
Bachelor thesis

SmarTee:
A neural network based navigational bot

December 23, 2011

Jascha Neutelings

Supervisor: Franc Grootjen
Radboud University Nijmegen

Department of Artificial Intelligence

JaschaNeutelings@student.ru.nl

mailto:JaschaNeutelings@student.ru.nl

Contents

Contents 2

Abstract 4

1 Introduction 5
1.1 Artificial neural networks . 5
1.2 Previous work . 7
1.3 Research question . 7

2 Methods 8
2.1 Platform . 8
2.2 Task . 8
2.3 JTee . 9

Plugin system . 9
The Module interface . 9
The API . 10

2.4 SmarTee . 11
Data collection module . 11
Machine learning and simulation module 11
Time trial module . 12

2.5 Classifier and pipeline implementation 12
Encog . 12
The classifier . 13
The preprocessor . 13
Feature extractors . 13
Output codec . 14
Training method . 15

2.6 Experimental setup . 16

3 Results 17
3.1 Subjective analysis . 17

4 Conclusion and discussion 18

References 20

A JTee Javadoc 21
A.1 Package nl.ru.ai.jtee . 22

Class AbstractModule . 22
Interface Character . 23
Interface CommandCallback . 25
Class CommandInUseException 25
Interface Console . 25
Interface Controls . 28
Enum Direction . 29
Interface Flag . 30
Class Game . 31
Interface Graphics . 33

2

Interface InputInterceptor . 34
Class InputInterceptorActiveException 34
Enum KeyStroke . 35
Interface LocalCharacter . 35
Interface LocalPlayer . 36
Interface Map . 36
Interface Module . 38
Interface Player . 40
Interface PlayerInput . 41
Enum PlayerState . 42
Interface PowerUp . 42
Enum PowerUpType . 43
Enum Projection . 43
Enum RenderStage . 43
Enum State . 44
Enum Team . 44
Enum Tile . 45
Interface Vector2D . 45
Interface View . 47
Enum Weapon . 48
Interface WeaponPowerUp . 48
Interface World . 49

A.2 Package nl.ru.ai.jtee.util . 52
Class AbstractCharacter . 52
Class AbstractMap . 52
Class AbstractWorld . 55
Class BasicVector2D . 57
Class Environment . 59
Class UnsupportedScriptingLanguageException 60

3

Abstract

Most modern computer controlled players in computer games are
controlled by static rule-based systems. Rule-based computer controlled
players often do not act in a natural human way. To overcome this prob-
lem I propose using an artificial neural network, trained on human player
input data, instead. This bachelor thesis assesses the performance of an
artificial neural network controlled player and its generalization capabil-
ities by performing real-time simulations and comparing the results to
human data.

4

1 Introduction

Most current computer games use static rule-based systems for computer con-
trolled players. It often happens that the programmer has overlooked a cer-
tain game situation while writing the AI code, causing the computer player
to behave poorly under these circumstances. Human players, being able to
relatively accurately derive the rules used by the computer player, can then
use these flaws to their advantage, making the game less challenging. To make
computer controlled players more challenging, they are often programmed to
excel at abilities which are trivial for a computer to perform, but cannot be
done as effective by humans because of physical restraints. These abilities in-
clude tasks requiring a high level of precision or near instantaneous reaction
times. The problem with this approach is that the computer controlled play-
ers look very artificial and are not much fun to play against. They excel at
tasks that are computationally trivial but physically impossible for humans to
achieve and they fail at tasks that are computationally complex but trivial for
humans to perform. A possible solution to this problem is to have computer
players learn from humans. Because human behavior cannot easily be defined
using a rule-based system, it might be more suitable to use an artificial neural
network (ANN) which is more flexible and – arguably – more closely mimics
the human way of thinking.

1.1 Artificial neural networks

An artificial neural network is a graph of interconnected nodes called neurons.
A special kind of ANN is the feedforward network. Feedforward networks
consist of multiple sequential layers of neurons whereby each neuron in a layer
is connected to every neuron in the next layer. The links between these neurons
are weighted, i.e. they have a numerical value attached to them, representing
the strength of the link. Typically these ANNs have a special input layer,
an output layer and any number of layers in between called hidden layers.
The neurons within the input layer or input neurons represent the inputs or
parameters of a function. The output neurons represent the function’s result
or output. In order to use a neural network to compute the result of a function,
the parameters of the function are encoded as the activation levels of the input
neurons. The activation is then propagated through the different layers of the
network. This propagation is achieved by computing the weighted sum of all
the neural activation levels in the previous layer using the weights from the
links between the two neurons. The resulting weighted sum is then used as the
input for the activation function which calculates the new activation level of
the neuron. This is done for all neurons in the network. Often, a special kind
of bias neuron is added to the network. This bias neuron is connected to all
the non-input neurons. It does not receive activation from other neurons, but
is usually fixed at an activation level of 1.0. This way it functions as a simple
means to translate the input of the activation function as the bias weight is
added to weighted sum. After the activation has been propagated to the output
layer, the output activations are decoded to form the result of the function.
However the true strength of a neural network is not so much in the ability to
behave like a function, but the fact that it can easily be used to approximate

5

Figure 1: A feedforward network.

Figure 2: Neural propagation.

an unknown function, when the inputs and outputs are known. To make this
possible, we have to use a supervised learning algorithm. The most commonly
used algorithm for training the network is backpropagation learning[3, 13, 12].
It uses gradient descent to converge to a local minimum in the error landscape.
It relies on the fact that the difference (delta) between the desired output and
the obtained output of the network can be used to adjust the weights. This
process of adjusting the weights starts at the links between the output nodes
and the second to last layer of nodes and then propagates backwards towards
the input layer. The links are updated according to the delta rule. The speed at
which the weights converge depends on the learning rate parameter. It is often
difficult to find the right learning rate for the problem at hand. To this end the
resilient propagation (RPROP) algorithm was created by Martin Riedmiller
and Heinrich Braun in 1992[10, 11]. It is similar to Manhattan update rule[11]
in that the amount by which a weight is updated is not determined by the
magnitute of the gradient and the learning rate. Both methods use

∆wij = −sign(∂E
∂wij

)∆ij

to calculate the weight change. The Manhatten update rule uses a constant
update value ∆ij whereas the RPROP update value depends on whether a

6

local minimum was passed during the last iteration.

∆(t)
ij =

η+ ∗ ∆(t−1)

ij if ∂E
∂wij

(t−1) ∗ ∂E
∂wij

(t)
> 0

η− ∗ ∆(t−1)
ij if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t)
< 0

∆(t−1)
ij if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t) = 0

where

 0 < η− < 1 < η+

t is the current iteration
t− 1 is the previous iteration

If a minimum was passed (sign(∂E
∂wij

) has changed between the last iteration
and the current iteration) the new update value for the neuron is the update
value of the previous iteration multiplied by η−, where 0 < η− < 1. The update
value is thus decreased. When the sign of the gradient remains the same, the
update value is increased by multiplying the previous update value with η+,
where η+ > 1. The RPROP algorithm is used for training the neural networks
in this thesis.

1.2 Previous work

Some work has been done on using neural networks to control computer players
in first person shooter games, most notably Quake II and Quake III. Exper-
iments were done where neural network operated bots were taught to move
through virtual worlds (maps) and aim for enemies [2]. Other research in-
volved using neural networks in situational weapon and item selection [14].
The results from both articles show very positive results. Another paper[5]
compared a number of classification/regression algorithms (ID3, Naive Bayes
and ANN) on various tasks (selecting move direction, face direction, whether to
jump and whether to accelerate). The results from this research show that the
ANN outperforms all other classification algoritms as long as the training set
is sufficiently large. It also shows that using the ensemble learning algorithm
boosting with ANNs achieves even better results.

1.3 Research question

This bachelor thesis addresses the following questions regarding the viability
of neural networks as a means of controlling a computer controlled player:

• Is it possible to train an artificial neural network to navigate a computer
controlled player (bot) in a virtual game world?

• If so, how well does the artificial neural network generalize to situations
outside of the training data?

In the next section I will discuss the setup of my research, including the
software used and the experimental setup. The results section contains the

7

results of the experiments and related observations. These results and further
research are discussed in the conclusion.

2 Methods

In this section I will describe the methods used. I will first describe the game
I have used as the basis for my research. This is followed by a description
of the concrete task that the bot has been trained on. The following subsec-
tions describe the tools I have created and used in order to create the bot
and have it interact with the game. The remainder of this section discusses
the configurations used for the networks driving the bot and the setup of the
experiments.

2.1 Platform

The platform I have used for the experiments is Teeworlds[1], a game created
by Magnus Auvinen. Teeworlds is a two-dimensional run and gun platform
multiplayer computer game in which the player competes with other players in
various game modes. The player controls a small ball-shaped character that
can walk, jump and wield various weapons. These game modes include capture
the flag, a (team) death match mode and an (unofficial) racing mode. Tees are
able to walk, jump and fire their weapon, using the mouse cursor to aim. They
can also use their grappling hook in order to reach areas that are unreachable
by just jumping. There are a variety of weapons that can be found throughout
the various maps (virtual worlds). These weapons are different in respect to
rate of fire, projectile movement and damage dealt to other tees. Maps are
built out of equally sized and fully aligned tiles (a grid). Each tile can either
be solid, empty/air or a special tile which kills a Tee on contact. Tees can
stand and walk on solid tiles and attach their grappling hooks to them, except
for a special type of solid tile that doesn’t allow hooking.

2.2 Task

I chose to limit my research to the capture the flag (CTF) game type. In CTF
there are two teams, with both teams having their own base and flag. Initially
the flags are at their respective bases. The goal is to go to the opponent base,
take their flag and return it to the player’s own base. Points are then given
to the scoring team and the flags are returned to base. Scoring this way is
only possible if the player’s own flag is at their base. Just like most other
game types in Teeworlds, players can use weapons to hinder their opponents.
However, unlike (Team) Death Match, shooting opponents is not the main goal
and very few points are awarded for “kills” compared to capturing a flag (1:100
ratio). CTF is an interesting game type because it allows for a lot a strategies.
Players can go straight for the opponent’s flag, ignoring any enemy players
they encounter on the way. Or they could stay at their base and protect their
own flag. When a player has the enemy flag, but the opponent has their flag
as well, the player could try to hunt down the enemy flag carrier or he could
go back to his own base and wait for a team member to get the flag back. The
player could even wait in the enemy base and take the enemy flag carrier by

8

surprise. These are just a few strategies that players can use. When the teams
get bigger, there are even more possibilities. However, for this research, the
task of the bot is limited to taking the flag at the enemy base and bringing the
flag to the allied base, without having to deal with opponents.

2.3 JTee

For the implementation of the bot the Java programming language was chosen.
This choice was made because of Java being a very flexible and operating sys-
tem independent platform. Teeworlds, however, is written in C and C++ and
used to have a rather messy codebase1. To this end JTee was created. JTee is
a framework I made to build a bridge between the Java environment and the
native Teeworlds code. In order to connect the Java interface with the game
code, the Java Native Interface (JNI) was used. JNI provides an Application
Programming Interface (API) for native programming languages to manipu-
late Java objects, classes and primitives. The JTee API contains classes that
correspond to a subset of the internal data structures and functionality. The
structure of these classes is rearranged to better suit the object-oriented pro-
gramming paradigm and to provide a more conceptual hierarchical structure
than the actual internal data structures.

Plugin system
In order to access these APIs, JTee provides a plugin system. A plugin or
module is a set of archived classes with one special main class as its entry
point. This main class differs from the traditional main class in Java as it does
not provide a static main method. Instead, the main class or module class has
to be an instantiable class, either through a no-argument public constructor or
a static factory method. It also has to implement the Module interface. This
interface provides callback methods that are invoked when the module is loaded
and certain events in the game occur. In order to create a loadable module,
the module class and all auxiliary classes are put into a JTee Module(.jtm) file.
A jtm file is a special kind of jar file in that its manifest file contains a few
special entries that tell the module loader how to load the module and some
additional information about the module. The module can be loaded using the
game’s command line interface or a Teeworlds command file.

The Module interface
The Module interface is used as the module’s entry point. It also contains the
most important callbacks.
public interface Module {

void init ();
void destroy ();
void render (Graphics graphics , RenderPoint renderPoint);
void update (World world);
void stateChanged (State oldState , State newState);

1The version I used is 0.5.2; the current version at the time of writing is 0.6.1 and had
its complete codebase refactored.

9

void processInput (PlayerInput playerInput);
}

• When the module is loaded, the init method is called. This allows the
module to register additional callbacks and do proper initialization.

• destroy is called when the module is unloaded. Can be used to perform
clean-up code. All callbacks used by the module must be unregistered
during this method call.

• The stateChanged method is called whenever the global state of the game
changes. This global state is primarily used to determine whether a game
is active.

• The render method is called multiple times when a frame is being drawn.
Each invocation corresponds to a different point in the drawing phase.
This allows drawing in between the game layers.

• The update method is called whenever the game world changes. This
callback should be used to extract information about the world and to
act upon the world.

• processInput is called whenever new input from the player is received.

The API
The Game class serves as the central access point for all API components.
public abstract class Game {

public static Console getConsole ();
public static World getWorld ();
public static Controls getControls ();
public static State getState ();
public static View getView ();

public static boolean isRunning ();
}

• The Console API provides access to all console/command line related
functionality, including:

– Registering console commands and callbacks.
– Outputting text to console.
– Capturing raw console input.
– Executing console commands.

• The World API provides read-only access to the world state. The entire
world object can be serialized. The world object is not available when
there is no active game running. The world state consist of the following
parts:

– Player and character info for every player, e.g. the player’s name,
id, team and coordinates.

10

– The map.
– Power-up locations.
– Flag locations.

• The Controls API is used to act upon the game. It contains methods for
moving the Tee around.

• The getState method retrieves the current global state.

• Finally, the View API provides methods to retrieve the camera position
and viewport width and height.

In addition to the main API, there are also a few utility classes that can
be used. These classes include among others a basic implementation of a 2D
vector and an API providing scripting access.

2.4 SmarTee

SmarTee is a collection of modules for use with the JTee framework I made.
There are three modules:
smartee-dc is used for data collection.
smartee-cf is used for machine learning and simulation.
smartee-tt is used for running (simulated) time trials.

Data collection module
The data collection module can record raw game data obtained through the
JTee framework to a file. The data is serialized using the Java Serialization API
and its default protocol. The data contains the entire world state excluding
the map (which in only included once and then back-referenced) for every
frame recorded. It also includes a continuity flag for every frame to indicate
whether the data is continuous at that point. Incontinuous data may result
from switching servers, maps or from pausing the game.

Machine learning and simulation module
The machine learning module is used for training and testing a classifier and
also for running simulations with a classifier. A classifier tries to predict the
next action the bot should take, based on the a set of features extracted from
a previous world state. This world state is from about 200ms before the next
action. This is done to simulate the trainer’s reaction time. The classifier
takes an input vector of real numbers and also outputs a real vector. This
vector is then decoded by an output codec. The output codec is also used to
encode target vectors for use with training. The training pipeline is a modular
pipeline in which every component can be replaced. The module only contains
the interfaces used to build a pipeline; it contains no implementation of these
interfaces. Following are the components that make up the training pipeline.

1. The preprocessor. Used to fix/filter out incorrect data, balance the types
of inputs, etc. Its input and output are raw game data.

11

Figure 3: The training pipeline.

2. The feature extractor. Used to retrieve interesting data to be used as
inputs for the classifier. It extracts a vector of real numbers from raw
samples.

3. The output codec/encoder. Encodes raw player input into a real target
vector.

4. The training component. Takes a classifier, a set of normalized features
and encoded target outputs and trains the classifier on this data.

Time trial module
The time trial module is used to run a series of capture the flag simulations
and record the time it takes for a bot or human to capture an enemy flag.

2.5 Classifier and pipeline implementation

The implementation of the classifier and the pipeline makes use of the Encog
framework for Java.

Encog
Encog[6, 7] is an artificial intelligence framework that is primarily aimed at
providing fairly complete neural networks functionality2. Encog provides vari-
ous neural network models including feedforward networks, recurrent networks
such as Elman[4] and Jordan[9] networks and self organizing maps. In order to
train these models Encog has a number of training methods. The supervised
learning methods of Encog include propagation strategies such as back propa-
gation, resilient propagation and manhattan update rule propagation, but also
simulated annealing and genetic algorithm learning. Encog allows the user to
use multiple training methods at once. For example, you can use back prop-
agation as the main training method and have Encog automatically switch to
simulated annealing when the error improvement becomes too small. This can
be used to overcome local minima. It also supports multi-threaded learning for
some of the learning strategies. This can greatly increase the speed at which
networks are trained if used on a multi-processor architecture, like a modern
multi-core CPU. Recent versions even have experimental GPU (Graphics Pro-
cessing Unit) support. This means that the computer’s graphics card can be
used to do part or all of the training. The GPU allows many more threads
to run at once, however, the interaction between different threads has to be
kept to a minimum. Therefore, in order to use the GPU for training a network
a different kind of algorithm is required. Because of the difficulty of creating

2The new version of Encog (v3.0; not used in this research) supports a more generalized
machine learning framework.

12

a parallel training algorithm with minimal thread interaction, I found that
the current implementation did not actually improve training speeds on my
machine when using the GPU.

The classifier
For the classifier I created a wrapper around the feedforward network and the
Elman and Jordan recurrent networks from Encog.

The preprocessor
The preprocessor I used is pretty simple. The raw data sets often contain
some bad data. The jump input state is not actually the moment at which
the Tee jumps, but whether or not the player is pressing down the jump key.
After a Tee has used his jump and double jump and has not yet landed on the
floor, an additional jump key press does not actually do anything in the game.
Also, when a player presses the jump key at a legitimate jumping moment, he
will still probably hold the key down longer than just one frame. Therefore
the preprocessor changes the jump input state to only be active when the
character did actually jump and only for the first frame of the jump. The same
problem occurs when the Tee is right next to a wall and the player presses the
movement key into the direction of the wall. This input has no actual effect
on the game and therefore the sample is simply removed. All samples in which
there is no movement input at all are also removed. This is because if there
is no change in the world at all, not even a change in the location of the Tee,
some combinations of features and stateless networks may cause the Tee to just
stand still forever. Finally, it can balance sample diversity by inserting copies
of samples that are rare.

Feature extractors
Multiple feature extractors were tested, but about a handful were picked in
the final implementation. Although the framework supports only one feature
extractor, building a composite feature extractor that combines outputs from
multiple feature extractors was a trivial task.

The first feature extractor uses a small grid around the Tee and determines
for every cell in the grid whether the terrain in the cell is completely solid or
partially/fully empty. Terrain is considered solid when it is impassible. It does
not take into account other players. Solid cells are encoded as 1.0 and empty
cells as 0.0.

The second feature extractor is a radial sensor that determines the distance
from the Tee to the surrounding walls. It sends rays from the centre of the
Tee into multiple directions. Rays are stopped by terrain and a certain maxi-
mum distance. The outputs are the distances for the various angles up to the
maximum distance, scaled down to [0.0, 1.0].

The third feature extractor extracts a vector representing the distance be-
tween the player and a flag.

The final feature extactor uses A* search to find an approximate path from
the player to a flag. It uses the game’s map grid as its search space. The states
are the 32x32 pixel cells. The search algorithm does not prohibit physically

13

Figure 4: Visualisation of the grid.

Figure 5: Visualisation of the radial sensor.

unreachable states, such as ledges unreachable by jumping; it simply interprets
the map as two-dimensional grid, where you can move from one cell to a verti-
cally or horizontally adjacent non-solid cell. A special cost function is used to
determine a path that consists mostly of long straight lines.

Output codec
The output codec is responsible for encoding and decoding outputs from the
network. The following information can be encoded and decoded by the codec:

• The direction in which the player wants the Tee to move. Encoded as

14

Figure 6: Path segment visualisation.

1.0 (left) and −1.0 (right). The case in which the player is not trying to
move the Tee at all is undefined. However this case is filtered out by the
preprocessor.

• The angle in which the player is looking. The angle is quantized and
encoded as set of binary values (−1.0 and 1.0) of which only one value is
1.0.

• Whether the player pressed the jump key. It is encoded as a binary value:
−1.0 for false and 1.0 for true.

• Whether the player is trying to shoot the gun. It is encoded as a binary
value: −1.0 for false and 1.0 for true.

• Whether the player is trying to shoot the grappling hook. It is encoded
as a binary value: −1.0 for false and 1.0 for true.

The output codec is also used to calculate the similarity between two player
inputs. Each component of the five components described above are matched.
For every component that matched exactly, one point is awarded. Conse-
quently, the maximum number of points is five, the number of components.

Training method
Various training methods were tested, but the resilient propagation algorithm
was ultimately chosen. The parameters are kept at their default values, an
initial delta of 0.1 and a maximum delta of 50.0.

15

2.6 Experimental setup

Three different network configurations were tested and compared. The only
parameter I varied was the type of the network, i.e. Jordan, Elman or feedfor-
ward. The feature set was kept the same during the different experiments. It
consisted of the following components:

• A grid extractor using a 5x5 detector grid with the outer cells being
48x48 and the middle cells being adjusted to the dimensions of the Tee
(28 pixels in both dimensions).

• The radial sensor using 8 beams with maximum length of 1024 pixels and
a precision of one pixel.

• Two flag distance extractors; one for each flag.

• Two flag path extractors; one for each flag, using only the first two
straight lines of the path as an input vector for the network. The first
component is always a horizontal line. If the path happens to start with
a vertical line, only the vertical component is encoded and horizontal
component is set to 0.0.

I used the preprocessor described earlier, but without making use of the
sample balancing, because there was no significant improvement when using it.
The output codec above is used, but is slightly simplified. The hook and shoot
states are not used and neither is the angle (as it is only used for shooting and
using the grappling hook). The similarity calculation is changed accordingly.

The raw training data set consists of 6789 samples recorded in one session.
It contains data of me controlling the Tee to run up to the enemy flag, take it
and return it to the allied base/flag. During the recording I did not shoot or
use the grappling hook. Shooting is simply not part of the task of capturing
the flag and hooking would greatly increase the difficulty of the task for the
bot. Therefore a custom-made simplified map was used, on which the flags can
be reached by just walking and jumping. The fully processed training data set
contains 4587 samples.

Figure 7: The map.

16

The test data set is made up out of 10777 raw samples recorded during a
different session than the training data. However, the same map is used and
the same movement restrictions apply. The processed test data set contains
7347 samples.

The networks were trained with the resilient propagation algorithm as de-
scribed earlier. The parameters were kept at default values and the networks
were trained for 250 iterations on the training data set. The final error as well
as the performance (as calculated by the output codec) were recorded. These
values were also recorded for the test data set. Finally 25 time trials were run
and the times (in milliseconds) to complete the full task of taking the enemy
flag and returning it to base were recorded. Whenever a trial took longer than
30 seconds it was assumed that the Tee got stuck and the trial was considered
a failure. The 25 time trials were also run by a me to get a human reference
time.

3 Results

It turned out that the simulation performance was largely determined by the
inital weights of the networks. Many of the trained networks failed every single
simulation by getting the Tee stuck at a single point even though the training
data set and test data set scores were decently high: ≥ 96% for the training
data set and ≥ 92% for the test data set. This would mean I would have
no simulation data to compare. In order to overcome this problem, all of the
networks were trained from scratch 10 times and only the networks with the
best simulation time means were picked.

Figure 8: Test results.

Feedforward Elman Jordan Human
Errortrain 0.0317 0.1303 0.1380 -
Performancetrain 0.9900 0.9654 0.9569 -
Errortest 0.2016 0.2502 0.2342 -
Performancetest 0.9444 0.9313 0.9302 -
N 25 25 25 25
Meansimtime 11571 13656 13180 11944
Std.dev.simtime 88.891 1954.1 1217.4 1120.2

All of the simulation runs for the selected configurations succeeded. The
simulation time difference between the three network configurations is signif-
icant (p < 0.05). The feedforward network has the best simulation perfor-
mance (11.6 seconds) followed by the Jordan network (13.2 seconds) quickly
followed by the Elman network (13.7 seconds). The difference in simulation
time between the human player and the feedforward network is not significant
(p > 0.05).

3.1 Subjective analysis

From watching the real-time simulations I can conclude that all of the networks
perform reasonably well, with the feedforward network almost perfectly exe-

17

cuting the shortest route every single time. The Elman and Jordan networks
sometimes fail to make the Tee jump onto a ledge and the Tee will just fall
down again. After a couple of jumps the recurrent networks succeed in getting
the Tee to reach its goal.

In order to see if the networks are able to generalize I tried to interfere with
the Tee as would happen in any real scenario. I used a player controlled Tee
to harass the AI controlled Tee by dragging it into different areas. As long as
these areas were part of the training data set, the Tee would get back on track
and finish what it was doing. However, as soon as the Tee was dragged into
areas it was not trained on, it was very likely that the Tee would get stuck.
This is especially true for the feedforward network. The other networks are
slightly more flexible in this situation as long their memory had not faded. I
also tested the networks on maps they were not trained for. The first problem
that occurred was the A* algorithm used in one of the feature extractors not
being able to deal with medium to large sized maps; therefore I were limited
to fairly small maps. I tested on one trivial map, consisting of a flat area with
a flag on either side and a map that only slightly differed from the original
training. The Tee failed to even reach the enemy flag on the trivial map and
performed reasonably on the altered map. The difference between the networks
was neglible. From the fact that the networks perform badly in untrained areas
of the training map and on a different map, I can safely say that the networks
do not generalize well.

4 Conclusion and discussion

From the results I can conclude that all network types do a fairly good job
at performing the navigation task in a CTF game. The feedforward network
turned out to be the best from these tests. However, the simple recurrent
networks are strictly more powerful models and should be able to learn to
perform at least as well as the feedforward network given the right training
method and sufficient training time. I tried to use various different parameters
for the resilient propagation algorithm and the number of training iterations
to see if I could improve the performance of recurrent networks but to no
avail. I can only assume that I did not pick the right parameter values or
that resilient propagation in its default form might not be suited for training
recurrent networks at all. Due to time limitations I did not try any alternative
training algorithms for the tests.

The generalization capabilities of the neural networks are quite bad. The
networks fail to generalize accross game maps and even fail to generalize to
untrained areas within the same map. This is definitely not a wanted feature,
but there is a reason to why this happens. In order for the network to succes-
fully execute its task, it has to perform near perfect. Whenever the network
makes a wrong decision (generates a wrong output) along the route, it might
move back into a previous state and enter a loop. This is especially true for
the feedforward network as it lacks an internal state. In order to avoid these
loops I had to overfit the network on the training data, which leads to bad
generalization. The better solution would have been to pick a better (and thus
smaller) feature set. However, selecting features for such a non-trivial task,
without shifting all the work from the network to “smart” feature extractors

18

(effectively creating a rule based system), is a very time-consuming task.
We can now answer the two research questions stated at the beginning of

this thesis:

• Is it possible to train an artificial neural network to navigate a computer
controlled player in a virtual game world?

– Yes, it is possible to train an artifical neural network to navigate a
computer controlled player (tee) sufficiently well in a virtual game
world (Teeworlds).

• If so, how well does the artificial neural network generalize to situations
outside of the training data?

– The generalization capabilities of the artifical neural network are
poor.

Further research could be done to find out how well a bot can be trained on
more realistic tasks. Adding other players, the use of weapons and the grappling
to the task might yield more interesting information as this thesis only focused
on the navigational aspects of this game’s genre.

Other research could be done on how to train the two simple recurrent net-
works properly and see how well they perform when properly trained. Because
the memory of Elman and Jordan recurrent networks fades rather quickly, it
might be interesting to see if network types with a longer memory span, such as
a LSTM network[8], would perform better. Alternatively, finding a way to pre-
vent the networks from getting the bot stuck by using an external mechanism
(outside of the network) might also be useful.

19

References

[1] M. Auvinen. Teeworlds. Website: http://www.teeworlds.com.

[2] C. Bauckhage, C. Thurau, and G. Sagerer. Learning Human-like Opponent
Behavior for Interactive Computer Games, volume 2781 of Lecturenotes
in Computer Science, pages 148–155. Springer Berlin / Heidelberg, 2003.

[3] A.E. Bryson and Y.C. Ho. Applied optimal control. American Institute of
Aeronautics and Astronautics, 1979.

[4] J.L. Elman. Finding structure in time* 1. Cognitive science, 14(2):179–
211, 1990.

[5] B. Geisler. An empirical study of machine learning algorithms applied to
modeling player behavior in a Şfirst person shooterŤ video game. Master’s
thesis, University of Wisconsin - Madison, 2002.

[6] J. Heaton. Encog. Website: http://www.heatonresearch.com/encog.

[7] J. Heaton. Programming neural networks with encog 2 in Java. Heaton
Research, Inc., 2010.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[9] M.I. Jordan. Serial order: A parallel distributed processing approach.
Advances in Psychology, 121:471–495, 1997.

[10] M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In Neural Networks, 1993.,
IEEE International Conference on, pages 586–591. IEEE, 1993.

[11] M. Riedmiller and H. Braun. Rprop-description and implementation de-
tails. Technical report, Citeseer, 1994.

[12] D.E. Rumelhart, G.E. Hintont, and R.J. Williams. Learning representa-
tions by back-propagating errors. Nature, 323(6088):533–536, 1986.

[13] P. Werbos. Beyond regression: New tools for prediction and analysis in
the behavioral sciences. PhD thesis, Hardvard University, 1974.

[14] J. Westra. Evolutionary neural networks applied in first person shooters.
Master’s thesis, University Utrecht, 2007.

20

http://www.teeworlds.com
http://www.heatonresearch.com/encog

A JTee Javadoc

This section contains the javadoc documentation of the Java code for the
JTee framework. The documentation was converted to LATEX using a cus-
tom doclet I created specifically for this thesis. If you want the binaries
or source for JTee, SmarTee or HiTeX doclet, you can send a request to
JaschaNeutelings@student.ru.nl.

21

mailto:JaschaNeutelings@student.ru.nl

A.1 Package nl.ru.ai.jtee

Class AbstractModule

public abstract class AbstractModule
implements Module

Abstract base class providing an empty implementation of Module.

Plug-in modules can be derived from this class.

public AbstractModule()

public void destroy()

Description copied from interface: Module
Perform finalization code.

This method is called when the module is unloaded.
Specified by:

destroy in interface Module.

public void init()

Description copied from interface: Module
Perform initialization code of the module.

This method is called when the module is loaded.
Specified by:

init in interface Module.

public void processInput(PlayerInput playerInput)

Description copied from interface: Module
Process player input.

This method is called whenever new input is received from the player.
Specified by:

processInput in interface Module.
Parameters:

playerInput the input received from the player.

22

public void render(Graphics graphics, RenderStage renderStage)

Description copied from interface: Module
Perform drawing operations.

This method is called multiple times during the drawing phase of a frame at
different rendering stages.
Specified by:

render in interface Module.
Parameters:

graphics the Graphics object used for drawing.
renderStage the rendering stage for the current frame.

public void stateChanged(State oldState, State newState)

Description copied from interface: Module
Receive notification when the global state changes.

This method is called every time the global state changes.
Specified by:

stateChanged in interface Module.
Parameters:

oldState the previous global state.
newState the current global state.

public void update(World world)

Description copied from interface: Module
Receive notification when the world updates.

This method may be used to update the state of the Module and to act upon
the World.
Specified by:

update in interface Module.
Parameters:

world the World object containing all the information
about the current state of the game world.

Interface Character

public interface Character

Class representing a Tee.

23

public double getAngle()

Return the angle the Tee is facing in radians.
Returns:

the angle in radians.

public int getHeight()

Return the height of the Tee in pixels.
Returns:

the height of the Tee.

public Vector2D getPosition()

Return the position of the Tee in the world.
Returns:

the position of the Tee.

public PlayerState getState()

Return the state of the player.
Returns:

the state of the player.

public Vector2D getVelocity()

Return the velocity at which the Tee is moving.
Returns:

the velocity vector.

public Weapon getWeapon()

Return the type of the weapon the Tee is currently holding.
Returns:

the weapon type.

24

public int getWidth()

Return the width of the Tee in pixels.
Returns:

the width of the Tee.

Interface CommandCallback

public interface CommandCallback

Interface used for processing console commands.

public void execute(String command, String[] params, KeyStroke
stroke)

Receive notification when the command associated with this CommandCallback
object is invoked.
Parameters:

command the command entered.
params the parameters following the command.
stroke the keystroke (null for non-stroked commands).

Class CommandInUseException

public class CommandInUseException
extends RuntimeException

Thrown to indicate that the command to be registered is already in use.

public CommandInUseException(String msg)

Interface Console

public interface Console

Interface representing the in-game console.

An object implementing this interface can be accessed through Game.getConsole()
when the game is running.

25

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public void executeCommand(String commandLine)

Execute a console command given the command line.

Equivalent to calling executeCommand(commandLine, null).
Parameters:

commandLine the command line to execute.

public void executeCommand(String commandLine, KeyStroke stroke)

Execute a console command given the command line and the key stroke.
Parameters:

commandLine the command line to execute.
stroke the keystroke; can be null.

public void executeCommand(String command, Object... params)

Execute a console command given the name of the command and a number of
parameters.

The parameters are converted to strings using Object.toString().

Equivalent to calling executeCommand(String) with a concatenation of the
command name and the string representations separated by spaces.
Parameters:

command the name of the command.
params zero or more parameters.

public PrintWriter getDebugWriter()

Return a PrintWriter that sends the output to the debug loggers.
Returns:

a debug PrintWriter

public PrintWriter getWriter()

Return a PrintWriter that sends the output to the console.
Returns:

a console PrintWriter

26

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()
http://download.oracle.com/javase/6/docs/api/java/io/PrintWriter.html
http://download.oracle.com/javase/6/docs/api/java/io/PrintWriter.html

public void logDebugMessage(Object msg)

Log a debug message.

Equivalent to calling logDebugMessage(null, msg).

Parameters:
msg the message.

public void logDebugMessage(String subsystem, Object msg)

Log a debug message.

Message will be send to internally registered debug loggers.

The msg argument is converted to a string using Object.toString().

Parameters:
subsystem the subsystem where the message originated.

msg the message.

public void printMessage(Object msg)

Print a message to the console.

The msg argument is converted to a string using Object.toString().

Parameters:
msg the message.

public void printStackTrace(Throwable e)

Sends the stack trace to the debug loggers.

Equivalent to calling e.printStackTrace(this. getDebugWriter()).

Parameters:
e the exception object.

public void registerCommand(String command, String params,
CommandCallback callback, String help) throws
CommandInUseException

Register a console command with the console command dispatcher.

The params parameter takes a signature describing how many and what types
of parameters this command accepts. The signature is a string describing what
type of parameter is allowed at each position. The types are:

27

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()
http://download.oracle.com/javase/6/docs/api/java/lang/Throwable.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

• ’s’ - a string
• ’i’ - an integer
• ’f’ - a float
• ’r’ - the rest of the line as a string

Each of these characters can be suffixed with a question mark (’?’) to indicate
that the parameter is optional. For example, the string "sf?r" represents a com-
mand taking a string, an optional float and the rest of the line as parameters.
Parameters:

command the name of the command
params the parameter signature

callback the object whose execute
method will be invoked.

help a string describing how to use
the command or null.

Throws:
CommandInUseException if a command by that name is

already in use.

public void registerInputInterceptor(InputInterceptor
interceptor, String statusText) throws
InputInterceptorActiveException

Register a callback object to intercept any input sent to the console.

Only one can be active at a time.
Parameters:

interceptor the callback ob-
ject implementing
InputInterceptor.

statusText the text to be dis-
played in the auto-
complete label.

Throws:
InputInterceptorActiveException if an input intercep-

tor is already active.

public void unregisterInputInterceptor()

Unregister the current console input interceptor.

Interface Controls

public interface Controls

28

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Interface providing access to the in-game controls.

An object implementing this interface can be accessed through Game.getControls()
when the game is running.

public void fire()

Make the Tee fire its weapon.

public void jump()

Make the Tee jump.

public void moveLeft()

Make the Tee walk to the left.

public void moveRight()

Make the Tee walk to the right.

public void setTargetPosition(Vector2D position)

Change the position of the crosshair.
Parameters:

position the new position of the crosshair in game coor-
dinates.

public void stopMoving()

Stop the movement of the Tee.

Enum Direction

public final enum Direction
extends Enum<Direction>

Enumeration of the possible walking directions of a Tee.

LEFT To the left.

29

http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html

NONE No direction/standing still.
RIGHT To the right.

public Direction opposite()

Return the direction opposite to the direction of this object.

The opposite direction of NONE is NONE.
Returns:

the opposite direction

public static Direction valueOf(String name)

public static Direction[] values()

Interface Flag

public interface Flag

Class representing a flag in CTF games.

public Player getCarrier()

Return the player that is carrying this flag.
Returns:

the flag’s carrier or null if none.

public Vector2D getPosition()

Return the flag’s position.
Returns:

the position.

public Team getTeam()

Return the team to which the flag belongs.
Returns:

the flag’s team.

30

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public boolean isAtBase()

Return whether the flag is at its base.
Returns:

true if flag is at base; false otherwise.

Class Game

public abstract class Game

The main API entry-point.

Provides access to all subsystems using static getters.

public Game()

public static Console getConsole()

Return the console subsystem.
Returns:

the console object.

public static Controls getControls()

Return the controls subsystem.

Only available if getState() == State.ONLINE.

Returns:
the controls object or null.

public static Module getModule(String name)

Return a loaded Module object by name.
Parameters:

name the name of the module.
Returns:

the module or null if no module by that name is
loaded.

31

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public static String getResourcePath(String fileName)

Return the absolute path for the given resource file.

Return null if the file could not be found.
Parameters:

fileName the relative file name.
Returns:

the absolute path to fileName or null.

public static State getState()

Return the current global state.
Returns:

the global state.

public static String getStoragePath(String fileName)

Return a absolute path for storing the given file.
Parameters:

fileName the relative file name.
Returns:

the absolute path to fileName.

public static View getView()

Return the view subsystem.

Only available if getState() == State.ONLINE.

Returns:
the view object or null.

public static World getWorld()

Return the world subsystem.

Only available if getState() == State.ONLINE.

Returns:
the world object or null.

32

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public static boolean isRunning()

Return whether the game is running.
Returns:

true if the game is running; false otherwise.

Interface Graphics

public interface Graphics

Interface providing access to the in-game graphic through OpenGL (JOGL).

public GL drawBegin()

Prepare the graphics subsystem for drawing and return a non-debug GL object.

Equivalent to calling drawBegin(false).

Returns:
the GL object.

public GL drawBegin(boolean debug)

Prepare the graphics subsystem for drawing and return a GL object.

If the debug argument is true, a debug GL object will be returned that will
throw exceptions when something goes wrong. The non-debug GL object does
not throw exceptions and the error state has to be checked manually.
Parameters:

debug whether to use a debug or non-debug version of the
GL object.

Returns:
the GL object.

public void drawEnd()

Close access to the graphics subsystem.

This method has to be called after drawBegin before drawBegin can be called
again.

33

public void setProjection(Projection projection)

Change the orthographic projection.

Equivalent to calling setProjection(projection, -1.0d, 1.0d).

Parameters:
projection the projection constant.

public void setProjection(Projection projection, double near,
double far)

Change the orthographic projection.
Parameters:

projection the projection constant.
near the distance to the nearer depth clipping plane
far the distance to the farther depth clipping

plane

Interface InputInterceptor

public interface InputInterceptor

Interface used for intercepting console input.

public void inputReceived(String input)

Receive notification when new console input is received.
Parameters:

input a line of input.

Class InputInterceptorActiveException

public class InputInterceptorActiveException
extends Exception

Thrown to indicate that another InputInterceptor is already active.

public InputInterceptorActiveException(String arg0)

34

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Exception.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Enum KeyStroke

public final enum KeyStroke
extends Enum<KeyStroke>

Enumeration representing the keystroke states.

PRESS The key is down.
RELEASE The key is up.

public static KeyStroke valueOf(String name)

public static KeyStroke[] values()

Interface LocalCharacter

public interface LocalCharacter
extends Character

Interface representing the local Tee.

Provides more information about the Tee than its superinterface Character.

public int getAmmo()

Return the current ammo for the Tee’s active weapon.
Returns:

the current ammo.

public int getArmor()

Return the Tee’s current armor.
Returns:

the Tee’s armor.

public int getHealth()

Return the Tee’s current health.
Returns:

the Tee’s health.

35

http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Interface LocalPlayer

public interface LocalPlayer
extends Player

Interface representing the local player.

public LocalCharacter getCharacter()

Description copied from interface: Player
Return the Tee associated with this player.

If the player is spectating, dead or off-screen, this method will return null.
Overrides:

getCharacter in interface Player.
Returns:

the player’s Tee or null if not available.

Interface Map

public interface Map

Interface representing the game-layer of a map.

public int getHeight()

Return the height of the entire map.
Returns:

the map height.

public int getHorizontalIndex(double x)

Return the horizontal index given an x-coordinate.
Parameters:

x the x-coordinate
Returns:

the horizontal index.

public String getName()

Return the name of this map.

36

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Returns:
the name of the map.

public Tile getTileAtIndex(int x, int y)

Return the tile at the specified index.
Parameters:

x the x-index.
y the y-index.

Returns:
a tile.

public Tile getTileAtPosition(double x, double y)

Return the tile at the specified position.
Parameters:

x the x-coordinate.
y the y-coordinate.

Returns:
a tile.

public Tile getTileAtPosition(Vector2D p)

Return the tile at the specified position.

Equivalent to calling getTilePosition(p.getX(), p.getY()).

Parameters:
p the position vector.

Returns:
a tile.

public int getTileHeight()

Return the height of the tiles on this map.
Returns:

the tile height.

public Tile[][] getTiles()

Return a two-dimensional array of the tiles in this map.

37

Returns:
a two-dimensional array of tiles

public int getTileWidth()

Return the width of the tiles on this map.
Returns:

the tile width.

public int getVerticalIndex(double y)

Return the horizontal index given a y-coordinate.
Parameters:

y the y-coordinate.
Returns:

the vertical index.

public int getWidth()

Return the width of the entire map.
Returns:

the map width.

Interface Module

public interface Module

The entry point and main callbacks for a JTee Module.

Plug-in creators should implement this interface and put it in a jtm file together
with any auxiliary classes. A jtm file is a jar file with the .jtm extension and an
extended manifest file. The manifest is required to include the Module-Name
attribute. This attribute the denotes the name of the module as used by the
module manager. Other required attributes are either the Module-Class at-
tribute, which denotes the name of the class implementing the Module interface,
or the Module-Factory, which indicates the name of a factory class followed
by the name of the factory method, separated by whitespace.

38

public void destroy()

Perform finalization code.

This method is called when the module is unloaded.

public void init()

Perform initialization code of the module.

This method is called when the module is loaded.

public void processInput(PlayerInput playerInput)

Process player input.

This method is called whenever new input is received from the player.
Parameters:

playerInput the input received from the player.

public void render(Graphics graphics, RenderStage renderStage)

Perform drawing operations.

This method is called multiple times during the drawing phase of a frame at
different rendering stages.
Parameters:

graphics the Graphics object used for drawing.
renderStage the rendering stage for the current frame.

public void stateChanged(State oldState, State newState)

Receive notification when the global state changes.

This method is called every time the global state changes.
Parameters:

oldState the previous global state.
newState the current global state.

public void update(World world)

Receive notification when the world updates.

39

This method may be used to update the state of the Module and to act upon
the World.
Parameters:

world the World object containing all the information
about the current state of the game world.

Interface Player

public interface Player

Class representing a player.

public Character getCharacter()

Return the Tee associated with this player.

If the player is spectating, dead or off-screen, this method will return null.
Returns:

the player’s Tee or null if not available.

public int getId()

Return the player identifier.
Returns:

player id.

public String getName()

Return the name of the player.
Returns:

the name.

public int getScore()

Return the player’s current score.
Returns:

the score.

40

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public Team getTeam()

Return the team this player belongs to.

Return null if the current game type does not support teams.
Returns:

the player’s team or null.

public boolean isLocal()

Return whether this player is local.
Returns:

true if this player is the local player; false otherwise.

Interface PlayerInput

public interface PlayerInput

Interface representing raw control input received from the player.

public Direction getDirection()

Return the direction in which the Tee will walk.
Returns:

the walking direction.

public Vector2D getRelativeTargetPosition()

Return the position of the crosshair relative to center of the Tee in game coor-
dinates.
Returns:

the relative crosshair position.

public boolean isHooking()

Return whether the Tee will attempt to shoot its grappling hook.
Returns:

the jump flag.

41

public boolean isJumping()

Return whether the Tee will attempt to jump.
Returns:

the jump flag.

public boolean isShooting()

Return whether the Tee will attempt to shoot.
Returns:

the shoot flag.

Enum PlayerState

public final enum PlayerState
extends Enum<PlayerState>

Enumeration listing the values of the player state.

CHATTING The player is chatting.
IN_MENU The player is in the menu.
PLAYING The player is playing.
UNKNOWN An unknown state.

public static PlayerState valueOf(String name)

public static PlayerState[] values()

Interface PowerUp

public interface PowerUp

Interface representing an in-game power-up.

public Vector2D getPosition()

Return the position of the power-up.
Returns:

the position.

42

http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public PowerUpType getType()

Return the type of the power-up.
Returns:

the power-up type.

Enum PowerUpType

public final enum PowerUpType
extends Enum<PowerUpType>

Enumeration representing the different power-up types.

ARMOR An armor pick-up (a shield).
HEALTH A health pick-up (a heart).
WEAPON A weapon pick-up.

public static PowerUpType valueOf(String name)

public static PowerUpType[] values()

Enum Projection

public final enum Projection
extends Enum<Projection>

Enumeration representing built-in orthographic projections.

GAME_LAYER Orthographic projection onto the game-layer.
SCREEN Standard screen projection.

public static Projection valueOf(String name)

public static Projection[] values()

Enum RenderStage

public final enum RenderStage
extends Enum<RenderStage>

Enumeration representing the various render stages during rendering.

43

http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html

AFTER_BACKGROUND After the background layer has been drawn.
AFTER_FOREGROUND After the foreground layer has been drawn.
AFTER_HUD After the HUD has been drawn.
AFTER_PLAYERS After the Tees have been drawn.
FIRST Before anything else has been drawn.
LAST After all other drawing operations.

public static RenderStage valueOf(String name)

public static RenderStage[] values()

Enum State

public final enum State
extends Enum<State>

Enumeration representing the global state.

CONNECTING The client is connecting to a server.
DEMOPLAYBACK The client is playing a demo.
LOADING The client is loading data.
OFFLINE The client is running, but not connected to a server.
ONLINE The client is connected to a server.
QUITING The client is shutting down.

public static State valueOf(String name)

public static State[] values()

Enum Team

public final enum Team
extends Enum<Team>

Enumeration representing teams.

BLUE_TEAM The blue team.
RED_TEAM The red team.
SPECTATOR Spectator mode.

public Team getOpposingTeam()

Return the team opposing this team.

44

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html

Return null if the current team is SPECTATOR.
Returns:

the opposing team or null.

public static Team valueOf(String name)

public static Team[] values()

Enum Tile

public final enum Tile
extends Enum<Tile>

Enumeration representing a game-layer tile.

AIR A basic non-solid tile.
DEATH A non-solid tile that causes death on impact.
NOHOOK A solid tile that cannot be shot with the grappling hook.
SOLID A basic solid tile.

public boolean isSolid()

Return whether the current tile is solid.
Returns:

true if the tile is solid; false otherwise.

public static Tile valueOf(String name)

public static Tile[] values()

Interface Vector2D

public interface Vector2D

Interface representing a two-dimensional vector.

public Vector2D add(Vector2D vec)

Adds the given vector to this vector.

45

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Parameters:
vec the vector to add.

Returns:
the result of the addition.

public Vector2D divide(double scalar)

Divides the vector by a scalar value.
Parameters:

scalar the value to divide by.
Returns:

the result of the division.

public double getEuclideanDistance(Vector2D vec)

Return the Euclidean distance between this vector and the given vector.
Parameters:

vec the other vector.
Returns:

the Euclidean distance between the vectors.

public double getManhattenDistance(Vector2D vec)

Return the Manhatten (city block) distance between this vector and the given
vector.
Parameters:

vec the other vector.
Returns:

the Manhatten distance between the vectors.

public double getX()

Return the x-component of the vector.
Returns:

the x-component.

public double getY()

Return the y-component of the vector.

46

Returns:
the y-component.

public Vector2D multiply(double scalar)

Multiplies the vector with a scalar value.
Parameters:

scalar the value to multiply by.
Returns:

result of the multiplication.

public Vector2D subtract(Vector2D vec)

Subtracts the given vector from this vector.
Parameters:

vec the vector to subtract
Returns:

the result of the subtraction.

Interface View

public interface View

Interface providing access to the game’s viewport. An object implementing this
interface can be accessed through Game.getView() when the game is running.

public Vector2D getCenter()

Return the point the camera is looking at.
Returns:

the center of the camera in game coordinates.

public int getHeight()

Return the height of game’s viewport.
Returns:

the height of the viewport.

47

public int getWidth()

Return the width of game’s viewport.
Returns:

the width of the viewport.

Enum Weapon

public final enum Weapon
extends Enum<Weapon>

Enumeration representing the different weapon types.

GRENADE The grenade launcher.
GUN The basic pistol.
HAMMER The hammer.
NINJA The ninja outfit and katana.
RIFLE The laser rifle.
SHOTGUN The shotgun.

public static Weapon valueOf(String name)

public static Weapon[] values()

Interface WeaponPowerUp

public interface WeaponPowerUp
extends PowerUp

Interface representing a weapon power-up.

A PowerUp can be cast to a WeaponPowerUp if the power-up type is PowerUpType.WEAPON.

public Weapon getWeaponType()

Return the type of the weapon.
Returns:

the weapon type.

48

http://download.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Interface World

public interface World

Class representing the game world.

Maximum number of players.

public Flag getFlag(Team team)

Return the flag for the specified team.

Return null if the game type does not support flags.
Parameters:

team the team.
Returns:

the team’s flag or null.

public Flag[] getFlags()

Return the flags in a CTF game.

Return null if the game type does not support flags.
Returns:

an array of flags or null.

public String getGameType()

Return a string describing the game type.
Returns:

the game type.

public LocalPlayer getLocalPlayer()

Return the local player.
Returns:

the LocalPlayer object.

public Map getMap()

Return a representation of the map.

49

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Returns:
the map.

public Player getPlayer(int id)

Return a player given its identifier.

Return null if a player with the given id is not found.
Parameters:

id the player’s identifier.
Returns:

player matching the id or null.

public Player[] getPlayers()

Return an array of all players on the server.
Returns:

an array of Player objects.

public PowerUp[] getPowerUps()

Return all the power-ups in the current game world.
Returns:

an array of power-ups.

public PowerUp[] getPowerUps(Set<PowerUpType> types)

Return all power-ups that match any given power-up types.
Parameters:

types a set of power-up types.
Returns:

an array of matching power-ups.

public WeaponPowerUp[] getWeaponPowerUps(Set<Weapon> types)

Return all weapon power-ups that match any given weapon types.

50

http://download.oracle.com/javase/6/docs/api/java/util/Set.html
http://download.oracle.com/javase/6/docs/api/java/util/Set.html

Parameters:
types a set of weapon types.

Returns:
an array of matching weapon power-ups.

public boolean isGameSuspended()

Return whether the current game is suspended.

Suspension usually happens in between rounds.
Returns:

true if the game is suspended; false othwerwise.

51

A.2 Package nl.ru.ai.jtee.util

Class AbstractCharacter

public abstract class AbstractCharacter
implements Character

Abstract base class partially implementing Character.

public AbstractCharacter()

public int getHeight()

Description copied from interface: Character
Return the height of the Tee in pixels.
Specified by:

getHeight in interface Character.
Returns:

the height of the Tee.

public int getWidth()

Description copied from interface: Character
Return the width of the Tee in pixels.
Specified by:

getWidth in interface Character.
Returns:

the width of the Tee.

Class AbstractMap

public abstract class AbstractMap
implements Map

Abstract base class partially implementing Map.

52

public AbstractMap()

public int getHeight()

Description copied from interface: Map
Return the height of the entire map.
Specified by:

getHeight in interface Map.
Returns:

the map height.

public int getHorizontalIndex(double x)

Description copied from interface: Map
Return the horizontal index given an x-coordinate.
Specified by:

getHorizontalIndex in interface Map.
Parameters:

x the x-coordinate
Returns:

the horizontal index.

public Tile getTileAtIndex(int x, int y)

Description copied from interface: Map
Return the tile at the specified index.
Specified by:

getTileAtIndex in interface Map.
Parameters:

x the x-index.
y the y-index.

Returns:
a tile.

public Tile getTileAtPosition(double x, double y)

Description copied from interface: Map
Return the tile at the specified position.

53

Specified by:
getTileAtPosition in interface Map.

Parameters:
x the x-coordinate.
y the y-coordinate.

Returns:
a tile.

public Tile getTileAtPosition(Vector2D p)

Description copied from interface: Map
Return the tile at the specified position.

Equivalent to calling getTilePosition(p.getX(), p.getY()).

Specified by:
getTileAtPosition in interface Map.

Parameters:
p the position vector.

Returns:
a tile.

public int getTileHeight()

Description copied from interface: Map
Return the height of the tiles on this map.
Specified by:

getTileHeight in interface Map.
Returns:

the tile height.

public int getTileWidth()

Description copied from interface: Map
Return the width of the tiles on this map.
Specified by:

getTileWidth in interface Map.
Returns:

the tile width.

54

public int getVerticalIndex(double y)

Description copied from interface: Map
Return the horizontal index given a y-coordinate.
Specified by:

getVerticalIndex in interface Map.
Parameters:

y the y-coordinate.
Returns:

the vertical index.

public int getWidth()

Description copied from interface: Map
Return the width of the entire map.
Specified by:

getWidth in interface Map.
Returns:

the map width.

Class AbstractWorld

public abstract class AbstractWorld
implements World

Abstract base class partially implementing World.

public AbstractWorld()

public Flag getFlag(Team team)

Description copied from interface: World
Return the flag for the specified team.

Return null if the game type does not support flags.
Specified by:

getFlag in interface World.
Parameters:

team the team.
Returns:

the team’s flag or null.

55

public LocalPlayer getLocalPlayer()

Description copied from interface: World
Return the local player.
Specified by:

getLocalPlayer in interface World.
Returns:

the LocalPlayer object.

public Player getPlayer(int id)

Description copied from interface: World
Return a player given its identifier.

Return null if a player with the given id is not found.
Specified by:

getPlayer in interface World.
Parameters:

id the player’s identifier.
Returns:

player matching the id or null.

public PowerUp[] getPowerUps(Set<PowerUpType> types)

Description copied from interface: World
Return all power-ups that match any given power-up types.
Specified by:

getPowerUps in interface World.
Parameters:

types a set of power-up types.
Returns:

an array of matching power-ups.

public WeaponPowerUp[] getWeaponPowerUps(Set<Weapon> types)

Description copied from interface: World
Return all weapon power-ups that match any given weapon types.

56

http://download.oracle.com/javase/6/docs/api/java/util/Set.html
http://download.oracle.com/javase/6/docs/api/java/util/Set.html

Specified by:
getWeaponPowerUps in interface World.

Parameters:
types a set of weapon types.

Returns:
an array of matching weapon power-
ups.

Class BasicVector2D

public class BasicVector2D
implements Vector2D, Serializable

Basic immutable implementation of Vector2D

public BasicVector2D()

public BasicVector2D(double x, double y)

public Vector2D add(Vector2D vec)

Description copied from interface: Vector2D
Adds the given vector to this vector.
Specified by:

add in interface Vector2D.
Parameters:

vec the vector to add.
Returns:

the result of the addition.

public Vector2D divide(double scalar)

Description copied from interface: Vector2D
Divides the vector by a scalar value.
Specified by:

divide in interface Vector2D.
Parameters:

scalar the value to divide by.
Returns:

the result of the division.

57

http://download.oracle.com/javase/6/docs/api/java/io/Serializable.html

public boolean equals(Object obj)

public double getEuclideanDistance(Vector2D vec)

Description copied from interface: Vector2D
Return the Euclidean distance between this vector and the given vector.
Specified by:

getEuclideanDistance in interface Vector2D.
Parameters:

vec the other vector.
Returns:

the Euclidean distance between
the vectors.

public double getManhattenDistance(Vector2D vec)

Description copied from interface: Vector2D
Return the Manhatten (city block) distance between this vector and the given
vector.
Specified by:

getManhattenDistance in interface Vector2D.
Parameters:

vec the other vector.
Returns:

the Manhatten distance between
the vectors.

public double getX()

Description copied from interface: Vector2D
Return the x-component of the vector.
Specified by:

getX in interface Vector2D.
Returns:

the x-component.

public double getY()

Description copied from interface: Vector2D
Return the y-component of the vector.

58

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

Specified by:
getY in interface Vector2D.

Returns:
the y-component.

public int hashCode()

public Vector2D multiply(double scalar)

Description copied from interface: Vector2D
Multiplies the vector with a scalar value.
Specified by:

multiply in interface Vector2D.
Parameters:

scalar the value to multiply by.
Returns:

result of the multiplication.

public Vector2D subtract(Vector2D vec)

Description copied from interface: Vector2D
Subtracts the given vector from this vector.
Specified by:

subtract in interface Vector2D.
Parameters:

vec the vector to subtract
Returns:

the result of the subtraction.

public String toString()

Class Environment

public final class Environment

Utility class providing scripting access.

59

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

public void clear()

public static Environment createEnvironment(Module module,
String name, ClassLoader loader)

public static Environment createEnvironment(String name,
ClassLoader loader)

public static Environment createTemporaryEnvironment(ClassLoader
loader)

public T evaluate(File scriptFile) throws ScriptException,
FileNotFoundException

public T evaluate(String scriptText) throws ScriptException

public static Environment getEnvironment(Module module)

public static Environment getEnvironment(String name)

public static Environment getGlobalEnvironment()

public static Map<String, Object> getGlobalVariables()

public String getLanguage()

public String getName()

public Object getVariable(String name)

public Map<String, Object> getVariables()

public boolean isGlobal()

public void setLanguage(String language) throws
UnsupportedScriptingLanguageException

public void setVariable(String name, Object value)

Class UnsupportedScriptingLanguageException

public class UnsupportedScriptingLanguageException
extends Exception

Thrown to indicate a scripting language is not found on this system.

public UnsupportedScriptingLanguageException(String message)

60

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/ClassLoader.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/ClassLoader.html
http://download.oracle.com/javase/6/docs/api/java/lang/ClassLoader.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/io/File.html
http://download.oracle.com/javase/6/docs/api/javax/script/ScriptException.html
http://download.oracle.com/javase/6/docs/api/java/io/FileNotFoundException.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/javax/script/ScriptException.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/util/Map.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/util/Map.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/Exception.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

	Contents
	Abstract
	Introduction
	Artificial neural networks
	Previous work
	Research question

	Methods
	Platform
	Task
	JTee
	Plugin system
	The Module interface
	The API

	SmarTee
	Data collection module
	Machine learning and simulation module
	Time trial module

	Classifier and pipeline implementation
	Encog
	The classifier
	The preprocessor
	Feature extractors
	Output codec
	Training method

	Experimental setup

	Results
	Subjective analysis

	Conclusion and discussion
	References
	JTee Javadoc
	Package nl.ru.ai.jtee
	class AbstractModule
	interface Character
	interface CommandCallback
	class CommandInUseException
	interface Console
	interface Controls
	enum Direction
	interface Flag
	class Game
	interface Graphics
	interface InputInterceptor
	class InputInterceptorActiveException
	enum KeyStroke
	interface LocalCharacter
	interface LocalPlayer
	interface Map
	interface Module
	interface Player
	interface PlayerInput
	enum PlayerState
	interface PowerUp
	enum PowerUpType
	enum Projection
	enum RenderStage
	enum State
	enum Team
	enum Tile
	interface Vector2D
	interface View
	enum Weapon
	interface WeaponPowerUp
	interface World

	Package nl.ru.ai.jtee.util
	class AbstractCharacter
	class AbstractMap
	class AbstractWorld
	class BasicVector2D
	class Environment
	class UnsupportedScriptingLanguageException

