proposed to enhance the SSVEP
SNR. The optic nerves from the retina’s left and right halves
cross at the so-called optic chiasm and finally reach the
left and right part of the primary visual cortex. Based on
this, a target stimulus consisting of two light sources that
flashed with the same frequency but opposite in phase
was proposed. Because the light sources flashed at different
times and were located in different parts of the visual
field the workload of the left and the right part of the
primary visual cortex was alternated. Subtracting the signals
obtained at the left and right occipital lobes from one
another suppressed the noise from muscle-originated signals
and spontaneous brain waves, and thereby enhanced the
SSVEP SNR.

5.2.4. From Dependent to Independent. According to the
definition of [1], BCIs can be either dependent or inde-
pendent. A dependent BCI requires some activity from the
brain’s normal output pathways (e.g., muscles), while an
independent BCI does not depend in any way on these
output pathways. SSVEP-based BCIs are generally considered
as dependent, because the user has to change his gaze
direction to focus on the desired target. This might not
work if the user is so severely disabled that he is unable to
reliably control gaze. Consequently, it is very useful to make
an independent SSVEP-based BCI. In order to make this
improvement, one attractive option is to develop a stimulus
which is able to evoke different SSVEP responses without the
user’s gaze.

The BCI in [49] utilized electrophysiological correlates of
visual spatial attention mechanisms to make binary selection
of left and right visual targets. Besides spatial attention,
another solution is selectively paying attention to a certain
stimulation of an overlapping stimulus. Two superimposed
images consisting of vertical and horizontal parallel bars
flickering at different frequencies were presented [62, 70]. A
similar stimulus design was used in [18], where a red/black
and green/black square alternating at different frequencies
were superimposed on each other and yellow was used when
both stimuli were in the “on” state. In another study spatially
intermingled red and blue motion dots flickered at different
frequencies while continuously shifting their positions at
random [71]. All of these methods are based on the fact that
selective attention to one stimulus while ignoring the other
will enhance the amplitude of the SSVEP of the attended
frequency [72].

6. Conclusion

SSVEP-based BCIs allow users to communicate with the
external world by selectively paying attention to one out
of a set of repetitive visual stimuli. In this review, we
have highlighted important facts of these stimuli in BCIs:
(1) checkerboard, rectangle, and LED-based stimulation are
the most frequently used stimulation types, (2) stimulation
frequencies in the low and medium frequency bands have
been more often applied than those in the high frequency
band even though the latter offer higher levels of comfort and
safety.

From the reported bit rates it appears that SSVEP-based
BCIs that use LEDs for stimulation have higher bit rates
(median 42 bits/minute) than those using computer screens
that render the stimuli through single graphic alternation
(median 35.075 bits/minute) or pattern reversal (median
26 bits/minute). For a small number of RVS both computer
screens and LEDs are plausible as rendering devices. For a
large number of RVS (more than 20 according to [9]) or
stimulation frequencies in the high frequency band, LEDs are
preferable.

The choice of properties of the used stimuli can affect
the performance, safety, and comfort of an SSVEP-based
BCI. Improvements to stimuli can enhance the SSVEP SNR,
simplify signal processing, enable the use of more targets,
prevent loss of attention, and allow for BCI independent BCI
operation.
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B.2 Effects of Stimulation Properties in SSVEP-
Based BCIs

This article is essentially a very compressed version of the most important research reported in this thesis.
It only describes the experiments done with the Experimentation BCI. As a result it only discusses the
stimulation device, framerate, environmental illumination, contrast, color, spatial frequency and size.

It was accepted as a contributed paper at the 32nd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society ”Merging Medical Humanism and Technology” held from
August 31 to September 4 of 2010 in Buenos Aires and will be presented at that conference on September
2.

Stimulation Effects in SSVEP-Based BCIs 105



Effects of Stimulation Properties in Steady-State Visual Evoked
Potential Based Brain-Computer Interfaces

Jordi Bieger1,2 Gary Garcia-Molina1 Danhua Zhu1,3

Abstract— Brain-Computer Interfaces (BCIs) enable people
to control appliances without involving the normal output
pathways of peripheral nerves and muscles. A particularly
promising type of BCI is based on the Steady-State Visual
Evoked Potential (SSVEP). Users can select commands by
focusing on visual stimuli that alternate appearance with a
certain frequency. The properties of these stimuli, such as size
and color, as well as the device they are rendered on, can
significantly affect the performance, comfort and safety of the
system. However, the choice of stimulation properties is often
ad-hoc or copied. In this paper we report our findings about
the effects of rendering device, refresh rate, environmental
illumination, contrast, color, spatial frequency and size of
visual stimuli. In order to investigate these effects online,
a high-performance BCI was developed. User comfort was
measured using a questionnaire. The results suggest that high
contrast stimulation works the best, while also being the least
comfortable. However, maximum black/white contrast is often
not needed and other stimuli (e.g. blue/green stimulation) are
shown to work almost as well, while being far more comfortable.
Knowledge of these effects can help to improve SSVEP-based
BCIs.

I. INTRODUCTION

The steady state visual evoked potential (SSVEP) refers to
the response of the cerebral cortex to repetitive visual stimuli
(RVSi) oscillating at a constant frequency. The SSVEP man-
ifests as an oscillatory component in the electroencephalo-
gram (EEG) having the same frequency (and/or harmonics)
as the RVS [1]. Because of their proximity to the visual
cortex, the occipital sites exhibit a higher SSVEP response.

The SSVEP is an effective electrophysiological source that
can be used as input for brain-computer interfaces (BCIs).
An SSVEP-based presents the subject with a set of RVSi
that in general oscillate at different frequencies from each
other. The SSVEP corresponding to the RVS on which the
subject focuses their attention is more prominent and can be
detected in the ongoing EEG. Each RVS is associated with
an action which is executed by the BCI system when the
corresponding SSVEP is detected.

SSVEP-based BCIs offer two main advantages over BCIs
based on other electrophysiological sources (e.g. P300,
ERD/ERS): 1) they have higher information transfer rate, and
2) they require shorter calibration time. Unfortunately, the
constant flicker can induce visual fatigue and even epileptic
seizures in those that are susceptible.

The functional model of a BCI system is depicted in Fig. 1.
The visual stimulation plays a key role in the system and has

1. Philips Research, 5656 AE Eindhoven, The Netherlands
2. Radboud University, 6525 HR Nijmegen, The Netherlands
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Fig. 1: Functional model of an SSVEP-based BCI.

many different properties. A BCI’s performance is usually
determined by the information transfer rate (ITR), which
indicates how much information can be communicated in
one minute. Since these systems are often used for extended
periods of time, it is important to consider comfort and safety
as well. In order to improve BCIs, research has generally
focused on signal processing techniques [2], but these do not
affect comfort and safety. Stimulation properties, like color
and size of the stimulus, have received fairly little attention in
the context of brain-computer interfacing even though they
can have a great impact on the performance, comfort and
safety of BCI systems.

In this paper we present a study investigating the effects
on both comfort and performance of an SSVEP-based BCI
of stimulation device and its refresh rate, environmental
illumination, RVS contrast, color, spatial frequency and size.
Section II introduces the most relevant stimulation properties
and the conditions tested in our experiments. Section III
describes our BCI implementation and the protocol that was
used in our experiments. Section IV discusses each of the
tested properties and the results we found in our experiments.
The article is concluded in Section V.

II. STIMULATION PROPERTIES AND
EXPERIMENTAL CONDITIONS

When designing an SSVEP-based BCI several choices
need to be made about the properties of the RVSi that the
system will use to elicit an SSVEP response. In this section,
we introduce the RVS properties that are tested in this study
(see Fig. 2 for examples).

a) Stimulation device: An important factor that influ-
ences both comfort and performance is the device that ren-
ders the RVS. The two obvious candidates are lights/lamps
and computer monitors. Computer monitor stimulation has
the advantage that monitors are ubiquitous and can be easily
integrated in a computer-based system. In CRT monitors
there is a constant flicker at the refresh rate that may elicit an
unwanted SSVEP response [3]. LCD screens do not have this
problem but often have lower contrast and refresh rates. It has



been suggested that LEDs elicit stronger SSVEP responses
than computer monitors do [3].

Specialized hardware can be used to accurately control
lamps such as LEDs. This setup is less flexible and not as
readily available, but the advantage is that LEDs can often
be much brighter and can display frequencies accurately.

The differences between these devices are tested using
green LEDs and LCD and CRT monitors with green squares
of approximately the same size and brightness. This ensures
that the conditions are comparable.

b) Frequency: SSVEP-Based BCIs generally use fre-
quency as the discriminating characteristic for determining
which target RVS receives the user’s focus of attention.
Therefore, a system with N targets needs to use N different
frequencies that are sufficiently different, so that they can
be distinguished from each other in the signal processing
phase. The effects of frequency ranges on performance has
already been studied repeatedly and will not be a part of
our investigation. High frequencies are more comfortable and
safer than low frequencies, but elicit a smaller response and
may not be generated by some devices, specifically most
computer monitors [4].

Computer monitors have refresh rates that determine
which frequencies can be displayed accurately. A device with
a refresh rate R can accurately render the set of frequencies
R/k, where k is any integer larger than 2. Other frequencies
can only be approximately rendered. It has been shown that
using frequencies that the monitor can accurately render, can
greatly increase performance [5]. However, this research used
two different sets of frequencies for the tested conditions. In
order to exclude the specific frequencies as the source of the
difference, we took two sets of frequencies that were op-
timized for two different refresh rates: {18 3

4
, 15, 12 1

2
, 10 5

7
}

for 75 Hz and {15, 12, 10, 8 4

7
} for 60 Hz. We then tested

both sets with both refresh rates to evaluate the effect on
system performance.

To optimally evaluate the effects of other properties a
frequency selection procedure was used to determine the best
stimulation frequencies for each subject.

c) Environmental illumination: Illuminated environ-
ments are more natural and convenient, but in the dark
a bright stimulus can seem much more pronounced. The
notion of environmental illumination is closely related to the
contrast of the displayed RVSi (see the next paragraph). Pupil
dilations caused by a dark environment might cause the eye
to catch more of the stimuli’s light. Furthermore, external
light sources might also flicker a little, interfering with the
SSVEP response. All of these observations suggest that BCI
performance might be increased in dark environments [6].

d) Contrast: The contrast or “modulation depth” is de-
fined as (lmax−lmin)/(lmax+lmin)×100%, where lmin, lmax

are the minimum and maximum luminance, respectively. It
was shown that a higher contrast leads to stronger SSVEP
responses, especially for dark-on-bright stimuli [7]. It seems
intuitive however, that higher contrast also leads to lower
comfort. We investigated this aspect by using different shades
of gray in both the fore- and the background of our system.

(a) w/k (b) r-g/b (c) 6cm4x4 (d) 3cm2x2
Fig. 2: Examples of stimulation properties showing both states of a condition
and the background color. (a) white-on-black stimulation and (b) red/green
stimulation on a blue background. (c) and (d) checkerboard stimulation with
the same spatial frequency of 0.8 alternations/degree, but different sizes.

e) Color: It is well known that color can affect mood
as well as SSVEP response [1]. We tested combinations
of the primary colors red, green and blue. In the more
perceptually relevant color space that is described in terms
of hue, saturation and lightness, these colors only differ in
hue. However, device specificities might cause these values
to be inaccurate.

f) Spatial frequency: Checkerboards are often used as
an alternative to single graphic RVSi. Using checkerboards
elicits an SSVEP at twice the stimulating frequency. Some
studies have found that better brain responses are elicited this
way [8], while others have found the contrary [9]. The spatial
frequency is determined by the size and the number of cells
of the stimulus. We tested powers of two for the number of
cells in both dimensions as well as a checkerboard with cells
consisting of 4x4 pixels (54x54 cells).

g) Size: The larger the stimulus, the easier it is to
notice, but the harder it is to ignore. Stimulus size also affects
the amount of light transmitted to the user and determines
how large an application needs to be or how much surface
area remains for other purposes.

III. EXPERIMENTAL SETUP

Seven experiments were conducted where the subject had
to control a custom made BCI. We tested the effects of (1)
rendering device, (2) stimulation frequency vs. refresh rate,
(3) environmental illumination, (4) contrast, (5) color, (6)
spatial frequency and (7) size. Ten people participated (7
men and 3 women) in several experiments in such a way that
there were six different subjects for each experiment. The
participants were aged between 24 and 32 and had normal
or corrected to normal vision. They were seated comfortably
at approximately 70 cm distance from the stimulation device
and hooked up to the BioSemi ActiveTwo EEG acquisition
system [10]. Electrodes were placed in 32 positions accord-
ing to the international 10-20 system, but only 8 electrodes
over the occipital region (visual cortex) were re-referenced to
Cz and used by the system. Unless specified otherwise, the
experiments were carried out using an LCD with a refresh
rate of 75 Hz in a dark room and white flickering square
stimuli of 6x6 cm on a black background. Each condition or
experiment varied something about this default configuration.

Before the last four experiments the user was asked to
complete an empirically designed questionnaire where they
indicated how pleasant, tiring and annoying each condition
was and how long they could look at it on 7-point scales.
Their answers were averaged into one comfort score where
1 indicates low comfort and 7 indicates high comfort. The
questionnaire was conducted before the experiment in order



Fig. 3: The interface of the BCI used for experimentation. The user can
move the avatar to the goal by focusing on the white flickering targets
associated with the desired directions.

to minimize the effect that performance might have on the
answers. A 3 minute long frequency selection process was
conducted in order to select the frequencies that worked best
for each individual subject. For every condition, a 3 minute
long calibration phase preceded operation of the BCI.

The user had to move an avatar (red triangle) along a curvy
corridor to a goal (see Figure 3). There were no bifurcations,
so there was only one way to move through the corridor.

The user could move the avatar by focusing on the target
associated with the intended direction. When the system
classifies the resulting brain signals, the avatar turns towards
the signified direction and tries to move there. If the avatar
is blocked by a wall, it will not change position. Correct
moves are accompanied by a green screen flash and a high
pitched tone and bad moves by a red flash and a low pitched
tone. Each move was followed by a one second period of
inactivity in order to provide the user with enough time to
change his focus and for the SSVEP response to diminish.

For each condition there were two corridors of 24 steps.
The subject could attempt to finish each corridor in three
blocks of one minute separated by 20-second pauses, which
were given in order to prevent fatigue and frustration.

The system estimates the power in the EEG signal of
the frequencies (and harmonics) associated with the targets.
The signal is first preprocessed using a 50 Hz IIR notching
comb filter in order to remove the power line interference.
The power for a target is then calculated by applying a
maximum contrast spatial filter [11] for the first 4 harmonics
of the target frequency. The result for each harmonic is peak
filtered, squared and averaged over the last second. The sum
of the powers of the harmonics is then used for classification.
If the power for exactly one target exceeds the associated
threshold, the system moves the avatar in the correspond-
ing direction. After the calibration and frequency selection
phases, suitable spatial filters, thresholds and frequencies are
determined according to the procedure in [4].

IV. RESULTS AND DISCUSSION

BCI systems are usually evaluated in terms of informa-
tion transfer rate (ITR) or bitrate, which is measured in
bits/minute. This number can easily be calculated by dividing
the number of communicated bits by the duration of the task
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Fig. 4: ITRs for the stimulation devices, refresh rate optimization and
illumination environment experiments.

in minutes. In addition to the bitrate, we also consider the
comfort of the system on a 7-point scale ranging from low
to high comfort, based on the subjective observations of the
subjects before the experiments.

There was high inter subject variability in terms of overall
performance. Different users may also respond differently to
each of the conditions, but one pattern clearly emerges: more
pronounced changes between stimulus states result in both
better performance and lower comfort (Fig. 5). In addition to
leading to low performance, bright backgrounds were judged
as uncomfortable.

However, some compromises can be made to make the
system more comfortable without significantly sacrificing
performance. The tradeoff is visualized in Fig. 6. We have
defined four quadrants where the comfort and ITR axes
were (arbitrarily) divided at their middle point. The top right
quadrant corresponds to good comfort and high performance
(ITRs above 30 bits/min can be considered as high for
BCIs [4]). Using (light) gray, blue or green/blue stimulation
can give high average ITRs. Green/blue alternating squares
on a black background provide the best tradeoff between
comfort and performance.

We tested whether the stimulation device itself has any
effect on BCI performance. Results from the literature sug-
gesting that LEDs elicit stronger responses than LCDs and
CRTs were not confirmed and it was found that there was
virtually no difference (Fig. 4a). The results also show that
matching the chosen frequencies to the used refresh rate
improves performance (Fig. 4b). However, optimizing the
used frequencies for the user rather than the rendering device
may give even better results. A dark environment is shown
to be slightly more advantageous (Fig. 4c), confirming the
results from [6]. Although no questionnaire was conducted,
subjects did comment that they preferred the more natural
condition where the lights were on.

We found that contrast is indeed positively correlated with
performance, but only for bright-on-dark stimuli (Fig. 5a),
contrary to the results form [7]. Bright backgrounds were
also judged as uncomfortable.

Color can indeed have a big impact on both comfort and
performance (Fig. 5b). Again, bright (colored) backgrounds
do not seem like a viable option. Green stimuli appear to
work the best, which can be explained either by the fact that
the human eye is the most sensitive to that color, or that
green’s brightness is higher than that of red and blue. Alter-
nating green/blue stimulation seems to work exceptionally
well, suggesting that alternating between hues can indeed
give better results, especially given that the comfort level
of this stimulus was high. Alternating red/green stimulation
does not work nearly as well, but this can be explained by
Hering’s color opponency theory which states that red and
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Fig. 5: Performance (dark bars) and comfort (light bars) scores. The
conditions are listed in descending order of performance. Colors are referred
to by these letters: red, green, blue, black, white, and light, dark and neutral
gray. The label ‘r-g/k’ means that the stimulus was alternating between red
and green on a black background, ‘w/n’ means that a white stimulus was
popping out of a neutral gray background.

green (and yellow and blue) can cancel each other out.
Our results show that using higher spatial frequencies (and

thus smaller cells) can sometimes be beneficial (Fig. 5c).
However, the relationship with performance appears to be
nonlinear and strongly subject dependent. User comfort is
clearly positively related with the spatial frequency, which
is likely due to the smaller cell sizes. Using a spatial
frequency of 6.5 alternations/degree appears to provide the
best tradeoff. However, the performance is worse than that
achieved in most of the single graphic conditions. This
observation that single graphics outperform checkerboards
is confirmed by Fig. 5d.

The size of the stimulus seems to have a negative effect
on user comfort for both checkerboards and single graphics
(Fig. 5d). BCI performance was more positively impacted by
an increase in stimulus size. However, when the BCI used
the largest tested stimulus (9x9 cm; 7◦21′23′′), performance
was lower than when 6x6 cm (4◦54′29′′) were used.

The simplest explanation is that there is an optimal stim-
ulus size that makes up a relatively small area of the visual
field. A more likely explanation is that making the non-target
stimuli larger and closer to the one the subject was attending
to, had a detrimental effect on performance. This could be
either due to increased interference in the eye, or increased
difficulty to focus on the desired target. More experiments
have to be carried out to investigate the cause of this anomaly.

V. CONCLUSION

Both performance and comfort vary in a broad range
depending on the RVS properties. Our experiments show
that comfortable conditions usually lead to low performance
and that high performing conditions are often uncomfortable.
Few settings combine high performance with relatively good
comfort (top right quadrant in Fig. 6), but light gray, blue
and green-blue stimulation provide a good tradeoff.

It is important to balance comfort and performance, es-
pecially if the system is used for extended periods of time.

Fig. 6: Visualization of the results where each point depicts a condition and
its position shows its ITR and comfort. The edge of each point shows the
background color and the face shows the stimulus. If the stimulus alternated
between two colors, both are depicted as triangles. For the checkerboards,
a small checkerboard is shown where the contrast of the color is correlated
with the spatial frequency. Colored RVSi are labeled because this paper is
in black and white.

Our study shows that stimulation conditions exist that offer
better comfort at the cost of minor decrease in performance.

Additional properties that are worth investigating are spa-
tial and temporal blur, shape and general stimulus appear-
ance. Furthermore, interactions between properties may not
be linear, so different combinations need to be tested.
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B.3 Towards Error-Free Interaction
This paper is very closely related to Appendix A and addresses some issues with the implementation of
an EEG-based error-detection system in order to make human-machine interaction more error-free. The
system should be fast, cheap, adaptable, easy to use and robust. To that end, a simple algorithm for error
detection is discussed as well as a method for choosing only two electrode recording sites using a limited
number of calibration trials. This also gives some insight into how the mechanism of the error potential
works in the brain. Performance was measured using the area under the ROC curve (AUC) and was larger
than 0.89 for five subjects while one subject lagged behind at 0.75.

This paper was accepted as a contributed paper at the 32nd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society ”Merging Medical Humanism and Technology” held
from August 31 to September 4 of 2010 in Buenos Aires and will be presented at that conference on
September 4.
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Towards error-free interaction

Tsvetomira Tsoneva1 Jordi Bieger1,2 Gary Garcia-Molina1

Abstract— Human-machine interaction (HMI) relies on pat-
tern recognition algorithms that are not perfect. To improve
the performance and usability of these systems we can utilize
the neural mechanisms in the human brain dealing with error
awareness. This study aims at designing a practical error
detection algorithm using electroencephalogram signals that
can be integrated in an HMI system. Thus, real-time operation,
customization, and operation convenience are important. We
address these requirements in an experimental framework
simulating machine errors. Our results confirm the presence
of brain potentials related to processing of machine errors.
These are used to implement an error detection algorithm
emphasizing the differences in error processing on a per subject
basis. The proposed algorithm uses the individual best bipolar
combination of electrode sites and requires short calibration.
The single-trial error detection performance on six subjects,
characterized by the area under the ROC curve ranges from
0.75 to 0.98.

I. INTRODUCTION

Advanced human-machine interaction (HMI) relies on

pattern recognition algorithms, which are not error free. Ma-

chine errors reduce the overall performance of the system and

can be particularly annoying for the user. The human brain

has developed complex neural and cognitive mechanisms that

deals with error awareness. We can utilize these mechanisms

to improve the performance and the usability of HMI sys-

tems like brain-computer interfaces (BCIs). Different neuro-

physiological studies have shown the presence of error-

related responses in human electroencephalogram (EEG),

called error-related potentials (ErrP). ErrPs are associated

with the anterior cingulate cortex (ACC) [1], which is also

responsible for regulating emotional responses.

Different studies have shown the presence of ErrP emerg-

ing shortly after an error made by the subject [2]. Usually

they use a choice reaction task, which requires quick re-

sponse to a stimulus. This type of ErrP is also known as

error-related negativity (ERN) or response ErrP. Other studies

have reported a different type of ErrP during a reinforcement

learning task [3]. This type of ErrP appear after feedback

indicating an erroneous response from the subject; hence it

is known as feedback ErrP. Whereas these neural correlates

of error awareness are manifested after errors committed

by the subjects themselves, ErrPs are also present after

an observation of an error, for example committed by the

interface the subject is interacting with. These are known

as interaction ErrP. ErrPs of this kind have been observed

during simulated or actual brain-computer interaction [4][5].

1. Philips Research, HTC 34, 5656 AE Eindhoven, The Netherlands
2. Radboud University, 6525 HR Nijmegen, The Netherlands
Please direct all correspondence to: tsvetomira.tsoneva@philips.com

Our objective is to explore the brain mechanisms dealing

with awareness of erroneous responses and to design a

practical solution that can be integrated in any HMI system.

That is why a number of requirements should be satisfied.

Real-time operation is necessary prerequisite if we want to

integrate such a solution in already real-time HMIs. Thus, we

aim for computationally efficient signal processing and ro-

bust detection of erroneous responses. Individual specificities

should be considered as different users might have different

physiological responses. The solution must adapt to the user,

ideally after a short calibration procedure. Convenience is

also essential for a system working in a real-life environment,

thus, we want to use only few measurement sites.

In this paper we report our approach for machine error

detection following the above mentioned requirements. The

paper is organized as follows. We first introduce our exper-

imental setup in Section II. Then we report the results we

have obtained in Section III. We address certain points of

discussion in Section IV and conclude the paper in Section V.

II. EXPERIMENTAL SETUP

A. Participants

Six volunteers (3 females and 3 males) aged between 23

and 29, took part in the experiment. All participants were

healthy, right-handed and had normal or corrected-to-normal

vision. They signed an informed consent form before the

start of the experiment.

B. Task

To minimize the influence of external factors and to isolate

the response to errors made by the interface, we designed

a relatively trivial experimental paradigm in the form of a

game. The game was very simple, so that it was very unlikely

that the subjects would make an error. The goal of the game

was to move a square (the stimulus) horizontally from one

side of the screen to the other by a single key press. The

total length of the path was 14 squares, the last one being the

target. The subject was given up to 7 moves to successfully

complete the path. The stimulus could be moved with a

step of one or three squares. The subject had to develop

an efficient strategy in order to reach the target within the

given number of moves.

Figure 1 illustrates one trial in the experimental protocol.

At first the stimulus (a gray square) appears on screen. After

1700 ms a numerical and a visual indication of the suggested

step size and the expected next position are presented. The

step size can be either one or three (selected at random),

therefore the expected next position is either one or three

squares further from the current position of the stimulus. If



Fig. 1. A correct trial in the experiment protocol: 1) The stimulus (gray
square) appears on screen for 1700 ms. 2) A numerical and a visual (square
with dots) indication of the expected next position are presented for up to
2000 ms. 3) The expected position of the stimulus (the square with dots)
stays on screen for 1000 ms after a key is pressed. 4) The stimulus has
moved to the new position.

the subject likes the suggested step s/he is expected to press

a key. If a key is not pressed in the next 2000 ms a new

suggestion is given. After the key press, the visual indication

of the expected position stays on screen for another 1000 ms,

after which the stimulus moves to the new position. The new

position of the stimulus may be the expected one (correct

trial) or not (error trial). In an error trial the stimulus moves

either one or two squares back from the current position. In

order to finish the game, the last move should end exactly

on the target. In case of selecting a step bigger than the

remaining squares to the target, the stimulus jumps back to

the beginning of the path. The game continues until the target

is reached. The game is won if the subject reaches the target

within the given number of moves, and is lost otherwise.

C. Experimental procedure

The subjects were told that they would play about 30

games and they were instructed to try to win as many as

possible. All subjects played the game for about 30 minutes,

completing between 23 and 31 games (mean: 28 games).

There were two modes of the game: correct mode and error
mode. In the correct mode the system did not commit errors.

In the error mode, error moves appeared with a probability of

25%. The session started with two games in correct mode.

Then a correct mode game was played every 6 games to

reduce the effect of habituation. The rest of the games were

played in error mode. The mean number of trials per game

was 7, resulting in an average of 198 trials per subject. The

mean number of error trials per subject was 40, and the mean

number of correct trials was 158.

D. Signal acquisition

Continuous EEG from 32 scalp electrodes, digitized at

2048 Hz, was acquired using a BioSemi ActiveTwo sys-

tem [6]. The electrodes were positioned according to the

international 10/20 standard and were uniformly distributed

over the scalp (see the axes of Fig. 3 for the electrode

positions). The signals were subsampled to 256 Hz and then

bandpass filtered in the 0.5-25 Hz band using a Butterworth

filter. In order to minimize the effect of any background

neuronal activity in the area of interest and to emphasize

the differences in neural responses to error and correct trials

we performed an exhaustive search for the best bipolar

combination (BBC) of electrodes on a per subject basis. This

procedure is explained in detail in Section III-C.
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Fig. 2. Difference (bold line) between potentials for error (solid line) and
correct (dashed line) trials for all subjects (bipolar combination: Cz-Pz).
Gray areas show the statistical significance (p < 0.0002).

III. EXPERIMENTAL RESULTS

A. Error-related potentials

We first checked whether there were any differences in

the brain responses to error and correct trials. Fig. 2 shows

the brain potentials for error and correct trials as well as the

difference (error-minus-correct) for the bipolar combination

Cz-Pz. ErrPs are associated with the ACC located in the

fronto-central sites of the brain and the choice of Cz is com-

mon in the literature (see Section I). For five of our subjects

(S1, S2, S3, S4 and S6) a first positive peak is observable

around 150 ms after the stimulus movement, followed by a

negative peak around 200 ms and a positive peak around 300

ms. Finally, a broader negative peak occurs around 450 ms.

This ErrP shape is similar to previously reported results [5].

Subject S5 did not exhibit this response. In order to check

the significance of the difference between the responses to

error and correct trials we performed a paired t-test with

Bonferroni correction. The areas where the difference is

significant are shaded in gray in Fig. 2. As it can be seen,

the resulting error potentials differ between subjects, some of

them exhibiting higher amplitudes than others. Furthermore,

the statistical significance of the difference between error

and correct trials is highly variable, as it could be expected

from the low signal-to-noise ratio of EEG signals. If we

want to use ErrP to improve HMI, we need to be careful

as inappropriate adaptation of the interface could further

frustrate the user. Emphasizing the individual differences in

error processing could lead to a more robust solution.

To investigate the effect of frequency of error occurrence

on error processing we invited two of our participants for

a second experiment. We used the same experimental pro-

tocol but this time the probability of errors was 50%. The

ErrPs from the second experiment were very similar (almost

identical) to the ones from the first experiment, suggesting

that frequency of errors does not affect the observed neural

responses.



B. Error detection algorithm

Templates of the brain responses to erroneous and correct

outcomes (error template and correct template respectively)

for each subject can be obtained from a training set. In

this experiment the training set was composed of a random

selection of the recorded potentials. In practice the training

sets results from a calibration procedure. The templates

are one-second long averages, time-locked to the stimulus

movement. The templates are univariate signals, which result

from a bipolar EEG combination. To decide if a given trial

is erroneous, a score is calculated as follows.

s =
∑

i

(1 − pi)(|x(i) − τe(i)| − |x(i) − τc(i)|), (1)

where x is the brain response to the current trial, τe and

τc are the error and correct templates respectively, i is the

sample index, and pi is the significance level (determined

by a paired t-test) of the difference between the templates at

sample index i.

If the score is higher than a previously selected thresh-

old (e.g. zero), then the trial is considered erroneous. The

selection of the threshold depends on the application. Thus,

a balance between the true positive and false positive error

detection rates needs to be sought. A practical manner to

assess the threshold selection impact on the system consists

in drawing the ROC curve (see Fig. 5), which represents

the true positive versus the false positive error detection rate

for different threshold choices. The area under the ROC

curve (AUC) provides an indication of the error detection

performance.

C. Best bipolar combination

Given a set of M recorded EEG sites, M(M − 1)/2
possible bipolar combinations exist. An exhaustive search

for the BBC can be done by computing the average AUC

(over 50 random selections of train/test sets) for all possible

combinations. The result of this procedure is visualized in

the colormap of Fig. 3, where the gray level of a cell is

proportional to the AUC associated with the corresponding

bipolar combination. For convenience of visualization, the

AUC values of the diagonal elements has been artificially

set to 0.5 (random level). By definition the colormap is

symmetric with respect to the diagonal. Certain regions

in the map, especially the ones representing fronto-parietal

combinations, exhibit larger AUCs. Yet, these regions are not

common to all subjects.

To better visualize the individual differences and to fa-

cilitate physiological interpretation, we represent in Fig. 4

the bipolar combinations corresponding to the largest twenty

AUCs. The electrodes of each combination are connected

through a line whose thickness is proportional to its AUC.

For convenience of visualization the AUCs are quantized

into three levels. For all subjects but S3, we observe strong

connections between right and central sites. The electrode

site F8 is of particular relevance for subjects S1, S4, and S6.
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Fig. 5. ROC curves for the BBC of each subject.

The ROCs associated with the BBC for each subject are

depicted in Fig. 5. All subjects but S5 have average AUCs

above 0.89. The particularly low performance of subject S5

is expected given the lack of significant differences between

responses to error and correct trials presented in Fig. 2.

D. Training set size

The number of elements in the training set needs to be

sufficient to ensure a desired level of detection performance.

It is generally true that a larger training set will result in

better performance, yet we would like to limit the duration

of the calibration procedure. To determine the influence of

the training set size on performance, the following analysis

was conducted. For each subject, the set of responses to error

trials was randomly divided into a training and a testing set

of equal sizes, along with an equal number of responses to

correct trials. The detection algorithm was then run for the
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subject’s BBC with the first N elements (both erroneous and

correct) of the training set, for N ranging from 1 to the size

of the testing set for the particular subject. To estimate the

average level of performance, this process was repeated 100

times with different random choices for the elements in the

testing and training sets.

Fig. 6 shows how increasing the size of the training set

improves the detection performance. The figure indicates that

increasing the size of the training set beyond a certain size

(about 10 responses for error and correct trials) leads to

marginal gain in performance.

IV. DISCUSSION

The suggested approach is suitable for real-time operation.

This was tested in a demonstrator that used the paradigm

explained in Section II-B. The signals were recorded between

electrodes Fz and Cz (the BBC for the tested subject),

analyzed real-time and whenever an error was detected the

latest move was undone.

It is important to mention the time invariability of the

reported potentials. The ErrPs of the second experiment ex-

amining the influence of frequency of error occurrence were

very similar to the potentials from the original experiment,

although the actual recordings were taken a few weeks apart.

This was further confirmed by the fact that the real-time

demonstrator functions with more than three months old data.

One could argue that the suggested experimental frame-

work does not fully represent the spontaneity of machine

errors in real-life. However, we did not find an effect of

habituation when comparing the ErrP from the beginning

of the experiment with the ones from the end of the ex-

periment. Furthermore, considering the triviality of the task,

the motivation of the participants could be to complete the

whole session as fast as possible. So that, even if they do

not care about winning or loosing after a certain point, every

move backwards brings them a step further away from their

goal, hence increasing their frustration. A few participants

reported after the end of experiment that they found the task

particularly annoying.

The effect of frequency of error occurrence was already

addressed in the second experiment explained in Section III-

A. Although we do not exclude the possibility that the

element of surprise attendant to error trials might play a role

in the error processing, the observed potentials do not seem

to be due to the infrequency of the stimulus.

Hypothetically, the horizontal movement of the eyes could

cause the differences between responses to error and correct

trials. In that case one would expect the BBC to be defined

by inter-hemispheric fronto-polar sites [7]. Yet, our results

show involvement of right fronto-parietal sites, indicating

that the reported differences are not caused by horizontal

eye movement.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for automatic

detection of the neural correlates of error awareness in the

human brain with the goal of improving the performance

and usability of HMI systems. We have set a number of

requirements for a practical solution that can be easily inte-

grated in an existing HMI system. These requirements were

real-time operation, accounting for individual specificities,

and convenience of operation. Six subjects participated in an

experiment, in which machine errors were simulated. Our

results confirmed the presence of EEG potentials related

to processing of machine error. We have implemented an

error detection algorithm that achieves high error detection

performance given by AUCs ranging from 0.75 to 0.98.

The proposed solution sought the best individual bipolar

combination of electrodes that emphasizes the differences

in error processing. The impact of the training set size on

the detection performance was investigated and it appears

that only a few examples of brain responses to error and

correct trials are sufficient for high performance. The feasi-

bility of the proposed solution was tested using a real-time

demonstrator.

More research is needed to evaluate the time invariability

of the best bipolar combination for a given subject. In view of

standard positioning of the measurement sites it is necessary

to test for existence of a bipolar combination that guarantees

reasonably high error detection rates for all users. To achieve

this a larger group of subjects has to be involved.
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