
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#14SubNumber

ECCV

#14SubNumber

Deep Disentangled Representations for

Volumetric Reconstruction

Thesis for Master of Artificial Intelligence

Student: Edward Grant

Supervisors: Dr Marcel van Gerven, Dr Pushmeet Kohli

Radboud University

Abstract. We introduce a convolutional neural network for inferring a

compact disentangled graphical description of objects from 2D images

that can be used for volumetric reconstruction. The network comprises

an encoder and a twin-tailed decoder. The encoder generates a disentan-

gled graphics code. The first decoder generates a volume, and the second

decoder reconstructs the input image using a novel training regime that

allows the graphics code to learn a separate representation of the 3D

object and a description of its lighting and pose conditions. We demon-

strate this method by generating volumes and disentangled graphical

descriptions from images and videos of faces and chairs.

1 Introduction

Images depicting natural objects are 2D representations of an underlying 3D

structure from a specific viewpoint in specific lighting conditions.

This work demonstrates a method for recovering the underlying 3D geometry

of an object depicted in a single 2D image or video. To accomplish this we first

encode the image as a separate description of the shape and transformation

properties of the input such as lighting and pose. The shape description is used

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#14SubNumber

ECCV

#14SubNumber

2

to generate a volumetric representation that is interpretable by modern rendering

software.

State of the art computer vision models perform recognition by learning

hierarchical layers of feature detectors across overlapping sub-regions of the in-

put space. Invariance to small transformations to the input is created by sub-

sampling the image at various stages in the hierarchy.

In contrast, computer graphics models represent visual entities in a canonical

form that is disentangled with respect to various realistic transformations in 3D,

such as pose, scale and lighting conditions. 2D images can be rendered from the

graphics code with the desired transformation properties.

A long standing hypothesis in computer vision is that vision is better ac-

complished by inferring such a disentangled graphical representation from 2D

images. This process is known as ‘de-rendering’ and the field is known as ‘vision

as inverse graphics’ [1].

One obstacle to realising this aim is that the de-rendering problem is ill-

posed. The same 2D image can be rendered from a variety of 3D objects. This

uncertainty means that there is normally no analytical solution to de-rendering.

There are however, solutions that are more or less likely, given an object class

or the class of all natural objects.

Recent work in the field of vision as inverse graphics has produced a num-

ber of convolutional neural network models that accomplish de-rendering [2–4].

Typically these models follow an encoding / decoding architecture. The encoder

predicts a compact 3D graphical representation of the input. A control signal is

applied corresponding with a known transformation to the input and a decoder

renders the transformed image. We use a similar architecture. However, rather

than rendering an image from the graphics code, we generate a full volumetric

representation.

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#14SubNumber

ECCV

#14SubNumber

3

Unlike the disentangled graphics code generated by existing models, which

is only renderable using a custom trained decoder, the volumetric representa-

tion generated by our model is easily converted to a polygon mesh or other

professional quality 3D graphical format. This allows the object to be rendered

at any scale and with other rendering techniques available in modern rendering

software.

2 Related work

Several models have been developed that generate an disentangled representation

given a 2D input, and output a new image subject to a transformation.

Kulkarni et al. proposed the Deep Convolutional Inverse Graphics Network

(DC-IGN) trained using Stochastic Gradient Variational Bayes [2]. This model

encodes a factored latent representation of the input that is disentangled with

respect to changes in azimuth, elevation and light source. A decoder renders the

graphics code subject to the desired transformation as a 2D image. Training is

performed with batches in which only a single transformation or the shape of

the object are different. The activations of the graphics code layer chosen to

represent the static parameters are clamped as the mean of the activations for

that batch on the forward pass. On the backward pass the gradients for the

corresponding nodes are set to their difference from this mean. The method is

demonstrated by generating chairs and face images transformed with respect to

azimuth, elevation and light source.

Tatarchenko et al. proposed a similar model that is trained in a fully su-

pervised manner [3]. The encoder takes a 2D image as input and generates a

graphics code representing a canonical 3D object form. A signal is added to the

code corresponding with a known transformation in 3D and the decoder ren-

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#14SubNumber

ECCV

#14SubNumber

4

ders a new image corresponding with that transformation. This method is also

demonstrated by generating rotated images of cars and chairs.

Yang et al. demonstrated an encoder / decoder model similar to the above but

utilize a recurrent structure to account for long-term dependencies in a sequence

of transformations, allowing for realistic re-rendering of real face images from

different azimuth angles [4].

Spatial Transformer Networks (STN) allow for the spatial manipulation of

images and data within a convolutional neural network [5]. The STN first gen-

erates a transformation matrix given an input, creates a grid of sampling points

based on the transformation and outputs samples from the grid. The module

is trained using back-propagation and transforms the input with an input de-

pendent affine transformation. Since the output sample can be of arbitrary size,

these modules have been used as an efficient down-sampling method in classi-

fication networks. STNs transform existing data by sampling but they are not

generative, so cannot make predictions about occluded data, which is necessary

when predicting 3D structure.

Girdhar et al. and Rezende et al. present methods for volumetric reconstruct-

ing from 2D images but do not generate disentangled representations [6, 7].

The contribution of this work is an encoding / decoding model that gener-

ates a compact graphics code from 2D images and videos that is disentangled

with respect to shape and the transformation parameters of the input, and that

can also be used for volumetric reconstruction. To our knowledge this is the

first work that generates a disentangled graphical representation that can be

used to reconstruct volumes from 2D images. In addition, we show that Spatial

Transformer Networks can be used to replace max-pooling in the encoder as an

efficient sampling method. We demonstrate this approach by generating a com-

pact disentangled graphical representation from single 2D images and videos of

faces and chairs in a variety of viewpoint and lighting conditions. This code is

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#14SubNumber

ECCV

#14SubNumber

5

used to generate volumetric representations which are rendered from a variety

of viewpoints to show their 3D structure.

3 Model

3.1 Architecture

As shown in Figure 1, the network has one encoder, a graphics code layer and

two decoders. The graphics code layer is separated into a shape code and a trans-

formation code. The encoder takes as input an 80 × 80 pixel color image and

generates the graphics code following a series of convolutions, point-wise ran-

domized rectified linear units (RReLU) [8], down-sampling Spatial Transformer

Networks and max pooling. Batch normalization layers are used after each con-

volutional layer to speed up training and avoid problems with exploding and

vanishing gradients [9].

The two decoders are connected to the graphics code by switches so that

the message from the graphics code is passed to either one of the decoders.

The first decoder is the volume decoder. The volume decoder takes the shape

code as input and generates an 80 × 80 × 80 voxel volumetric prediction of

the encoded shape. This is accomplished by a series of volumetric convolutions,

point-wise RReLU and volumetric up-sampling. A parametric rectified linear

unit (PReLU) [10] is substituted for the RReLU in the output layer. This is done

to avoid the saturation problems with rectified linear units early in training but

allows for learning an activation threshold later in training, corresponding with

the positive-valued output targets.

The second decoder reconstructs the input image with the correct pose and

lighting, showing that pose and lighting parameters of the input are contained in

the graphics code. The image decoder takes as input both the shape code and the

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#14SubNumber

ECCV

#14SubNumber

6

15
18

5

69
12

0

a,h,b,c
a,h,b,c

a,h,d,c

a. Spatial convolution
b. Spatial Transformer Network
c. Batch normalization
d. Spatial max pooling (2x2)
e. Volumetric upsampling (2x2 nearest)
f. Volumetric convolution
g. Spatial upsampling (2x2 nearest)
h. RReLU
i. PReLU

e

e,f,h

e,f,h

Graphics Code
(Shape)Input

Output

80x

40x

40x

5

5

4

4

3

3

80

80

80

80
80

46

46
17

17

24
24 44

44
24

44 82
8282

80x

Decoders

40x

3

11
52

0
g

80x

80x

3

82

82

44

4424
24

80x

A

B

C

Graphics Code
(Pose, Lighting)

3

4

Encoder

g,a

f,i

g,a

a

Switches

h

h

Output

80

80

3

Fig. 1: Network architecture: The network consists of an encoder (A), a vol-

ume decoder (B) and an image decoder (C). The encoder takes as input a 2D

image and generates a 3D graphics code through a series of spatial convolutions,

down-sampling Spatial Transformer Networks and max pooling layers. This code

is split into a shape code and a transformation code. The volume decoder takes

the shape code as input and generates a prediction of the volumetric contents of

the input. The image decoder takes the shape code and the transformation code

as input and reconstructs the input image.

transformation code, and generates a reconstruction of the original input image.

This is accomplished by a series of spatial convolutions, point-wise RReLU,

spatial up-sampling and point-wise PReLU in the final layer. During training,

the backward pass from the image decoder to the shape code is blocked (see

Figure 2). This encourages the shape code to only represent shape, as it only

receives an error signal from the volume decoder.

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#14SubNumber

ECCV

#14SubNumber

7

Z1

E

Z1 Z2

E

D2

Z2

D1 D2 D1

Forward Backward

Fig. 2: Network training: In the forward pass the shape code (Z1) and the

transformation code (Z2) receive a signal from the encoder (E). The volume

decoder (D1) receives input only from the shape code. The image decoder (D2)

receives input from the shape code and the transformation code. On the backward

pass the signal from the image decoder to the shape code is suppressed to force

it to only represent shape.

The volume decoder only requires knowledge about the shape of the input

since it generates binary volumes that are invariant to pose and lighting. How-

ever, the image decoder must generate a reconstruction of the original image

which is not invariant to shape, pose or lighting. Both decoders have access to

the shape code but only the image decoder has access to the transformation code.

This encourages the network to learn a graphics code that is disentangled with

respect to shape and transformations.

The network can be trained differently depending on whether pose and light-

ing conditions need to be encoded. If the only objective is to generate volumes

from the input then the image decoder can be switched off during training. In

this case the graphics code will learn to be invariant to viewpoint and light-

ing. If the volume decoder and image decoder are both used during training the

graphics code learns a disentangled representation of shape and transformations.

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#14SubNumber

ECCV

#14SubNumber

8

3.2 Spatial transformer networks

Spatial Transformer Networks (STNs) perform input dependent geometric trans-

formations on images or sets of feature maps [5]. There are two STNs in our

model (see Figure 1).

Each STN comprises a localisation network, a grid generator and sampling

grid. The localisation network takes the activations of the previous layer as

input and regresses the parameters of an affine transformation matrix. The grid

generator generates a sampling grid of (x, y) coordinates corresponding with

the desired height and width of the output. The sampling grid is obtained by

multiplying the generated grid with the transformation matrix. In our model

this takes the form:

xsi
ysi

 = Tθ(Gi) =

θ11 θ12 θ13
θ21 θ22 θ23



xti

yti

1

 (1)

Where (xti, y
t
i) are the generated grid coordinates and (xsi , y

s
i) define the sample

points. The transformation matrix Tθ allows for cropping, scale, translation,

scale, rotation and skew. Cropping and scale, in particular allow the STN to

focus on the most important region in a feature map.

STNs have been shown to improve performance in convolutional network

classifiers by modelling attention and transforming feature maps. Our model

uses STNs in a generative setting to perform efficient down-sampling and assist

the network in learning invariance to pose and lighting.

The first STN in our model is positioned after the first convolutional layer.

It uses a convolutional neural network to regress the transformation coefficients.

This localisation network consists of four 5×5 convolutional layers, each followed

by batch normalization and the first three also followed by 2× 2 max pooling.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#14SubNumber

ECCV

#14SubNumber

9

The second STN in our model is positioned after the second convolutional

layer and regresses the transformation parameters with a convolutional network

consisting of two 5× 5 an one 6× 6 convolutional layers each followed by batch

normalization and the last two also by 2× 2 max pooling.

3.3 Data

The model was trained using 16, 000 image-volume pairs generated from the

Basel Face Model [11]. Images of size 80 × 80 were rendered in RGB from five

different azimuth angles and three ambient lighting settings. Volumes of size

80× 80× 80 were created by discretizing the triangular mesh generated by the

Basel Face Model.

4 Experimental Results

4.1 Training

We evaluated the model’s volume prediction capacity by training it on 16, 000

image-volume pairs. Each example pair was shown to the network only once to

discourage memorization of the training data.

Training was performed using the Torch framework on a single NVIDIA Tesla

K80 GPU. Batches of size 10 were given as input to the encoder and forward

propagated through the network. The mean-squared error of the predicted and

target volumes was calculated and back-propagated using the Adam learning

algorithm [12]. The initial learning rate was set to 0.001.

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#14SubNumber

ECCV

#14SubNumber

10

4.2 Volume Predictions from Images of Faces

In this experiment we used the network to generate volumes from a single 2D im-

ages. The network was presented with unseen face images as input and generated

3D volume predictions. The image decoder was not used in this experiment.

The predicted volumes were binarized with a threshold of 0.01. A triangu-

lar mesh was generated from the coordinates of active voxels using Delaunay

triangulation. The patch was smoothed and the resulting image rendered using

OpenGL and Matlab’s trimesh function.

Figure 3(a) shows the input image, network predictions, ground truth, nearest

neighour in the input space and the ground truth of the nearest neighour. The

nearest neighbour was determined by searching the training images for the image

with the smallest pixel-wise distance to the input. The generated volumes are

visibly different depending on the shape of the input.

Figure 3(b) shows the network output for the same input presented from

different viewpoints. The images in the first row are the inputs to the network

and the second row contains the volumes generated from each input. These

are shown from the same viewpoint for comparison. The generated volumes

are visually very similar, showing that the network generated volumes that are

invariant to the pose of the input.

Figure 3(c) shows the network output for the same face presented in different

lighting conditions. The first row images are the inputs and the second row are

the generated volumes also shown from the same viewpoint for comparison.

These volumes are also visually very similar to each other showing that the

network output appears invariant to lighting conditions in the input.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#14SubNumber

ECCV

#14SubNumber

11

(a)

(b) (c)

Fig. 3: Generated volumes: Qualitative results showing the volume predict-

ing capacity of the network on unseen data. (a) First column: network inputs.

Columns 2-4 (white): network predictions shown from three viewpoints. Columns

5-7 (black): ground truth from the same viewpoints. Column 8: nearest neigh-

bour image. Columns 9-11 (blue): nearest neighbour image ground truth. (b)

Each column is an input/output pair. The inputs are in the first row. Each in-

put is the same face viewed from a different position. The generated volumes

in the second row are shown from the same viewpoint for comparison. (c) Each

column is an input/output pair. The inputs are in the first row. Each input is

the same face in different lighting conditions.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#14SubNumber

ECCV

#14SubNumber

12

4.3 Nearest Neighbour Comparison

The network’s quantitative performance was benchmarked using a nearest neigh-

bour test. A test set of 200 image / volume pairs was generated using the Basel

Face Model (ground truth). The nearest neighbour to each test image in the

training set was identified by searching for the training set image with the small-

est pixel-wise Euclidean distance to the test set image (nearest neighbour). The

network generated a volume for each test set input (prediction).

Nearest neighbour error was determined by measuring the mean voxel-wise

Euclidean distance between the ground truth and nearest neighbour volumes.

Prediction error was determined by measuring the mean voxel-wise Euclidean

distance between the ground truth volumes and the predicted volumes.

A paired-samples t-test was conducted to compare error score in predicted

and nearest neighbour volumes. There was a significant difference in the error

score for predictions (M = 0.0096, SD = 0.0013) and nearest neighbours (M =

0.017, SD = 0.0038) conditions; t(199) = −21.5945,p = 4.7022e− 54.

These results show that network is better at predicting volumes than using

the nearest neighbour.

4.4 Internal Representations

In this experiment we tested the ability of the encoder to generate a graphics

code that can be used to generate a volume that is invariant to pose and lighting.

Since the volume encoder doesn’t need pose and lighting information we didn’t

use the image decoder in this experiment.

To test the invariance of the encoder with respect to pose, lighting and shape

we re-trained the model without using batch normalization. Three sets of 100

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#14SubNumber

ECCV

#14SubNumber

13

image batches were prepared where two of these parameters were clamped and

the target parameter was different. This makes it possible to measure the vari-

ance of activations for changes in pose, lighting and shape. The set-wise mean

of the mean variance of activations in each batch was compared for all layers in

the network.

Figure 4(a) shows that the network’s heightened sensitivity to shape relative

to pose and lighting begins in the second convolutional layer. There is a sharp

increase in sensitivity to shape in the graphics code, which is much more sensitive

to shape than pose or lighting, and more sensitive to pose than lighting. This

relative invariance to pose and lighting is retained in the volume decoder.

Figure 4(b) shows a visual representation of the activations for the same

face with different poses. The effect of the first STN can be seen in the second

convolutional layer activations which are visibly warped. The difference in the

warp depending on the pose of the face suggests that the STNs may be helping

to create invariance to pose later in the network. The example input images

have a light source which is directed from the left of the camera. The second

convolutional layer activations show a dark area on the right side of each face

which is less evident in the first convolutional layer, suggesting that shadowing

is an important feature for predicting the 3D shape of the face.

4.5 Disentangled Representations

In this experiment we tested the network’s ability to generate a compact 3D

description of the input that is disentangled with respect to the shape of the

object and transformations such as pose and lighting.

In order to generate this description we used the same network as in the

volume generation experiment but with an additional fully connected RReLU

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV

#14SubNumber

ECCV

#14SubNumber

14

Image E1 E2 E3 Z D1 D2 D3 Volume
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el
at
iv
e
S
ta
na
rd
 D
ev
ia
tio
n
of
 A
ct
iv
at
io
ns Shape

Lighting
Pose

(a) (b)

Fig. 4: Invariance to pose and lighting: (a) The relative mean standard

deviation (SD) of activations in each network layer is compared for changes in

shape, pose and lighting. Image is the input image, E1-E3 are the convolutional

encoder layers, Z is the graphics code, D1-D3 are the convolutional decoder layers

and Volume is the generated volume. In the input, changes to pose account for

the highest SD. By the second convolutional layer the network is more sensitive

to changes in shape than pose or lighting. The graphics code is much more

sensitive to shape than pose or lighting. (b) The first row is five images of the

same face from different viewpoints. Rows 2-4 show sampled encoder activations

for the input image at the top of each column. The last row shows sampled

graphics code activations reshaped into a square.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV

#14SubNumber

ECCV

#14SubNumber

15

layer of size 3, 000 in the encoder to compensate for the increased difficulty of

the task.

During training, images were given as input to the encoder which generated

an activity vector of 200 scalar values. These were divided in the shape code

comprising 185 values and the transformation code comprising 15 values. The

network was trained on 16, 000 image / volumes pairs with batches of size 10.

The switches connecting the encoder to the decoders were adjusted after

every three training batches to allow the volume decoder and the image decoder

to see the same number of examples. The volume decoder only received the

shape code, whereas the image decoder received both the shape code and the

transformation code.

To test if the shape code and the transformation code learned the desired

invariance we measured the mean standard deviation of activations for batches

where only one of shape, pose or lighting conditions were changed. The same

batches as in the invariance experiment were used.

Figure 5(a) shows the relative mean standard deviation of activations of each

layer in the encoder, graphics code and image decoder. The bifurcation at point

Z on the plot shows that the two codes learned to respond differently to the

same input. The shape code learned to be more sensitive to changes in shape

than pose or lighting, and the transformation code learned to be more sensitive

to changes in pose and lighting than shape.

To make sure the image decoder used the shape code to reconstruct the input

we compared the output of the image decoder with input only from the shape

code, the transformation code and both together. Figure 5(b) shows the output of

the volume decoder and image decoder on a number of unseen images. The first

column shows the input to the network. The second column shows the output of

the image decoder with input only from the shape code. The third column shows

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV

#14SubNumber

ECCV

#14SubNumber

16

the same for the output of the transformation code. The fourth column shows

the combined output of the shape code and the transformation code. The fifth

column shows the output of the volume decoder.

Image E1 E2 E3 E4 Z D1 D2 D3 Image
0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el
at
iv
e
S
ta
na
rd
 D
ev
ia
tio
n
of
 A
ct
iv
at
io
ns Shape

Lighting
Pose

Transformation Code
Shape Code

(a) (b)

Fig. 5: Disentangled representations: (a) The relative mean standard devi-

ation (SD) of activations in the encoder, shape code, transformation code and

image decoder is compared for changes in shape, pose and lighting. The shape

code is most sensitive to changes in shape. The transformation code is most sen-

sitive to changes in pose and lighting. Error bars show standard deviation. (b)

The output of the volume decoder and image decoder on a number of unseen

images. The first column is the input image. The second column is the image

decoded from the shape code only. The third column is the image decoded from

the transformation code only. The fourth column is the image decoded from the

shape code and the transformation code. The fifth column is the output of the

volume decoder shown from the same viewpoint for comparison.

4.6 Face Recognition in Novel Pose and Lighting Conditions

To measure the invariance and representational quality of the shape code we

tested it on a face recognition task.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

ECCV

#14SubNumber

ECCV

#14SubNumber

17

The point-wise Euclidean distance between the shape code generated by an

image was measured for a batch of 150 random images including one image that

was the same face with a different pose (target). The random images were ordered

from the smallest to greatest distance and the rank of the target was recorded.

This was repeated 100 times and an identical experiment was performed for

pose. The mean rank for the same face with a different pose was 11.08. The

mean rank of the same face with different lighting was 1.02. This demonstrates

that the shape code can be used as a pose and lighting invariant face classifier.

To test if the shape code was more invariant to pose and lighting than the

full graphics code we repeated this experiment using the full graphics code. The

mean rank for the same face with a different pose was 26.86. The mean rank of

the same face with different lighting was 1.14. This shows that the shape code

was relatively more invariant to pose and lighting than the full graphics code.

4.7 Volume Predictions from Videos of Faces

To test if video input improved the quality of the generated volumes we adapted

the encoder to take video as input and compared to a single image baseline.

10, 000 video / volume pairs of faces were created. Each video consisted of five

RGB frames of a face rotating from left facing profile to right facing profile in

equidistant degrees of rotation. The same network architecture was used as in

experiment 4.5. For the video model the first layer was adapted to take the

whole video as input. For the single image baseline model, single images from

each video were used as input.

To test the performance difference between video and single image inputs a

test set of 500 video / volume pairs was generated. Error was measured using

the mean voxel-wise distance between ground truth and volumes generated by

the network. For the video network the entire video was used as input. For the

single image baseline each frame of the video was given separately as input to

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

ECCV

#14SubNumber

ECCV

#14SubNumber

18

the network and the generated volume with the lowest error was used as the

benchmark.

A paired-samples t-test was conducted to compare error score in volumes

generated from volumes and single images. There was a significant difference in

the error score for video based volume predictions (M = 0.0073, SD = 0.0009)

and single image based predictions (M = 0.0089, SD = 0.0014) conditions;

t(199) = −13.7522, 1.0947e− 30.

These results show that video input results in superior volume reconstruction

performance compared with single images.

4.8 Volume Predictions from Images of Chairs

In this experiment we tested the capacity of the network to generate volume

predictions from objects with more variable geometry. 5000 Volume / image

pairs of chairs were created from the ModelNet dataset [13]. The images were

80 × 80 RGB images and the volumes were 30 × 30 × 30 binary volumes. The

predicted volumes were binarized with a threshold of 0.2. Both decoders were

used in this experiment. The shape code consisted of 599 activations and the

transformation code consisted of one activation. The shape code was used to

reconstruct the volumes. Both the shape code and transformation code were

used to reconstruct the input.

Figure 6 demonstrates the network’s capacity to generate volumetric predic-

tions of chairs from novel images.

4.9 Interpolating the Graphics Code

In order to qualitatively demonstrate that the graphics code in experiment 4.8

was disentangled with respect to shape and pose, we swapped the shape code

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

ECCV

#14SubNumber

ECCV

#14SubNumber

19

Fig. 6: Generated chair volumes: Qualitative results showing the volume

predicting capacity of the network on unseen data. First column: network in-

puts. Columns 2-4 (Yellow): network predictions shown from three viewpoints.

Columns 5-7 (black): ground truth from the same viewpoints. Column 8: near-

est neighbour image in the training set. Columns 9-11 (blue): nearest neighbour

image ground truth.

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

ECCV

#14SubNumber

ECCV

#14SubNumber

20

and transformation code of a number of images and generated new images from

the interpolated code using the image decoder. Figure 7 shows the output of

the image decoder using the interpolated code. The shape of the chairs in the

generated images is most similar to the shape of the chairs in the images used to

generate the shape code. The pose of each chair is most similar to the pose of the

chairs in the images used to generate the transformation code. This demonstrates

that the graphics code is disentangled with respect to shape and pose.

Fig. 7: Interpolated code: Qualitative results combining the shape code and

transformation code from different images. First row: images used to generate

the shape code. Second row: images used to generate the transformation code.

Last row: Image decoder output.

5 Discussion

We have shown that a convolutional neural network can learn to generate a

compact graphical representation that is disentangled with respect to shape,

and transformations such as lighting and pose. This representation can be used

to generate a full volumetric prediction of the contents of the input image.

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

ECCV

#14SubNumber

ECCV

#14SubNumber

21

By comparing the activations of batches corresponding with a specific trans-

formation or the shape of the image, we showed that the network can learn to

represent a shape code that is relatively invariant to pose and lighting conditions.

By adding an additional decoder to the network that reconstructs the input im-

age, the network can learn to represent a transformation code that represents

the pose and lighting conditions of the input.

Extending the approach to real world scenes requires consideration of the

viewpoint of the generated volume. Although the volume is invariant in the

sense that it contains all the information necessary to render the generated object

from any viewpoint, a canonical viewpoint was used for all volumes so that they

were generated from a frontal perspective. Natural scenes do not always have a

canonical viewpoint for reference. One possible solution is to generate a volume

from the same viewpoint as the input. Experiments show that this approach is

promising but further work is needed.

In order to learn, the network requires image-volume pairs. This limits the

type of data that can be used as volumetric datasets of sufficient size, or models

that generate them are limited in number. A promising avenue for future work

is incorporating a professional quality renderer into the decoder structure. This

theoretically allows for 3D graphical representations to be learned, provided that

the rendering process is approximately differentiable.

Acknowledgements: Thanks to Thomas Vetter for access to the Basel Face

Model.

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

ECCV

#14SubNumber

ECCV

#14SubNumber

22

References

1. Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends

in cognitive sciences 10(7) (2006) 301–308

2. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional

inverse graphics network. In: Advances in Neural Information Processing Systems.

(2015) 2530–2538

3. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Single-view to multi-view: Reconstruct-

ing unseen views with a convolutional network. arXiv preprint arXiv:1511.06702

(2015)

4. Yang, J., Reed, S.E., Yang, M.H., Lee, H.: Weakly-supervised disentangling with

recurrent transformations for 3D view synthesis. In: Advances in Neural Informa-

tion Processing Systems. (2015) 1099–1107

5. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial Transformer Networks.

In: Advances in Neural Information Processing Systems. (2015) 2008–2016

6. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable

and generative vector representation for objects. arXiv preprint arXiv:1603.08637

(2016)

7. Rezende, D.J., Eslami, S., Mohamed, S., Battaglia, P., Jaderberg, M., Heess,

N.: Unsupervised learning of 3d structure from images. arXiv preprint

arXiv:1607.00662 (2016)

8. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations

in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In: Proceedings of The 32nd International

Conference on Machine Learning. (2015) 448–456

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-

level performance on ImageNet classification. In: Proceedings of the IEEE Inter-

national Conference on Computer Vision. (2015) 1026–1034

11. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model

for pose and illumination invariant face recognition. In: Advanced video and signal

based surveillance, 2009. AVSS’09. Sixth IEEE International Conference on, IEEE

(2009) 296–301

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

ECCV

#14SubNumber

ECCV

#14SubNumber

23

12. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)

13. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A

deep representation for volumetric shapes. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. (2015) 1912–1920

