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ABSTRACT

Life expectancy is a leading indicator when making decisions about end-of-life care,
but good prognostication is notoriously challenging. Being overly optimistic about
life expectancy, as doctors tend to be, greatly impedes the early identification of
palliative patients and thereby delays appropriate care in the final phase of life. This
research aimed to explore the feasibility of automatically predicting life expectancy
based on electronic medical records, with the aid of machine learning and natural
language processing techniques. 

We  trained  a  neural  network  (long  short-term  memory)  with  1107  medical
records,  and  validated  the  model  with  127  medical  records.  Using  identical
evaluation  criteria  as  were  used  to  evaluate  doctors’ performance,  our  baseline
model  reached a  level  of  accuracy similar  to  human accuracy.  The inclusion  of
clinical  narrative  was  enabled  and  optimized  with  the  use  of  natural  language
processing techniques such as domain-specific spelling correction. The inclusion of
keyword features improved the prediction accuracy with 9%, compared to both our
baseline model and to the golden standard of human evaluation. Overall, we have
shown  that  our  approach  for  automatic  prognostication  is  feasible  and  delivers
promising results.





Her daughter and husband want euthanasia. They are angry
that it is not possible anymore, because madam is no longer
communicative. Nevertheless, her daughter is trying to force 
a reaction from her: “mom, do you want to die, do you want
to go to heaven?” Madam is shaking her head, and says “no”
eventually.

- Fragment from a doctor's note
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1. INTRODUCTION

Electronic medical records (EMRs) contain a wealth of information. In addition to
diagnoses, medication, lab test results and other structured information relating to
medical care, EMRs contain large volumes of clinical narrative. Through textual data,
physicians are able to capture information that would get lost if  only predefined
codes  and  descriptions  would  be  available.  Nuances,  characterizations,  specific
details or rather the big picture, suspicions, and other salient observations that may
or may not be obviously linked to the reason for encounter are described in clinical
reports  by  the  physician  for  each  consultation.  Although  these  texts  offer  an
invaluable  source  of  longitudinal,  patient-specific  information,  they  are  an
underused source in clinical decision support systems (Jensen et al. 2012).

This research aimed to explore the potential of systematic and automatic use of
textual data to aid in Advance Care Planning (ACP). ACP is the process during which
patients make decisions about the health care they wish to receive in the future in
case  the patient  loses  the capacity  of  making decisions  or  communicating  about
them in the future (Brinkman-Stoppelenburg et al. 2014). These decisions are made
in consultation with the patient’s loved ones and health care providers, the general
practitioner  (GP)  in  particular  (Singer  et  al.  1996).  Successful  ACP enhances  the
quality of life and death for palliative patients, by preventing excessive treatment,
providing  timely  palliative  care,  recording  emergency  contacts,  appointing  care
takers,  arranging  pain  management,  organizing  living  arrangements,  and
documenting  preferences  regarding  resuscitation  and  euthanasia,  among  other
aspects. To ensure that it is not too late to influence processes that take place during
the end of life according to a patient’s wishes and preferences, timing is crucial. 

Accurate prognosis of life expectancy is essential for general practitioners (GPs)
to decide when to introduce the topic of ACP, and is a key determinant in end-of-life
decisions, but it is notoriously difficult (Billings & Bernacki 2014; Weeks & Cook
1998; Frankl et al. 1989). Prognostication helps to predict when certain preparations
and procedures should be started, how long the patient will be cognitively capable of
making decisions, and when the first acts of end-of-life care need to be initiated. A
large body of research shows that doctors’ estimates are accurate in roughly 20% of
all  cases,  and that predictions provided by different health care providers do not
correlate with each other, due to their highly subjective nature  (White et al. 2016;
Higginson & Constantini 2002; Forster & Lynn 1988; Christakis et al. 2000). Life
expectancy estimations tend to be overly optimistic (White et al. 2016; Higginson &
Constantini  2002;  Heyse-Moore  &  Johnson-Bell  1987;  Christakis  et  al.  2000),
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leading  to  postponement  of  ACP,  or  not  having  conversations  about  ACP at  all
(Billings & Bernacki 2014). 

Postponing the conversation about ACP is detrimental because this often leads to a
situation in which the patient’s preferences are discussed days, hours, or even just
minutes before death.  Physicians often struggle to determine the right moment to
express concerns about the nearing end of life however, and to introduce the concept
of ACP to the patient (Groenewoud 2015). Research shows that end of life decisions
are often only discussed during emergency hospitalizations with junior clinicians
who were not familiar with the patient up to that point (Szmuilowicz et al. 2010).
Discussing ACP during a crisis situation leads to rushed decisions, made by patients
that are not thoroughly informed. In times of distress, decisions tend to regard only
issues  of  immediate  concern,  such  as  whether  or  not  life-sustaining  procedures
should  be  applied.  Such  rushed,  uninformed  choices  often  lead  to  a  poor
representation  of  the  patient’s  underlying  values  and  ideas  about  life,  and  to
frustration among loved ones (Billings & Bernacki 2014). 

Good prognoses  and proper  timing are crucial  for the intake of terminally ill
patients in hospices as well. In the Netherlands, patients qualify for hospice care if
their  life  expectancy  is  three  months  or  less  (Ministerie  van  Volksgezondheid,
Welzijn en Sport (Dutch ministry of public health) 2015). While experts agree that
patients ideally reside in a hospice for three months prior to death, patients typically
receive only a month of hospice care (Integraal Kankercentrum Nederland, (Dutch
quality institute for oncological and palliative care), 2015). Moreover, roughly half
of all intakes is highly urgent due to a medical crisis, and more than a quarter of all
patients die within seven days after the intake (Integraal Kankercentrum Nederland;
Christakis  &  Escarce  1996).  Postponing  the  conversation  about  ACP therefore
excludes  patients  and their  loved ones  from important  end-of-life  decisions,  and
often results in indignation and dissatisfaction.

Confronting the patient too early is however detrimental as well. It may lead to
unrealistic expectations, and to decisions that are not supported by the patient in a
later stadium because they were built on hypothetical scenarios. Discussing ACP too
early without repeatedly discussing it again later on, violates the main goal of ACP:
ensuring that the actions that are executed or deliberately  not executed during the
last  phases of life are in accordance with the patients wishes and preferences as
much as possible (Billings & Bernacki 2014). In theory therefore,  ACP cannot be
discussed too early, but repeated discussion afterwards is required to ensure that the
patient and the GP still stand behind decisions that were made earlier, or update them
as necessary. Discussing ACP early on without repetition of the discussion when it is
relevant, can therefore be seen as postponing ACP as well.
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To support  GPs in their decision-making processes, several disease-specific and
general tools exist to encourage and help with prognostication, judging the patient’s
functional abilities, and determining the right moment to start the conversation about
ACP.  Tools  designed to  support  the  GP include  the  KPS (Karnofsky performance
scale, Karnofsky & Burchenal 1949), the SUPPORT model (Lynn et al. 1995), Spitzer
Quality of Life Index (Addington-Hall et al. 1990), the Seattle Heart Failure model
(Levy et  al.  2006),  the  MELD,  (model  for end stage liver  disease,  Wiesner  et  al.
2003), the Surprise Question (Moss et al. 2010), the RADPAC (Radboud indicators for
palliative care needs, Thoonsen et al. 2012), and the SPICT (supportive and palliative
care indicators tool, Highet et al. 2013). 

These tools however rely heavily on the initiative of GPs, and their interpretation
and evaluation of the situation. But the initiative is not always taken, and assessing
the  situation  thoroughly  and  correctly  is  notoriously  hard  and  time-consuming
(Billings & Bernacki 2014; Robinson et al. 2013; Sudore & Fried 2010; Gott et al.
2009;  Weiner  & Cole  2004).  Even if  the initiative  is  taken once,  the  GP should
continue to monitor the situation closely, to determine whether repeated discussion
with the patient is needed. The combination of existing tools and human evaluation
leads to suboptimal results: generalizing tools necessarily exclude patient-specific
factors, thereby decreasing personalized care, while disease-specific tools can only
be used for a subpopulation of patients, which make it harder for the GP to use the
right  tool  at  the  right  time.  Additionally,  one  cannot  recall  and  consider  all
information  about  a  patient  and similar  cases  all  the  time,  and examining  EMRs
exhaustively in preparation of each consultation would be far too labor intensive.
Therefore, human assessment leads to a fragmentary representation of the patient.
Moreover, Christakis and Lamont (2000) showed that less experienced doctors make
more and larger errors predicting life expectancy than doctors with many years of
experience, and that the better a doctor knows a patient, the more likely the doctor is
to overestimate the life expectancy of the patient.

Computers offer an interesting alternative to human assessment: they suffer less
from memory limitations, and do not let their personal relation to the patient cloud
their judgment. Perfect recall from memory is a challenge for a GP for any patient,
and  is  increasingly  compromised  as  the  number  of  patients  increases.  As  the
Capaciteitsorgaan  (Dutch  organization  for  health  care  information  provision)
reports,  GPs  have  over  2,000  patients  on  average.  Because  perfect  recall  is
unproblematic for computers, they are capable of identifying complex patterns that
may not be obvious to humans.

Complementary to memorizing all relevant information, learning to generalize is
an  effective  strategy  for  evaluating  new  cases  as  well.  As  more  variables  are
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involved in the task however, less highly similar examples are available to learn the
important  cues  from, and thus  to  properly  generalize  from.  More  fundamentally
however,  GPs are involved in only a limited amount of end of life cases to begin
with: the average  GP is  expected to  encounter  15-20 deaths  annually1.  Such low
numbers cause a rather ‘flat’ learning curve for doctors to learn the important cues
from.  Because many different patient characteristics and medical factors influence
the  prognosis  and  the  right  moment  for  ACP,  obtaining  a  concise  but  complete
overview of the influence of all these variables and the interaction between them is
incredibly complex, and due to the small amounts of heterogeneous data to learn
from, it is hard for  GPs to systematically learn the detailed and complex patterns
from previous  cases.  Computers  on the other  hand detect  complex patterns with
relative ease, and can be trained on thousands of end-of-life cases.

Machine learning methods and data and text mining techniques have grown to be
increasingly popular within the medical domain, and have been applied to a broad
range of tasks, including medical decision-making (Walczak 2005; Mazurowski et
al.  2008),  automatic  disease  detection  (Khemphila  & Boonjing  2011;  Al-Shayea
2011;  Hazan  et  al.  2012),  and  automatic  diagnostication  (Khan  et  al.  2001;
Kordylewski et al. 2001; Thangarasu & Dominic 2014; Lipton et al. 2015, Liu et al.
2016)17-21.  Machine  learning  algorithms  are  characterized  by  the  ability  to  learn
without being explicitly programmed. Building models based on known cases allows
machine  learning  algorithms  to  make  predictions  about  new cases.  Surprisingly,
little  research  has  been  done  exploring  the  use  of  self-learning  algorithms  for
predicting patients’ life expectancy. Successful prediction of life expectancy would
aid  in  a  decreased  work  load,  increased  confidence  for  GPs,  more  consistent
treatment, less unnecessary treatment, earlier anticipation on palliative needs, and
most  importantly,  has  the  potential  to  increase  the  quality  of  life  and death  for
palliative patients. This research aims to explore of the potential of machine learning
techniques for predicting life expectancy. The first question we address, is: To what
extent are self-learning algorithms trained on medical records able to detect the
approaching end of life automatically? 

Medical records contain highly structured data, such as diagnostic codes and lab
results, which are processed to train self-learning algorithms with relative ease. The
situation changes drastically however, when unstructured data is presented to the
computer,  such  as  notes  taken  by  the  doctor  during  a  consult.  Textual  data  is
incredibly noisy compared to well-structured medical data, but is available in large
volumes and offers a rich source of information, complementing the structured data.
It  may contain important  clues about the approaching end of life that  cannot be

1 Based on population and mortality statistics as provided by the Centraal Bureau voor de Statistiek
(national data center for statistics in the Netherlands).

5



inferred  from  the  non-linguistic  context.  We  expect  that  the  detection  and
exploitation of linguistic clues enriches a model trained to make predictions about
life  expectancy.  With  this  research  we  therefore  aim  to  answer  the  following
question additionally:  To what extent does the inclusion of textual data improve a
prognostic model for detecting the approaching end of a patient’s life?

Chapter  2 provides  background information  about  the  standard  approaches  to
identifying  palliative  patients,  and  discusses  related  work  in  terms  of  machine
learning approaches in the medical domain. Chapter 3 outlines our overall method,
and chapters 4-7 provide a detailed description of each research phase, ranging from
initial data processing to validation on a held-out test set. In chapters 8 and 9 we
discuss  the  results,  draw  conclusions  about  the  research  as  a  whole  and  offer
suggestions for further research.
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2. BACKGROUND AND RELATED WORK

2.1 Standard methods for identification of palliative patients

Little  research  has  been  done  exploring  the  use  of  self-learning  algorithms  for
predicting  life-expectancy  or  the  right  moment  for  ACP,  although  some disease-
specific  work  is  carried  out  for  predicting  survival  rates  and  clinical  outcomes.
Studies have been conducted for cardiovascular diseases (see Rumsfeld et al. 2016
for an extensive review), Alzheimer’s disease (Ito et al. 2010; Zhou et al. 2012),
diabetes mellitus (De Winter et al. 2006), and cancer (Burke et al. 1997; Wei et al.
2004), among other diseases. As Schwarzer and Schumacher pointed out in 2000, no
real progression was made in prognosis and diagnosis up to that moment, which they
mainly  ascribed  to  methodological  deficiencies.  Many  years  later  however,  the
techniques, availability and practical applications of self-learning algorithms have
increased to a large extent in many areas, including disease-specific modeling — but
not the area of predicting prognoses in general, or the right moment for ACP.

Reviews of tools for  ACP as conducted by Quaseem et al.  (2008), Maas et al.
(2013), and Walsh et al. (2015) reveal that the tools that aid in early identification of
palliative  patients  are  not  based  on  machine  learning  techniques.  They  do  not
automatically  detect  high  risk  patients,  but  are  questionnaire-like  frameworks
designed to support the physician in detection of patients that require palliative care.
Without  exception,  these tools  are  based on expert  knowledge,  but  only a  small
number of tools is  validated.  Prominent tools such as the RADPAC, SPICT and
NECPAL are intended for general use, and often provide disease-specific indicators
additionally.  The  tools  differ  mainly  in  whether  or  not  general  indicators  are
included, which characterization of deterioration states is used, and the use of the
Surprise  Question.  The  Surprise  Question  is  a  much  used  method  to  identify
palliative patients by answering the question: Would you be surprised if the patient
dies within the next few weeks / months / within a year? Although the method is
quick and easy to use, and highly intuitive (Moss et al. 2010; Moss et al 2008), it is
also  a  very  subjective  measurement.  Moreover,  it  has  been  shown that  GPs  feel
uncomfortable — more than hospital doctors (Farquhar et al. 2002) — to commit to
the negative answer (i.e. not being surprized) to the Surprise Question, which leads
to overestimations of life expectancy (Thoonsen et al. 2011).

Virtually  none  of  the  existing  tools  are  widely  used  (Maas  et  al.  2013).
Regardless of the availability  of  these tools,  research about  their  use in  practice
shows that GPs tend to avoid tools because they are afraid it will lead to an increase
in workload, and because factors which directly or indirectly influence the palliative
care process, but which are not directly of medical nature (e.g. psychological, social
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or spiritual factors) play only a marginal role in all these tools (Maas et al. 2013).
When asked about their alternative approach for identifying palliative patients, GPs
state that they rely mostly on discharge letters from the hospital, increased need for
medical care, and decreased social contacts (Claessen et al. 2013). Maas et al. (2013)
explored the role of the  GP in the identification process through a questionnaire,
which showed that identification is mainly based on subjective criteria, and therefore
depends heavily on the experience of the GP with palliative patients.

There  are  currently  no  tools  that  make  automatic  predictions  about  life
expectancy or the right moment for palliative care without relying heavily on the
initiative,  subjective  judgment  and  time  investment  of  the  GP.  To  decrease  the
dependence on the initiative of the GP in considering palliative care, effort has been
put into the development of computerized search algorithms which aim to identify
patients  with  palliative  needs  by  searching  databases  with  EMRs  globally  for
indicators according to existing tools such as the SPICT and the NECPAL (Mason et
al.  2015; Thomas 2012). These systems are however not intended as stand-alone
methods for identification of vulnerable patients, and suffer from limitations such as
the inability to search systematically through textual data (Mason et al. 2015).

2.2 Deep learning approaches for clinical data

Because  medical  records  are  contained  in  large  electronic  databases,  big  data
analyses and machine learning techniques potentially offer huge benefits for clinical
practice, such as clinical decision support, modeling of clinical events and risks, and
many other applications.  To our knowledge, no research has been conducted for
automatically predicting life expectancy regardless of the specific disease, and no
research has been conducted for early detection of palliative patients. Some research
has however been conducted for related subjects that are interesting for our current
work because they shed light  on methodological  approaches  to  handling clinical
data, and the corresponding challenges researchers face.

Deep  learning  and  big  data  approaches  have  been  applied  both  for  general
purpose  applications  and  for  disease-specific  applications.  General  purpose
applications for medical tasks often focus on automatic diagnosing of diseases. An
example  is  DEEPR,  a  deep learning system which  creates  patient  representations
from EMRs and aims to predict future risks automatically, based on a convolutional
neural  network  (Nguyen  et  al.  2016).  DEEPR represents  EMRs  as  a  sequence  of
diagnostic and procedural codes for each encounter, separated by discretized time
intervals to represent the sequential nature of the data. The authors address the issue
of data sparseness: large collections of medical codes exist to refer to diagnoses,
medication,  and  other  types  of  medical  information,  but  each  patient  is  only
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associated with a small subset of such codes. Training a neural network with very
sparse  data  is  computationally  expensive,  increases  the  risk  of  overfitting,  and
requires large amounts of data. DEEPR uses word embedding techniques to represent
the medical and procedural codes with dense vectors. Although this approach is able
to capture long-term dependencies that characterize medical data, a disadvantage is
the  inability  to  fully  capture  time  sensitivity:  recent  events  should  weigh  more
heavily than events in the distant past, but are regarded as similarly urgent by this
approach, the authors explain.

Choi et al (2016) use a recurrent neural network in an application named DOCTOR

AI for predicting diagnoses and medication for the next consultation for a patient,
based on the patient’s  medical history.  The authors note that the amount of data
influences  the  results  to  a  large  extent:  their  model  learns  specific  relations  for
frequent medical codes well, while it resorts to predicting the most frequent codes
when given  infrequent  codes as input, because it is hard to learn about infrequent
codes properly when not enough data is available. Additionally, they note that the
model performs better when more medical data is available for a patient. 

Disease-specific  models  are usually  developed to predict  the progression of a
disease, or the survival rate associated with a combination of the disease and patient
characteristics. Disease-specific approaches rely more on top-down knowledge than
general purpose models, which can be explained from the observation of Choi et al.:
datasets usually contain a couple of thousands of medical records, which tends to be
insufficient for learning about infrequent phenomena well. When specific diseases
are  studied,  much  less  cases  are  available,  which  increases  the  need  for  expert
knowledge  about  the  disease.  Reliance  on  top-down  knowledge  is  however
insufficient for diseases that are poorly understood. Alternatively, these methods rely
heavily on statistical data. Most of these specialized models focus on a limited set of
possible  outcomes,  thereby  only  solving  small  parts  of  the  puzzle.  In  reality
however,  patients  usually  show  complex  and  heterogeneous  combinations  of
symptoms,  co-morbidity,  personal  characteristics  and health  care requests,  which
requires  the  combination  and  optimization  of  many  models  simultaneously,  to
handle  the  large  amount  of  possible  scenarios.  Combining  the  output  of  several
models  to  account  for  the  interaction  between  variables  is  however  not  trivial,
because  due  to  the  large  number  of  possible  scenarios,  very  specific  domain
knowledge or huge amounts of data are required, to properly base statistics on.

Although the approaches used for general purpose models suffer less from these
issues, designing methods to handle EMR data requires solutions for several issues in
general. Medical data is often very sparse and plagued by missing values. Some
types of data, such as the reason for encounter, are obligatory to be recorded by the
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GP during a consult, but many types of data can be provided optionally. Moreover,
between consultations no data is available whatsoever. When data is missing, we
cannot  simply  assume  clinically  normal  values,  because  they  depend  on  many
factors. No contact between doctor and patient may indicate either that the patient is
assumed to be healthy, or that the patient is stable, despite suffering from a disease.
Which values  are  considered  ‘normal’ is  influenced by the  medical  history  of  a
patient, as well as additional factors such as gender and age.

Moreover, health records contain variable amounts of data, ranging from as short
as  a  week  for  new  or  young  patients,  to  tens  of  years  for  older  patients.  To
complicate the handling of time series data further, the intervals at which data is
sampled are very irregular: aside from the occasional exception, patients do not visit
the physician with a regular frequency, which impedes comparison of time-series
data  for  different  patients.  Moreover,  related  medical  events  such  as  the  first
appearance of symptoms, consultation to assess the corresponding diagnosis, and
treatment of the condition are often separated by large intervals of time. Medical
episodes may span many weeks or years, especially in case of chronic diseases such
as diabetes, or recurrent diseases such as cancer, requiring methods which are able to
handle long distance dependencies.  An additional  request  for handling long-term
dependencies  comes  from regular  check-ups:  GPs  sometimes schedule  weekly or
monthly consultations with a patient just to check if anything has changed regarding
their condition, which is often not the case. Although these check-ups do not provide
new  information,  they  are documented  and  thereby  introduce  what  could  be
considered as noise into the EMR: trivial information which is hard to separate from
non-trivial data automatically.

Different  approaches  and algorithms have been applied to  clinical  time series
data, including convolutional and recurrent neural networks, hidden Markov models,
conditional random fields, and adopting discretely coded time gaps as features. The
inability to exploit long-distance interactions and correlations however make these
algorithms less suitable for learning long-distance dependencies (Dietterich 2002).
Markovian methods for example are inherently unsuitable for clinical time series
processing, because they have no memory. When routine admissions during which
no relevant  medical  data  is  gathered  interrupt  an episode  of  a  severe  illness  for
example, the absence of recent important medical information adversely affects the
model’s performance for the severe illness (Pham et al. 2017).

Hochreiter and Schmidhuber (1997) designed a type of recurrent neural network
for modeling long-term dependencies: Long Short-Term Memory, or  LSTM. LSTM

cells are similar to the conventional, self-replicating RNN cells: at each time step,
the LSTM receives new input for the current time step, and processed input from the
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previous  time step.  The memory cells  of  the  current  time step are  updated,  and
information is passed to the next time step. The output per time step is therefore
moderated by current and historical data. LSTM cells contain the addition of several
gates: an input gate, an output gate, and a forget gate. The configurations of each
gate are  learned during the training process,  and determine the information flow
through the model.  The forget gate instructs the cell  to discard certain pieces of
information it received from the previous time step. The input gate determines which
pieces of information are updated as soon as new information comes in, and which
are not.

The alternations of the information that result of the filters applied by the forget
gate and input gate, determine the cell’s state, which can then be passed on to the
next cell. Not all information is passed on to the next time step however: the output
gate aims to only send through the relevant information. The addition of these gates
to the cell architecture help the model to preserve relevant information over many
time  steps.  LSTM models  are  therefore  highly  suitable  for  learning  long-term
dependencies.  This  research  explores  whether  or  not  LSTM can  be  applied  to
automatic end of life detection with reasonable accuracy.

LSTMs have been shown to outperform other algorithms in many tasks, such as
speech  recognition,  machine  translation,  signal  processing,  rhythm  learning,
handwriting recognition, weather forecasting, and other tasks concerning time series
data. As a recent development,  LSTMs models have received more attention in the
medical domain. Lipton et al. (2016) employed an LSTM model to diagnose patients
in a hospital setting based on sensor data such as blood pressure and temperature,
and lab test results. Their results show that the LSTM model was able to successfully
diagnose critical  care patients overall,  performing very good for some diagnoses
such as diabetes mellitus, while other diagnoses were harder to predict. The authors
characterize their approach as promising, especially considering that their approach
did not make use of free-text notes and has access to much less information than
doctors do when they consult with a patient. 

Kim  et  al.  (2016)  used  an  LSTM model  for  conducting  a  similar  task:  the
prediction of examination results given previous measurements. Their results show
that  their  approach  was  feasible,  and  superior  to  other  methods  such  as  linear
regression,  especially  for patients that display abnormal behavior from a clinical
perspective. Pham et al. (2017) developed  DEEPCARE, an  LSTM-based approach to
infer the current illness state and to predict future medical outcomes. Their model
performs especially well  for patients suffering from diabetes mellitus and mental
health issues. They note that some natural language processing (NLP) methods, such
as vector space representations, are therefore transferable to EMR processing. 
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LSTM models  have  additionally  been  applied  specifically  to  aid  in  semantic
understanding of unstructured textual data in  EMRs. Research in this area mainly
focuses  on  entity  extraction  and  event  detection.  Jagannatha  and  Yu  (2016)  for
instance used an LSTM to detect medical events in textual data. They showed that the
model  benefits  from  using  more  textual  context:  their  document-based  results
outperform sentence-based results. Sadikin et al. (2016) showed that an LSTM model
outperformed other  models in drug name recognition in free-text  data.  Sahu and
Anand (2017) used an  LSTM to identify unknown interactions between drugs from
free text. Similar to many other clinical text processing approaches, they represent
the textual data with word embeddings. In contrast to Jagannatha and Yu (2016), the
authors note that the model performs better for short than long sentences. In this line
of research, authors without exception note that  LSTM algorithms offer a feasible
solution  to  classification  and  prediction  tasks,  while  also  noting  that  the  noisy
character of clinical data is challenging and adversely affects model performance.
Similar to the previously discussed system DEEPR (Nguyen et al. 2016), the authors
of  DEEPCARE bring  to  light  the  similarity  between  EMR processing  and  NLP,
comparing data such as diagnoses and interventions in EMRs to words and modifiers
in natural language sentences.
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3. METHOD

3.1 General overview

In  collaboration  with  Radboudumc,  we  gathered  data  from  seven  health  care
facilities  that  are  part  of  the  health  care  consortium  of  Nijmegen.  The  dataset
contains a total of roughly 37,000 electronic medical records (EMRs). We approached
the task of predicting life expectancy with the aid of an LSTM model. 

This research was carried out in four consecutive phases. During Phase I, data
were gathered from the EMRs and processed in order to create a structured format for
each  data  type.  Phase  II  prepared  the  feature  selection  process  by  ranking  and
aggregating features with a range of different approaches. In Phase III we developed
and  tested  the  LSTM model.  We carried  out  many  experiments  to  determine  the
optimal model architecture and feature set for two models: a baseline model, and a
model that made use of additional keyword features. Both models were finally tested
with a held-out  set  of validation data  during Phase IV to determine the models’
accuracy for unseen data. We compared the accuracy of the models to the accuracy
of trained doctors as reported in literature. Figure 1 provides an overview of the
processing steps. 
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Prior  to  extracting  data  in  Phase  I,  the  corpus  data  were  prepared  to  enable
validation  on  unseen  data  during  Phase  IV.  In  order  to  enable  validation  while
sacrificing  as  little  of  the  corpus  as  possible,  we  split  the  data  into  two
complementary parts: 90% of the data (1,107 patients) was used as development set
for Phases I-III, and 10% of the data (127 patients2) was held out to use as external
test set for Phase IV. We developed the model during Phase III with the use of a ten-
fold cross-validation procedure to further minimize the loss of training data. 

The held-out patients were chosen to be the 10% most recent patients of  each
health care facility, to avoid any bias as a result of the geographic area in which the
patients lived, the health care practice they visited, and the general practitioner by
whom they were  treated.  Additionally,  the  most recent patients  were selected  to
simulate  potential  use  of  the  model  in  practice  — the  model  was  trained  on
‘historical’ data, and applied to ‘new’ patients.

3.2 Corpus description

The EMR corpus is used as input for the model to learn which features of the data are
important  indicators  for  estimating  life  expectancy.  For  training  and  evaluation
purposes, the model requires a known date of death. Therefore, only the medical
records  from deceased  patients  were  included,  leading  to  a  total  1,231  medical
records (3.3% of the total number of patients). To avoid overfitting on the held-out
test set, the test set is excluded from the descriptive statistics in this section — the
statistics are based on the 90% development data only.

The development data consists of 578 (52%) records of female patients, and 530
(48%) records of male patients. The medical records span the five final years of life
for each patient. The average age at the moment of death was 77; 80 for women and
75 for men. These averages correspond to the national averages as reported by the
Centraal  Bureau  voor  de  Statistiek  (national  data  center  for  statistics  in  the
Netherlands). 

3.2.1 Types of data

The EMRs contain both structured and unstructured data. Much of the information in
the  medical  records  is  highly  structured  due  to  the  use  of  standardized  medical
codes: ICD-10 codes (10th edition of the International Statistical Classification of
Diseases  and  Related  Health  Problems)  and  ICPC-1  codes  (1st edition  of  the
International Classification of Primary Care). ICD-10 and ICPC codes are used to
document multiple types of medical information during a consult, such as the reason
for encounter and the diagnosis. The documentation for lab tests and the resulting

2 This is not exactly 10% due to rounding upward for each health care facility.
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lab values follow predefined formats and are therefore structured as well. Finally,
the textual data in the corpus used to describe the type of consult and the name of the
medication  are  well-structured,  due  to  the  interface  used  for  documentation  (i.e.
drop-down menu’s). Table 1 provides an overview of all types of information that
are documented during each medical consultation, with examples that illustrate the
nature of the documented information. All feature types but the letters and notes are
part of the structured data.

Table 1: Overview of documented information per medical consultation, illustrated 
with an example taken from the EMR corpus. ‘S’ and ‘U’ refer to ‘structured’ and 
‘unstructured’ data, respectively. (Translation and code descriptions provided by 
author.)

Feature category Data type Unique items Obligatory Example

Contact type textual data (S) 81 yes regular 10-minute visit

Medical history ICPC-1 code (S) 136 no D10 (vomiting)

Reason for 
encounter

ICPC-1 code (S) 862 yes
A04 (general 
tiredness/weakness)
N17 (vertigo/dizziness)

Diagnosis ICPC-1 code (S) 572 yes
D73 (gastro-enteritis 
infection)

Medical 
intervention

ICPC-1 code (S) 380 no

A31 (directed physical 
examination)

D45 (directives about health
and diet)

ICD-10 reference ICD-10 code (S) 857 no
A09 (infectious 
gastroenteritis and colitis)

Medication textual data (S) 1,490 no Paracetamol 500mg

Lab test clinical code (S) 269 no 357 (patient’s weight)

Letters / notes textual data (U) 53,423 no

cave ileus, drinkt te weinig, 
vandaag voor het eerst 
weer gegeten.
(‘bowel obstruction, does 
not drink enough, ate today 
for the first time again.’)

In  addition  to  structured  information,  EMRs  contain  letters  sent  between
specialists  about  the  patient,  and notes  taken during the consult  that  are  usually
intended for personal use by the GP only. These feature types are illustrated by the
bottom two rows in Table 1. Notes and letters are free texts written in highly variable
formats,  compared to  the  structured  data.  These  types  of  data  consist  of  natural
language and are characterized by large amounts of noise, due to idiosyncratic use of
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language,  many  non-standardized  abbreviations,  spelling  errors,  ungrammatical
sentences,  and telegram-style writing.  The linguistic quality  of the texts  depends
heavily on whether the texts are personal notes, or meant for other readers as well.
On average, 121 consultations were documented per patient for the five year period,
and for roughly 75% of all consultations notes or letters were written. Of all textual
data, 85% of the documents are notes, and 15% are letters.

Letter correspondence mostly functions to discharge a patient, to refer a patient to
a different health care provider, to inform the GP about emergency hospitalization, or
to obtain a second opinion. Research has shown that discharge letters are among the
most important indicators for  GPs when identifying patients with palliative needs
(Claessen et al. 2013; Maas et al. 2013). Specialists may or may not elaborate about
the context of the medical situation, but generally follow a strict format, allowing the
GP to  translate  the  textual  data  directly  into  medical  codes  without  the  loss  of
information. Letters therefore tend to provide little additional information that is not
present  in  the form of structured data  in  the  EMR,  especially  when compared to
consultation notes. 

Notes made during or after consultations often follow the so called SOEP method.
The SOEP method allows GPs to make an explicit distinction in their documentation
between  subjective statements  which  focus  on the patient’s  experience,  objective
statements from the GP’s perspective, the evaluation of the situation, and the plan of
action. Although the SOEP method stimulates a uniform documentation style among
physicians, the distinction between the elements is not always clear-cut.  GPs often
use the  subjective-objective  distinction to  separate  the patient’s  words  from their
own  observations  (regardless  of  the  objectivity  of  the  statements),  and  the
evaluation and  plan of  action are  not  easily  distinguished  in  some cases  either,
especially  if  no specific  treatment  is  prescribed.  Table 2 illustrates  notes written
according to the SOEP method with a translated example.

Clinical notes tend to contain background and contextual information that cannot
be  inferred  from  medical  codes  and  other  structured  information,  such  as
information about a patient’s social life, living arrangements, daily occupations, and
functional and self-care abilities, among other things. Notes provide the GP with the
opportunity to document changes which result in clinically normal behavior (and
which are therefore not documented otherwise), but which are atypical, unexpected
or suspicious for the specific patient, given additional background and contextual
information about this patient. Additionally, notes generally contain nuances about
the severity of the symptoms, descriptions of visible symptoms, information about
the general physical and mental status of the patient, and may be used to document
concerns, differential diagnoses, and other thoughts, ideas or observations.
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 Table 2: Example of clinical notes documented according to the SOEP method. 
(Translated by the author.)

SOEP element Clinical notes

   Subjective

“The patient’s symptoms show roughly twice a week, on the nights his
wife goes out to her hobby clubs. Patient then starts thinking about all
kinds of things that could happen, such as a heart attack, when she is not
around. The walls start closing in on him, he feels pressure on his chest
and starts sweating.”

   Objective

“Seems like  a  respectful  relationship  to  me.  Patient  wants  his  wife  to
enjoy her nights out but has much trouble being alone. Wife continues to
go out despite of that. Patient does not undertake much activities since his
retirement.”

   Evaluation “Anxiety disorder. Hypochondriac?”

   Plan of action
“I will collect some psycho-educational materials and hand them to the
patient the next time.”

3.2.2 Missing values

Medical records are characterized by missing values and irregular sampling. When
data is absent, we could assume that the information is irrelevant, but we cannot
simply  decide whether  the data  is  missing because it  is  normal or  because it  is
stable. When a patient has a chronic disease, it would be redundant to report this
constantly. No documentation in this case does not mean that the patient has been
cured, but only that his status has not changed. In other cases, when the patient has
the flu for example, we may assume that the patient recovered and is healthy again if
no further consultation with the doctor was required after the initial visit. Because
these  scenarios  have  much impact  on  what  the  ‘default’ values  should  be  for  a
patient, we decided not to provide default values to replace missing data.

3.2.3 Illness trajectories

In order to enable detailed evaluation of the results gathered during Phase IV, the
patients  were  divided  into  three  categories,  by  operationalizing  three  illness
trajectories: a) a trajectory that is characterized by slow and prolonged deterioration,
which is mostly associated with frail elderly and dementia patients, 2) a trajectory
characterized by a short period of steady decline and a clear terminal phase, typical
for  cancer  patients,  and  3)  a  trajectory  that  is  characterized  a  long  period  of
functional limitations with intermittent ups and downs, for which death often seems
sudden or unexpected, generally associated with respiratory disease and heart failure
(Murray  et  al.  2005;  Murtagh et  al.  2004;  Lunney et  al.  2003).  The differences
between the trajectories are illustrated by Figure 2.
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Although  the  existence  of  different  illness  trajectories  is  acknowledged  in
literature,  clear,  agreed upon criteria or definitions do not exist.  In this  research,
patients are included in an illness trajectory category if at least one of the criteria of
the trajectory applies to the patient:

• Frail elderly trajectory:

◦ patient suffers from dementia or Parkinson’s disease;

◦ patient is 80 years old or older.

• Cancer trajectory:

◦ patient has a type of malignant neoplasma.

• Organ failure trajectory3:

◦ patient suffers from heart failure;

◦ patient suffers from chronic obstructive pulmonary disease (COPD).

We do not determine the illness trajectory based on the cause of death, for two
reasons: 1) in many cases the actual cause of death is not a direct result of a patient’s
most prominent medical condition (e.g. a patient may suffer from cancer, but die of
something  unrelated  like  pneumonia,  due  to  overall  health  degradation),  and

3 The organ failure trajectory may include many more diseases such as pulmonary heart disease,
infection  of  the  circulatory  system,  rheumatic  fever,  ischaemic  heart  disease,  acute  myocardial
infarction, complicated hypertension, transient cerebral ischaemia, stroke, cerebrovascular disease,
pulmonary  embolism,  and  haemorrhoids.  We decided  however  only  to  include  heart  failure  and
COPD in the organ failure trajectory, because 1) it increases the homogeneity of the group: the other
illnesses are heterogeneous in terms of severity and impact on daily life, 2) heart failure and COPD
cover a substantial part of the corpus, and 3) they lead to a less sudden death than the other conditions
do, but do have a substantial impact on daily life. Therefore, ACP is more relevant for these diseases
than for the other conditions. 
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Figure 2: Trajectories of decline typical for the
cancer, organ failure, and frail elderly trajectory.
Figure adapted from Murray et al. (2005).



2) because the actual cause of death is often unknown and therefore not documented.
Alternatively, in order to see how the model’s performance relates to different illness
trajectories,  patients  are  categorized  into  one  or  more  trajectories  based  on  the
diagnoses they received during the five year period, regardless of the actual cause of
death.

Figure 3 shows the distribution of patients over illness trajectories. More often
than not, patients belong to multiple categories. A total of 146 patients did not fit any
of the categories, and were left uncategorized. The average age for the group of
patients that fall exclusively in the cancer trajectory was 64; 71 for the organ failure
trajectory; and 87 or the frail elderly . 

Figure 4 shows the relative cumulative number of patients per age at the moment
of dying, for each illness trajectory and for the total set of patients. Because we aim
to  highlight  the  differences  between  the  illness  trajectories,  we  only  included
patients that are characterized by one illness trajectory in this figure. As an artifact of
the categorization criteria,  all  patients  aged 80 or higher  are  categorized as frail
elderly. Therefore, no patients are added to the cancer and organ failure categories
after the age of 80 in Figure 4. The data show that there is a clear difference between
the different illness categories. Compared to the average, patients with cancer and
organ failure tend to  die  at  a  younger  age,  while  patients  that  fall  into  the frail
elderly category tend to reach a higher age.
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Figure 3: Distribution of patients over 
illness trajectories.
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Figure 4: Relative cumulative number of patients per age at 
the moment of dying for each illness trajectory and for the 
total group of patients.
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4. PHASE I: PREPROCESSING THE DATA

Phase I focuses on processing the corpus in such a way that it can be fed to the LSTM

model. The input of Phase I consists of the raw corpus data. Different processing
steps are applied to each feature category in order to make all features fit a strict
predefined format. The output is a collection of all data per feature category for each
patient. The unstructured data (free text) and the structured data (all other data) are
processed in fundamentally different ways.  The main goal of Phase I is to extract
and process data from the corpus. Most of the processing steps during Phase I are
directed  towards  extracting  more  useful  information  and  less  noise  from  the
unstructured, textual data. 

4.1 Processing structured data

The structured data consists of patient characteristics such as gender and the date of
birth, and medical data which changes through time dynamically, such as diagnostic
codes and prescribed medication. The main goal of processing the structured data
during Phase I is to have all data of the same type fit the same mold. Some medical
codes  for  example  may  show  more  detail  than  others,  which  impedes  direct
comparison. The medical codes are processed as follows: multiple codes that occur
in one text field are split into separate codes, noise and white space are removed, and
the codes are abstracted from the sub-code level (e.g. A23.4 is generalized to A23).
Medication names are cleared from information regarding the dosage and use. Lab
tests  are  only  included  when  they  resulted  in  irregular  or  abnormal  values  (as
determined by the GP).

4.2 Natural language processing pipeline

The unstructured, textual data is of an entirely different nature than the structured
data, and can therefore not be processed as such. The goal of processing textual data
during  Phase  I  is  to  normalize  the  text,  and,  to  a  certain  extent,  map  different
variations of a concept to the same word. Due to the nature of language and the high
level of noise,  textual data contains many more unique items than the structured
data. The following issues are addressed as part of the natural language processing
pipeline: 1) writing conventions, 2) language productivity, 3) phrases, 4) domain-
specific corpus characteristics, and 5) noise.

Writing conventions in general, but their inconsistent use additionally, impedes
recognizing  two  instances  of  a  word  as  such.  Examples  include  inconsistent
application of upper- and lowercase letters sentence-initially,  to proper names, to
medication, and to chemical names, among other types of words. Furthermore, the
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comparison of words is inhibited by the inconsistent use of diacritics, and the use of
non-lexical tokens, such as numbers, symbols, lab values, and dates.

Additionally,  Dutch  as  a  natural  language  is  inherently  productive.  Dutch  is
characterized  by  inflectional,  derivational  and  compounding  processes,  which
obstruct the recognition of similar semantic entities. Both items within the following
pairs  refer to the same concept to a smaller or larger degree, but the members of
each pair are not recognized as the same concept at all, without further processing:
slaap ‘sleep’ (SG)  -  slapen  ‘sleep’  (PL),  cva (abbreviation  of  cerebro  vasculair
accident,  ‘stroke’)  -  cva’tje  (diminutive form),  and  kanker  ‘cancer’ -  longkanker
‘lung cancer’ for example. 

Similar to compound words, the corpus contains multi-word units that are static
phrases which refer to one concept, although the items may (infrequently) be used
apart from each other as well. Such multi-word phrases lose some of their meaning
when the items are analyzed separately. This is the case for many diagnostic terms,
such as  diabetes mellitus,  decompensatio cordis, and  reumatoïde artritis. Many of
these terms rely heavily on loan words, and therefore do not adhere to the Dutch
compounding rules. In some cases, words should be written as compound words, but
because abbreviations tend to include the initials of all important  elements of the
phrase regardless of word boundaries, the elements tend to be split as a result when
the full phrase is written as well. Vesiculair ademgeruis ‘vesicular breathing sound’,
frequently  abbreviated  as  vag,  is  often  written  as  vesiculair  adem  geruis for
example, thereby incorrectly splitting the elements of the compound ademgeruis.In
many cases the abbreviated form is used more frequently than the original phrase,
which may lead to further suppression of the original phrase structure. 

Furthermore,  natural  language is  characterized by synonymy and polysemy in
general,  but  domain-specific  terminology  increases  the  problem of  recognizing
similar semantic concepts even further. On the one hand, the use of jargon alongside
standard-language alternatives, and specifically the use of many Latin and Greek
(derived)  words  alongside  Dutch  alternatives,  greatly  increase  the  amount  of
synonymy. Examples include ruimte-innemend proces - kanker (Dutch jargon versus
the standard-language term for ‘cancer’), letsel -  laesie -  trauma (Dutch, Latin and
Greek words for ‘injury’), and bot - been - os (two Dutch words and a Greek word
for ‘bone’). On the other hand, many domain-specific abbreviations overlap fully
with  other  corpus words,  thereby increasing  polysemy.  Examples  include  ca for
carcinoom ‘carcinoma’, which is used to abbreviate circa as well, and mis which is
used to abbreviate misschien ‘maybe’, but which carries the meaning of ‘incorrect’
as well.
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Finally,  the  noisy  character  of  the  data  hinders  the  detection  of  semantically
similar words. Because many of the texts are not written with the intention to be
read by others, the writing conventions are often ignored or incorrectly applied, and
many typographical errors, frequently used medical abbreviations, non-standardized
and  inconsistently  used  doctor-specific  abbreviations,  and  other  kinds  of
idiosyncrasies are used in the texts.  Table 3 provides examples of such kinds of
noise. 

Table 3: Examples of noisy data.

Type of noise Example Correct form / error description

Ignored writing 
conventions

patient patiënt

alzheimer Alzheimer (proper name used for disease)

type ii type II

Incorrectly applied 
writing conventions

U, Uw u, uw (‘you’, ‘your’)

jeuk-branderig-pijnlijk gevoel enumeration should be linked with ‘,’

slagen/minuut slagen per minuut (‘beats per minute’)

Typographical 
errors

op gelucht should be concatenated

konclusie homophonic confusion

knaker letter shift (should be kanker)

(semi-)standardized
medical 
abbreviations

x-thorax x instead of x-ray

1xdd éénmaal daags (‘once a day’)

re / r, li / l rechts ‘right’, links ‘left’

Doctor-specific 
abbreviations

ws, wrs, wsch, wrsch, waarsch waarschijnlijk (‘probably’)

zh, zhs, zkh, zkhs ziekenhuis (‘hospital’)

pat, pte, pa, pt, p patiënt(e) (‘(fe)male patient’)

Other 
idiosyncrasies

re>li ‘right side (re) more than left (li) side’

o/rug, b/rug o/ indicates onder (‘lower’), b/ boven (‘upper’)

# separates subjective notes from observations

The texts are processed by a natural language processing pipeline 1) to improve
the  quality  of  the  texts  by  removing  and  correcting  noise,  2)  to  improve  the
recognition of semantically similar words, and 3) to remove redundant information
such as headers and footers from letters. As Figure 5 shows, the pipeline consists of
processes  to  tokenize  and  normalize  the  text,  remove  headers  and  footers  from
letters,  rephrase  certain  textual  units,  provide  part-of-speech  tags,  and  correct
spelling  errors.  Each  of  the  steps  of  the  NLP pipeline  after  data  extraction  is
discussed in more detail below.
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4.2.1 Tokenization

Tokenization transforms the strings of text into a list of words for each document, by
replacing white space and punctuation with word boundaries. Hyphens that occur
within  words  (i.e.,  that  are  directly  preceded  and  followed  by  letters)  to  create
compound words are an exception, and are not replaced by word boundaries.

4.2.2 Normalization

Normalization is  applied  to  neutralize  differences  between  variants  of  the  same
word, e.g. ‘patient’, ‘Patient’, and ‘patiënt’ (patient). All tokens are lowercased, and
diacritical symbols are removed (‘ë’→‘e’).
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Figure  5:  Data  extraction  and  preprocessing  pipeline.
Processing steps  ‘rephrasal’ and ‘PoS-tagging’ are  passed
twice. During the first  pass,  the  arrows  labeled  (1)  are
indicative,  during the second pass, the arrows labeled (2)
are indicative.



4.2.3 Rephrasal

Rephrasal is applied to 1) enable the recognition of synonyms, 2) map abbreviations
to the corresponding word(s), 3) split  certain compound words, and 4) avoid the
separation of certain multi-word phrases. We replaced single- or multi-word units by
other single- or multi-word units with the aid of a hand-made translation dictionary,
that contains roughly 1,700 rephrased pairs. 

The  rephrasings  may  be  one-to-one  mappings  for  replacing  synonyms  (e.g.
fractuur and breuk both refer to ‘fracture’, therefore fractuur → breuk), one-to-many
mappings  to  partition  certain  compound  words  (e.g.  baarmoederhalsoperatie
represents ‘cervix’ + ‘surgery’, therefore  baarmoederhalsoperatie  → baarmoeder-
hals  +  operatie),  many-to-one  mappings  to  retain  fixed  phrases  (e.g.  diabetes
mellitus  → diabetes_mellitus), and many-to-many mappings to perform several of
the aforementioned steps simultaneously (ruimte innemend proces hersenen refers to
the  concept  of  ‘cancer’,  and  hersenen ‘brain’ is  synonymous  to  brein,  therefore
ruimte innemend proces hersenen → brein carcinoom).

Whether or not compound words refer to one or more mental concepts for native
speakers of Dutch, is complex to determine, especially automatically. Therefore, we
hand-picked a set of frequent, domain-specific words instead of trying to determine
automatically which compounds should be split. We picked the items from a list of
the 5,000 most frequent unigrams, and 1,000 most frequent bi- and trigrams found in
the development data.

Examples include  ooginfectie ‘eye infection’, which is split into  oog +  infectie
and  seniorenservice ‘senior service’, which is split into  senioren  +  service,  while
other compound words such as netvlies ‘retina’ (which consists of  net + vlies) and
ziekenhuis ‘hospital’ (which consists of zieken + huis) were left intact. Furthermore,
we included words in the rephrasing dictionary if they were common non-standard
words or had a notable amount of close semantic neighbors. The non-standardized
abbreviations p and pat are frequently used to refer to patiënt ‘patient’ for example,
and  the  words  ca,  carc,  carcinoom,  gezwel,  kanker,  maligniteit,  metastase,
neoplasma, tumor, and ruimte innemend proces — among many other words — all
refer to the concept of ‘cancer’. Because of the productive nature of language and
the noisy character of the corpus, completeness of the rephrasal dictionary is not
claimed.

To  illustrate  the  effect  of  rephrasing,  four  examples  are  given  below.  The
hypothetical  example below shows text  fragments  for four  patients,  all  suffering
from cancer. The cancer-related words are underlined.
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Patient A: ... om de lymfekliertumor te behandelen....
‘... to treat the lymph node tumor...’

Patient B: ... dat er een r.i.p. li eierstok is vastgesteld...
‘... that an expansion process in the left ovary is determined...’

Patient C: ... is gebleken dat de ovariummetastasen...
‘... has turned out that the metastases in the ovary...’

Patient D: ... overlegd over de gevolgen van het eierstokca...
‘... discussed the consequences of the ovary carcinoma...’

All patients have a form of cancer, although in all cases different words are used to
describe the disease. Table 4 shows what the feature vector for these patients would
look like, if no further processing was applied: the vectors for the four patients do
not overlap at all, even though they all suffer from cancer.

Table 4: Feature vector for different hypothetical patients.

lymfekliertumor r.i.p. eierstok ovariummetastasen eierstokca

Patient A ✓

Patient B ✓ ✓

Patient C ✓

Patient D ✓
The table only shows the features that are relevant for the corresponding examples.

Table 5 shows examples of different types of rephrasings that concern the concept
of cancer. Example 2 in Table 5 shows the mapping of an abbreviation to a single-
word phrase. Examples 1, 3 and 4 show the mapping of compound words into multi-
word phrases. Such rephrasing is done because we interpret lymfekliertumor (‘lymph
node tumor’) and ovariummetastasen (‘ovary metastases’) as two different types of
the same disease (i.e. cancer), rather than two entirely different diseases. Separating
compound words into separate parts enables storing the parts individually. 

In examples 1 and 3 in Table 5, the compound words are split into two parts, but
the  result  is  not  simply  a  partitioning of  the  compound.  One or  more  parts  are
substituted by different words, in order to solve synonymy:  ovarium is the Latin
equivalent of the Dutch eierstok (‘ovary’), and metastasen (‘metastases’) is one of
many words that refer to the concept of cancer. If ovarium and eierstok would not be
mapped  to  the  same  word,  Patients  B,  C  and  D  would  be  considered  to  have
different diseases, as is illustrated by Table 4. Table 6 shows the result of the rephra-
sing procedure: in this representation, all patients have cancer, but not the same type.
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Table 5: Examples of substitutions.

Mapping          

1) lymfekliertumor → lymfeklier carcinoom

2) r.i.p. → carcinoom

3) ovariummetastasen → eierstok carcinoom

4) eierstokca → eierstok carcinoom

Table  6:  Feature  vector  for  different  hypothetical  patients
after the texts are rephrased.

lymfeklier eierstok kanker

Patient A ✓ ✓

Patient B ✓ ✓

Patient C ✓ ✓

Patient D ✓ ✓
The table only shows the features that are relevant for the corresponding examples.

The rephrasal dictionary was created on the basis of the development data, and
applied  to  both  the  development  data  and  validation  data.  After  the  following
spelling correction step (described in Section 4.2.5) the rephrasal  dictionary was
applied once more, to ensure the rephrasing of words that were missed initially due
to spelling errors.

4.2.4 Part of speech tagging 

Part of speech (PoS) tagging is applied to 1) enable word-sense disambiguation, 2)
aid in spelling correction (see next section), and 3) enable feature selection in Phase
II. Using Frog (version 4.2.2, Van den Bosch et al. 2007), the text is automatically
provided with PoS tags. The tokens are substituted by ‘[token]:[PoS tag]’ pairs, for
example: naald (‘needle’) → naald:N (‘needle:N’), in which the N refers to the PoS
tag ‘noun’. PoS tags help to a certain extent to discriminate between the different
uses of words. Examples include polysemous words: slaap, which can refer to ‘the
side of the head’ and to ‘sleeping’, which would be tagged as ‘slaap:N’ (noun) and
‘slaap:WW’ (verb) respectively, based on the linguistic context in which they appear,
thereby  enabling  disambiguation. Abbreviations  that  correspond  to  more  regular
items, such as ca which is used to abbreviate carcinoom and circa, would be tagged
‘ca:N’ (noun) and ‘ca:VZ’ (adverb), respectively.
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4.2.5 Spelling correction

Spelling correction is applied to normalize noisy data. Regular spelling correctors
are sub-optimal for the EMR corpus. Because the corpus contains a large amount of
domain-specific words and abbreviations, comparing the corpus words with a list of
standard-Dutch words to detect non-words, leads to many false positives, and thus
many incorrect substitutions. The noisy character of the textual data oftentimes leads
to situations in which it is unclear whether an uncommon word is an actual error,
e.g. *vag instead of  vaag  (‘vague’), a (non-standard) abbreviation with or without
punctuation marks, e.g. vag instead of vesiculair ademgeruis, or simply jargon, e.g.
decompensatio.

Moreover, it is possible that a word exists both in the medical domain as well as
in general, but refers to different concepts depending on the domain, which may lead
to  different  usage  patterns.  Examples  include  the  use  of  positief (‘positive’)  in
everyday life as a synonym for goed (‘good’), while in the medical domain it means
that the phenomenon a patient is tested for, is indeed present. Another example is the
word mamma, which in everyday use refers to ‘mother’, but in the medical context
refers to ‘breast’. The abbreviation r.i.p. is generally used for ‘rest in peace’, while in
the medical domain it is used to abbreviate ruimteinnemend proces, which refers to
cancer  — ‘rest  in  peace’ will  be  intended way less  frequently  (if  at  all)  in  the
medical domain than ‘cancer’, and vice versa in general language. Such differences
in  meaning  lead  to  different  semantic  and  syntactic  embeddings.  It  is  therefore
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suboptimal to use general language as a foundation for a spelling checker that is
intended to be applied to a specific domain.

To circumvent these issues, a spelling corrector was created specifically for this
corpus.  The spelling corrector  follows a  decision tree to  detect  possible  spelling
errors, as illustrated by Figure 6. The spelling corrector determines for each token in
its specific syntactic context whether or not the token contains a spelling error. A
dynamically growing list of spelling corrections that the spelling corrector has found
by analyzing previous text, is consulted first. Each time the spelling corrector finds a
new error, it is appended to this correction dictionary.

For  each  word  that  is  not  known to  be  incorrect  (i.e.,  is  not  an  item in  the
correction dictionary), the spelling corrector first decides whether or not the word
contains an error. Based on the frequency of the word, it is decided whether or not a
correction  should  be  applied.  Because  the  EMR corpus  is  relatively  small,  the
frequency cut-off boundary used to identify possible errors within the  EMR was 5.
This means that a word is suspected to be an error if it occurs less than five times in
the EMR corpus. By using a low frequency however, many false positives (infrequent
but correct words that are often domain-specific, such as rare diseases) and false
negatives  (frequent  spelling  errors)  are  collected  by  the  frequency  filter,  or  slip
through it, respectively. Therefore, the spelling corrector compares the tokens in the
EMR corpus with background corpus OpenTaal first. The frequency boundary used
for  OpenTaal  is  10. If  a  word  occurs  frequently  enough  in  OpenTaal,  it  is  not
identified as a possible error. If a word is infrequent in OpenTaal, but frequent in the
EMR corpus, it is assumed to be spelled correctly as well. If a word is infrequent in
both corpora however, it is considered a possible error, and further processing steps
apply. 

The frequencies for the cut-off  boundaries were determined by comparing the
result of three different frequency boundaries: 5, 10 and 15. We determined the best
boundaries  for  the  EMR corpus  and the  OpenTaal  corpus separately,  because the
corpora differ in size and domain. Higher boundaries than 5 for the EMR corpus led
to detection errors that were actually false positives, such as correct but infrequent
compound words (e.g. littekenpijn, ‘scar pain’) and names of relatively rare diseases
and substances, among other things (e.g. the antigene ‘Galactomannan’). A cut-off
boundary of 10 was chosen for the OpenTaal corpus, because similar to the  EMR

corpus a higher boundary led to too many false positives, and a lower boundary led
to many false negatives, such as many non-Dutch words (e.g. energy and obligation)
and  frequent  spelling  errors  (e.g.  *produkt,  incorrect  variant  of  product),  which
resulted in unwanted corrections.
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When a spelling error is assumed, a plausible correction candidate is attempted to
be found within the EMR corpus. A correction candidate is said to be plausible, if the
relative  Levenshtein  edit-distance  between  the  possible  error  and  the  correction
candidate is less than 0.2, and if the correction candidate is more frequent than the
frequency boundary. We used the relative distance between two words, because the
absolute difference can either be considered as a large or as a small distance, which
depends on the length of the incorrect word. When a short word like  meta’s (non-
standardized  abbreviation  of  metastasen,  ‘metastases’)  is  corrected  to  metaal
(‘metal’) for example, the mutation is relatively large. When a longer word such as
*hersenvliesontstekign is corrected to hersenvliesontsteking (‘meningitis’) however,
the correction is more likely to be good because it is relatively small, and due to the
fact that longer words have less near neighbors. 

Based on the findings of Walasek (2016), who explored the effect of different edit
distance thresholds for spelling correction in the medical domain, three values were
tested to determine the optimal maximum edit-distance: 0.15, 0.175, and 0.2. In our
case,  the number of good corrections increased faster than the number of wrong
corrections with an increasing maximum edit distance, therefore the maximum edit-
distance of 0.2 yielded the best results. Tables 7 and 8 provide examples of correct
and incorrect  substitutions  that  resulted  from using  this  value.  Table  7 gives  an
overview of  different  types  of  corrections  and explains  the  type  of  error  that  is
corrected. Table 8 gives an overview of incorrect substitutions, and explains why the
substitution  is  incorrect.  We  considered  compound  words  that  were  split  into
separate correctly spelled parts as correct substitutions — these type of substitutions
fit the spirit of splitting multi-word units into subparts, which is done during the
rephrasing procedure as well to increase the recognition of multiple concepts from
one word.

Table 7: Examples of correct substitutions and characterizations of the errors.

Correct substitutions Type of error that is corrected

*contgrole → controle letter insertion

*metastsen → metastasen letter deletion

*behnadeling → behandeling letter shift

*gekraagd → gevraagd letter substitution

*onvermogenom → onvermogen om incorrect concatenation

lymfeklierextirpatie → lymfeklier extirpatie infrequent compound word
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Table 8: Examples of incorrect substitutions and explanations for correction errors.

Incorrect substitutions Explanation

snijwondje → snijwond je snijwondje is correct but infrequent,
better split would be snij wondje

*bloedgluc → bloed *gluc gluc is an abbreviation, this problem is fixed
by 2nd round of rephrasing however

*lipen → lopen good  substitution  in  some  contexts,  but
should be liepen or lippen in other cases

*wgschl → *wrschl substitution  is  a  frequent  non-standardized
variant of waarschijnlijk

*weeiig → wee *iig should  be  substituted  by  weeïg,  but  this
word is absent from the corpus

kind(eren) → kinderen brackets intended for optional word features
are an unforeseen case.

The presumed error is substituted with the correction candidate, if the candidate
meets the following criteria: 1) the relative edit-distance is maximally 0.2, 2) the
correction  candidate  is  more  frequent  than  the  frequency  boundary,  and  3)  the
correction  candidate  appears  at  least  once  in  the  same  syntactic  context  as  the
suspected error. The context is defined as the two PoS tags of the words directly
preceding  and  following  the  word.  Some  words  appear  only  in  a  very  limited
number  of  contexts,  while  others  are  more  flexible.  Taking  the  context  into
consideration decreases the chance of incorrect substitutions. In case of *bloedind
for example, which is used in a noun position, we may have two equally plausible
correction candidates based on the edit-distance, that are both more frequent than the
frequency  boundary:  the  noun  bloeding  (‘bleeding’) and  the  adjective  bloedend
(‘bleeding’). It is hypothesized that the substitution that can occur within the same
syntactic  context,  is  more  plausible  than  the  substitution  that  is  not;  therefore
*bloedind is replaced by bloeding instead of bloedend.

If no plausible substitution is available, the spelling corrector checks whether the
word is  an incorrect concatenation of two existing words.  The spelling corrector
walks through the word letter by letter,  splitting the word into two parts at each
point, but only if the two parts both have a minimal length of two letters. Splits are
considered plausible if both parts of the word occur in the corpus more frequently
than the frequency boundary. If more than one plausible split is found, the optimal
split  is  defined  as  the  split  for  which  the  least  frequent  part  has  the  highest
frequency, compared to the least frequent part of other plausible splits. 
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If no good substitution can be found by either of the two methods, the word is left
unchanged.  If  during  the  process  a  plausible  spelling  correction  is  found,  the
correction is added to the spelling correction dictionary. This way, when the spelling
error  is  encountered again,  the  spelling  corrector  can simply  retrieve the  correct
substitution from the correction dictionary and apply it directly.

After all words are checked and corrected if necessary, the rephrasing procedure
is applied once more, to rephrase words and phrases that were skipped by the initial
rephrasing procedure due to spelling errors. Additionally, the text is PoS tagged once
more by Frog to enhance the quality of the assigned PoS labels, for the same reason:
due to spelling errors, the wrong part of speech tags may have been assigned during
the initial round of PoS tagging.

4.2.6 Lemmatization

Lemmatization  is  applied  to  all  words  in  the  corpus  to  neutralize  the  effect  of
inflection  and  derivation.  Inflection  and  derivation  hinder  the  recognition  of
conceptually similar words that are spelled slightly differently. Replacing all words
by lemmas, increases the recognition of semantically similar words.

4.2.7 Postprocessing

Postprocessing is finally applied to remove non-words and redundant information,
such as headers and footers of letters. This leads among other things to the exclusion
of dates, phone numbers, urls, and e-mail addresses. Everything up to and including
the actual opening of the letter, and everything from the closing of the letter onward
is  removed,  because  often  medically  irrelevant  information  such  as  contact
information and the name of the health care facility are mentioned in the header and
footer of the letter. Although we did not want to use this data as input to the model
during Phases III and IV, we did not exclude it from the start of Phase I because the
spelling corrector relies on word frequency counts. Excluding it from the start of
Phase I would have caused the spelling corrector to make unnecessary and incorrect
substitutions.
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5. PHASE II: FEATURE REDUCTION

Phase II is dedicated to the preparation of the feature selection procedure which is
executed  during  Phase  III.  During  this  phase,  several  approaches  for  feature
reduction were applied to decrease the size of the feature categories. The definitive
feature selection was executed based on experiments with different feature sets in
Phase  III  — during  Phase  II  the  feature  sets  are  merely  prepared.  This  section
discusses feature reduction methods for the structured data and unstructured data,
respectively. Age and gender are not discussed in this section, because we did not
reduce these feature categories in any way.

After  merging similar  feature categories,  such as the categories  of letters and
notes, nine general features categories remained. Each of these feature categories
however  contains  many  unique  features.  While  the  algorithm  needs  no  explicit
instruction  to  learn  which  features  are  important  for  making correct  predictions,
introducing too much noise affects the learning process negatively, by requiring both
more data to learn from and a higher model complexity.

The  LSTM algorithm  can  only  learn  which  (interactions  between)  values  are
relevant if 1) the values occur frequently enough overall, and 2) the values occur
frequently  enough  in  significant  contexts.  Influenza  for  example  is  frequently
diagnosed,  but  is  usually  not  an  important  indicator  for  life  expectancy.  In
combination with old age and bronchitis however, the disease may be fatal. If the
diagnosis  influenza  is  frequent  (thereby  satisfying  the  first  criterion),  but
combinations of influenza and other feature values that are indicative  together  are
not frequent (thereby  not satisfying the second criterion), the model is unlikely to
learn the importance of influenza for predicting life expectancy. Therefore, the more
values it needs to learn, the more data is needed to train the algorithm. 

We define a good feature set as being maximally descriptive while minimal in
size,  and  containing  features  that  are  relatively  frequent.  Including  infrequent
features in the feature set has drawbacks: as discussed, the algorithm needs much
data to learn the predictive value of the feature, and even if it does, this knowledge is
only applicable incidentally, while the model complexity is increased permanently.
Phase II aims to reduce the size of the feature set while retaining as much good
predictors as possible. Table 9 shows the number of features per feature category if
no selection is made.

Using a  total  of  almost  60,000 features  would require  a  very complex,  high-
dimensional model and a lot of data to learn from. The development data consists of
only 1107 patients, which is not a lot of data, considering the size of the feature set
and the complexity of the task. 
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Table 9: Number of unique features per category.

Feature category # Features

Medical history 136

Contact type 81

Diagnosis 572

ICD-10 857

Reason for encounter 862

Intervention 380

Medication 1,490

Lab tests 269

Keywords 53,423

Total for structured data 4,647

Total for unstructured data 53,423

Total amount of features 58,070

 
In  order  to  relax  the  high  demands  in  terms  of  data  quantity  and  model

complexity, methods for feature reduction were implemented to remove redundant,
irrelevant  and  infrequent  features.  Depending  on  the  type  of  feature,  different
methods  were  used.  In  the  following  sections,  the  techniques  for  processing
structured and unstructured data are described, respectively.

5.1 Feature selection for structured data

5.1.1 Frequency-based feature reduction

As Table 9 shows, most feature categories are represented by many features in the
EMR corpus.  Not  all  values  are  equally  frequent,  however.  Infrequent  values  are
certainly not automatically irrelevant values: uncommon diseases for example may
be very good predictors for life expectancy. However, because they are infrequent,
including them in the model is expected to offer little to no increase in accuracy — it
may even decrease the model’s performance. Because such features are uncommon
in the training data, the model is likely to be unable to learn the relevance of such
features  properly.  Moreover,  because  these  features  occur  very  infrequently  in
reality, the chance of encountering a new patient with the disease is small. Therefore,
even if the model assigned the right value to the feature and predicts life expectancy
well when a patient with that feature is encountered, the chances of encountering
such a  patient  are  very small  in  the first  place.  Excluding infrequent  features  is
therefore  expected  to  decrease  the  model  complexity,  without  decreasing  its
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accuracy.  Three  frequency-based  feature  reduction  methods  were  applied  to  the
structured data in Phase II, and tested during Phase III:

• absolute frequency cut-off boundary: only include values with an absolute

frequency of at least 100;
• relative frequency cut-off  boundary:  only include values that  make up at

least 1% of data for a feature category;
• cumulative relative frequency cut-off boundary: sort values by their relative

frequency (high to  low),  and only include the top  n values that  together
cover at least 75% of the data for a feature category.

The amount of feature reduction for each reduction method is shown in Table 10.

Table 10: Remaining number of features per category after the application of 
different frequency-based feature reduction methods.

Feature Total Abs. freq. Rel. freq. Rel. cum. freq.

Medical history 136 0 24 38

Contact type 81 22 12 4

Diagnosis 572 218 21 83

ICD-10 857 231 18 103

Reason for encounter 862 179 17 56

Intervention 380 115 28 24

Medication 1,490 212 20 141

Lab tests 269 47 24 23

Total 4,647 1,025 164 473

Corpus coverage 100% 81% 60% 75%

5.1.2 Feature reduction for ICPC and ICD-10 features

In  addition  to  the  frequency-based  reduction  methods,  one  additional  reduction
method was tested for the ICPC and ICD-10 features: aggregation of codes by using
different levels of detail. The ICD-10 and ICPC codes have a similar format: a letter
followed  by  two  digits,  a  decimal  separator,  and  again  one  or  two  digits,  e.g.
‘D84.02’. The letter indicates which system has been affected (e.g. ‘D’ refers to the
digestive system), in this research referred to as the  main category level. The two
digits before the decimal separator indicate the illness or condition (e.g. ‘D84’ refers
to an esophageal condition). 

A combination of a letter and two digits is referred to as the code level, and is the
level which is used as the default level throughout this research. The digits following
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the decimal separator specify the details (e.g. ‘D84.02’ refers to ‘esophageal reflux
without esophagitis’). This level, the total of a letter and two digit pairs, is referred
to as the  sub-code level. This level is not used in the research because the codes
reported in the EMRs rarely show this level of detail. Moreover, using this level of
detail would only lead to more unique feature values instead of less. 

In case of the ICPC codes, two additional levels are applicable. The ICPC cannot
only be used for encoding the diagnostic components of a consult (in contrast to
ICD-10 codes), but also for reporting the screening, complaint, treatment, test result,
administrative, and referral components. For this reason, the ICPC system is used to
encode different types of feature categories: it covers the medical history, reason for
encounter, diagnosis, and intervention. We refer to this partitioning into components
as the component level. Additionally, we refer to the combination of the main code
and the component as the subcategory level.

ICD-10 codes cannot be categorized into such component classes. For the ICD-10
codes a subcategory level is also used, but it is not based on a combination of main
category  and  component.  The  ICD-10  groups  similar  codes  into  thematically
coherent sets, leading to compressed lists of codes. This list can be interpreted best
as  a  list  of  primary  disease  patterns,  such  as  ‘metabolism-related  disease’  or
‘psychological  conditions’.  When  we  use  the  subcategory  level for  the  ICD-10
codes, we refer to these primary disease patterns. 

Table 11 shows the reduction that results from aggregation over different levels,
for each frequency cut-off level. Features were reduced by using codes with higher
levels of abstraction. To see which level provides the best results, each level was
tested during Phase III.

Table 11: Amount of feature reduction as a result of different code levels and different
frequency cut-off levels, compared to the default feature set (code level and no cut-
off). The retained columns show the size of the feature set, the reduced columns show 
the amount of reduction.

Code level Subcat. level Main cat. level Component level

retained reduced retained reduced retained reduced retained reduced

No cut-off 4,647 0% 2,145 54% 1,928 59% 1,882 60%

Abs. freq. 1,024 88% 467 90% 351 92% 314 93%

Rel. freq. 164 96% 158 97% 131 97% 88 98%

Rel. cum. freq. 472 90% 220 95% 200 96% 177 96%

Abbreviations: cat. = category, abs. = absolute, rel. = relative, cum. = cumulative, freq. = frequency.
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5.2 Keyword selection

Compared to the structural data, there are more than ten times as much keyword
features than all other features taken together, without further processing. Certain
characteristics  of  textual  data  call  for  a  different  feature  selection  approach  for
textual data than the for the structured data. The meaning of a medical code is not
variable and different codes cannot be used to refer to the same phenomenon, while
the  exact  meaning of  a  word  often  depends on the  context  in  which  it  is  used,
especially in case of polysemous words. Vice versa, many words can be used to
describe the same concept, due to synonymy.

Three different approaches for keyword selection were prepared. The first method
is  a  frequency-based ranking approach,  which  represents  the  textual  data  with  a
naive bag-of-words  model.  While  it  is  true that  words  which are important  in  a
document tend to occur relatively frequently in a document, plain frequency counts
of unique words throughout the corpus tend to be bad indicators for the importance
of  words.  Both  the  most  frequent  words  (i.e.  function  words)  and  the  most
infrequent words (usually noise such as typographical errors) tend to be the least
informative  words.  The  frequency-based  ranking approach,  for  which  all  unique
words  were  ranked  by  their  absolute  corpus  frequency,  therefore  functioned
implicitly as a baseline to compare more advanced textual representations to.

Two  additional  approaches  for  keyword  selection  were  prepared:  1)  entropy-
based ranking and 2) a vector space representation using word embeddings, created
with  WORD2VEC.  The  frequency  and  the  entropy  methods  both  deliver  a  list  of
keywords in decreasing quality, so when the top n of the list is taken during Phase
III, it always includes the best keywords in terms of the ranking criteria. The entropy
ranking and the  WORD2VEC representation rely on distributional properties of the
textual data, but in different ways, which is discussed in more detail in the following
sections. Part of speech filtering was applied to all three selection methods: all parts
of  speech were used to  determine the distributional  properties  of  the words,  but
function words were removed from the three collections of keyword features after
ranking the keywords. 

5.2.1 Entropy-based ranking

The entropy-based ranking method aims to compare the actual keyword distributions
throughout  the  corpus  to  a  set  of  distributions  which  we  regard  as  ‘optimally
predictive’.  We  consider  a  distribution  to  be  predictive  if  the  word  frequency
increases  or  decreases  through  time.  Figure  7  illustrates  examples  of  predictive
words, with different types of slopes. Although the frequency of the words in 
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Figure 7 changes at a different rate over time, we consider these distributions all to
be predictive.

The Kullback-Leibler divergence is an entropy-based measure of similarity used
to  compare  two probability  distributions.  In  this  research,  we use  the  Kullback-
Leibler  divergence  to  compare  the  distribution  of  each  word  in  the  corpus  to
distributions which we regard to be optimal for predicting life expectancy. Which
distribution we consider to be optimal, depends on the individual word distribution.
Figure 7 shows three predictive words, but if we would compare them all to the
same  artificial  ‘optimal’  distribution  — a  type  of  exponentially  increasing  or
decreasing  function  — words  with  a  relatively  linear  progression  (such  as
streefdoelen)  or  a  relatively  steap  increase  or  decrease  in  frequency  (such  as
morfine) would be considered as a bad fit to such a fixed exponential function.

Therefore, we determined an optimal distribution for each individual word based
on its actual corpus distribution. We use the relative corpus frequency to remove the
effect of the total amount of textual data from the equation, because more texts tend
to be produced as the end of life  approaches.  Using absolute  frequencies would
result in frequency increases through time for most words, complicating the search
for words associated with the end of life. 

The optimal distribution for a word is a fitted curve C. As Formula 1 shows, the
function fits curve C by determining 1) amplitude a, indicating the rate of change, 2)
background b, indicating the overall use of the word in the corpus regardless of time,
and  3)  time  scale  c,  indicating  the  period  from  which  the  steady  background
frequency starts to change as a result from the approaching end of life.

Formula 1: Cword = a × -bx + c
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Figure 7: Three distributions of word frequencies through time.



The fitted curve for a word functions as its  optimal  distribution, which can be
compared  to  the  actual distribution  with  the  Kullback-Leibler  divergence.  The
resulting  entropy  reflects  to  which  degree  the  actual  distribution  adheres  to  the
optimal distribution, or alternatively phrased: whether the frequency in- or decrease
is  relatively  smooth  and  predictable,  as  for  morfine,  or  whether  it  is  relatively
turbulent and unpredictable, as is the case for streefdoelen. Figure 8 illustrates that
morfine adheres closely to its optimal distribution, while streefdoelen does not, due
to the large amount of fluctuations. The distribution of each individual keyword is
compared to its corresponding individual exponential, to provide an entropy score
for  each  word.  Words  are  regarded  to  be  good  predictors  if  their  distribution
throughout the corpus is characterized by a large amplitude a. Words however may
also  be  good  indicators  if  a is  relatively  small,  while  their  actual  distribution
throughout  the  corpus  adheres  to  the  optimal  curve  tightly,  without  much
fluctuations. Because the distribution of  morfine fits the optimal curve better than
streefdoelen fits its corresponding optimal curve, the entropy score for  morfine is
lower than for streefdoelen.

Figure 9 illustrates that a small part of the words occurs frequently, while the
largest part of the words occurs infrequently (which is to be expected, according to
Zipf’s law). Furthermore, many words have a relatively low entropy, while some
words have a very high entropy. The most interesting words in the context of this
research, are the words that reside in the upper-left quadrant of the graph, because
they are both highly frequent and have a low entropy. Therefore, prior to ranking the
words  by  their  entropy  score,  a  frequency  cut-off  and  an  entropy  cut-off  were
applied, based on the data shown in Figure 9: words that occur in less than 200
patient records, words with an entropy score higher than 0.5, and words with a part
of speech tag other than noun, adjective or verb are removed. The resulting words
are ranked by increasing entropy. 
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Figure 8: Optimal curve fitting for each individual word.



To give an indication of the results, the list below contains the top 50 of most
informative words, according to this ranking (N,  V, and  A refer to  noun,  verb  and
adjective, respectively).

The list contains roughly equal amounts of nouns, verbs and adjectives. Most of
the  nouns  are  clinically  themed  (e.g.  hypertensie ‘hypertension’,  ademgeruis
‘breathing  sound’),  and  a  category  of  nouns  referring  to  time  spans  can  be
distinguished additionally (e.g. dag ‘day’, week, jaar, ‘year’). None of the verbs are
obviously related to a clinical setting. We expected to find words along the lines of
‘to bleed’, ‘to suffer’ or ‘to vomit’, for example, but instead the list includes mainly
general verbs and some verbs that are associated with functional abilities (e.g. zien
‘to  see’, lopen ‘to  walk’). The set of adjectives includes evaluation-related words
(e.g.  goed ‘good’,  normaal ‘normal’),  orientation-related  words  (e.g.  links ‘left’,
rechts ‘right’), and words that indicate a degree of certainty (e.g. mogelijk ‘possible’,
waarschijnlijk ‘probable’), among others.
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Figure 9: Distribution of words over the dimensions of entropy and
corpus frequency (in terms of the number of EMRs in which the word
is used).



1. patiënt (N), ‘patient’ 26. hart (N), ‘heart’

2. goed (A), ‘good’ 27. been (N), ‘leg’

3. hebben (V), ‘to have’ 28. doen (V), ‘to do’

4. onderzoek (N), ‘research’ 29. bloeddruk (N), ‘blood pressure’

5. rechts (A), ‘right’ 30. lopen (V), ‘to walk’

6. zien (V), ‘to see’ 31. normaal (A), ‘normal’

7. klacht (N), ‘complaint’ 32. dag (N), ‘day’

8. worden (V), ‘to become’ 33. onderkant (N), ‘bottom’

9. anamnese (N), ‘anamnesis’ 34. ademgeruis (N), ‘breathing sound’

10. medicatie (N), ‘medication’ 35. krijgen (V), ‘to get’

11. zullen (V), ‘to shall’ 36. mogelijk (A), ‘possible’

12. gaan (V), ‘to go’ 37. last (N), ‘bother’

13. kunnen (V), ‘to be able’ 38. afwijking (N), ‘deviation’

14. conclusie (N), ‘conclusion’ 39. week (N), ‘week’

15. ver (A), ‘far’ 40. waarschijnlijk (A), ‘probable’

16. ziekenhuis (N), ‘hospital’ 41. blijven (V), ‘to stay’

17. controle (N), ‘check-up’ 42. diagnose (N), ‘diagnosis’

18. laat (A), ‘late’ 43. relateren (V), ‘to relate’

19. gebruiken (V), ‘to use’ 44. jaar (N), ‘year’

20. komen (V), ‘to come’ 45. moeten (V), ‘to be obliged’

21. fysiek (A), ‘physical’ 46. overleg (N), ‘deliberation’

22. links (A), ‘left’ 47. maken (V), ‘to make’

23. volgen (V), ‘to follow’ 48. hypertensie (N), ‘hypertension’

24. verband (N), ‘bandage’ 49. borst (N), ‘chest’

25. pijn (N), ‘pain’ 50. polikliniek (N), ‘outpatient clinic’

5.2.2 Vector space representation using word embeddings

Using textual data generally results in very high-dimensional, but, at the same time,
very sparse feature vectors. While the frequency-based and entropy-based ranking
methods aim reduce the amount of data by delivering optimal subsets of words for
any  top  n,  these  methods  inevitably  lead  to  the  loss  of  potentially  relevant
information.  Moreover,  when applied to  the texts in  the  EMR corpus,  the feature
vectors still only match the text documents sparsely, due to the short lengths of the
documents and the large amount of unique words. Although it depends on the size of

48



the text and the number of words that are included in the vector, the chance that
words which occur in a given text are also selected as features, is small.

An alternative approach, which aims to address the issues of information loss and
sparseness,  makes  use  of  word  embeddings.  This  method  employs  WORD2VEC

(Mikolov  et  al.  2013,  Google’s  implementation,  version  0.9.1,  available  via
code.google.com)  to  create  a  vector  space  model,  in  order  to  reduce  the
dimensionality of the data without excluding potentially important indicators. In a
vector space model, each word is represented as a point in a multidimensional vector
space by a  multidimensional  vector,  which  is  based  on the word’s  distributional
properties.  All  words  are  represented  by  the  same  n dimensions,  but  the  exact
position in the vector space is unique to each word.

The distance between words in the vector space is meaningful: words that reside
in each others proximity (i.e., words with similar vectors), are semantically similar
and  tend  to  co-occur  with  each  other,  or  occur  in  similar  contexts.  Figure  10
visualizes4 a vector space of words. To illustrate how semantically similar words and
thematically associated concepts are distributed over the vector space, we zoomed in
on the word dood ‘death’. Associated with the concept of death are family members
and other loved ones, such as  echtgenoot ‘husband’,  kleindochter ‘granddaughter’
and  vriend ‘friend’,  as  marked by hand in  purple.  Another  thematic  category of
words related with death, are care-related words such as zuster ‘nurse’, hospice and
thuiszorg ‘home care’, as marked by hand in blue.

4 To enable visualization of the high-dimensional vector space, we applied a two-stage reduction
procedure to map the model onto a two-dimensional vector space. We carried out the first reduction
step with principal component analysis (PCA), to create a vector space with ten dimensions which
emphasizes the variation in the vector space (Abdi & Williams 2010). Further reduction to a two-
dimensional space was accomplished with the aid of a variation on Stochastic Neighbor Embedding
(t-SNE). t-SNE has been proven to yield better results than PCA, but is computationally expensive
(Maaten & Hinton 2008). Therefore, we preceded it with PCA reduction.
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Figure 10: Visualization of the vector space representation created with WORD2VEC.



Instead of making a selection from all possible words in the corpus and thereby
possibly missing important cues, the vector space representation allows the model to
score  each  individual  word  that  occurs  in  a  given  text.  Similar  vectors  indicate
similar words, therefore document representations can be created by calculating the
mean of all feature vectors of the words in a text, which has proven to be effective
for a broad range of tasks (Kenter et al. 2016). 

To  determine  the  optimal  model  architecture  and  parameter  settings  for
WORD2VEC, we trained several  WORD2VEC models with different architectures and
parameter settings on the notes and letters from the development corpus. Inspired by
Mikolov et  al.  (2013),  we designed an analogy task to  assess  the quality  of  the
model, because predefined tests to assess the quality of vector space models exist for
English,  but not  for Dutch.  We assigned  WORD2VEC with the task of making an
analogy to a word pair, given a third word. For example, given the pair ‘arm’ and
‘hand’ and  given  a  third  word  such  as  ‘leg’,  the  model  should  return  ‘foot’ in
analogy to the given word pair. The test items (100 in total) were derived from IQ
tests,  collected through several  online sources.  Although these test  items are not
specific for the medical domain, the items included many general concepts such as
body parts,  animals, emotions,  means of transportation,  and family members. All
items therefore occurred in the corpus. 

As  summarized  in  Table  12,  we  experimented  with  the  model  architecture
(continuous bag of words or  skip-gram), different cut-off boundaries for removing
infrequent words from the model (105, 25, and 50), different window sizes (5, 7 and
10), and different numbers of dimensions (100, 200, and 300). 

Table 12: Test settings to determine optimal WORD2VEC parameter settings, and 
accuracy per model.

Round Architecture Min. count Window size Dimensions Accuracy

1a bag of words 10 5 100 53%

1b skip-gram 10 5 100 65%

2a skip-gram 25 5 100 58%

2b skip-gram 50 5 100 53%

3a skip-gram 10 7 100 64%

3b skip-gram 10 10 100 61%

4a skip-gram 10 5 200 66%

4b skip-gram 10 5 300 67%

For each model, the settings of interest are marked by a gray background.

5 The default cut-off boundary of WORD2VEC is 5, but due to the spelling correction procedure we
applied, the number of words with a frequency <10 that remained in the corpus is almost none.
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We used default settings for any other parameters. We conducted the optimization
procedure  in  a  stepwise fashion to  decrease  the  number  of  experiments  needed.
During each round of testing, one parameter is varied upon. The setting that yielded
the best result, which is either the initial default value or the value used for sub-
experiments a or b (referring to a and b in column round of Table 12), is used for the
following round of experiments.

Table 12 shows that the model that performed best, was the model tested during
round  4b,  which  makes  use  of  a  skip-gram  architecture,  a  cut-off  frequency
boundary of 10, a window size of 5, and 300 dimensions. Although the WORD2VEC

model with 300 dimensions produced the best results on the analogy task, we tested
the effect of using a WORD2VEC representation consisting of 100 and 200 dimensions
(the other parameters kept equal to the best performing model) as well during Phase
III, because we could not predict the outcome of the interaction between different
amounts of keyword features and other features extracted from the structured data.
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6. PHASE III: MODEL DEVELOPMENT

Phase III is dedicated to three goals: 1) transforming the data into a functional input
format, 2) creating a baseline model, and 3) determining the effect of adding textual
features. The following sections elaborate on the specific methods and results for
each of these goals. Phase III resulted in an optimal model which was validated
during Phase IV.

6.1 Transforming the data

Although the different feature categories have been processed during Phases I and II
to  ensure internal  consistency for  the  feature  format  within each category,  some
additional processing steps were needed in order to create a viable input format for
the LSTM model. This section describes how we represent the dynamically changing
medical history of each patient through time.

6.1.1 Creating a timeline

When we created the input data for the model, the goal was to represent a patient by
a series of feature vectors that change through time. The vectors are filled by scoring
the frequency of each feature for each patient for each moment in time. We can
however not simply feed the model only the days on which a patient visited the GP.
Each patient has a medical history of five years, but patients do not visit the GP daily.
The LSTM model expects fixed-length input sequences, while the sequences of data
points for all patients are characterized by irregular sampling, and do not go back the
full five years for some patients. 

A possible solution is to pad the missing data points with empty feature vectors as
described in literature that discusses the use types of recurrent neural networks in
tasks concerning clinical data (see Lipton et al. 2016 for example), but this would
lead to very sparse data, and very long sequences of data (5 years of data leads to
more than 1,800 time steps), which greatly increases the model architecture and run
time of the LSTM model. Alternatively, we chose to aggregate the data over periods
of thirty days to create a timeline, to solve the issue of irregular sampling. Figure 11
illustrates a time line for a hypothetical patient that passed on May 19 th, 2014. The
date of death is time t, and the medical history of each patient spans from t to t - 60.
The white dots on the timeline refer to documented activities in the EMR. 

Each time step is represented by a feature vector. When a feature is present for a
patient at a certain moment in time, the score for that feature increases with one for
the one-month interval during which the feature occurred. Each patient is therefore 
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represented by a medical history of 61 feature vectors (i.e. one feature vector for
each month) which contain frequency counts for each feature that occurred during
that  month.  If  more than one consult  takes place during a  thirty-day period,  the
corresponding  features  are  all  mapped  to  the  feature  vector  of  that  month  (as
illustrated by time step t - 3 in Figure 11).

Aggregating the data reduces the length of the entire timeline from over 1800
time steps to 61 time steps for a five-year period, and delivers more ‘dense’ feature
vectors because multiple consults may take place in one month. Moreover, it reduces
the need for padding to a great extent: occasionally no activity whatsoever takes
place during a month, but in most cases the GP consults with the patient or with other
health care providers at least once a month. Finally, medical episodes generally span
a few weeks or months, which fits this level of aggregation well.

6.1.2 Sliding window

For all patients in the EMR corpus, the date of death is known. This is essential for
training  purposes:  we can  only  validate  the  model’s  predictions  if  we know the
correct output. For each patient, a life expectancy is calculated for each time step.
We cannot feed the entire medical history to the model at once when training the
model, because nothing would be learned: the correct life expectancy would always
be  0  months.  Rather,  we  want  to  train  the  model  to  learn  to  predict  the  life
expectancy for any given moment in time. 

Ideally, we would feed the model all data up to the moment in time for which we
want to predict the life expectancy, to provide the model with the maximal amount
of information. We would need to divide the medical history in all possible sub-
sequences, and use padding to create sequences of equal lengths, as shown in Figure
12.

Although this approach is theoretically viable, it has one major drawback: instead
of learning which types of information are indicators of the approaching end of life,
the model reaches a near perfect accuracy simply by learning to count the amount of
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Figure 11: Timeline with data aggregated over intervals of thirty days. 



feature vectors used as padding. Alternatively, we use a sliding window to divide the
complete medical history into sub-sequences of the history, as shown by Figure 13.

This way, when a window size of ten months is used, the patient data is divided
into 50 subsequences of data, each of which differing one month from the preceding
and following sequences in terms of life expectancy. The drawback of this approach
compared to the previous approach, is that we can only use a fixed period of time as
input  for  the  model,  thereby  excluding  potentially  important  cues  that  occurred
further back in time. An overall advantage of dividing the complete medical history
into  such  sub-sequences,  was  that  the  number  of  cases  to  train  the  model  with
expanded: each patient was transformed into fifty training examples, when using a
window size of ten periods. 

Finally, we exclude the month of death from the training data, for several reasons:
1) we are interested in predicting the moment of death in advance, 2) determination
of the month of death is trivial due to the diagnostic codes: the diagnostic code for
death is always applied in the month of death and never in a different month, and 3)
the amount and character of the data in the month of death deviate significantly from
the other data, due to many administrative events.
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Figure 13: Window slides with steps of 1 along the 61-month sequence to create 
sub-sequences.

Figure 12: Division of medical history into sub-sequences by iteratively removing
the most recent time step (from the right side of the sequence) and inserting 
padding at the start of the medical history (white boxes on the left side).



6.1.3 Normalization

The  previous  processing  steps  have  led  to  the  creation  of  input  in  the  form of
sequences of one-month time steps, each of which containing a feature vector that
represents the frequency of occurrence of all features within that month. While these
frequency counts reflect the medical history accurately, one additional processing
step is needed to ensure that the input is processed properly by the LSTM model.

All layers of the LSTM model — input, hidden and output — are represented by
tensors,  or  matrices,  which  are  filled  with  rational  numbers.  When  data  flows
through the model, it is transformed by operations such as multiplication: the input
layer is processed by the model by multiplying it with the hidden layer, for example,
and within the hidden cells the data are transformed by the input, output, and forget
gates.  The hidden layer is  initialized with small  random values,  which get tuned
during the training phase. The input layer is determined by our representation of the
data.

Therefore, the raw frequency counts for features complicate the learning process.
First of all, the feature categories are different of nature. A raw frequency of 5 in one
month may be considered high for a feature category such as diagnoses: 5 heart
attacks  in  one  month  would  be  a  very  high  value.  For  other  categories,  a  raw
frequency of 5 may be considered low, such as for textual data: 5 encounters of the
word hartaanval ‘heart attack’ in one month would not be considered high, because
important events are usually referred to multiple times per document, and in multiple
documents  in  a  short  time  span.  The  more  prevalent  feature  categories  would
therefore dominate the less prevalent categories during the learning process, if we
would use raw frequencies.

A related issue, is the fact that some feature categories contain a large range of
possible values, such as age, which ranges from roughly 0-105, while other feature
categories are for example characterized by dichotomous values: a patient is either a
male, or not.

Finally,  some  patients  or  GPs  may  be  more  easily  inclined  to  schedule
consultations  than  others.  A  higher  consultation  frequency  however  does  not
necessarily indicate more significance or more urgency, just as long text documents
(which automatically leads to higher raw word frequencies) are not necessarily more
important than short text documents.

Returning to  the  workings  of  the  LSTM model,  using  raw frequencies  is  thus
problematic, because the model will overrepresent certain feature categories while
underrepresenting  others,  and  will  learn  that  more  data  indicates  more  urgency.
When different feature values that are offered to the model may range from very
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small to very large, this leads to exploding and vanishing gradients, which impedes
correct adaptation of the weights and biases of the hidden layer. 

We address  these  issues  by  normalizing  the  data.  We normalize  the  data  per
feature category because the categories differ in nature, and we normalize the data
per month for each specific patient to annul the effect of the number of consultations
in a month and the length of text documents. The frequency counts for the features
are compressed to values between 0 and 1 by dividing all feature values of a feature
category within a month by the highest value, and the data which do not have a
natural lower limit of zero (such as the WORD2VEC dimensions), are normalized to
values between -1 and 1 by dividing all feature values of a feature category within a
month by the highest absolute value.

6.2 Conceptual baseline model

The task presented to the  LSTM model is to formulate a hypothesis about the life
expectancy of a patient at a certain moment in time, given a sub-sequence of the
patient’s medical history up to that moment. The training data for the model consists
of  time-series  data  for  each  patient  in  combination  with  corresponding  life
expectancies. Figure 14 shows a simplified overview of the model architecture.

Figure 14 illustrates a simplified version of the architecture for each time step.
For each time step, each hidden layer (represented by a purple circle) consists of
multiple units. Figure 15 zooms in on the final two time steps in Figure 14, and
shows that the model is in fact a fully connected sequence of small networks. Each
time step that is preceded by a previous time step, receives input from the feature
vector and from the hidden cells in the previous time step. Information from all 
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Figure 14: Simplified LSTM architecture. The yellow boxes represent a feature vector
for each time step, the purple circles represent the hidden layer for each time step,
the gray boxes represent the intermediate predicted life expectancies, and the blue
box represents the output that is returned by the model: the life expectancy for time t
in which we are interested.



previous time steps in the sub-sequence is therefore employed by the model when
the final prediction at time t is made.

Instead of a single-value prediction, we chose to model the probability that the
end of life occurs at a certain moment in time by projecting life expectancy on a
timeline with the aid of a softmax output layer. The output sequence represents a 61-
month time line minus the size of the sliding window and minus the month of death.
The model predicts the life expectancy by creating a probability distribution over
time of the chance that the end of life will occur. The output sequence is transformed
by  a  softmax  function,  to  ensure  that  the  probabilities  for  all  months  in  the
distribution together sum to 1. The result  is illustrated by Figure 16, in which a
predicted output sequence is plotted. The point for which the model predicts death
with the highest relative certainty, can be interpreted as the point in time for which
the model predicts the highest risk of dying for a patient. Based on the output in
Figure  16,  the  model  therefore  predicts  a  life  expectancy of  ten  months  for  the
corresponding patient.
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Figure 16: Example of a probability distribution created by the model to 
formulate a life expectancy.

Figure 15: Detailed view of the final two time steps in 
Figure 14.



6.3 Model optimization

The  previous  section  described  the  conceptual  model  architecture.  The  model’s
actual architecture was decided based on a series of experiments that were carried
out in order to determine the optimal hyperparameter settings for the model, and the
optimal sub-set of features. The set of included features and the model’s architecture
are  interdependent,  and  both  affect  the  model’s  performance.  Varying  the
composition of the feature set affects the size of the feature set, and the size of the
feature set directly influences the required model complexity. 

Ideally, a grid search including all different combinations of feature categories,
feature  representations  and  model  hyperparameters  should  be  performed.
Unfortunately, this leads to a combinatorial explosion  —  it would require several
thousands of  experiments  to find both the optimal  feature set  and determine the
optimal  model  architecture.  Additionally,  many  hyperparameters  are  continuous
scales with no clear boundaries, which complicates a full grid search further.

Alternatively, we explored the interaction between the feature set and the model
architecture through a series of consecutive grid search steps, focusing on smaller
grid searches. Each step builds on the results of the previous step.

To guide the grid searches, an indication of the model’s performance was reached
through  exhaustive  ten-fold  cross-validation.  The  development  data  (note:  the
validation  data  has  been  separated  from  the  development  data  before  Phase  I
already)  was  split  randomly  into  ten  non-overlapping  parts  that  one  by  one
functioned as a test set for each round of validation. During each round, the model
was trained on the remaining 90% of the development data. 

6.3.1 Tuning hyperparameters for the baseline model

We used a fixed feature set when searching for the optimal hyperparameter settings.
To obtain this set, the following reduction methods were applied: for all features, the
infrequent features were removed with the absolute frequency cut-off method, and
the aggregation level for the ICD and ICPC codes was set to the code level. The
keyword features were excluded from the feature set entirely, in order to create a
baseline against which the effect of adding the keywords could be tested in a later
stadium. 

We explored the influence of the following parameters: batch size, learning rate,
training epochs, model size in terms of number of hidden layers and hidden units per
layer, peepholes, and dropout. Each parameter was initially set to a default value, 
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Table 13: default values during the process of hyperparameter optimization.

Hyperparameters Default value Experimental settings

Learning rate --6 0.0001, 0.001, 0.01, 0.1, 1.0

Batch size --6 1, 5, 10

Number of hidden units per layer 30 50, 75, 100

Number of hidden layers 1 1, 2

Peephole connections not applied not applied, applied

Dropout not applied 0.4, 0.6, 0.8

Epochs 10 early stopping

Window size (in months) 10 6, 12, 18, 24

and adjusted when their effect on the model performance was tested specifically.
When the optimal parameter setting improved upon the default setting, the default
setting was replaced by the new value for the experiments that followed. Table 13
shows the tuned parameters, and the default and experimental settings per parameter.

6.3.1.1 Learning rate

Research carried out to explore the hyperparameter space for neural networks, has
shown that the optimal parameter settings depend on the specific task at hand, and
that  some hyperparameters  can  be  tuned  independently  of  the  other  parameters,
thereby decreasing the search space. Through an extensive study, Greff et al. (2016)
show that the most important parameters for model performance are learning rate
and model size, and that they can be tuned independently. In their experiments, the
model size did not influence the optimal learning rate. They suggest therefore, that
the  learning rate  can  be  tuned with  a  fairly  small  network  before  exploring  the
optimal model architecture in detail, which saves a lot of experimentation time. The
first step in optimizing the hyperparameters, was therefore to experiment with the
following learning rates: 10-5 - 1.0 in ten percent increments. The results showed that
learning rates  in  the  range 10-4 -  1.0  were too  large.  While  the model  performs
increasingly well on the training data, the testing error only increases over time, as
illustrated by Figure 17.

This was not the case for learning rate 10-5. Figure 18 shows that for this learning
rate,  the  training  and  testing  error  decrease  over  time,  although  very  slowly.
Compared  to  Figure  17,  the  gap  between  training  and  testing  error  has  greatly
decreased, and the rate of change for both training and testing error is much less
explosive. Instead of opting for smaller learning rates which would significantly 

6 This parameter has no default value, because it was among the first parameters to be tuned.
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increase the run time, we experimented with other variables to further lower the
error on the testing data.

6.3.1.2 Batch size

Updating the weights of the hidden units in a neural network — i.e., the process of
learning — can be done after each training example (stochastic gradient descent), in
small or large batches, or after seeing the entire training set (full gradient descent).
Batches are used to approximate the gradient of all training data, and thus batch size
influences the training process. Large batches result in less weight updates, and are
used with a larger learning rate, which may result in more computational speed per
epoch. Larger batches however require more memory, and generally require more
training epochs. 

Small  batches  or  stochastic  learning  require  less  training  epochs  because  the
weights  are  updated  more frequently.  Because small  batches  represent  the entire
training set worse than large batches, they result in noisier gradient updates, or in
other  words:  they  may  lead  the  model  into  the  wrong  direction.  Small  batches
however require a small learning rate, therefore taking a step in the wrong direction
is less harmful than when larger batches and a larger learning rate are used  — in
fact, using small batches may even provide a regularization effect, thereby reducing
overfitting.

Breuel (2015),  who explored the hyperparameter  space of  neural  networks as
well, illustrates that optimizing the hyperparameters is more difficult as the batch
size  increases,  because  the  range  of  learning  rates  which  deliver  good  results
decreases for larger batch sizes. Furthermore, he shows that larger batches generally
decrease the model’s performance.  Based on these observations,  two small  batch
sizes were tested during this research. We tested the effect of stochastic learning and 
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Figure 18: Train and test error at
learning rate 10-5.

Figure 17: Train and test error at
learning rate 10-4.



learning with minibatches of sizes 5 and 10. The effect of the batch size is shown by
Figure 19.

The test errors for the larger batch sizes continue to decrease slightly over time,
in contrast to the test error for stochastic learning. At a batch size of 10, the training
error decreases at a faster rate than the test error, compared to the training error at a
batch size of five. Because of the small gap between training and testing error for the
batch size of five, we regarded this batch size to be optimal.

6.3.1.3 Model size: number of layers and hidden units

After the learning rate and batch size were optimized, we experimented with the
model size. The default settings for the model size were chosen in order to create a
model of medium complexity as a starting point. We used one layer with 50 hidden
units  as  the  default  size  for  the  previous  experiments.  The  risk  of  overfitting
increases along with the model complexity. Models which are too complex for the
task  impede  the  learning  process:  instead  of  detecting  patterns  and  learning
meaningful relations, the model simply learns to ‘memorize’ the data, resulting in
poor  generalization  to  new  data.  Overfitting  can  therefore  be  recognized  by
increasingly good performance on the training data, while performing increasingly
bad on the testing data (Goodfellow et al. 2016). 

If the model complexity is too low for the task however, the model will suffer
from  underfitting:  it  does not have enough capacity to capture complex relations
between  different  types  of  information  and will  fail  to  learn  which  features  are
important indicators for the approaching end of life. In other words: the model is
unable to reach a sufficiently low error on the training data (Goodfellow et al. 2016).
When determining the model architecture, we want the model to 1) achieve a small
training error to prevent underfitting, and 2) a small gap between training and testing
error to prevent overfitting (Goodfellow et al. 2016).
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Figure 19: Train and test error for different batch sizes.



We experimented with 1 and 2 hidden layers, and with 50, 75, 100 and 125 hidden
units per layer. The results are shown in Figure 20. 

The training error fluctuates along with the model size. The model size does not
impact the test error much, except for the largest models, in which the test error
increases with each epoch. On average, the two-layer models perform better on the
training data than the one-layer models, which show relatively large training errors,
and therefore underfit the data. We conclude therefore, that one-layer models may
not be sufficient for this complicated task, even when they consist of a relatively
large number of cells. The two-layer models perform better on the training data, but
the larger models suffer from overfitting: while the training error decreases rapidly,
the testing error remains stable. The best performing models are the model with 1
layer  of  100 hidden units,  and the  model  with  2  layers  of  50 hidden units.  We
preferred  the  two-layer  model  over  the  one-layer  model  in  order  to  enable  the
exploration of the effect of using dropout.
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Figure 20: Effect of model size on training and testing error for each epoch. The
training and testing error are represented by the dotted and the continuous line,
respectively.



6.3.1.4 Dropout

Complicated tasks ask for complicated networks, but such networks tend to be slow
in use, hard to optimize, and run a high risk of overfitting. Multiple strategies exist
to deal with the problem of overfitting. Solutions include the use of more training
data, cross-validation, regularization, early stopping, and dropout. The best way to
regularize  the  process  is  to  combine  the  output  of  several  models  into  a  final
prediction  for  each  test  case  (Hinton  et  al.  2012),  but  this  is  computationally
expensive both during training and testing, and requires a lot of run time, especially
because we work with cross-validation. Therefore, this solution is sub-optimal for
reducing the effect of overfitting in our task.

An alternative approach which  reduces the run time instead of increasing it by
large,  while  still  approximating  the  concept  of  employing  multiple  differently
trained models,  is the use of dropout. Dropout refers to the process of randomly
‘dropping’ hidden units from the model during training. For each new training case,
different units are dropped, thereby training many different ‘thinned out’ networks
(Srivastava et al.  2014). Dropout prevents different hidden units to adapt to each
others’ behavior, which has been shown to reduce overfitting in a range of tasks.

The use of dropout in recurrent networks however leads to varying results and is
under  discussion.  Bayer  et  al.  (2013)  explain  that  the  technique  of  dropout  is
unsuitable for recurrent networks, due to its negative impact on the recurrence by
amplifying  noise.  Pham  et  al.  (2013)  and  Zaremba  et  al.  (2015)  however
demonstrated that dropout can in fact be successfully applied to recurrent networks
such as  LSTMs, by only applying it to the non-recurrent connections. Alternatively
phrased, dropout may provide benefits for recurrent networks when it is only applied
between layers, and not between time steps.

To test the effect of dropout in our model, we applied dropout only between the
hidden layers and not between time steps, and experimented with 40%, 50%, and
60% dropout  rates.  The  resulting  models  were  applied  to  the  test  data  without
omitting any cells. The results are shown in Figure 21. 

Other than expected, the different dropout rates do not seem to affect the error for
the test data, but only affect the error for the training data, thereby increasing rather
than  decreasing  overfitting, compared to the performance shown by the model to
which no dropout was applied. One could argue that the use of dropout is beneficial
even though it  has  no  effect  on  testing  error,  because  it  decreases  the  run  time
slightly.  We  decided  not  to  use  dropout  throughout  the  following  experiments
however, because we favor a simpler model above a slight decrease in run time. 
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Hypothetically speaking however, we recommend further exploration of the use of
dropout and its effect on a more extensive learning process if one were to use our
model in a context that has stronger run time requirements.

6.3.1.5 Peepholes

Finally, we experimented with peephole connections. Peephole connections allow
hidden  cells  to  control  their  multiplicative  input,  output  and  forget  gates.  The
implementation of peepholes has been shown to be beneficial in tasks that involve
precise timing,  because they improve a  network’s  ability  to  learn from the time
intervals  between  events  (Gers  et  al.  2002).  Although  the  implementation  of
peepholes may be helpful for certain timing-related tasks, research has shown that
peepholes generally do not improve the error rate significantly (Breuel 2015, Greff
et al. 2015). We tested the model with and without peephole connections. The result
is illustrated in Figure 22.
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Figure  21:  Effect  of  different  dropout  rates  on  the
training and testing error. The percentages indicate the
proportion of hidden cells that were omitted randomly
for each new training case.



As the figure shows, peephole connections do not affect the error on the testing
data much. It does affect the training error negatively initially, but after ten epochs
this effect was negligible, compared to the training error for the model without the
peephole connections. Peephole connections are therefore not useful for our task:
they hardly  — and only negatively  — impact the results, while increasing the run
time significantly. We therefore decided not to implement peephole connections in
our final model.

6.3.2 Optimizing feature selection for the baseline model

In order  to  determine the optimal  feature set,  we tested several  combinations  of
feature categories and the effect  of  different  feature reduction methods.  We first
determined  the  representation  which  yielded  the  best  results  for  each  feature
category individually, with regards to the different cut-off methods (no frequency
cut-off, and absolute, relative, and relative cumulative frequency cut-offs) and level
of abstraction for all codes (code, subcategory, main category, and component level).
The absolute frequency cut-off performed best for each individual feature category. 

The  codes  for  diagnoses  and  reason  for  encounter,  and  the  ICD-10  codes
performed optimally when they were set to the code level. The codes for medical
history  and  intervention  performed  best  when  they  were  aggregated  to  the  sub-
category  level.  For  consultation  type,  medication  and  lab  results  no  further
aggregation  was  possible.  Reducing  the  feature  set  by  applying  the  absolute
frequency cut-off boundary and aggregating over medical history and intervention
codes, reduced the complete feature set, which includes 4,649 features, with 20% to
a set of 931 features (including age and gender).
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Figure 22: Effect of peephole connections on the 
training and testing error.



To determine  whether  any of  the  feature  categories  is  redundant,  we ran  the
model for each feature category separately. The single feature category that yielded
the best results was used as a starting point, to which other feature categories were
added one  by one.  The feature category  that  increased  the  model’s  performance
most, was added to the feature set (as long it did not decrease the performance), after
which  the  value  of  all  remaining  feature  categories  was  determined  again.  The
optimal feature set included all of the feature categories. The order in which the
feature categories were added to the feature set, was: diagnose, medication, ICD-10,
reason for encounter, lab results, intervention, medical history, consultation type.

6.3.3 Baseline model

The resulting model was used as a baseline model to compare the effect of adding
textual features to. The window size of the baseline model was fixed to ten months;
the effect of window size was determined after the final round of experiments during
which we determined whether or not the inclusion of keywords improves the model.

After  the  keyword  experiments,  we  tested  the  effect  of  window size  for  the
baseline model, and for the keyword model which performed best. We approached
the  search  for  the  optimal  number  of  epochs  similarly:  after  the  keyword
experiments, we optimized the number of epochs for the baseline model and for the
keyword  model  which  performed  best.  The  effect  of  keywords  is  discussed  in
Section 6.4, and the effect of window size and the optimal number of epochs are
discussed in Section 6.5.

6.4 Effect of adding textual features

The final experiment we conducted in order to determine the optimal model in terms
of features, concerned the addition of keyword features. We compared the baseline
model to models that include frequency-based, entropy-based and WORD2VEC-based
features. We experimented with the addition of 100, 200 and 300 keyword features
for each method. The model included a total of 931 non-keyword features. Adding
up to 300 keywords therefore is a significant extension of the input layer, which may
require a larger model. Therefore, we varied the size of the hidden layer (50, 100 or
200 cells): to get a rough indication of whether or not the model size should be fine
tuned again after adding keyword features.

To enable comparison between the performance of the baseline model and the
models to which keyword features were added, we needed a way to transform the
probability distribution into a final prediction. 
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Figure 23 shows four examples outputs produced by the baseline model.  As the
figure shows, it is not always obvious which criterion we should use to extract a
prediction from the output. The probability distribution for Patient A shows one clear
peak,  enabling  straightforward  deduction  of  a  life  expectancy  prediction.  The
distribution  for  Patient  B  however  shows  two  peaks,  while  the  distribution  for
Patient C points towards a longer period of heightened risk, and the distribution for
patient  D  shows  no  clear  high-risk  period  at  all.  Although  many  alternative
approaches  may  be  suitable  for  the  deduction  of  a  life  expectancy  from  the
probability distributions, we operationalized the distributions by taking the month
with the highest probability for dying as the final prediction. 

We compared the baseline model to the other models in terms of the root mean
square deviation between the predicted and the actual life expectancy, and the mean
deviation of the predicted life expectancy compared to the actual life expectancy.
The results are shown in Tables 14 and 15.

The mean deviations between actual and predicted life expectancy are lower for
all models including keywords, compared to the baseline. Interestingly, while the
models  (including  the  baseline  model)  on  average  tend  to  overestimate  life

69

Figure 23: Examples of probability distributions produced by the 
baseline model.



expectancy, the models that include WORD2VEC features show the opposite pattern:
they underestimate life expectancy. This is interesting from the perspective of ACP.
Discussing  ACP too late has serious consequences, while discussing it too early is
unproblematic, as long as the discussion is repeated. To guarantee timely recognition
of the palliative phase therefore, we rather want to underestimate life expectancy and
closely monitor the situation, than overestimate life expectancy and postponing the
conversation until it is too late.

Table 14: Deviation in months between
actual  life  expectancy  and  model’s
predictions for the baseline model.

Root mean square Mean deviation

17.6 6.4

Table  15: Deviation in months between actual life expectancy and predictions by
different models which include keyword features. The models differ from each other
in terms of selection method, model size, and number of included keywords. The
best models are defined by two criteria: 1) having a relatively low root mean square,
followed by 2) a relatively low mean deviation. The results corresponding to the best
models based on these criteria, are marked with boldface.

Selection
method

Hidden
units

Root mean square Mean deviation

100 words 200 words 300 words 100 words 200 words 300 words

Frequency

50 17.6 17.2 17.0 4.5 5.0 5.8

100 17.5 17.4 16.9 2.1 1.2 1.7

200 17.7 17.8 17.8 1.6 1.3 1.0

Entropy

50 17.4 17.8 17.8 5.1 5.6 5.4

100 17.2 16.9 17.8 2.5 2.3 1.6

200 17.7 17.5 17.7 2.3 2.0 1.3

WORD2VEC

50 17.8 18.2 18.2 -3.4 -4.3 -3.7

100 18.1 17.8 17.8 -4.2 -4.1 -4.8

200 18.3 18.3 18.4 -3.75 -4.4 -4.4

In order  to  determine  the best  model  to  optimize  further,  we looked into the
results  of  the  baseline  model  and  the  best  performing  model  of  each  selection
method in more detail. We selected the best models based on a relatively low root 
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mean  square  as  first  criterion,  and  a  relatively  low  mean  deviation  as  second
criterion.  The  best  models  were  the  models  including  300  frequency-based
keywords, 200 entropy-based keywords, and 100 WORD2VEC dimensions (results of
these models are marked with boldface in Table 15).  The results  of the baseline
model and the best performing models are visualized in Figure 24.

Figure  24  highlights  the  difference  between  the  pessimistic  character  of  the
predictions provided by the WORD2VEC model (illustrated by the negative mean for
the  WORD2VEC model) and the optimistic character of the predictions for all other
models  (illustrated  by  the  positive  means  for  all  other  models).  The  root  mean
square and mean deviations are helpful to compare the models, but they do not offer
a nuanced representation of the output. 

In a large-scale, systematic review of literature on life expectancy prediction by
doctors, White et al. (2016) evaluated a total of 42 research papers, in which a total
of more than 12,000 prognoses were evaluated.  To get a better  indication of the
quality of our model’s predictions, we identified the research from the pool used by
White et al. that was best comparable to our case, according to the following criteria:
1)  the  research  was  carried  out  anno  2000  or  later  to  avoid  outdated  research,
2) prognoses were estimated on a continuous scale, 3) the doctors were no experts in
palliative care, and 4) the patient group for which the predictions were made was not
disease-specific.
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Figure 24: Root mean square deviance (blue) and
mean deviance (red) of models with keyword
features versus the baseline (indicated by the blue
and red lines) for the best performing models per
keyword selection method. In the labels on the x
axis, the letter refers to the selection mechanism (F:
frequency, E: entropy, W: WORD2VEC), the first
number refers to the number of included keywords

     or dimensions, and the second number refers to the
number of hidden cells per layer.



The research carried out by Christakis and Lamont (2000) satisfied these criteria.
They analyzed the prognostic accuracy of 343 doctors for 468 patients. The authors
considered a prediction to be accurate if it fell within a window of 33% around the
actual moment of death. According to their results, the predictions were accurate for
20% of the patients, overly optimistic in 63% of the cases, and overly pessimistic in
17% of the cases.

For  the  baseline  model  and  the  three  best  performing  models  that  include
keyword  features,  we evaluated  the  quality  of  the  predictions  with  an  approach
identical  to  Christakis  and  Lamont  (2000:  469-470):  we  divided  the  actual  life
expectancy by the predicted life expectancy, and regarded a prognosis as accurate if
the quotient was a value between 0.67 and 1.33. Quotients smaller than 0.67 signify
overly  optimistic  errors,  while  values  larger  than  1.33 signify overly pessimistic
errors.  Table 16 shows an overview of the quality of the doctors’ predictions as
adopted from Christakis and Lamont (2000: 470), predictions by the baseline model,
and  predictions  by  the  three  models  that  include  keyword  features.  

Table  16: Evaluation of the quality of the predictions. Predictions are considered
accurate if they deviate less than 33% from the actual life expectancy. 

Assessor Accuracy Overly pessimistic Overly optimistic

Human 20% 17% 63%

Baseline model 23% 58% 20%

Frequency-selected keywords 29% 27% 44%

Entropy-selected keywords 28% 46% 27%

WORD2VEC representation 38% 32% 31%

As the results indicate, the baseline model outperforms the doctors’ estimates. The
models that include keyword features further enhance the performance compared to
the baseline, especially the model that includes the WORD2VEC embeddings. While
doctors estimates are often overly optimistic, which harms early identification of
palliative  patients,  the  baseline  and  keyword  models’  predictions  are  rather
pessimistic. 

Interestingly, the amount of overly pessimistic and overly optimistic estimations
does not correspond to what we expected to find: as Figure 24 shows, the baseline
model  and  the  models  with  frequency-selected  and  entropy-selected  keywords
tended to  overestimate the life expectancy on average, while Table 16 shows that
most  of  the inaccurate  estimations  of  the baseline  and entropy model  are  rather
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pessimistic.  The incorrect  predictions  of  the  WORD2VEC model  are  divided  over
roughly equal numbers of overly optimistic and pessimistic predictions, where we
expected a larger percentage of pessimistic predictions. Table 17 shows the ratio of
predicted to actual life expectancy for the overly optimistic and overly pessimistic
predictions7.  We  were  unable  to  deduce  these  values  for  human  assessors  from
Christakis and Lamont 2000.

Table 17: Ratio of predicted to actual life expectancy for the inaccurate predictions.

Assessor Overly pessimistic Overly optimistic

Baseline model 5.4 0.4

Frequency-selected keywords 4.9 0.4

Entropy-selected keywords 4.7 0.4

WORD2VEC representation 6.0 0.4

Taken together, the results from Tables 16 and 17 illustrate that the  WORD2VEC

model produced a larger amount of accurate predictions, but when it makes overly
pessimistic predictions, it is more pessimistic than the other models (which explains
the larger root mean square for the WORD2VEC model compared to the other models,
as shown in Table 15). Because of its high accuracy compared to the other keyword
models and its tendency toward relatively pessimistic estimations, we favored the
model which included  WORD2VEC-based features over the other keyword models.
The  next  section  describes  the  final  steps  we  took  to  optimize  the  model
performance.

6.5 Final parameter tuning

We finally tuned the number of epochs and the window size for the baseline and the
WORD2VEC model. While the settings of these model parameters do influence the
results,  retaining  their  default  values  throughout  the  experiments  did  not  hinder
direct  comparison  between  the  different  models,  because  these  parameters  are
independent from the other parameters.

6.5.1 Epochs

We applied early stopping to determine the optimal number of epochs and to prevent
overfitting.  Training  continued  for  a  maximum  of  100  epochs,  or  until  no

7 Note that the ratio for overly pessimistic predictions is always larger than 1, while the ratio for
overly optimistic predictions is always a value between 0-1. This results from the fact that pessimistic
predictions are by definition smaller than the actual value, while optimistic predictions are always
larger (and we divided the actual by the predicted life expectancy in both cases).
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improvement was seen on the test data for 5 epochs. The optimal number of epochs
for both the baseline and the  WORD2VEC model turned out to be identical to the
default value we used throughout the experiments: 10 epochs. Therefore, tuning the
number of epochs did not lead to a change in accuracy.

6.5.2 Window size

Finally, we explored the effect of window size. The window size determines the
number of time steps, or one-month periods over which data was aggregated, that
are used as input for the model at once. We expected that increasing the window size
would increase the accuracy, because the model has more data to base a prediction
on. The window size was varied between values of 6 up to 24 months, in 6-month
increments.

The output layer of the model has a fixed length of 61 months minus the final
month  minus the window size, as described in Section 6.1.2. The model learns the
minimum  and  maximum  output  values  during  the  training  process,  and  never
predicts larger values than 61 months minus the final month minus the window size,
because it never encounters larger values. The size of the output layer decreases as
the window size increases, and therefore the chance of predicting the life expectancy
correctly  increases automatically.  Because we are not interested in  a  measure of
accuracy that is influenced by these chance effects, we did not use the root mean
square and mean difference between the actual and predicted life expectancy, but
only  evaluated  the  results  according  to  the  approach  of  Christakis  and  Lamont
(2000:  469-470).  The  results  for  the  baseline  and  the  WORD2VEC model  are
displayed in Tables 18 and 19, respectively.

While the baseline model behaved as expected, the  WORD2VEC model did not.
The accuracy of the baseline model increased along with the window size, and while
the vast majority of the incorrect predictions remains to be overly pessimistic, a shift
from  overly  pessimistic  to  more  overly  optimistic  predictions  can  be  observed.

Table 18: Results per window size for the baseline model.

Window size Accuracy Overly pessimistic Overly optimistic

6 months 20% 64% 16%

10 months (default) 23% 58% 20%

12 months 25% 55% 21%

18 months 26% 51% 24%

24 months 28% 46% 26%

74



Table 19: Results per window size for the WORD2VEC model.

Window size Accuracy Overly pessimistic Overly optimistic

6 months 37% 32% 30%

10 months (default) 38% 32% 31%

12 months 37% 32% 31%

18 months 36% 32% 31%

24 months 34% 35% 30%

The accuracy of the  WORD2VEC model is inversely proportional to the window
size: as the window size increases, the model accuracy decreases, while the ratio of
overly optimistic to overly pessimistic predictions remains roughly equal. 

Additionally,  the model’s accuracy could have been increased or decreased in
terms of the ratio of predicted to actual life expectancy. In other words, independent
of the number of correct predictions, the model accuracy could have been improved
by making predictions that are less ‘off’. A closer look revealed however that the
mean  ratio  of  predicted  to  actual  life  expectancy  remained  steady  for  both  the
baseline and the WORD2VEC model, regardless of the window size.

Based on these results, for the baseline model it seems to be the case that the
larger the window size is, the higher the accuracy is, while the accuracy for the
WORD2VEC model reaches a peak when the default window size of 10 months is
used. For our final model however, we decided to use window sizes of 10 months
both for the baseline and the WORD2VEC model, for three reasons: 1) the run time of
the  model  increases  proportionally  to  the  window  size,  2)  to  maximize  the
comparability between both models during the validation test, and 3) a large window
size decreases the size of the output layer, because the output layer has the size of 61
months minus the month of death minus the window size, due to the fixed amount of
data (5 years) per patient. A smaller output layer technically means a higher chance
of making a correct prediction.

6.6 Final model architectures

The final architectures of the baseline model and the  WORD2VEC model are highly
similar, and are illustrated by Figure 25. The models only differ with respect to the
number of features that are fed to the model at each time step: the baseline model
makes  use  of  931 features,  while  the  WORD2VEC model  includes  100 additional
keyword features.
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For both models, the final architecture is a fully connected model consisting of
one  input  layer,  two hidden layers  and an output  layer,  for  each  time step.  The
unrolled LSTM model consists of 10 time steps. For each time step, the input layer
consists of a feature vector, and the hidden layers each contain 50 hidden units. The
output layer for each time step consisted of 50 months (61 months minus the month
of death, minus the window length), and is transformed by a softmax layer to create
a probability distribution.

The weights are updated after each batch of five training cases, and the learning
rate  is  10-5.  No  dropout  or  peephole  connections  are  used.  For  the  remaining
parameters, we used standard settings: the weights were initialized randomly from a
truncated  normal  distribution,  we  used  a  bias  of  0.1,  used  AdamOptimizer  to
optimize the gradient descend procedure, and used cross-entropy to minimize the
loss during the training process.

76

Figure 25: Final model architecture for the baseline and the WORD2VEC model.
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7. PHASE IV: VALIDATION

7.1 General results

During Phase IV the optimal baseline and keyword model were validated with the
held-out  test  set.  Because the health  care practices  are  not equally large,  and to
mimic real-life use of the model, we created a balanced test set by extracting the
10% most recent patients based on their date of death for each health care facility.
The model was trained on all development data, which represented historical data,
and was applied to the ‘new patients’. The results for the baseline model and the
keyword model are presented in Table 20, along with the human baseline. Table 21
shows the ratio of over- and underestimation to actual life expectancy.

Table 20: Evaluation of the quality of the predictions. Predictions are considered 
accurate if they deviate less than 33% from the actual life expectancy. 

Assessor Accuracy Overly pessimistic Overly optimistic

Human 20% 17% 63%

Baseline model 20% 68% 12%

Keyword model 29% 52% 19%

Table 21: Mean ratio of predicted to actual life expectancy for the inaccurate 
predictions.

Assessor Overly pessimistic Overly optimistic

Baseline model 6.3 0.4

Keyword model 5.9 0.4

Compared to the results presented in Table 16, the models’ accuracy for the held-
out validation set dropped: -3% for the baseline model and -9% for the keyword
model. During Phase III the baseline model performed slightly better than the human
standard, while the validation test shows that the performance of the baseline model
equals human performance. We extracted features from the entire development set in
Phase II,  and applied cross-validation in Phase III,  therefore the model  was fine
tuned on all possible features in the development data. The held-out test set however
contained data that the model has not encountered before, and while this did not
seem to affect  the accuracy on the baseline model much, it  notably affected the
performance of the keyword model. 
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7.2 Relations between several output measures

We  further  analyzed  the  results  of  the  best-performing  model  — the  keyword
model — in  terms  of  Pearson’s  product-movement  correlation  coefficients.  We
expected to  find  a  positive  correlation between the  actual  and the predicted life
expectancy. Additionally, we expected the model’s certainty to both increase as the
actual  moment  of  death  approached,  and  as  the  predicted  moment  of  death
approached. We therefore expected to find negative correlations between the relative
certainty  of  the  predictions,  and both  the  actual  and predicted  life  expectancies.
Finally, we expected to find a higher level of certainty for predictions that are close
to  the  actual  life  expectancies.  Therefore,  we expected  the  relation  between  the
number of months between actual and predicted life expectancy, and the certainty of
the predictions to be inversely proportional to each other. The tests, hypotheses, and
results of the calculations are summarized in Table 22.

Table 22: Results for correlation calculations between several outcome measures.

Tested relations Hypotheses Pearson’s r Significance p

Actual vs. predicted life exp. positive relation .36 <.05

Certainty vs. actual life exp. negative relation -.35 <.05

Certainty vs. predicted life exp. negative relation -.61 <.05

Certainty vs. absolute difference
   between actual and predicted life exp.

negative relation -.02 .12

As  Table  22  shows,  the  calculations  confirmed  most  of  the  hypotheses.  The
results show a moderately positive relation between the model’s predictions and the
actual life expectancy. The histogram in Figure 26 shows frequency counts of actual
and predicted life expectancies. The actual life expectancies are evenly distributed:
because the medical histories are divided in ten-month windows, every month in the
range  1-50  is  predicted  127  times,  corresponding  to  the  127  test  patients.  The
predictions are not as evenly distributed as the actual expectancies: the model shows
a tendency to predict that death is either nearby or far away in time.

The results in Table 22 also show that the model is more certain about predictions
in the near  future,  than predictions  further  away.  Figures  27a and 27b show the
model’s  certainty  as  a  function  of  the  actual  (27a)  and  predicted  (27b)  life
expectancy. The figures display the model’s tendency to be more certain about short
term life  expectancies  than  about  predictions  that  lay  further  away in time.  The
certainty of the model is however not a good indicator of the model’s accuracy, as
shown by the final test results in Table 22. Our expectation about a higher model
certainty for more accurate predictions, was not reflected by the results.
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7.3 Results per illness trajectory

Finally,  we  disentangled  the  keyword  model’s  results  for  the  different  illness
trajectories. To ensure clear-cut boundaries between illness trajectories, we separated
the output predictions into three categories, according to the three illness trajectories
as described in Section 3.1: a group of patients suffering only from cancer, a group
of patients suffering only from organ failure, and a group of patients which can only
be categorized as frail elderly. 
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Figure 26: Histogram with absolute frequency counts for actual and 
predicted life expectancies, for each month in the range 1-50.

  a       b

Figure 27: Relative certainty versus actual (a) and predicted (b) life expectancy.



In our analysis for each trajectory, we included the predictions for the ten-month
windows of each patient from the onset of the disease that associates the patient with
a specific trajectory, onward. We expected the model to perform better for the cancer
trajectory than for the other trajectories and for the validation set as a whole, because
of the steady and predictable decline associated with the cancer trajectory. 

The analysis however showed unexpected results: the model performed worse for
each of the three trajectories than for the validation dataset as a whole: the model
scored between 17-20% accuracy for each of the three trajectories  (compared to
29% accuracy for the entire validation set). This means that the model performed
better  for patients that cannot  be categorized by these trajectories  at  all,  and for
patients that fall into several categories at once. 

The model  performed similarly for cancer  patients and organ failure patients,
with roughly two thirds of the incorrect predictions being overly pessimistic. For the
frail  elderly  however,  the  largest  part  of  the  incorrect  predictions  was  overly
optimistic.  Therefore,  as  we  expected,  there  is  a  difference  between  the  illness
trajectories.  Contrary  to  our  expectations  however,  the  trajectory  that  stands  out
most is not the cancer trajectory, but rather the frail elderly category. 

These results may have been influenced by any of the following factors: 1) other
trajectories  that  were  not  specified  in  this  research  are  characterized  by  a  more
predictable pattern of degradation, 2) no clear definition of illness trajectories exists
in literature, so our operationalization may have been flawed, 3) our model is trained
and tuned to perform well  overall, therefore the model’s performance for specific
diseases,  illness  trajectories,  or  any other  categorization  of  patients,  is  bound to
deliver  worse  results  than  the  overall  results.  The  results  for  different  illness
trajectories however show that the predictions for the cancer and the organ failure
trajectories  show  similar  tendencies  as  the  performance  for  the  validation  data
overall: the predictions tend to be overly pessimistic. In contrast, the performance of
the  model  for  the  frail  elderly  category  is  notably  different  from  the  model’s
performance on the other trajectories and on the validation data as a whole: most of
the incorrect predictions  overshoot the life expectancy for the frail elderly. These
results suggest that different training and fine tuning procedures may be optimal for
different categories of patients.
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8. DISCUSSION AND IDEAS FOR FUTURE RESEARCH

The results of this research show that  LSTMs are able to parallel  the accuracy of
doctors in predicting life expectancy, and show that the inclusion of features from
unstructured clinical texts advances the quality of the predictions further. 

8.1 Comparison to human prognostic estimates

The  inclusion-exclusion  criteria  that  were  used  by  White  et  al.  (2016)  in  the
systematic  review  of  doctors’ estimates  of  life  expectancy  prohibited  perfect
comparison between doctors’ performance and our model’s performance: patients
had  to  be  defined  as  terminally  ill,  palliative,  or  otherwise  non-curative  for  a
research  to  be  included,  and  research  papers  which  included  patients  that  were
receiving artificial ventilation or that were admitted to an Intensive Care Unit, were
excluded.

We, on the other hand, did not exclude any patients from the dataset. In contrast
to the task presented to doctors, the model was therefore additionally employed to
make predictions for patients that were still curative, and patients that received life
support. Life expectancy is harder to predict for such patients, and the comparison
between  the  doctors’ performance  and  our  model’s  performance  was  therefore
bound to result in a pessimistic view of our  model’s accuracy. Regardless of the
relatively pessimistic view on the results, the model already outperformed doctors,
which leaves us optimistic about the capabilities of the model compared to doctors’
prognoses when presented with identical data. 

8.2 Amount of data

An issue which challenged the processing of all data types, was the amount of data
available to us in this research. Our corpus consisted of roughly 1,200 patients which
is a fair amount of data according to clinical standards, but is not considered to be a
lot of data for training neural networks. As illustrated by the optimization process in
Phase III and the drop in accuracy on the validation data in Phase IV, overfitting is a
serious issue which we did not fully manage to tackle, even though we maximized
the amount of training data, used cross-validation and early stopping, and explored
the effects of drop-out. We expect that the use of more data in future research will
aid  in  a  better  feature  selection  process,  especially  with  regards  to  the  textual
features, and will help the model to generalize better to unseen cases.
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8.3 Disease-specific training

An additional  benefit  of  gathering  more  data  is  the  potential  benefit  of  creating
disease-specific training sets. The results show that, contrary to what we expected,
the  model  performs  worse  for  specific  categories  of  patients  based  on  illness
trajectories, than for the group of patients overall. The analyses per illness category
did show however that the model handles different illness trajectories in different
ways, being overly optimistic for some patients, while being overly pessimistic for
others. 

We expect therefore, that it may be beneficial to make predictions for a patient
based on patients with similar characteristics. We could not explore this idea because
we only had access to a limited amount of data, and division into several categories
would further decrease the amount of training data. If enough data would be present
to divide the dataset into separate categories however, it would be very interesting to
explore additional disease-specific training of the model.

8.4 Vector space representation for structured data

One of the reasons for overfitting is the high dimensionality of the input data. Our
input feature vectors for each time step contained roughly 1000 features. The more
features  the  model  needs  to  learn,  the  higher  the  requirements  are  for  model
complexity and amount of training cases. It is therefore important to minimize the
size of the feature set, while retaining as much important information as possible.

Although we encountered many unique medical codes, medication names and lab
codes in the  EMR corpus, which required a feature selection process to reduce the
dimensionality, textual data is even less restricted than structured data. Representing
the textual data with a limited set of keyword features received much attention in
this research due to the large amount of unique words textual data delivers. 

A vector space representation proved to be an effective way of retaining as much
information as possible, while keeping the feature set small. Because the nature of
natural language data is vastly different from the nature of structured data in terms
of unique items and noise, we did not consider transferring our approach for textual
data to the processing of the structured data. In hindsight however, we think that a
vector  space  representation  would  have  been  highly  suitable  for  representing
medical codes and medication names as well.

Compared to the approach we used, vector space modeling supersedes the need to
disregard possibly informative features. Related research carried out by Nguyen et
al.  (2016)  shows  that  the  technique  of  using  word  embeddings  to  represent
structured  EMR data as dense vectors delivers a feasible representation for training
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neural  networks.  In  future  research,  we  would  like  to  experiment  with  word
embedding techniques to represent the structured data as well. 

8.5 Learning from intermediate predictions

An approach to fight overfitting that we did not explore in this research, but will in
the future, is the use of intermediate predictions:  LSTMs are large, linked networks
that contain a neural network for each time step, and therefore have an input layer,
hidden layer(s) and an output layer for each time step. While we make active use of
the input layer and hidden layers at each time step, we only used the output of the
final time step to base the final prediction on. In future work, we will experiment
with training the model  on the intermediate  outputs  as well.  This  idea has  been
explored in related research by Lipton et al. (2016) as well with promising results.

8.6 Combining predictions through time

A different approach to fight overfitting, is inspired by the technique of combining
the  outputs  of  multiple  trained  networks  into  a  single  prediction.  While  this
technique  is  known to  increase  the  accuracy  of  the  final  predictions,  it  is  very
computationally expensive. In this research we used dropout instead to simulate the
use of many small networks, but dropout did not work well in our case. What we did
not explore in this research, but which we will in future research, is not to combine
the output of many models to predict the output for one case, but to use our single
model to make a predictions for a patient by combining predictions of the model
through time. 

This approach addresses a different issue simultaneously: our dissatisfaction of
using a sliding window to overcome issues that are typically associated with the use
of clinical time series data, such as irregular sampling, different amounts of data per
patient,  and  data  sequences  of  unequal  length.  To  overcome  these  issues,  we
aggregated the data over one-month periods and used a sliding window to create
sequences of equal lengths. The latter was unsatisfactory however, because historical
data that falls outside of the window is completely ignored by our model, while we
expect it to contain useful information. Making predictions for a patient at a certain
moment in time by combining outputs from several windows further back in history
therefore has two benefits: it enables the combination of multiple predictions into
one which is expected to fight overfitting,  and it  enables making use of the full
patient history.
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8.7 Textual data

The  use  of  clinical  narrative  increased  the  model’s  ability  to  make  correct
predictions. The textual representations used in this research built on the assumption
that documents are independent and self-contained units. The features we extracted
from these documents were based on word counts and distributional properties of
words. While such representations are sufficient for many machine learning tasks,
potentially  important  information  is  lost  by  ignoring  contextual  embedding,
intertextuality,  and  other  types  of  dependencies  between  documents  in  the  EMR

corpus. We plan to exploit the highly informative nature of the clinical texts more in
future work, by using more advanced  NLP techniques to create a richer linguistic
representation of the textual data.

8.8 Interpretation of the output

Next to data-related and processing-related ideas to improve the accuracy of the
predictions in future work, different ways of interpreting the model’s output may
lead to more constructive predictions additionally. Instead of letting the model return
one value as output,  we wanted the model  to  return more informative output:  a
probability distribution for a large range of months. As output therefore, the model
provides a prediction for each month in the range that states the probability that the
patient is to die during that specific month. 

While this method delivers very interesting results, as illustrated by Figure 22 for
example, we also needed a way to operationalize these probability distributions in
order to evaluate the model’s performance. In this research, we used the month with
the highest probability for dying as the final prediction. However, this is just one of
many possible approaches for interpreting the model’s output. Alternative methods
include reporting the first, the last, or any peak above a certain probability threshold,
and  reporting  sudden  changes  in  life  expectancy,  among  other  approaches.
Determining which measurement corresponds best to the actual life expectancy fell
outside the scope of this research, but we recommend thorough exploration of output
metrics for future work.
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9. CONCLUSION

With this research we aimed to explore the feasibility of automatically predicting life
expectancy based on electronic medical records with machine learning and natural
language processing techniques. Life expectancy is a leading indicator when making
decisions about end-of-life care, and prognoses influence the process of Advance
Care Planning negatively when done inaccurately. End-of-life prognostication is a
notoriously  challenging,  very  time-consuming,  highly  subjective,  and  simply
unpleasant task for most general practitioners.  Being overly optimistic  about life
expectancy,  as  doctors  tend  to  be,  greatly  impedes  the  early  identification  of
palliative  patients  and  thereby  delays  appropriate  care  in  the  final  phase  of  a
patient’s life.

This research aimed to address these issues. Predicting life expectancy has not
been attempted — let alone been solved successfully — before with techniques from
the fields of machine learning and natural language processing. Due to the many
differences  between  human  assessment  and  computer  processing,  we  expected
machine learning techniques to have the potential to make predictions automatically,
and  to  increase  accuracy  and  objectivity  of  prognostication,  to  aid  in  early
recognition of patients at risk. This research aimed to answer to following questions:

1. To what extent are self-learning algorithms trained on medical records able
to detect the approaching end of life automatically?

2. To what extent does the inclusion of textual data improve a prognostic model
for detecting the approaching end of a patient’s life?

We aspired to approach the golden standard for prognostication as reported for
doctors  in  literature.  Additionally,  we  strived  to  increase  the  accuracy  of  the
predictions by including linguistic features that were extracted from clinical notes
written by the general practitioner, and letters between the general practitioner and
other health care specialists.

The findings agree with and even advance the golden standard. Using identical
evaluation  criteria  as  were  used  to  evaluate  doctors’ performance,  our  baseline
model reached a level of accuracy similar to human accuracy. Our keyword model
improves the prediction accuracy with 9%, compared to our baseline model and to
the golden standard of human evaluation. Moreover, our model tends to make rather
pessimistic  predictions,  while  doctors  tend  to  do  the  opposite.  Pessimistic
predictions  as  provided  by  our  model,  in  contrast  to  optimistic  predictions  as
provided by doctors, could aid in the early recognition of the palliative phase and
timely discussion of ACP strategies, to ease the transition toward end-of-life care.

90



Our approach showed promising results. We consider it to be the first step in an
interesting and important line of research, that has tremendous potential for real-life
applications. While clinicians are challenged by the ever increasing amounts of data
that are available for each patient, machine learning techniques are able to use the
growing stack of big data to their advantage. Overall, we have shown that machine
learning and natural language processing techniques are not only a feasible, but also
a very promising approach for automatic prognostication. With this thesis, we hoped
to contribute to this exciting line of research, to advance our understanding of what
is needed for automatic processing of medical data, and to explore the use of highly
unstructured clinical texts. 
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