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Abstract

Our research builds on and adds to the prediction processing theory, specif-
ically to model updating and model revision. We propose a hyperparameter
approach to model updating at the computational level, designed to add preci-
sion to beliefs, which we tested via computer simulations. We also introduce
the concept of unexpected high prediction error, which can be used as a signal
to revise the generative model of agents. The latter links two of the proposed
methods the brain uses to reduce future prediction error.

1 Introduction

In recent years, predictive processing has emerged as one of the main theories about
the workings of the brain. The theory describes the brain as a generative model that
acts as a minimisation machine. The brain makes predictions about the world, then
resolves any prediction error resulting from that prediction, a difference between the
prediction and the observation, such that less prediction error will be generated in
the future. This theory is part of the free energy principle (Friston, 2010).

A important question is how exactly the brain resolves prediction error. A vari-
ety of possibilities have been proposed, ranging from active inference to changing
the level of detail. Our work builds on the formalisation at Marr’s computational
level of explanation by Kwisthout, Bekkering, and van Rooij (2016). Much of the
work involved in predictive processing uses Bayesian networks as their generative
model. The model that we used is a causal Bayesian network, which adds the as-
sumption that arrows in the network denote causal relations.

It is currently an open question when, as well as if, these proposed methods of
handling prediction error should be used. By adding to one of these methods,
model updating and testing its workings in one trivial and one non-trivial simu-
lation, we aim to provide more insight in how these solutions to prediction error
might be linked. In particular, a link between model updating and model revision
is proposed, based on the occurrence of unexpected and high prediction error. By
verifying whether this particular prediction error was a single occurrence or was
part of a new, persistent pattern, we gain valuable information as to whether the
world has altered, and therewith if model revision is a better solution than model
updating.

1.1 Model updating

Model updating adjusts the beliefs about the world without changing the model or
factors that play into it. Rather, conditional probabilities change as contrary evi-
dence is observed. For example, an agent might have the belief that the change of



it being sunny at any given day is quite high. Given many rainy days in a row, we
can expect this belief to have shifted to a more balanced prediction, or even biased
towards downfall. In terms of our model, model updating is equivalent to updating
the probabilities in the probability tables of the variables in our Bayesian network.
We will use the term beliefs when talking about these probabilities.

When reasoning about beliefs in this generative model, an important conceptual
distinction must be made between reducible, irreducible and unexpected uncertainty
(Angela and Dayan, 2005). Reducible uncertainty is the part of our prediction that
is uncertain due to lack of experience or knowledge, and is linked to the precision of
a prediction. One might not know that a die tends to have a uniform distribution,
for example. In this case, gaining new experiences is a valuable goal. Irreducible
uncertainty originates from the world itself and cannot be overcome. It is inversely
proportional to the precision of the prediction error. No matter how many times
a fair die is rolled (ignoring the erosion and similar changes such repeated rolling
would have on it), the probabilities of it landing on any given side do not change.
In other words, the complexity of their outcome is irreducible. In this case, it would
be a fruitless endeavour to acquire more knowledge, as it will not result in a better
understanding of the world. Unexpected uncertainty arises when the observation
is very different from a prediction with high precision. This signals an exceptional
observation.

Single probabilities, as are the norm in standard Bayesian networks approaches,
do not provide information on whether a belief is based on no or little experience
or on a large sets of experience. Therefore, it cannot be analysed how much of the
complexity of the prediction arises from reducible complexity. Without that knowl-
edge, it is difficult to quantify how much an agent should update its beliefs should
contrary (or even consistent) evidence be observed. Of course an agent can always
apply the same change whatever the certainty, but this is not an efficient approach,
as we will make our case now.

If beliefs are modified quite drastically each time, an agent adepts quickly to the
world, but is unlikely to develop stable view of it. The irreducible complexity of the
outcome of a coin toss would lead it to constantly switch its belief about the bias of
the coin, whereas humans would quite quickly decide that the coin is more or less
balanced, with the inherent probability of the system taken into the equation.

If on the contrary only a minor update is performed each time, beliefs are more likely
to approach the actual probability in the world, but they will take much longer to
learn. This again does not mirror human behaviour, where strong conclusions (false
though they may be) are derived from what is often a small set of data. A perfect
value between the two approaches might exists, but finding this value becomes a
model-specific parameter to solve.



1.2 Model Revision

Model revision acts by changing the structure of the model to reduce prediction
error. By assuming that previously irrelevant factors are now relevant, or the oppo-
site, prediction error can be explained. Building on the previous example, one could
take into account whether the sky is clouded or not to improve the predictions. This
would effectively double the amount of predictions that can be made, over which
model updating can be applied. In terms of our model, model revision is equivalent
to adding or removing variables and causal connections.!

To those familiar to probabilistic networks it is apparent that by introducing a
new factor upon which an existing one becomes dependent, the size of the probabil-
ity table multiplies. Specifically, by making a variable dependent on an additional
factor, one multiplies the number of possible input combinations that variable can
have by the number of values that additional factor has. If the prediction of sunny
or downfall was previously only based on a categorical variable of temperature, and
now also takes into account the cloudiness, there are twice as many cases in our
model (see figure 1).

Model revision is not feasibly applied whenever prediction error emerges however.
Assume that each time prediction error emerges the agent expands the generative
model to resolve that error. That would mean that each memory would be linked
to its own specific sets of variable values. This generative model will grow to an
enormous number over an average human lifespan and would not at all allow for
generalisation. Secondly, systems that contain any degree of irreducible uncertainty
cannot be explained away by model revision. Adding more variables does not solve
the irreducible, probabilistic property of the system, as even with the exact same
variable values the outcome cannot be predicted.?

Of course, model revision is not always needed. Instead, one can imagine that
in general, a model is updated via model updating and that the structure of the
model is only changed in (increasingly) rare situations of importance. This is a
‘generalise first, add later’ sort of approach. If (human) cognition worked in such
a manner, then looking at the prediction error might provide us insights into how
this system works.

1Some would include the adding or removing of values within a variable within model revision,
but we use the term ’changing level of detail’ for that approach (Kwisthout, Bekkering, and van
Rooij, 2016)

2This is a claim at the cognitive level, not the physical.



Temperature Temperature Cloudedness
Warm Warm Clouded
Average Average Clear

Cold Caold

Prediction | Temperature Prediction | Temperature, Cloudedness
sunny | Warm, Clouded

Sunny | Average, Clouded

Sunny | Cold, Clouded

Sunny | Warm, Clear

Sunny | Average, Clear

sunny | Cold, Clear

Sunny | Warm
sunny | Average
Sunny | Cold

Figure 1: Example of increasing number of variables. Entries for Downfall have been omitted for
size considerations. The left model is the agent’s before including cloudiness in the evaluation of
weather prediction. The right model is after model revision has occurred.

Our work intended to find cognitively plausible answers to the issues raised above.
In particular, our research tried to answers two questions:

- How can the scale of updates of beliefs be determined in model updating?
- What link, if any, exists between model updating and model revision?

The answer to the second question in particular was based on cognitive biases found
in humans.

2 Hyperparameters

Hyperparameters offer a good solution to the problem of what the scale of updates
of beliefs should be. By representing agent beliefs not as a singular value but rather
as a function, we can describe in detail how certain that agent is about them, or
in other words how much precision predictions have (Friston, 2008). We used a
beta distribution in our work as the function of the hyperparameter, denoted as
Beta(a, B) for any real numbers o and 3.* This function acts as our probability

3Beta distributions work as a conjugate prior for Bernoulli or binomial distributions. For a
general function for any multivariate distribution, a Dirichlet distribution is the general alternative.
The workings of this function were not investigated but should be similar to the beta.
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Figure 2: Ezamples of beta-distributions. Beta(1,1) is the baseline in our research.

density function for binomial belief variables (examples of which are the outcome of
a coin, odd or even in a die, betting on the outcome of a drawless two player game
etc.) (MacKay, 2003).

If the curve is slanted to the left or right, the belief tends towards failure or success,
respectively. The singular value of the belief of the outcome, as used in Bayesian
inference, is defined as the average of the beta distribution values:

a
a+p

P(x=1)= (1)
where = denotes a Bernoulli or binomial variable and « and S are the the parame-
ters of the beta distribution. Examples of how « and [ influences the shape of this
distribution are shown in figure 2.

As mentioned the beta distribution also contains information about the precision
of the belief. As we have a continuous function between 0 and 1, there is almost
always a non-zero value for each probability. In other words, an agent believes
a spectrum of possible probabilities, with some being more likely than others. A
broad, low peak indicates lack of certainty about the actual belief, or an uncertain
precision. A narrow, high peak represents a more certain belief, or more certain



precision. In general, we formally define the uncertainty of the prediction as the
entropy (Shannon, 2001) of the hyperparameter. Our prior probability is Beta(1,1),
which corresponds to a uniform distribution over all probabilities, which can be seen
as complete ignorance in which all possible probabilities are judged to be equally
likely, as well as possible.* The entropy is maximal for this prior, thus taking to
mean the most uncertain state.

2.1 Learning Hyperparameters

Since we are operating with a Causal Bayesian network as our generative model,
a learning approach in line with the probabilistic foundations thereof is desirable.
Specifically, agents using these hyperparameters would still like to make use of Bayes’
rule to update their beliefs.

P(B|A) x P(A)

P(AIB) = == 5 )

Where A and B are any factors of the Bayesian network, in the agent’s case beliefs.
Bayesian updating is defined for beta distributions as well. If our dataset consists
of n datapoints, which are labelled either successes (s < n) or failures (f =n — s),
as beta distributions are binomial representations, the formula for the posterior
probability for a parameter a given its prior and the evidence is:

PTiOT(a; Aprior, Bprior)£(37 f|a)

Posterior(a = pl|s, f) =
( ’ ) fOl PT’iOT(CL; Cprior; Bprior)ﬁ(& f|a)da

(3)

Where L is the likelihood function given the evidence, and the integral is a normal-
isation step to ensure the probabilities sum to 1. This can be rewritten as:

a5+aprior_1 (1 _ a)f“l‘ﬁprior_l

fol (a5+04prior_1(1 J— a)f“l‘ﬁprior_l)dx

Posterior(a = pls, f) =

(4)

In other words, one can find the posterior probabilities by adding the successes to
the o parameter and the failures to the § parameter, then calculating the values
and normalising to sum to 1.

The definition as described spans a single iteration. Online learning requires a
repeatable approach, since agents need to function to their best understanding at
every timestep as new data is observed in the world. The simplest adaptation from
this one-step approach to an online approach rests on the observation that successes

4The use of Beta(1,1) is not an undisputed decision in general, but since the focus of the
research was on the development of hyperparameters and entropy thereof, this prior was the most
appropriate pick (as well as in line with Thomas Bayes’ suggestion (Bayes, 1991)).



or ones are added to the o parameter, and the failures or zeroes to the 5. Since any
values for o and f result in a probability density function, it is perfectly possible
to increment this step by step, as opposed to all at once. This guarantees that
given the same data, both approaches end up with the same belief. Thus, the final
beta distribution shape is independent of the order of the evidence. While this is
apparent, it is not so easily identified what happens to the intermediary beliefs and
prediction errors between beginning (Beta(1,1)) and end.

2.2 Development in Simple Experiment

To get a better insight into the development of hyperparameters and their link to
prediction error a simple coin-flip simulation was ran. The agent’s model is a triv-
ially simple network consisting of one variable: coin outcome. In each timestep,
the agent makes a prediction over the outcome and makes an observation. We then
determine firstly the prediction error, secondly the next increment of the hyper-
parameter function, and thirdly the weighted prediction error, which we define as
the Kullback-Leibler divergence between the prior and posterior model in a single
iteration. The Kullback-Leibler divergence is defined as:

P(i)
Qi)
where P is the observed distribution and Q the predicted distribution.

These distributions for the prior and posterior model are extracted from the hyper-
parameter via the average.

Drr(PllQ) = Z P(i)log (5)

Three datasets were used in this experiment, each consisting of 100 coinflip out-
comes: 50 of these flips were tails and 50 were heads. The difference between the
sets was the permutation of those outcomes. The first sets is the homogeneous or
paired set, where each tails outcome is followed by a heads outcome. This is the
perfect pattern of an even distribution, and should elicit the lowest overall error.
The second dataset is the sorted set, where the first 50 outcomes are tails, and the
rest is heads. The final dataset is a random dataset, where the outcomes are shuffled
by a pseudo-random algorithm.

The result can be seen in figure 3. Here predictions were based on the outcome
of a single coinflip. As predicted, the final curve shape is identical for all datasets.
However, the intermediate distributions vary greatly. Being the most balanced, the
homogeneous set quickly approaches the true probability and deviates very little
from it. We see this reflected in the prediction error. Initially the model tends
towards failure, leading to a higher prediction error when heads is observed. As the
probability converges on the 50% threshold, the prediction errors become more and



more stable at the value 1. This is also reflected in the weighted prediction error,
the changes between prior and posterior belief only decrease in size. The sum of the
error is lowest for this dataset.

The sorted set slants heavily towards failure (tails) initially, in line with the ob-
servations. Then, the curve slowly returns to the same ending value. We can see the
shift in observations clearly from the spike in both normal and weighted prediction
error. This set has the highest sum of errors.

The random dataset, arguably the most likely to occur in natural systems, varies
more in terms of prediction error, as groups of subsequent equal observations lead
to temporary low prediction error. These groups are not of sufficient impact on the
belief that a spike appears in the weighted prediction error however, which develops
far more similar to the homogeneous set than the sorted. The random dataset’s
error lays somewhere between that of sorted and homogeneous.

This experiment was ran with predictions made over a single coin outcome. There is
no reason to limit a prediction in this manner, as one can easily imagine situations
where more than one coin must be taken into account. Additional experiments were
run where predictions were made over multiple coin flips. The result thereof are
discussed later.

3 Unexpected High Prediction Error

The prediction error spike in the sorted distribution (appearing both in normal and
weighted error) is easily linked to the switching from failure (tails) only to successes
(heads) only. Indeed, if a series of coin flips like in the example would occur in a real
life setup, it is unlikely that humans would accept this to be the result of chance,
despite the series not violating any axioms of probability.® Rather, observers might
describe alternative hypotheses: one rigged coin was swapped for another, a mag-
netic field influences the coin to a certain outcome (and was switched to a different
mode) or they were subject to a magician’s trick. These alternative hypotheses all
share that additional information of the world is taken into account. To fully explain
their observations, the model needed more variables than just the coin itself. This
idea exists predictive processing as model revision.

In order to generalise this observation however, the question of when such a switch
from parameter learning to model revision should take place needs answering. Our
proposal is that unexpected high prediction error provides a theoretically plausible

5Tt would seem equally unlikely that the homogeneous series would be seen as a result of random
processes, not design. However, since this series elicits no unexpected high prediction error, the
further results and theory do not apply for it.
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Figure 3: Overview of the coinflip experiment. Plotted from left to right are: the prediction error
per prediction, the evolution of the hyperparameter and the weighted prediction error, for each of
the three datasets. Points of interest are the sum of all the errors, denoted above the left column,
the high spike midway in the sorted dataset and the logarithmic scale of the weighted prediction
error plots.

answer. Unexpected high prediction error (henceforth UHPE) is defined as predic-
tion error greater than a certain constant k. This k£ can be interpreted as an upper
bound on expected surprise. In the current definition, it is a parameter specific to
the model. If an UHPE occurs, it means that an observation was made of which the
probability, given the belief, lies in the tail end of the spectrum. There are multiple
ways in which this can happen. It could be that an observation was the opposite
of prediction based on a very slanted belief (winning a lottery), but could also be
a very unlikely series of observations, regardless of how slanted the belief is (f.e.
throwing an odd number on twenty subsequent die rolls).

It should be noted that this definition is only of several, and only looks at the pre-
diction error. There is a good argument to be made to base this k£ on the weighted
prediction error, since this is influenced not just by the observations, but also by the
precision of the belief. The jagged nature of the prediction error with the random
dataset (figure 3) is not nearly as strong in the weighted prediction error, suggestion



too that the latter is perhaps a more reliable metric. Changing the approach thusly
does lead to the problem that the value of £ must be updated constantly as changes
in the model necessarily become smaller over time, due to the growth of o and f.
We chose the former approach, using standard prediction error, over the latter as
it is simpler and the results are meant to be taken more as a proof-of-concept than
final formalisation.

3.1 Dealing with UHPE

Having determined when we speak of UHPE, the question is how an agent deals
with this. 'Nothing” would be a perfectly plausible answer, but does not make use
of the insights of what causes this phenomenon. Rather, the agent would like infor-
mation on whether this UHPE originated from an unlikely, single occurrence or if
the world has changed. To this end, the agent will want to postpone updating its
beliefs, repeat a similar sets of action as those that elicited the UHPE, then evaluate
the outcome. If the agent would not postpone updating until after this check, this
would create a different baseline for new observations to trigger an UHPE, which
would not translate to a similar assessment.

If the observations from this repeated pattern are as the agent expected initially
(i.e. the repeated pattern does not elicit an UHPE), the agent concludes that the
UHPE was caused by an exceptional observation, and may or may not use this to
observation to perform model updating on. Choosing to update based on the ex-
ception ensures that beliefs are based on all observations, while choosing not to use
it for updating is a direct attempt at reducing immediate prediction error.®

If the repeated observations still (or again) elicit an UHPE, the agent concludes
that something that is not yet detailed in its generative model has changed. The
better method to deal with this prediction error is model revision, as it would take
(increasingly) many trials to adjust the beliefs to the new values using model up-
dating, and there is no guarantee that once stable, the world won’t change back to
the previous state. To reasonably avoid future prediction error, the agent should
include the previously unused variable in its model. How the agent determines what
this variable is and how it relates to other, known variables in the model is an unan-
swered question. It is also not clear what these new beliefs should look like: similar
to the old belief or back to an uninformed state? We won’t go into the answer to
these questions, restricting the topic to the question of when this switch in approach
takes place.

61f the agent updates towards the tail end of the spectrum from the mean, the expected predic-
tion error in following visits might be higher than if it does not update. In that case, by ignoring
current error future error is avoided. Whether these sort of considerations should be included, or
are indeed true, is another question altogether.

10



Of course this approach is not without its assumptions. For starters, there is no
reason why two consecutive UHPE’s could not result from the probabilistic nature
of a model. As unlikely as a single roll yahtzee is, this does not change anything
about the probabilities of the next outcome. However, the likelihood of consecutive
UHPE’s is very small. One can define an UHPE as an observation of which the
probability of occurrence is a probability function on k. To get two of these, one
would need to square this probability. Since the chance of an UHPE is, by definition
low, the square of this is even lower. Given P(UHPE) = F(k) = 0.05, the prob-
ability of two UHPE’s would be 0.0025, or one in four hundred. In simple models
this is well within expectation to happen during an average lifetime of a human, but
in greater models this is less and less likely, since we also need to take into account
the chance that all other variables have the same value.

Secondly and conversely, finding that the repeat pattern does not elicit an UHPE
is not proof that the world has not changed. It could very well happen that after
the world changed, an unexpected series of events occurs. In our model, the agent
would then not resort to model revision. It is however, quite apparent that if the
agent were to continue to operate in the same model, an new UHPE would occur
rather quickly, with model revision following suit.

The rest of this research builds on the premise that UHPE’s can signal model revi-
sion as explained above.

3.2 UHPE and Human Behaviour

One of the main inspirations for the UHPE and how one should deal with it came
from the mobile paradigm (Rovee-Collier and Kupersmidt, 1978). In this experi-
ment, a baby laid in a crib. As the baby kicked its limbs, the frequency thereof was
recorded. After establishing the baseline a ribbon was attached to a mobile and
one of the limbs of that baby. This resulted, presumably because the baby wanted
the mobile to move, in an increase in kicking frequency in that limb, and only that
limb. When the ribbon was cut after this increase, the kicking first spiked in what
is called an extinction burst. Only then did the kicking frequency decrease.

A possible explanation for this extinction burst is that the baby is testing its sup-
posed knowledge in rapid succession in order to falsify it. In that regard, we can
imagine other situations where this kind of behaviour would emerge. Suppose that
we close a door behind us while talking to somebody. If, unbeknownst to us the
door locked itself shut, we can imagine that upon trying to open it again the agent
would experience high surprise. This could be followed by a rapid series of jerks in
an attempt to open the door. Only then will the agent conclude that something

11



must have changed in the world, most likely that the door must have locked itself.

Other examples include rereading a message containing unexpected news, refreshing
a webpage multiple times when the internet connection is lost, trying the switch to
a broken lamp multiple times, taking multiple small bites from a spoilt sandwich,
sliding your foot back and forth across an unseen layer of ice and so on.

Such scenarios, in predictive processing terms, follow the structure of model up-
dating, UHPE, repeat pattern and model revision, where the repeated behaviour is
the falsifying step. When the agent modifies its model to account for a change in the
world (door fell in its lock, internet is down...) the prediction error can be explained.
From there on out the agent will have to learn how this new factor influences its

beliefs.

4 Babybots

Having gathered an understanding of how hyperparameters evolve over time and
how UHPE’s can be used as an indicator for model revision, it is informative to test
these findings on a non-trivial model. Our research used the babybots as used in
earlier research by Otworowska, Zaadnoordijk, de Wolff, Kwisthout, and van Rooij
(2016). The babybot is a simulation of the mobile paradigm discussed earlier, and
simulates the movement of a mobile that is dependent on the movement of the
baby’s limbs. The model used by the babybot is a causal Bayesian network consist-
ing of hypothesis, intermediate and prediction nodes (Kwisthout, Bekkering, and
van Rooij, 2016). The hypothesis nodes in this network are a motor command for
each limb of the baby (MS_LeftLeg, MS_RightLeg, MS_LeftArm, MS_RightArm).
The intermediary nodes are the previous and current limb position for each of the
limbs (Prev, Cur for all combinations). We have only a single prediction node, Mo-
bile Movement, which is dependent on all previous and current limb positions. A
simplified network with the values of each variable is shown in figure 4.

The previous limb position is the current limb position in the previous timesteps.
Initially these positions are all at the lowest position. A movement can, in its lowest
position, be given the motor signal 'down’. In that case the limb will stay in its
position. Similarly for a high position and command "up’. All the probabilities are
known and deterministic except for the influence of the limb positions on mobile
movement. These deterministic probabilities are also not subject to any change
during the experiment.

In accordance with the set-up in the previous work, the babybot uses the concepts of
exploration and exploitation. Exploration is meant to reduce uncertainty, or increase

12



Figure 4: The babybot model (Otworowska, Zaadnoordijk, de Wolff, Kwisthout, and van Rooj,
2016). This causal Bayesian network depicts only a single limb: the complete network had one
variable for each of the four limbs, with the exception of mobile movement, which was influenced
by all eight limb variables.

precision for future predictions (Friston, Rigoli, Ognibene, Mathys, Fitzgerald, and
Pezzulo, 2015). Therefore, uncertain beliefs are prioritized when exploring. As the
entropy of the hyperparameter is the measure of uncertainty, exploration picks the
motor commands via:

ar gmax HypothesisNodes (H (P (PredictionNode | HypothesisNodes) ) ) (6)

Thus exploration picks the most uncertain combination of limbs commands. One
could also define a likelihood to all combinations dependent on the entropy of that
state, with more uncertain states becoming more likely, but this not was not done.

Exploitation aims to make use of gathered knowledge to avoid uncertainty in the
present (Friston, Rigoli, Ognibene, Mathys, Fitzgerald, and Pezzulo, 2015). This
means that the most likely probability of the prediction node given the hypothesis
is chosen, via:

argMmax HypothesisNodes (P (PredictionNode = true ‘ HypothesisNodes)) (7)

Again, one could apply a similar likelihood approach with exploitation, but this was
not done.

13



There is an intuitive tradeoff between exploration and exploitation. Naturally, ex-
ploiting on the bases of no knowledge is not an efficient approach. So when there
is much uncertainty (as would be case in an unfamiliar environment), exploration
should be preferred over exploitation. Conversely, when there a great deal of preci-
sion, it makes little sense for the agent to subject itself to higher prediction error if
it can be avoided with high precision. Thus, in familiar situations an agent should
primarily exploit. Our babybot explores for a fixed number of iterations first, only
to switch to exploitation indefinitely thereafter.

An important property that the prediction error should have is that it is relatively
stable, the reason being that it should not elicit a UHPE when nothing has changed
in the world.” Since k is a free parameter in our current formalisation, we can
analyse for different values of k when the prediction error would lead to an UHPE.
Ideally this should occur when the ribbon is cut, or shortly after. Since the how
of model revision was not investigated, the simulation will only mention when £ is
exceeded.

4.1 Experimental Parameters

In our experiments we used 25000 iterations or cycles (meaning prediction over single
outcome and matching observation) to explore, then another 25000 iterations to
exploit. Afterwards, the ribbon was ’cut’ and another 2000 iterations of exploitation
were added. These numbers were not analytically determined, and certainly not
found via comparison to human numbers, but were empirically found to have a
good tradeoff between desired results and speed. All entries in the probability table
of Mobile Movement were linked to a Beta(1,1) baseline. To find an UHPE, a value
of k = 10 was used. This was also not found through analysis but empirically tested
to work well. The repeated pattern to falsify an UHPE, as described earlier, was
not implemented in the simulation.

4.2 Babybot Results

The results of the simulation are summarised in figure 5 and figure 6. The kicking
frequency and prediction error were averaged in groups of 100 cycles for clarity. In
actuality, both the prediction error and limb movement varied substantially more
than showcased.

"This is not unlikely to happen eventually in full cognition, but should not happen in an
experimental setting such as this, where factors are very still limited.
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The limb that was attached to the ribbon was moved more often than the other
three limbs, which remained roughly at chance level. Due to the nature of our ex-
periment, there was no smooth increase from the explorative baseline to the full
exploitation, which is inconsistent with data gathered from infants. Kicking fre-
quency went down after the ribbon was cut, but not substantially.

The average error during exploitation was higher than during exploration. This
is the inverse of what one would expect given the definition of exploitation. There
did seem to be a greater deal of consistency in the prediction error than in explo-
ration, which would agree with the nature of the two strategies.

An UHPE was found at £ = 10 at iteration 50019 and 50033, roughly around
the time of the ribbon cut. This prediction error was far higher than the average
at that point which was roughly 3.25. This is indicative of the volatile nature of
the prediction error. Nevertheless, for this particular value of k£ the UHPE correctly
denoted a change in the world (the ribbon being cut). This spike in prediction error
was similar in appearance to that in the coinflip experiment.
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Figure 5: Depiction of the kicking frequency of the babybot. Blue denotes the limb that is attached
to the ribbon. The probability of movement is 0.5 for any limb if motor commands were chosen
randomly. The values are averages of a 100 cycles.
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Figure 6: Development of prediction error over time. The three distinct phases of the experiment
are sectioned. Values shown are averages of a 100 cycles.

5 Conclusion

Our research found that the attached limb increased its kicking frequency during
exploitation, though average prediction error was higher than during exploration.
An UHPE was found after the ribbon cut.

We conclude that hyperparameters offer a consistent and informative alternative
to single value beliefs. The added notion of precision allows for a natural diminish-
ing effect of new observations on the beliefs, where earlier data causes more change
between prior and posterior beliefs than later data. This property leads to eventual
stability without sacrificing quick approximation of an agent’s beliefs. Our research
has also shown that learning of both trivial and non-trivial models is possible using
model updating with hyperparameters.

The prediction error being higher on average during exploitation than exploration
is inconsistent with the theory. It is unclear whether this was the result of code
error, model specific properties or chance. However, the prediction error can still
be used to find highly improbable observations, which could point to a changed
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world. These UHPE’s can be used to signal model revision, pointing at a possible
link between model updating and the former.

6 Discussion & Future Work

The babybot took a lot of iterations to learn the mobile paradigm. This is inconsis-
tent with observations in humans, where similar patterns emerge in a much smaller
timespan. A possible suggestion to align this better is to make the model updat-
ing step more volatile. This can be done by changing how « and [ are updated.
Alternatively, one could also spread the activation by not choosing values for all
hypothesis nodes, but only those of interest. If those hypothesis nodes that are not
manipulated are interpreted to have their values at equal probabilities, more than
just one of the table entries of a prediction node is updated. This could drastically
increase the rate of learning in simple cases. It is not clear however whether this
approach would have an adverse effect on more complicated situations (f.e. both
arms must go up, both legs down for the babybot).

Currently, our babybot uses a very implausible method to decide whether to ex-
plore or exploit. A more natural approach would have a very low, initial exploitation
probability, that smoothly increases as the precision of the predictions goes up (i.e.
entropy lowers). Preferably such an approach would make use of precision.

Related to the previous point is to introduce the notion that actions cost energy.
Introducing a bias towards conserving energy might produce more humanlike be-
haviour. If at any time multiple hypotheses arise that have the same probability of
causing a certain (wanted) outcome of a prediction variable, that hypothesis which
moves fewer limbs is preferred.

Having found a good indicator of world change, a natural next step is to inves-
tigate how model revision finds alternative explanations and determines the causal
links with regard to the existing model. In addition, although we proposed a mech-
anism that signals that a variable should be added to the generative model, there is
no reverse step. How and when the removal of a redundant factor takes place is the
second half of the question, that we did not explore. Perhaps this is not necessary,
as model updating might remove the effect this redundant variable has in the model.
Still, the existence of that causal relation is open for interpretation: does the agent
still believe there to be a causal effect, or is it no longer seen as a variable that
should be taken into account?
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Finally, the falsification step following an UHPE needs formal defining. Ideally,
this formalisation should lead to a rapid pattern of actions that use the current
model to check whether the world operates as thought. It is possible that extra
parameters need to be added to allow this check.

7 Alternatives Approaches

At various stages during research alternative approaches were considered. The first
of these was a different updating step in the hyperparameter. In the current set-up,
precision of belief is always increased: no evidence will cause uncertainty to come
back. This is valid when considering a lot of data all at once, but perhaps less so if
this evidence is processed in small batches, after which new beliefs arise.

We briefly looked into ways of implementing this uncertainty factor into our model.
The most simple was a simple discount factor vy for which 0 <~ <1 that the prior
«a and [ parameters are multiplied by before each iteration. This guarantees that
after there is a point where more evidence does no longer increase precision. Thus,
an agent will only have a certain belief if it recently saw a series of observations that
conform to it. Additionally, after each update the older evidence reduces in impor-
tance, which leads to a recency factor. We chose to use the statistically accepted
definition of Bayesian updating in our simulations instead of this v approach, but
adoption of this idea may lead to more flexible beliefs that filter out old, redundant
observations.

We also looked at an alternative strategy of picking between exploration and ex-
ploitation rather than the threshold strategy described. Specifically, a softmax ap-
proach was used.

argmaz (eP(PredictionNode)/T)

Zi e Pi(PredictionNode) /T (8)

P(Exploit) =

where T' is the sum of all standard deviations of the hyperparameters. The idea
of this approach was that as the more evidence was gathered, the more peaked
the hyperparameter distribution would become, leading to a smaller standard de-
viation. Therefore, the temperate would drop, causing the chance of exploiting to
increase naturally over time. However, test in the babybot simulation showed that
the temperature did not diminish enough to reach this effect.
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