

Computer, how long

have I got left?

Merijn Beeksma

Computer, how long have I got left?

Predicting life expectancy with a long short-term memory
to aid in early identification of the palliative phase

A thesis submitted in fulfillment of the requirements for the degree of Master.

September 11, 2017

Research Master Language and Communication
Faculty of Arts, Radboud University Nijmegen

Author
Merijn Beeksma, s4166809

Supervisor
Dr. S. Verberne

Second assessor
Prof. Dr. A.P.J. van den Bosch

ACKNOWLEDGMENTS

The interaction between experts from a broad range of backgrounds, including
natural language processing, machine learning, and palliative care, provided me with
an environment that functioned as an incubator for the ideas which lay at the
foundation of this exploratory research. The highly interdisciplinary character of this
research has truly led to a sum of parts which is greater than the whole.

I am grateful for my supervisor Suzan Verberne, whose advise, ideas and critical
evaluation were around-the-clock available, and never more than an hour-wait for an
email away. Your experience with the inevitable complications that are associated
with this kind of research (noisy, missing, and inexplicable data, anyone?) ensured
that we were never stuck on problems for long. Your practical take on complex
issues provided me with the confidence that any bumps in the road could be
overcome.

The help from Stef Groenewoud (Radboudumc), and André van der Veen (De
Praktijk Index) have been of immeasurable value as well. Brainstorm sessions that
continued for hours — and were still too short without exception! — were an
incredible source of inspiration and motivation. While keeping each other's wild
plans in line at best, translating ideas and insights from domain to domain was
sometimes challenging, usually productive, and always exciting.

Indispensable has been the help of my dad, who contributed greatly to the process
on many fronts, but most of all as my number #1 sparring partner. Many ideas have
unfolded (and collapsed again) during our conversations, while possibly even more
cups of coffee were being downed. Truly invaluable.

Essential has been the participation of the general practitioners of health
consortium Nijmegen and their patients. It goes without saying that this research
could not have existed without their contribution.

Finally, I would like to thank Paul for investing hours of time in proof reading,
mental support, and allowing me to rattle in despair without judgment whenever I
could not find bugs in the code or fix horrible lay-out issues.

Your help has advanced this work in many ways.

ABSTRACT

Life expectancy is a leading indicator when making decisions about end-of-life care,
but good prognostication is notoriously challenging. Being overly optimistic about
life expectancy, as doctors tend to be, greatly impedes the early identification of
palliative patients and thereby delays appropriate care in the final phase of life. This
research aimed to explore the feasibility of automatically predicting life expectancy
based on electronic medical records, with the aid of machine learning and natural
language processing techniques.

We trained a neural network (long short-term memory) with 1107 medical
records, and validated the model with 127 medical records. Using identical
evaluation criteria as were used to evaluate doctors’ performance, our baseline
model reached a level of accuracy similar to human accuracy. The inclusion of
clinical narrative was enabled and optimized with the use of natural language
processing techniques such as domain-specific spelling correction. The inclusion of
keyword features improved the prediction accuracy with 9%, compared to both our
baseline model and to the golden standard of human evaluation. Overall, we have
shown that our approach for automatic prognostication is feasible and delivers
promising results.

Her daughter and husband want euthanasia. They are angry
that it is not possible anymore, because madam is no longer
communicative. Nevertheless, her daughter is trying to force
a reaction from her: “mom, do you want to die, do you want
to go to heaven?” Madam is shaking her head, and says “no”
eventually.

- Fragment from a doctor's note

TABLE OF CONTENTS

1. Introduction..1

2. Background and related work..7

2.1 Standard methods for identification of palliative patients................................8

2.2 Deep learning approaches for clinical data...9

3. Method...15

3.1 General overview..16

3.2 Corpus description...17

3.2.1 Types of data..17

3.2.2 Missing values...20

3.2.3 Illness trajectories..20

4. Phase I: Preprocessing the data..25

4.1 Processing structured data...26

4.2 Natural language processing pipeline...26

4.2.1 Tokenization..29

4.2.2 Normalization..29

4.2.3 Rephrasal...30

4.2.4 Part of speech tagging..32

4.2.5 Spelling correction...33

4.2.6 Lemmatization...37

4.2.7 Postprocessing...37

5. Phase II: Feature reduction..39

5.1 Feature selection for structured data...41

5.1.1 Frequency-based feature reduction..41

5.1.2 Feature reduction for ICPC and ICD-10 features....................................42

5.2 Keyword selection...44

5.2.1 Entropy-based ranking...44

5.2.2 Vector space representation using word embeddings..............................48

6. Phase III: Model development...53

6.1 Transforming the data...54

6.1.1 Creating a timeline...54

6.1.2 Sliding window..55

6.1.3 Normalization..57

6.2 Conceptual baseline model..58

6.3 Model optimization...60

6.3.1 Tuning hyperparameters for the baseline model.....................................60

6.3.1.1 Learning rate..61

6.3.1.2 Batch size...62

6.3.1.3 Model size: number of layers and hidden units...............................63

6.3.1.4 Dropout..64

6.3.1.5 Peepholes...66

6.3.2 Optimizing feature selection for the baseline model...............................67

6.3.3 Baseline model..68

6.4 Effect of adding textual features...68

6.5 Final parameter tuning..73

6.5.1 Epochs...73

6.5.2 Window size..73

6.6 Final model architectures..75

7. Phase IV: Validation...77

7.1 General results...78

7.2 Relations between several output measures..79

7.3 Results per illness trajectory...80

8. Discussion and ideas for future research..83

8.1 Comparison to human prognostic estimates..84

8.2 Amount of data..84

8.3 Disease-specific training...84

8.4 Vector space representation for structured data ..85

8.5 Learning from intermediate predictions..86

8.6 Combining predictions through time...86

8.7 Textual data...86

8.8 Interpretation of the output..87

9. Conclusion...89

10. References..91

 Introduction1

1. INTRODUCTION

Electronic medical records (EMRs) contain a wealth of information. In addition to
diagnoses, medication, lab test results and other structured information relating to
medical care, EMRs contain large volumes of clinical narrative. Through textual data,
physicians are able to capture information that would get lost if only predefined
codes and descriptions would be available. Nuances, characterizations, specific
details or rather the big picture, suspicions, and other salient observations that may
or may not be obviously linked to the reason for encounter are described in clinical
reports by the physician for each consultation. Although these texts offer an
invaluable source of longitudinal, patient-specific information, they are an
underused source in clinical decision support systems (Jensen et al. 2012).

This research aimed to explore the potential of systematic and automatic use of
textual data to aid in Advance Care Planning (ACP). ACP is the process during which
patients make decisions about the health care they wish to receive in the future in
case the patient loses the capacity of making decisions or communicating about
them in the future (Brinkman-Stoppelenburg et al. 2014). These decisions are made
in consultation with the patient’s loved ones and health care providers, the general
practitioner (GP) in particular (Singer et al. 1996). Successful ACP enhances the
quality of life and death for palliative patients, by preventing excessive treatment,
providing timely palliative care, recording emergency contacts, appointing care
takers, arranging pain management, organizing living arrangements, and
documenting preferences regarding resuscitation and euthanasia, among other
aspects. To ensure that it is not too late to influence processes that take place during
the end of life according to a patient’s wishes and preferences, timing is crucial.

Accurate prognosis of life expectancy is essential for general practitioners (GPs)
to decide when to introduce the topic of ACP, and is a key determinant in end-of-life
decisions, but it is notoriously difficult (Billings & Bernacki 2014; Weeks & Cook
1998; Frankl et al. 1989). Prognostication helps to predict when certain preparations
and procedures should be started, how long the patient will be cognitively capable of
making decisions, and when the first acts of end-of-life care need to be initiated. A
large body of research shows that doctors’ estimates are accurate in roughly 20% of
all cases, and that predictions provided by different health care providers do not
correlate with each other, due to their highly subjective nature (White et al. 2016;
Higginson & Constantini 2002; Forster & Lynn 1988; Christakis et al. 2000). Life
expectancy estimations tend to be overly optimistic (White et al. 2016; Higginson &
Constantini 2002; Heyse-Moore & Johnson-Bell 1987; Christakis et al. 2000),

2

leading to postponement of ACP, or not having conversations about ACP at all
(Billings & Bernacki 2014).

Postponing the conversation about ACP is detrimental because this often leads to a
situation in which the patient’s preferences are discussed days, hours, or even just
minutes before death. Physicians often struggle to determine the right moment to
express concerns about the nearing end of life however, and to introduce the concept
of ACP to the patient (Groenewoud 2015). Research shows that end of life decisions
are often only discussed during emergency hospitalizations with junior clinicians
who were not familiar with the patient up to that point (Szmuilowicz et al. 2010).
Discussing ACP during a crisis situation leads to rushed decisions, made by patients
that are not thoroughly informed. In times of distress, decisions tend to regard only
issues of immediate concern, such as whether or not life-sustaining procedures
should be applied. Such rushed, uninformed choices often lead to a poor
representation of the patient’s underlying values and ideas about life, and to
frustration among loved ones (Billings & Bernacki 2014).

Good prognoses and proper timing are crucial for the intake of terminally ill
patients in hospices as well. In the Netherlands, patients qualify for hospice care if
their life expectancy is three months or less (Ministerie van Volksgezondheid,
Welzijn en Sport (Dutch ministry of public health) 2015). While experts agree that
patients ideally reside in a hospice for three months prior to death, patients typically
receive only a month of hospice care (Integraal Kankercentrum Nederland, (Dutch
quality institute for oncological and palliative care), 2015). Moreover, roughly half
of all intakes is highly urgent due to a medical crisis, and more than a quarter of all
patients die within seven days after the intake (Integraal Kankercentrum Nederland;
Christakis & Escarce 1996). Postponing the conversation about ACP therefore
excludes patients and their loved ones from important end-of-life decisions, and
often results in indignation and dissatisfaction.

Confronting the patient too early is however detrimental as well. It may lead to
unrealistic expectations, and to decisions that are not supported by the patient in a
later stadium because they were built on hypothetical scenarios. Discussing ACP too
early without repeatedly discussing it again later on, violates the main goal of ACP:
ensuring that the actions that are executed or deliberately not executed during the
last phases of life are in accordance with the patients wishes and preferences as
much as possible (Billings & Bernacki 2014). In theory therefore, ACP cannot be
discussed too early, but repeated discussion afterwards is required to ensure that the
patient and the GP still stand behind decisions that were made earlier, or update them
as necessary. Discussing ACP early on without repetition of the discussion when it is
relevant, can therefore be seen as postponing ACP as well.

3

To support GPs in their decision-making processes, several disease-specific and
general tools exist to encourage and help with prognostication, judging the patient’s
functional abilities, and determining the right moment to start the conversation about
ACP. Tools designed to support the GP include the KPS (Karnofsky performance
scale, Karnofsky & Burchenal 1949), the SUPPORT model (Lynn et al. 1995), Spitzer
Quality of Life Index (Addington-Hall et al. 1990), the Seattle Heart Failure model
(Levy et al. 2006), the MELD, (model for end stage liver disease, Wiesner et al.
2003), the Surprise Question (Moss et al. 2010), the RADPAC (Radboud indicators for
palliative care needs, Thoonsen et al. 2012), and the SPICT (supportive and palliative
care indicators tool, Highet et al. 2013).

These tools however rely heavily on the initiative of GPs, and their interpretation
and evaluation of the situation. But the initiative is not always taken, and assessing
the situation thoroughly and correctly is notoriously hard and time-consuming
(Billings & Bernacki 2014; Robinson et al. 2013; Sudore & Fried 2010; Gott et al.
2009; Weiner & Cole 2004). Even if the initiative is taken once, the GP should
continue to monitor the situation closely, to determine whether repeated discussion
with the patient is needed. The combination of existing tools and human evaluation
leads to suboptimal results: generalizing tools necessarily exclude patient-specific
factors, thereby decreasing personalized care, while disease-specific tools can only
be used for a subpopulation of patients, which make it harder for the GP to use the
right tool at the right time. Additionally, one cannot recall and consider all
information about a patient and similar cases all the time, and examining EMRs
exhaustively in preparation of each consultation would be far too labor intensive.
Therefore, human assessment leads to a fragmentary representation of the patient.
Moreover, Christakis and Lamont (2000) showed that less experienced doctors make
more and larger errors predicting life expectancy than doctors with many years of
experience, and that the better a doctor knows a patient, the more likely the doctor is
to overestimate the life expectancy of the patient.

Computers offer an interesting alternative to human assessment: they suffer less
from memory limitations, and do not let their personal relation to the patient cloud
their judgment. Perfect recall from memory is a challenge for a GP for any patient,
and is increasingly compromised as the number of patients increases. As the
Capaciteitsorgaan (Dutch organization for health care information provision)
reports, GPs have over 2,000 patients on average. Because perfect recall is
unproblematic for computers, they are capable of identifying complex patterns that
may not be obvious to humans.

Complementary to memorizing all relevant information, learning to generalize is
an effective strategy for evaluating new cases as well. As more variables are

4

involved in the task however, less highly similar examples are available to learn the
important cues from, and thus to properly generalize from. More fundamentally
however, GPs are involved in only a limited amount of end of life cases to begin
with: the average GP is expected to encounter 15-20 deaths annually1. Such low
numbers cause a rather ‘flat’ learning curve for doctors to learn the important cues
from. Because many different patient characteristics and medical factors influence
the prognosis and the right moment for ACP, obtaining a concise but complete
overview of the influence of all these variables and the interaction between them is
incredibly complex, and due to the small amounts of heterogeneous data to learn
from, it is hard for GPs to systematically learn the detailed and complex patterns
from previous cases. Computers on the other hand detect complex patterns with
relative ease, and can be trained on thousands of end-of-life cases.

Machine learning methods and data and text mining techniques have grown to be
increasingly popular within the medical domain, and have been applied to a broad
range of tasks, including medical decision-making (Walczak 2005; Mazurowski et
al. 2008), automatic disease detection (Khemphila & Boonjing 2011; Al-Shayea
2011; Hazan et al. 2012), and automatic diagnostication (Khan et al. 2001;
Kordylewski et al. 2001; Thangarasu & Dominic 2014; Lipton et al. 2015, Liu et al.
2016)17-21. Machine learning algorithms are characterized by the ability to learn
without being explicitly programmed. Building models based on known cases allows
machine learning algorithms to make predictions about new cases. Surprisingly,
little research has been done exploring the use of self-learning algorithms for
predicting patients’ life expectancy. Successful prediction of life expectancy would
aid in a decreased work load, increased confidence for GPs, more consistent
treatment, less unnecessary treatment, earlier anticipation on palliative needs, and
most importantly, has the potential to increase the quality of life and death for
palliative patients. This research aims to explore of the potential of machine learning
techniques for predicting life expectancy. The first question we address, is: To what
extent are self-learning algorithms trained on medical records able to detect the
approaching end of life automatically?

Medical records contain highly structured data, such as diagnostic codes and lab
results, which are processed to train self-learning algorithms with relative ease. The
situation changes drastically however, when unstructured data is presented to the
computer, such as notes taken by the doctor during a consult. Textual data is
incredibly noisy compared to well-structured medical data, but is available in large
volumes and offers a rich source of information, complementing the structured data.
It may contain important clues about the approaching end of life that cannot be

1 Based on population and mortality statistics as provided by the Centraal Bureau voor de Statistiek
(national data center for statistics in the Netherlands).

5

inferred from the non-linguistic context. We expect that the detection and
exploitation of linguistic clues enriches a model trained to make predictions about
life expectancy. With this research we therefore aim to answer the following
question additionally: To what extent does the inclusion of textual data improve a
prognostic model for detecting the approaching end of a patient’s life?

Chapter 2 provides background information about the standard approaches to
identifying palliative patients, and discusses related work in terms of machine
learning approaches in the medical domain. Chapter 3 outlines our overall method,
and chapters 4-7 provide a detailed description of each research phase, ranging from
initial data processing to validation on a held-out test set. In chapters 8 and 9 we
discuss the results, draw conclusions about the research as a whole and offer
suggestions for further research.

6

2Background
and related work

2. BACKGROUND AND RELATED WORK

2.1 Standard methods for identification of palliative patients

Little research has been done exploring the use of self-learning algorithms for
predicting life-expectancy or the right moment for ACP, although some disease-
specific work is carried out for predicting survival rates and clinical outcomes.
Studies have been conducted for cardiovascular diseases (see Rumsfeld et al. 2016
for an extensive review), Alzheimer’s disease (Ito et al. 2010; Zhou et al. 2012),
diabetes mellitus (De Winter et al. 2006), and cancer (Burke et al. 1997; Wei et al.
2004), among other diseases. As Schwarzer and Schumacher pointed out in 2000, no
real progression was made in prognosis and diagnosis up to that moment, which they
mainly ascribed to methodological deficiencies. Many years later however, the
techniques, availability and practical applications of self-learning algorithms have
increased to a large extent in many areas, including disease-specific modeling — but
not the area of predicting prognoses in general, or the right moment for ACP.

Reviews of tools for ACP as conducted by Quaseem et al. (2008), Maas et al.
(2013), and Walsh et al. (2015) reveal that the tools that aid in early identification of
palliative patients are not based on machine learning techniques. They do not
automatically detect high risk patients, but are questionnaire-like frameworks
designed to support the physician in detection of patients that require palliative care.
Without exception, these tools are based on expert knowledge, but only a small
number of tools is validated. Prominent tools such as the RADPAC, SPICT and
NECPAL are intended for general use, and often provide disease-specific indicators
additionally. The tools differ mainly in whether or not general indicators are
included, which characterization of deterioration states is used, and the use of the
Surprise Question. The Surprise Question is a much used method to identify
palliative patients by answering the question: Would you be surprised if the patient
dies within the next few weeks / months / within a year? Although the method is
quick and easy to use, and highly intuitive (Moss et al. 2010; Moss et al 2008), it is
also a very subjective measurement. Moreover, it has been shown that GPs feel
uncomfortable — more than hospital doctors (Farquhar et al. 2002) — to commit to
the negative answer (i.e. not being surprized) to the Surprise Question, which leads
to overestimations of life expectancy (Thoonsen et al. 2011).

Virtually none of the existing tools are widely used (Maas et al. 2013).
Regardless of the availability of these tools, research about their use in practice
shows that GPs tend to avoid tools because they are afraid it will lead to an increase
in workload, and because factors which directly or indirectly influence the palliative
care process, but which are not directly of medical nature (e.g. psychological, social

8

or spiritual factors) play only a marginal role in all these tools (Maas et al. 2013).
When asked about their alternative approach for identifying palliative patients, GPs
state that they rely mostly on discharge letters from the hospital, increased need for
medical care, and decreased social contacts (Claessen et al. 2013). Maas et al. (2013)
explored the role of the GP in the identification process through a questionnaire,
which showed that identification is mainly based on subjective criteria, and therefore
depends heavily on the experience of the GP with palliative patients.

There are currently no tools that make automatic predictions about life
expectancy or the right moment for palliative care without relying heavily on the
initiative, subjective judgment and time investment of the GP. To decrease the
dependence on the initiative of the GP in considering palliative care, effort has been
put into the development of computerized search algorithms which aim to identify
patients with palliative needs by searching databases with EMRs globally for
indicators according to existing tools such as the SPICT and the NECPAL (Mason et
al. 2015; Thomas 2012). These systems are however not intended as stand-alone
methods for identification of vulnerable patients, and suffer from limitations such as
the inability to search systematically through textual data (Mason et al. 2015).

2.2 Deep learning approaches for clinical data

Because medical records are contained in large electronic databases, big data
analyses and machine learning techniques potentially offer huge benefits for clinical
practice, such as clinical decision support, modeling of clinical events and risks, and
many other applications. To our knowledge, no research has been conducted for
automatically predicting life expectancy regardless of the specific disease, and no
research has been conducted for early detection of palliative patients. Some research
has however been conducted for related subjects that are interesting for our current
work because they shed light on methodological approaches to handling clinical
data, and the corresponding challenges researchers face.

Deep learning and big data approaches have been applied both for general
purpose applications and for disease-specific applications. General purpose
applications for medical tasks often focus on automatic diagnosing of diseases. An
example is DEEPR, a deep learning system which creates patient representations
from EMRs and aims to predict future risks automatically, based on a convolutional
neural network (Nguyen et al. 2016). DEEPR represents EMRs as a sequence of
diagnostic and procedural codes for each encounter, separated by discretized time
intervals to represent the sequential nature of the data. The authors address the issue
of data sparseness: large collections of medical codes exist to refer to diagnoses,
medication, and other types of medical information, but each patient is only

9

associated with a small subset of such codes. Training a neural network with very
sparse data is computationally expensive, increases the risk of overfitting, and
requires large amounts of data. DEEPR uses word embedding techniques to represent
the medical and procedural codes with dense vectors. Although this approach is able
to capture long-term dependencies that characterize medical data, a disadvantage is
the inability to fully capture time sensitivity: recent events should weigh more
heavily than events in the distant past, but are regarded as similarly urgent by this
approach, the authors explain.

Choi et al (2016) use a recurrent neural network in an application named DOCTOR

AI for predicting diagnoses and medication for the next consultation for a patient,
based on the patient’s medical history. The authors note that the amount of data
influences the results to a large extent: their model learns specific relations for
frequent medical codes well, while it resorts to predicting the most frequent codes
when given infrequent codes as input, because it is hard to learn about infrequent
codes properly when not enough data is available. Additionally, they note that the
model performs better when more medical data is available for a patient.

Disease-specific models are usually developed to predict the progression of a
disease, or the survival rate associated with a combination of the disease and patient
characteristics. Disease-specific approaches rely more on top-down knowledge than
general purpose models, which can be explained from the observation of Choi et al.:
datasets usually contain a couple of thousands of medical records, which tends to be
insufficient for learning about infrequent phenomena well. When specific diseases
are studied, much less cases are available, which increases the need for expert
knowledge about the disease. Reliance on top-down knowledge is however
insufficient for diseases that are poorly understood. Alternatively, these methods rely
heavily on statistical data. Most of these specialized models focus on a limited set of
possible outcomes, thereby only solving small parts of the puzzle. In reality
however, patients usually show complex and heterogeneous combinations of
symptoms, co-morbidity, personal characteristics and health care requests, which
requires the combination and optimization of many models simultaneously, to
handle the large amount of possible scenarios. Combining the output of several
models to account for the interaction between variables is however not trivial,
because due to the large number of possible scenarios, very specific domain
knowledge or huge amounts of data are required, to properly base statistics on.

Although the approaches used for general purpose models suffer less from these
issues, designing methods to handle EMR data requires solutions for several issues in
general. Medical data is often very sparse and plagued by missing values. Some
types of data, such as the reason for encounter, are obligatory to be recorded by the

10

GP during a consult, but many types of data can be provided optionally. Moreover,
between consultations no data is available whatsoever. When data is missing, we
cannot simply assume clinically normal values, because they depend on many
factors. No contact between doctor and patient may indicate either that the patient is
assumed to be healthy, or that the patient is stable, despite suffering from a disease.
Which values are considered ‘normal’ is influenced by the medical history of a
patient, as well as additional factors such as gender and age.

Moreover, health records contain variable amounts of data, ranging from as short
as a week for new or young patients, to tens of years for older patients. To
complicate the handling of time series data further, the intervals at which data is
sampled are very irregular: aside from the occasional exception, patients do not visit
the physician with a regular frequency, which impedes comparison of time-series
data for different patients. Moreover, related medical events such as the first
appearance of symptoms, consultation to assess the corresponding diagnosis, and
treatment of the condition are often separated by large intervals of time. Medical
episodes may span many weeks or years, especially in case of chronic diseases such
as diabetes, or recurrent diseases such as cancer, requiring methods which are able to
handle long distance dependencies. An additional request for handling long-term
dependencies comes from regular check-ups: GPs sometimes schedule weekly or
monthly consultations with a patient just to check if anything has changed regarding
their condition, which is often not the case. Although these check-ups do not provide
new information, they are documented and thereby introduce what could be
considered as noise into the EMR: trivial information which is hard to separate from
non-trivial data automatically.

Different approaches and algorithms have been applied to clinical time series
data, including convolutional and recurrent neural networks, hidden Markov models,
conditional random fields, and adopting discretely coded time gaps as features. The
inability to exploit long-distance interactions and correlations however make these
algorithms less suitable for learning long-distance dependencies (Dietterich 2002).
Markovian methods for example are inherently unsuitable for clinical time series
processing, because they have no memory. When routine admissions during which
no relevant medical data is gathered interrupt an episode of a severe illness for
example, the absence of recent important medical information adversely affects the
model’s performance for the severe illness (Pham et al. 2017).

Hochreiter and Schmidhuber (1997) designed a type of recurrent neural network
for modeling long-term dependencies: Long Short-Term Memory, or LSTM. LSTM

cells are similar to the conventional, self-replicating RNN cells: at each time step,
the LSTM receives new input for the current time step, and processed input from the

11

previous time step. The memory cells of the current time step are updated, and
information is passed to the next time step. The output per time step is therefore
moderated by current and historical data. LSTM cells contain the addition of several
gates: an input gate, an output gate, and a forget gate. The configurations of each
gate are learned during the training process, and determine the information flow
through the model. The forget gate instructs the cell to discard certain pieces of
information it received from the previous time step. The input gate determines which
pieces of information are updated as soon as new information comes in, and which
are not.

The alternations of the information that result of the filters applied by the forget
gate and input gate, determine the cell’s state, which can then be passed on to the
next cell. Not all information is passed on to the next time step however: the output
gate aims to only send through the relevant information. The addition of these gates
to the cell architecture help the model to preserve relevant information over many
time steps. LSTM models are therefore highly suitable for learning long-term
dependencies. This research explores whether or not LSTM can be applied to
automatic end of life detection with reasonable accuracy.

LSTMs have been shown to outperform other algorithms in many tasks, such as
speech recognition, machine translation, signal processing, rhythm learning,
handwriting recognition, weather forecasting, and other tasks concerning time series
data. As a recent development, LSTMs models have received more attention in the
medical domain. Lipton et al. (2016) employed an LSTM model to diagnose patients
in a hospital setting based on sensor data such as blood pressure and temperature,
and lab test results. Their results show that the LSTM model was able to successfully
diagnose critical care patients overall, performing very good for some diagnoses
such as diabetes mellitus, while other diagnoses were harder to predict. The authors
characterize their approach as promising, especially considering that their approach
did not make use of free-text notes and has access to much less information than
doctors do when they consult with a patient.

Kim et al. (2016) used an LSTM model for conducting a similar task: the
prediction of examination results given previous measurements. Their results show
that their approach was feasible, and superior to other methods such as linear
regression, especially for patients that display abnormal behavior from a clinical
perspective. Pham et al. (2017) developed DEEPCARE, an LSTM-based approach to
infer the current illness state and to predict future medical outcomes. Their model
performs especially well for patients suffering from diabetes mellitus and mental
health issues. They note that some natural language processing (NLP) methods, such
as vector space representations, are therefore transferable to EMR processing.

12

LSTM models have additionally been applied specifically to aid in semantic
understanding of unstructured textual data in EMRs. Research in this area mainly
focuses on entity extraction and event detection. Jagannatha and Yu (2016) for
instance used an LSTM to detect medical events in textual data. They showed that the
model benefits from using more textual context: their document-based results
outperform sentence-based results. Sadikin et al. (2016) showed that an LSTM model
outperformed other models in drug name recognition in free-text data. Sahu and
Anand (2017) used an LSTM to identify unknown interactions between drugs from
free text. Similar to many other clinical text processing approaches, they represent
the textual data with word embeddings. In contrast to Jagannatha and Yu (2016), the
authors note that the model performs better for short than long sentences. In this line
of research, authors without exception note that LSTM algorithms offer a feasible
solution to classification and prediction tasks, while also noting that the noisy
character of clinical data is challenging and adversely affects model performance.
Similar to the previously discussed system DEEPR (Nguyen et al. 2016), the authors
of DEEPCARE bring to light the similarity between EMR processing and NLP,
comparing data such as diagnoses and interventions in EMRs to words and modifiers
in natural language sentences.

13

14

 3 M
et

ho
d

3. METHOD

3.1 General overview

In collaboration with Radboudumc, we gathered data from seven health care
facilities that are part of the health care consortium of Nijmegen. The dataset
contains a total of roughly 37,000 electronic medical records (EMRs). We approached
the task of predicting life expectancy with the aid of an LSTM model.

This research was carried out in four consecutive phases. During Phase I, data
were gathered from the EMRs and processed in order to create a structured format for
each data type. Phase II prepared the feature selection process by ranking and
aggregating features with a range of different approaches. In Phase III we developed
and tested the LSTM model. We carried out many experiments to determine the
optimal model architecture and feature set for two models: a baseline model, and a
model that made use of additional keyword features. Both models were finally tested
with a held-out set of validation data during Phase IV to determine the models’
accuracy for unseen data. We compared the accuracy of the models to the accuracy
of trained doctors as reported in literature. Figure 1 provides an overview of the
processing steps.

16

Figure 1: Project overview.

Prior to extracting data in Phase I, the corpus data were prepared to enable
validation on unseen data during Phase IV. In order to enable validation while
sacrificing as little of the corpus as possible, we split the data into two
complementary parts: 90% of the data (1,107 patients) was used as development set
for Phases I-III, and 10% of the data (127 patients2) was held out to use as external
test set for Phase IV. We developed the model during Phase III with the use of a ten-
fold cross-validation procedure to further minimize the loss of training data.

The held-out patients were chosen to be the 10% most recent patients of each
health care facility, to avoid any bias as a result of the geographic area in which the
patients lived, the health care practice they visited, and the general practitioner by
whom they were treated. Additionally, the most recent patients were selected to
simulate potential use of the model in practice — the model was trained on
‘historical’ data, and applied to ‘new’ patients.

3.2 Corpus description

The EMR corpus is used as input for the model to learn which features of the data are
important indicators for estimating life expectancy. For training and evaluation
purposes, the model requires a known date of death. Therefore, only the medical
records from deceased patients were included, leading to a total 1,231 medical
records (3.3% of the total number of patients). To avoid overfitting on the held-out
test set, the test set is excluded from the descriptive statistics in this section — the
statistics are based on the 90% development data only.

The development data consists of 578 (52%) records of female patients, and 530
(48%) records of male patients. The medical records span the five final years of life
for each patient. The average age at the moment of death was 77; 80 for women and
75 for men. These averages correspond to the national averages as reported by the
Centraal Bureau voor de Statistiek (national data center for statistics in the
Netherlands).

3.2.1 Types of data

The EMRs contain both structured and unstructured data. Much of the information in
the medical records is highly structured due to the use of standardized medical
codes: ICD-10 codes (10th edition of the International Statistical Classification of
Diseases and Related Health Problems) and ICPC-1 codes (1st edition of the
International Classification of Primary Care). ICD-10 and ICPC codes are used to
document multiple types of medical information during a consult, such as the reason
for encounter and the diagnosis. The documentation for lab tests and the resulting

2 This is not exactly 10% due to rounding upward for each health care facility.

17

lab values follow predefined formats and are therefore structured as well. Finally,
the textual data in the corpus used to describe the type of consult and the name of the
medication are well-structured, due to the interface used for documentation (i.e.
drop-down menu’s). Table 1 provides an overview of all types of information that
are documented during each medical consultation, with examples that illustrate the
nature of the documented information. All feature types but the letters and notes are
part of the structured data.

Table 1: Overview of documented information per medical consultation, illustrated
with an example taken from the EMR corpus. ‘S’ and ‘U’ refer to ‘structured’ and
‘unstructured’ data, respectively. (Translation and code descriptions provided by
author.)

Feature category Data type Unique items Obligatory Example

Contact type textual data (S) 81 yes regular 10-minute visit

Medical history ICPC-1 code (S) 136 no D10 (vomiting)

Reason for
encounter

ICPC-1 code (S) 862 yes
A04 (general
tiredness/weakness)
N17 (vertigo/dizziness)

Diagnosis ICPC-1 code (S) 572 yes
D73 (gastro-enteritis
infection)

Medical
intervention

ICPC-1 code (S) 380 no

A31 (directed physical
examination)

D45 (directives about health
and diet)

ICD-10 reference ICD-10 code (S) 857 no
A09 (infectious
gastroenteritis and colitis)

Medication textual data (S) 1,490 no Paracetamol 500mg

Lab test clinical code (S) 269 no 357 (patient’s weight)

Letters / notes textual data (U) 53,423 no

cave ileus, drinkt te weinig,
vandaag voor het eerst
weer gegeten.
(‘bowel obstruction, does
not drink enough, ate today
for the first time again.’)

In addition to structured information, EMRs contain letters sent between
specialists about the patient, and notes taken during the consult that are usually
intended for personal use by the GP only. These feature types are illustrated by the
bottom two rows in Table 1. Notes and letters are free texts written in highly variable
formats, compared to the structured data. These types of data consist of natural
language and are characterized by large amounts of noise, due to idiosyncratic use of

18

language, many non-standardized abbreviations, spelling errors, ungrammatical
sentences, and telegram-style writing. The linguistic quality of the texts depends
heavily on whether the texts are personal notes, or meant for other readers as well.
On average, 121 consultations were documented per patient for the five year period,
and for roughly 75% of all consultations notes or letters were written. Of all textual
data, 85% of the documents are notes, and 15% are letters.

Letter correspondence mostly functions to discharge a patient, to refer a patient to
a different health care provider, to inform the GP about emergency hospitalization, or
to obtain a second opinion. Research has shown that discharge letters are among the
most important indicators for GPs when identifying patients with palliative needs
(Claessen et al. 2013; Maas et al. 2013). Specialists may or may not elaborate about
the context of the medical situation, but generally follow a strict format, allowing the
GP to translate the textual data directly into medical codes without the loss of
information. Letters therefore tend to provide little additional information that is not
present in the form of structured data in the EMR, especially when compared to
consultation notes.

Notes made during or after consultations often follow the so called SOEP method.
The SOEP method allows GPs to make an explicit distinction in their documentation
between subjective statements which focus on the patient’s experience, objective
statements from the GP’s perspective, the evaluation of the situation, and the plan of
action. Although the SOEP method stimulates a uniform documentation style among
physicians, the distinction between the elements is not always clear-cut. GPs often
use the subjective-objective distinction to separate the patient’s words from their
own observations (regardless of the objectivity of the statements), and the
evaluation and plan of action are not easily distinguished in some cases either,
especially if no specific treatment is prescribed. Table 2 illustrates notes written
according to the SOEP method with a translated example.

Clinical notes tend to contain background and contextual information that cannot
be inferred from medical codes and other structured information, such as
information about a patient’s social life, living arrangements, daily occupations, and
functional and self-care abilities, among other things. Notes provide the GP with the
opportunity to document changes which result in clinically normal behavior (and
which are therefore not documented otherwise), but which are atypical, unexpected
or suspicious for the specific patient, given additional background and contextual
information about this patient. Additionally, notes generally contain nuances about
the severity of the symptoms, descriptions of visible symptoms, information about
the general physical and mental status of the patient, and may be used to document
concerns, differential diagnoses, and other thoughts, ideas or observations.

19

 Table 2: Example of clinical notes documented according to the SOEP method.
(Translated by the author.)

SOEP element Clinical notes

 Subjective

“The patient’s symptoms show roughly twice a week, on the nights his
wife goes out to her hobby clubs. Patient then starts thinking about all
kinds of things that could happen, such as a heart attack, when she is not
around. The walls start closing in on him, he feels pressure on his chest
and starts sweating.”

 Objective

“Seems like a respectful relationship to me. Patient wants his wife to
enjoy her nights out but has much trouble being alone. Wife continues to
go out despite of that. Patient does not undertake much activities since his
retirement.”

 Evaluation “Anxiety disorder. Hypochondriac?”

 Plan of action
“I will collect some psycho-educational materials and hand them to the
patient the next time.”

3.2.2 Missing values

Medical records are characterized by missing values and irregular sampling. When
data is absent, we could assume that the information is irrelevant, but we cannot
simply decide whether the data is missing because it is normal or because it is
stable. When a patient has a chronic disease, it would be redundant to report this
constantly. No documentation in this case does not mean that the patient has been
cured, but only that his status has not changed. In other cases, when the patient has
the flu for example, we may assume that the patient recovered and is healthy again if
no further consultation with the doctor was required after the initial visit. Because
these scenarios have much impact on what the ‘default’ values should be for a
patient, we decided not to provide default values to replace missing data.

3.2.3 Illness trajectories

In order to enable detailed evaluation of the results gathered during Phase IV, the
patients were divided into three categories, by operationalizing three illness
trajectories: a) a trajectory that is characterized by slow and prolonged deterioration,
which is mostly associated with frail elderly and dementia patients, 2) a trajectory
characterized by a short period of steady decline and a clear terminal phase, typical
for cancer patients, and 3) a trajectory that is characterized a long period of
functional limitations with intermittent ups and downs, for which death often seems
sudden or unexpected, generally associated with respiratory disease and heart failure
(Murray et al. 2005; Murtagh et al. 2004; Lunney et al. 2003). The differences
between the trajectories are illustrated by Figure 2.

20

Although the existence of different illness trajectories is acknowledged in
literature, clear, agreed upon criteria or definitions do not exist. In this research,
patients are included in an illness trajectory category if at least one of the criteria of
the trajectory applies to the patient:

• Frail elderly trajectory:

◦ patient suffers from dementia or Parkinson’s disease;

◦ patient is 80 years old or older.

• Cancer trajectory:

◦ patient has a type of malignant neoplasma.

• Organ failure trajectory3:

◦ patient suffers from heart failure;

◦ patient suffers from chronic obstructive pulmonary disease (COPD).

We do not determine the illness trajectory based on the cause of death, for two
reasons: 1) in many cases the actual cause of death is not a direct result of a patient’s
most prominent medical condition (e.g. a patient may suffer from cancer, but die of
something unrelated like pneumonia, due to overall health degradation), and

3 The organ failure trajectory may include many more diseases such as pulmonary heart disease,
infection of the circulatory system, rheumatic fever, ischaemic heart disease, acute myocardial
infarction, complicated hypertension, transient cerebral ischaemia, stroke, cerebrovascular disease,
pulmonary embolism, and haemorrhoids. We decided however only to include heart failure and
COPD in the organ failure trajectory, because 1) it increases the homogeneity of the group: the other
illnesses are heterogeneous in terms of severity and impact on daily life, 2) heart failure and COPD
cover a substantial part of the corpus, and 3) they lead to a less sudden death than the other conditions
do, but do have a substantial impact on daily life. Therefore, ACP is more relevant for these diseases
than for the other conditions.

21

Figure 2: Trajectories of decline typical for the
cancer, organ failure, and frail elderly trajectory.
Figure adapted from Murray et al. (2005).

2) because the actual cause of death is often unknown and therefore not documented.
Alternatively, in order to see how the model’s performance relates to different illness
trajectories, patients are categorized into one or more trajectories based on the
diagnoses they received during the five year period, regardless of the actual cause of
death.

Figure 3 shows the distribution of patients over illness trajectories. More often
than not, patients belong to multiple categories. A total of 146 patients did not fit any
of the categories, and were left uncategorized. The average age for the group of
patients that fall exclusively in the cancer trajectory was 64; 71 for the organ failure
trajectory; and 87 or the frail elderly .

Figure 4 shows the relative cumulative number of patients per age at the moment
of dying, for each illness trajectory and for the total set of patients. Because we aim
to highlight the differences between the illness trajectories, we only included
patients that are characterized by one illness trajectory in this figure. As an artifact of
the categorization criteria, all patients aged 80 or higher are categorized as frail
elderly. Therefore, no patients are added to the cancer and organ failure categories
after the age of 80 in Figure 4. The data show that there is a clear difference between
the different illness categories. Compared to the average, patients with cancer and
organ failure tend to die at a younger age, while patients that fall into the frail
elderly category tend to reach a higher age.

22

Figure 3: Distribution of patients over
illness trajectories.

23

Figure 4: Relative cumulative number of patients per age at
the moment of dying for each illness trajectory and for the
total group of patients.

24

4Phase I
Preprocessing the data4Phase I
Preprocessing the data

4. PHASE I: PREPROCESSING THE DATA

Phase I focuses on processing the corpus in such a way that it can be fed to the LSTM

model. The input of Phase I consists of the raw corpus data. Different processing
steps are applied to each feature category in order to make all features fit a strict
predefined format. The output is a collection of all data per feature category for each
patient. The unstructured data (free text) and the structured data (all other data) are
processed in fundamentally different ways. The main goal of Phase I is to extract
and process data from the corpus. Most of the processing steps during Phase I are
directed towards extracting more useful information and less noise from the
unstructured, textual data.

4.1 Processing structured data

The structured data consists of patient characteristics such as gender and the date of
birth, and medical data which changes through time dynamically, such as diagnostic
codes and prescribed medication. The main goal of processing the structured data
during Phase I is to have all data of the same type fit the same mold. Some medical
codes for example may show more detail than others, which impedes direct
comparison. The medical codes are processed as follows: multiple codes that occur
in one text field are split into separate codes, noise and white space are removed, and
the codes are abstracted from the sub-code level (e.g. A23.4 is generalized to A23).
Medication names are cleared from information regarding the dosage and use. Lab
tests are only included when they resulted in irregular or abnormal values (as
determined by the GP).

4.2 Natural language processing pipeline

The unstructured, textual data is of an entirely different nature than the structured
data, and can therefore not be processed as such. The goal of processing textual data
during Phase I is to normalize the text, and, to a certain extent, map different
variations of a concept to the same word. Due to the nature of language and the high
level of noise, textual data contains many more unique items than the structured
data. The following issues are addressed as part of the natural language processing
pipeline: 1) writing conventions, 2) language productivity, 3) phrases, 4) domain-
specific corpus characteristics, and 5) noise.

Writing conventions in general, but their inconsistent use additionally, impedes
recognizing two instances of a word as such. Examples include inconsistent
application of upper- and lowercase letters sentence-initially, to proper names, to
medication, and to chemical names, among other types of words. Furthermore, the

26

comparison of words is inhibited by the inconsistent use of diacritics, and the use of
non-lexical tokens, such as numbers, symbols, lab values, and dates.

Additionally, Dutch as a natural language is inherently productive. Dutch is
characterized by inflectional, derivational and compounding processes, which
obstruct the recognition of similar semantic entities. Both items within the following
pairs refer to the same concept to a smaller or larger degree, but the members of
each pair are not recognized as the same concept at all, without further processing:
slaap ‘sleep’ (SG) - slapen ‘sleep’ (PL), cva (abbreviation of cerebro vasculair
accident, ‘stroke’) - cva’tje (diminutive form), and kanker ‘cancer’ - longkanker
‘lung cancer’ for example.

Similar to compound words, the corpus contains multi-word units that are static
phrases which refer to one concept, although the items may (infrequently) be used
apart from each other as well. Such multi-word phrases lose some of their meaning
when the items are analyzed separately. This is the case for many diagnostic terms,
such as diabetes mellitus, decompensatio cordis, and reumatoïde artritis. Many of
these terms rely heavily on loan words, and therefore do not adhere to the Dutch
compounding rules. In some cases, words should be written as compound words, but
because abbreviations tend to include the initials of all important elements of the
phrase regardless of word boundaries, the elements tend to be split as a result when
the full phrase is written as well. Vesiculair ademgeruis ‘vesicular breathing sound’,
frequently abbreviated as vag, is often written as vesiculair adem geruis for
example, thereby incorrectly splitting the elements of the compound ademgeruis.In
many cases the abbreviated form is used more frequently than the original phrase,
which may lead to further suppression of the original phrase structure.

Furthermore, natural language is characterized by synonymy and polysemy in
general, but domain-specific terminology increases the problem of recognizing
similar semantic concepts even further. On the one hand, the use of jargon alongside
standard-language alternatives, and specifically the use of many Latin and Greek
(derived) words alongside Dutch alternatives, greatly increase the amount of
synonymy. Examples include ruimte-innemend proces - kanker (Dutch jargon versus
the standard-language term for ‘cancer’), letsel - laesie - trauma (Dutch, Latin and
Greek words for ‘injury’), and bot - been - os (two Dutch words and a Greek word
for ‘bone’). On the other hand, many domain-specific abbreviations overlap fully
with other corpus words, thereby increasing polysemy. Examples include ca for
carcinoom ‘carcinoma’, which is used to abbreviate circa as well, and mis which is
used to abbreviate misschien ‘maybe’, but which carries the meaning of ‘incorrect’
as well.

27

Finally, the noisy character of the data hinders the detection of semantically
similar words. Because many of the texts are not written with the intention to be
read by others, the writing conventions are often ignored or incorrectly applied, and
many typographical errors, frequently used medical abbreviations, non-standardized
and inconsistently used doctor-specific abbreviations, and other kinds of
idiosyncrasies are used in the texts. Table 3 provides examples of such kinds of
noise.

Table 3: Examples of noisy data.

Type of noise Example Correct form / error description

Ignored writing
conventions

patient patiënt

alzheimer Alzheimer (proper name used for disease)

type ii type II

Incorrectly applied
writing conventions

U, Uw u, uw (‘you’, ‘your’)

jeuk-branderig-pijnlijk gevoel enumeration should be linked with ‘,’

slagen/minuut slagen per minuut (‘beats per minute’)

Typographical
errors

op gelucht should be concatenated

konclusie homophonic confusion

knaker letter shift (should be kanker)

(semi-)standardized
medical
abbreviations

x-thorax x instead of x-ray

1xdd éénmaal daags (‘once a day’)

re / r, li / l rechts ‘right’, links ‘left’

Doctor-specific
abbreviations

ws, wrs, wsch, wrsch, waarsch waarschijnlijk (‘probably’)

zh, zhs, zkh, zkhs ziekenhuis (‘hospital’)

pat, pte, pa, pt, p patiënt(e) (‘(fe)male patient’)

Other
idiosyncrasies

re>li ‘right side (re) more than left (li) side’

o/rug, b/rug o/ indicates onder (‘lower’), b/ boven (‘upper’)

separates subjective notes from observations

The texts are processed by a natural language processing pipeline 1) to improve
the quality of the texts by removing and correcting noise, 2) to improve the
recognition of semantically similar words, and 3) to remove redundant information
such as headers and footers from letters. As Figure 5 shows, the pipeline consists of
processes to tokenize and normalize the text, remove headers and footers from
letters, rephrase certain textual units, provide part-of-speech tags, and correct
spelling errors. Each of the steps of the NLP pipeline after data extraction is
discussed in more detail below.

28

4.2.1 Tokenization

Tokenization transforms the strings of text into a list of words for each document, by
replacing white space and punctuation with word boundaries. Hyphens that occur
within words (i.e., that are directly preceded and followed by letters) to create
compound words are an exception, and are not replaced by word boundaries.

4.2.2 Normalization

Normalization is applied to neutralize differences between variants of the same
word, e.g. ‘patient’, ‘Patient’, and ‘patiënt’ (patient). All tokens are lowercased, and
diacritical symbols are removed (‘ë’→‘e’).

29

Figure 5: Data extraction and preprocessing pipeline.
Processing steps ‘rephrasal’ and ‘PoS-tagging’ are passed
twice. During the first pass, the arrows labeled (1) are
indicative, during the second pass, the arrows labeled (2)
are indicative.

4.2.3 Rephrasal

Rephrasal is applied to 1) enable the recognition of synonyms, 2) map abbreviations
to the corresponding word(s), 3) split certain compound words, and 4) avoid the
separation of certain multi-word phrases. We replaced single- or multi-word units by
other single- or multi-word units with the aid of a hand-made translation dictionary,
that contains roughly 1,700 rephrased pairs.

The rephrasings may be one-to-one mappings for replacing synonyms (e.g.
fractuur and breuk both refer to ‘fracture’, therefore fractuur → breuk), one-to-many
mappings to partition certain compound words (e.g. baarmoederhalsoperatie
represents ‘cervix’ + ‘surgery’, therefore baarmoederhalsoperatie → baarmoeder-
hals + operatie), many-to-one mappings to retain fixed phrases (e.g. diabetes
mellitus → diabetes_mellitus), and many-to-many mappings to perform several of
the aforementioned steps simultaneously (ruimte innemend proces hersenen refers to
the concept of ‘cancer’, and hersenen ‘brain’ is synonymous to brein, therefore
ruimte innemend proces hersenen → brein carcinoom).

Whether or not compound words refer to one or more mental concepts for native
speakers of Dutch, is complex to determine, especially automatically. Therefore, we
hand-picked a set of frequent, domain-specific words instead of trying to determine
automatically which compounds should be split. We picked the items from a list of
the 5,000 most frequent unigrams, and 1,000 most frequent bi- and trigrams found in
the development data.

Examples include ooginfectie ‘eye infection’, which is split into oog + infectie
and seniorenservice ‘senior service’, which is split into senioren + service, while
other compound words such as netvlies ‘retina’ (which consists of net + vlies) and
ziekenhuis ‘hospital’ (which consists of zieken + huis) were left intact. Furthermore,
we included words in the rephrasing dictionary if they were common non-standard
words or had a notable amount of close semantic neighbors. The non-standardized
abbreviations p and pat are frequently used to refer to patiënt ‘patient’ for example,
and the words ca, carc, carcinoom, gezwel, kanker, maligniteit, metastase,
neoplasma, tumor, and ruimte innemend proces — among many other words — all
refer to the concept of ‘cancer’. Because of the productive nature of language and
the noisy character of the corpus, completeness of the rephrasal dictionary is not
claimed.

To illustrate the effect of rephrasing, four examples are given below. The
hypothetical example below shows text fragments for four patients, all suffering
from cancer. The cancer-related words are underlined.

30

Patient A: ... om de lymfekliertumor te behandelen....
‘... to treat the lymph node tumor...’

Patient B: ... dat er een r.i.p. li eierstok is vastgesteld...
‘... that an expansion process in the left ovary is determined...’

Patient C: ... is gebleken dat de ovariummetastasen...
‘... has turned out that the metastases in the ovary...’

Patient D: ... overlegd over de gevolgen van het eierstokca...
‘... discussed the consequences of the ovary carcinoma...’

All patients have a form of cancer, although in all cases different words are used to
describe the disease. Table 4 shows what the feature vector for these patients would
look like, if no further processing was applied: the vectors for the four patients do
not overlap at all, even though they all suffer from cancer.

Table 4: Feature vector for different hypothetical patients.

lymfekliertumor r.i.p. eierstok ovariummetastasen eierstokca

Patient A ✓

Patient B ✓ ✓

Patient C ✓

Patient D ✓
The table only shows the features that are relevant for the corresponding examples.

Table 5 shows examples of different types of rephrasings that concern the concept
of cancer. Example 2 in Table 5 shows the mapping of an abbreviation to a single-
word phrase. Examples 1, 3 and 4 show the mapping of compound words into multi-
word phrases. Such rephrasing is done because we interpret lymfekliertumor (‘lymph
node tumor’) and ovariummetastasen (‘ovary metastases’) as two different types of
the same disease (i.e. cancer), rather than two entirely different diseases. Separating
compound words into separate parts enables storing the parts individually.

In examples 1 and 3 in Table 5, the compound words are split into two parts, but
the result is not simply a partitioning of the compound. One or more parts are
substituted by different words, in order to solve synonymy: ovarium is the Latin
equivalent of the Dutch eierstok (‘ovary’), and metastasen (‘metastases’) is one of
many words that refer to the concept of cancer. If ovarium and eierstok would not be
mapped to the same word, Patients B, C and D would be considered to have
different diseases, as is illustrated by Table 4. Table 6 shows the result of the rephra-
sing procedure: in this representation, all patients have cancer, but not the same type.

31

Table 5: Examples of substitutions.

Mapping

1) lymfekliertumor → lymfeklier carcinoom

2) r.i.p. → carcinoom

3) ovariummetastasen → eierstok carcinoom

4) eierstokca → eierstok carcinoom

Table 6: Feature vector for different hypothetical patients
after the texts are rephrased.

lymfeklier eierstok kanker

Patient A ✓ ✓

Patient B ✓ ✓

Patient C ✓ ✓

Patient D ✓ ✓
The table only shows the features that are relevant for the corresponding examples.

The rephrasal dictionary was created on the basis of the development data, and
applied to both the development data and validation data. After the following
spelling correction step (described in Section 4.2.5) the rephrasal dictionary was
applied once more, to ensure the rephrasing of words that were missed initially due
to spelling errors.

4.2.4 Part of speech tagging

Part of speech (PoS) tagging is applied to 1) enable word-sense disambiguation, 2)
aid in spelling correction (see next section), and 3) enable feature selection in Phase
II. Using Frog (version 4.2.2, Van den Bosch et al. 2007), the text is automatically
provided with PoS tags. The tokens are substituted by ‘[token]:[PoS tag]’ pairs, for
example: naald (‘needle’) → naald:N (‘needle:N’), in which the N refers to the PoS
tag ‘noun’. PoS tags help to a certain extent to discriminate between the different
uses of words. Examples include polysemous words: slaap, which can refer to ‘the
side of the head’ and to ‘sleeping’, which would be tagged as ‘slaap:N’ (noun) and
‘slaap:WW’ (verb) respectively, based on the linguistic context in which they appear,
thereby enabling disambiguation. Abbreviations that correspond to more regular
items, such as ca which is used to abbreviate carcinoom and circa, would be tagged
‘ca:N’ (noun) and ‘ca:VZ’ (adverb), respectively.

32

4.2.5 Spelling correction

Spelling correction is applied to normalize noisy data. Regular spelling correctors
are sub-optimal for the EMR corpus. Because the corpus contains a large amount of
domain-specific words and abbreviations, comparing the corpus words with a list of
standard-Dutch words to detect non-words, leads to many false positives, and thus
many incorrect substitutions. The noisy character of the textual data oftentimes leads
to situations in which it is unclear whether an uncommon word is an actual error,
e.g. *vag instead of vaag (‘vague’), a (non-standard) abbreviation with or without
punctuation marks, e.g. vag instead of vesiculair ademgeruis, or simply jargon, e.g.
decompensatio.

Moreover, it is possible that a word exists both in the medical domain as well as
in general, but refers to different concepts depending on the domain, which may lead
to different usage patterns. Examples include the use of positief (‘positive’) in
everyday life as a synonym for goed (‘good’), while in the medical domain it means
that the phenomenon a patient is tested for, is indeed present. Another example is the
word mamma, which in everyday use refers to ‘mother’, but in the medical context
refers to ‘breast’. The abbreviation r.i.p. is generally used for ‘rest in peace’, while in
the medical domain it is used to abbreviate ruimteinnemend proces, which refers to
cancer — ‘rest in peace’ will be intended way less frequently (if at all) in the
medical domain than ‘cancer’, and vice versa in general language. Such differences
in meaning lead to different semantic and syntactic embeddings. It is therefore

33

Figure 6: Decision tree of the spelling corrector.

suboptimal to use general language as a foundation for a spelling checker that is
intended to be applied to a specific domain.

To circumvent these issues, a spelling corrector was created specifically for this
corpus. The spelling corrector follows a decision tree to detect possible spelling
errors, as illustrated by Figure 6. The spelling corrector determines for each token in
its specific syntactic context whether or not the token contains a spelling error. A
dynamically growing list of spelling corrections that the spelling corrector has found
by analyzing previous text, is consulted first. Each time the spelling corrector finds a
new error, it is appended to this correction dictionary.

For each word that is not known to be incorrect (i.e., is not an item in the
correction dictionary), the spelling corrector first decides whether or not the word
contains an error. Based on the frequency of the word, it is decided whether or not a
correction should be applied. Because the EMR corpus is relatively small, the
frequency cut-off boundary used to identify possible errors within the EMR was 5.
This means that a word is suspected to be an error if it occurs less than five times in
the EMR corpus. By using a low frequency however, many false positives (infrequent
but correct words that are often domain-specific, such as rare diseases) and false
negatives (frequent spelling errors) are collected by the frequency filter, or slip
through it, respectively. Therefore, the spelling corrector compares the tokens in the
EMR corpus with background corpus OpenTaal first. The frequency boundary used
for OpenTaal is 10. If a word occurs frequently enough in OpenTaal, it is not
identified as a possible error. If a word is infrequent in OpenTaal, but frequent in the
EMR corpus, it is assumed to be spelled correctly as well. If a word is infrequent in
both corpora however, it is considered a possible error, and further processing steps
apply.

The frequencies for the cut-off boundaries were determined by comparing the
result of three different frequency boundaries: 5, 10 and 15. We determined the best
boundaries for the EMR corpus and the OpenTaal corpus separately, because the
corpora differ in size and domain. Higher boundaries than 5 for the EMR corpus led
to detection errors that were actually false positives, such as correct but infrequent
compound words (e.g. littekenpijn, ‘scar pain’) and names of relatively rare diseases
and substances, among other things (e.g. the antigene ‘Galactomannan’). A cut-off
boundary of 10 was chosen for the OpenTaal corpus, because similar to the EMR

corpus a higher boundary led to too many false positives, and a lower boundary led
to many false negatives, such as many non-Dutch words (e.g. energy and obligation)
and frequent spelling errors (e.g. *produkt, incorrect variant of product), which
resulted in unwanted corrections.

34

When a spelling error is assumed, a plausible correction candidate is attempted to
be found within the EMR corpus. A correction candidate is said to be plausible, if the
relative Levenshtein edit-distance between the possible error and the correction
candidate is less than 0.2, and if the correction candidate is more frequent than the
frequency boundary. We used the relative distance between two words, because the
absolute difference can either be considered as a large or as a small distance, which
depends on the length of the incorrect word. When a short word like meta’s (non-
standardized abbreviation of metastasen, ‘metastases’) is corrected to metaal
(‘metal’) for example, the mutation is relatively large. When a longer word such as
*hersenvliesontstekign is corrected to hersenvliesontsteking (‘meningitis’) however,
the correction is more likely to be good because it is relatively small, and due to the
fact that longer words have less near neighbors.

Based on the findings of Walasek (2016), who explored the effect of different edit
distance thresholds for spelling correction in the medical domain, three values were
tested to determine the optimal maximum edit-distance: 0.15, 0.175, and 0.2. In our
case, the number of good corrections increased faster than the number of wrong
corrections with an increasing maximum edit distance, therefore the maximum edit-
distance of 0.2 yielded the best results. Tables 7 and 8 provide examples of correct
and incorrect substitutions that resulted from using this value. Table 7 gives an
overview of different types of corrections and explains the type of error that is
corrected. Table 8 gives an overview of incorrect substitutions, and explains why the
substitution is incorrect. We considered compound words that were split into
separate correctly spelled parts as correct substitutions — these type of substitutions
fit the spirit of splitting multi-word units into subparts, which is done during the
rephrasing procedure as well to increase the recognition of multiple concepts from
one word.

Table 7: Examples of correct substitutions and characterizations of the errors.

Correct substitutions Type of error that is corrected

*contgrole → controle letter insertion

*metastsen → metastasen letter deletion

*behnadeling → behandeling letter shift

*gekraagd → gevraagd letter substitution

*onvermogenom → onvermogen om incorrect concatenation

lymfeklierextirpatie → lymfeklier extirpatie infrequent compound word

35

Table 8: Examples of incorrect substitutions and explanations for correction errors.

Incorrect substitutions Explanation

snijwondje → snijwond je snijwondje is correct but infrequent,
better split would be snij wondje

*bloedgluc → bloed *gluc gluc is an abbreviation, this problem is fixed
by 2nd round of rephrasing however

*lipen → lopen good substitution in some contexts, but
should be liepen or lippen in other cases

*wgschl → *wrschl substitution is a frequent non-standardized
variant of waarschijnlijk

*weeiig → wee *iig should be substituted by weeïg, but this
word is absent from the corpus

kind(eren) → kinderen brackets intended for optional word features
are an unforeseen case.

The presumed error is substituted with the correction candidate, if the candidate
meets the following criteria: 1) the relative edit-distance is maximally 0.2, 2) the
correction candidate is more frequent than the frequency boundary, and 3) the
correction candidate appears at least once in the same syntactic context as the
suspected error. The context is defined as the two PoS tags of the words directly
preceding and following the word. Some words appear only in a very limited
number of contexts, while others are more flexible. Taking the context into
consideration decreases the chance of incorrect substitutions. In case of *bloedind
for example, which is used in a noun position, we may have two equally plausible
correction candidates based on the edit-distance, that are both more frequent than the
frequency boundary: the noun bloeding (‘bleeding’) and the adjective bloedend
(‘bleeding’). It is hypothesized that the substitution that can occur within the same
syntactic context, is more plausible than the substitution that is not; therefore
*bloedind is replaced by bloeding instead of bloedend.

If no plausible substitution is available, the spelling corrector checks whether the
word is an incorrect concatenation of two existing words. The spelling corrector
walks through the word letter by letter, splitting the word into two parts at each
point, but only if the two parts both have a minimal length of two letters. Splits are
considered plausible if both parts of the word occur in the corpus more frequently
than the frequency boundary. If more than one plausible split is found, the optimal
split is defined as the split for which the least frequent part has the highest
frequency, compared to the least frequent part of other plausible splits.

36

If no good substitution can be found by either of the two methods, the word is left
unchanged. If during the process a plausible spelling correction is found, the
correction is added to the spelling correction dictionary. This way, when the spelling
error is encountered again, the spelling corrector can simply retrieve the correct
substitution from the correction dictionary and apply it directly.

After all words are checked and corrected if necessary, the rephrasing procedure
is applied once more, to rephrase words and phrases that were skipped by the initial
rephrasing procedure due to spelling errors. Additionally, the text is PoS tagged once
more by Frog to enhance the quality of the assigned PoS labels, for the same reason:
due to spelling errors, the wrong part of speech tags may have been assigned during
the initial round of PoS tagging.

4.2.6 Lemmatization

Lemmatization is applied to all words in the corpus to neutralize the effect of
inflection and derivation. Inflection and derivation hinder the recognition of
conceptually similar words that are spelled slightly differently. Replacing all words
by lemmas, increases the recognition of semantically similar words.

4.2.7 Postprocessing

Postprocessing is finally applied to remove non-words and redundant information,
such as headers and footers of letters. This leads among other things to the exclusion
of dates, phone numbers, urls, and e-mail addresses. Everything up to and including
the actual opening of the letter, and everything from the closing of the letter onward
is removed, because often medically irrelevant information such as contact
information and the name of the health care facility are mentioned in the header and
footer of the letter. Although we did not want to use this data as input to the model
during Phases III and IV, we did not exclude it from the start of Phase I because the
spelling corrector relies on word frequency counts. Excluding it from the start of
Phase I would have caused the spelling corrector to make unnecessary and incorrect
substitutions.

37

38

 7Phase IV
Validation5Phase II

Feature reduction

5. PHASE II: FEATURE REDUCTION

Phase II is dedicated to the preparation of the feature selection procedure which is
executed during Phase III. During this phase, several approaches for feature
reduction were applied to decrease the size of the feature categories. The definitive
feature selection was executed based on experiments with different feature sets in
Phase III — during Phase II the feature sets are merely prepared. This section
discusses feature reduction methods for the structured data and unstructured data,
respectively. Age and gender are not discussed in this section, because we did not
reduce these feature categories in any way.

After merging similar feature categories, such as the categories of letters and
notes, nine general features categories remained. Each of these feature categories
however contains many unique features. While the algorithm needs no explicit
instruction to learn which features are important for making correct predictions,
introducing too much noise affects the learning process negatively, by requiring both
more data to learn from and a higher model complexity.

The LSTM algorithm can only learn which (interactions between) values are
relevant if 1) the values occur frequently enough overall, and 2) the values occur
frequently enough in significant contexts. Influenza for example is frequently
diagnosed, but is usually not an important indicator for life expectancy. In
combination with old age and bronchitis however, the disease may be fatal. If the
diagnosis influenza is frequent (thereby satisfying the first criterion), but
combinations of influenza and other feature values that are indicative together are
not frequent (thereby not satisfying the second criterion), the model is unlikely to
learn the importance of influenza for predicting life expectancy. Therefore, the more
values it needs to learn, the more data is needed to train the algorithm.

We define a good feature set as being maximally descriptive while minimal in
size, and containing features that are relatively frequent. Including infrequent
features in the feature set has drawbacks: as discussed, the algorithm needs much
data to learn the predictive value of the feature, and even if it does, this knowledge is
only applicable incidentally, while the model complexity is increased permanently.
Phase II aims to reduce the size of the feature set while retaining as much good
predictors as possible. Table 9 shows the number of features per feature category if
no selection is made.

Using a total of almost 60,000 features would require a very complex, high-
dimensional model and a lot of data to learn from. The development data consists of
only 1107 patients, which is not a lot of data, considering the size of the feature set
and the complexity of the task.

40

Table 9: Number of unique features per category.

Feature category # Features

Medical history 136

Contact type 81

Diagnosis 572

ICD-10 857

Reason for encounter 862

Intervention 380

Medication 1,490

Lab tests 269

Keywords 53,423

Total for structured data 4,647

Total for unstructured data 53,423

Total amount of features 58,070

In order to relax the high demands in terms of data quantity and model

complexity, methods for feature reduction were implemented to remove redundant,
irrelevant and infrequent features. Depending on the type of feature, different
methods were used. In the following sections, the techniques for processing
structured and unstructured data are described, respectively.

5.1 Feature selection for structured data

5.1.1 Frequency-based feature reduction

As Table 9 shows, most feature categories are represented by many features in the
EMR corpus. Not all values are equally frequent, however. Infrequent values are
certainly not automatically irrelevant values: uncommon diseases for example may
be very good predictors for life expectancy. However, because they are infrequent,
including them in the model is expected to offer little to no increase in accuracy — it
may even decrease the model’s performance. Because such features are uncommon
in the training data, the model is likely to be unable to learn the relevance of such
features properly. Moreover, because these features occur very infrequently in
reality, the chance of encountering a new patient with the disease is small. Therefore,
even if the model assigned the right value to the feature and predicts life expectancy
well when a patient with that feature is encountered, the chances of encountering
such a patient are very small in the first place. Excluding infrequent features is
therefore expected to decrease the model complexity, without decreasing its

41

accuracy. Three frequency-based feature reduction methods were applied to the
structured data in Phase II, and tested during Phase III:

• absolute frequency cut-off boundary: only include values with an absolute

frequency of at least 100;
• relative frequency cut-off boundary: only include values that make up at

least 1% of data for a feature category;
• cumulative relative frequency cut-off boundary: sort values by their relative

frequency (high to low), and only include the top n values that together
cover at least 75% of the data for a feature category.

The amount of feature reduction for each reduction method is shown in Table 10.

Table 10: Remaining number of features per category after the application of
different frequency-based feature reduction methods.

Feature Total Abs. freq. Rel. freq. Rel. cum. freq.

Medical history 136 0 24 38

Contact type 81 22 12 4

Diagnosis 572 218 21 83

ICD-10 857 231 18 103

Reason for encounter 862 179 17 56

Intervention 380 115 28 24

Medication 1,490 212 20 141

Lab tests 269 47 24 23

Total 4,647 1,025 164 473

Corpus coverage 100% 81% 60% 75%

5.1.2 Feature reduction for ICPC and ICD-10 features

In addition to the frequency-based reduction methods, one additional reduction
method was tested for the ICPC and ICD-10 features: aggregation of codes by using
different levels of detail. The ICD-10 and ICPC codes have a similar format: a letter
followed by two digits, a decimal separator, and again one or two digits, e.g.
‘D84.02’. The letter indicates which system has been affected (e.g. ‘D’ refers to the
digestive system), in this research referred to as the main category level. The two
digits before the decimal separator indicate the illness or condition (e.g. ‘D84’ refers
to an esophageal condition).

A combination of a letter and two digits is referred to as the code level, and is the
level which is used as the default level throughout this research. The digits following

42

the decimal separator specify the details (e.g. ‘D84.02’ refers to ‘esophageal reflux
without esophagitis’). This level, the total of a letter and two digit pairs, is referred
to as the sub-code level. This level is not used in the research because the codes
reported in the EMRs rarely show this level of detail. Moreover, using this level of
detail would only lead to more unique feature values instead of less.

In case of the ICPC codes, two additional levels are applicable. The ICPC cannot
only be used for encoding the diagnostic components of a consult (in contrast to
ICD-10 codes), but also for reporting the screening, complaint, treatment, test result,
administrative, and referral components. For this reason, the ICPC system is used to
encode different types of feature categories: it covers the medical history, reason for
encounter, diagnosis, and intervention. We refer to this partitioning into components
as the component level. Additionally, we refer to the combination of the main code
and the component as the subcategory level.

ICD-10 codes cannot be categorized into such component classes. For the ICD-10
codes a subcategory level is also used, but it is not based on a combination of main
category and component. The ICD-10 groups similar codes into thematically
coherent sets, leading to compressed lists of codes. This list can be interpreted best
as a list of primary disease patterns, such as ‘metabolism-related disease’ or
‘psychological conditions’. When we use the subcategory level for the ICD-10
codes, we refer to these primary disease patterns.

Table 11 shows the reduction that results from aggregation over different levels,
for each frequency cut-off level. Features were reduced by using codes with higher
levels of abstraction. To see which level provides the best results, each level was
tested during Phase III.

Table 11: Amount of feature reduction as a result of different code levels and different
frequency cut-off levels, compared to the default feature set (code level and no cut-
off). The retained columns show the size of the feature set, the reduced columns show
the amount of reduction.

Code level Subcat. level Main cat. level Component level

retained reduced retained reduced retained reduced retained reduced

No cut-off 4,647 0% 2,145 54% 1,928 59% 1,882 60%

Abs. freq. 1,024 88% 467 90% 351 92% 314 93%

Rel. freq. 164 96% 158 97% 131 97% 88 98%

Rel. cum. freq. 472 90% 220 95% 200 96% 177 96%

Abbreviations: cat. = category, abs. = absolute, rel. = relative, cum. = cumulative, freq. = frequency.

43

5.2 Keyword selection

Compared to the structural data, there are more than ten times as much keyword
features than all other features taken together, without further processing. Certain
characteristics of textual data call for a different feature selection approach for
textual data than the for the structured data. The meaning of a medical code is not
variable and different codes cannot be used to refer to the same phenomenon, while
the exact meaning of a word often depends on the context in which it is used,
especially in case of polysemous words. Vice versa, many words can be used to
describe the same concept, due to synonymy.

Three different approaches for keyword selection were prepared. The first method
is a frequency-based ranking approach, which represents the textual data with a
naive bag-of-words model. While it is true that words which are important in a
document tend to occur relatively frequently in a document, plain frequency counts
of unique words throughout the corpus tend to be bad indicators for the importance
of words. Both the most frequent words (i.e. function words) and the most
infrequent words (usually noise such as typographical errors) tend to be the least
informative words. The frequency-based ranking approach, for which all unique
words were ranked by their absolute corpus frequency, therefore functioned
implicitly as a baseline to compare more advanced textual representations to.

Two additional approaches for keyword selection were prepared: 1) entropy-
based ranking and 2) a vector space representation using word embeddings, created
with WORD2VEC. The frequency and the entropy methods both deliver a list of
keywords in decreasing quality, so when the top n of the list is taken during Phase
III, it always includes the best keywords in terms of the ranking criteria. The entropy
ranking and the WORD2VEC representation rely on distributional properties of the
textual data, but in different ways, which is discussed in more detail in the following
sections. Part of speech filtering was applied to all three selection methods: all parts
of speech were used to determine the distributional properties of the words, but
function words were removed from the three collections of keyword features after
ranking the keywords.

5.2.1 Entropy-based ranking

The entropy-based ranking method aims to compare the actual keyword distributions
throughout the corpus to a set of distributions which we regard as ‘optimally
predictive’. We consider a distribution to be predictive if the word frequency
increases or decreases through time. Figure 7 illustrates examples of predictive
words, with different types of slopes. Although the frequency of the words in

44

Figure 7 changes at a different rate over time, we consider these distributions all to
be predictive.

The Kullback-Leibler divergence is an entropy-based measure of similarity used
to compare two probability distributions. In this research, we use the Kullback-
Leibler divergence to compare the distribution of each word in the corpus to
distributions which we regard to be optimal for predicting life expectancy. Which
distribution we consider to be optimal, depends on the individual word distribution.
Figure 7 shows three predictive words, but if we would compare them all to the
same artificial ‘optimal’ distribution — a type of exponentially increasing or
decreasing function — words with a relatively linear progression (such as
streefdoelen) or a relatively steap increase or decrease in frequency (such as
morfine) would be considered as a bad fit to such a fixed exponential function.

Therefore, we determined an optimal distribution for each individual word based
on its actual corpus distribution. We use the relative corpus frequency to remove the
effect of the total amount of textual data from the equation, because more texts tend
to be produced as the end of life approaches. Using absolute frequencies would
result in frequency increases through time for most words, complicating the search
for words associated with the end of life.

The optimal distribution for a word is a fitted curve C. As Formula 1 shows, the
function fits curve C by determining 1) amplitude a, indicating the rate of change, 2)
background b, indicating the overall use of the word in the corpus regardless of time,
and 3) time scale c, indicating the period from which the steady background
frequency starts to change as a result from the approaching end of life.

Formula 1: Cword = a × -bx + c

45

Figure 7: Three distributions of word frequencies through time.

The fitted curve for a word functions as its optimal distribution, which can be
compared to the actual distribution with the Kullback-Leibler divergence. The
resulting entropy reflects to which degree the actual distribution adheres to the
optimal distribution, or alternatively phrased: whether the frequency in- or decrease
is relatively smooth and predictable, as for morfine, or whether it is relatively
turbulent and unpredictable, as is the case for streefdoelen. Figure 8 illustrates that
morfine adheres closely to its optimal distribution, while streefdoelen does not, due
to the large amount of fluctuations. The distribution of each individual keyword is
compared to its corresponding individual exponential, to provide an entropy score
for each word. Words are regarded to be good predictors if their distribution
throughout the corpus is characterized by a large amplitude a. Words however may
also be good indicators if a is relatively small, while their actual distribution
throughout the corpus adheres to the optimal curve tightly, without much
fluctuations. Because the distribution of morfine fits the optimal curve better than
streefdoelen fits its corresponding optimal curve, the entropy score for morfine is
lower than for streefdoelen.

Figure 9 illustrates that a small part of the words occurs frequently, while the
largest part of the words occurs infrequently (which is to be expected, according to
Zipf’s law). Furthermore, many words have a relatively low entropy, while some
words have a very high entropy. The most interesting words in the context of this
research, are the words that reside in the upper-left quadrant of the graph, because
they are both highly frequent and have a low entropy. Therefore, prior to ranking the
words by their entropy score, a frequency cut-off and an entropy cut-off were
applied, based on the data shown in Figure 9: words that occur in less than 200
patient records, words with an entropy score higher than 0.5, and words with a part
of speech tag other than noun, adjective or verb are removed. The resulting words
are ranked by increasing entropy.

46

Figure 8: Optimal curve fitting for each individual word.

To give an indication of the results, the list below contains the top 50 of most
informative words, according to this ranking (N, V, and A refer to noun, verb and
adjective, respectively).

The list contains roughly equal amounts of nouns, verbs and adjectives. Most of
the nouns are clinically themed (e.g. hypertensie ‘hypertension’, ademgeruis
‘breathing sound’), and a category of nouns referring to time spans can be
distinguished additionally (e.g. dag ‘day’, week, jaar, ‘year’). None of the verbs are
obviously related to a clinical setting. We expected to find words along the lines of
‘to bleed’, ‘to suffer’ or ‘to vomit’, for example, but instead the list includes mainly
general verbs and some verbs that are associated with functional abilities (e.g. zien
‘to see’, lopen ‘to walk’). The set of adjectives includes evaluation-related words
(e.g. goed ‘good’, normaal ‘normal’), orientation-related words (e.g. links ‘left’,
rechts ‘right’), and words that indicate a degree of certainty (e.g. mogelijk ‘possible’,
waarschijnlijk ‘probable’), among others.

47

Figure 9: Distribution of words over the dimensions of entropy and
corpus frequency (in terms of the number of EMRs in which the word
is used).

1. patiënt (N), ‘patient’ 26. hart (N), ‘heart’

2. goed (A), ‘good’ 27. been (N), ‘leg’

3. hebben (V), ‘to have’ 28. doen (V), ‘to do’

4. onderzoek (N), ‘research’ 29. bloeddruk (N), ‘blood pressure’

5. rechts (A), ‘right’ 30. lopen (V), ‘to walk’

6. zien (V), ‘to see’ 31. normaal (A), ‘normal’

7. klacht (N), ‘complaint’ 32. dag (N), ‘day’

8. worden (V), ‘to become’ 33. onderkant (N), ‘bottom’

9. anamnese (N), ‘anamnesis’ 34. ademgeruis (N), ‘breathing sound’

10. medicatie (N), ‘medication’ 35. krijgen (V), ‘to get’

11. zullen (V), ‘to shall’ 36. mogelijk (A), ‘possible’

12. gaan (V), ‘to go’ 37. last (N), ‘bother’

13. kunnen (V), ‘to be able’ 38. afwijking (N), ‘deviation’

14. conclusie (N), ‘conclusion’ 39. week (N), ‘week’

15. ver (A), ‘far’ 40. waarschijnlijk (A), ‘probable’

16. ziekenhuis (N), ‘hospital’ 41. blijven (V), ‘to stay’

17. controle (N), ‘check-up’ 42. diagnose (N), ‘diagnosis’

18. laat (A), ‘late’ 43. relateren (V), ‘to relate’

19. gebruiken (V), ‘to use’ 44. jaar (N), ‘year’

20. komen (V), ‘to come’ 45. moeten (V), ‘to be obliged’

21. fysiek (A), ‘physical’ 46. overleg (N), ‘deliberation’

22. links (A), ‘left’ 47. maken (V), ‘to make’

23. volgen (V), ‘to follow’ 48. hypertensie (N), ‘hypertension’

24. verband (N), ‘bandage’ 49. borst (N), ‘chest’

25. pijn (N), ‘pain’ 50. polikliniek (N), ‘outpatient clinic’

5.2.2 Vector space representation using word embeddings

Using textual data generally results in very high-dimensional, but, at the same time,
very sparse feature vectors. While the frequency-based and entropy-based ranking
methods aim reduce the amount of data by delivering optimal subsets of words for
any top n, these methods inevitably lead to the loss of potentially relevant
information. Moreover, when applied to the texts in the EMR corpus, the feature
vectors still only match the text documents sparsely, due to the short lengths of the
documents and the large amount of unique words. Although it depends on the size of

48

the text and the number of words that are included in the vector, the chance that
words which occur in a given text are also selected as features, is small.

An alternative approach, which aims to address the issues of information loss and
sparseness, makes use of word embeddings. This method employs WORD2VEC

(Mikolov et al. 2013, Google’s implementation, version 0.9.1, available via
code.google.com) to create a vector space model, in order to reduce the
dimensionality of the data without excluding potentially important indicators. In a
vector space model, each word is represented as a point in a multidimensional vector
space by a multidimensional vector, which is based on the word’s distributional
properties. All words are represented by the same n dimensions, but the exact
position in the vector space is unique to each word.

The distance between words in the vector space is meaningful: words that reside
in each others proximity (i.e., words with similar vectors), are semantically similar
and tend to co-occur with each other, or occur in similar contexts. Figure 10
visualizes4 a vector space of words. To illustrate how semantically similar words and
thematically associated concepts are distributed over the vector space, we zoomed in
on the word dood ‘death’. Associated with the concept of death are family members
and other loved ones, such as echtgenoot ‘husband’, kleindochter ‘granddaughter’
and vriend ‘friend’, as marked by hand in purple. Another thematic category of
words related with death, are care-related words such as zuster ‘nurse’, hospice and
thuiszorg ‘home care’, as marked by hand in blue.

4 To enable visualization of the high-dimensional vector space, we applied a two-stage reduction
procedure to map the model onto a two-dimensional vector space. We carried out the first reduction
step with principal component analysis (PCA), to create a vector space with ten dimensions which
emphasizes the variation in the vector space (Abdi & Williams 2010). Further reduction to a two-
dimensional space was accomplished with the aid of a variation on Stochastic Neighbor Embedding
(t-SNE). t-SNE has been proven to yield better results than PCA, but is computationally expensive
(Maaten & Hinton 2008). Therefore, we preceded it with PCA reduction.

49

Figure 10: Visualization of the vector space representation created with WORD2VEC.

Instead of making a selection from all possible words in the corpus and thereby
possibly missing important cues, the vector space representation allows the model to
score each individual word that occurs in a given text. Similar vectors indicate
similar words, therefore document representations can be created by calculating the
mean of all feature vectors of the words in a text, which has proven to be effective
for a broad range of tasks (Kenter et al. 2016).

To determine the optimal model architecture and parameter settings for
WORD2VEC, we trained several WORD2VEC models with different architectures and
parameter settings on the notes and letters from the development corpus. Inspired by
Mikolov et al. (2013), we designed an analogy task to assess the quality of the
model, because predefined tests to assess the quality of vector space models exist for
English, but not for Dutch. We assigned WORD2VEC with the task of making an
analogy to a word pair, given a third word. For example, given the pair ‘arm’ and
‘hand’ and given a third word such as ‘leg’, the model should return ‘foot’ in
analogy to the given word pair. The test items (100 in total) were derived from IQ
tests, collected through several online sources. Although these test items are not
specific for the medical domain, the items included many general concepts such as
body parts, animals, emotions, means of transportation, and family members. All
items therefore occurred in the corpus.

As summarized in Table 12, we experimented with the model architecture
(continuous bag of words or skip-gram), different cut-off boundaries for removing
infrequent words from the model (105, 25, and 50), different window sizes (5, 7 and
10), and different numbers of dimensions (100, 200, and 300).

Table 12: Test settings to determine optimal WORD2VEC parameter settings, and
accuracy per model.

Round Architecture Min. count Window size Dimensions Accuracy

1a bag of words 10 5 100 53%

1b skip-gram 10 5 100 65%

2a skip-gram 25 5 100 58%

2b skip-gram 50 5 100 53%

3a skip-gram 10 7 100 64%

3b skip-gram 10 10 100 61%

4a skip-gram 10 5 200 66%

4b skip-gram 10 5 300 67%

For each model, the settings of interest are marked by a gray background.

5 The default cut-off boundary of WORD2VEC is 5, but due to the spelling correction procedure we
applied, the number of words with a frequency <10 that remained in the corpus is almost none.

50

We used default settings for any other parameters. We conducted the optimization
procedure in a stepwise fashion to decrease the number of experiments needed.
During each round of testing, one parameter is varied upon. The setting that yielded
the best result, which is either the initial default value or the value used for sub-
experiments a or b (referring to a and b in column round of Table 12), is used for the
following round of experiments.

Table 12 shows that the model that performed best, was the model tested during
round 4b, which makes use of a skip-gram architecture, a cut-off frequency
boundary of 10, a window size of 5, and 300 dimensions. Although the WORD2VEC

model with 300 dimensions produced the best results on the analogy task, we tested
the effect of using a WORD2VEC representation consisting of 100 and 200 dimensions
(the other parameters kept equal to the best performing model) as well during Phase
III, because we could not predict the outcome of the interaction between different
amounts of keyword features and other features extracted from the structured data.

51

52

6Phase III
Model development

6. PHASE III: MODEL DEVELOPMENT

Phase III is dedicated to three goals: 1) transforming the data into a functional input
format, 2) creating a baseline model, and 3) determining the effect of adding textual
features. The following sections elaborate on the specific methods and results for
each of these goals. Phase III resulted in an optimal model which was validated
during Phase IV.

6.1 Transforming the data

Although the different feature categories have been processed during Phases I and II
to ensure internal consistency for the feature format within each category, some
additional processing steps were needed in order to create a viable input format for
the LSTM model. This section describes how we represent the dynamically changing
medical history of each patient through time.

6.1.1 Creating a timeline

When we created the input data for the model, the goal was to represent a patient by
a series of feature vectors that change through time. The vectors are filled by scoring
the frequency of each feature for each patient for each moment in time. We can
however not simply feed the model only the days on which a patient visited the GP.
Each patient has a medical history of five years, but patients do not visit the GP daily.
The LSTM model expects fixed-length input sequences, while the sequences of data
points for all patients are characterized by irregular sampling, and do not go back the
full five years for some patients.

A possible solution is to pad the missing data points with empty feature vectors as
described in literature that discusses the use types of recurrent neural networks in
tasks concerning clinical data (see Lipton et al. 2016 for example), but this would
lead to very sparse data, and very long sequences of data (5 years of data leads to
more than 1,800 time steps), which greatly increases the model architecture and run
time of the LSTM model. Alternatively, we chose to aggregate the data over periods
of thirty days to create a timeline, to solve the issue of irregular sampling. Figure 11
illustrates a time line for a hypothetical patient that passed on May 19 th, 2014. The
date of death is time t, and the medical history of each patient spans from t to t - 60.
The white dots on the timeline refer to documented activities in the EMR.

Each time step is represented by a feature vector. When a feature is present for a
patient at a certain moment in time, the score for that feature increases with one for
the one-month interval during which the feature occurred. Each patient is therefore

54

represented by a medical history of 61 feature vectors (i.e. one feature vector for
each month) which contain frequency counts for each feature that occurred during
that month. If more than one consult takes place during a thirty-day period, the
corresponding features are all mapped to the feature vector of that month (as
illustrated by time step t - 3 in Figure 11).

Aggregating the data reduces the length of the entire timeline from over 1800
time steps to 61 time steps for a five-year period, and delivers more ‘dense’ feature
vectors because multiple consults may take place in one month. Moreover, it reduces
the need for padding to a great extent: occasionally no activity whatsoever takes
place during a month, but in most cases the GP consults with the patient or with other
health care providers at least once a month. Finally, medical episodes generally span
a few weeks or months, which fits this level of aggregation well.

6.1.2 Sliding window

For all patients in the EMR corpus, the date of death is known. This is essential for
training purposes: we can only validate the model’s predictions if we know the
correct output. For each patient, a life expectancy is calculated for each time step.
We cannot feed the entire medical history to the model at once when training the
model, because nothing would be learned: the correct life expectancy would always
be 0 months. Rather, we want to train the model to learn to predict the life
expectancy for any given moment in time.

Ideally, we would feed the model all data up to the moment in time for which we
want to predict the life expectancy, to provide the model with the maximal amount
of information. We would need to divide the medical history in all possible sub-
sequences, and use padding to create sequences of equal lengths, as shown in Figure
12.

Although this approach is theoretically viable, it has one major drawback: instead
of learning which types of information are indicators of the approaching end of life,
the model reaches a near perfect accuracy simply by learning to count the amount of

55

Figure 11: Timeline with data aggregated over intervals of thirty days.

feature vectors used as padding. Alternatively, we use a sliding window to divide the
complete medical history into sub-sequences of the history, as shown by Figure 13.

This way, when a window size of ten months is used, the patient data is divided
into 50 subsequences of data, each of which differing one month from the preceding
and following sequences in terms of life expectancy. The drawback of this approach
compared to the previous approach, is that we can only use a fixed period of time as
input for the model, thereby excluding potentially important cues that occurred
further back in time. An overall advantage of dividing the complete medical history
into such sub-sequences, was that the number of cases to train the model with
expanded: each patient was transformed into fifty training examples, when using a
window size of ten periods.

Finally, we exclude the month of death from the training data, for several reasons:
1) we are interested in predicting the moment of death in advance, 2) determination
of the month of death is trivial due to the diagnostic codes: the diagnostic code for
death is always applied in the month of death and never in a different month, and 3)
the amount and character of the data in the month of death deviate significantly from
the other data, due to many administrative events.

56

Figure 13: Window slides with steps of 1 along the 61-month sequence to create
sub-sequences.

Figure 12: Division of medical history into sub-sequences by iteratively removing
the most recent time step (from the right side of the sequence) and inserting
padding at the start of the medical history (white boxes on the left side).

6.1.3 Normalization

The previous processing steps have led to the creation of input in the form of
sequences of one-month time steps, each of which containing a feature vector that
represents the frequency of occurrence of all features within that month. While these
frequency counts reflect the medical history accurately, one additional processing
step is needed to ensure that the input is processed properly by the LSTM model.

All layers of the LSTM model — input, hidden and output — are represented by
tensors, or matrices, which are filled with rational numbers. When data flows
through the model, it is transformed by operations such as multiplication: the input
layer is processed by the model by multiplying it with the hidden layer, for example,
and within the hidden cells the data are transformed by the input, output, and forget
gates. The hidden layer is initialized with small random values, which get tuned
during the training phase. The input layer is determined by our representation of the
data.

Therefore, the raw frequency counts for features complicate the learning process.
First of all, the feature categories are different of nature. A raw frequency of 5 in one
month may be considered high for a feature category such as diagnoses: 5 heart
attacks in one month would be a very high value. For other categories, a raw
frequency of 5 may be considered low, such as for textual data: 5 encounters of the
word hartaanval ‘heart attack’ in one month would not be considered high, because
important events are usually referred to multiple times per document, and in multiple
documents in a short time span. The more prevalent feature categories would
therefore dominate the less prevalent categories during the learning process, if we
would use raw frequencies.

A related issue, is the fact that some feature categories contain a large range of
possible values, such as age, which ranges from roughly 0-105, while other feature
categories are for example characterized by dichotomous values: a patient is either a
male, or not.

Finally, some patients or GPs may be more easily inclined to schedule
consultations than others. A higher consultation frequency however does not
necessarily indicate more significance or more urgency, just as long text documents
(which automatically leads to higher raw word frequencies) are not necessarily more
important than short text documents.

Returning to the workings of the LSTM model, using raw frequencies is thus
problematic, because the model will overrepresent certain feature categories while
underrepresenting others, and will learn that more data indicates more urgency.
When different feature values that are offered to the model may range from very

57

small to very large, this leads to exploding and vanishing gradients, which impedes
correct adaptation of the weights and biases of the hidden layer.

We address these issues by normalizing the data. We normalize the data per
feature category because the categories differ in nature, and we normalize the data
per month for each specific patient to annul the effect of the number of consultations
in a month and the length of text documents. The frequency counts for the features
are compressed to values between 0 and 1 by dividing all feature values of a feature
category within a month by the highest value, and the data which do not have a
natural lower limit of zero (such as the WORD2VEC dimensions), are normalized to
values between -1 and 1 by dividing all feature values of a feature category within a
month by the highest absolute value.

6.2 Conceptual baseline model

The task presented to the LSTM model is to formulate a hypothesis about the life
expectancy of a patient at a certain moment in time, given a sub-sequence of the
patient’s medical history up to that moment. The training data for the model consists
of time-series data for each patient in combination with corresponding life
expectancies. Figure 14 shows a simplified overview of the model architecture.

Figure 14 illustrates a simplified version of the architecture for each time step.
For each time step, each hidden layer (represented by a purple circle) consists of
multiple units. Figure 15 zooms in on the final two time steps in Figure 14, and
shows that the model is in fact a fully connected sequence of small networks. Each
time step that is preceded by a previous time step, receives input from the feature
vector and from the hidden cells in the previous time step. Information from all

58

Figure 14: Simplified LSTM architecture. The yellow boxes represent a feature vector
for each time step, the purple circles represent the hidden layer for each time step,
the gray boxes represent the intermediate predicted life expectancies, and the blue
box represents the output that is returned by the model: the life expectancy for time t
in which we are interested.

previous time steps in the sub-sequence is therefore employed by the model when
the final prediction at time t is made.

Instead of a single-value prediction, we chose to model the probability that the
end of life occurs at a certain moment in time by projecting life expectancy on a
timeline with the aid of a softmax output layer. The output sequence represents a 61-
month time line minus the size of the sliding window and minus the month of death.
The model predicts the life expectancy by creating a probability distribution over
time of the chance that the end of life will occur. The output sequence is transformed
by a softmax function, to ensure that the probabilities for all months in the
distribution together sum to 1. The result is illustrated by Figure 16, in which a
predicted output sequence is plotted. The point for which the model predicts death
with the highest relative certainty, can be interpreted as the point in time for which
the model predicts the highest risk of dying for a patient. Based on the output in
Figure 16, the model therefore predicts a life expectancy of ten months for the
corresponding patient.

59

Figure 16: Example of a probability distribution created by the model to
formulate a life expectancy.

Figure 15: Detailed view of the final two time steps in
Figure 14.

6.3 Model optimization

The previous section described the conceptual model architecture. The model’s
actual architecture was decided based on a series of experiments that were carried
out in order to determine the optimal hyperparameter settings for the model, and the
optimal sub-set of features. The set of included features and the model’s architecture
are interdependent, and both affect the model’s performance. Varying the
composition of the feature set affects the size of the feature set, and the size of the
feature set directly influences the required model complexity.

Ideally, a grid search including all different combinations of feature categories,
feature representations and model hyperparameters should be performed.
Unfortunately, this leads to a combinatorial explosion — it would require several
thousands of experiments to find both the optimal feature set and determine the
optimal model architecture. Additionally, many hyperparameters are continuous
scales with no clear boundaries, which complicates a full grid search further.

Alternatively, we explored the interaction between the feature set and the model
architecture through a series of consecutive grid search steps, focusing on smaller
grid searches. Each step builds on the results of the previous step.

To guide the grid searches, an indication of the model’s performance was reached
through exhaustive ten-fold cross-validation. The development data (note: the
validation data has been separated from the development data before Phase I
already) was split randomly into ten non-overlapping parts that one by one
functioned as a test set for each round of validation. During each round, the model
was trained on the remaining 90% of the development data.

6.3.1 Tuning hyperparameters for the baseline model

We used a fixed feature set when searching for the optimal hyperparameter settings.
To obtain this set, the following reduction methods were applied: for all features, the
infrequent features were removed with the absolute frequency cut-off method, and
the aggregation level for the ICD and ICPC codes was set to the code level. The
keyword features were excluded from the feature set entirely, in order to create a
baseline against which the effect of adding the keywords could be tested in a later
stadium.

We explored the influence of the following parameters: batch size, learning rate,
training epochs, model size in terms of number of hidden layers and hidden units per
layer, peepholes, and dropout. Each parameter was initially set to a default value,

60

Table 13: default values during the process of hyperparameter optimization.

Hyperparameters Default value Experimental settings

Learning rate --6 0.0001, 0.001, 0.01, 0.1, 1.0

Batch size --6 1, 5, 10

Number of hidden units per layer 30 50, 75, 100

Number of hidden layers 1 1, 2

Peephole connections not applied not applied, applied

Dropout not applied 0.4, 0.6, 0.8

Epochs 10 early stopping

Window size (in months) 10 6, 12, 18, 24

and adjusted when their effect on the model performance was tested specifically.
When the optimal parameter setting improved upon the default setting, the default
setting was replaced by the new value for the experiments that followed. Table 13
shows the tuned parameters, and the default and experimental settings per parameter.

6.3.1.1 Learning rate

Research carried out to explore the hyperparameter space for neural networks, has
shown that the optimal parameter settings depend on the specific task at hand, and
that some hyperparameters can be tuned independently of the other parameters,
thereby decreasing the search space. Through an extensive study, Greff et al. (2016)
show that the most important parameters for model performance are learning rate
and model size, and that they can be tuned independently. In their experiments, the
model size did not influence the optimal learning rate. They suggest therefore, that
the learning rate can be tuned with a fairly small network before exploring the
optimal model architecture in detail, which saves a lot of experimentation time. The
first step in optimizing the hyperparameters, was therefore to experiment with the
following learning rates: 10-5 - 1.0 in ten percent increments. The results showed that
learning rates in the range 10-4 - 1.0 were too large. While the model performs
increasingly well on the training data, the testing error only increases over time, as
illustrated by Figure 17.

This was not the case for learning rate 10-5. Figure 18 shows that for this learning
rate, the training and testing error decrease over time, although very slowly.
Compared to Figure 17, the gap between training and testing error has greatly
decreased, and the rate of change for both training and testing error is much less
explosive. Instead of opting for smaller learning rates which would significantly

6 This parameter has no default value, because it was among the first parameters to be tuned.

61

increase the run time, we experimented with other variables to further lower the
error on the testing data.

6.3.1.2 Batch size

Updating the weights of the hidden units in a neural network — i.e., the process of
learning — can be done after each training example (stochastic gradient descent), in
small or large batches, or after seeing the entire training set (full gradient descent).
Batches are used to approximate the gradient of all training data, and thus batch size
influences the training process. Large batches result in less weight updates, and are
used with a larger learning rate, which may result in more computational speed per
epoch. Larger batches however require more memory, and generally require more
training epochs.

Small batches or stochastic learning require less training epochs because the
weights are updated more frequently. Because small batches represent the entire
training set worse than large batches, they result in noisier gradient updates, or in
other words: they may lead the model into the wrong direction. Small batches
however require a small learning rate, therefore taking a step in the wrong direction
is less harmful than when larger batches and a larger learning rate are used — in
fact, using small batches may even provide a regularization effect, thereby reducing
overfitting.

Breuel (2015), who explored the hyperparameter space of neural networks as
well, illustrates that optimizing the hyperparameters is more difficult as the batch
size increases, because the range of learning rates which deliver good results
decreases for larger batch sizes. Furthermore, he shows that larger batches generally
decrease the model’s performance. Based on these observations, two small batch
sizes were tested during this research. We tested the effect of stochastic learning and

62

Figure 18: Train and test error at
learning rate 10-5.

Figure 17: Train and test error at
learning rate 10-4.

learning with minibatches of sizes 5 and 10. The effect of the batch size is shown by
Figure 19.

The test errors for the larger batch sizes continue to decrease slightly over time,
in contrast to the test error for stochastic learning. At a batch size of 10, the training
error decreases at a faster rate than the test error, compared to the training error at a
batch size of five. Because of the small gap between training and testing error for the
batch size of five, we regarded this batch size to be optimal.

6.3.1.3 Model size: number of layers and hidden units

After the learning rate and batch size were optimized, we experimented with the
model size. The default settings for the model size were chosen in order to create a
model of medium complexity as a starting point. We used one layer with 50 hidden
units as the default size for the previous experiments. The risk of overfitting
increases along with the model complexity. Models which are too complex for the
task impede the learning process: instead of detecting patterns and learning
meaningful relations, the model simply learns to ‘memorize’ the data, resulting in
poor generalization to new data. Overfitting can therefore be recognized by
increasingly good performance on the training data, while performing increasingly
bad on the testing data (Goodfellow et al. 2016).

If the model complexity is too low for the task however, the model will suffer
from underfitting: it does not have enough capacity to capture complex relations
between different types of information and will fail to learn which features are
important indicators for the approaching end of life. In other words: the model is
unable to reach a sufficiently low error on the training data (Goodfellow et al. 2016).
When determining the model architecture, we want the model to 1) achieve a small
training error to prevent underfitting, and 2) a small gap between training and testing
error to prevent overfitting (Goodfellow et al. 2016).

63

Figure 19: Train and test error for different batch sizes.

We experimented with 1 and 2 hidden layers, and with 50, 75, 100 and 125 hidden
units per layer. The results are shown in Figure 20.

The training error fluctuates along with the model size. The model size does not
impact the test error much, except for the largest models, in which the test error
increases with each epoch. On average, the two-layer models perform better on the
training data than the one-layer models, which show relatively large training errors,
and therefore underfit the data. We conclude therefore, that one-layer models may
not be sufficient for this complicated task, even when they consist of a relatively
large number of cells. The two-layer models perform better on the training data, but
the larger models suffer from overfitting: while the training error decreases rapidly,
the testing error remains stable. The best performing models are the model with 1
layer of 100 hidden units, and the model with 2 layers of 50 hidden units. We
preferred the two-layer model over the one-layer model in order to enable the
exploration of the effect of using dropout.

64

Figure 20: Effect of model size on training and testing error for each epoch. The
training and testing error are represented by the dotted and the continuous line,
respectively.

6.3.1.4 Dropout

Complicated tasks ask for complicated networks, but such networks tend to be slow
in use, hard to optimize, and run a high risk of overfitting. Multiple strategies exist
to deal with the problem of overfitting. Solutions include the use of more training
data, cross-validation, regularization, early stopping, and dropout. The best way to
regularize the process is to combine the output of several models into a final
prediction for each test case (Hinton et al. 2012), but this is computationally
expensive both during training and testing, and requires a lot of run time, especially
because we work with cross-validation. Therefore, this solution is sub-optimal for
reducing the effect of overfitting in our task.

An alternative approach which reduces the run time instead of increasing it by
large, while still approximating the concept of employing multiple differently
trained models, is the use of dropout. Dropout refers to the process of randomly
‘dropping’ hidden units from the model during training. For each new training case,
different units are dropped, thereby training many different ‘thinned out’ networks
(Srivastava et al. 2014). Dropout prevents different hidden units to adapt to each
others’ behavior, which has been shown to reduce overfitting in a range of tasks.

The use of dropout in recurrent networks however leads to varying results and is
under discussion. Bayer et al. (2013) explain that the technique of dropout is
unsuitable for recurrent networks, due to its negative impact on the recurrence by
amplifying noise. Pham et al. (2013) and Zaremba et al. (2015) however
demonstrated that dropout can in fact be successfully applied to recurrent networks
such as LSTMs, by only applying it to the non-recurrent connections. Alternatively
phrased, dropout may provide benefits for recurrent networks when it is only applied
between layers, and not between time steps.

To test the effect of dropout in our model, we applied dropout only between the
hidden layers and not between time steps, and experimented with 40%, 50%, and
60% dropout rates. The resulting models were applied to the test data without
omitting any cells. The results are shown in Figure 21.

Other than expected, the different dropout rates do not seem to affect the error for
the test data, but only affect the error for the training data, thereby increasing rather
than decreasing overfitting, compared to the performance shown by the model to
which no dropout was applied. One could argue that the use of dropout is beneficial
even though it has no effect on testing error, because it decreases the run time
slightly. We decided not to use dropout throughout the following experiments
however, because we favor a simpler model above a slight decrease in run time.

65

Hypothetically speaking however, we recommend further exploration of the use of
dropout and its effect on a more extensive learning process if one were to use our
model in a context that has stronger run time requirements.

6.3.1.5 Peepholes

Finally, we experimented with peephole connections. Peephole connections allow
hidden cells to control their multiplicative input, output and forget gates. The
implementation of peepholes has been shown to be beneficial in tasks that involve
precise timing, because they improve a network’s ability to learn from the time
intervals between events (Gers et al. 2002). Although the implementation of
peepholes may be helpful for certain timing-related tasks, research has shown that
peepholes generally do not improve the error rate significantly (Breuel 2015, Greff
et al. 2015). We tested the model with and without peephole connections. The result
is illustrated in Figure 22.

66

Figure 21: Effect of different dropout rates on the
training and testing error. The percentages indicate the
proportion of hidden cells that were omitted randomly
for each new training case.

As the figure shows, peephole connections do not affect the error on the testing
data much. It does affect the training error negatively initially, but after ten epochs
this effect was negligible, compared to the training error for the model without the
peephole connections. Peephole connections are therefore not useful for our task:
they hardly — and only negatively — impact the results, while increasing the run
time significantly. We therefore decided not to implement peephole connections in
our final model.

6.3.2 Optimizing feature selection for the baseline model

In order to determine the optimal feature set, we tested several combinations of
feature categories and the effect of different feature reduction methods. We first
determined the representation which yielded the best results for each feature
category individually, with regards to the different cut-off methods (no frequency
cut-off, and absolute, relative, and relative cumulative frequency cut-offs) and level
of abstraction for all codes (code, subcategory, main category, and component level).
The absolute frequency cut-off performed best for each individual feature category.

The codes for diagnoses and reason for encounter, and the ICD-10 codes
performed optimally when they were set to the code level. The codes for medical
history and intervention performed best when they were aggregated to the sub-
category level. For consultation type, medication and lab results no further
aggregation was possible. Reducing the feature set by applying the absolute
frequency cut-off boundary and aggregating over medical history and intervention
codes, reduced the complete feature set, which includes 4,649 features, with 20% to
a set of 931 features (including age and gender).

67

Figure 22: Effect of peephole connections on the
training and testing error.

To determine whether any of the feature categories is redundant, we ran the
model for each feature category separately. The single feature category that yielded
the best results was used as a starting point, to which other feature categories were
added one by one. The feature category that increased the model’s performance
most, was added to the feature set (as long it did not decrease the performance), after
which the value of all remaining feature categories was determined again. The
optimal feature set included all of the feature categories. The order in which the
feature categories were added to the feature set, was: diagnose, medication, ICD-10,
reason for encounter, lab results, intervention, medical history, consultation type.

6.3.3 Baseline model

The resulting model was used as a baseline model to compare the effect of adding
textual features to. The window size of the baseline model was fixed to ten months;
the effect of window size was determined after the final round of experiments during
which we determined whether or not the inclusion of keywords improves the model.

After the keyword experiments, we tested the effect of window size for the
baseline model, and for the keyword model which performed best. We approached
the search for the optimal number of epochs similarly: after the keyword
experiments, we optimized the number of epochs for the baseline model and for the
keyword model which performed best. The effect of keywords is discussed in
Section 6.4, and the effect of window size and the optimal number of epochs are
discussed in Section 6.5.

6.4 Effect of adding textual features

The final experiment we conducted in order to determine the optimal model in terms
of features, concerned the addition of keyword features. We compared the baseline
model to models that include frequency-based, entropy-based and WORD2VEC-based
features. We experimented with the addition of 100, 200 and 300 keyword features
for each method. The model included a total of 931 non-keyword features. Adding
up to 300 keywords therefore is a significant extension of the input layer, which may
require a larger model. Therefore, we varied the size of the hidden layer (50, 100 or
200 cells): to get a rough indication of whether or not the model size should be fine
tuned again after adding keyword features.

To enable comparison between the performance of the baseline model and the
models to which keyword features were added, we needed a way to transform the
probability distribution into a final prediction.

68

Figure 23 shows four examples outputs produced by the baseline model. As the
figure shows, it is not always obvious which criterion we should use to extract a
prediction from the output. The probability distribution for Patient A shows one clear
peak, enabling straightforward deduction of a life expectancy prediction. The
distribution for Patient B however shows two peaks, while the distribution for
Patient C points towards a longer period of heightened risk, and the distribution for
patient D shows no clear high-risk period at all. Although many alternative
approaches may be suitable for the deduction of a life expectancy from the
probability distributions, we operationalized the distributions by taking the month
with the highest probability for dying as the final prediction.

We compared the baseline model to the other models in terms of the root mean
square deviation between the predicted and the actual life expectancy, and the mean
deviation of the predicted life expectancy compared to the actual life expectancy.
The results are shown in Tables 14 and 15.

The mean deviations between actual and predicted life expectancy are lower for
all models including keywords, compared to the baseline. Interestingly, while the
models (including the baseline model) on average tend to overestimate life

69

Figure 23: Examples of probability distributions produced by the
baseline model.

expectancy, the models that include WORD2VEC features show the opposite pattern:
they underestimate life expectancy. This is interesting from the perspective of ACP.
Discussing ACP too late has serious consequences, while discussing it too early is
unproblematic, as long as the discussion is repeated. To guarantee timely recognition
of the palliative phase therefore, we rather want to underestimate life expectancy and
closely monitor the situation, than overestimate life expectancy and postponing the
conversation until it is too late.

Table 14: Deviation in months between
actual life expectancy and model’s
predictions for the baseline model.

Root mean square Mean deviation

17.6 6.4

Table 15: Deviation in months between actual life expectancy and predictions by
different models which include keyword features. The models differ from each other
in terms of selection method, model size, and number of included keywords. The
best models are defined by two criteria: 1) having a relatively low root mean square,
followed by 2) a relatively low mean deviation. The results corresponding to the best
models based on these criteria, are marked with boldface.

Selection
method

Hidden
units

Root mean square Mean deviation

100 words 200 words 300 words 100 words 200 words 300 words

Frequency

50 17.6 17.2 17.0 4.5 5.0 5.8

100 17.5 17.4 16.9 2.1 1.2 1.7

200 17.7 17.8 17.8 1.6 1.3 1.0

Entropy

50 17.4 17.8 17.8 5.1 5.6 5.4

100 17.2 16.9 17.8 2.5 2.3 1.6

200 17.7 17.5 17.7 2.3 2.0 1.3

WORD2VEC

50 17.8 18.2 18.2 -3.4 -4.3 -3.7

100 18.1 17.8 17.8 -4.2 -4.1 -4.8

200 18.3 18.3 18.4 -3.75 -4.4 -4.4

In order to determine the best model to optimize further, we looked into the
results of the baseline model and the best performing model of each selection
method in more detail. We selected the best models based on a relatively low root

70

mean square as first criterion, and a relatively low mean deviation as second
criterion. The best models were the models including 300 frequency-based
keywords, 200 entropy-based keywords, and 100 WORD2VEC dimensions (results of
these models are marked with boldface in Table 15). The results of the baseline
model and the best performing models are visualized in Figure 24.

Figure 24 highlights the difference between the pessimistic character of the
predictions provided by the WORD2VEC model (illustrated by the negative mean for
the WORD2VEC model) and the optimistic character of the predictions for all other
models (illustrated by the positive means for all other models). The root mean
square and mean deviations are helpful to compare the models, but they do not offer
a nuanced representation of the output.

In a large-scale, systematic review of literature on life expectancy prediction by
doctors, White et al. (2016) evaluated a total of 42 research papers, in which a total
of more than 12,000 prognoses were evaluated. To get a better indication of the
quality of our model’s predictions, we identified the research from the pool used by
White et al. that was best comparable to our case, according to the following criteria:
1) the research was carried out anno 2000 or later to avoid outdated research,
2) prognoses were estimated on a continuous scale, 3) the doctors were no experts in
palliative care, and 4) the patient group for which the predictions were made was not
disease-specific.

71

Figure 24: Root mean square deviance (blue) and
mean deviance (red) of models with keyword
features versus the baseline (indicated by the blue
and red lines) for the best performing models per
keyword selection method. In the labels on the x
axis, the letter refers to the selection mechanism (F:
frequency, E: entropy, W: WORD2VEC), the first
number refers to the number of included keywords

 or dimensions, and the second number refers to the
number of hidden cells per layer.

The research carried out by Christakis and Lamont (2000) satisfied these criteria.
They analyzed the prognostic accuracy of 343 doctors for 468 patients. The authors
considered a prediction to be accurate if it fell within a window of 33% around the
actual moment of death. According to their results, the predictions were accurate for
20% of the patients, overly optimistic in 63% of the cases, and overly pessimistic in
17% of the cases.

For the baseline model and the three best performing models that include
keyword features, we evaluated the quality of the predictions with an approach
identical to Christakis and Lamont (2000: 469-470): we divided the actual life
expectancy by the predicted life expectancy, and regarded a prognosis as accurate if
the quotient was a value between 0.67 and 1.33. Quotients smaller than 0.67 signify
overly optimistic errors, while values larger than 1.33 signify overly pessimistic
errors. Table 16 shows an overview of the quality of the doctors’ predictions as
adopted from Christakis and Lamont (2000: 470), predictions by the baseline model,
and predictions by the three models that include keyword features.

Table 16: Evaluation of the quality of the predictions. Predictions are considered
accurate if they deviate less than 33% from the actual life expectancy.

Assessor Accuracy Overly pessimistic Overly optimistic

Human 20% 17% 63%

Baseline model 23% 58% 20%

Frequency-selected keywords 29% 27% 44%

Entropy-selected keywords 28% 46% 27%

WORD2VEC representation 38% 32% 31%

As the results indicate, the baseline model outperforms the doctors’ estimates. The
models that include keyword features further enhance the performance compared to
the baseline, especially the model that includes the WORD2VEC embeddings. While
doctors estimates are often overly optimistic, which harms early identification of
palliative patients, the baseline and keyword models’ predictions are rather
pessimistic.

Interestingly, the amount of overly pessimistic and overly optimistic estimations
does not correspond to what we expected to find: as Figure 24 shows, the baseline
model and the models with frequency-selected and entropy-selected keywords
tended to overestimate the life expectancy on average, while Table 16 shows that
most of the inaccurate estimations of the baseline and entropy model are rather

72

pessimistic. The incorrect predictions of the WORD2VEC model are divided over
roughly equal numbers of overly optimistic and pessimistic predictions, where we
expected a larger percentage of pessimistic predictions. Table 17 shows the ratio of
predicted to actual life expectancy for the overly optimistic and overly pessimistic
predictions7. We were unable to deduce these values for human assessors from
Christakis and Lamont 2000.

Table 17: Ratio of predicted to actual life expectancy for the inaccurate predictions.

Assessor Overly pessimistic Overly optimistic

Baseline model 5.4 0.4

Frequency-selected keywords 4.9 0.4

Entropy-selected keywords 4.7 0.4

WORD2VEC representation 6.0 0.4

Taken together, the results from Tables 16 and 17 illustrate that the WORD2VEC

model produced a larger amount of accurate predictions, but when it makes overly
pessimistic predictions, it is more pessimistic than the other models (which explains
the larger root mean square for the WORD2VEC model compared to the other models,
as shown in Table 15). Because of its high accuracy compared to the other keyword
models and its tendency toward relatively pessimistic estimations, we favored the
model which included WORD2VEC-based features over the other keyword models.
The next section describes the final steps we took to optimize the model
performance.

6.5 Final parameter tuning

We finally tuned the number of epochs and the window size for the baseline and the
WORD2VEC model. While the settings of these model parameters do influence the
results, retaining their default values throughout the experiments did not hinder
direct comparison between the different models, because these parameters are
independent from the other parameters.

6.5.1 Epochs

We applied early stopping to determine the optimal number of epochs and to prevent
overfitting. Training continued for a maximum of 100 epochs, or until no

7 Note that the ratio for overly pessimistic predictions is always larger than 1, while the ratio for
overly optimistic predictions is always a value between 0-1. This results from the fact that pessimistic
predictions are by definition smaller than the actual value, while optimistic predictions are always
larger (and we divided the actual by the predicted life expectancy in both cases).

73

improvement was seen on the test data for 5 epochs. The optimal number of epochs
for both the baseline and the WORD2VEC model turned out to be identical to the
default value we used throughout the experiments: 10 epochs. Therefore, tuning the
number of epochs did not lead to a change in accuracy.

6.5.2 Window size

Finally, we explored the effect of window size. The window size determines the
number of time steps, or one-month periods over which data was aggregated, that
are used as input for the model at once. We expected that increasing the window size
would increase the accuracy, because the model has more data to base a prediction
on. The window size was varied between values of 6 up to 24 months, in 6-month
increments.

The output layer of the model has a fixed length of 61 months minus the final
month minus the window size, as described in Section 6.1.2. The model learns the
minimum and maximum output values during the training process, and never
predicts larger values than 61 months minus the final month minus the window size,
because it never encounters larger values. The size of the output layer decreases as
the window size increases, and therefore the chance of predicting the life expectancy
correctly increases automatically. Because we are not interested in a measure of
accuracy that is influenced by these chance effects, we did not use the root mean
square and mean difference between the actual and predicted life expectancy, but
only evaluated the results according to the approach of Christakis and Lamont
(2000: 469-470). The results for the baseline and the WORD2VEC model are
displayed in Tables 18 and 19, respectively.

While the baseline model behaved as expected, the WORD2VEC model did not.
The accuracy of the baseline model increased along with the window size, and while
the vast majority of the incorrect predictions remains to be overly pessimistic, a shift
from overly pessimistic to more overly optimistic predictions can be observed.

Table 18: Results per window size for the baseline model.

Window size Accuracy Overly pessimistic Overly optimistic

6 months 20% 64% 16%

10 months (default) 23% 58% 20%

12 months 25% 55% 21%

18 months 26% 51% 24%

24 months 28% 46% 26%

74

Table 19: Results per window size for the WORD2VEC model.

Window size Accuracy Overly pessimistic Overly optimistic

6 months 37% 32% 30%

10 months (default) 38% 32% 31%

12 months 37% 32% 31%

18 months 36% 32% 31%

24 months 34% 35% 30%

The accuracy of the WORD2VEC model is inversely proportional to the window
size: as the window size increases, the model accuracy decreases, while the ratio of
overly optimistic to overly pessimistic predictions remains roughly equal.

Additionally, the model’s accuracy could have been increased or decreased in
terms of the ratio of predicted to actual life expectancy. In other words, independent
of the number of correct predictions, the model accuracy could have been improved
by making predictions that are less ‘off’. A closer look revealed however that the
mean ratio of predicted to actual life expectancy remained steady for both the
baseline and the WORD2VEC model, regardless of the window size.

Based on these results, for the baseline model it seems to be the case that the
larger the window size is, the higher the accuracy is, while the accuracy for the
WORD2VEC model reaches a peak when the default window size of 10 months is
used. For our final model however, we decided to use window sizes of 10 months
both for the baseline and the WORD2VEC model, for three reasons: 1) the run time of
the model increases proportionally to the window size, 2) to maximize the
comparability between both models during the validation test, and 3) a large window
size decreases the size of the output layer, because the output layer has the size of 61
months minus the month of death minus the window size, due to the fixed amount of
data (5 years) per patient. A smaller output layer technically means a higher chance
of making a correct prediction.

6.6 Final model architectures

The final architectures of the baseline model and the WORD2VEC model are highly
similar, and are illustrated by Figure 25. The models only differ with respect to the
number of features that are fed to the model at each time step: the baseline model
makes use of 931 features, while the WORD2VEC model includes 100 additional
keyword features.

75

For both models, the final architecture is a fully connected model consisting of
one input layer, two hidden layers and an output layer, for each time step. The
unrolled LSTM model consists of 10 time steps. For each time step, the input layer
consists of a feature vector, and the hidden layers each contain 50 hidden units. The
output layer for each time step consisted of 50 months (61 months minus the month
of death, minus the window length), and is transformed by a softmax layer to create
a probability distribution.

The weights are updated after each batch of five training cases, and the learning
rate is 10-5. No dropout or peephole connections are used. For the remaining
parameters, we used standard settings: the weights were initialized randomly from a
truncated normal distribution, we used a bias of 0.1, used AdamOptimizer to
optimize the gradient descend procedure, and used cross-entropy to minimize the
loss during the training process.

76

Figure 25: Final model architecture for the baseline and the WORD2VEC model.

 7Phase IV
Validation

7. PHASE IV: VALIDATION

7.1 General results

During Phase IV the optimal baseline and keyword model were validated with the
held-out test set. Because the health care practices are not equally large, and to
mimic real-life use of the model, we created a balanced test set by extracting the
10% most recent patients based on their date of death for each health care facility.
The model was trained on all development data, which represented historical data,
and was applied to the ‘new patients’. The results for the baseline model and the
keyword model are presented in Table 20, along with the human baseline. Table 21
shows the ratio of over- and underestimation to actual life expectancy.

Table 20: Evaluation of the quality of the predictions. Predictions are considered
accurate if they deviate less than 33% from the actual life expectancy.

Assessor Accuracy Overly pessimistic Overly optimistic

Human 20% 17% 63%

Baseline model 20% 68% 12%

Keyword model 29% 52% 19%

Table 21: Mean ratio of predicted to actual life expectancy for the inaccurate
predictions.

Assessor Overly pessimistic Overly optimistic

Baseline model 6.3 0.4

Keyword model 5.9 0.4

Compared to the results presented in Table 16, the models’ accuracy for the held-
out validation set dropped: -3% for the baseline model and -9% for the keyword
model. During Phase III the baseline model performed slightly better than the human
standard, while the validation test shows that the performance of the baseline model
equals human performance. We extracted features from the entire development set in
Phase II, and applied cross-validation in Phase III, therefore the model was fine
tuned on all possible features in the development data. The held-out test set however
contained data that the model has not encountered before, and while this did not
seem to affect the accuracy on the baseline model much, it notably affected the
performance of the keyword model.

78

7.2 Relations between several output measures

We further analyzed the results of the best-performing model — the keyword
model — in terms of Pearson’s product-movement correlation coefficients. We
expected to find a positive correlation between the actual and the predicted life
expectancy. Additionally, we expected the model’s certainty to both increase as the
actual moment of death approached, and as the predicted moment of death
approached. We therefore expected to find negative correlations between the relative
certainty of the predictions, and both the actual and predicted life expectancies.
Finally, we expected to find a higher level of certainty for predictions that are close
to the actual life expectancies. Therefore, we expected the relation between the
number of months between actual and predicted life expectancy, and the certainty of
the predictions to be inversely proportional to each other. The tests, hypotheses, and
results of the calculations are summarized in Table 22.

Table 22: Results for correlation calculations between several outcome measures.

Tested relations Hypotheses Pearson’s r Significance p

Actual vs. predicted life exp. positive relation .36 <.05

Certainty vs. actual life exp. negative relation -.35 <.05

Certainty vs. predicted life exp. negative relation -.61 <.05

Certainty vs. absolute difference
 between actual and predicted life exp.

negative relation -.02 .12

As Table 22 shows, the calculations confirmed most of the hypotheses. The
results show a moderately positive relation between the model’s predictions and the
actual life expectancy. The histogram in Figure 26 shows frequency counts of actual
and predicted life expectancies. The actual life expectancies are evenly distributed:
because the medical histories are divided in ten-month windows, every month in the
range 1-50 is predicted 127 times, corresponding to the 127 test patients. The
predictions are not as evenly distributed as the actual expectancies: the model shows
a tendency to predict that death is either nearby or far away in time.

The results in Table 22 also show that the model is more certain about predictions
in the near future, than predictions further away. Figures 27a and 27b show the
model’s certainty as a function of the actual (27a) and predicted (27b) life
expectancy. The figures display the model’s tendency to be more certain about short
term life expectancies than about predictions that lay further away in time. The
certainty of the model is however not a good indicator of the model’s accuracy, as
shown by the final test results in Table 22. Our expectation about a higher model
certainty for more accurate predictions, was not reflected by the results.

79

7.3 Results per illness trajectory

Finally, we disentangled the keyword model’s results for the different illness
trajectories. To ensure clear-cut boundaries between illness trajectories, we separated
the output predictions into three categories, according to the three illness trajectories
as described in Section 3.1: a group of patients suffering only from cancer, a group
of patients suffering only from organ failure, and a group of patients which can only
be categorized as frail elderly.

80

Figure 26: Histogram with absolute frequency counts for actual and
predicted life expectancies, for each month in the range 1-50.

 a b

Figure 27: Relative certainty versus actual (a) and predicted (b) life expectancy.

In our analysis for each trajectory, we included the predictions for the ten-month
windows of each patient from the onset of the disease that associates the patient with
a specific trajectory, onward. We expected the model to perform better for the cancer
trajectory than for the other trajectories and for the validation set as a whole, because
of the steady and predictable decline associated with the cancer trajectory.

The analysis however showed unexpected results: the model performed worse for
each of the three trajectories than for the validation dataset as a whole: the model
scored between 17-20% accuracy for each of the three trajectories (compared to
29% accuracy for the entire validation set). This means that the model performed
better for patients that cannot be categorized by these trajectories at all, and for
patients that fall into several categories at once.

The model performed similarly for cancer patients and organ failure patients,
with roughly two thirds of the incorrect predictions being overly pessimistic. For the
frail elderly however, the largest part of the incorrect predictions was overly
optimistic. Therefore, as we expected, there is a difference between the illness
trajectories. Contrary to our expectations however, the trajectory that stands out
most is not the cancer trajectory, but rather the frail elderly category.

These results may have been influenced by any of the following factors: 1) other
trajectories that were not specified in this research are characterized by a more
predictable pattern of degradation, 2) no clear definition of illness trajectories exists
in literature, so our operationalization may have been flawed, 3) our model is trained
and tuned to perform well overall, therefore the model’s performance for specific
diseases, illness trajectories, or any other categorization of patients, is bound to
deliver worse results than the overall results. The results for different illness
trajectories however show that the predictions for the cancer and the organ failure
trajectories show similar tendencies as the performance for the validation data
overall: the predictions tend to be overly pessimistic. In contrast, the performance of
the model for the frail elderly category is notably different from the model’s
performance on the other trajectories and on the validation data as a whole: most of
the incorrect predictions overshoot the life expectancy for the frail elderly. These
results suggest that different training and fine tuning procedures may be optimal for
different categories of patients.

81

82

Discussion
and ideas for further research
8

8. DISCUSSION AND IDEAS FOR FUTURE RESEARCH

The results of this research show that LSTMs are able to parallel the accuracy of
doctors in predicting life expectancy, and show that the inclusion of features from
unstructured clinical texts advances the quality of the predictions further.

8.1 Comparison to human prognostic estimates

The inclusion-exclusion criteria that were used by White et al. (2016) in the
systematic review of doctors’ estimates of life expectancy prohibited perfect
comparison between doctors’ performance and our model’s performance: patients
had to be defined as terminally ill, palliative, or otherwise non-curative for a
research to be included, and research papers which included patients that were
receiving artificial ventilation or that were admitted to an Intensive Care Unit, were
excluded.

We, on the other hand, did not exclude any patients from the dataset. In contrast
to the task presented to doctors, the model was therefore additionally employed to
make predictions for patients that were still curative, and patients that received life
support. Life expectancy is harder to predict for such patients, and the comparison
between the doctors’ performance and our model’s performance was therefore
bound to result in a pessimistic view of our model’s accuracy. Regardless of the
relatively pessimistic view on the results, the model already outperformed doctors,
which leaves us optimistic about the capabilities of the model compared to doctors’
prognoses when presented with identical data.

8.2 Amount of data

An issue which challenged the processing of all data types, was the amount of data
available to us in this research. Our corpus consisted of roughly 1,200 patients which
is a fair amount of data according to clinical standards, but is not considered to be a
lot of data for training neural networks. As illustrated by the optimization process in
Phase III and the drop in accuracy on the validation data in Phase IV, overfitting is a
serious issue which we did not fully manage to tackle, even though we maximized
the amount of training data, used cross-validation and early stopping, and explored
the effects of drop-out. We expect that the use of more data in future research will
aid in a better feature selection process, especially with regards to the textual
features, and will help the model to generalize better to unseen cases.

84

8.3 Disease-specific training

An additional benefit of gathering more data is the potential benefit of creating
disease-specific training sets. The results show that, contrary to what we expected,
the model performs worse for specific categories of patients based on illness
trajectories, than for the group of patients overall. The analyses per illness category
did show however that the model handles different illness trajectories in different
ways, being overly optimistic for some patients, while being overly pessimistic for
others.

We expect therefore, that it may be beneficial to make predictions for a patient
based on patients with similar characteristics. We could not explore this idea because
we only had access to a limited amount of data, and division into several categories
would further decrease the amount of training data. If enough data would be present
to divide the dataset into separate categories however, it would be very interesting to
explore additional disease-specific training of the model.

8.4 Vector space representation for structured data

One of the reasons for overfitting is the high dimensionality of the input data. Our
input feature vectors for each time step contained roughly 1000 features. The more
features the model needs to learn, the higher the requirements are for model
complexity and amount of training cases. It is therefore important to minimize the
size of the feature set, while retaining as much important information as possible.

Although we encountered many unique medical codes, medication names and lab
codes in the EMR corpus, which required a feature selection process to reduce the
dimensionality, textual data is even less restricted than structured data. Representing
the textual data with a limited set of keyword features received much attention in
this research due to the large amount of unique words textual data delivers.

A vector space representation proved to be an effective way of retaining as much
information as possible, while keeping the feature set small. Because the nature of
natural language data is vastly different from the nature of structured data in terms
of unique items and noise, we did not consider transferring our approach for textual
data to the processing of the structured data. In hindsight however, we think that a
vector space representation would have been highly suitable for representing
medical codes and medication names as well.

Compared to the approach we used, vector space modeling supersedes the need to
disregard possibly informative features. Related research carried out by Nguyen et
al. (2016) shows that the technique of using word embeddings to represent
structured EMR data as dense vectors delivers a feasible representation for training

85

neural networks. In future research, we would like to experiment with word
embedding techniques to represent the structured data as well.

8.5 Learning from intermediate predictions

An approach to fight overfitting that we did not explore in this research, but will in
the future, is the use of intermediate predictions: LSTMs are large, linked networks
that contain a neural network for each time step, and therefore have an input layer,
hidden layer(s) and an output layer for each time step. While we make active use of
the input layer and hidden layers at each time step, we only used the output of the
final time step to base the final prediction on. In future work, we will experiment
with training the model on the intermediate outputs as well. This idea has been
explored in related research by Lipton et al. (2016) as well with promising results.

8.6 Combining predictions through time

A different approach to fight overfitting, is inspired by the technique of combining
the outputs of multiple trained networks into a single prediction. While this
technique is known to increase the accuracy of the final predictions, it is very
computationally expensive. In this research we used dropout instead to simulate the
use of many small networks, but dropout did not work well in our case. What we did
not explore in this research, but which we will in future research, is not to combine
the output of many models to predict the output for one case, but to use our single
model to make a predictions for a patient by combining predictions of the model
through time.

This approach addresses a different issue simultaneously: our dissatisfaction of
using a sliding window to overcome issues that are typically associated with the use
of clinical time series data, such as irregular sampling, different amounts of data per
patient, and data sequences of unequal length. To overcome these issues, we
aggregated the data over one-month periods and used a sliding window to create
sequences of equal lengths. The latter was unsatisfactory however, because historical
data that falls outside of the window is completely ignored by our model, while we
expect it to contain useful information. Making predictions for a patient at a certain
moment in time by combining outputs from several windows further back in history
therefore has two benefits: it enables the combination of multiple predictions into
one which is expected to fight overfitting, and it enables making use of the full
patient history.

86

8.7 Textual data

The use of clinical narrative increased the model’s ability to make correct
predictions. The textual representations used in this research built on the assumption
that documents are independent and self-contained units. The features we extracted
from these documents were based on word counts and distributional properties of
words. While such representations are sufficient for many machine learning tasks,
potentially important information is lost by ignoring contextual embedding,
intertextuality, and other types of dependencies between documents in the EMR

corpus. We plan to exploit the highly informative nature of the clinical texts more in
future work, by using more advanced NLP techniques to create a richer linguistic
representation of the textual data.

8.8 Interpretation of the output

Next to data-related and processing-related ideas to improve the accuracy of the
predictions in future work, different ways of interpreting the model’s output may
lead to more constructive predictions additionally. Instead of letting the model return
one value as output, we wanted the model to return more informative output: a
probability distribution for a large range of months. As output therefore, the model
provides a prediction for each month in the range that states the probability that the
patient is to die during that specific month.

While this method delivers very interesting results, as illustrated by Figure 22 for
example, we also needed a way to operationalize these probability distributions in
order to evaluate the model’s performance. In this research, we used the month with
the highest probability for dying as the final prediction. However, this is just one of
many possible approaches for interpreting the model’s output. Alternative methods
include reporting the first, the last, or any peak above a certain probability threshold,
and reporting sudden changes in life expectancy, among other approaches.
Determining which measurement corresponds best to the actual life expectancy fell
outside the scope of this research, but we recommend thorough exploration of output
metrics for future work.

87

88

 9 Conclusion

9. CONCLUSION

With this research we aimed to explore the feasibility of automatically predicting life
expectancy based on electronic medical records with machine learning and natural
language processing techniques. Life expectancy is a leading indicator when making
decisions about end-of-life care, and prognoses influence the process of Advance
Care Planning negatively when done inaccurately. End-of-life prognostication is a
notoriously challenging, very time-consuming, highly subjective, and simply
unpleasant task for most general practitioners. Being overly optimistic about life
expectancy, as doctors tend to be, greatly impedes the early identification of
palliative patients and thereby delays appropriate care in the final phase of a
patient’s life.

This research aimed to address these issues. Predicting life expectancy has not
been attempted — let alone been solved successfully — before with techniques from
the fields of machine learning and natural language processing. Due to the many
differences between human assessment and computer processing, we expected
machine learning techniques to have the potential to make predictions automatically,
and to increase accuracy and objectivity of prognostication, to aid in early
recognition of patients at risk. This research aimed to answer to following questions:

1. To what extent are self-learning algorithms trained on medical records able
to detect the approaching end of life automatically?

2. To what extent does the inclusion of textual data improve a prognostic model
for detecting the approaching end of a patient’s life?

We aspired to approach the golden standard for prognostication as reported for
doctors in literature. Additionally, we strived to increase the accuracy of the
predictions by including linguistic features that were extracted from clinical notes
written by the general practitioner, and letters between the general practitioner and
other health care specialists.

The findings agree with and even advance the golden standard. Using identical
evaluation criteria as were used to evaluate doctors’ performance, our baseline
model reached a level of accuracy similar to human accuracy. Our keyword model
improves the prediction accuracy with 9%, compared to our baseline model and to
the golden standard of human evaluation. Moreover, our model tends to make rather
pessimistic predictions, while doctors tend to do the opposite. Pessimistic
predictions as provided by our model, in contrast to optimistic predictions as
provided by doctors, could aid in the early recognition of the palliative phase and
timely discussion of ACP strategies, to ease the transition toward end-of-life care.

90

Our approach showed promising results. We consider it to be the first step in an
interesting and important line of research, that has tremendous potential for real-life
applications. While clinicians are challenged by the ever increasing amounts of data
that are available for each patient, machine learning techniques are able to use the
growing stack of big data to their advantage. Overall, we have shown that machine
learning and natural language processing techniques are not only a feasible, but also
a very promising approach for automatic prognostication. With this thesis, we hoped
to contribute to this exciting line of research, to advance our understanding of what
is needed for automatic processing of medical data, and to explore the use of highly
unstructured clinical texts.

91

92

10

 R
ef

er
en

ce
s

10. REFERENCES

Abdi, H. & L.J. Williams (2010). Principal component analysis. Wiley
interdisciplinary reviews: computational statistics 2(4): 433-459.

Addington-Hall, J.M., L.D. MacDonald & H.R. Anderson (1990). Can the Spitzer
Quality of Life Index help to reduce prognostic uncertainty in terminal care?.
British journal of cancer 62(4): 695.

Al-Shayea, Q.K. (2011). Artificial neural networks in medical diagnosis.
International Journal of Computer Science Issues 8(2): 150-154.

Billings, J.A., & R. Bernacki (2014). Strategic targeting of advance care planning
interventions: the Goldilocks phenomenon. JAMA 174(4): 620-624.

Bosch, A. van den, G.J. Busser, W. Daelemans & S. Canisius (2007). An efficient
memory-based morphosyntactic tagger and parser for Dutch. F. van Eynde, P.
Dirix, I. Schuurman & V. Vandeghinste (eds.), Selected Papers of the 17th
Computational Linguistics in the Netherlands Meeting: 99-114 Leuven, Belgium.

Breuel, T.M. (2015). The effects of hyperparameters on SGD training of neural
networks. arXiv preprint arXiv:1508.02788.

Brinkman-Stoppelenburg, A., J.A. Rietjens & A. van der Heide (2014). The effects
of advance care planning on end-of-life care: a systematic review. Palliative
Medicine 28(8): 1000-1025.

Burke, H.B., P.H. Goodman, D.B. Rosen, D.E. Henson, J.N. Weinstein et al. (1997).
Artificial neural networks improve the accuracy of cancer survival prediction.
Cancer 79(4): 857-862.

Christakis N.A. & J.J. Escarce (1996). Survival of Medicare patients after enrolment
in hospice programs. New England Journal of Medication 335: 172-178.

Christakis, N.A., J.L. Smith, C.M. Parkes & E.B. Lamont (2000). Extent and
determinants of error in doctors’ prognoses in terminally ill patients: prospective
cohort study. British Medical Journal 320(7233): 469-473.

Claessen, S., A. Francke, Y. Engels (2013). How do GPs identify a need for palliative
care in their patients? An interview study. BMC Family Practice 14: 1471-2296.

Dietterich, T.G. (2002). Machine learning for sequential data: A review. Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition and
Structural and Syntactic Pattern Recognition: 15-30. Springer Berlin Heidelberg.

Forster, L.E. & J. Lynn (1988). Predicting Life Span for Applicants to Inpatient
Hospice. Archives of internal medicine 148(12): 2540-2543.

94

Frankl, D., R.K. Oye, & P.E. Bellamy (1989). Attitudes of hospitalized patients
toward life support: a survey of 200 medical inpatients. American Journal of
Medicine 86: 645-648.

Gers, F.A., N.N. Schraudolph & J. Schmidhuber (2002). Learning precise timing
with LSTM recurrent networks. Journal of machine learning research 3: 115-143.

Goodfellow, I., Y. Bengio & A. Courville (2016). Deep learning. MIT press.

Gott, M., C. Gardiner, N. Small, S. Payne, D. Seamark et al. (2009). Barriers to
advance care planning in chronic obstructive pulmonary disease. Palliative
Medicine 23(7): 642-648.

Greff, K., R,K, Srivastava, J. Koutník, B.R. Steunebrink & J. Schmidhuber (2016).
LSTM: A search space odyssey. IEEE transactions on neural networks and
learning systems.

Groenewoud, S. (2015). Advance care planning. Het levenseinde teruggeven aan de
mensen. Kwaliteit in zorg 3: 14–18. Online available via : http://www.netwerk-
palliatievezorg.nl.

Hazan, H., D. Hilu, L. Manevitz, L.O. Ramig & S. Sapir (2012). Early diagnosis of
Parkinson’s disease via machine learning on speech data. Electrical &
Electronics Engineers in Israel: 1-4.

Heyse-Moore, L.H. & V.E. Johnson-Bell (1987). Can doctors accurately predict the
life expectancy of patients with terminal cancer? Palliative medicine 1(2): 165-
166.

Higginson, I.J. & M. Costantini (2002). Accuracy of prognosis estimates by four
palliative care teams: a prospective cohort study. BMC palliative care 1(1): 1.

Highet G, D. Crawford, S.A. Murray & K. Boyd (2013). Development and
evaluation of the Supportive and Palliative Care Indicators Tool (SPICT): a
mixed-methods study. British Medical Journal of Supportive Palliative Care.

Hinton, G.E., N. Srivastava, A. Krizhevsky, I. Sutskever & R.R. Salakhutdinov
(2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

Hochreiter, S. & J. Schmidhuber (1997). Long short-term memory. Neural
Computation 9(8): 1735–1780.

Integraal Kankercentrum Nederland (2015). Jaarverslag hospices (REPAL): bijna
gelijk aantal opnameverzoeken in 2015. Online available via iknl.nl.

Jagannatha, A.N & H. Yu (2016). Bidirectional RNN for medical event detection in
electronic health records. Proceedings of the conference. Association for

95

Computational Linguistics. North American Chapter. Meeting: 473. NIH Public
Access.

Jensen, P.B., L.J. Jensen & S. Brunak (2012). Mining electronic health records:
towards better research applications and clinical care. Nature reviews. Genetics
13(6): 395.

Karnofsky D.A. & J.H. Burchenal (1949). The clinical evaluation of
chemotherapeutic agents in cancer. C.M. MacLeod (ed.) Evaluation of
Chemotherapeutic Agents: 191–205. New York: Columbia University Press.

Kenter, T., A. Borisov & M. de Rijke (2016). Siamese cbow: Optimizing word
embeddings for sentence representations. arXiv preprint arXiv:1606.04640.

Khan, J., J.S. Wei, M. Ringner, H. Saal, M, Ladanyi et al. (2001). Classification and
diagnostic prediction of cancers using gene expression profiling and artificial
neural networks. Nature medicine 7(6): 673-679.

Khemphila, A. & V. Boonjing (2011). Heart disease classification using neural
network and feature selection. Systems Engineering: 406-409.

Kim, H.G., G.J. Jang, H.J. Choi, M. Kim, Y. Kim et al. (2016). Medical examination
data prediction using simple recurrent network and long short-term memory.
Proceedings of the Sixth International Conference on Emerging Databases:
Technologies, Applications, and Theory: 26-34. ACM.

Kordylewski, H., D. Graupe & K. Liu (2001). A novel large-memory neural network
as an aid in medical diagnosis applications. Transactions on Information
Technology in Biomedicine 5(3): 202-209.

Levy W.C., D. Mozaffarian, D.T. Linker, S.C. Sutradhar, S.D. Anker et al. (2006).
The Seattle Heart Failure Model: prediction of survival in heart failure.
Circulation 113(11): 1424-1433.

Lipton, Z.C., D.C. Kale, C. Elkan & R. Wetzell (2015). Learning to diagnose with
LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677.

Liu, C., H. Sun, N. Du, S. Tan, H. Fei et al. (2016). Augmented LSTM Framework to
Construct Medical Self-diagnosis Android. 16th International conference on Data
Mining: 1-10.

Lunney J.R., J. Lynn, D.S. Foley, S. Lipson & J.M. Guralnik (2003). Patterns of
functional decline at the end of life. JAMA 289: 2387-2432.

Lynn, J., J.M. Teno & F.E. Harrell jr. (1995). Accurate prognostications of death.
Opportunities and challenges for clinicians. Western Journal of Medicine 163(3):
250.

96

Maaten, L.V.D. & G. Hinton (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research: 2579-2605.

Mazurowski, M.A., P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker & G.D. Tourassi
(2008). Training neural network classifiers for medical decision making: The
effects of imbalanced datasets on classification performance. Neural networks
21(2): 427-436.

Mikolov, T., K. Chen, G. Corrado, & J. Dean (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., I. Sutskever, K. Chen, G.S. Corrado & J. Dean (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems: 3111-3119.

Ministerie van Volksgezondheid (2015). Informatiekaart Palliatief Terminale Zorg
(PTZ). Online available via www.ciz.nl.

Moss, A.H., J. Ganjoo, S. Sharma, J. Gansor, S. Senft et al. (2008). Utility of the
“surprise” question to identify dialysis patients with high mortality. Clinical
Journal of the American Society of Nephrology 3(5): 1379-1384.

Moss, A.H., J.R. Lunney, S. Culp, M. Auber, S. Kurian et al. (2010). Prognostic
significance of the “surprise” question in cancer patients. Journal of palliative
medicine 13(7): 837-840.

Murray, S.A., M. Kendall, K. Boyd & A. Sheikh (2005). Illness trajectories and
palliative care. International Perspectives on Public Health Palliative Care 30:
2017-2019.

Murtagh F.E.M., M. Preston & I. Higginson (2004). Patterns of dying: palliative care
for non-malignant disease. Clinical Medicine 4: 39-44.

Pham, T., T. Tran, D. Phung & S. Venkatesh (2017). DEEPCARE: A deep dynamic
memory model for predictive medicine. Pacific-Asia Conference on Knowledge
Discovery and Data Mining: 30-41. Springer International Publishing.

Robinson, L., C. Dickinson, C. Bamford, A. Clark, J. Hughes et al. (2013). A
qualitative study: professionals’ experiences of advance care planning in dementia
and palliative care,‘a good idea in theory but…’. Palliative medicine 27(5): 401-
408.

Sadikin, M., M.I. Fanany & T. Basaruddin (2016). A New Data Representation
Based on Training Data Characteristics to Extract Drug Name Entity in Medical
Text. Computational intelligence and neuroscience: 6.

97

Schwarzer, G., W. Vach & M. Schumacher (2000). On the misuses of artificial
neural networks for prognostic and diagnostic classification in oncology.
Statistics in medicine 19(4): 541-561.

Singer, P.A., G. Robertson & D.J. Roy (1996). Bioethics for clinicians: 6. Advance
care planning. CMAJ: Canadian Medical Association Journal 155(12): 1689–
1692.

Sudore, R.L., & T.R. Fried (2010). Redefining the “planning” in advance care
planning: preparing for end-of-life decision making. Annals of internal medicine
153(4): 256.

Szmuilowicz, E., A. El-Jawahri, L. Chiappetta, M. Kamdar & S. Block (2010).
Improving residents’ end-of-life communication skills with a short retreat: a
randomized controlled trial. Journal of Palliative Medicine 13(4): 439-452.

Thangarasu, G. & P.D.D. Dominic (2014). Prediction of hidden knowledge from a
clinical database using data mining techniques. Computer and Information
Sciences: 1-5.

Thomas, K. (2012). Finding patients who may die: Electronic searching for patients
with palliative care needs. International Congress on Palliative Care. McGill
University.

Thoonsen, B., Y. Engels, E. van Rijswijk, S. Verhagen, C. van Weel et al. (2012).
Early identification of palliative care patients in general practice: development of
RADboud indicators for PAlliative Care Needs (RADPAC). British Journal of
General Practice 62(602): 625-631.

Walasek, N. (unpublished). Medical entity extraction on Dutch forum data in the
absence of labeled training data. Radboud University Nijmegen.

Walczak, S. (2005). Artificial neural network medical decision support tool:
predicting transfusion requirements of ER patients. IEEE Transactions on
Information Technology in Biomedicine 9(3): 468-474.

Weeks J.C., E.F. Cook, S.J. O’Day, L.M. Peterson, N. Wneger et al. (1998).
Relationship between cancer patients’ predictions of prognosis and their treatment
preferences. JAMA 279:1709-1714.

Wei, J.S., B.T. Greer, F. Westermann, S.M. Steinberg, C.G. Son et al. (2004).
Prediction of clinical outcome using gene expression profiling and artificial
neural networks for patients with neuroblastoma. Cancer research 64(19): 6883-
6891.

98

Weiner, J.S. & S.A. Cole (2004). Three principles to improve clinician
communication for advance care planning: overcoming emotional, cognitive, and
skill barriers. Journal of Palliative medicine 7(6): 817-829.

White, N., F. Reid, A. Harris, P. Harries & P. Stone (2016). A Systematic Review of
Predictions of Survival in Palliative Care: How Accurate Are Clinicians and Who
Are the Experts? Plos One 11(8).

Wiesner R., E. Edwards, R. Freeman, R. Kim & P. Kamath (2003). United Network
for Organ Sharing Liver Disease Severity Score Committee. Model for end-stage
liver disease (MELD) and allocation of donor livers. Gastroenterology 124(1):
91-96.

Zaremba, W., I. Sutskever & O. Vinyals (2015). Recurrent neural network
regularization. ICLR.

99

