
Multi-Label Classification of
Movie Genres using Text-based

Features and WordNet Hypernyms

Bachelor’s Thesis in Artificial Intelligence

Radboud University Nijmegen

Faculty of Social Sciences

Department of Artificial Intelligence

Supervisor: Franc Grootjen

Sam van der Meer, s4344839

June 18, 2019

Abstract

Text categorization techniques have become increasingly more important in
the past decade. Whereas many approaches rely on video or audio fea-
tures for classifying digital media, text-based features provide a considerable
amount of information and are computationally inexpensive to process. In
this thesis we present a large movie subtitle database of data in natural lan-
guage, which will be used to predict genre labels in a multi-label classification
problem. We provide methods to extract text-based features and reduce at-
tribute dimensionality effectively. We also demonstrate the generation of a
second dataset using WordNet, where all words from the original subtitles
are replaced by their direct hypernyms. A final distinction is made within
datasets to include TF-IDF-transformations or not. We hypothesize that the
dataset containing hypernyms will outperform the original dataset of text-
based features. Furthermore, we hypothesize that TF-IDF-transformation has
a positive effect on classification accuracy. A selection of multi-label classifi-
cation techniques were tested on their performance using the four conditions.
Results show very good scores on classification performance but no signifi-
cant difference between the four experimental conditions.

1

Contents

1 Introduction 3
1.1 Related work . 4
1.2 Terminology . 6

1.2.1 Domain specification 6
1.2.2 The complexity of movie genres 7
1.2.3 The categorization of genres: a multi-label

classification problem 7
1.3 Main Research . 8

2 Methods 10
2.1 Experimental setup . 10
2.2 First steps towards a suitable subtitle database 11
2.3 Data acquisition . 12

2.3.1 Creating the database 12
2.3.2 Building IMDbLink 13
2.3.3 Frequency analysis . 15

2.4 Data pre-processing . 17
2.4.1 Data extraction and filtering 17
2.4.2 Transformation to feature vectors 19
2.4.3 Attribute dimensionality reduction 22

2.5 WordNet: A lexical database 24
2.6 Classification algorithms . 27
2.7 Evaluation Measures . 29

3 Results 31

4 Conclusions 35

5 Discussion 37

2

Chapter 1

Introduction

The amount of original content appearing in digital media faced an exponen-
tial growth on the internet and on other platforms over the past two decades.
The digital revolution also had a significant impact on new movie releases.
Compared to traditional ways of capturing, distributing and promoting a
movie, the internet has dramatically changed the effort and cost associated
with movie making. Not only has the production cost decreased drastically,
filmmakers now have an array of options available to share their ideas, to find
funding for their projects and to keep in touch with their prime audience,
producers or investors (Waldfogel, 2017).

These changes are reflected in the amount of annual movie releases.
The largest online movie database, IMDb (www.imdb.com) showed a steady
growth of new movie releases over the past two decades. Around four thou-
sand movies were created in the year 2000, ten years later this number had
risen to 7500 and more than 11.000 new titles were published only last year.
More than five thousand of those had their origin in the United States, which
dominates the film industry. An even larger magnitude of other video ma-
terial has appeared online in the form of smaller videos or exclusive movies,
which have seen an explosive growth over the past couple of years with video
streaming services such as Netflix and YouTube increasing in popularity.

One major downside of the uncontrollable amount of videos that are
published every day is that it has become infeasible for humans to supervise
all content manually. Because of this, automatic classification tools have
shown to provide an effective solution to monitor the content appearing in
multimedia in a structured way. For example, movies containing profanity
or violence must be classified separately so that they can be hidden from
sensitive user groups, such as children. Another application of automatic

3

www.imdb.com

categorization are recommender systems. If all labels are known for videos
in a large corpus, one can recommend a selection of similar videos according
to the user’s preferences.

1.1 Related work

Recent literature has shown that genre classification can be accomplished
through (a combination of) three modalities: visual, audio and text-based.
Brezeale and Cook (2008) conducted a literature survey of the video classi-
fication literature available at that time. It has become apparent that the
majority of the literature focuses on single modalities only, with the most
research being conducted in the visual domain. Although the visual domain
has been studied most, it also suffers from computational complexity the
most. Generally, movies are filmed with 20-60 frames per second. Each of
these frames contains more than a million pixels and the majority of them
differ between frames. Analysis of an average two-hour movie requires a
lot of computing power and is not easily scalable to a general classification
problem, which requires hundreds or thousands of instances to work prop-
erly. As a result, most studies compare various visual features of short scenes
or trailers, in order to reveal information about the content of the movie it-
self. These can then be used to infer a more general selection of genres (e.g.
Rasheed and Shah (2005)). Studies that analysed auditory features recorded
them over very small ranges (a few seconds) in order to infer a selection of
movie genres. Additionally, various auditory stimuli appeared to be hard to
isolate from a spectrum of the signal.

Compared to the visual and auditory modalities, text-based approaches
are far more efficient in terms of computational resources, which caters to
the problem at hand. Many movies will be able to be analyzed in a short
time period, due to the properties and the structure of textual data. Text-
based data in the domain of movies are most easily extracted from the cor-
responding subtitle. Other information sources include transcripts or closed
captioning. These data structures are nothing more than a semi-structured
sequence of text, which is enclosed in part-of-speech. Text strings can be
efficiently coded with a relative low amount of bits. Whereas computations
in the visual domain often include a few gigabytes of data, a single subtitle
file of a full-length movie is sized between a mere 2-200kB. These text-based
strings contain linguistic information which can be analyzed with natural lan-
guage processing techniques. A vast body of research has been conducted on
information retrieval and text categorization techniques (Sebastiani, 2002).

4

While the amount of studies that consider movie genre classification us-
ing text-based features is limited compared to other domains, we will give a
short overview of related work. Brezeale and Cook (2006) used closed cap-
tioning in parallel with an approach from the visual domain to classify movie
genres and user ratings. They mention that some movies had multiple genre
labels, but reduced the classification problem to a single-classification prob-
lem as they used a support vector machine (SVM) classifier only. The two
approaches were found to perform equally well, but movie genre classification
(class accuracy 87-90%) significantly outperformed the prediction of user rat-
ings. Chao and Sirmorya (2016) presented a novel system for movie genre
classification using probabilistic topic modeling (LDA) and movie scripts as
text-based source. They used the cosine similarity measure between feature
vectors to create a ranking of movie genres and simply took the top five or
top six genres. Baseline classification algorithms included the majority label
algorithm (simply takes top-x occurring labels), SVM and Random Forest
(RF). The LDA approach was able to classify genres with lower precision
but higher recall scores than baseline algorithms, resulting in a moderate
F1-score of 49% (harmonic mean between precision and recall). An analysis
of multiple text-based feature types in Dutch movies and TV-shows from
the SUBTIEL-corpus showed that the SVM and RF classifiers proved most
accurate in classifying genres, with a maximum F1 score of 88% (Lee, 2017).
Another study categorized news categories instead of movie genres (Zhu,
Toklu, & Liou, 2001). They used a weighted voting method and Bayes’ deci-
sion metric. Their confusion matrix showed that different categories scored
precision and recall rates with a high variance. For categories that scored
poor, this was due the overlap with other categories, insufficient training
samples or the lack of unique language features. The average prediction
accuracy worked out to be 75-80% based on the decision method.

Katsiouli, Tsetsos, and Hadjiefthymiades (2007) used subtitles of docu-
mentaries in conjunction with WordNet domains to train a classifier. Using
keyword extraction and word sense disambiguation, they made a mapping
between the corresponding WordNet domains and category labels. They
achieved a classification accuracy of 89% with the J4.8 classifier.

Many evaluation metrics for multi-label classification problems seem to
exist (e.g. Maimon and Rokach (2010), Sebastiani (2002) and Sorower
(2010)). In the literature, the most appearing evaluation metrics are ac-
curacy, precision, recall, F1-score, area under the ROC-curve and Hamming-
loss. How a problem should be evaluated is said to depend on the evaluation
target: partitioning into classes, label rankings or label hierarchy.

5

1.2 Terminology

1.2.1 Domain specification

Many studies limit the scope of video material that is being analysed. News
bulletins, TV-shorts and trailers are among the most popular ones, which
only last for a few minutes. The meta-collection of videos that appears on
IMDb reflect this wide array of video formats. In advanced title search, one
can filter between feature films, TV movies, -series, -episodes, -specials and
shorts, mini-series, documentaries, short films, video games and video.

For this thesis, we limit ourselves to one specific class of video, namely
feature films. Also called theatrical film, motion picture or movie (equivalent
terms), the first productions date back to the early 1900s. This type of
video material is characterized to have a running time long enough to fill
a program. Most institutes determined that a feature film should run for
at least 45 minutes, while others increase this number to 75 (British Film
Institute and Screen Actors Guild respectively). Most movies are between 75
minutes and three hours long. Moreover, movies don’t require themselves to
be shown in theatres necessarily. Stand-alone titles are seen more and more
the past couple of years, which are often released in smaller communities or
uploaded to the internet. Recently, many video streaming services such as
Netflix or HBO have been producing platform-specific content as well. For
the thousands of movies that are released every year, only a small proportion
(around 500 (IMDb)) are released in theatres.

One advantage of feature films (further denoted as movies) is that the
text-based component in the form of subtitles or closed captioning are almost
always encapsulated in a separate file accompanying a movie, which means
they are easy to isolate and to be stored in a database.

One last important thing to mention is that we limit ourselves to UK/US-
movies only, which are almost always produced in English. Although a lot
of new releases are in foreign languages, this would complicate our analy-
sis as different words are used for the same concept across languages. In
natural language processing, which underlies the classification of textual in-
formation, one should limit their research to one specific language. This
choice is also supported by the fact that the majority of new films originate
from the United States, with Hollywood being the home of the film indus-
try worldwide. We decisively did not choose to use translated subtitle files
from foreign movies, as certain part-of-speech elements cannot be effectively
translated to English and they often contain errors.

6

1.2.2 The complexity of movie genres

A varying range of genres exist in movie classification. IMDb enumerates
popular movie genres as follows: comedy, sci-fi, horror, romance, action,
thriller, drama, mystery, crime, animation, adventure, fantasy, comedy-
romance, action-comedy and superhero. Other genres that are not met-
nioned here include biographies, documentaries, family films, fantasy, film
noir, history, musical... (the list goes on). Stephen Follows, an established
film data analyst for many English newspapers, has conducted experiments
to determine the most occurring genres overall (Follows, 2018). Over half of
all films made worldwide are dramas (51,6%), followed by comedies (28,4%).
Other popular genres, presented in descending order, are thrillers (12,4%),
romance (11,6%) and action (11,2%) (Note that these percentages don’t add
up to 100%, as movies can have multiple genre classifications).

IMDb provides genre labels for each movie in their database. Up to 28
unambiguous genre labels exist and each movie can contain up to three of
them. Potential conjunctions of genres, like romcoms, would be classified
with the two genres ’romance’ and ’comedy’ respectively. For this research,
a number of high-frequency genres will have to be selected in order to train
the classifiers on. We will come back to this point in a later stage.

1.2.3 The categorization of genres: a multi-label
classification problem

On average, movies have 1,7 genre classifications (Follows, 2018). For exam-
ple, The Incredibles (2004) belongs to the genres animation, action, adven-
ture and family, while The Wolf of Wall Street (2013) belongs to the genres
biography, crime and drama. Analysing documents of text and grouping
them into one or more predefined categories belongs to the domain of text
categorization (Sebastiani (2002) and Korde and Mahender (2012)). In this
thesis, the set of documents will be a set of subtitles and the predefined cat-
egories will be movie genres. We will take the IMDb genre classifications as
ground truth labels for our own classification problem. Nevertheless, these
can contain up to three genres.

Because movies can be classified with multiple genres, we are dealing with
a multi-label classification problem. In contrary to single-label or multi-class
classification problems, multi-label problems are concerned with assigning a
set of target labels to each instance. Because multi-label classification adds
a certain degree of uncertainty to the sample space, a wide range of unique
algorithms and evaluation metrics exist to manage the problem complexity

7

(Maimon & Rokach, 2010). The multi-label algorithms can be grouped in
two categories: problem transformation methods and algorithmic adaptation
methods. The first group transforms the problem to a set of single-label
classification tasks, for which a wide range of classifiers exist (a couple were
mentioned in section 1.1). The second group contains algorithms that are
specifically built to handle multi-labeled data.

1.3 Main Research

We have seen that relatively little research has been conducted on text-based
video classifiers in the domain of movie genres. The literature that exists
provides promising numbers in terms of classification accuracy. However,
most of them are based on smaller video fragments and make use of single-
label classification techniques. Text-based classification analysis is important
because it is both computationally efficient and useful for many purposes in
document categorization, summarization and recommender systems.

Research questions

In this thesis we present a large movie subtitle database of data in natural
language, which will be used to predict genre labels in a multi-label classifica-
tion problem. We provide methods to extract text-based features and reduce
attribute dimensionality effectively. We also demonstrate the generation of
a second dataset using WordNet, where all words from the original subtitles
are replaced by their direct hypernyms. A final distinction is made within
datasets to include TF-IDF-transformations or not. Hypernyms are seman-
tical generalisations of terms and TF-IDF is a measure for word relevance
(more details about these notions will be clarified in chapter 2).

These four experimental conditions, along with a selection of multi-label
classification algorithms, are used to classify movies into a set of genres using
text-based features only. We propose two research questions to support our
classification problem:

1. To what extent do WordNet or TF-IDF-transformations on feature vec-
tors of subtitle words contribute to the multi-label classification per-
formance of movie genres?

2. What combination of multi-label algorithms and base classifiers is best
suited in the setting of text-based subtitle classification?

8

Hypotheses

First, we hypothesize that the dataset containing WordNet hypernyms will
outperform the original dataset of text-based features. Because all terms are
replaced by their direct parent terms, words that relate to the same parent
term will be grouped together, thus making it clearer for a classifier which
groups of words relate to which genre labels. Furthermore, we hypothesize
that TF-IDF-transformation has a positive effect on classification accuracy.
After all, the more relevant a word is in a specific document, the more value it
gains for discriminating the corresponding genre. A selection of multi-label
classification techniques were tested to see which combination maximizes
various classification evaluation methods.

Thesis overview

The rest of this thesis will be organized as follows. Chapter 2 will first discuss
the experimental setup and the acquisition of a suitable subtitle database,
including data pre-processing. Next, we will discuss how we extracted Word-
Net hypernyms to generate the second dataset. After that we will explain
our choices of multi-label classification algorithms, base classifiers and eval-
uation methods. Results will be displayed in chapter 3 and chapter 4 and 5
will provide conclusion and discussion, respectively. The final pages will be
subject to the references and appendices, which include the raw data results
and all code that was written for data pre-processing.

9

Chapter 2

Methods

2.1 Experimental setup

In order to test our hypotheses, we require a suitable database of subtitle
files. We explain our data acquisition process, including the search for the
corresponding genre labels of each subtitle, in sections 2.2 and 2.3. After the
database has been completed, the distribution of genres will be analysed. A
selection of genres are very uncommon, which leads to class imbalance and
an increased complexity for label classification. Based on these observations,
we make a substantiated decision to discard a certain number of instances.

From there, the instances that remain will be pre-processed. This process
allows us to isolate subtitle strings and discard irrelevant (non part-of-speech
based) information, which is a prerequisite for effective natural language pro-
cessing. Next, we make a transformation to feature vectors, which is a more
machine-friendly data structure compared to raw words in natural language.
The final step in the pre-processing phase includes attribute dimensionality
reduction, which limits the amount of attributes in each vector by discarding
attributes that do not contribute to the information gain. All these processes
are explained in section 2.4. We also generate a second dataset where each
word in the subtitle files is replaced by its direct WordNet hypernym, which
is described in section 2.5. Finally, the choice of classification algorithms
and evaluation measures are described in sections 2.6 and 2.7 respectively.

The classification algorithms are tested across four experimental condi-
tions. First, we make a distinction between the original dataset and the
dataset generated with WordNet hypernyms. Second, the feature vectors of
these datasets were created with and without TF-IDF-transformation. The
conditions will be tested for three multi-label classification algorithms com-

10

bined with three base classifiers. The combination of these dimensions will
result in a total of 36 test classifications. All tests were executed using 10-fold
cross-validation and will be further discussed in chapter 3.

2.2 First steps towards a suitable subtitle database

Prior to training the classification algorithms, we first need to acquire a
database that consists of movie subtitle files. Unfortunately, such an open-
source corpus is not readily available on the internet due to copyright is-
sues. Instead, F. Grootjen was able to provide me with a very large subtitle
database (N = 12083). The collection of subtitle files was composed of many
different video sources and was used in a former bachelor’s thesis project.
In addition to the database came software that was written by him in Java,
named CleanUpSubtitles (Grootjen, 2018). The program made an attempt
to dispose as much irrelevant information from the subtitle filename, while
maintaining the movie title and production year (see figure 2.1).

Figure 2.1: Example of a downloaded subtitle file, where much
unnecessary information needs to be filtered out correctly in

order to reduce this title to Trumbo (2007).

From there, the most probable IMDb-movie title was linked with each
subtitle filename using the Levenshtein similarity measure. Each match was
also accompanied with an unique IMDb identification number. This ID is a
very informative source for this research, as it contains valuable information
about the corresponding movie of the subtitle (including production year,
runtime and most importantly, up to three genre classifications). This allows
for an automatic provision of classification labels, provided that the subtitle
is linked with the correct movie.

A couple of issues arose with the performance analysis of Grootjen’s
program, which are unique for this research. First, the program takes a
very long time to match all subtitle files with the corresponding IMDb-ID
(up to four hours), as each reduced subtitle filename has to be compared to
all IDs that exist (over five million). Second, though the subtitle database
is very large, the majority of subtitles in it originate from television series,
which don’t belong in the category feature films. The subtitle database also
contains many duplicates and subtitles in a range of different languages.
Third, while the program was able to correctly link over 50% of subtitles

11

with their corresponding ID, there were still plenty of errors being made.
Consequently, this led to thousands of obligatory manual checks. Because the
scope of this research limits us to movies in English only, a large proportion
of the database had to be discarded, and less than a thousand unique titles
remained. In the end, we decided it would be beneficial for our research if
we built our own database of movie subtitles, accompanied by a personalized
linking algorithm. The source code of CleanUpSubtitles provided some very
useful insights in how to accomplish this.

2.3 Data acquisition

2.3.1 Creating the database

Our goal was to build a database containing a couple of thousand unique
English movie subtitles, in order to guarantee plenty of data to train our
classifiers with. A few subtitle extensions exist to represent the data. For
this research, we limited ourselves to the .srt-extension (SubRip). This
extension is text-based, which is useful for natural language processing later
on. Furthermore, the file sizes are really small (under 100kB on average) and
other than the timestamps, the files don’t include any meta-data.

In contrary to subtitle databases, individual movie subtitles are readily
available on a various number of websites. We decided to use https://www
.opensubtitles.org as our source of subtitle files. Per production year we
were able to generate a list of the most popular movie subtitles in .srt-format,
which were easily downloadable from there. Movies made between 1960 and
2019 were included in our database, resulting in a total number of N = 4736
unique movie titles. One major advantage of using opensubtitles.org over
other sites was that the directory layout of each downloaded subtitle file was
very convenient (see figure 2.2). Each name of the downloaded (compressed)
folder was structured the same, which proved to be very useful when trying
to extract movie title and production year.

Figure 2.2: Directory layout of a random movie subtitle file.

12

https://www.opensubtitles.org
https://www.opensubtitles.org

For every compressed folder download, the filename starts with the title
of the movie. It is followed by the production year of the movie in between
brackets. Then the language of the subtitle is appended, which in this re-
search was always .eng. The language is followed by a x-number of subtitle
files (xcd) that appear inside the comprossed folder. Finally, each filename
is terminated with a number in between brackets, which indicates some kind
of subtitle version (different from the IMDb-ID). Hence this last number is
not relevant for this research. Every attribute is separated by dots, as well
as whitespaces in the movie title.

These features were always structured like this, with the (possibly noisy)
subtitle filename(s) inside the folder. Because the parent folder name con-
tains no additional irrelevant information (in comparison with the subtitle-
file itself), it is very convenient to use that one for linking the child subtitle-
file with its corresponding IMDb-ID. For this reason, the database is com-
posed of extracted folders for each individual movie, where the subtitle files
themselves appear inside (N = 4775). Please be aware of the fact that some
subtitle files are inherently subject to vulgar or discriminating language and
remain unfiltered to maintain data integrity.

2.3.2 Building IMDbLink

With the subtitle database ready to go, we programmed our own software
equivalent of CleanUpSubtitles and named it IMDbLink. The program was
coded in Java. The classes and code can be found in Appendix B.

Two input files are required to run the program. First, we included
the subtitle database from section 2.3.1 inside a compressed folder in our
working directory. This enables our program to decompress, read and write
subtitle files. Second, we included a thorough database of every single
existing IMDb-ID (up to may 2019), along with the relevant movie infor-
mation. This database was obtained from the IMDb website (https://
datasets.imdbws.com), which is offered as open-source material. The com-
pressed folder (imdbData.zip) contains one data file, data.tsv, which our
program is able to read.

The IMDb-data file contains an useful number of attributes. First, the
IMDb-ID number appears, represented as a number preceded by ’tt’ in
string format. It is followed by two title attributes, which are primary title
and original title respectively. A boolean isAdult indicates whether the title
is an adult title or not. The production year and runtime (in minutes) are
also included. Finally, the associated genres are represented as string array
(up to three genre slots available per title), which is what we are after.

13

https://datasets.imdbws.com
https://datasets.imdbws.com

The class Entry.java represents a single ID with associated attributes.
Everything is stored in this data structure, but only ID, title, year and
genres are used for further analysis. The main class IMDbLink.java makes
instantiations of all other classes, including ReduceDatabase.java. This class
reads the IMDb data file and reduces it according to certain criteria. It saves
the entries of all movies that were made after 1960 and have at least one
genre classification, along with our subtitle requirements. Everything else
is discarded. The reduced IMDb-database is written in a new file named
reducedIMDbData.csv. The original database contains (as of may 2019) over
5,8 million entries and we were able to reduce it to 477k entries, specific to our
problem description. This reduction of 92% is the main reason of a significant
runtime improvement compared to the CleanUpSubtitles program.

Next, the FetchSubtitleNames.java-class unzips the subtitle input file
and moves all .srt-files to a specific output folder in the project directory.
The parent folders and system information files are discarded, but the partial
filenames of the parent folders are extracted and transferred to substitute the
filename of the subtitle files (with the .srt-extension).

Finally, the MatchIMDbTitles.java-class compares all subtitle files with
each entry in the reduced IMDb database file by computing the Levenshtein
distance between the two. The Levenshtein distance is a similarity measure
between two strings (lower value is more similar), given by formula (1):

leva,b (i, j) =

max(i, j) if min(i, j) = 0,

min

leva,b (i− 1, j) + 1

leva,b (i, j − 1) + 1)

leva,b (i− 1, j − 1) + 1(ai 6=bj)

otherwise
(1)

Where a and b are the character strings and i and j denote the ith and
jth character respectively. Additionally, a normalized similarity score as a
function of title length is computed to express the success rate in terms
of a percentage. For each entry, the original relevant data (ID, title, year
and genres) are printed to compactReport.csv. Additionally, the presum-
able corresponding IMDb movie title and the similarity score are printed in
extensiveReport.csv for finding false associations. After opening the ex-
tensive report in a spreadsheet viewer, the relative low percentages (< 75%,
arbitrarily chosen) were highlighted in red, manually checked and removed
from the subtitle database if the titles didn’t match. This was mainly the
case for non-movie titles that were accidentally downloaded with the subtitle
database. Finally, the program renames all raw subtitle files by appending
the corresponding IMDb-ID in front.

14

2.3.3 Frequency analysis

IMDb discriminates 28 stand-alone genres, which are action, adult, adven-
ture, animation, biography, comedy, crime, documentary, drama, family, fan-
tasy, film-noir, game-show, history, horror, music, musical, mystery, news,
reality-tv, romance, sci-fi, short, sport, talk-show, thriller, war and west-
ern. Because the attributes are encoded non-orthogonally this way, they are
classified separately.

In a previous version of the class MatchIMDbTitles.java, a method was
included that kept track of all associated genre classifications that appeared.
After matching all subtitles with the corresponding IMDb entries using our
program, we gained some useful insights in the frequency distribution of gen-
res in our database. There are a couple of genres that are not mentioned once
across all subtitles, which are adult (mainly pornography), film-noir (smaller
genre popular in ’40s and ’50s movies), game-show, news, reality-tv, short
and talk-show (not movie related). Furthermore, it is clear that the genres
are not equally distributed, which is in line with our findings in the introduc-
tion. The most occurring genres in our dataset are drama, comedy, action,
adventure, crime, thriller and romance. Other genres decrease in frequency
as the categories become more and more subject specific (for example sci-fi
> history > western). The frequency distribution of the remaining 21 genres
in our dataset is shown in figure 2.3. A total of 4775 subtitle files were ana-
lyzed and combined they contained 12332 genre classifications. On average,
each movie was classified with 2,58 unique genre categories (σ = 0, 644).

Figure 2.3: Frequency distribution of movie genres in the
original database of subtitles (N = 4775)

15

For this research, our multi-label classification problem should be able to
accurately classify up to three genres for each subtitle file. As more genres
enter the classification problem, so increases its complexity. Including more
lower frequently occurring genres in the classification problem leads to a
greater class imbalance, which in turn leads to under- or over-sampling.
Therefore, we decided to take the seven most occurring genres to train our
classifiers with. Only movies with one or more of the seven most occurring
genres were kept for further analysis. Hence, all IMDb genre classifications
that are not along those seven (including their corresponding subtitles) were
removed from the data set.

This resulted in a new subtitle database that contains a reduced amount
of titles. 2111 subtitles remained (a reduction of 56%), with a total number
of 4996 genre classifications. On average, each movie is classified with 2,37
unique genre categories (σ = 0, 732). The new frequency distribution of
the seven most occurring genres can be found in figure 2.4. Furthermore, it
should be noted that there is a wide array of combinations between different
genres. A co-occurrence matrix is shown in table 1. It becomes apparent
that thrillers don’t often co-occur with comedy and romance genres, the
adventure and crime genres don’t occur very often together and the romance
genre is most of the time accompanied by comedy or drama genres only. The
adventure genre occurred as fourth most frequent in the original dataset,
but is ranked a mere seventh in the reduced dataset. This is because the
adventure genre often appeared in conjunction with other genres that were
filtered out in the previous stage.

Figure 2.4: Frequency distribution of movie genres in the
reduced database of subtitles (N = 2111)

16

Action Adve-
nture Comedy Crime Drama Rom-

ance
Adventure 255
Comedy 193 155
Crime 355 56 208
Drama 289 140 387 375
Romance 27 24 335 30 389
Thriller 224 67 16 224 215 15

Table 1: Co-occurrence matrix of the seven genres in the
reduced database of subtitles (N = 2111)

2.4 Data pre-processing

2.4.1 Data extraction and filtering

Though the subtitle files are compact in size, they all contain some structural
elements which have to be removed first, such that only the subtitles remain.
The subtitles themselves are subject to a certain amount of noise, which has
to be removed. Then, the data in natural language must be transformed into
a machine-friendly dataset before classifier analysis can begin. These steps
are involved in data pre-processing.

The subtitles files in .srt-format are all structured the same (see fig-
ure 2.5 for reference). Every movie subtitle contains a finite set of caption
frames, which are sequential blocks of subtitle lines along with some ac-
companying data. Each caption frame begins with a sequence number on
a single line, which is an integer starting from one at the beginning of the
file. It increments every subsequent caption frame. Next, on a new line
the timestamp is given, which gives an indication of the time the subtitle
should be shown on-screen. It is always formatted with two timestamps in
hour:minute:second,millisecond-format separated by an arrow, indicating
start and ending times of the corresponding subtitle respectively.

Next, the subtitle for that particular caption frame appears on one or two
lines below. All caption frames are separated by an empty line. The sequence
number, timestamp and newlines are easily removable, but there also exists
a variety of noise in the subtitles themselves. First, a couple of punctuation
marks exist that do not contribute to the meaning of the subtitles, and
should be removed. Examples are quotation marks (""), the dash-symbol (’-
’, frequently used to indicate another person speaking in dialogue) or ellipsis
marks (’...’). Also line terminating symbols (dots, exclamation and question

17

Figure 2.5: Example of a few caption frames that appear
in the subtitle file of the movie ’The Nice Guys’ (2016).

marks) are deleted, such that text-only data remains.
Furthermore, a selection of very basic text formatting-tags exist, in-

cluding <i>...</i>, <u>...</u> and ..., for cursive, underlined
and bold text segments respectively. Another one that appears is ... for changing text colors. These obviously have to
be removed as well. For subtitles that include closed captions, everything
between brackets ((...), [...], {...}) is also discarded. That is because
they often contain expressions, subjects or actions that do not relate di-
rectly to relevant dialogue (for example, ’(gasps)’). Another manifestation
appears when a subject is directly indicated when speaking dialogue (for
example, ’MAN: Please don’t panic!’). For all occurrences, the subject is
discarded, but the line itself is kept. At the beginning and/or end of the sub-
title files, subtitle makers often add some kind of source tag or trademark,
which don’t belong to the movie subtitles either and should therefore be dis-
carded as well. Finally, everything is converted to lower case letters. This
was done to prevent elements with different capitalization being mapped to
different words, while in fact they are equal.

From a grammatical viewpoint, every text in natural language uses differ-
ent word forms for varying grammatical contexts. For instance, verbs often
change their suffixes according to the corresponding subject or grammatical
context. Every instance of related words can be reduced to the dictionary

18

form of a word, which is called the lemma. For example, the verbs ’walk’,
’walks’, ’walked’ or ’walking’ all project to the lemma ’walk’. Additionally,
there are certain families of derivationally related words with similar mean-
ings, such as ’multiplication’ and ’multiplier’ pointing to ’multiple’. The
process of reducing morphological variation is called lemmatization and will
also be applied to reduce and combine the variability of word frequencies.
Because the classifiers rely on the frequency distribution of words, it is im-
portant that variability of the same word will be handled to avoid some word
forms being marked as irrelevant. We chose lemmatization over stemming
because it considers grammatical context, which often depends on part of
speech that frequently appears in subtitle dialogue. Stemming operates on
single words independent of context and will not be able to discriminate
between words with different meanings.

We have written a small java-project called SubtitlePreprocessing to
deal with these basic issues. The program was coded in Java and can be
found in Appendix C. It contains a SubReader.java-class which reads all lines
of all subtitle files that were successfully selected by IMDbLink. Each reduced
subtitle string, along with the IMDb-ID, are stored in a list of two-string
mappings. ID numbers are included because we need to make a connection
to the movie genres (attribute labels) when writing the output file. Sequence
numbers, timestamps and empty lines are discarded automatically. For the
lines that remain, we used a Trimmer.java-class to trim subtitle lines of
all characteristics that were mentioned above. Next, the reduced string is
lemmatized. For this we used Stanford’s CoreNLP pipeline (Manning et al.,
2014), which was included as a single class named StanfordLemmatizer.java
in our project. It uses different .jar-files of the CoreNLP package, which
were included in our project. After lemmatization, the class returns a string
of words separated by whitespaces. Finally, the SubWriter.java-class writes
a new file in .arff-format (see section 2.4.2) with each string on a newline,
preceded by binary genre attribute labels. After these operations, our data
only contains natural language and can be used for further analysis.

2.4.2 Transformation to feature vectors

For the remainder of this subsection, we utilized the WEKA extension to
the Java programming environment (Frank, Hall, & Witten, 2016). WEKA
is a collection of many tools and machine learning algorithms used for var-
ious classification and data mining purposes, designed by the University of
Waikato in New-Zealand.

19

The WEKA environment requires an .arff-file as input for further anal-
ysis. The acronym stands for Attribute-Relation File Format, which is a
simple ASCII-text file that describes a list of instances sharing a set of at-
tributes. Although WEKA provides a toolkit for many pre-processing pur-
poses, multi-label classification algorithms are not yet supported. That is
why we also used MEKA (Read, Reutemann, Pfahringer, & Holmes, 2016),
which is a multi-label extension to WEKA. It contains all functionalities of
WEKA, but also adds methods and algorithms for multi-label classification
tasks.

Because both programs weren’t able to transform our .txt subtitle files
to a single .arff-file, we implemented the creation of the .arff-file ourselves
in the project SubtitlePreprocessing. Before presenting the subtitle texts,
a header is inserted which contains a few lines that provide information
about the nature and structure of the data. At the top of the file, it expects
a relation declaration, which defines the relation name and the number of
labels. Next, each genre is represented as a single binary attribute. In multi-
label datasets, binary label attributes are the only kind of target attributes.
The sequence of genres is defined as they appear in figure 2.6. They appear
as a sequence preceding each subtitle string, separated by commas. For
example, if a subtitle is preceded by ’0,0,1,0,0,1,0,’, the corresponding
text is labeled with the genres Comedy and Romance. The lemmatized
subtitle text in natural language is defined as the final eighth attribute with
type string and is enclosed in quotation marks. The header is terminated
with the @data-line, which denotes the start of the data segment in the file.

Figure 2.6: Header of the data file and a small part of the first instance.

20

At this moment, our subtitle attribute is nothing but a mere random text
value. By applying an alphabetic tokenizer (only keep words with contiguous
alphabetic characters) on the text data in WEKA, there appears to exist
more than 184k unique words between all subtitle strings. Moreover, these
appear in varying frequencies for different subtitle text lengths. It should also
be noted that the majority of these words do not at all appear in a dictionary,
as many words simply contain typos, contain any leftover unfiltered text or
encode screams, grunts or other emotional expressions. Overall, this data
manifestation is not very suitable to train a classifier with.

In order to learn a classifier distinguish between movie genres, we need to
select useful features from the data and represent them with vectors in the
numerical domain. This transformation to a more machine-friendly dataset
is called feature selection and the StringToWordVector filter in WEKA allows
us to do just that. This class is able to convert string attributes into a set of
attributes representing word occurrence depending on a number of settings.
This filter contains a couple of settings that allow us to do some final pre-
processing on all string attributes, while one other setting will be treated
as variable to determine which feature vectors produce optimal performance
results.

In everyday language, there exists an array of words that appear so fre-
quently that they don’t hold any information for classification purposes. Also
known as stopwords, a few examples are ’a’, ’the’, or ’for’. The removal of
stopwords significantly helps for decreasing the feature set of words (Sharma
& Jain, 2015). Although an official list of stop words does not exist, we used
the NLTK’s list of English stopwords (Bird, Klein, & Loper, 2009), which
contains 127 entries. Additionally, we included the most popular American
first names (Kantrowitz, 1994) (both male and female) to the stopword list,
such that they are not included in the feature vectors. Names are not genre
dependent and have a high chance at appearing in the feature vector because
they’re generally mentioned a lot. That is why they were excluded. The
stopword list was included in WEKA’s stopwordsHandler. An alphabetic
tokenizer was also included as filter (tokenizer-setting), in order to remove
any elements that contained numbers or other unrecognized characters. An
arbitrarily maximum number of 5000 words were set to keep (wordsToKeep),
in order to control the program computational feasibility. Finally, WEKA’s
outputWordCounts was set to True to output word frequencies (numeric) in-
stead of word occurrences (binary). The former contains more information
compared to the latter. As a result of one movie having more dialogue than
another, the raw data is composed of string attributes with varying lengths.
This is reflected in the file sizes of the raw subtitle files (2kB-200kB). Because

21

of this variance, it is wise to normalise the data. The re-scaling of the data
was done using WEKA’s normaliseData.

One other setting was varied across datasets, namely TF-IDF. Another
way of displaying word frequencies is by applying the TF-IDF-metric (see for-
mula 2). TF-IDF is a very popular weighting metric, with 70% of text-based
recommender systems in digital libraries using it (Beel, Breitinger, Gipp, &
Langer, 2016). It is a numerical statistic which reflects the importance or
relevance of words in a document.

wi,j = tfi,j ∗ log(
N

dfi
) (2)

For term Tj in document Di where N is the total number of documents
in the collection. TF-IDF is the result of the product of two statistics, namely
TF (term frequency) and IDF (inverse document frequency). How many times
a certain word appears in a document is captured by the term frequency. If
a word also appears in a large corpus of other documents, then the docu-
ment frequency is large. The inverse of document frequency is multiplied
with the term frequency, because words that appear very often all the time
are probably not that informative. On the other hand, words that appear
frequent in a certain document but not in others are probably relevant for
that document. As we are looking for the most predictive words in classify-
ing each genre, it is assumed that the TF-IDF measure provides a significant
contribution to our classifier performance.

2.4.3 Attribute dimensionality reduction

WEKA’s StringToWordVector-filter determines the top 5000 words depend-
ing on word frequencies and class labels over all instances. All subtitle at-
tribute instances are transformed into numeric values for each of the selected
5000 words. In other words, each of these selected words is treated as a new
numeric attribute and every instance scores a value for each of these new at-
tributes. The value varies with the word occurrence in that instance. Con-
clusively, the eight attributes and 2111 instances of data with type string
are now transformed into a dataset with dimensions 5007x2111 and type
numeric. Each instance now contains feature vectors with word frequencies.

As the dimensionality of each instance is very large, we can limit the
number of attributes effectively by evaluating the relevance of each word for
classifying one or more genre labels. Some words are very specific for pre-
dicting a certain genre and are therefore very useful to train the classifiers
with. WEKA’s AttributeSelection-filter is a flexible supervised evaluative

22

over all numeric attributes. We used the information gain based feature selec-
tion metric (InfoGainAttributeEval) combined with search method Ranker,
based on the suggestions made by Yang and Pedersen (1997). The filter as-
signs a predictive value to each word attribute which defines the information
gain considering all genre labels. It measures how each attribute contributes
to decreasing the overall entropy. The Ranker ranks all attributes from most
informative to least informative based on this measure. A threshold value
of zero is applied, such that words without a reasonable predictive value
are discarded. Depending on the settings applied when creating the feature
vectors and on the original dataset, the set of word attributes is reduced to
685-791 entries (see table 3). A few examples of the words that were assigned
a high predictive value are ’kill, sex, security, gun, fun’, which makes sense
when attempting to match a genre label with each of these words. Figure
2.7 represents a collection of the most informative words. Figure 2.8 shows
how a selection of these words are distributed along class labels.

Figure 2.7: Word cloud of the most informative words for discriminating
genres. Words are more informative for bigger word sizes. Note: word

colors do not represent different class labels.

23

Figure 2.8: Genre distribution of a selection of words from the final feature
vectors. Some words are predictive for a few genres, but rarely for others.

2.5 WordNet: A lexical database

The dataset obtained so far will be used in one experimental condition. The
other one will be generated differently, namely by utilising WordNet (Miller,
1995). WordNet is a large lexical database of the English language. It is more
than a ordinary dictionary can provide, because it also displays semantic re-
lationships between words in tree-like structures. WordNet groups similar
words together with an abstract concept called synsets, which is an abbrevi-
ation of synonym sets. A word ususally has multiple synsets, which indicate
different meaning or linguistic uses of the word. The semantic relationships
are encoded by using hyponyms and hypernyms. From the viewpoint of a
certain word, these indicate more specific synsets and more general synsets
respectively. For example, a blackbird is a hyponym of a bird, which in turn
has a hypernym ’animal’ (see figure 2.9). This way, different words with
equal linguistic meaning meet each other at higher levels in the semantic
tree. We will be using hypernyms to generate our second dataset.

WordNet is offered as a Java API with the extJWNL-package (Extended
Java WordNet Library) (Autayeu, 2000-2016). This package allowed us to
access the WordNet dictionary from our Java programming environment. We

24

Figure 2.9: Semantical relations of the synset ’bird’ in WordNet

included the library to our workspace and created the WordNetLink.java-
class to handle the subtitle data. The code can be found in Appendix D.

Some words in our subtitle files serve more than one role in part of
speech. For example, a single word can both be considered as a verb or a
noun, depending on the context. The word ’attack’ is a verb in the phrase
’The soldiers attack the man’, but a noun in the phrase ’The man had an
asthma attack ’. The English language knows a couple of hundred words
that act this way. We need to know the grammatical role of each word
if we want to select its correct synset. A POS(Part of Speech)-Tagger is
designed to analyse phrase structure and is able to associate each word with
its syntactic role. Because a POS-Tagger works on phrases, we extended
our code from SubtitlePreprocessing to include POS-tagging. We utilized
the POS-Tagger made by the Stanford Natural Language Processing Group
(Toutanova, Klein, Manning, & Singer, 2003).

After the lemmatization in the pre-processing phase, we pass the lem-

25

matized string to the StanfordPOStagger.java-class. Here, the Stanford
POS-Tagger assigns the POS-labels to each word by appending the tag in
all-caps to the end of the word. A selection of 36 labels exists to effectively
label all things that can possibly appear in a text correctly. For our problem,
we are only interested in a few. We only included words from the subtitle
file with the tags as appearing in table 2. We limited ourselves to these tags,
because they retain the most information, which are helpful to train a clas-
sifier with. Other tags that exist include (but are not limited to) pronouns,
foreign words or wh-determiners, which are usually not very informative.

Class POS-Tag Meaning Example

JJ*
JJ Adjective third, participatory
JJR Adjective, comparative braver, calmer
JJS Adjective, superlative bravest, calmest

NN*

NN Noun, singular cabbage, humour
NNS Noun, plural coasts, bodyguards
NNP Proper noun, singular London, Trump
NNPS Proper noun, plural Antilles, Americans

RB*
RB Adverb occasionally, prominently
RBR Adverb, comparative larger, higher
RBS Adverb, superlative largest, highest

VB*

VB Verb, base vorm ask, believe
VBD Verb, past tense speculated, registered
VBG Verb, gerund or present participle focusing, traveling
VBN Verb, past principle experimented, desired
VBP Verb, non3rd person singular present comprise, emphasize
VBZ Verb, 3rd person singular present stretches, seduces

Table 2: POS-tag labels that were kept during pre-processing.

The resulting .arff-data file is added to the extJWNL-project. This class
contains a file reader, a file writer and all the tools extJWNL provides to handle
WordNet data structures. It copies the data file header and labels of each
instance to a new file. For all the tagged words that appear in the subtitle
attribute, the program will match it with the first synset of the corresponding
syntactic category. We made this choice because the first one usually covers
the intention of the word best, often being the most used definition. From
this synset, all the direct hypernyms are selected. These words are appended
to the correct instance in the new data file. All hypernyms that consist of
multiple words will be concatenated by an underline symbol such that they
become one term. Otherwise, the data pre-processing tools would consider
them as individual words. To prepare the second dataset for classification,
the same steps that were discussed in sections 2.4.2 and 2.4.3 were executed.

26

2.6 Classification algorithms

Binary Relevance

In multi-label classification, binary relevance is the most intuitive classifica-
tion algorithm (Zhang, Li, Liu, & Geng, 2018). It reduces the multi-label
problem to a single-label one by training a set of single-label classifiers, one
for each class (genre label). Each of these classifiers predicts the absence or
presence of a genre label and returns the union of all these decisions as multi-
label output. One major downside of binary relevance is that it ignores label
correlations that appear in the train data during the transformation process.
However, binary relevance has low computational complexity compared to
other methods, scaling linearly with the size of the label set. Aside from the
low computational complexity, it is argued that binary relevance methods
are competitive in performance and efficacy compared to other state-of-the-
art classification methods in machine learning (Luaces, Díez, Barranquero,
del Coz, & Bahamonde, 2012). Binary Relevance is often used as benchmark
to test the performance of other classification algorithms.

Probabilistic Classifier Chains

Classifier Chains are built on the basic principle of binary relevance methods
to eliminate their correlation problem, while keeping an acceptable compu-
tational complexity for large-scale problems, designed by Read, Pfahringer,
Holmes, and Frank (2009). The model contains as many binary classifiers
as in binary relevance (one for each label) and are linked along a chain
(C1, ..., C|L|). Instead of solely solving the single-label classification problem
at a current position in the chain, it also considers all decisions that were
made in the preceding stages of the same chain. Hence, the classification
progress begins at the first classifier and propagates along the chain, where
each subsequent classifier computes conditional probabilities augmented by
the previous classifiers. The algorithm keeps the label correlations into ac-
count, while having just a negligible worse runtime complexity compared to
binary relevance methods. Dembczynski et al. suggested a novel method in
multi-label classification, which was designed from a probabilistic perspec-
tive on classifier chains (Cheng, Hüllermeier, & Dembczynski, 2010). Their
Probabilistic Classifier Chains (PCCs) estimate the entire joint distribution
of labels to make better classification decisions. While they proved that
PCCs outperform regular CCs, it should be noted that these require 2|L|

paths and are therefore computationally infeasible for problems with a large
number of labels. Because we only consider seven labels (|L| = 7), the com-

27

putational complexity will not be an issue. Hence, we think that the PCC
classifier will provide better results than regular CCs.

Label Powerset

Label Powerset (LP) is a classification method that transforms the multi-
label classification problem into a single multi-class classification problem.
Note that this is different from a multi-label classification problem; a multi-
class problem assigns one class to each instance from a set of three or more
classes. It assigns each unique possible set of labels to an individual class.
That means that there will be 2|L| classes, with |L| being the number of origi-
nal labels. This poses complexity issues for a multi-label problem with many
labels, but for our problem it will be manageable. For each test instance, the
LP algorithm will output the most probable class from a probability distri-
bution over all classes, which is actually a set of labels. The label powerset
algorithm will also take label correlations into account. One downside to
this algorithm is that a few set of labels will occur very infrequently, because
not all combinations of labels occur in our problem (also see chapter 5).

Base Classifiers

All these multi-label classification algorithm use a base classifier to base
decisions on. The Naive Bayes classifier appears most in the literature as
baseline for text-based data. This probabilistic classifier is based on Bayes’
theorem with independence assumptions between features. It has linear time
complexity and is able to weigh up against other base classifiers in the domain
of textual data. It is a popular classifier because it only requires one sweep
through the training data, therefore it is very fast. However, it has modest
accuracy compared to other classifiers (Godbole & Sarawagi, 2004).

Another base classifier that will be tested is RandomForest. Instead of
splitting nodes based on some most important feature, this base classifier
constructs multiple decision trees during runtime based on some random-
ness and searches for the best feature among those (Breiman, 2001). The
diversity this brings usually promises a very good classification evaluation.
The Random Forest algorithm is robust against the general decision tree’s
tendency of overfitting to training data (Friedman, Hastie, & Tibshirani,
2008).

The final base classifier that will be used are based on Support Vec-
tor Machines (SVMs). SVMs use structural risk minimization by finding
a hypothesis h for which can be guaranteed to make the lowest true error

28

(probability that h will make an error on a randomly selected test sample).
SVMs have the property to be indepdent of the dimensionality of the feature
space. They were proved to be very robust, eliminating the need for expen-
sive parameter tuning (Joachims, 1998). SVMs have quadratic complexity
in terms of training examples (Godbole & Sarawagi, 2004). Because of all
these properties, just as we have seen in the literature research, SVMs were
found to work very well on text categorization problems.

2.7 Evaluation Measures

The evaluation measures that are used in single-label classification cannot
be easily transferred to multi-label problems. In fact, misclassifications in
the multi-label domain are not simply about a hard right or wrong; pre-
dictions containing a subset of the ground truth labels should be evaluated
better than predictions with no correct labels at all. Many different evalua-
tion measures exist to express different aspects of classification performance
(Maimon & Rokach, 2010), (Sebastiani, 2002), (Sorower, 2010).

For our problem description, we decided to use the micro-averaged F1

evaluation measure. This measure is adapted for a multi-label classification
problem and takes both precision and recall scores in consideration. There
are four outcomes for a certain decision, which are true positive (TP, posi-
tive label is correctly classified), true negative (TN, negative label is correctly
classified), false positive (FP, Type I-error, negative label is faulty predicted
positive) and false negative (FN, Type II-error, positive label is faulty pre-
dicted negative). Precision is the ratio of correct positive predictions to the
total predicted positives, averaged over all instances (see formula 3).

Pavg =
TPavg

TPavg + FPavg
(3)

Recall is the ratio of correct positive predictions to the total amount of
positives, averaged over all instances (see formula 4). In the output files,
micro/macro precision and -recall values are reported, but also as precision
and recall per label. We prefer to discuss these values as they display any
potential under-/overfitting of certain labels.

Ravg =
TPavg

TPavg + FNavg
(4)

The F1-score is then computed by taking the harmonic average of both
precision and recall evaluation measures (see formula 5). It provides a bal-
anced score between precision and recall. A micro-averaging metric is chosen

29

because it will aggregate the contributions of all classes to compute the av-
erage, while a macro-averaging metric just takes the average over all classes.
For our problem micro-averaging is preferred, as classes are not balanced
perfectly (not all genre classes are distributed equally).

F1,micro = 2 ∗ Pavg ∗Ravg

Pavg +Ravg
(5)

Finally, we decided on reporting two more evaluation measures that tell
us something about the amount of (in)correctly classified labels. The exact
match score is considered a very harsh evaluation, because it shows the
percentage of label sets that are completely correctly classified with respect
to the ground truth labels (see formula 6). Here, I(true) = 1, I(false) = 0
and n denotes the amount of labels. The hamming loss is also frequently
reported in the literature, which defines the percentage of total incorrectly
classified labels (see formula 7), where ∆ is the symmetric difference of label
sets. Both (6) and (7) are example based, and are averaged over all test
instances.

MR =
1

n

n∑
i=1

I(Yi = Zi) (6)

HL =
1

n

n∑
i=1

Yi∆Zi

N
(7)

30

Chapter 3

Results

Our four experimental conditions are split between the original dataset of
normalized word frequencies, with or without TF-IDF-transformation and
the WordNet dataset of direct hypernyms, also with or without TF-IDF-
transformation.

They were tested across nine multi-label classification algorithm x base
classifier combinations. The multi-label classification algorithms are Binary
Relevance (BR), Probabilistic Classifier Chains (PCC) and Label Powerset
(LP). The base classifiers are Naive Bayes (Bayes), Support Vector Machines
(SVM) and Random Forest (RF). To evaluate the performance of the clas-
sification process, we report F1-score, hamming-loss and exact match. All
precision and recall scores per label for each test condition, including run
times, are fully listed in appendix A. The results are listed in table 3.

IDF0-WN0 (A=791) IDF1-WN0 (A=728) IDF0-WN1 (A=703) IDF1-WN1 (A=685)
F1 EM HL F1 EM HL F1 EM HL F1 EM HL

BR
Bayes 0,784 0,127 0,268 0,796 0,138 0,256 0,765 0,124 0,286 0,790 0,129 0,261
SVM 0,856 0,233 0,192 0,842 0,206 0,210 0,849 0,226 0,201 0,846 0,210 0,204
RF 0,855 0,188 0,204 0,857 0,196 0,201 0,854 0,183 0,205 0,856 0,191 0,203

PCC
Bayes 0,785 0,128 0,267 0,796 0,137 0,256 0,765 0,124 0,286 0,789 0,129 0,261
SVM 0,853 0,243 0,195 0,837 0,210 0,216 0,846 0,249 0,205 0,843 0,215 0,208
RF 0,857 0,215 0,200 0,860 0,221 0,196 0,855 0,196 0,203 0,852 0,196 0,207

LP
Bayes 0,820 0,207 0,240 0,809 0,186 0,251 0,803 0,164 0,261 0,789 0,155 0,267
SVM 0,854 0,289 0,193 0,858 0,292 0,188 0,841 0,268 0,210 0,847 0,271 0,203
RF 0,826 0,246 0,229 0,832 0,248 0,223 0,823 0,223 0,233 0,824 0,227 0,232

Table 3: Classification performance scores for the four experimental conditions. The first
two columns represent the original dataset, without and with TF-IDF-transformation
respectively, the last two columns represent the WordNet dataset, without and with
TF-IDF-transformation respectively. The variable A next to the headers indicates

attribute vector lengths. The best scores for each evaluation measure are shown in bold.

31

Figure 3.1: Performance results (F1-scores) of all classification algorithms.
The four datasets are reported in different shades of blue (see legend).

The overall classification results are shown in figure 3.1. Everything was
tested using 10-fold cross-validation. The probabilistic classifier chains in
combination with the Random Forest base classifier performed best across
three datasets. The original dataset composed of normalized word frequen-
cies scored 85,6% and the equivalent dataset with TF-IDF-transformation
scored a F1-score of 86,0%. This was also the highest performance score
overall. For the WordNet datasets, the one composed of normalized word
frequencies scored 85,5% with the Probabilistic Classifier Chains and RF base
classifier, matching the other dataset without TF-IDF-transformation. The
other WordNet dataset (with TF-IDF-transformation) scored an equivalent
score of 85,6% with the Binary Relevance algorithm and RF base classifier.

The Naive Bayes classifier had the lowest F1-score for all multi-label
classification algorithms. The scores are similar on the Binary Relevance
algorithm and on PCCs, but offers a higher baseline on the Label Power-
set algorithm (except for the WordNet dataset with TF-IDF-transformation,
where all three multi-label classification algorithms perform the same). The
Random Forest base classifier outperforms the Support Vector Machines on
the Binary Relevance algorithm and PCCs, although the effect difference is
marginal. For the label powerset algorithm SVM base classifier performs
better. However, the Random Forest base classifier in that condition cannot
match the performance of the other two multi-label classifiers.

32

Averaged across datasets, the three best scoring algorithmic combinations
were BR/RF (85,55%), PCC/RF (85,60%) and LP/SVM (85,00%). Aver-
aged across algorithms, the dataset with normalized word frequencies scored
83,22% and the same datset with TF-IDF-transformation scored 83,19%.
The WordNet without and with TF-IDF-transformations scored 82,23% and
82,62% on their F1-scores respectively.

The F1-scores were computed by taking the harmonic mean between pre-
cision and recall scores. To visualize how these scores were established, we
give the distribution of precision/recall scores for each individual label. Be-
cause the distribution of precision/recall scores were equivalent over dataset
tests, we provide the average over all instances in figure 3.2.

Figure 3.2: Precision/recall-scores, averaged over all classification
algorithms and experimental conditions.

The thriller and adventure genres scored best on precision and recall. The
action and crime genres scored slightly lower. These four genres had higher
recall than precision. The romance genre scored similar to the action and
crime genres, but had higher precision than recall. Comedy scored below-
average, but the drama genre evidently scored worst on precision and recall.

Scores that stand out are the recall scores from the RF base classifier on
six genres, which were significantly higher than recall scores from other al-
gorithmic combinations. The effect was strongest with the Binary Relevance
and PCC algorithms, but also appeared in the Label Powerset algorithm to
a lower extent. On the contrary, the drama genre experienced the lowest
recall scores across all tests with RF. The precision scores were also lowest
for the drama genre, but they were higher than the recall rates.

33

The final evaluation metrics measured were the exact match ratio and
hamming loss. The distribution of these scores can be seen in figure 3.3.

Figure 3.3: Performance scores for exact match ratio (higher is
better) and hamming loss (lower is better) respectively.

The Naive Bayes classifier acted as baseline for the tests, as can be seen
in figure 3.3. The average exact match ratios are 12,95% and 12,63% for
BR and PCC algorithms respectively. It scores slightly better on the Label
Powerset tests (17,80%). The same trend for the Naive Bayes classifier can be
seen for the hamming loss metric (26,78%, 27,50% and 25,48% respectively).

Support Vector Machine base classifiers seem to outperform Random
Forest classifiers on the exact match ratio across tests. The best performance
was seen for the SVM/LP algorithmic combination with the original TF-IDF-
transformed dataset, with an exact match ratio of 29,20%. SVM and RF
classifiers scored equal hamming-loss scores for BR and PCC multi-label
algorithms, but SVM scored better with the Label Powerset algorithm than
RF, with an minimal (optimal) score of 18,80% on hamming-loss overall.

34

Chapter 4

Conclusions

1. The maximized classification performance (F1-scores) for each experi-
mental condition were consistent and did not differ from each other.

The results show that text-based features can be effectively used for the
multi-label classification problem of movie genres. Everything from data
extraction, pre-processing and classification takes up to a few seconds, ex-
ploiting the computational simplicity of analysing text-based data. The most
efficient classification algorithms scored between 85,5% and 86% on classifica-
tion performance across our four experimental conditions, which are numbers
were are very content with.

2. The drama genre was significantly more difficult to classify than others.

Although the classification performance results were good, they also fell
short by the performance of the drama genre. While some genre labels man-
aged to score precision/recall scores over 90%, the classification algorithms
were not able to capture the word variation in the drama genre effectively,
with an averaged precision/recall score of 60%. Some algorithms even scored
below chance for this movie genre.

3. Neither WordNet nor TF-IDF-transformation on the feature vectors of
subtitle words had a significant effect on classification performance.

Although our classification algorithms performed very well for determining
genre labels, we have to conclude that there exists no significant difference in
performance between the TF-IDF-transformed datasets and the regular and
WordNet datasets. They did not lead to an improved or reduced classifica-
tion accuracy. Instead, the classification algorithms maximizing performance
did not perform differently overall.

35

4. Based on F1-performance, PCCs with RF scored best for most datasets.

Probabilistic Classifier Chains in combination with the Random Forest
base classifier proved to be most accurate in three out of four datasets, the
Random Forest in conjunction with the Binary Relevance algorithm scored
similar results in the fourth dataset.

5. Based on the performance over all evaluation measures, including single
label precision/recall scores, hamming-loss and exact match scores, LP
with SVMs were most effective.

The Support Vector Machine classifiers performed better than the Ran-
dom Forest classifier on maximizing the exact match score and minimizing
the hamming-loss score. Overall, the most useful classification algorithm and
base classifier combination are SVMs in combination with the Label Power-
set algorithm for multi-label classification. While it wasn’t the absolute top
scoring classifier in F1-score, the performance was still very good (84-86%,
depending on the dataset). This trade-off in F1-score led to a very signifi-
cant increase in exact-match and hamming-loss performance, which no other
classifiers could beat. This translates to a bigger proportion of genres be-
ing correctly classified relative to the proportion of genres being incorrectly
classified.

36

Chapter 5

Discussion

In the previous chapter, we concluded that Random Forests achieved the best
scores for the F1-measure, but that SVMs would provide a better classifier
in general considering exact-match and hamming-loss evaluation measures.
The observation that SVM outperforms RF is also reflected in the recall
scores for both classifiers, which might even give us an explanation for the
under-performance of the recall scores of the drama genre in general.

The Random Forest classifier scored an average of 48,54% on recall for
the drama genre, while the SVM classifier scored an average of 63,88% on re-
call for the drama genre. From the literature (Breiman (2001) and Friedman
et al. (2008)) we learned that RF is robust to overfitting. But what about
underfitting? It might be the case that RF is not complex enough to capture
the trends in the data of the drama genre. After all, SVMs perform signif-
icantly better and are not based on decision trees. Another observation is
that the most informative words in the drama genre are not representative
for the genre. If we take another look at figure 2.8, we see that a lot of these
words are predictive for one or more genres, but the words shown all appear
with roughly the same frequency in movies with the drama genre. This is
an intrinsic property of the genre itself, as there are not many words that
could indicate the appearance of the drama genre without also making an
appearance in others.

The binary relevance algorithm also captured the classification perfor-
mance well, although the use of it is discouraged as label correlations are
not taken into account (Zhang et al., 2018). Probabilistic Chain Classifier
were created to overcome this issue, but both algorithms show similar results
in our research. This observation can be interpreted as our labels not hav-
ing any (or not many) correlations between genres. Although some genres

37

co-occur more frequently with certain others (see table 1 for reference), each
instance is accompanied with a stand-alone set of genres. Another thing
that should be mentioned is that we have chosen to follow the IMDb genre
classifications as ground-truth labels, but other genre classifications might
exist that differ from IMDb’s interpretation.

The WordNet dataset adaptation did not offer the expected results. In-
stead, the performance did not change compared to other datasets. In hind-
sight we think that the direct hypernyms did not offer the distinctive power
as hypothesised, because the direct hypernyms might be a step too short
to observe matches from other words. Higher-order levels of hypernyms or
WordNet domains might be the solution for improved classification perfor-
mance, but unfortunately did not reach the scope of our research.

A reason for the lack of effect between TF-IDF conditions is that WEKA’s
attribute selection filter is an effective measure for relevance too, which has
proven to work both on datasets with and without TF-IDF-transformation.

Our research is subject to a number of limitations. First, the scalability
of our results cannot be easily determined. Different results might arise when
following the same methodology with smaller or larger datasets. The Label
Powerset algorithm becomes more of a problem computationally when the
number of labels is increased. Another limitation of this algorithm, is that
it considers all possible combinations of labels - while some of those combi-
nations do not exist in the dataset of our multi-label classification problem.
Second, the genres were not equally distributed across the dataset, which
lead to majority and minority classes. Because the magnitude of differences
between classes was not that great, we have not balanced any classes. The
classification performance might improve without class imbalance. Third, we
did not experiment with parameter tweaking of the classification algorithms
thoroughly, which might also lead to a classification performance boost.

Future research might explore the effects of parameter tweaking, ex-
tended WordNet domain or higher-order hypernym transformation on classi-
fication performance. The classification of text-based features could also be
extended to other forms of digital video. One could attempt to build a rec-
ommender system based on predicted genre labels, or wrap all functionalities
described in this thesis into one application.

From our discussion it is understood that there is no single method or
classification algorithm that best fits a collection of problems in machine
learning. Algorithms and classifiers perform differently depending on size,
structure and nature of data it is given. However, the Support Vector Ma-
chine classifiers can be applied successfully to a large number of problems in
the domain of textual classification tasks, one of which is genre classification.

38

References

Autayeu, A. (2000-2016). extJWNL: Extended Java WordNet Library. (Re-
trieved from: http://extjwnl.sourceforge.net/)

Beel, J., Breitinger, C., Gipp, B., & Langer, S. (2016). Research-paper
recommender systems: a literature survey. International Journal on
Digital Libraries, 17 (4), 305–338.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with
Python: analyzing text with the natural language toolkit. O’Reilly
Media, Inc. (Retrieved from: https://gist.github.com/sebleier/
554280)

Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5–32.
Brezeale, D., & Cook, D. (2006). Using closed captions and visual features

to classify movies by genre. Poster session of the seventh international
workshop on Multimedia Data Mining (MDM/KDD2006), 1–5.

Brezeale, D., & Cook, D. (2008). Automatic video classification: A survey of
the literature. IEEE Transactions on Systems, Man and Cybernetics,
Part C (Applications and Reviews), 38 (3), 416–430.

Chao, B., & Sirmorya, A. (2016). Automated movie genre classification
with LDA-based topic modeling. International Journal of Computer
Applications, 145 (13), 1–5.

Cheng, W., Hüllermeier, E., & Dembczynski, K. (2010). Bayes optimal
multilabel classification via probabilistic classifier chains. In (pp. 279–
286).

Follows, S. (2018). Genre trends in global film production.
Retrieved from https://stephenfollows.com/genre-trends-global
-film-production

Frank, E., Hall, M., & Witten, I. (2016). The WEKA workbench. Online ap-
pendix for "Data Mining: Practical Machine Learning Tools and Tech-
niques" (fourth ed.). Morgan Kaufmann, Burlington, Massachusetts.
(Retrieved from: https://www.cs.waikato.ac.nz/ml/weka)

Friedman, J., Hastie, T., & Tibshirani, R. (2008). The elements of statistical

39

http://extjwnl.sourceforge.net/
https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280
https://stephenfollows.com/genre-trends-global-film-production
https://stephenfollows.com/genre-trends-global-film-production
https://www.cs.waikato.ac.nz/ml/weka

learning: Data mining, inference and prediction. In (second ed., pp.
587–588). New York: Springer.

Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled
classification. In Pacific-asia conference on knowledge discovery and
data mining (pp. 22–30). Springer, Berlin, Heidelberg.

Grootjen, F. (2018). CleanUpSubtitles. (Written in Java)
Joachims, T. (1998). Text categorization with support vector machines:

Learning with many relevant features. In (pp. 137–142). Springer,
Berlin, Heidelberg.

Kantrowitz, M. (1994). Name corpus: List of male, female and pet names.
(Version 1.3., retrieved from: http://www.cs.cmu.edu/Groups/AI/
util/areas/nlp/corpora/names/)

Katsiouli, P., Tsetsos, V., & Hadjiefthymiades, S. (2007). Semantic video
classification based on subtitles and domain terminologies. In KAMC.

Korde, V., & Mahender, C. (2012). Text classification and classifiers: a
survey. International Journal of Artificial Intelligence & Applications,
3 (2), 85–99.

Lee, C. (2017). Text-based video genre classification using multiple feature
categories and categorization methods (Master’s thesis). Departement
of Communication and Information Sciences, Tilburg University.

Luaces, O., Díez, J., Barranquero, J., del Coz, J., & Bahamonde, A. (2012).
Binary relevance efficacy for multilabel classification. Progress in Ar-
tificial Intelligence, 1 (4), 303–313.

Maimon, O., & Rokach, L. (2010). Data mining and knowledge discovery
handbook. In (2nd ed., p. 667-685). Springer, New York.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky,
D. (2014). The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of the 52nd annual meeting of the association
for computational linguistics: System demonstrations (pp. 55–60).

Miller, G. (1995). WordNet: a lexical database for english. Communications
of the ACM , 38 (11), 39–41.

Rasheed, S. Y., Z., & Shah, M. (2005). On the use of computable features
for film classification. IEEE Transactions on Circuits and Systems for
Video Technology , 15 (1), 52–64.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains
for multi-label classification. In Joint european conference on machine
learning and knowledge discovery in databases (pp. 254–269).

Read, J., Reutemann, P., Pfahringer, B., & Holmes, G. (2016). MEKA:
A multi-label/multi-target extension to WEKA. Journal of Machine

40

http://www.cs.cmu.edu/Groups/AI/util/areas/nlp/corpora/names/
http://www.cs.cmu.edu/Groups/AI/util/areas/nlp/corpora/names/

Learning Research, 17 (21), 1–5. Retrieved from http://jmlr.org/
papers/v17/12-164.html

Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM Computing Surveys (CSUR), 34 (1), 1–47.

Sharma, D., & Jain, S. (2015). Evaluation of stemming and stop word tech-
niques on text classification problem. International Journal of Scien-
tific Research in Computer Science and Engineering , 3 (2), 1–4.

Sorower, M. (2010). A literature survey on algorithms for multi-label learn-
ing. Oregon State University, Corvallis, 18 , 1-25.

Toutanova, K., Klein, D., Manning, C., & Singer, Y. (2003). Feature-rich
part-of-speech tagging with a cyclic dependency network. In Proceed-
ings of the 2003 conference of the north american chapter of the as-
sociation for computational linguistics on human language technology-
volume 1 (pp. 173–180).

Waldfogel, J. (2017). How digitization has created a golden age of mu-
sic, movies, books, and television. Journal of Economic Perspectives,
31 (3), 195–214.

Yang, Y., & Pedersen, J. (1997). A comparitive study on feature selection
in text categorization. International Conference on Machine Learning ,
97 (35), 412–420.

Zhang, M., Li, Y., Liu, X., & Geng, X. (2018). Binary relevance for multi-
label learning: an overview. Frontiers of Computer Science, 12 (2),
191–202.

Zhu, W., Toklu, C., & Liou, S. (2001). Automatic news video segmentation
and categorization based on closed-captioned text. In ICME (pp. 1–4).

41

http://jmlr.org/papers/v17/12-164.html
http://jmlr.org/papers/v17/12-164.html

Appendices

Appendix A: Raw data (results)

Abbreviations:

• Datasets:

– IDF{0/1}: TF-IDF-transformation no/yes.

– WN{0/1}: WordNet hypernym dataset no/yes.

• Classification algorithms:

– BR: Binary Relevance.

– PCC: Probabilistic Classifier Chains.

– LP: Label Powerset.

– BAYES: Naive Bayes base classifier.

– SVM: Support Vector Machine base classifier.

– RF: Random Forest base classifier.

• Evaluation methods:

– TT: Total runtime (averaged across folds, in seconds)

– EM: Exact Match (higher is better)

– HL: Hamming Loss (lower is better)

– F1: F1-score (higher is better)

42

TT EM HL F1

T
H
R
IL
L
E
R

A
D
V
E
N
T
U
R
E

D
R
A
M
A

A
C
T
IO

N

C
R
IM

E

R
O
M
A
N
C
E

C
O
M
E
D
Y

IDF0-WN0-BR-BAYES 3,8 0,127 0,268 0,784 0,901 0,914 0,564 0,841 0,843 0,919 0,743
0,819 0,82 0,505 0,823 0,759 0,683 0,595

IDF0-WN0-BR-SVM 29,4 0,233 0,192 0,856 0,865 0,909 0,691 0,867 0,86 0,859 0,803
0,903 0,932 0,66 0,886 0,867 0,878 0,795

IDF0-WN0-BR-RF 29,1 0,188 0,204 0,855 0,809 0,841 0,737 0,822 0,809 0,803 0,762
0,982 0,997 0,493 0,924 0,945 0,969 0,853

IDF0-WN0-PCC-BAYES 65,7 0,128 0,267 0,785 0,901 0,914 0,564 0,841 0,843 0,918 0,743
0,819 0,82 0,505 0,823 0,76 0,685 0,597

IDF0-WN0-PCC-SVM 35,2 0,243 0,195 0,853 0,865 0,911 0,689 0,865 0,868 0,865 0,797
0,903 0,93 0,647 0,88 0,871 0,855 0,781

IDF0-WN0-PCC-RF 57,8 0,215 0,2 0,857 0,814 0,847 0,765 0,823 0,813 0,817 0,77
0,976 0,994 0,493 0,923 0,94 0,96 0,843

IDF0-WN0-LP-BAYES 3,3 0,207 0,24 0,82 0,882 0,897 0,533 0,871 0,809 0,849 0,753
0,868 0,899 0,632 0,816 0,87 0,851 0,702

IDF0-WN0-LP-SVM 13,4 0,289 0,193 0,854 0,869 0,92 0,687 0,882 0,854 0,878 0,799
0,884 0,936 0,63 0,861 0,868 0,863 0,806

IDF0-WN0-LP-RF 7,9 0,246 0,229 0,826 0,817 0,874 0,646 0,861 0,846 0,897 0,755
0,934 0,969 0,435 0,827 0,862 0,744 0,769

IDF1-WN0-BR-BAYES 3,4 0,138 0,256 0,796 0,906 0,92 0,587 0,862 0,846 0,9 0,776
0,813 0,796 0,63 0,807 0,776 0,701 0,68

IDF1-WN0-BR-SVM 38,8 0,206 0,21 0,842 0,861 0,914 0,66 0,858 0,838 0,861 0,787
0,871 0,911 0,666 0,86 0,84 0,87 0,784

IDF1-WN0-BR-RF 28,3 0,196 0,201 0,857 0,807 0,843 0,74 0,82 0,808 0,81 0,771
0,984 0,998 0,521 0,929 0,94 0,958 0,862

IDF1-WN0-PCC-BAYES 60,9 0,124 0,286 0,765 0,903 0,91 0,58 0,851 0,85 0,882 0,741
0,765 0,791 0,503 0,789 0,716 0,66 0,578

IDF1-WN0-PCC-SVM 41,4 0,249 0,205 0,846 0,855 0,898 0,684 0,847 0,859 0,875 0,775
0,898 0,936 0,612 0,88 0,883 0,845 0,749

IDF1-WN0-PCC-RF 54,2 0,196 0,203 0,855 0,813 0,849 0,749 0,83 0,808 0,816 0,755
0,978 0,994 0,483 0,928 0,93 0,956 0,833

IDF1-WN0-LP-BAYES 2,9 0,186 0,251 0,809 0,871 0,886 0,548 0,834 0,817 0,838 0,781
0,883 0,875 0,623 0,826 0,812 0,816 0,675

IDF1-WN0-LP-SVM 13,1 0,292 0,188 0,858 0,873 0,923 0,672 0,881 0,871 0,869 0,807
0,886 0,941 0,639 0,869 0,891 0,867 0,803

IDF1-WN0-LP-RF 7,5 0,248 0,223 0,832 0,824 0,874 0,644 0,858 0,845 0,888 0,775
0,944 0,964 0,459 0,821 0,864 0,773 0,789

Table 4a: Results (raw data). For each experimental condition, the first
row is precision per label, second row is recall per label

43

TT EM HL F1

T
H
R
IL
L
E
R

A
D
V
E
N
T
U
R
E

D
R
A
M
A

A
C
T
IO

N

C
R
IM

E

R
O
M
A
N
C
E

C
O
M
E
D
Y

IDF0-WN1-BR-BAYES 3,5 0,124 0,286 0,765 0,903 0,91 0,58 0,852 0,849 0,882 0,74
0,765 0,791 0,502 0,791 0,715 0,658 0,574

IDF0-WN1-BR-SVM 36 0,226 0,201 0,849 0,855 0,897 0,689 0,854 0,855 0,861 0,774
0,898 0,94 0,619 0,878 0,889 0,867 0,784

IDF0-WN1-BR-RF 28,8 0,183 0,205 0,854 0,807 0,848 0,724 0,824 0,811 0,807 0,749
0,981 0,993 0,509 0,927 0,937 0,961 0,852

IDF0-WN1-PCC-BAYES 60,9 0,124 0,286 0,765 0,903 0,91 0,58 0,851 0,85 0,882 0,741
0,765 0,791 0,503 0,789 0,716 0,66 0,578

IDF0-WN1-PCC-SVM 41,4 0,249 0,205 0,846 0,855 0,898 0,684 0,847 0,859 0,875 0,775
0,898 0,936 0,612 0,88 0,883 0,845 0,749

IDF0-WN1-PCC-RF 54,2 0,196 0,203 0,855 0,813 0,849 0,749 0,83 0,808 0,816 0,755
0,978 0,994 0,483 0,928 0,93 0,956 0,833

IDF0-WN1-LP-BAYES 3 0,164 0,261 0,803 0,873 0,892 0,523 0,852 0,805 0,822 0,723
0,865 0,879 0,607 0,804 0,804 0,849 0,679

IDF0-WN1-LP-SVM 13,8 0,268 0,21 0,841 0,862 0,899 0,649 0,869 0,851 0,875 0,776
0,888 0,917 0,598 0,858 0,871 0,858 0,751

IDF0-WN1-LP-RF 7,8 0,223 0,233 0,823 0,817 0,877 0,615 0,853 0,845 0,893 0,739
0,927 0,959 0,428 0,826 0,874 0,762 0,751

IDF1-WN1-BR-BAYES 3,4 0,129 0,261 0,79 0,919 0,92 0,589 0,866 0,854 0,905 0,784
0,775 0,759 0,61 0,798 0,789 0,675 0,709

IDF1-WN1-BR-SVM 61,7 0,21 0,204 0,846 0,862 0,905 0,678 0,867 0,856 0,862 0,766
0,88 0,918 0,667 0,872 0,859 0,871 0,78

IDF1-WN1-BR-RF 27,9 0,191 0,203 0,856 0,805 0,85 0,72 0,819 0,819 0,803 0,759
0,986 0,994 0,549 0,931 0,937 0,963 0,839

IDF1-WN1-PCC-BAYES 59,9 0,129 0,261 0,789 0,919 0,92 0,589 0,865 0,853 0,906 0,781
0,775 0,759 0,611 0,797 0,787 0,677 0,704

IDF1-WN1-PCC-SVM 60 0,215 0,208 0,843 0,862 0,905 0,674 0,863 0,848 0,863 0,771
0,88 0,913 0,669 0,866 0,856 0,876 0,747

IDF1-WN1-PCC-RF 56,5 0,196 0,207 0,852 0,813 0,85 0,722 0,816 0,817 0,815 0,756
0,979 0,991 0,489 0,919 0,932 0,949 0,816

IDF1-WN1-LP-BAYES 2,9 0,155 0,267 0,798 0,882 0,875 0,543 0,83 0,786 0,83 0,764
0,838 0,826 0,653 0,82 0,769 0,839 0,729

IDF1-WN1-LP-SVM 13,8 0,271 0,203 0,847 0,871 0,909 0,654 0,868 0,866 0,862 0,784
0,877 0,928 0,646 0,87 0,878 0,864 0,747

IDF1-WN1-LP-RF 7,7 0,227 0,232 0,824 0,82 0,88 0,613 0,85 0,834 0,892 0,756
0,932 0,957 0,483 0,82 0,873 0,772 0,731

Table 4b: Results (raw data). For each experimental condition, the first
row is precision per label, second row is recall per label

44

Appendix B: IMDbLink

B.1 IMDbLink.java

import java . i o . IOException ;
import java . u t i l . ArrayList ;

/∗∗
∗ Links s u b t i t l e f i l e names with corresponding IMDb en t r i e s .
∗ Note : cu r r en t l y only works with movies , produced a f t e r 1960 , f o r which one or
∗ mult ip l e genres are r e ad i l y a v a i l a b l e . F i l t e r c r i t e r i a can be e a s i l y adjusted
∗ in ReduceDatabase c l a s s .
∗ @author Sam van der Meer
∗ @author sparky
∗/

pub l i c c l a s s IMDbLink {

//Zipped f o l d e r conta ins IMDb−data f i l e .
p r i va t e s t a t i c f i n a l S t r ing IMDB_DATABASE_ZIP_FILE = "imdbData . z ip " ;

//Raw IMDb−data f i l e , as i t appears in the zipped f o l d e r .
p r i va t e s t a t i c f i n a l S t r ing IMDB_DATABASE_FILE = "data . t sv " ;

//Zipped f o l d e r conta in ing f o l d e r s with sub t i t l e − f i l e s (. s r t) f o r each
movie .

p r i va t e s t a t i c f i n a l S t r ing SUBTITLE_FILE = " s u b t i t l e s . z ip " ;

// Folder where output s u b t i t l e f i l e s are s to red .
p r i va t e s t a t i c f i n a l S t r ing OUTPUT_FOLDER = " s r c /output/ s u b t i t l e s /" ;

//Three data f i l e s that s t o r e the reduced IMDb−database and two f o r
matched IDs , r e s p e c t i v e l y .

p r i va t e s t a t i c f i n a l S t r ing REDUCED_DATA_FILE = "reducedIMDbData . csv " ;
p r i va t e s t a t i c f i n a l S t r ing EXTENSIVE_REPORT_FILE =

" extens iveReport . csv " ;
p r i va t e s t a t i c f i n a l S t r ing COMPACT_REPORT_FILE = "compactReport . csv " ;

p r i va t e St r ing imdbDatabaseZipFile , imdbDatabaseFile , s u b t i t l e F i l e ;
p r i va t e St r ing outputFolder , reducedIMDbData , extens iveReport ,

compactReport ;

pub l i c IMDbLink(St r ing databaseZipFi le , S t r ing databaseFi l e ,
S t r ing s u b t i t l e F i l e , S t r ing outputFolder ,
S t r ing reducedIMDbData , S t r ing extens iveReport ,
S t r ing compactReport) {

t h i s . imdbDatabaseZipFile = databaseZ ipF i l e ;
t h i s . imdbDatabaseFile = databaseF i l e ;
t h i s . s u b t i t l e F i l e = s u b t i t l e F i l e ;
t h i s . outputFolder = outputFolder ;
t h i s . reducedIMDbData = reducedIMDbData ;
t h i s . extens iveReport = extens iveReport ;
t h i s . compactReport = compactReport ;

}

/∗∗
∗ Main executab le func t i on
∗ @param args : arguments
∗ @throws IOException
∗/

pub l i c s t a t i c void main (St r ing [] args) throws IOException {
new IMDbLink(IMDB_DATABASE_ZIP_FILE, IMDB_DATABASE_FILE,

SUBTITLE_FILE,
OUTPUT_FOLDER, REDUCED_DATA_FILE, EXTENSIVE_REPORT_FILE,

COMPACT_REPORT_FILE) . run () ;
}

/∗∗
∗ Cal l to other c l a s s e s
∗ @throws IOException
∗/

pr i va t e void run () throws IOException {
ArrayList<Entry> en t r i e s = new

ReduceDatabase (imdbDatabaseZipFile ,
imdbDatabaseFile , reducedIMDbData) . run () ;

45

ArrayList<Str ing> names = new FetchSubtit leNames (s u b t i t l e F i l e ,
outputFolder) . run () ;

MatchIMDbTitles matcher = new MatchIMDbTitles
(en t r i e s , names , outputFolder , extens iveReport ,

compactReport) ;
matcher . match () ;

}

}

B.2 Entry.java

/∗∗
∗ Represents a s i n g l e IMDb−entry .
∗ @author Sam van der Meer
∗ @author sparky
∗/

pub l i c c l a s s Entry {

p r i va t e St r ing id , type , t i t l e ;
p r i va t e boolean i sAdul t ;
p r i va t e i n t year , l ength ;
p r i va t e St r ing [] genres ;

pub l i c Entry (St r ing id , S t r ing type , S t r ing t i t l e , boolean isAdult ,
i n t year , i n t length , S t r ing [] genres) {

t h i s . id = id ;
t h i s . type = type ;
t h i s . t i t l e = t i t l e ;
t h i s . i sAdul t = isAdul t ;
t h i s . year = year ;
t h i s . l ength = length ;
t h i s . genres = genres ;

}

//Type o f the entry . Po s s i b l e types : movie , short , tvMin iSer i e s ,
// tvSe r i e s , tvMovie , tvEpisode , tvSpec ia l , video , videoGame .
pub l i c S t r ing getType () {

return type ;
}

//Entry t i t l e
pub l i c S t r ing g e tT i t l e () {

return t i t l e ;
}

// (Non)−Adult entry , t rue or f a l s e .
pub l i c boolean i sAdul t () {

return i sAdul t ;
}

//IMDb−ID (as appears in URL, preceded by ' t t ')
pub l i c S t r ing get Id () {

return id ;
}

// Pub l i ca t i on year
pub l i c i n t getYear () {

return year ;
}

//Runtime o f entry , in minutes .
pub l i c i n t getLength () {

return length ;
}

// L i s t o f a s s o c i a t ed genres (up to three) .
//Genres : l i s t o f a s s o c i a t ed genres , up to three . Po s s i b l e types :
// Action , Adult , Adventure , Animation , Biography , Comedy , Crime ,
// Documentary , Drama , Family , Fantasy , Film−Noir , Game−Show , History ,
// Horror , Music , Musical , Mystery , News , Real i ty−TV, Romance , Sci−Fi ,
// Short , Sport , Talk−Show , Thr i l l e r , War or Western .
pub l i c S t r ing [] getGenres () {

return genres ;
}

46

/∗∗
∗ Changes the l i s t o f genres accord ing to new St r ing array .
∗ @param newGenres : l i s t o f new genres (up to three) .
∗/

pub l i c void setGenres (St r ing [] newGenres) {
t h i s . genres = newGenres ;

}

/∗∗
∗ Not a l l a t t r i b u t e s are used here to c r ea t e the database
∗ due to re l evancy f o r the t h e s i s . Can be e a s i l y adjusted , however .
∗/

@Override
pub l i c S t r ing toS t r ing () {

S t r ingBu i ld e r s t r i n g = new St r ingBu i ld e r () ;
s t r i n g . append (id + " ; " + t i t l e + " ; " + year + " ; ") ;
f o r (S t r ing genre : genres)

s t r i n g . append (genre + " , ") ;
s t r i n g . deleteCharAt (s t r i n g . l ength ()−1) ;
re turn s t r i n g . t oS t r i ng () ;

}

}

B.3 ReduceDatabase.java

import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;
import java . i o . InputStream ;
import java . u t i l . ArrayList ;
import java . u t i l . Scanner ;
import java . u t i l . z ip . ZipEntry ;
import java . u t i l . z ip . Z ipF i l e ;

/∗∗
∗ Takes the IMDb data and only takes the e n t r i e s that meet c e r t a i n c r i t e r i a .
∗ Writes the new , reduced database to reducedData . csv . Ent r i e s that conta in
∗ mult ip l e movie t i t l e s w i l l be wr i t t en as two separate e n t r i e s .
∗ @author Sam van der Meer
∗ @author sparky
∗/

pub l i c c l a s s ReduceDatabase {

p r i va t e f i n a l S t r ing imdbDatabaseZipFile ;
p r i va t e f i n a l S t r ing imdbDatabaseFile ;
p r i va t e f i n a l S t r ing reducedDataFi le ;
p r i va t e Z ipF i l e z ip ;
p r i va t e Scanner scanner ;
p r i va t e i n t entr iesAdded ;

/∗
∗ Database a t t r i b u t e s (t i t l e . b a s i c s . t sv . gz , r e t r i e v e d from

https :// da ta s e t s . imdbws . com) :
∗ 0 : Unique IMDb−ID (as appears in URL f o r each entry , preceded by ' t t ')
∗ 1 : Type o f the entry . Po s s i b l e types : movie , short , tvMin iSer i e s ,
∗ tvSe r i e s , tvMovie , tvEpisode , tvSpec ia l , v ideo or videoGame .
∗ 2 : Primary t i t l e
∗ 3 : Secondary t i t l e
∗ 4 : (Non)−Adult entry , 0 (no) or 1 (yes)
∗ 5 : StartYear : in t ege r , i n d i c a t i n g s t a r t i n g date (one−time r e l e a s e s)
∗ 6 : EndYear : in t ege r , i n d i c a t i n g ending date (s e r i e s)
∗ 7 : Runtime : l ength o f the t i t l e in minutes
∗ 8 : Genres : l i s t o f a s s o c i a t ed genres , up to three . Po s s i b l e types :
∗ Action , Adult , Adventure , Animation , Biography , Comedy , Crime ,
∗ Documentary , Drama , Family , Fantasy , Film−Noir , Game−Show , History ,
∗ Horror , Music , Musical , Mystery , News , Real i ty−TV, Romance , Sci−Fi ,
∗ Short , Sport , Talk−Show , Thr i l l e r , War or Western .
∗ (!) Miss ing f i e l d s are i nd i c a t ed with "\N" , e n t r i e s separated by

newl ines .
∗∗/

/∗∗
∗ Class cons t ruc to r enab le s read ing from database f i l e s .

47

∗ @param imdbDatabaseZipFile : Zipped data f o l d e r appear ing in p r o j e c t
d i r e c t o r y .

∗ @param imdbDatabaseFile : Raw IMDb data . t sv f i l e i n s i d e z ip f i l e .
∗ @param reducedDataFi le : reducedData . csv s t o r e s a reduced ve r s i on o f

the IMDb−database .
∗/

pub l i c ReduceDatabase (St r ing databaseZipFi le , S t r ing databaseFi l e ,
S t r ing reducedDataFi le) {

t h i s . imdbDatabaseZipFile = databaseZ ipF i l e ;
t h i s . imdbDatabaseFile = databaseF i l e ;
t h i s . reducedDataFi le = reducedDataFi le ;

}

/∗∗
∗ F i l t e r s e n t r i e s based on c e r t a i n c r i t e r i a , which can be changed

below . Here ,
∗ we only want (tv−)movie en t r i e s , produced on or a f t e r 1960 , with some

genre
∗ c l a s s i f i c a t i o n .
∗ @param a t t r i b u t e s : f i e l d s f o r each entry .
∗ @return boolean i nd i c a t i n g whether the entry should be kept or not .
∗/

pr i va t e boolean meet sCr i t e r i a (St r ing [] a t t r i b u t e s) {
i n t year = (! a t t r i b u t e s [5] . equa l s ("\\N")) ?

In t ege r . pa r s e In t (a t t r i b u t e s [5]) : −1;
re turn ((a t t r i b u t e s [1] . equa l s ("movie") | |

a t t r i b u t e s [1] . equa l s (" tvMovie"))
&& (year >= 1960) && ! (a t t r i b u t e s [8] . equa l s ("\\N"))) ;

}

/∗∗
∗ Dec lare s reader and wr i ter , runs the a lgor i thm .
∗ @return the reduced a r r ayL i s t o f e n t r i e s (a l s o appears as

reducedData . csv in d i r e c t o r y) .
∗ @throws IOException
∗/

pub l i c ArrayList<Entry> run () throws IOException {
F i l eWr i t e r csvWriter = new Fi l eWr i t e r (reducedDataFi le) ;

z ip = new Z ipF i l e (imdbDatabaseZipFile) ;
ZipEntry database = z ip . getEntry (imdbDatabaseFile) ;
InputStream reader = z ip . getInputStream (database) ;
System . out . p r i n t l n ("Reading and reduc ing IMDb t i t l e s . . . ") ;
r e turn reduce (reader , csvWriter) ;

}

/∗∗
∗ Reduces o r i g i n a l IMDb database accord ing to c e r t a i n c r i t e r i a .
∗ Writes new reduced database to reducedData . csv (appears in d i r e c t o r y) .
∗ @param reader : f o r read ing the o r i g i n a l database f i l e .
∗ @param csvWriter : f o r wr i t i ng new reduced database f i l e .
∗ @return ArrayList o f reduced e n t r i e s .
∗ @throws IOException
∗/

pr i va t e ArrayList<Entry> reduce (InputStream reader , F i l eWr i t e r
csvWriter) throws IOException {

St r ing l i n e ;
i n t l inesRead = 0 ;
ArrayList<Entry> en t r i e s = new ArrayList<Entry >() ;
scanner = new Scanner (reader) ;

scanner . u seDe l imi t e r ("\n") ;
scanner . nextLine () ;
whi le (scanner . hasNext ()) {

l i n e = scanner . nextLine () ;
l inesRead++;
St r ing [] a t t r i b u t e s = l i n e . s p l i t ("\ t ") ;
i f (mee t sCr i t e r i a (a t t r i b u t e s)) {

i f (a t t r i b u t e s . l ength != 9)
throw new RuntimeException (" Inva l i d input l i n e ") ;

addEntry (a t t r i bu t e s , en t r i e s , csvWriter) ;
}
i f (l inesRead%200000==0)

System . out . p r in t ("∗") ;
}
i n t percentage = 100−(entr iesAdded ∗100/ l inesRead) ;
System . out . p r i n t l n ("\n" + l inesRead + " Lines read , which were

reduced to " +

48

entr iesAdded + " t i t l e s (" + percentage + "%
reduct ion) . \ n") ;

csvWriter . f l u s h () ;
csvWriter . c l o s e () ;
r eader . c l o s e () ;

r e turn e n t r i e s ;
}

/∗∗
∗ Copies an e x i s t i n g entry to the new database and e n t r i e s data

s t ru c tu r e .
∗ I f the re i s a secondary t i t l e and i t i s d i f f e r e n t from the primary

t i t l e ,
∗ then an add i t i ona l entry i s c reated in order to c o r r e c t l y match the

s u b t i t l e f i l e s .
∗ @param a t t r i b u t e s : data f i e l d s o f each entry
∗ @param en t r i e s : a r r ayL i s t conta in ing reduced e n t r i e s
∗ @param csvWriter : f o r wr i t i ng new reduced database
∗ @throws IOException
∗/

pr i va t e void addEntry (St r ing [] a t t r i bu t e s , ArrayList<Entry> en t r i e s ,
F i l eWr i t e r csvWriter) throws IOException {
St r ing pr imaryTit l e = a t t r i b u t e s [2] ;

S t r ing secondaryTi t l e = a t t r i b u t e s [3] ;
i f (! pr imaryTit l e . equa l s ("\\N")) {

e n t r i e s . add (getEntry (a t t r i bu t e s , pr imaryTit l e)) ;
csvWriter . append (e n t r i e s . get (e n t r i e s . s i z e ()−1) . t oS t r ing () +

"\n") ;
entr iesAdded++;

}
i f (! pr imaryTit l e . equa l s (s econdaryTi t l e) &&

! secondaryTi t l e . equa l s ("\\N")) {
e n t r i e s . add (getEntry (a t t r i bu t e s , s e condaryTi t l e)) ;
csvWriter . append (e n t r i e s . get (e n t r i e s . s i z e ()−1) . t oS t r ing () +

"\n") ;
entr iesAdded++;

}
}

/∗∗
∗ Creates new entry ob j e c t
∗ @param a t t r i b u t e s : data f i e l d s o f each entry
∗ @param t i t l e : c o r r e c t t i t l e f o r t h i s entry
∗ @return entry ob j e c t
∗/

pr i va t e Entry getEntry (St r ing [] a t t r i bu t e s , S t r ing t i t l e) {
boolean i sAdul t = a t t r i b u t e s [4] . equa l s ("1") ;
i n t year = (! a t t r i b u t e s [5] . equa l s ("\\N")) ?

In t ege r . pa r s e In t (a t t r i b u t e s [5]) : −1;
i n t l ength = (! a t t r i b u t e s [7] . equa l s ("\\N")) ?

In t ege r . pa r s e In t (a t t r i b u t e s [7]) : −1;
S t r ing [] genres = a t t r i b u t e s [8] . s p l i t (" , ") ;
r e turn new Entry (a t t r i b u t e s [0] , a t t r i b u t e s [1] , t i t l e , i sAdult , year ,

length , genres) ;
}

}

B.4 FetchSubtitleNames.java

import java . i o . BufferedInputStream ;
import java . i o . ByteArrayInputStream ;
import java . i o . ByteArrayOutputStream ;
import java . i o . F i l e ;
import java . i o . Fi leInputStream ;
import java . i o . FileOutputStream ;
import java . i o . IOException ;
import java . i o . InputStream ;
import java . i o . OutputStream ;
import java . u t i l . ArrayList ;
import java . u t i l . z ip . ZipEntry ;
import java . u t i l . z ip . ZipInputStream ;

/∗∗
∗ Unzips the s u b t i t l e data f i l e and cop i e s the . s r t− f i l e s to the input f o l d e r .

49

∗ Overwrites every f i l ename with the movie t i t l e and product ion year to a l low
e a s i e r IMDb l inkage .

∗ @author Sam van der Meer
∗ @author sparky
∗/

pub l i c c l a s s FetchSubtit leNames {

p r i va t e f i n a l S t r ing s u b t i t l e F i l e ;
p r i va t e f i n a l S t r ing outputFolder ;

/∗∗
∗ Class const ructor , enab le s read ing and wr i t ing to d i r e c t o r y f i l e s .
∗ @param s u b t i t l e F i l e : z ipped f i l e conta in ing movie f o l d e r s .
∗ @param outputFolder : output f o l d e r to s t o r e . s r t− f i l e s .
∗/

pub l i c FetchSubtit leNames (St r ing s u b t i t l e F i l e , S t r ing outputFolder) {
t h i s . s u b t i t l e F i l e = s u b t i t l e F i l e ;
t h i s . outputFolder = outputFolder ;

}

/∗∗
∗ Dec lare s r eade r s and wr i t e r s , runs main algor i thm .
∗ Only takes t i t l e and product ion year to r ep l a c e s u b t i t l e f i l e name .
∗ @return l i s t o f new s u b t i t l e f i l e names (as they appear in input

f o l d e r) .
∗ @throws IOException
∗/

pub l i c ArrayList<Str ing> run () throws IOException {
System . out . p r i n t l n ("Moving and renaming s u b t i t l e f i l e s . . . ") ;
i n t f i l e sRead = 0 , subt i t l e sAdded = 0 ;
ArrayList<Str ing> f i leNames = new ArrayList<Str ing >() ;
t ry (Fi leInputStream f i s = new Fi leInputStream (s u b t i t l e F i l e) ;

BufferedInputStream b i s = new BufferedInputStream (f i s) ;
ZipInputStream stream = new ZipInputStream (b i s)) {
F i l e f o l d e r=new F i l e (outputFolder) ;
checkFolder (f o l d e r) ;

ZipEntry entry ;
whi le ((entry=stream . getNextEntry ()) != nu l l) {

St r ing name = entry . getName () ;
i f (name . endsWith (" . s r t ")) {

//Only take t i t l e and product ion
year

St r ing folderName =
name . subs t r i ng (10 ,name . indexOf (" . eng . ")) ;

ByteArrayOutputStream bu f f e r=new
ByteArrayOutputStream () ;

copy (stream , bu f f e r) ;
//Check i f mu l t ip l e s u b t i t l e f i l e s f o r a

t i t l e e x i s t .
//Then , combine in format ion in to a new

s u b t i t l e f i l e .
FileOutputStream fi leOutputStream=new

FileOutputStream (new F i l e
(f o l d e r , folderName+multipleCDs (f i leNames ,

folderName , name)+" . s r t ")) ;
ByteArrayInputStream inputStream=new

ByteArrayInputStream
(bu f f e r . toByteArray ()) ;
copy (inputStream , f i l eOutputStream) ;
f i l eNames . add (folderName) ;
subt i t l e sAdded++;
inputStream . c l o s e () ;
f i l eOutputStream . c l o s e () ;

}
f i l e sRead++;

i f (f i l e sRead%500==0)
System . out . p r in t ("∗") ;

}
System . out . p r i n t l n ("\n" + f i l e sRead + " F i l e s

read , "
+ subt i t l e sAdded + " s u b t i t l e f i l e s

added . ") ;
f i s . c l o s e () ;
b i s . c l o s e () ;

}
re turn f i l eNames ;

50

}

/∗∗
∗ I f output f o l d e r does not yet ex i s t s , makes one .
∗ Otherwise i t w i l l d e l e t e a l l p rev ious output data f i r s t .
∗ @param f o l d e r : output f o l d e r
∗/

pr i va t e void checkFolder (F i l e f o l d e r) {
i f (! f o l d e r . e x i s t s ())
f o l d e r . mkdir () ;

e l s e
f o r (F i l e f : f o l d e r . l i s t F i l e s ()) {

i f (! f . i sD i r e c t o r y ())
f . d e l e t e () ;

}
}

/∗∗
∗ Checks i f a movie conta ins mul t ip l e s u b t i t l e f i l e s .
∗ I f the re are , a s imple s t r i n g w i l l be appended to the f i l ename .
∗ @param f i leNames : l i s t o f r ep laced f i l enames
∗ @param folderName : cur rent f i l ename to be cons ide red .
∗ @param name : name o f d i r e c t o r y path
∗ @return empty s t r i n g i f movie i s unique , "CD2" or "CD3" f o r mul t ip l e

f i l e s .
∗/

pr i va t e St r ing multipleCDs (ArrayList<Str ing> fi leNames , S t r ing
folderName , St r ing name) {

i f (f i l eNames . s i z e ()>1 && ! name . conta ins ("1cd") &&
fi leNames . get (f i l eNames . s i z e ()−1) . equa l s (folderName))

{
i f

(f i l eNames . get (f i l eNames . s i z e ()−2) . equa l s (folderName))
{

return " .CD3" ;
}
return " .CD2" ;

}
e l s e re turn "" ;

}

/∗∗
∗ Copies content o f a s u b t i t l e f i l e to a new f i l e .
∗ @param input : input f i l e
∗ @param output : output f i l e
∗ @throws IOException
∗/

pr i va t e void copy (InputStream input , OutputStream output) throws
IOException {
byte [] buf=new byte [1 0 2 4] ;
whi le (t rue) {

i n t l ength=input . read (buf) ;
i f (length <0)

break ;
output . wr i t e (buf , 0 , l ength) ;

}
}

}

B.5 MatchIMDbTitles.java

import java . i o . F i l e ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;
import java . u t i l . ArrayList ;
import java . u t i l . Arrays ;
import java . u t i l . regex . Matcher ;
import java . u t i l . regex . Pattern ;

/∗∗
∗ Matches s u b t i t l e f i l e s with IMDb IDs us ing Levenshte in d i s t anc e s .
∗ Only keeps s u b t i t l e s that appear along the seven most occur r ing genres .
∗ Sub t i t l e f i l e names are adjusted with corresponding IMDb ID and o r i g i n a l

t i t l e name .

51

∗ @author Sam van der Meer
∗ @author sparky
∗/

pub l i c c l a s s MatchIMDbTitles {

p r i va t e ArrayList<Entry> imdbEntries ;
p r i va t e ArrayList<Str ing> subt i t l eF i l eNames ;
p r i va t e i n t t i t l e sAna lyzed , s ub t i t l eF i l e sWr i t t e n ;
p r i va t e f i n a l S t r ing outputFolder ;
p r i va t e f i n a l F i l eWr i t e r extens iveWriter , compactWriter ;

//Used to keep the most f r e quen t l y occur r ing genres only .
p r i va t e St r ing [] f requentGenres =

{"Action" , "Adventure" , "Comedy" , "Crime" , "Drama" , "Romance" , " Th r i l l e r " } ;

/∗∗
∗ Class const ructor , d e f i n e s two f i l e w r i t e r s to wr i t e . csv−r epor t

f i l e s .
∗ @param imdbEntries : a l l IMDb−database e n t r i e s that remained a f t e r

f i l t e r i n g .
∗ @param subt i t l eF i l eNames : l i s t o f s u b t i t l e f i l e names .
∗ @param outputFolder : output f o l d e r f i l e path .
∗ @param extens iveReport : f i l e name o f the ex t en s i v e r epor t .
∗ @param compactReport : f i l e name o f the compact r epor t .
∗ @throws IOException
∗/

pub l i c MatchIMDbTitles (ArrayList<Entry> imdbEntries , ArrayList<Str ing>
subt i t l eF i l eNames ,

S t r ing outputFolder , S t r ing extens iveReport , S t r ing
compactReport) throws IOException {

t h i s . imdbEntries = imdbEntries ;
t h i s . subt i t l eF i l eNames = subt i t l eF i l eNames ;
t h i s . outputFolder = outputFolder ;
t h i s . ex tens iveWr i t e r = new Fi l eWr i t e r (extens iveReport) ;
t h i s . compactWriter = new Fi l eWr i t e r (compactReport) ;

}

/∗∗
∗ Main executab le a lgor i thm . Writes headers in f i l e w r i t e r s and informs

user
∗ o f execut ion prog r e s s . Reports can be found in extens iveReport . csv

and compactReport . csv .
∗ @throws IOException
∗/

pub l i c void match () throws IOException {
System . out . p r i n t l n ("\nAttempting to match s u b t i t l e s to IMDb

IDs . . . ") ;
ex tens iveWr i t e r . append ("Matched IMDb t i t l e i n f o ; ; ; ; Matching

repor t ; ; ; \ n") ;
extens iveWr i t e r . append ("ID ; T i t l e ; Year ; Genres ; T i t l e o r i g i n a l

(again) ; "
+ " T i t l e IMDb match ; Score ; Reduced genres \n") ;

compactWriter . append ("ID ; T i t l e ; Year ; Genres\n") ;
getMatches () ;
System . out . p r i n t l n ("\nDone ! Sub t i t l e s can be found in s r c /output

f o l d e r , "
+ " repor t in \n\ t extens iveReport . csv and

compactReport . csv ") ;
p r i n tRe su l t s () ;
ex tens iveWr i t e r . f l u s h () ;
extens iveWr i t e r . c l o s e () ;
compactWriter . f l u s h () ;
compactWriter . c l o s e () ;

}

/∗∗
∗ I t e r a t e s through the l i s t o f a l l s u b t i t l e f i l e s , then checks which

IMDb−t i t l e
∗ matches the s u b t i t l e f i l e best . I f the s u b t i t l e f i l e being cons ide red

s o l e l y
∗ conta ins one or more o f the most occur r ing genres (see frequentGenre

c l a s s
∗ a t t r i bu t e) , i t w i l l be added to the output f o l d e r and repor t f i l e s .
∗ Otherwise , i t w i l l be de l e t ed .
∗ @throws IOException
∗/

52

pr i va t e void getMatches () throws IOException {
F i l e d i r e c t o r y = new F i l e (outputFolder) ;
F i l e [] f i l e s = d i r e c t o r y . l i s t F i l e s () ;
f o r (S t r ing f i leName : subt i t l eF i l eNames) {

i n t bes tScore = In t ege r .MAX_VALUE;
Entry bestEntry = nu l l ;
S t r ing name = fi leName . subs t r i ng (0 ,

f i leName . indexOf (" . (")) ;
name = name . r ep l a c e (' . ' , ' ') ;
i n t year = getFileNameYear (f i leName) ;
f o r (Entry entry : imdbEntries) {

i f (entry . getYear () == year) {
i n t s co r e =

l ev en sh t e i n (name , entry . g e tT i t l e () . toLowerCase ()) ;
i f (s co r e < bestScore) {

bes tScore = sco r e ;
bestEntry = entry ;

}
}

}
i f (hasOnlyHighFreqGenres (bestEntry))

addSubt i t l eToFi l e (bestEntry , name , bestScore ,
f i l e s) ;

e l s e
d e l e t e S u b t i t l e F i l e (f i l e s , bestEntry) ;

t i t l e sAna l y z ed++;
i f (t i t l e sAna l y z ed % 165==0)

System . out . p r in t ("∗") ;
}

}

/∗∗
∗ Adds s u b t i t l e f i l e to the output f o l d e r and changes the f i l ename by

inc lud ing IMDb−ID .
∗ @param bestEntry : IMDb−entry that was matched with the cur rent

s u b t i t l e f i l e .
∗ @param name : t i t l e o f s u b t i t l e f i l e name exc lud ing product ion year

and no . o f cds .
∗ @param bestScore : s co r e from computing the l e v en sh t e i n d i s t ance .
∗ @param f i l e s : l i s t o f i n i t i a l f i l e s in output f o l d e r .
∗ @throws IOException
∗/

pr i va t e void addSubt i t l eToFi l e (Entry bestEntry , S t r ing name ,
i n t bestScore , F i l e [] f i l e s) throws IOException {

sub t i t l eF i l e sWr i t t e n++;
extens iveWr i t e r . append (bestEntry . t oS t r ing () + " ; " + name + " ; " +

bestEntry . g e tT i t l e () + " ; " + computeSimi lar i ty (name ,
bes tScore) + "%;" + Arrays . t oS t r ing (bestEntry . getGenres ()) +
"\n") ;

compactWriter . append (bestEntry . get Id () + " ; " +
bestEntry . g e tT i t l e () + " ; " + bestEntry . getYear () + " ; " +
Arrays . t oS t r i ng (bestEntry . getGenres ()) + "\n") ;

r enameSubt i t l eF i l e (f i l e s , bestEntry) ;
}

/∗∗
∗ Computes a percentages o f the s im i l a r i t y measure , compensating f o r

t i t l e
∗ name length . This normal i sed s co r e g i v e s an rough i nd i c a t i o n whether a
∗ f i l e was matched c o r r e c t l y or not .
∗ @param name : s u b t i t l e f i l e name (without year) .
∗ @param bestScore : l e v en sh t e i n s im i l a r i t y s co r e .
∗ @return percentage i nd i c a t i n g normal i sed s im i l a r i t y .
∗/

pr i va t e i n t computeSimi lar i ty (St r ing name , i n t bes tScore) {
// s c o r e s < 75% should be checked f o r matching e r r o r s .
double s imScore = bestScore ;
double simLength = name . l ength () ;
r e turn (i n t) (100−(s imScore / simLength) ∗100) ;

}

/∗∗
∗ Renames a s u b t i t l e f i l e name by appending corresponding IMDb ID .
∗ @param f i l e s : l i s t o f s u b t i t l e f i l e s appear ing in output f o l d e r .
∗ @param bestEntry : cur rent entry being adjusted .
∗/

53

pr i va t e void r enameSubt i t l eF i l e (F i l e [] f i l e s , Entry entry) {
i f (t i t l e sAna l y z ed < f i l e s . l ength) {

F i l e s u b t i t l e F i l e = f i l e s [t i t l e sAna l y z ed] ;
F i l e id = new F i l e (outputFolder +

entry . get Id () . t oS t r ing () + " (" +
s u b t i t l e F i l e . getName () . sub s t r i ng (0 ,

s u b t i t l e F i l e . getName () . l ength ()−4) +
") . s r t ") ;

s u b t i t l e F i l e . renameTo (id) ;
}

}

/∗∗
∗ Dele te s a s u b t i t l e f i l e name out o f the output f o l d e r .
∗ @param f i l e s : l i s t o f s u b t i t l e f i l e s appear ing in output f o l d e r .
∗ @param bestEntry : cur rent entry being removed .
∗/

pr i va t e void d e l e t e S u b t i t l e F i l e (F i l e [] f i l e s , Entry bestEntry) {
i f (t i t l e sAna l y z ed < f i l e s . l ength) {

F i l e s u b t i t l e F i l e = f i l e s [t i t l e sAna l y z ed] ;
s u b t i t l e F i l e . d e l e t e () ;

}
}

/∗∗
∗ Pattern f o r de t e c t i ng product ion years in s u b t i t l e f i l e names .
∗ @param fi leName : the f i l ename being cons ide red .
∗ @return the product ion year as i n t e g e r in the s u b t i t l e f i l e name

s t r i n g .
∗/

pub l i c i n t getFileNameYear (St r ing f i leName) {
Pattern yearPattern =

Pattern . compile (" \\(19[0 −9] [0 −9]\\) | \\ (20 [01] [0 −9] \\) ") ;
Matcher matcher = yearPattern . matcher (f i leName) ;
matcher . f i nd () ;
S t r ing yearSt r ing =

fi leName . subs t r i ng (matcher . s t a r t () +1,matcher . end ()−1) ;
re turn In t eg e r . pa r s e In t (yea rSt r ing) ;

}

/∗∗
∗ Computes the Levenshte in d i s t ance between two s t r i n g s .
∗ Functions as s im i l a r i t y measure in order to s e l e c t the most s im i l a r

one .
∗ @param name : o r i g i n a l f i l e name s t r i n g .
∗ @param t i t l e : cur rent IMDb−t i t l e s t r i n g being cons ide red .
∗ @return d i s t ance as in tege r , lower i s b e t t e r (more s im i l a r) .
∗/

pr i va t e i n t l e v en sh t e i n (St r ing name , St r ing t i t l e) {
i n t m = name . l ength () +1;
i n t n = t i t l e . l ength () +1;
i n t [] [] d i s t ance = new in t [m] [n] ;
f o r (i n t i =0; i < m ; i++)

d i s t ance [i] [0]= i ;
f o r (i n t j =0; j < n ; j++)

d i s t ance [0] [j]= j ;
f o r (i n t i =1; i < m ; i++)

f o r (i n t j =1; j < n ; j++) {
in t co s t ;
i f (name . charAt (i −1) == t i t l e . charAt (j −1))

co s t = 0 ;
e l s e

co s t = 1 ;
d i s t ance [i] [j] = minimum(d i s t ance [i −1] [j]+1 ,

d i s t ance [i] [j −1]+1, d i s t ance [i −1] [j −1]+cos t) ;
}

re turn d i s t ance [m−1] [n−1] ;
}

/∗∗
∗ Returns the minimum between three i n t e g e r s .
∗ @param i : i n t e g e r 1 .
∗ @param j : i n t e g e r 2 .
∗ @param k : i n t e g e r 3 .
∗ @return minimum of integer1 , i n t e r g e r 2 and i n t e r g e r 3 .
∗/

54

pr i va t e i n t minimum(in t i , i n t j , i n t k) {
return minimum(i ,minimum(j , k)) ;

}

/∗∗
∗ Returns the minimum between two i n t e g e r s .
∗ @param j : i n t e g e r 1 .
∗ @param k : i n t e g e r 2 .
∗ @return minimum of i n t e g e r 1 and i n t e r g e r 2 .
∗/

pr i va t e i n t minimum(in t j , i n t k) {
i f (j < k)

return j ;
r e turn k ;
}

/∗∗
∗ Checks i f the entry only conta ins genres l i s t e d in the p r i va t e c l a s s

a t t r i bu t e .
∗ Most popular genres are Action , Adventure , Comedy , Crime , Drama ,

Romance , Th r i l l e r .
∗ @param entry : entry to be cons idered , only genre−a t t r i bu t e i s used .
∗ @return boolean i nd i c a t i n g i f i t only conta ins the most f r e quen t l y

occur r ing genres .
∗/

pr i va t e boolean hasOnlyHighFreqGenres (Entry entry) {
f o r (S t r ing genre : entry . getGenres ())

i f
(! Arrays . stream (frequentGenres) . p a r a l l e l () . anyMatch (genre : : conta ins))

re turn f a l s e ;
r e turn true ;

}

/∗∗
∗ Informs the user what proport ion o f the s u b t i t l e s was kept .
∗ @param numberMatched : the t o t a l number o f s u c c e s s f u l IMDb−l i n k s made .
∗/

pr i va t e void p r i n tRe su l t s () {
i n t percentage = sub t i t l eF i l e sWr i t t e n ∗100/ t i t l e sAna l y z ed ;
System . out . p r i n t l n ("\n" + sub t i t l eF i l e sWr i t t e n + "/" +

t i t l e sAna l y z ed +
" (" + percentage + "%) o f the s u b t i t l e f i l e s are along

the most " + " occur r ing \n\ t genres " +
Arrays . t oS t r i ng (f requentGenres)) ;

}

}

55

Appendix C: SubtitlePreprocessing

C.1 SubtitlePreprocessing.java

import java . i o . IOException ;

/∗∗
∗ Serves var i ous pre−proc e s s i ng purposes f o r natura l language p roc e s s i ng o f

s u b t i t l e f i l e s .
∗ Combines a l l s u b t i t l e s , inc luded with genre l abe l s , i n to a s i n g l e ARFF− f i l e

f o r f u r th e r ana l y s i s .
∗ @author Sam van der Meer
∗/

pub l i c c l a s s Sub t i t l eP r ep r o c e s s i ng {

p r i va t e s t a t i c f i n a l S t r ing GENRE_DATA_FILE = "compactReport . csv " ;
p r i va t e s t a t i c f i n a l S t r ing SUBTITLE_FILE = " s u b t i t l e s . z ip " ;
p r i va t e s t a t i c f i n a l S t r ing OUTPUT_FILE = "data . a r f f " ;
p r i va t e St r ing r epo r tF i l e , s u b t i t l e F i l e , outputFileName ;

/∗∗
∗ Class const ructor , i n i t i a l i s i n g f i l e l o c a t i o n s .
∗ @param r epo r tF i l e : csv−data f i l e with genre a l l o c a t i o n s .
∗ @param s u b t i t l e F i l e : zip− f i l e with database o f s u b t i t l e s .
∗ @param outputFileName : output f i l e name to wr i t e reduced s u b t i t l e

f i l e s to .
∗/

pub l i c Sub t i t l eP r ep r o c e s s i ng (St r ing r epo r tF i l e , S t r ing s u b t i t l e F i l e ,
S t r ing outputFileName) {

t h i s . r e p o r tF i l e = r epo r tF i l e ;
t h i s . s u b t i t l e F i l e = s u b t i t l e F i l e ;
t h i s . outputFileName = outputFileName ;

}

/∗∗
∗ Main executab le func t i on
∗ @param args : arguments
∗ @throws IOException
∗/

pub l i c s t a t i c void main (St r ing [] args) throws IOException {
new Subt i t l eP r ep r o c e s s i ng (GENRE_DATA_FILE, SUBTITLE_FILE,

OUTPUT_FILE) . run () ;
}

/∗∗
∗ Cal l to other c l a s s e s . Parameter s e t t i n g s f o r subreader :
∗ False −> St r i ng s w i l l only get pre−proces sed and lemmatized .
∗ True −> St r i ng s w i l l get pre−processed , lemmatized and POS−tagged .
∗ @throws IOException
∗/

pub l i c void run () throws IOException {
SubWriter wr i t e r = new SubWriter (outputFileName , r e p o r tF i l e) ;
SubReader reader = new SubReader (wr i ter , s u b t i t l e F i l e , t rue) ;
r eader . r e a dSub t i t l eF i l e s () ;

}

}

C.2 SubReader.java

import java . i o . BufferedInputStream ;
import java . i o . F i l e ;
import java . i o . Fi leInputStream ;
import java . i o . IOException ;
import java . i o . InputStream ;
import java . u t i l . ArrayList ;
import java . u t i l . Arrays ;
import java . u t i l . HashMap ;
import java . u t i l .Map;
import java . u t i l . Scanner ;
import java . u t i l . z ip . ZipEntry ;
import java . u t i l . z ip . Z ipF i l e ;

56

import java . u t i l . z ip . ZipInputStream ;

/∗∗
∗ Reads database o f s u b t i t l e f i l e s one l i n e at a time .
∗ Makes c a l l s to reduce data and wr i t e them to a new f i l e .
∗ @author Sam van der Meer
∗/

pub l i c c l a s s SubReader {

p r i va t e f i n a l SubWriter wr i t e r ;
p r i va t e f i n a l Trimmer trimmer ;
p r i va t e f i n a l S t r ing s u b t i t l e F i l e ;

// I f wordNetMode i s act ivated , a l s o app l i e s POS−Tagger on the s u b t i t l e s .
p r i va t e f i n a l boolean wordNetMode ;

/∗∗
∗ Class cons t ruc to r i n i t i a l i s e s data , a l s o makes new trimmer ob j e c t .
∗ @param wr i t e r : wr i t e r c l a s s to wr i t e new reduced s u b t i t l e f i l e s .
∗ @param s u b t i t l e F i l e : l o c a t i on o f zip− f i l e conta in ing s u b t i t l e

database .
∗ @param wordNetMode : i f true , s t r i n g s w i l l a l s o get POS−tagged .
∗/

pub l i c SubReader (SubWriter wr i ter , S t r ing s u b t i t l e F i l e , boolean
wordNetMode) {

t h i s . w r i t e r = wr i t e r ;
t h i s . s u b t i t l e F i l e = s u b t i t l e F i l e ;
t h i s . wordNetMode = wordNetMode ;
t h i s . trimmer = new Trimmer () ;

}

/∗∗
∗ Reads every s u b t i t l e f i l e in the database , pas se s i s onto

r e adSub t i t l eF i l e −method f o r
∗ read ing the f i l e s themse lves . Passes r e s u l t s to the wr i t e r ob j e c t f o r

output genera t i on .
∗ @throws IOException
∗/

pub l i c void r e a dSub t i t l eF i l e s () throws IOException {
pr intUser In fo rmat ion () ;
Fi le InputStream f i s = new Fi leInputStream (s u b t i t l e F i l e) ;
BufferedInputStream b i s = new BufferedInputStream (f i s) ;
ZipInputStream stream = new ZipInputStream (b i s) ;
stream . getNextEntry () ;
ZipEntry entry ;
ArrayList<Map<Str ing , Str ing>> s u b t i t l e s = new

ArrayList<Map<Str ing , Str ing >>() ;
StanfordLemmatizer lem = new StanfordLemmatizer () ;

StanfordPOStagger pos = new StanfordPOStagger () ;
whi le ((entry = stream . getNextEntry ()) != nu l l) {

System . out . p r i n t l n ("Analysing " +
entry . getName () . sub s t r i ng (20)) ;

Map<Str ing , Str ing> subEntry = new
HashMap<Str ing , Str ing >() ;

S t r ing sub t i t l e ID =
entry . getName () . subSequence (10 ,19) . t oS t r i ng () ;

S t r ing reducedStr ing = r e adSub t i t l eF i l e (entry) ;
S t r ing lemmatizedStr ing = lem . lemmatize (reducedStr ing) ;
i f (wordNetMode)

subEntry . put (subt i t l e ID ,
pos . tag (lemmatizedStr ing)) ;

e l s e
subEntry . put (subt i t l e ID , lemmatizedStr ing) ;

s u b t i t l e s . add (subEntry) ;
}
wr i t e r . wr i t e (s u b t i t l e s) ;
System . out . p r i n t l n ("\nDone ! Result can be found in data . a r f f . ") ;
stream . c l o s e () ;

}

/∗∗
∗ Pr int s an in t r oduc t i on to the conso l e d i sp l ay ing the cur rent mode .
∗/

pr i va t e void pr intUser In fo rmat ion () {
i f (wordNetMode)

System . out . p r i n t l n ("WordNetMode ac t i va t ed : POS−tagger

57

w i l l a l s o be app l i ed . ") ;
e l s e

System . out . p r i n t l n ("WordNetMode deact ivated : s t r i n g s
w i l l get lemmatized only . ") ;

System . out . p r i n t l n ("Pre−proc e s s i ng s u b t i l t e data . . . \ n") ;
}

/∗∗
∗ Reads a s i n g l e s u b t i t l e f i l e l i n e by l i n e . Once everyth ing has been
∗ read and reduced , i t w i l l c a l l the wr i t e r ob j e c t to c r ea t e a new f i l e .
∗ @param entry : cur rent s u b t i t l e f i l e being read .
∗ @throws IOException
∗/

pr i va t e St r ing r e adSub t i t l eF i l e (ZipEntry entry) throws IOException {
Z ipF i l e z ip = new Z ipF i l e (new F i l e (s u b t i t l e F i l e)) ;
InputStream in = z ip . getInputStream (entry) ;
Scanner subReader = new Scanner (in) ;
S t r i ngBu i ld e r l i n e s = new St r ingBu i ld e r () ;
S t r ing l i n e , l a s tL i n e = "" ;
i n t l inesRead = 0 ;
whi le (subReader . hasNext ()) {

l i n e = subReader . nextLine () ;
l inesRead++;
boolean checkTrademark = (l inesRead < 5) ;
i f (trimmer . i sText (l i n e , checkTrademark)) {

l a s tL i n e = cleanUpLine (l i n e) ;
l i n e s . append (l a s tL i n e) ;

}
}
i f (! trimmer . i sText (l a s tL ine , t rue))

l i n e s . d e l e t e (l i n e s . l ength ()−1− l a s tL i n e . l ength () ,
l i n e s . l ength ()−1) ;

z ip . c l o s e () ;
subReader . c l o s e () ;
r e turn l i n e s . t oS t r ing () ;

}

/∗∗
∗ Checks f o r common c h a r a c t e r i s t i c s in each l i n e , c a l l s
∗ the corresponding trimmer method (s) acco rd ing ly .
∗ @param l i n e : cur rent l i n e o f t ext being cons ide red .
∗ @return the reduced l i n e i f there ' s anything l e f t , the empty s t r i n g

otherwi se .
∗/

pr i va t e St r ing cleanUpLine (St r ing l i n e) {
St r ing [] conta insFormatt ing = {"<" , "</" } ;
S t r ing [] conta insPunctuat ion = {"\\∗" , "\"" , "−" , "#" , " ' " , " , " } ;
S t r ing [] conta insLineTerminators = {" ! " , "?" , " . " } ;
S t r ing [] conta insBracket s = {" (" , ") " , "{" , "}" , " [" , "] " } ;
l i n e = trimmer . removeDots (l i n e) ;
i f

(Arrays . stream (containsFormatt ing) . p a r a l l e l () . anyMatch (l i n e : : conta ins))
l i n e = trimmer . trimFormatting (l i n e) ;

i f
(Arrays . stream (conta insPunctuat ion) . p a r a l l e l () . anyMatch (l i n e : : conta ins))

l i n e = trimmer . tr imPunctuation (l i n e ,
conta insPunctuat ion) ;

i f
(Arrays . stream (conta insLineTerminators) . p a r a l l e l () . anyMatch (l i n e : : conta ins))

l i n e = trimmer . tr imLineTerminators (l i n e ,
conta insLineTerminators) ;

i f
(Arrays . stream (conta insBracket s) . p a r a l l e l () . anyMatch (l i n e : : conta ins))

l i n e = trimmer . tr imBrackets (l i n e) ;
i f (l i n e . l ength () > 0) {

Character f i r s t = l i n e . charAt (0) ;
i f (Character . i sWhitespace (f i r s t))

l i n e = trimmer . removeSpaces (l i n e) ;
e l s e i f (Character . isUpperCase (f i r s t))

l i n e = trimmer . removeDialogueSubject (l i n e) ;
i f (! l i n e . endsWith (" "))

re turn (l i n e . toLowerCase () + " ") ;
e l s e re turn l i n e . toLowerCase () ;

}
e l s e re turn "" ;

}

58

C.3 StanfordLemmatizer.java

import java . u t i l . L i s t ;
import java . u t i l . P rope r t i e s ;
import edu . s tan fo rd . nlp . l i n g . CoreAnnotations . LemmaAnnotation ;
import edu . s tan fo rd . nlp . l i n g . CoreAnnotations . SentencesAnnotat ion ;
import edu . s tan fo rd . nlp . l i n g . CoreAnnotations . TokensAnnotation ;
import edu . s tan fo rd . nlp . l i n g . CoreLabel ;
import edu . s tan fo rd . nlp . p i p e l i n e . Annotation ;
import edu . s tan fo rd . nlp . p i p e l i n e . StanfordCoreNLP ;
import edu . s tan fo rd . nlp . u t i l . CoreMap ;

/∗∗
∗ Lemmatization c l a s s f o r mapping va r i a t i on in words to the corresponding lemma .
∗ Adapted from Stanford CoreNLP package , v e r s i on 3 . 9 . 2 .
∗ Retr ieved from https :// s tan fo rdn lp . github . i o /CoreNLP/ index . html as seen in :
∗ Manning , Chr i s topher D. , Mihai Surdeanu , John Bauer , Jenny Finkel , Steven J .

Bethard ,
∗ and David McClosky . 2014 . The Stanford CoreNLP Natural Language Proces s ing

Too lk i t
∗ In Proceedings o f the 52nd Annual Meeting o f the Assoc i a t i on f o r

Computational L i n g u i s t i c s : System Demonstrations , pp . 55−60.
∗ Class code r e t r i e v ed from

https :// s tackove r f l ow . com/ ques t i on s /1578062/ lemmatization−java :
∗ @author Tihamer (11−11−2013) .
∗/

pub l i c c l a s s StanfordLemmatizer {

protec ted StanfordCoreNLP p i p e l i n e ;

pub l i c StanfordLemmatizer () {
// Create StanfordCoreNLP ob j e c t p rope r t i e s , with POS tagg ing
// (r equ i r ed f o r lemmatizat ion) , and lemmatizat ion
Prope r t i e s props ;
props = new Prope r t i e s () ;
props . put (" annotators " , " tokenize , s s p l i t , pos , lemma") ;

/∗
∗ This i s a p i p e l i n e that takes in a s t r i n g and re tu rns var i ous

analyzed l i n g u i s t i c forms . The St r ing i s token ized v ia a t oken i z e r
(such as PTBTokenizerAnnotator) , and then other sequence model
s t y l e annotat ion can be used to add th ings l i k e lemmas , POS tags ,
and named e n t i t i e s . These are returned as a l i s t o f CoreLabels .
Other ana l y s i s components bu i ld and s t o r e parse t r e e s , dependency
graphs , e t c .

∗ This c l a s s i s des igned to apply mul t ip l e Annotators to an Annotation .
The idea i s that you f i r s t bu i ld up the p i p e l i n e by adding
Annotators , and then you take the ob j e c t s you wish to annotate and
pass them in and get in return a f u l l y annotated ob j e c t .

∗
∗ StanfordCoreNLP loads a l o t o f models , so you probably
∗ only want to do t h i s once per execut ion
∗/

t h i s . p i p e l i n e = new StanfordCoreNLP (props) ;
}

pub l i c S t r ing lemmatize (St r ing documentText) {
S t r ingBu i ld e r lemmas = new St r ingBu i ld e r () ;
// Create an empty Annotation j u s t with the given text
Annotation document = new Annotation (documentText) ;
// run a l l Annotators on t h i s t ext
t h i s . p i p e l i n e . annotate (document) ;
// I t e r a t e over a l l o f the s entence s found
List<CoreMap> sentence s = document . get (SentencesAnnotat ion . c l a s s) ;
f o r (CoreMap sentence : s entence s) {

// I t e r a t e over a l l tokens in a sentence
f o r (CoreLabel token : sentence . get (TokensAnnotation . c l a s s)) {

// Retr i eve and add the lemma f o r each word in to the
// s t r i n g o f lemmas
lemmas . append (token . get (LemmaAnnotation . c l a s s)+" ") ;

}
}
return lemmas . t oS t r ing () ;

}

}

59

C.4 StanfordPOStagger.java

import edu . s tan fo rd . nlp . tagger . maxent . MaxentTagger ;

/∗∗
∗ Appl ies POS−tagg ing on a s u b t i t l e s t r i n g us ing the Stanford POS−tagger .
∗ @author Sam van der Meer
∗/

pub l i c c l a s s StanfordPOStagger {

p r i va t e f i n a l MaxentTagger tagger ;

/∗∗
∗ Class const ructor , i n i t i a l i s e s new tagger ob j e c t once .
∗/

pub l i c StanfordPOStagger () {
t h i s . tagger = new

MaxentTagger ("edu/ s tan fo rd /nlp /models /pos−tagger /"
+ " eng l i sh−l e f t 3word s / eng l i sh−l e f t3words−d i s t s im . tagger ") ;

}

/∗∗
∗ Appl ies POS−tagg ing on a s u b t i t l e s t r i n g .
∗ @param lemmatizedStr ing : the (lemmatized) s u b t i t l e s t r i n g .
∗ @return POS−tagged s t r i n g reduced to a c e r t a i n range o f tags .
∗/

pub l i c S t r ing tag (St r ing lemmatizedStr ing) {
St r ing taggedStr ing = tagger . t agSt r ing (lemmatizedStr ing) ;
re turn reduceSt r ing (taggedStr ing) ;

}

/∗∗
∗ Reduces a POS−tagged s t r i n g to a l im i t ed range o f tags .
∗ Only keeps ad j e c t i v e s (JJ ∗) , nouns (NN∗) , verbs (VB∗) and adverbs
∗ (RB∗ , but not WRB, which are adverbs s t a r t i n g with wh−) , d i s c a rd s the

r e s t .
∗ @param taggedStr ing : the POS−tagged s u b t i t l e s t r i n g .
∗ @return a reduced s t r i n g o f words with tags .
∗/

pr i va t e St r ing reduceSt r ing (St r ing taggedStr ing) {
St r ing [] words = taggedStr ing . s p l i t (" ") ;
S t r i ngBu i ld e r reducedStr ing = new St r ingBu i ld e r () ;
f o r (S t r ing word : words)

i f (word . conta in s ("JJ") | | word . conta ins ("NN") | |
word . conta ins ("VB") | |

((word . conta ins ("RB") &&
! word . conta ins ("WRB"))))

reducedStr ing . append (word + " ") ;
re turn reducedStr ing . t oS t r ing () ;

}

}

C.5 Trimmer.java

import java . u t i l . Arrays ;
import java . u t i l . regex . Matcher ;
import java . u t i l . regex . Pattern ;

/∗∗
∗ Contains methods to trim down s u b t i t l e f i l e s based on c e r t a i n f e a t u r e s .
∗ @author Sam van der Meer
∗/

pub l i c c l a s s Trimmer {

/∗∗
∗ Checks whether a l i n e i s natura l language or not .
∗ Discards sequence numbers , time stamps and newl ines .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @param checkTrademark : t e l l s the method i f i t should check on any

trademarks .
∗ @return boolean i nd i c a t i n g whether the l i n e i s natura l language or

not .

60

∗/
pub l i c boolean isText (St r ing l i n e , boolean checkTrademark) {

i f (checkTrademark && isTradeMark (l i n e))
re turn f a l s e ;

Pattern timeStamp = Pattern . compile
("\\d{2}:\\d{2}:\\d{2} ,\\d{3} −−>

\\d{2}:\\d{2}:\\d{2} ,\\d{3}") ;
Matcher matcher = timeStamp . matcher (l i n e) ;
i f (l i n e . matches ("\\d+") | | matcher . f i nd () | | l i n e . isEmpty ())

re turn f a l s e ;
e l s e

re turn true ;
}

/∗∗
∗ Checks i f the f i r s t or l a s t s t r i n g belong to the s u b t i t l e s themse lves .
∗ Sub t i t l e makers o f t en add a source s t r i n g at the beginning or end o f

t h e i r f i l e s .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @return boolean i nd i c a t i n g i f the l i n e i s a trademark or not .
∗/

pr i va t e boolean isTradeMark (St r ing l i n e) {
St r ing [] s t r i n g s = {"www" , " . com" , "http " , " . org " , " fp s " , " sync

by" , " Sub t i t l e " , " s u b t i t l e " , " subs " ,
"Resync" , "Sync" , "Cleaned" , "Ripped" , "Produced" , " Screenplay " , "Production " } ;

i f (Arrays . stream (s t r i n g s) . p a r a l l e l () . anyMatch (l i n e : : conta ins))
re turn true ;

e l s e re turn f a l s e ;
}

/∗∗
∗ Removes a l l e lements o f formatt ing in a l i n e .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @return the l i n e without any formatt ing elements .
∗/

pub l i c S t r ing trimFormatting (St r ing l i n e) {
St r ing trimmedLine = l i n e ;
Pattern font = Pattern . compile ("\\") ;
Matcher match = font . matcher (trimmedLine) ;
i f (match . f i nd ())

trimmedLine = trimmedLine . r ep l a c e (match . group () , "") ;
S t r ing [] toBeReplaced =

{"" , "" , "<i>" , "</i>" , "<u>" , "</u>" , "" } ;
f o r (S t r ing s : toBeReplaced)

trimmedLine = trimmedLine . r e p l a c eA l l (s , "") ;
r e turn trimmedLine ;

}

/∗∗
∗ Removes a l l i r r e l e v a n t p i e c e s o f punctuation in a l i n e .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @param toBeReplaced : l i s t o f punctuation tokens that should be

removed .
∗ @return the l i n e without any punctuation markers .
∗/

pub l i c S t r ing tr imPunctuation (St r ing l i n e , S t r ing [] punctuat ions) {
f o r (S t r ing s : punctuat ions)

l i n e = l i n e . r e p l a c eA l l (s , "") ;
r e turn l i n e ;

}

/∗∗
∗ Replaces l i n e ending punctuation marks (. ! ?) with a space .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @param l ineTerminator s : l i s t o f punctuation tokens that should be

rep laced .
∗ @return the l i n e with the l i n e terminator r ep laced by a space .
∗/

pub l i c S t r ing tr imLineTerminators (St r ing l i n e , S t r ing [] l ineTerminator s)
{

f o r (S t r ing s : l ineTerminator s)
i f (l i n e . endsWith (s))

l i n e = l i n e . r ep l a c e (s , " ") ;
r e turn l i n e ;

}

61

pub l i c S t r ing removeDots (St r ing l i n e) {
Pattern dots = Pattern . compile (" \\.{3} ") ;
Matcher match = dots . matcher (l i n e) ;
r e turn match . r e p l a c eA l l ("") ;

}

/∗∗
∗ Removes everyth ing in between bracket s that appears in a s u b t i t l e

f i l e .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @return the l i n e without any bracket s and what was i n s i d e them .
∗/

pub l i c S t r ing tr imBrackets (St r ing l i n e) {
Pattern bracket s = Pattern . compile (" \ \ { . ∗ \ \ } | \ \ [. ∗ \ \] | \ \ (. ∗ \ \) ") ;
Matcher match = bracket s . matcher (l i n e) ;
i f (! match . f i nd ())

re turn l i n e ;
e l s e {

St r ing inBrackets = match . group () ;
r e turn l i n e . r ep l a c e (inBrackets , "") ;

}
}

/∗∗
∗ I f any spaces appear at the beg inning o f a l i n e , removes them .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @return the l i n e with the spaces at the beg inning removed .
∗/

pub l i c S t r ing removeSpaces (St r ing l i n e) {
i f (l i n e . l ength () == 0)

return l i n e ;
i f (! (l i n e . charAt (0) == ' '))

re turn l i n e ;
e l s e

re turn removeSpaces (l i n e . r e p l a c eF i r s t (" " , "")) ;
}

/∗∗
∗ Checks i f a l i n e s t a r t s with upper−case cha ra c t e r s f o l l owed by a

colon ,
∗ which i nd i c a t e s a d ia logue sub j e c t (l i n e that i s sa id by someone) .
∗ Removes the sub j e c t i f i t i s detected , r e tu rns o r i g i n a l s t r i n g

otherwi se .
∗ @param l i n e : the cur rent l i n e being cons ide red .
∗ @return the l i n e without d ia logue subject , i f i t was detected .
∗/

pub l i c S t r ing removeDialogueSubject (S t r ing l i n e) {
f o r (i n t i =0; i<l i n e . l ength () ; i++) {

i f (Character . isLowerCase (l i n e . charAt (i)))
re turn l i n e ;

e l s e i f (l i n e . charAt (i) == ' : ') {
return l i n e . sub s t r i ng (i +1) ;

}
}
return l i n e ;

}
}

62

C.6 SubWriter.java

import java . i o . F i l e ;
import java . i o . Fi leReader ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;
import java . i o . Pr intWriter ;
import java . u t i l . ArrayList ;
import java . u t i l .Map;
import java . u t i l . Scanner ;

/∗∗
∗ Writes a l l s u b t i t l e s to a s i n g l e .ARFF−f i l e , which i s used in Weka/Meka .
∗ @author Sam van der Meer
∗/

pub l i c c l a s s SubWriter {

p r i va t e f i n a l F i l e f i l e ;
p r i va t e f i n a l S t r ing genreDataFi le ;
p r i va t e St r ing [] va l idGenres =

{"Action" , "Adventure" , "Comedy" , "Crime" , "Drama" , "Romance" ,
" Th r i l l e r " } ;

/∗∗
∗ Class const ructor , i n i t i a l i s i n g output f i l e .
∗ @param outputFi l e : f i l e where the output i s wr i t t en to .
∗ @param genreDataFi le : data f i l e (. csv) conta in ing genres f o r each

t i t l e .
∗/

pub l i c SubWriter (S t r ing outputFi le , S t r ing genreDataFi le) {
t h i s . genreDataFi le = genreDataFi le ;
F i l e f i l e = new F i l e (outputF i l e) ;
i f (f i l e . e x i s t s ())

f i l e . d e l e t e () ;
t h i s . f i l e = f i l e ;

}

/∗∗
∗ Writes a l l s u b t i t l e s to a s i n g l e .ARFF−f i l e , separated by newl ines ,
∗ by combining boolean va lues f o r each appearance o f genre and the

s u b t i t l e s t r i n g i t s e l f .
∗ @param s u b t i t l e s : a l l reduced s u b t i t l e f i l e s and the corresponding

IDs .
∗ @throws IOException
∗/

pub l i c void wr i t e (ArrayList<Map<Str ing , Str ing>> s u b t i t l e s) throws
IOException {

PrintWriter wr i t e r = new PrintWriter (new Fi l eWr i t e r (f i l e , t rue)) ;
System . out . p r i n t l n ("\nWriting s u b t i t l e s (text−only) to output

f i l e . . . ") ;
w r i t e r . wr i t e (getHeader ()) ;
t ry {

f o r (Map<Str ing , Str ing> s u b t i t l e : s u b t i t l e s) {
s u b t i t l e . forEach ((key , value) −> {

try {
wr i t e r . wr i t e (getLabe l s (key)) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
wr i t e r . wr i t e ("\"" + value + "\"\n") ;

}) ;
}

} f i n a l l y {
wr i t e r . c l o s e () ;

}
}

/∗∗
∗ Print header at beg inning o f .ARFF−f i l e , which d e c l a r e s a t t r i b u t e s

f o r each entry .
∗ @return s t r i n g that p r i n t s the nece s sa ry in format ion .
∗/

pr i va t e St r ing getHeader () {
S t r ingBu i ld e r header = new St r ingBu i ld e r () ;
// Def ines the r e l a t i o n and number o f a t t r i bu t e l a b e l s
header . append (" @re la t ion ' s u b t i t l e s : −C 7 ' \n\n") ;
f o r (S t r ing genre : va l idGenres)

63

//For each genre , a new binary a t t r i bu t e i s de f ined
header . append ("@attr ibute " + genre + " {1 ,0} \n") ;

//For the s u b t i t l e s t r i n g a separate a t t r i bu t e i s de f ined
header . append ("@attr ibute s u b t i t l e s t r i n g \n\n") ;
//Denotes the s t a r t o f the data segment in the f i l e
header . append ("@data \n\n") ;
re turn header . t oS t r ing () ;

}

/∗∗
∗ Searches the genre−data f i l e f o r a corresponding match us ing the

s u b t i t l e ID .
∗ @param key : s u b t i t l e ID that i s being cons ide red .
∗ @return s t r i n g conta in ing ze ro s and ones f o r a l l genres .
∗ @throws Exception − i f no match has been found in the database .
∗/

pr i va t e St r ing getLabe l s (S t r ing key) throws Exception {
Scanner reader = new Scanner (new Fi leReader (genreDataFi le)) ;
r eader . u seDe l imi t e r (" ; ") ;
whi le (reader . hasNext ()) {

St r ing [] entry = reader . nextLine () . s p l i t (" ; ") ;
i f (key . equa l s (entry [0])) {

St r ing genres = entry [3] ;
r eader . c l o s e () ;
r e turn ge tLabe lS t r ing (genres) ;

}
}
reader . c l o s e () ;
throw new Exception ("Match not found in genre database ! ") ;

}

/∗∗
∗ Makes s t r i n g o f genre l a b e l s c o n s i s t i n g o f z e ro s and ones .
∗ For example , "0 ,0 ,1 ,0 ,0 ,1 ,0" = [Comedy , Romance] .
∗ @param genres : genres as they appear in genre−data f i l e f o r cur rent

t i t l e .
∗ @return s t r i n g o f seven ze ro s or ones , cor responding to appear ing

genres .
∗/

pr i va t e St r ing ge tLabe lS t r ing (St r ing genres) {
S t r ingBu i ld e r l a b e l S t r i n g = new St r ingBu i lde r () ;
f o r (S t r ing genre : va l idGenres)

i f (genres . conta ins (genre))
l a b e l S t r i n g . append (" 1 , ") ;

e l s e
l a b e l S t r i n g . append (" 0 , ") ;

r e turn l a b e l S t r i n g . t oS t r ing () ;
}

}

64

Appendix D: WordNetLink.java

package net . s f . ext jwnl . u t i l i t i e s ;

import java . i o . BufferedReader ;
import java . i o . F i l e ;
import java . i o . Fi leReader ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;
import java . i o . Pr intWriter ;
import net . s f . ext jwnl . JWNLException ;
import net . s f . ext jwnl . data . IndexWord ;
import net . s f . ext jwnl . data .POS;
import net . s f . ext jwnl . data . Po in t e rUt i l s ;
import net . s f . ext jwnl . data . l i s t . PointerTargetNodeList ;
import net . s f . ext jwnl . d i c t i ona ry . Dict ionary ;

/∗∗
∗ Replaces words o f pre−proces sed s u b t i t l e s with corresponding hypernyms from

WordNet .
∗ Writes r e s u l t s to a new . a r f f − f i l e such that i t can be analysed by Meka .
∗ @author Sam van der Meer
∗/

pub l i c c l a s s WordNetLink {

pr i va t e f i n a l s t a t i c S t r ing FILENAME = "C:/ Users /Sam/Desktop/data . a r f f " ;
p r i va t e f i n a l s t a t i c S t r ing OUTPUTFILE = "data_wordnet . a r f f " ;
p r i va t e Dict ionary d i c t i ona ry = nu l l ;
p r i va t e f i n a l Pr intWriter wr i t e r ;
p r i va t e St r ing [] va l idGenres =

{"Action" , "Adventure" , "Comedy" , "Crime" , "Drama" , "Romance" ,
" Th r i l l e r " } ;

/∗∗
∗ Class const ructor , c r e a t e s output f i l e and wr i t e s the a t t r i bu t e

header .
∗ @throws JWNLException
∗ @throws IOException
∗/

pub l i c WordNetLink () throws JWNLException , IOException {
t h i s . d i c t i ona ry = Dict ionary . ge tDe fau l tResource Ins tance () ;
F i l e f i l e = new F i l e (OUTPUTFILE) ;
i f (f i l e . e x i s t s ())

f i l e . d e l e t e () ;
t h i s . w r i t e r = new PrintWriter (new Fi l eWr i t e r (f i l e , t rue)) ;
writeHeader () ;

}

pub l i c s t a t i c void main (St r ing [] args) throws JWNLException , IOException
{

new WordNetLink () . r e adSub t i t l e s () ;
}

/∗∗
∗ Reads the f i l e o f pre−proces sed s u b t i t l e s and c a l l s the
∗ getHypernymsFromSubtitle method f o r each in s tance .
∗ @throws IOException
∗/

pr i va t e void r e adSub t i t l e s () throws IOException {
System . out . p r i n t l n ("Replacing s u b t i t l e s with WordNet

hypernyms . . . ") ;
BufferedReader reader = new BufferedReader (new

Fi leReader (FILENAME)) ;
S t r ing currentL ine = "" ;
whi le (! cur rentL ine . conta in s ("@data"))

cur rentL ine = reader . readLine () ;
r eader . readLine () ;
whi le ((cur rentL ine = reader . readLine ()) != nu l l)

getHypernymsFromSubtitle (cur rentL ine) ;
System . out . p r i n t l n ("\nDone ! Resu l t s can be found in

data_wordnet . a r f f ") ;
r eader . c l o s e () ;
w r i t e r . c l o s e () ;

}

65

/∗∗
∗ For each word in the s u b t i t l e instance , l ooks up the hypernyms (i f

they e x i s t)
∗ and pas se s them to a method that wr i t e s them to the output f i l e .
∗ @param currentL ine : cur rent s u b t i t l e i n s tance being cons ide red .
∗/

pr i va t e void getHypernymsFromSubtitle (S t r ing currentL ine) {
wr i t e r . wr i t e (cur rentL ine . subs t r i ng (0 ,14)+"\"") ;
S t r ing [] words = currentL ine . sub s t r i ng (15) . s p l i t (" ") ;
f o r (S t r ing word : words) {

POS syntact i cCategory = getSyntact i cCategory (word) ;
t ry {

i f (word . equa l s ("\"")) {
wr i t e r . wr i t e ("\"\n") ;
break ;

}
IndexWord iWord = d i c t i ona ry . lookupIndexWord

(syntact icCategory , word . subs t r i ng (0 ,
word . la s t IndexOf ('_ '))) ;

PointerTargetNodeList hypernyms =
Po in t e rUt i l s . getDirectHypernyms (iWord . getSenses () . get (0)) ;

S t r ing d e s c r i p t i v e S t r i n g = hypernyms . t oS t r ing () ;
// L i s t o f hypernyms may not empty
i f (d e s c r i p t i v e S t r i n g . l ength () > 3) {

St r ing hypernymWordString =
de s c r i p t i v e S t r i n g . subs t r i ng

(d e s c r i p t i v e S t r i n g . indexOf ("Words :
")+7,
d e s c r i p t i v e S t r i n g . indexOf ("
−−")) ;

S t r ing [] hypernymWords =
hypernymWordString . s p l i t (" , ") ;

writeWords (hypernymWords) ;
}

}
//Word cannot be matched with database , cont inue to next

word .
catch (Nul lPo interExcept ion e) {}
catch (JWNLException e) {

e . pr intStackTrace () ;
}

}
}

/∗∗
∗ Gets the s yn t a c t i c category from the POS−tag concatenated to the word .
∗ @param word : the cur rent word being cons ide red .
∗ @return : the corresponding POS (Part−of−Speech) enumeration value .
∗/

pr i va t e POS getSyntact i cCategory (St r ing word) {
i f (word . conta ins ("JJ"))

re turn POS.ADJECTIVE;
e l s e i f (word . conta in s ("NN"))

return POS.NOUN;
e l s e i f (word . conta in s ("RB"))

return POS.ADVERB;
e l s e

re turn POS.VERB;
}

/∗∗
∗ Print header at beg inning o f .ARFF−f i l e , which d e c l a r e s a t t r i b u t e s

f o r each entry .
∗ @return s t r i n g that p r i n t s the nece s sa ry in format ion .
∗/

pr i va t e void writeHeader () {
S t r ingBu i ld e r header = new St r ingBu i ld e r () ;
// Def ines the r e l a t i o n and number o f a t t r i bu t e l a b e l s
header . append (" @re la t ion ' s u b t i t l e s : −C 7 ' \n\n") ;
f o r (S t r ing genre : va l idGenres)

//For each genre , a new binary a t t r i bu t e i s de f ined
header . append ("@attr ibute " + genre + " {1 ,0} \n") ;

//For the s u b t i t l e s t r i n g a separate a t t r i bu t e i s de f ined
header . append ("@attr ibute s u b t i t l e s t r i n g \n\n") ;
//Denotes the s t a r t o f the data segment in the f i l e
header . append ("@data \n\n") ;

66

wr i t e r . wr i t e (header . t oS t r ing ()) ;
}

/∗∗
∗ Pr int s a l l the hypernyms that a word conta in s .
∗ Hypernyms c on s i s t i n g o f mul i tp l e words are concatenated with '_ ' to a

s i n g l e word .
∗ @param hypernymWords : the s t r i n g array o f hypernyms o f the cur rent

word being cons ide red .
∗/

pr i va t e void writeWords (St r ing [] hypernymWords) {
f o r (S t r ing word : hypernymWords) {

i f (word . conta in s (" "))
word = word . r ep l a c e (" " , "_") ;

i f (word . charAt (0)== '_ ')
word = word . subs t r i ng (1) ;

wr i t e r . wr i t e (" " + word . toLowerCase ()) ;
}

}
}

67

	Introduction
	Related work
	Terminology
	Domain specification
	The complexity of movie genres
	The categorization of genres: a multi-label classification problem

	Main Research

	Methods
	Experimental setup
	First steps towards a suitable subtitle database
	Data acquisition
	Creating the database
	Building IMDbLink
	Frequency analysis

	Data pre-processing
	Data extraction and filtering
	Transformation to feature vectors
	Attribute dimensionality reduction

	WordNet: A lexical database
	Classification algorithms
	Evaluation Measures

	Results
	Conclusions
	Discussion

