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Abstract

Ever since the start of the development of brain-computer interfaces (BCIs), they have been envisioned
as a tool that could help impaired people in their interaction with the world. BCIs translate brain
signals into computer commands. Auditory BCIs, which only require an intact hearing, could be used
as a communication tool for patients with locked-in syndrome who have very little control over their
muscles or none at all, making it hard to control BCIs based on (eye) movements. In this paper we
execute a pilot study in which we propose a way to improve the accuracy of an auditory BCI. In order
to answer a binary question, subjects control the BCI by changing their state of mind as a result of a
shift of attention between auditory streams. A certain component of the measured brain signal, an error
potential, could be detected during the feedback phase of the BCI in case of incorrect provided feedback.
If an error potential could be detected, the initial feedback could be corrected, increasing the overall
accuracy of the BCI. The results from this experiment show that there was no noticeable improvement
in the performance of the auditory BCI after addition of a second brain signal (error potentials); the
overall accuracy even seemed to diminish.

1 Introduction

A brain-computer interface (BCI) forges a direct on-
line connection between brain and machine. Van
Gerven and his colleagues (2009) introduced the con-
cept of a BCI cycle in which they explain the stages
of BCI research. This type of research starts with
a user who has to perform a certain task. Brain
signals are measured during the execution of this
task. Different types of measurement methods can
be used for this. One frequently used non-invasive
method is electroencephalography (EEG) which mea-
sures the evoked electrical current potentials of neu-
ronal changes using electrodes that are placed on the
scalp. BCI can also be based on e.g. induced changes
in the power of certain frequencies, which are cap-
tured in ERSPs (event-related spectral potentials).
In the next stage of the cycle, the collected data is
preprocessed, relevant features are extracted and the
system makes a prediction about the intention of the
user. This prediction is given as feedback in a prede-
termined modality (e.g. visual, auditory or motor).
BCIs can be used online or offline. In an online BCI
predictions are derived from the measured data and
fed back to the user in real-time, whereas in an of-
fline BCI, predictions are made after the experiment
has ended and the user does not receive immediate
feedback.

One of the most well-known examples of a BCI
are visual spellers. One famous application of this
is the matrix speller as introduced by Farwell and

Donchin (1988). In such a speller, letters or possi-
ble answers are arranged in the shape of a matrix.
During the use of such a speller each of the rows
is intensified in a random order, followed by inten-
sifications of each of the columns in a random or-
der. The selected element is in the intersection of
a row and column and has a unique intensification
pattern. This unique pattern can be retrieved from
the measured data and a prediction of the selected
element can be made. The brain signal that is used
in such spellers is called a P300 (Polich, 2007). This
is a component of an ERP (event-related potential),
which is a time-locked signal generated in response
to a stimulus. The P300 potential occurs when a de-
viant stimulus is presented in a sequence of normal
stimuli. In the case of the matrix speller an oddball
is presented when the selected element flashes. The
ERP is measured at around 250-500 ms after the on-
set of the deviant stimuli and appears as a positive
deflection (Figure 1). The downside of this type of
spellers is that for an effective implementation, the
user has to be able to actively control and move their
eye muscles. Some users that could benefit from the
use of BCI spellers, might not be able to do so for
this reason.

A possible solution to this problem are auditory
BCI. For an auditory BCI a user only has to have nor-
mal hearing, i.e. the user should not have an hear-
ing impairment. Hillyard and his colleagues (1973)
stood at the frontier of research in this field. They
presented their participants with two different audi-
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tory streams, one to each ear. Each stream consisted
of 2 tones: a lower “non-target” and higher “target”
frequency tone. The signals were played at random,
creating an oddball paradigm. The users were asked
to focus on one of the two streams and silently count
the targets in that stream. The counted tones elicited
a P300 potential. The sequence of P300 potentials
could be matched to the sequence of tones occur-
ring in the stimuli to retrieve the attended auditory
stream. This outcome proves that the P300 oddball
paradigm can be applied to the auditory modality,
which makes this concept applicable in the field of
BCI. The downside of these types of auditory P300-
based BCIs is their poor accuracy, in comparison to
their visual counterpart. The accuracy that can be
achieved using a P300-based visual speller can be as
high as 94.62% whereas the accuracy of P300-based
spellers using the auditory modality lies at around
65% (Furdea et al., 2009). Hill, Lal, Bierig, Bir-
baumer and Schölkopf (2005) predicted an accuracy
of 82.4% in an offline study on auditory BCI; Hill
and Schölkopf (2012) found an accuracy of 84.8% in
an online version of this study.

Figure 1: EEG signal at electrode Cz. The line of the
attended condition represents a P300 potential. From
Hill & Schölkopf (2012)

BCIs can be used as a system to make changes
in the world by translating brain signals into com-
mands that could be executed by an external device.
As a result of this, BCIs can help people communicate
that are not able to do so efficiently in the conven-
tional ways. These people could control a BCI by
adjusting their brain signals as a result of e.g. spe-
cific (eye) movements (Birbaumer, 2005). This does
not offer a solution to people that have a more severe
case of paralysis, e.g. in an advanced stage of ALS
(amytrophic lateral sclerosis). The stage these people
are in is called completely locked-in state (CLIS) if
they have no rudimentary control of any muscle, in-
cluding the eye muscles, and locked-in state (LIS) if
they have control over at least one muscle (Smith &

Delargy, 2005). Auditory BCIs require normal hear-
ing and normal EEG and therefore it could be used
as an alternative method that enables people in such
stage to communicate with the outside world. An im-
provement in performance of such BCI is beneficial
for this type of users and therefore should be aimed
for.

Figure 2: Scalp map showing the spatial distribution
of a P300 potential. From Hill & Schölkopf (2012)

Figure 2 shows the spatial distribution of a P300
potential across the scalp of a participant in the ex-
periment by Hill and Schölkopf (2012).

A second component of the ERP called error po-
tential (ErrP) could be introduced to improve the
overall performance of P300-based BCIs. Earlier re-
search found that ErrPs can be used to improve accu-
racy of a P300-based visual BCI (Spüler et al., 2012).
Zeyl, Yin, Keightley and Chau (2016) proposed that
ErrP could also be used in the auditory modality to
increase performance. An error potential presents it-
self after erroneous feedback, and therefore could be
used to correct this initial incorrect feedback, leading
to a higher overall BCI accuracy. Ferrez and del R.
Millán (2008) coined the term “interaction ErrP” to
refer to cases in which error potentials were gener-
ated during an human-computer interaction. These
interaction ErrPs consist of four consecutive peaks
(shown in Figure 3): a positive peak at 200 ms, a
negative peak at 250 ms, a positive peak at 320 ms,
and a last negative peak at 450 ms. Especially the
two last peaks are salient. The peaks are focussed
at the central parts of the scalp, with the first peak
being more fronto-central (Figure 4).

In this paper, we will perform a study that is in-
tended as a proof of concept, where we try to investi-
gate whether addition of ErrPs improves the perfor-
mance of a P300-based auditory BCI. The specifics
of the auditory stimulus used in the BCI are adapted
from the paper by Hill and Schölkopf (2012). Partic-
ipants will be presented with two different auditory
streams. Each stream corresponds to an answer to a
trivial binary question, i.e. left corresponds to ‘yes’
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and right corresponds to ‘no’. Each participant is
asked to silently count the number of target (oddball)
beeps on the side that is associated with the answer
he or she intends to give, eliciting a distinct P300
sequence. A classifier is used to recognize the P300
potentials and derive on which stream the user fo-
cussed. The prediction from this classifier is fed back
to the user in real-time. During the feedback phase,
a second linear classifier is active to see whether an
error potential occurred. If this is the case, then the
feedback from the first classifier is corrected. The ac-
curacy of the second ‘ErrP’ classifier should be above
chance to be able to improve the overall performance.
We expect that addition of a second classifier that
is active during the feedback phase will improve the
performance of the BCI.

Figure 3: Average EEG for the difference error-
minus-correct at channel FCz plus grand average.
From Ferrez & del R. Millán (2008).

Figure 4: Scalp potential topographies at the time
stamps of the peaks from Figure 3. From Ferrez &
del R. Millán (2008).

2 Methods

2.1 Subjects

Three healthy participants (all male) with an age
range of 20-21 years took part in the pilot experi-
ment. All subjects Dutch, but were proficient in the
English language. None of the subjects had a his-
tory of significant hearing defects or were diagnosed
with dyslexia. They all gave informed consent before
taking part in this experiment.

2.2 Stimuli and Task Design

Each trial started with an English binary question
and ended with an answer to this question. We cre-
ated a total of 60 binary questions (40 of which were
created by a fellow thesis group-student), of which
we assumed they were common knowledge. All ques-
tions are reported in Appendix A. The order in which
the questions appeared to the participants was ran-
dom and the block of 60 questions was repeated if all
questions had occurred once; as a result, each ques-
tion was posed in 4 trials. To confirm that the sub-
jects knew the correct answers to the questions, we
let them fill in a questionnaire, containing all 60 pre-
sented questions, after they took part in the experi-
ment.

The subjects received both visual and auditory
stimuli. All 240 trials had the same lay-out visually
from the perspective of the participant. In Section
2.2.1 we will discuss the visual stimulus and in sec-
tion 2.2.2 we will discuss the auditory stimulus in
more detail.

2.2.1 Visual Stimuli

First of all, the participant is shown a welcome mes-
sage, in which he/she is asked to press a button when-
ever he/she is ready to start the experiment. The
experiment starts by showing a binary question in
white font on a dark grey background. The question
is shown for 3 seconds, which is sufficient for the par-
ticipant to carefully read the question and come up
with an answer. After this, a yellow fixation cross
appears in the center of the screen along with the
two possible answers to the question: ‘yes’ and ‘no’.
Each answer is assigned to a fixed side of the screen,
i.e. ‘yes’ is always shown on the left, and ‘no’ is al-
ways shown on the right. Each answer is fixed to a
side to remind the participant which auditory stream
is associated with which answer, i.e. the left stream
is associated with ‘yes’ and the right stream is as-
sociated with ‘no’. In the provided instructions the
participant is asked to keep his/her gaze focussed on
the fixation cross to minimize the influence of eye
artifact. While this screen is shown, the auditory
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streams are played. The display is shown in a total
of 4.5 seconds. In the next screen feedback is pro-
vided to the subject: one of the two possible answer
disappears, leaving the answer to the question on the
screen. The feedback is shown for 2 seconds. During
the feedback, the fixation cross also remains on the
screen so the subject should try to not move his/her
eyes away from this. The subject should still be able
to see the feedback in the corner of his/her eye. An
overview of the sequence of visual presentations is
presented in Figure 5. The visual part of one trial
ends with a break message and a break of 5 seconds.
During the break no fixation cross is shown, so the
participant does not have to remain focussed. The
next trial starts with a new question. The partici-
pant has a longer self-paced break after each 10 ques-
tions and an experimenter-paced break after each 60
questions.

Figure 5: Visual stimulus representation. The order
in which the screens are shown to the participant is
from top to bottom.

2.2.2 Auditory Stimuli

The auditory stimulus specifics are identical to the
ones used in a paper by Hill et al. (2005). The
auditory stimulus consists of two distinct auditory
streams. The setting at which the streams are pre-
sented is as follows: the participant is sat on a chair
wearing an EEG cap on and he is looking at the fix-
ation cross on the screen. One stream is played from
a speaker that is placed to the left of the screen, the
other stream is played from a speaker to the right

of the screen, both directed towards the participant.
The streams consist of 50 ms long square-wave beeps.
The specifics of the two auditory streams are dis-
played in Table 1. Both streams consist of 2 dif-
ferent beeps of different frequencies. The lower fre-
quency beep is the non-target beep and the higher
frequency beep is the target beep. The non-target
beep is played more frequently and therefore the tar-
get beep will be an oddball and elicit a P300 poten-
tial. Each auditory stream starts with 3 non-target
beeps, such that the participant can familiarize him-
/herself with the sound and has time to lock his/her
attention to the correct stream. After this, each new
tone that is being played has a probability of 0.3 of
being a target beep. In case no target beep has been
played yet but the auditory stream only has one tone
left to play, we forced this tone to be a target beep,
since each trial should have at least one target beep
in each stream. The left auditory stream starts play-
ing 70 ms after the right auditory stream started to
make sure that both streams, with different periods,
finish at the same time, and to make it easier for the
participant to distinguish both streams.

Each stream is associated with an answer to the
visually proposed question. The participant is asked
to solely focus on the stream that is associated with
his desired answer. To enlarge the possibility of a
P300 potential, the user is asked to silently count the
target beeps in his/her attended stream.

LEFT RIGHT
Frequency non-target (Hz) 800 1500
Frequency target (Hz) 880 1650
Number of beeps 7 8
Period (ms) 555 490

Table 1: Specifics of the two auditory streams.

2.3 Data Acquisition

Stimulus presentation was created and presented us-
ing PsychoPy version 3 (Peirce et al., 2019). Ana-
conda Spyder version 3.1.4 (Anaconda, 2017) was
used for all programming related to the training and
testing of the Scikit Learn linear RidgeCV-classifiers
(Scikit-learn, 2019). For EEG collection we used a
Biosemi headset (Biosemi, 2019) with 64 active AgCl
electrodes along with 4 electrodes for EOG measure-
ment (1 placed above and 1 under the left eye, and
2 on each side of the head) and 2 mastoid electrodes,
sampled at 256 Hz. Retrieved data is saved to and re-
trieved from a Buffer BCI toolbox (Farquhar, 2014)
created for a master’s BCI course at the Radboud
University.
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2.4 Data Analysis

We analyzed the data both online and offline. The
experiment was divided into a training and a test-
ing phase. Both phases consisted of 120 trials (ques-
tions), with a total of 240 trials. There was no differ-
ence in stimuli between the two phases. The partici-
pant is made to believe that in all trials the answer to
the question is derived from the collected EEG data,
however this is not the case in the training phase. For
the actual predictions made by the system during the
test phase, we used two linear classifiers (Scikit-learn,
2019). We expect to see P300 potentials during the
presentation of the target beeps in the auditory stim-
ulus and error potentials during the presentation of
incorrect feedback. Therefore we trained one linear
classifier, referred to as the ‘P300 classifier’, on data
collected during the auditory stimulus and the second
linear classifier, referred to as the ‘ErrP classifier’, on
data collected during the feedback phase.

In the training phase we made use of a ‘fake clas-
sifier’. The ‘classifier’ provided feedback to the par-
ticipant to keep the presentation of feedback consis-
tent between the training and testing phases. We
programmed it to deliberately make incorrect pre-
dictions in 25% of the trials such that the classifier
always received a consistent number of data contain-
ing an actual ErrP. This error percentage was based
on earlier research in which a selection accuracy of
75% was used on average for artificially generated
feedback in similar research (Zeyl, Yin, Keightley &
Chau, 2016).

2.4.1 Online

During the execution of the experiment we collected
600 ms long slices of recorded EEG data after pre-
sentation of a tone from either stream, both target
and non-target. This resulted in 9 slices of 600 ms
per trial (4 for left auditory stream, 5 from the right
stream), with a total of 2160 slices over the course
of the complete experiment. We do not save data
from the first 3 tones from both streams since they
are always non-targets and they would cause a bias
in our analysis. This data is used later to train and
test the linear ‘P300’ classifier on. We also collected
1 second slices of recorded EEG data for the ErrP
classifier. These slices were made after the feedback
was presented to the participant.

After the training phase (i.e. the first 120 trials)
ended, we trained the two classifiers on the collected
data. The training of the ErrP classifier is straight-
forward: we perform some standard pre-processing
steps. Firstly, we detrend the data followed by bad-
channel removal, application of a common average
reference spatial filter, and a spectral bandpass filter
of 1-10 Hz. We end with bad-trial removal before

finally training the linear classifier.

The training of the P300 classifier is more com-
plex. The first 3 preprocessing steps are the same as
those used for the ErrP classifier. In the fourth step
we use a bandpass filter of 0.1-45 Hz. We compute
the averages over all tones from the left stream and
all tones from the right stream such that we end up
with 2 averages in the form of a channel-by-sample
matrix. We process these averages by subtracting
the left mean values from the right mean values. We
compute and save these differences for all 120 trials,
and use them as training data for the P300 classifier.
We omit bad-trial removal in the preprocessing of the
data for this classifier because we do not want to have
biases in our computed averages.

In the trials of the testing phase, we sliced the
same pieces of recorded EEG data as we did for the
training phase. We used the same preprocessing steps
as during the training phase on the data as we per-
formed on the data from the training phase. The
P300 classifier returns 9 predictions, namely one af-
ter each received slice. We compute two averages:
one over the 4 slices that were made after presenta-
tion of tones from the left auditory stream, and one
over the 5 slices from the right auditory stream. The
side with the highest average is chosen as the final
prediction. This prediction is then fed back to the
participant. The ErrP classifier makes one predic-
tion, namely on the data sliced after the presentation
of the P300 classifier. From this single prediction
we could make a correction to the feedback of the
P300 classifier, in case of detection of an ErrP. If an
ErrP was detected, the participant received a mes-
sage stating that the feedback that had been shown
earlier appeared to be incorrect.

2.4.2 Offline

We saved all slices of data that were collected during
the execution of the experiment and used these to
perform an offline analysis. This analysis was similar
to the online analysis procedure, except that it was
done using data from the 64 electrodes from the cap
without the EOG or mastoids electrodes. The same
preprocessing steps were used.

We tested the newly trained classifiers on the
slices of data retrieved during the test phase of the on-
line experiment to see whether the predictions made
by the offline classifiers were the same as those ob-
tained from the online classifiers. We used the new
predictions to compute the accuracy of the offline
classifiers, which will be reported in the Results sec-
tion of this paper, alongside the accuracy of the online
classifiers.

We used the preprocessed data to make plots for
every one of the 64 electrodes used for the EEG
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(a)
(b)

Figure 6: The scalp potential topographies created from data generated from the EEG of subject 1. (a) P300
potential. At time 0, a tone from an auditory stream is played. The blue and orange lines represent the
attended and unattended auditory streams, respectively. (b) Error potential. At time 0, feedback is presented
to the participant. The blue and orange lines represent the trials in which erroneous and correct feedback
was provided, respectively.

recording. In Section 3.1 we zoom in on a selection
of these plots. We make a comparison between the
plot created from data from the Cz electrode and
FCz electrode and Figure 1 from Hill and Schölkopf
(2012) and Figure 3 from Ferrez and del R. Millán
(2008). We also created scalp potential topographies
for every participant for both the P300 and the ErrP
data.

We computed the overall accuracy of the P300
and ErrP classifiers. We made a distinction between
the accuracy obtained during the online experiment
and the accuracy obtained during the offline analysis.
The overall accuracy percentages were computed by
dividing the number of trials with correct feedback by
the total number of trial in the testing phase. Feed-
back was considered correct if it was the intended
answer to the question. The accuracy percentages
for the P300 classifiers were computed as follows: we
retrieved the number of trials in which the classifier
made a correct prediction and divided this by the
total amount of trials in the testing phase of the ex-
periment (i.e. 120 trials). To be able to compute
the accuracy of the ErrP classifiers we first retrieved
the number of trials in which the classifier detected
an error potential. This is the denominator of the
accuracy fraction later. We also needed to know the
number of trials in which the ErrP classifier correctly
detected an error potential (the true positive trials).
The accuracy was then computed dividing the num-
ber of true positive trials by the number of trials an
ErrP was detected. To end up with percentages all
outcomes were multiplied by 100.

3 Results

In this section we summarize the results. Interpreta-
tions and conclusions can be found in Section 4.

We started the analysis of the results with evalu-
ating the questionnaire. The questionnaire contained
all 60 yes/no questions. All three participants filled
in the correct answers to the questions and therefore
we can assume in our analysis that the subjects in-
tended to give the correct answer to the question in
each trial. Hence, in our analysis, we can use the cor-
rect answer to the questions as being the answers of
the subjects.

3.1 Event-Related Potentials Plots

We recreated the ERP signals that were recorded dur-
ing the EEG recordings. We created scalp potential
topographies of all subjects for both the P300 data
and the ErrP data. To be able to make compar-
isons with Figure 1 and 3 we zoom in on electrode
Cz and FCz, respectively. In this section we only re-
port the plots from the first participant. Similar plots
generated using data from the other participants are
reported in Appendix B.

3.1.1 P300

In Figure 6a we plotted the scalp potential topogra-
phy generated from the P300 data. We see a positive
peak at around 300 ms in the central region of the
scalp. Next, we made a plot of electrode Cz (Figure
7). The plot has the the following shape: first the line
for the unattended condition is above the line for the

6



attended condition, after which the lines cross and
the attended line has a peak after which they cross
again finishing with the attended condition line be-
low the unattended condition line. The blue attended
line shows a positive peak at around 300 ms.

Figure 7: EEG plot of electrode Cz generated using
the slices of data made during the presentation of the
auditory stimulus from participant 1.

Figure 8: The error-minus-correct plot generated of
data from subject 1.

3.1.2 Error Potential

In Figure 6b we reported the ErrP scalp potential to-
pography we generated from the training and test
data combined from subject 1. The frontal plots
shows a salient positive peak at around 700 ms, while
the occiptal plots show a negative peak at the same
timestamp. Next, we zoom in on the plot from elec-
trode FCz (Figure 8). As is common in the reporting
of error potentials, we opted for a presentation of the
error-minus-correct differences.

We also created a plot showing the error-minus-
correct lines from all subjects, along with a grand av-

erage (Figure 9). The line from participant 2 seems
to have peaks with higher amplitudes.

Figure 9: Error-minus-correct from electrode FCz for
all participants along with a grand average.

3.2 Classifier Accuracy

The classifiers make the classification based on the
recorded EEG data and provide the feedback to the
user. We computed the accuracy of both the clas-
sifiers that were trained online and offline. In the
first section we report the overall BCI accuracy; in
later sections we discuss the P300 and ErrP classifier
performances in more detail.

3.2.1 Overall

In the computation of the overall performance, we
made a distinction between the online and offline clas-
sifiers. At the end we want to know whether addition
of the ErrP classifier improves overall accuracy. To
be able to draw a conclusion, we report two accu-
racy percentages per set of classifiers, computed on
data from the test phase: the accuracy obtained by
using only the P300 classifier and the accuracy ob-
tained by using the P300 classifier in combination
with corrections from the ErrP classifier. The results
are reported in Table 2.

3.2.2 P300

The calculated accuracy percentages of the P300 clas-
sifiers are presented in Table 3. These percentages
were also presented in Table 2, but for convenience
we presented them along with the number of correct
trials in this new table. The average accuracy of both
classifiers lies at around 50%, which means that both
the classifiers perform at chance, i.e. the classifiers do
not make estimated predictions as to which stream
was attended.
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Overall
performance

Subject 1 Subject 2 Subject 3

Online Only P300 classifier 58.33% 51.6% 45.83%
Incl. corrections from ErrP classifier 54.17% 50% 55%

Offline Only P300 classifier 45.83% 60% 40%
Incl. corrections from ErrP classifier 46.67% 34.17% 3.33%

Table 2: The overall performance of the online and offline classifiers. We make a distinction between the
performance of the classifiers from the online and offline analysis.

3.2.3 ErrP

In the final section of the Results we discuss the per-
formance of the two ErrP classifiers. We present the
achieved accuracy percentages in Table 4. These data
resulted in the reported accuracy percentages. In al-
most all cases the classifier detected more ErrPs than
there should have been when assuming that an ErrP
only occurs in trials with incorrect initial feedback.
The accuracy of the online classifier was higher than
the accuracy of the offline classifier. The overall ac-
curacy of both classifiers combined was below chance.

Correct Accuracy
Online S1 70 58.33%

S2 62 51.6%
S3 55 45.83%

51.93%
Offline S1 55 45.83%

S2 72 60%
S3 48 40%

48.61%
50.27%

Table 3: Accuracy percentages for both the online and
offline P300 classifiers. Subjects are referred to as S1,
S2 and S3. The ‘Correct’ column represents the trials
in which the P300 gave correct feedback.

# ErrP
detected

TP Accuracy

Online S1 21 8 38.10%
S2 28 13 46.43%
S3 17 14 82.35%

Average 55.63%
Offline S1 43 22 51.16%

S2 51 10 19.61%
S3 52 4 7.69%

Average 26.15%
Overall

Accuracy
40.89%

Table 4: Correctness percentages computed for both
the online and offline ErrP classifiers. The subjects
are referred to as S1, S2 and S3. TP = true positive.

4 Discussion

We performed a study in which we tested whether er-
ror potentials could be used to improve auditory BCI.
Since we did a pilot experiment, it is not possible to
draw general conclusions. We do try to explain our
results and offer possible suggestions for future re-
search in the next paragraphs.

We make comparisons between our P300 plots
of subject 1 and the plots from Hill and Schölkopf
(2012). We see that the topographical plot of our
subject (Figure 6a) has the same spatial distribution
at 300 ms as Figure 2. The zoomed-in plot of the
Cz electrode (Figure 7) shows some resemblance to
Figure 1, we can conclude that our auditory BCI did
elicit a P300 potential in subject 1. However, when
looking at the plots from the other two participants,
which are reported in Appendix B, we can see that
the P300 potential was not as prominent for these
participants. Based on these 3 participants alone,
we cannot draw general conclusions with respect to
the occurrence of a P300 potential as a result of this
specific auditory set-up. Further research, possibly
with more subjects, would be required to draw such
conclusions.

Since we expect to find an ErrP that is similar
to the interaction ErrP from Ferrez & del R. Millán
(2008), we compare our results with Figures 3 and 4.
When comparing the topographical plot from subject
1 (Figure 6b) with Figure 4, we see little resemblance.
We make a more precise comparison by comparing
the zoomed-in error-minus-correct plot of the FCz of
subject 1 (Figure 8) and the grand average from Fig-
ure 3. We are not able to spot the characteristics of an
‘intention’ ErrP (Ferrez & del R. Millán, 2008) in our
Figure 8. The error-minus-correct grand average line
generated using data from the all subjects (Figure 9)
also did not show resemblance with the components
of the interaction ErrP. Hence, we can conclude that
the feedback phase of this experiment did not elicit
an interaction error potential. A possible explanation
for this observation is that the participants noticed
that in the first trials of the experiment no real classi-
fier was used, which caused a weaker response to the
feedback and bad training data for the ErrP classifier.
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For future research, it should be stressed to subjects
that during all trials the feedback is generated using
their brain signals. A second explanation for the lack
of error potentials could be the simple design of the
interface. The feedback might need to be provided in
a more noticeable manner, by for example intensify-
ing the correct answer rather than simply removing
the answer that the P300 classifier predicted was not
the one chosen by the user.

The weak P300 potentials could explain the low
accuracy of the online and offline trained ‘P300’ clas-
sifiers. Both classifiers performed at chance and
therefore made random predictions. The ‘ErrP’ clas-
sifiers performed well below chance. This could be
explained by the fact that there were no error poten-
tials elicited during the feedback phase which can be
seen in the event-related potentials plots (e.g. Figure
9). The classifiers did correct some mistakes from the
P300 classifier, but also frequently corrected trials for
which the provided feedback was already correct, re-
ducing overall accuracy. In some cases (offline subject
1 and online subject 3) a higher accuracy was found
in the condition with corrections of the ErrP classi-
fier. The only reason we can think of as to why this
occurred is nothing more than chance. The low per-
formance of the classifiers could also be explained by
the type of classifier that was used. We chose simple
linear classifiers, whereas this data might need more
complex classifiers that could adapt more easily to the
peculiarities of the recorded EEG data. This could
be tested in future research.

To conclude our research, we were not able to
confirm nor deny our research question because of
the small scale. The concept of a second classifier
trained to spot interaction error potentials and as
a result corrects earlier classification mistakes still
sounds promising. For future research, more thought
should be put into the design of the interface and the
choice of classifier.

References

Anaconda Spyder package 3.1.4 (2017). Spyder:

The Scientific Python Development Environment.

Retrieved from https://anaconda.org/anaconda/

spyder

Biosemi (2019). Retrieved from https://www.biosemi.

com/

Birbaumer, N. (2006). Breaking the silence:

brain–computer interfaces (BCI) for communication

and motor control. Psychophysiology, 43(6), 517-532.

Farquhar, J. (2014). Buffer BCI toolbox. Retrieved from

https://github.com/jadref/buffer_bci

Farwell, L. A., & Donchin, E. (1988). Talking off

the top of your head: toward a mental prosthesis

utilizing event-related brain potentials. Electroen-

cephalography and clinical Neurophysiology, 70(6),

510-523.

Ferrez, P. W., & Millán, J. D. R. (2008). Error-

related EEG potentials generated during simulated

brain–computer interaction. IEEE transactions on

biomedical engineering, 55(3), 923-929.

Furdea, A., Halder, S., Krusienski, D. J., Bross, D.,

Nijboer, F., Birbaumer, N., & Kübler, A. (2009).
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Appendix A

The trivial Yes/No Questions Used in the Experiment

1. Is it January 5th today?

2. Are the Netherlands and China neighbour
countries?

3. Is Nijmegen the capital of the Netherlands?

4. Does everyone have the same DNA?

5. Does the Netherlands have a king?

6. Is the earth flat?

7. Do you use a knife to eat soup with?

8. Do you need fire to light a candle?

9. Does an airplane fly faster than a bird?

10. Do bees sting?

11. Is Paris the capital of France?

12. Does a circle have corners?

13. Does 1 plus 2 equal 3?

14. Are roses tall trees?

15. Are lamps used to tell time?

16. Is a violin a musical instrument?

17. Is Berlin the capital of the Netherlands?

18. Are ovens used to freeze things?

19. Are pillows usually soft?

20. Do pigs walk on two feet?

21. Is a window transparent?

22. Is a table an animal?

23. Is water wet?

24. Can a microwave heat things up?

25. Is Amsterdam the capital of the Netherlands?

26. Do plants need water to survive?

27. Can you watch a movie on a television?

28. Are there 50 minutes in an hour?

29. Do cats live in the ocean?

30. Is bread edible?

31. Are needles sharp?

32. Is grass usually green?

33. Does the sun usually rise every day?

34. Is London the capital of the United Kingdom?

35. Is drinking poison good for you?

36. Does 4 minus 4 equal 3?

37. Are clouds white?

38. Do dolphins live in the ocean?

39. Can a lamp emit light?

40. Does a square have five corners?

41. Is a fork used to cut things?

42. Are tulips flowers?

43. Is a calculator a musical instrument?

44. Is sugar sweet?

45. Are trees usually purple?

46. Can you sit in a chair?

47. Is drinking bleach good for you?

48. Does 2 times 4 equal 8?

49. Should you ride a bicycle on a highway?

50. Can a pen be used to write things?

51. Is a mouse an animal?

52. Does wood come from trees?

53. Can you watch a movie on a radio?

54. Is football a sport?

55. Is an eraser used to write?

56. Is nail polish used on nails?

57. Is your birthday twice a year?

58. Are phones used to make calls with?

59. Does the Netherlands have a lot of mountains?

60. Do cars only drive backwards?
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Appendix B

Event-Related Potential Plots of Subjects 2 and 3

B.1 P300

(a) (b)

Figure 10: Scalp potential topography created using P300 data from (a) subject 2 and (b) subject 3. Blue and
orange lines resemble the attended and unattended streams, respectively.

(a) (b)

Figure 11: Zoomed plot of the Cz electrode generated using P300 data from (a) subject 2 and (b) subject 3.
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B.2 ErrP

(a) (b)

Figure 12: Scalp potential topography created using ErrP data from (a) subject 2 and (b) subject 3. Blue and
orange lines resemble the trial in which erroneous and correct feedback was given, respectively.

Figure 13: The ‘Error’ line represents the trials in which an ErrP was detected, whereas the ‘Correct’ lines
detect the lines where no ErrP was detected. Generated of data from subject 1.
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(a) (b)

Figure 14: Zoomed in plot of electrode FCz generated using data from subject 2. (a) This plot makes a
distinction between the trials in which erroneous and correct feedback was given. (b) This plot shows the
error-minus-correct line.

(a) (b)

Figure 15: Zoomed in plot of electrode FCz generated using data from subject 3. (a) This plot makes a
distinction between the trials in which erroneous and correct feedback was given. (b) This plot shows the
error-minus-correct line.
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