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Abstract 

The research objective is to gain more insight into the dynamics of the iterated entry 

deterrence game through a system dynamics approach. While the entry deterrence game has 

been analyzed many times over, a system dynamics approach can generate new insights. 

Especially since letting go of assumptions that constrain game theory solutions can lead to 

very different outcomes than those predicted by system dynamics models. 

 

The system dynamics model of the entry showed that the entry deterrence game could not 

be solved through Bayesian updating and that players instead base their decision on the 

history of the game. Each decision that the entrant and monopolist make are stored in the 

history of the game. Based on this history the players determine the probability of the other 

players’ action and their related expected payoffs. Moreover, analysis of the game showed 

that the amount of risk that the entrant is willing to take to enter the market is a crucial factor. 

If the entrant is not willing to take any risk, then the entrant will not enter the market if the 

probability that the monopolist will fight is sufficiently high. Besides a stable amount of risk 

the model also explored an amount of risk that developed over time. There were three forms 

of risk tested: declining growth, linear, and increasing growth. Each of the tested models had 

the same value in the 100th round of the game. Analysis showed that the declining growth 

model was most successful. Although it was fought more often the entrant enters consistently 

relatively early on in the game and can profit from this on the long term, because the sooner 

the entrants enter consistently the sooner the weak monopolist concedes.  

 

At the end of the thesis several recommendations for further research are provided. In 

general, this thesis confirms the value of modelling games. In relation to the model, there are 

some elements of the model that needs to be examined more closely such as the risk that the 

entrant is willing to take.  
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1. Introduction 

 

1.1. Background 

In the business market a company’s profit almost never solely depends on their own behavior, 

but it is also influenced by the behavior and decisions of other players in the market. The 

decisions and actions that others in the market take can have a positive or negative impact on 

another company its profit. Within such a market, a game between two or more entities is, 

therefore, easily formed (Ahmed & Hegazi, 2006). A possible game that can exist within a 

market is the entry deterrence game. In the entry deterrence game, there are two players: a 

monopolist and a firm that is a potential entrant into the monopolist’s market. The entrant is 

likely to enter the market if it can achieve positive profits. If the entrant enters the market 

then this has negative consequences for the monopolist; the monopolist will no longer be in 

a monopoly position and consequently its profits will decrease. However, the monopolist can 

choose to fight the entry with an aggressive market action, but this will cost the monopolist 

as well. When the entrant enters, the costs of fighting are higher than doing nothing for the 

monopolist (Carmichael, 2005). The structure of the game is as follows: 

 
Figure 1. The structure of the entry deterrence game 

 

If the game is only played once, then it makes sense for the entrant to enter the market and 

for the monopolist to concede. Even in repeated games, where the same players interact more 

than once, the outcome will not change if the game is played a finite number of times. The 

subgame perfect equilibrium of the game is entry followed by concede in every round of the 

game and can be found through backward induction. In this case, the last round of the game 

first is analyzed and then backward induction is used to work back to the first round. The logic 

of backward induction shows us that in each round the entrant enters and the monopolist will 
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concede since they have no incentive to fight off the entrant. Intuitively, this outcome feels 

wrong. It seems more logical that the monopolist will fight off entry to deter entry in a later 

stage. This is known as the paradox of backward induction, and is related to the entry 

deterrence game as the chain store paradox (Selten, 1978). To resolve the paradox of 

backward induction it is necessary to bring some uncertainty in the game. The uncertainty can 

be about when the game ends, the state of minds of one of the players or the pay-offs of the 

other player (Kreps et al., 1982). 

 

By building a system dynamics model of the entry deterrence game new insights can be 

discovered by comparing simulation runs of the system dynamics model with game theory 

solutions. Furthermore, the system dynamics model can be used to critique the game theory 

approach if differences emerge (De Gooyert, 2016). System dynamics is a methodological 

approach for modelling complex systems (Forrester, 1958). Most organizational problems are, 

due to their nature, suited for a system dynamics approach. They often contain actors that 

interact with one another. Their actions cause feedback and often generate nonlinear affects 

through time. These characteristics lead to dynamic complexities that can be studied through 

a system dynamics model (Sterman, 2000). The entry deterrence game has a dynamic nature 

and thus is suited for a system dynamics approach. Kim & Kim (1997) showed the value of 

constructing a system dynamics model for a mixed-strategy game. In their work, they analyzed 

a game between the police and drivers. In the game drivers had to choose between violating 

the law or not and Kim & Kim tested the effect of changing the size of the penalty. Their 

analyses showed that game players should not depend on the equilibrium for choosing their 

actions, because it takes a very long time for the equilibrium to appear. Furthermore, it 

showed that an increase in penalty can help to prevent drivers from violating the law. The 

latter was contradictory to the game-theoretic solution. Their work only focused on the game 

between police and drivers and is therefore cannot be generalized to other games. 

Consequently, there is still added value in modelling other games to see if there are 

differences between the game theory solution and the system dynamics outcome and how 

these differences can be explained. In conclusion, modelling can help to generate more insight 

in the entry deterrence game that cannot be gained from a game theory perspective.  
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1.2. Problem Definition 

This research will mainly focus on the dynamics in the entry deterrence game and will have a 

strong focus on the solution to the entry deterrence game that was proposed by Kreps and 

Wilson (1982). In their solution of the game the effect of reputation is taken into account. The 

aim of this research is to gain more insight into the dynamics of the entry deterrence game 

through a system dynamics approach. 

 

This leads to the following central research question: 

What are the dynamic mechanisms in the iterated entry deterrence game? 

 

The main research question can be divided into several subquestions: 

What is game theory? 

 What is the entry deterrence game? 

 What is the game theoretic solution to the entry deterrence game? 

 What is system dynamics? 

 How can the dynamics of the game be modelled? 

 

1.3. Scientific and Social Relevance 

The scientific contribution of this research is to gain more insight into the entry deterrence 

game. Since the introduction of the chain store paradox the entry deterrence game has been 

analyzed many times over. In the past, Kim & Kim (1997) already showed that modelling a 

game can generate new insights. Therefore, the scientific contribution for this research lies in 

revealing what can be learned from a system dynamics approach to the entry deterrence 

game. The focus will be on unravelling differences between the game theory solution and the 

system dynamic outcome and to explain how these differences come to be.  

 

The practical relevance of this research is that it can shed some light on some real-word 

situations. In practice, existing firms often deliberately try to deter the entry of other firms 

(Edwards, 1955). Companies have a number of strategies to deter entry that they can make 

use of. These strategies include predatory pricing, the building of excess capacity, raising 



 8 

rivals’ costs and product proliferation (Waldman & Jensen, 2014). This thesis provides a clear 

insight into the rationale behind these strategies.  

 

1.4. Set up of the thesis 

To answer the central research question in chapter two a theoretical framework will be given. 

This chapter will provide insight into what game theory and the entry deterrence game entail. 

Moreover, the focus for the entry deterrence game is given in this chapter.  

 

After the theoretical framework is given, the methodology of the research is explained in 

chapter three.  

 

In chapter four the system dynamics model of the entry deterrence game is given and 

discussed. This chapter will focus on how the model has been constructed. Then, in chapter 

five the system dynamics model is analyzed and the results of the model are given. In chapter 

six the validity of the model is discussed.  

 

Chapter seven contains the conclusion and discussion. In this chapter, the central research 

question is answered. Furthermore, the results, contribution to knowledge and practical 

implications will be discussed. Moreover, the discussion will contain a reflection on the 

limitations of this research and directions for further research.  
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2. Theoretical framework 

In this chapter, the theoretical framework for this thesis is laid out. The chapter focuses on 

multiple theories and sets them apart. Furthermore, the chapter explains the entry deterrence 

game in depth and explains why the thesis focuses solely on this game.  

 

2.1. Game theory 

Game theory is a technique that is used to study how interdependent decision makers make 

choices and can provide insight into many types of decision making (Waldman & Jensen, 

2014). Interdependent decision making means that the decision making of players is 

dependent on expectations about what others are doing since the outcome of their actions 

also depends on the actions taken by others in the game. A game always includes players, 

actions, strategies, payoffs, outcomes, equilibria, and information. Actions are all the possible 

moves that a player can make. Strategies refers to the rules that instruct each player which 

action to choose at each point in the game. An equilibrium is a strategy combination that 

consists of the best strategy for each player in the game. Furthermore, the amount of 

information that a player has available can differ for each game and even during the game. In 

games with perfect information each player knows every move others are going to make 

before moving themselves. In games with imperfect information the players do not know the 

move of other players. In the case of asymmetric information, not all the players have the 

same information. Lastly, there is the category of imperfect information. In this case, there is 

uncertainty about where players are in the game or who they are playing (Carmichael, 2005). 

 

Besides information another important distinction to make between games is the distinction 

between the sort of game.  There are three types of games that can be distinguished: games 

in strategic form, games in extensive form, and games in coalitional form. Games in strategic 

form are also known as simultaneous-move games and are often represented by matrixes. In 

games in strategic form players move at the same time, so their moves are not observed by 

other players. Games in extensive form are also known as sequential or dynamic games and 

are represented by game trees. In games in extensive form the players take turns and are 

aware of each other moves (Carmichael, 2005). Representing games in extensive form as 

matrices would be inaccurate, because it obscures the fact that one players already knows the 
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other player’s action before making a move (Waldman & Jensen, 2014). The entry deterrence 

game is an example of a game in extensive form. The entrant moves first and the monopolist 

reacts to the action the entrant took. Games in coalitional form are games in which more than 

two players negotiate and coalitions of two or more players can form (Von Neumann & 

Morgenstern, 1944). Coalition games are discussed in depth in subchapter 2.3.  

 

Another important aspect of games is repetition. Some games are only played once and are 

called one-shot games. Games that are played more than once are called repeated, multistage 

or n-stage games in which n > 1. Most games that involve companies are played repeatedly. 

This makes it possible for a player’s current action to affect future outcomes. Additionally, 

there is a distinction between finite, indefinite and infinite repeated games. If the game is 

played a finite number of times then the number of times that the game is played is fixed and 

there is a clear endgame. If there is an endgame backward induction can be used to predict 

the outcome of the game. If a game is played for an indefinite number of times then players 

know that the game is finite, but are unaware of when the game will end. In infinite repeated 

games players believe that there is no endgame (Carmichael, 2005). Most games played by 

companies are infinite games. For them there is usually no clear endgame and the players are 

likely to undertake certain actions hoping it will affect the future strategy of their competitors 

(Waldman & Jensen, 2014).     

 

The solution of a game depends on the sort of game. Games in strategy forms are solved 

differently than games in extensive form. Games in strategy form can be solved by 

determining the dominant-strategy equilibrium, iterated-dominance strategy equilibrium, or 

the Nash equilibrium. In a dominant-strategy equilibrium each player chooses their dominant 

strategy. A dominant strategy is a strategy that yields a higher payoff than any of the other 

strategies that are possible, no matter the choice that is made by other players (Baumol & 

Blinder, 2009). Not all games have a dominant-strategy equilibrium. If a game does not have 

a dominant-strategy equilibrium it might have an iterated-dominance equilibrium. An 

iterated-dominance equilibrium occurs when in a two-player game one of the players has a 

strictly or weakly dominant strategy. A strictly dominant strategy is a strategy that always 

yields a strictly higher payoff than other strategies as a response to all the strategies of the 

other player. A weakly dominant strategy is a strategy that yields equal payoffs as other 
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possible responses to some strategies of the other players and higher payoffs than other 

strategies in response to at least one of the strategies of the other player. Likewise, the other 

player should have a best response to the strongly or weakly dominant strategy of the player. 

If these two conditions are satisfied then the game has an iterated-dominance equilibrium 

(Carmichael, 2005). If a game does not have a dominant-strategy equilibrium or iterated-

dominance strategy equilibrium, it might still have a Nash equilibrium. A Nash equilibrium is 

a combination of strategies in which each player’s strategy is the most profitable response to 

the other player’s strategy (Dufwenberg, 2010). The dominant-strategy equilibrium and 

iterated-dominance strategy equilibrium are best responses and thus a Nash equilibrium. 

However, not all Nash equilibria are dominant-strategy or iterated-dominance strategy 

equilibria.  

 

Games in extensive form consist of multiple decision points in the game. This can resolve in 

players making threats to make certain moves within the game. If these threads are credible 

then these threats can influence the behavior of other players. Therefore, the concept of Nash 

equilibrium needs to be redefined in order to apply to games in extensive form. For games in 

extensive form the subgame perfect Nash equilibrium is more suitable. The subgame perfect 

equilibrium rules out strategy combinations that involve non-credible threats. A non-credible 

threat is a threat that is made by a player in the game, but would not be in the best interest 

of the player to carry out. The player only makes the threat in the hope that it is believed and 

that it is not necessary to take action (Carmichael, 2005). For games that are played a finite 

number of times, the Nash equilibria in each stage game leads to a unique subgame perfect 

equilibria and the subgame perfect equilibria can often be found through backward induction 

(Fink, Gates & Humes, 1998). For games that are played an infinite number of times the 

subgame perfect equilibrium cannot be found through backward induction. In this case, the 

subgame perfect Nash equilibrium equals the strategies that are credible and played by 

rational players. A strategy is credible if a rational player would stick to that strategy in any 

subgame of the complete game (Waldman & Jensen, 2014). Looking at the entry deterrence 

game in which a weak monopolist is facing an entrant the threat to fight off entry is not 

credible, since a rational player would choose to concede. A rational player would never 

choose to fight, because this results in negative pay-offs while conceding does not. Therefore, 

the entry followed by fighting is not a subgame perfect Nash equilibrium, but entry followed 
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by conceding is. However, there are situations in which the threat to fight of the monopolist 

can become credible. The entry deterrence game is fully discussed below, in paragraph 2.2. 

 

Additionally, a distinction that is made between games is cooperative versus non-cooperative 

games. In cooperative games players are allowed to communicate with each other and thus 

can make agreements with each other about which moves to make. These agreements are 

enforceable. In non-cooperative games, there is no ability to enforce agreements. Therefore, 

players have no incentive to agree on mutually beneficial outcomes and are more likely to act 

in their own self-interest (Carmichael, 2005).  

 

2.2. The entry deterrence game 

The entry deterrence game is a simple game in extensive form that according to Selten (1978) 

produces an inconsistency between game theoretical reasoning and likely human behavior. In 

this game, a monopolist controls the market and an entrant is considering whether to enter 

the market or to stay out. The situation can be depicted as follows in a game tree: 

 
Figure 2. The structure of the entry deterrence game 

 

As stated before, the subgame perfect equilibrium of the game for infinite repeated games is 

entry followed by concede in every round of the game and can be found through backward 

induction. The outcome can be found as follows. Imagine that there are ten rounds of the 

game. With backward induction first the 10th round is analyzed and backward induction is then 

use to work back from the 10th to the first round. If the entrant now would enter in the 10th 

round then it is logical for the monopolist to concede. There are no more repetitions of the 

game, so there is no incentive for the monopolist to do anything else. Conceding will give the 

monopolist the highest pay-off. The entrant is aware of this situation and will therefore enter 
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in the 10th round. From this it follows that entry followed by conceding is the subgame perfect 

Nash equilibrium in the 10th round. Knowing what happens in the 10th round the 9th round is 

analyzed next. If the entrant enters in the 9th round of the game then the monopolist has again 

no incentive to fight the entry. The monopolist already knows that the entrant will enter in 

the 10th round of the game, thus fighting in the 9th round of the game will not help to deter 

entry in a later stage. Each round is analyzed until the first round is reached. In each round the 

monopolist has no incentive to fight in this case, because it will not deter entry in a later stage 

in the game. Thus, the unique subgame perfect Nash equilibrium of the game is entry followed 

by conceding in each round of the game. However, this outcome feels wrong and it seems 

more logical the monopolist would try to fight entry in the hope of deterring entrance in a 

later stage of the game. After all, the monopolist can get a higher payoff on the long term if 

entry is deterred and the market remains a monopoly. This feeling that the outcome that is 

gained through backward induction is wrong is known as the paradox of backward induction, 

and related to the entry deterrence game as the chain store paradox (Selten, 1978). To resolve 

the paradox of backward induction it is necessary to bring some uncertainty in the game. The 

uncertainty can be about when the game ends, the state of minds of one of the players or the 

pay-offs of the other player (Kreps et al., 1982). By bringing uncertainty in the game, the 

players will behave differently and it becomes more logical for the monopolist to fight entry 

to deter entry in a later stage of the game. Moreover, the paradox of backward induction is 

heavily debated. It is even argued that game solutions based on backward induction cannot 

be considered rational. According to this argument backward induction relies on players’ 

belief about what they later will believe and there is a limit to the maximum size of such a 

chain of beliefs that a player can comprehend. Consequently, a solution based on backward 

induction is likely to exceed these limits and is therefore not rational (Bacharach, 1992). 

 

This research will mainly focus on the solution to the entry deterrence game that was 

proposed by Kreps and Wilson (1982). They propose a form of the game in which there is 

incomplete information about the monopolist pay-offs. The monopolist can either be strong 

or weak. For the strong monopolist fighting is the best strategy and for the weak monopolist 

the best strategy is conceding. Nonetheless, the entrant does not know which of the two the 

monopolist is. The entrant can only estimate with a probability of P that the monopolist is 

strong. If this probability is high enough, the entrant will be deterred from entering the 
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market. In each round of the game the value for P is updated and used by the entrant to make 

the decision to enter or not. Bayes’ rule is applicable to the updating of this probability and, 

therefore, the updating of the probability during the game is also known as Bayesian updating. 

Only when the monopolist concedes, the entrant can be sure that they are dealing with a weak 

monopolist. Thus, even when the monopolist is weak, they can make the threat to fight 

credible by pretending to be a strong monopolist. The focus is on this solution, because it 

allows the firm’s reputation to be taken into account. This solution is therefore more in line 

with the behavior that is seen in the real system. In the real system, some companies build up 

a reputation as being though and willing to gain in price wars in the hope of deterring other 

rivals to enter in the market (Scherer, 1980; Rosenthal, 1979) Moreover, the assumption that 

players are uncertain about each other’s pay-offs is a very strong assumption for any real-

world applications (Kreps & Wilson, 1982). Moreover, the solution lends itself for system 

dynamics modelling, since there is a clear feedback loop; each decision influences the decision 

that is made in the next round.  

 

As discussed above, the probability that the entrant attributes to the monopolist being strong 

is updated according to Bayes’ rule. If n = 1 is the last round of the game, n = 2 is the round 

before that, n =3 the round before that, etc. Then, in line with this rule Pn-1 should be updated 

as follows after the nth round of the game: 

𝑃𝑃𝑛𝑛−1 =  𝑃𝑃𝑛𝑛
𝑃𝑃𝑛𝑛+𝑋𝑋𝑛𝑛(1−𝑃𝑃𝑛𝑛)

  

In this equation, Xn stands for the probability that the monopolists will fight in the nth round 

of the game. If Xn equals zero then Pn-1 equals one, thus in the case the Xn equals zero the 

entrant knows that the monopolist is strong if the entry was fought. However, if Xn equals one 

then the change of fighting is the same for both a strong and weak monopolist, so the entrant 

learns nothing from an entry followed by fighting. In such a case Pn-1 equals Pn. From this it 

follows that in order to remain credible the weak monopolist must randomize between 

conceding in fighting so that 0 < Xn < 1. If the monopolist ever chooses to concede then the 

value of Pn-1 is updated to zero. Consequently, the entrant will enter in every following round 

after entry was followed by conceding.  
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Based on this information the game can be solved. The generalized payoffs of the game can 

be depicted as follows (Carmichael, 2005): 

 

 Entrant Weak Monopolist Strong Monopolist 

Entry followed by fight e - 1 -1 0 

Entry followed by concede e 0 -1 

Entrant stays out 0 m m 

m > 1, 0 < e < 1 

Table 1. The payoffs in the entry deterrence game. 

 

The strategies of the monopolist are as follows: 

Strong monopolist: always fight 

Weak monopolist: fight entry with a probability of Xn 

The entrant has the following strategy: 

If Pn > Pn* stay out 

If Pn < Pn* enter 

If Pn = Pn* randomize between entering and staying out with a probability of Yn. 

Pn* stands for the critical value of Pn where the expected payoffs from entering are equal to 

the expected payoff from staying out for the entrant.  

In these strategies n = N, the number of times the game is repeated.  

 

The expected payoffs from entry are the probability that the monopolist is strong multiplied 

by the payoffs for entry followed by fight, adding the probability that the monopolist is weak 

multiplied by change that the monopolist will fight and multiplied by the expected payoffs, 

and adding the probability that the monopolist is weak multiplied by the change that the 

monopolist will concede times the payoffs for entry followed by conceding. The critical value 

of Pn can be determined by setting the expected payoffs from entry equal to the expected 

payoffs from staying out. The expected payoffs from staying out are zero. So, the expected 

payoffs from entry should be set equal to zero:   

𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑃𝑃𝑛𝑛(𝑒𝑒 − 1) + (1 − 𝑃𝑃𝑛𝑛)(𝑋𝑋𝑛𝑛)(𝑒𝑒 − 1) + (1 − 𝑃𝑃𝑛𝑛)(1 − 𝑋𝑋𝑛𝑛) 𝑒𝑒 = 0  

Xn is the probability that the weak monopolist will fight. Xn can be determined as follows: 
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(1 − 𝑋𝑋𝑛𝑛) = (1−𝑒𝑒)
1−𝑃𝑃𝑛𝑛

  

𝑋𝑋𝑛𝑛 = (𝑒𝑒−𝑃𝑃𝑛𝑛)
(1−𝑃𝑃𝑛𝑛)

   

Since Xn is known the critical value of Pn can be calculated. Pn* is calculated in three steps. 

First, P1* is calculated, this is the critical value of P in the last repetition of the game. In the 

second step an expression for P2* is calculated and in the third step the results are generalized. 

P1* In the last repetition X1 = 0. Therefore, the equation to set the expected pay-offs equal is 

easier: 

𝑃𝑃1(𝑒𝑒 − 1) + (1 − 𝑃𝑃1)𝑒𝑒 = 0  

𝑃𝑃1 = 𝑒𝑒  

So, P1* is equal to e. Bayes’ rule can now be applied to determine  P2*. Based on Bayes’ rule 

the following equation needs to be solved: 

𝑃𝑃1∗ = 𝑒𝑒 =  𝑃𝑃2∗

𝑃𝑃2∗+(1−𝑃𝑃2∗)𝑋𝑋2
  

𝑃𝑃2∗ =  𝑒𝑒2  

Based on these results the generalized results can be stated as follows: 

𝑃𝑃𝑛𝑛∗ = 𝑒𝑒𝑛𝑛  

 

Now Xn and Pn* have been defined only Yn still needs to be formulated. Yn is the probability 

that the entrant will stay out in the nth round of the game if in this round Pn = Pn*. This 

condition can only be satisfied if the weak monopolist is randomizing as well between fighting 

and conceding. The monopolist is likely to randomize when the expected payoffs from fighting 

are equal to the expected payoffs from conceding. Setting these two equal for the penultimate 

repetition of the game, so the round before the last round, yields the following results: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

−1 + 𝑌𝑌1 m + (1 − 𝑌𝑌1)0 = 0  

𝑌𝑌1 =  1
𝑚𝑚

  

Generalizing these results yields the following equation: 

𝑌𝑌𝑛𝑛 =  1
𝑚𝑚

  

 

Based on the formulations the player’s strategies can be redefined as follows for the 

monopolist: 
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Strong monopolist: always fight 

Weak monopolist: fight entry if pn ≥ en-1 and fight with a probability of Xn if pn < en-1. Where 

𝑋𝑋𝑛𝑛 = (𝑒𝑒−𝑃𝑃𝑛𝑛)
(1−𝑃𝑃𝑛𝑛)

.  Furthermore, the weak monopolist should concede if they conceded before and 

concede in the last round.  

 

The entrant has the following strategy: 

If Pn > en stay out 

If Pn < en enter 

If Pn = Pn* randomize between entering and staying out with a probability of 1
𝑚𝑚

. 

 

From these strategies, it follows that entry can be deterred if Pn > en. From this it follows that 

entry is likely to be deterred in an earlier round of the game and that as the game goes on and 

en becomes larger entry becomes more likely (Carmichael, 2005). This outcome of the game 

is more in line with the intuitive prediction that the monopolist will fight entry in the hope of 

deterring entry in later rounds of the game. This is known as the reputation effect. The 

monopolist can make use of their reputation to deter entry. However, the outcome of the 

game tells us that as the game processes the reputation effect is worth less and it becomes 

harder to deter entry. Based on the above-mentioned formulation the entrant is more likely 

to repeatedly enter in later stages of the game and it is thus becomes more likely that the 

weak monopolist will concede at some point in the game. Furthermore, the nature of the 

entrant is important as well. The entrant can also build up a reputation for always entering 

(Kreps & Wilson, 1982).  

 

2.3. Cooperative game theory 

The entry deterrence game is a non-cooperative game; agreements made between players 

are not binding. In game theory, there are also cooperative games. In cooperative games 

agreements can be made that are binding or enforceable. Thus, for games the outcome can 

be very different if they are played as cooperative or non-cooperative games (Carmichael, 

2005). Moreover, cooperative game theory differs from non-cooperative theory in the sense 

that it focuses more on what groups of players can achieve rather than on what individuals 

can do (Osborne & Rubinstein, 1994). For these games, when more than two parties negotiate 
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coalitions of two or more parties can form. These games are studied under the name ‘n-person 

games in characteristic function form’ (Von Neumann & Morgenstern, 1944). In these games 

there is a universe, U, of n players where n ≥ 3. N is the set of players and a coalition, S, is any 

subset of N. A player may gain by forming a coalition. A characteristic function 𝑣𝑣: 2𝑁𝑁  Re 

assigns a value (real number) to each coalition S ⊆ N. Herby, Re is the set of real numbers. For 

any coalition, of players V(S) is the value of the coalition S. A coalition game is an ordered pair 

< 𝑁𝑁, 𝑣𝑣 > where 𝑣𝑣 is a characteristic function and N a player set (Raiffa, Richardson & 

Metcalfe, 2002). Not all n-person games are cooperative. n-person games can be non-

cooperative. In these games, it is impossible to form coalitions since agreements are not 

binding. In everyday strategic situations, this is often the case and sometimes it is even illegal 

for companies to form binding coalitions (Colman, 1995).  

 

2.3.1. Variable-sum and constant-sum games 

In coalition games, there is a distinction between variable-sum and constant-sum games. A 

constant-sum game is a game in which the sum of all player’s payoffs is equal to a constant. If 

that constant is zero then it is called a zero-sum game. Furthermore, a game in coalition form 

should always satisfy three axioms. Firstly, 𝑣𝑣(∅) =  0, the value of the empty coalition should 

be zero. Secondly, 𝑣𝑣(𝑆𝑆) + 𝑣𝑣(𝑁𝑁 − 𝑆𝑆) =  𝑣𝑣(𝑁𝑁) for all coalitions S. Thirdly, 𝑣𝑣(𝑆𝑆 ∪ 𝑇𝑇) ≥ 𝑣𝑣(𝑆𝑆) +

 𝑣𝑣(𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆 ∩ 𝑇𝑇 = ∅. The last axiom is known as super-additivity.  

 

A game is a variable sum game if axiom two is released for the game. So, it only satisfies the 

first and third axiom. To sum up, a game is a variable-sum game if the value of the empty 

coalition is zero and the axiom of super-additivity is satisfied (Raiffa, Richardson & Metcalfe, 

2002). 

 

2.3.2. Solutions to coalition games 

In coalition games the payoff vectors denote the division of the bribe amongst the players as 

follows: 

𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)   
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This denotes the payoff a player gets given the outcome of the game. A payoff vector is called 

an imputation it if satisfies both individual and collective rationality. There is individual 

rationality if the payoff for a player is at least as great as its value. Individual rationality is: 

𝑥𝑥𝑖𝑖 ≥ 𝑣𝑣({𝑖𝑖})𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

collective rationality is depicted as follows: 

∑ 𝑥𝑥𝑖𝑖 = 𝑣𝑣(𝑁𝑁)𝑖𝑖∈𝑁𝑁   

 

Since the set of imputations is usually very large it is necessary to look at other solution 

concepts to predict the outcomes of coalition games. Two well-known solution concepts are 

the core and the Shapley value. The core is the set of all imputations satisfying group 

rationality. Group rationality is: 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑣𝑣(𝑆𝑆)𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑆𝑆 ⊆ 𝑁𝑁    

Group rationality always implies individual and collective rationality and that no coalition or 

member in a coalition can improve itself. Therefore, there is no incentive to deviate from the 

core. So, a core imputation is stable (Raiffa, Richardson & Metcalfe, 2002). However, the core 

is empty for some games while in other games the core might consist of multiple imputations. 

The latter results in the core allocation problem. If the core contains more than one 

imputation then it is unclear what a reasonable player can expect from the game (Peleg & 

Sudhölter, 2003). However, even if the core consists of multiple imputations it still is a valuable 

concept, because it gives an overview of the imputations for which no group has a preferable 

competitive alternative (McCain, 2013). 

 

Unlike the core, the Shapley value consists of a single imputation. This value approach 

presupposes a sequential form of negotiations and coalition formation. For each player, their 

added value to a coalition is called their marginal contribution. According to the Shapley 

solution concept for n-person games in coalition function form, each coalition has a certain 

probability of occurrence which depends on the ordering of formation. Each player can 

calculate their expected value of the game by multiplying through their marginal contributions 

to coalitions with the chance of occurrence of the coalitions. This expected value is called the 

Shapley value of the player. So, the Shapley value of a player is the weighted average of their 

marginal contributions to any coalition. The core idea of the Shapley value is the bargaining 

power of the player. It is an a priori evaluation of the worth of the player for the whole 
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coalition game to be played. The Shapley value is considered a fair solution (Raiffa, Richardson 

& Metcalfe, 2002). 

 

2.3.3. Offensive and defensive coalitions 

When forming coalitions, it is possible that players will form offensive or defensive coalitions. 

This is the ability of coalitions to commit to offensive or defensive threats against other 

coalitions. In this case, there might be a potential conflict between the coalition, S, and the 

complementary coalition, N/S. Three assumptions are applicable to the ability to commit to 

an offensive or defensive threat against another coalition. The first assumption entails that 

players in S should guarantee themselves the maximal sum of individual payoffs against the 

best offensive of N/S. This is the minimax representation in coalitional form of the strategic 

game. This representation thus implicitly assumes that players in S should be concerned that 

the players in N/S will attack S offensively if they do not include these players in their coalition 

(Von Neumann & Morgenstern, 1944). The second assumption is that complementary 

coalitions, N/S, would play defensive equilibrium strategies against each other. The underlying 

assumption here is that N/S will play its equilibrium strategy and thus S chooses for a defensive 

strategy by playing its equilibrium strategy as well. The equilibrium strategy of S will maximize 

the individual payoffs for the players in S as well as for the players in N/S (Schmidt, 2002). The 

third assumption is the rational threats representation and generalizes Nash’s rational threat 

criterion. Applied to coalition this entails that the equilibrium strategy of S (N/S) maximizes 

their sum of individual payoffs minus the individual payoffs in N/S (S). For each of these 

assumptions, there are different scenarios of cooperative games applicable (Harsanyi, 1963).  

 

2.4. Market games  

A market game is a game explaining price formation through game theory.  A market is an 

exchange economy with money, in which the players have utility functions that are continuous 

and concave (Shapley & Shubik, 1997). Based on game theory markets can be analyzed to 

motivate or justify why some markets show certain behavior, such as price-taking behavior. 

In general, when analyzing this behavior, a research should consist of three steps. First, the 

market should be described. This includes the describing of players and their preferences. 

Secondly, based on this information an extensive-form market game should be defined to 
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describe the behavior of the players in the market. This includes determining which 

information is available to players and what their payoffs are. Thirdly, the game should be 

thoroughly analyzed. The goal of the latter analysis is to show that under certain conditions 

the equilibrium outcome of the game is a perfectly competitive equilibrium of the original 

market (Gale, 2002).  

 

2.5. Market power theory  

Market-power theory is concerned with how firms can improve their competitive success by 

securing stronger positions in their market (Child, Faulkner & Tallman, 2005). Based on the 

position that companies hold within their market there are generic strategies that are most 

viable and profitable for them (Porter, 1980). In market power theory, the forming of offensive 

and defensive coalitions can be important as well. Companies might be able to increase their 

market power by engaging in a cooperative strategy that offers a mutually advantageous 

opportunity for both firms (Child, Faulkner & Tallman, 2005). In this case, the forming of 

offensive coalitions is done to strengthen their competitive advantages and strengthen their 

position while diminishing other competitor’s market share or by raising their product or 

distribution costs. At the same time, offensive coalitions can have a negative effect. They can 

reduce the partners’ adaptability in the long run (Porter & Fuller, 1986). On the other hand, 

firms can form defensive coalitions. Defensive coalitions are made to construct entry barriers 

in the hope of securing their own position in the market, stabilizing the industry, and 

increasing their own profits. Moreover, a defensive coalition can also be formed by smaller 

players in the market to be able to compete with dominant players in the market. The nature 

of a coalition can be two-fold: while for one company the coalition has defensive purposes, 

for the other the coalition might have offensive purposes. Additionally, the nature of a 

coalition can shift after it has been formed (Child, Faulkner & Tallman, 2005).  

 

2.6. System dynamics and games 

Games are often suited for a system dynamics approach due to their dynamic nature. In most 

games, the history of the game influences the decisions that are made further on in the game. 

Games can represent different problems and thus are used in different fields of study, from 

biology to management, to explain behavior. One of these fields in which games are used to 
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provide insight in decision making is the field of strategic management. Strategic management 

focuses on the dynamics of the firm’s relation with its environment for which actions can be 

taken to achieve the organization’s goals and to increase their performance with the rational 

use of resources (Ronda-Pupo and Guerras-Martin, 2012). Within strategic management, 

there are four main research streams to which system dynamics can contribute to research 

(Gary et al., 2008). One of these streams is game theory models of competitive rivalry which 

are aimed at providing insight into the consequences of interdependent decision-making 

amongst firms. System dynamics can help provide insight in these cases, because other 

solution concepts often rely on assumptions that have been called into question by recent 

research. Letting go of these assumptions, that constrain for example game theory solutions, 

can lead to very different outcomes than those predicted by other models (Sterman et al., 

2007). Thus, this area of games is highly suited for a system dynamics approach and by 

modelling these games much insight can be gained.  

 

In general, there are two approaches that can be used to model strategic games. When 

modelling these games, it is important to preserve the probability of the player’s behavior. 

This can be done by interpreting the probability of the player’s behaviors in terms of the 

history of previous games (Kim & Kim, 1995). The history of a game can be approached in 

several different ways of which three are the most common. Firstly, history can be told as 

news, following a chronological order. This kind of history holds little explanatory power. 

Secondly, history can be told from the point of view of a single actor. This method is often 

easiest to understand and offers a lot in terms of explanatory powers.  Thirdly, history can be 

told from a global point of view. Although this way can provide insight into large scale 

patterns, they often do not offer an explanation for these patterns (Axelrod, 1997). Another 

way to conceptualize the probability of the players’ behavior is to extend the model to a 

population instead of individual players (Kim & Kim, 1997). The approach in which history is 

told from the point of view of a single actor however fits best with the entry deterrence game 

since the monopolist and entrant are single actors. Furthermore, this method offers most in 

terms of explanatory powers in relation to the entry deterrence game. System dynamics as a 

method is explained more in depth in chapter three.  
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2.6.1. Choice for entry deterrence game 

This chapter discussed non-cooperative games, cooperative-games and market power theory 

on entrance in markets. While all three are suitable for further system dynamics research, this 

research focuses on the entry deterrence game. The non-cooperative entry deterrence game 

has been discussed much in the literature since its introduction in 1978 by Selten. However, 

there is no system dynamics model of the entry deterrence game despite the possible insights 

this could bring. Especially since there is a clear underlying feedback mechanism in the game. 

Each round that is played in the game, influences decisions that are made later in the game. 

So, in the iterated entry deterrence game the dynamic mechanism of the game consists of the 

players that make decisions over time which are affected by past decisions. These past 

decisions are stored in the history of the game and are used in each round to determine the 

player’s decision. Due to this clear feedback loop the game is highly suitable for a system 

dynamics approach. Consequently, this research focuses on contributing to the discussion 

about the entry deterrence game by approaching it with a different yet highly suitable method 

since it can capture the dynamics of the entry deterrence game. The necessity of a system 

dynamics model of the entry deterrence game lies in the fact that this model is not constrained 

by the game theoretic assumptions and is therefore likely to lead to different outcomes than 

those predicted by the game theoretic outcome (Sterman et al., 2007). Assumptions made in 

game theory are often violated in real world situations. Especially, the cognitive and social 

psychological assumptions are often critiqued, such as perfectly accurate forecasting (Burns 

& Roszkowska, 2005; Camerer, Ho & Chong, 2015). For the system dynamics model the 

probability of the player’s behaviors will be modelled in terms of the history of previous games 

(Kim & Kim, 1995). The system dynamics model especially helps to investigate the difference 

between the game-theoretic recommendation and the dynamics of social system (Kim & Kim, 

1997). This novelty is less applicable for models that focuses on securing market shares. Since 

research has been conducted in this area (Kortelainen & Karkkainen, 2011). Furthermore, the 

resources for this research are limited. Due to the limited amount of time that is available to 

conduct research it is better to focus on a well-defined topic, such as the entry deterrence 

game. To sum up, this research focuses on the entry deterrence game based on both 

pragmatic as well as theoretical grounds.  
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3. Method 

This research consists of a quantitative study in which the research question will be answered 

with the help of simulation techniques. A system dynamics model is constructed with the help 

of Vensim. Vensim is simulation software and is used for developing and analyzing dynamic 

models. The version of the software that is used in this research is Vensim PLE, since this 

version of the software is free for educational use. This chapter provides background 

information, the choice for simulation and the validity of system dynamic models.    

 

3.1. Background 

System dynamics is a method that was developed during the 1950s by Jay Wright Forrester 

for modelling and simulating complex physical and social systems (Forrester, 1958). The 

method brought together concepts of different fields such as control engineering and 

organizational theory (Meadows, 1980). The methods aim is to study managerial and dynamic 

decisions (Forrester, 1961). System dynamics is a method that combines first-order linear and 

non-linear difference equations to relate qualitative and quantitative factors within and across 

time periods (Sterman, 2000). The method provides tools that help to describe the structure 

and dynamics of complex, non-linear, multi-loop feedback systems (Richardson, 1999a). Since 

its existence, system dynamics has been successfully applied to numerous fields such as 

industrial company problems, management, economics, public policy design, and 

environmental studies. System dynamics is designed to analyze dynamic tendencies of 

complex systems, especially what kind of behavioral patterns they generate over time. In 

system dynamics, the underlying assumption is that the causal structure of the system is 

causing these patterns. The system is a closed boundary that entails all relevant variables 

(Cosenz & Noto, 2016). The structure is determined by physical or social constraints, goals, 

rewards and pressures that make an entity in the system behave in a certain way (Meadows, 

1980). Applied to organizations, the principle dictates that the process structure determines 

the system behavior, and the system behavior determines the organization performance 

(Davidsen, 1991; Richardson & Pugh, 1981). Consequently, organizations employ system 

dynamics to develop sustainable strategies by gaining insight in the relationship between 

process and behavior and finding leverage points within the system (Ghaffarzadegan et al., 

2011).  
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3.2. The value of simulation 

In the field of system dynamics there is an ongoing discussion about the validity of system 

dynamic models and the necessity of quantification of qualitative models. Below the 

difference between qualitative and quantitative modelling is explained and in the next 

subchapter the validity of system dynamic models is discussed. Although this research builds 

a quantitative model and not a qualitative one, it is still interesting to briefly describe this 

discussion, since the discussion also entails the insights that can be gained from the 

quantification and simulation of models.   

 

In some cases, describing the system itself might already be a useful thing to do and a 

qualitative model can sometimes already have the desired outcome and lead to a better 

understanding of the problem at hand. Sometimes a qualitative model might even be better 

since quantified models have their own shortcomings (Richardson, 1999b). Although 

quantification always leads to a better insight in a problem it might be fraught if there are 

many uncertainties within the model. This is especially the case when introducing soft 

variables within the system which are hard to quantify. The more uncertainty there is within 

the model the higher the chance that the model output is misleading and any conclusions 

drawn from it might be illusory (Coyle, 2000). When modelling it is therefore important to 

determine the value that quantified modeling adds to qualitative analysis and if the value of 

the variables can really be determined without making nonsense (Axelrod, 1997).  

 

However, others in the literature have argued that quantifying a model always adds value. 

Quantified models can be simulated. Simulation is the driving of a model of a system with 

suitable inputs while observing the corresponding outputs (Bratley, Fox, & Schrage, 1987). 

Even when there are significant uncertainties about the formulation of (soft) variables, 

simulation can still add value. Simulation models are formally testable which makes it possible 

to draw behavioral inferences reliably through simulation in a way that is rarely possible with 

qualitative models. Furthermore, if there are significant uncertainties within the model that 

make it impossible to draw conclusions from it, then simulation at least gives insight into the 

information that should be gathered to strengthen the model (Homer & Olivia, 2001). 
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Simulation can serve diverse purposes including prediction, performance, training, education, 

proof, and discovery. As a scientific methodology, the value of simulation lies within its usage 

for prediction, proof and discovery. Simulation research lies somewhere between the two 

standard methods of doing science; induction and deduction.  Simulation research starts, like 

deduction, with a set of explicit assumptions. However, unlike deduction, it does not prove 

theorems. The data that is generated through the simulation of a model can be analyzed 

inductively. The difference between simulation and induction is that the simulated data comes 

for a rigorously specified set of rules rather than from direct measurements of the real world 

(Axelrod, 1997)  

 

Consequently, this research will gather data through simulation of a system dynamics model. 

The data that is generated with this model will be analyzed inductively. For this research, the 

value in simulation lies within its usage for proof and discovery. By simulating, new insight can 

be discovered by comparing simulation runs with the game theory solutions. If differences 

emerge, the model can be used to critique the game theory approach (De Gooyert, 2016).  

 

3.3. Modelling decisions 

When modelling decisions, the modeler should first focus on the higher levels of hierarchy 

and later on the lower levels within the hierarchy. Modelling is always an iterative process, 

but the modeler should always try to first identify all the feedback loops within the system 

before focusing on the more detailed level of the substructure (Forrester, 1968b). The 

structure of models is based on two different kinds of assumptions. There are assumptions 

about the physical and institutional environment. These assumptions include the model 

boundary and stock and flow structures that characterize the system. On the other hand, 

there are assumptions about the decision process of the agents that operate in those 

structures. These are the decision rules that determine the behavior of the actors within the 

system. There is a difference between decision rules and decisions. Decision rules are the 

protocols that specify how decision makers process available information. Decisions are the 

results of applying these decision rules (Sterman, 2000). It is important to model the decision 

rule and not only the decision itself (Forrester, 1961). Consequently, the information that is 

used for the decision-making process and how decisions are based on the available 

information should be incorporated in the model.  
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When modelling decision rules there are five fundamental principles that should be adhered. 

These principles are the Baker criterion, conformation to managerial practice, distinguishing 

between desired and actual conditions, robustness under extreme conditions, and equilibrium 

should not be assumed. The first decision rule, the Baker criterion, entails that decision rules 

should always be based on available information. If something is not known, it cannot be used 

as information input for the decision rule. This criterion has three implications. Firstly, the 

future cannot be known by anyone. So, expectations and beliefs about the future should 

always be based on historical information. Secondly, perceptions might differ from the actual 

conditions since beliefs might not be updated immediately when new information is received. 

Thirdly, outcomes of ‘what if’ situations that have never been experienced cannot be known 

and when modelled might be wrong. Hence, in general this decision rule states that decisions 

should be based on information that is currently available to decision makers. The true 

consequences of decisions that have not been realized yet cannot be known nor is future 

information available to the decision maker. Consequently, a system dynamics model based 

on backwards induction would be wrong, since such a model bases the entrant’s decision on 

what they know in the future. The second decision rule states that a model should always 

confirm to managerial practice. This rule implies that all variables in the model should have a 

real world equivalent and equations should be dimensionally consistent. The third rule states 

that desired and actual conditions should be separated from each other in the model. 

Furthermore, any constraints to the realization of desired outcomes should be present in the 

model as well. The fourth rule states that decision rules should be robust even under extreme 

conditions. The rule states that the behavior that is shown by the model should be plausible 

and operationally meaningful even when the inputs of the model are taken to extreme values. 

The fifth decision principle states that equilibrium should not be assumed. This principle 

implies that a modeler should not hold the presumption that an equilibrium will appear. 

Instead, model analysis should reveal if the behavior generated by the model is stable or 

unstable (Sterman, 2000). These five formulation fundamentals influence the system 

dynamics model that is based on the entry deterrence game, since the model needs to be in 

line with these principles.  

 



 28 

3.4. The Validity of SD Models 

When modelling a simulation model, it is always important to achieve three goals: validity, 

suability, and extendibility. Usability refers to the ability of researchers and others to run the 

program, interpret its output, and understanding how the model works. The goal of 

extendibility it to allow others to adapt the program for new uses in the future. The goal of 

validity refers to the program correctly implementing the model. This is the internal validity 

of the model and is very important. It is critical to know that the model is programmed 

correctly, because only then it is possible to know if unexpected behavior in the model is 

caused by mistakes in the model or are surprising consequences of the model (Axelrod, 1997).  

 

When it comes to the validity of models there are two common paradigms. On the one hand, 

there is the logic empiricist philosophy on model validation and on the other hand there is the 

relativist philosophy of science. Whereas the logic empiricist philosophy assumes that 

knowledge is an objective representation of reality, the relativist philosophy of science states 

that knowledge is relative to a given society, epoch, and scientific world view. Within this view 

theory justification is a semiformal, relative social process. The relativist philosophy of science 

is consistent with the system dynamics paradigm that validation is relative (Barlas & 

Carpenter, 1990). The validity of system dynamic models always depends on the purpose of 

the model. System dynamic model validity is a relative concept in which the explanatory 

power of the model and predictive power of the model are both very important (Forrester, 

1961). The validity of system dynamic models is strongly tied to the nature and context of the 

problem, the purpose of the model, the background of the user, the background of the 

analysist, and other considerations (Barlas & Carpenter, 1990).  

 

Model validation takes place in every stage of the modelling process, but especially after the 

initial model formulation. The logical sequence in which various validation activities must be 

carried out is: structural tests, structure-oriented behavior tests, and behavior pattern tests. 

Structure-oriented behavior tests are of special importance; they can provide information on 

potential structure flaws. They also combine the strength of structural orientation with the 

advantage of being quantifiable (Barlas, 1996). 
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3.4.1. Structural tests 

Structural tests assess the validity of the structure of the model by comparing it with the 

structure of the real system (Barlas, 1996). There are several structural tests: the structure 

verification tests, the parameter verification tests, the extreme condition tests, the boundary 

adequacy test, and the dimensional consistency test (Forrester & Senge, 1980). The structure 

and parameter verification test are empirical tests. They are empirical because they compare 

the model structure with quantitative or qualitative information gathered from the real 

system. The other tests are theoretical of nature and compare the structure with generalized 

knowledge about the system that is known from literature (Barlas, 1996). The structure 

verification test tests if the model structure is in line with the knowledge about the structure 

of the real system. The parameter verification test checks whether each parameter matches 

the elements within the system and if the value of the parameter lies within plausible ranges. 

The extreme condition test focuses on what happens if extreme values are entered in the 

model. Extreme values are entered in the model to test if each decision in the model still 

results in plausible output. Simulation is not required for this test. The boundary adequacy 

test focuses on the boundaries of the model. It is tested if the model contains all the relevant 

elements that are needed for the purpose of the model. This test first sees if there are any 

doubts about what is missing, then identifies structure to be included and tests if the new 

structure has a strong influence on the model. The dimensional consistency test checks if 

equations are dimensionally consistent. System dynamic models are made up out of equations 

and in algebraic equations the units on the left-hand side of the equations should match the 

units on the right-hand side of the equations (Forrester & Senge, 1980). All these tests will be 

conducted for this research.  

 

3.4.2. Structure-oriented behavior tests 

Structure-oriented behavior tests test the validity of the structure indirectly by reviewing the 

model-generated behavior patterns (Barlas, 1989a). Structure-oriented behavior tests include 

symptom generation test, frequency and phase relationship test, multiple mode test, 

characteristics test, pattern and event prediction test, anomaly test, family member test, 

surprise behavior test, sensitivity test, and changed behavior prediction test, and policy 

sensitivity test. The symptom generation test checks if the behavior matches the reference 

mode. With the frequency and phase relationship test it can be tested whether phase 
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relationships between variables and frequencies for individual variables are similar in the 

model and the real system. The multiple mode test checks if the model reproduces more than 

one mode of behavior. The characteristics test analysis if the pattern of behavior of the model 

matches the real system in general. As a consequence, the shape of the curves, peaks, and 

unusual events are compared. The pattern and event prediction test focuses on whether the 

behavior that is predicted by the model is plausible in the real system. The anomaly test checks 

if the predictions of the model are different from what is expected under certain assumptions. 

The family member test is used to determine if the model behavior corresponds to expected 

behavior of corresponding systems. The surprise behavior test is used to check if surprising 

behavior that occurs in the model also occurs in the real system. The sensitivity test is used to 

test if the model behaves as expected under different combinations of parameter values. The 

changed behavior prediction test is a test that can be used if policies have been implemented 

in the test. The test can then be used to check if the model behaves as expected if past policies 

are implemented again. Lastly, the policy sensitivity test. This test checks how sensitive the 

model is to different values in the policy parameters. This is useful when checking the 

robustness of policies. The less sensitive the results are, the more robust the policy is 

(Forrester & Senge, 1980). Since there is no reference mode of behavior or policies to 

implement for this model the symptom generation tests, frequency & phase relationship, 

multiple mode test, characteristics test, family member test, change behavior prediction test, 

and policy sensitivity test will not be conducted for this research.  

 

3.4.3. Behavior pattern tests 

The last set of tests are behavior pattern test. Only after first assessing the validity of the 

model structure it is possible to determine the validity of the behavior patterns that the model 

reproduces. With these tests the focus is on the prediction of patterns and not on events. The 

focus on the prediction of patterns rather than events comes from the long-term orientation 

that system dynamics upholds (Barlas, 1996). Even perfect structures might not be able to 

accurately predict events (Barlas, 1989b; Forrester & Senge, 1980). To determine which test 

can be used it is important to first determine if the model shows steady-state or transient 

behavior (Barlas, 1996). In the case of transient behavior graphical measures of typical 

behavior patterns are compared such as slope and minimum value (Forrester & Senge, 1980; 

Barlas, 1985; Carson & Flood, 1990).  For the testing of steady-state behavior Barlas (1985; 
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1989b) developed a six-step procedure that includes comparing the averages and variations. 

Furthermore, it is possible to conduct some statistical test for behavior validation. However, 

statistical significance testing is not always suitable for testing system dynamic models. 

Statistical tests for system dynamic models are only useful if they focus on pattern-oriented 

rather than point-oriented behavior (Barlas, 1996).  Most behavior pattern tests cannot be 

conducted for the model, since there is no observed real world behavior to compare the 

model to. Therefore, the behavior is only validated through the plausibility and consistency 

test. The plausibility test focuses on model survival while the consistency test focuses on 

stability.  

 

3.5. Summary on method 

System dynamics is a method that focuses on the study of managerial and dynamic decisions 

(Forrester, 1961). It makes use of first-order linear and non-linear difference equations to 

relate qualitative and quantitative factors within and across time periods (Sterman, 2000). 

This research focuses on building a quantified system dynamics model. This means that the 

model can be simulated and has as an advantage that the model is formally testable and 

makes it possible to draw behavioral inferences reliably through simulation (Homer & Olivia, 

2001). The validation of a system dynamics model is always relative (Barlas & Carpenter, 

1990). The validity highly depends on the explanatory and predictive power of the model 

(Forrester, 1961). Although the validity of a model is dependent on its goal, it is still possible 

to test the validity of the model. The logical sequence in which various validation activities 

must be carried out is: structural tests, structure-oriented behavior tests, and behavior 

pattern tests (Barlas, 1996). 
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4. A system dynamics model of the entry deterrence game 

In this chapter, the process of building the model is discussed. First, the decision rules for the 

monopolist and entrant are discussed and later the building of the actual model is discussed 

more in depth.  

 

4.1. The behavior of the entrant 

When looking specifically at the entry deterrence game in extensive form, the entrant first 

decides whether to enter the market and the monopolist then decides to do nothing, concede, 

or fight. The entrant will first estimate the chance that the monopolist will fight entry. If the 

entrant thinks the monopolist will fight entry then the entrant will think twice about entering 

the market, while if the entrant thinks the monopolist will concede because the monopolist is 

weak then the entrant will enter the market. The monopolist will do nothing if the entrant 

does not enter. If the entrant enters then the monopolist must decide whether to take action 

or not. Fighting entry in one stage of the game can help to deter entry in later stages of the 

game. After each decision of the monopolist the entrant updates its beliefs about the 

monopolist according to the game theoretic solution and then decides again what to do based 

on these updated beliefs. Only when the monopolist concedes, the entrant can be sure that 

they are dealing with a weak monopolist and will enter in every following stage of the game 

(Kreps & Wilson, 1982; Boone, Trautmann & Raes, 2013). There is a clear feedback loop in the 

game, in which each decision influences the next decision that is to be made. However, in the 

system dynamics model the decision of the entrant is based on the history of the game and 

not on Bayesian updating. It is unlikely that the entrant will benefit from a solution based on 

Bayesian updating, because even a weak monopolist will choose to fight if this is more 

profitable on the long run.  

 

Moreover, the solution proposed by Kreps & Wilson (1982) is debated as well and recent 

research states that the entrants only enter in the last rounds of the game due to the 

restrictive assumption that entrants cannot reconsider their decision to stay out when they 

observe the monopolist’s response elsewhere. Without this assumption, all entrants stay out 

if the probability that the monopolist will fight is high enough (Melles & Nitsche, 2016). 

Furthermore, an entrant might even enter in such a game even though this might lead to 
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losses on the short term for them. In this case, the entrant hopes that by entering several 

times the monopolist will concede (Mason & Nowell, 1998). Based on this information, it 

follows that not all entrants might uphold the same strategy when playing the entry 

deterrence game. Some entrants might be more willing to take risk than others. In addition, 

it could be possible that the amount of loss that the entrant is willing to risk develops during 

the game. Based on these differences the model will explore four different attitudes towards 

the loss that the entrant is willing to make. These four modes are as follows:  

  

   
Figure 3. Four attitudes towards risk 

 

4.2. The behavior of the monopolist 

If a company has a secure monopoly on a market, it has two options when an entrant is 

thinking about entering the market. The first option is to be passive and concede. The 

monopolist allows the entrant to enter the market which will lead to a duopoly. The second 

option is to fight the entry in the hope of deterring the entry. A rational monopolist will only 

deter entry if committing to deterrence is more profitable than sharing the market with the 

entrant. The threat of entry from the entrant is related to the theory of market contestability. 

A contestable market is a market with low entry and exit costs. In contestable markets the 

change of entry by another company is larger, since it is easy for firms to enter the market. 

When determining what the best option is, it is important to look at the long-run. Allowing 

entrants on the market might be more profitable for the short-run, but in the long-run it can 
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be more profitable to deter entry since allowing entrants on the market will reduce the profit 

of the monopolist (Boone, Trautmann & Raes, 2013). Consequently, the monopolist will fight 

entry if the expected payoffs from fighting off entry are higher than conceding. The expected 

payoffs of fighting are based on the payoff that the monopolist gets in the round that he fights 

as well as what the monopolist expects to get as payoffs if the fights entry in this stage of the 

game. 

 

4.3. The system dynamics model 

Based on the above-mentioned behavior of the entrant and monopolist the system dynamics 

model can be made. This model will be explained in several steps: the decision mechanism of 

the entrant, the calculation of the probability of entry by the monopolist, the decision 

mechanism of the monopolist, the calculation of the probability of fight by the entrant, and 

lastly the different attitudes towards risk of the entrant.  

 

4.3.1. The decision mechanism of the entrant 

The decision of the entrant relies on the following factors: 

  
Figure 4. The decision mechanism of the entrant 

 

Based on the probability of fight the entrant will be able to calculate the expected payoff for 

entering and not entering. For the model, it is assumed that both the monopolist and entrant 

can expect the payoff at regular intervals and last forever. Meaning, that the expected payoff 

can be seen as a perpetuity. When making their decision, they will not only take into account 

the payoff that they get in this particular round, but the expected future cash flows as well. 
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The present value of a perpetuity can be calculated with the following formula (Berk & 

DeMarzo, 2014): 

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

Therefore, the entrant determines the expected payoffs  for entering as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 +

(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡+(1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡)∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 

The expected payoff for not entering is equal to the discounted payoff for not entering and 

the risk that the entrant is willing to take depends on the attitude towards risk which will be 

discussed in depth later on. The following decision rule then goes for the entrant: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), 1, 0))  

In this decision rule, 1 stands for entering the market while 0 stands for staying out. If the 

expected payoff for entering minus the payoff for not entering is higher than the risk that the 

entrant is willing to take to enter the market, the entrant will enter the market. However, if 

the costs of entering exceed the risk that the entrant is willing to take, the entrant will stay 

out. The expected payoff from not entering is considered here, because if the entrant would 

get more than zero for not entering than the entrant will take this into account in his decision 

to enter or not. In real life situations, this could be the case if the entrant can use the money 

that he would else spend on entering the market for other purposes. 

 

4.3.2. The calculation of the probability of entry 

The monopolist will base the probability of entry on past decisions of the entrant. The part of 

the system dynamics model that calculates the probability looks as follows: 
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Figure 5. The calculation of the probability of entry 

 

The probability of entry is based on the decisions that the entrant makes during the game. All 

decisions are accumulated in two stock, so that the monopolist has an overview of the total 

amount of times that the entrant decided to enter and the total amount of times that the 

entrant decided to stay out. The rate of entry and no entry are stated as follows: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1)  

Since the value of the decision of the entrant is 1 if they decide to enter the market the rate 

of entry is equal to the decision of the entrant. For the no entry rate the absolute value of the 

decision of the entrant – 1 is calculated. The probability of entry is calculated as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  

However, the monopolist is aware that if during the game, they ever concede the probability 

of entry immediately jumps to 1 since the entrant then knows that they are dealing with a 

weak monopolist. Therefore, the equation is adjusted as follows to resemble this: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1, 1, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 ) 

During analysis of the model, it was found out that depending on the entire history of the 

game can lead to counterintuitive behavior of the monopolist. This behavior is discussed more 

in depth in the next chapter. Based on these result the variable ‘years that monopolist 

storages history’ was added. This variable represents the number of years that the monopolist 

looks into the past to determine the probability that the entrant will enter. The number of 

years influences the rate by which the monopolist forgets the number of ‘total entry’ and 

‘total no entry’. The rates are determined as follows: 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0)  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐴𝐴𝐴𝐴𝐴𝐴(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

1) ,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0)   

 

4.3.3. The decision mechanism of the monopolist 

The decision of the monopolist relies on the following factors: 

 
Figure 6. The decision mechanism of the monopolist 

 

While the expected payoff for conceding is constant, the expected payoff for fighting is not 

since it is based on the probability of entry that is updated each round. Both the expected 

payoff for conceding and fighting are discounted. This leads to the following expected payoffs: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 +

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+(1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)∗𝑝𝑝𝑝𝑝𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

Based on these expected payoffs the monopolist determines their decision to fight or concede 

as follows: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 1, 0)  

In this equation, 1 stands for the decision of the monopolist to fight and 0 stands for concede. 

If the expected payoff from fighting is higher than the expected payoff from conceding the 

monopolist will fight off entry in the belief that this is likely to deter entry in later stages of 
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the game. Accordingly, the monopolist will choose to fight if the expected payoff for fighting 

is higher than the expected payoff for conceding and will concede if this is not the case.  

 

4.3.4. The calculation of the probability of fight 

Based on past decisions of the monopolist, the entrant will determine the probability that the 

monopolist will fight. Therefore, the entrant uses the history of the game. The part of the 

system dynamics model that represent this looks as follows: 

 
Figure 7. The calculation of the probability of fight 

 

The equations are similar to the above-mentioned equations that are used to calculate the 

probability of entry. The main difference is that the entrant can only see the decision of the 

monopolist if the entrant entered the market. Therefore, the rates only work when the 

entrant decided to enter. This leads to the following equations for the rates: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 = 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0)  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1,

𝐴𝐴𝐴𝐴𝐴𝐴 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 1), 0 )    

Based on the history of the game the probability of fight is then calculated as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 = 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 1, 0, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

)   

If the monopolist concedes once in the game, then the entrant will know that they are dealing 

with a weak monopolist and fighting is no longer useful for the monopolist. Consequently, the 

probability of fight then drops to zero. Until this happens the probability of fight is calculated 

based on the history of the game.  

 

4.3.5. Different risk attitudes 

As stated above the model will take the amount of risk that the entrant is willing to take into 

account. The model does this by introducing the following elements: 
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Figure 8. The risk that the entrant is willing to take 

 

When the entrant has a constant amount of risk that they are willing to take then it is not 

necessary to accumulate the total number of rounds and the risk that the entrant is willing to 

take will stay constant. Furthermore, the risk that the entrant is willing to take is linked to a 

maximum amount of risk that is related to the payoff the entrant will get when the monopolist 

concedes. The maximum amount of risk is calculated as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

Based on this formula, the maximum amount of risk that the entrant is willing to take will 

never exceed the amount that the entrant can get if the monopolist concedes from this round 

on since no rational entrant will be willing to take more risk than they can ever earn in the 

game. As stated above, four different attitudes towards risk will be analyzed in this model. 

These four attitudes are: constant, linear, increasing growth, and declining growth. For each 

of these four attitudes the risk that the entrant is willing to take is based on a different 

equation. As stated above, in the case of a constant amount of risk the variable will remain 

constant and will be a fixed number that cannot exceed the maximum amount of risk. In the 

case of the other amounts of risk the following formulas will be used: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀(0,0001 ∗

𝑥𝑥^𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)    

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +

0.0001, 𝑥𝑥),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  

In which x will be chosen in such a way that all three formulas have about the same value in 

the hundredth round of the game. Since both the logarithmic and growing function cannot 

start from zero, a very small number is used as a base in these formulas.  
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4.3.6. An overview of the complete model 

Based on the above-mentioned loops, the complete model looks as follows: 

 
Figure 9. The system dynamics model on the entry deterrence game 

  



 41 

5. Analysis of the model 

In the model the payoffs are set as follows for the analysis: 

 Entrant Weak Monopolist 

Entry followed by fight -0.5 -1 

Entry followed by concede 0.5 0 

Entrant stays out 0 2 

Table 2. Payoffs in the model 

 

5.1. Constant amount of risk 

If the risk that the entrant is willing to take is stable and does not alter during the game then 

the course of the game entirely depends on the amount of loss that the entrant is willing to 

take and the payoffs for the players. As a result, the entrant is likely to never enter during the 

game if they are not willing to take any risk and the probability that the monopolist will fight 

is sufficiently high so that the expected payoff from entering is not higher than the expected 

payoffs from staying out. Furthermore, if the risk that the monopolist is willing to take is high 

enough then the entrant will immediately enter in the first stage of the game and will not wait 

until later rounds in the game. Moreover, if at any point the probability that the monopolist 

is strong is sufficiently high enough the entrant will not enter anymore. If the monopolist in 

fact would be strong then this would result in an entrant that would enter for a number of 

rounds until the entrant thinks that the probability that the monopolist will fight is so high 

that the expected payoffs from entering minus the expected payoffs from staying out are 

higher than the risk that the entrant is willing to take to secure a place on the market. 

However, if the risk that the monopolist is willing to take is high enough then it is likely that 

the weak monopolist will concede after a while, depending on the payoffs of the monopolist.  

 

5.2. History 

While for analysis of the constant amount of risk this was not seen, simulation based on the 

other forms of risk show that it can be paradoxical for the monopolist to base their decision 

on the entire history of the game. When the amount of risk that the entrant is willing to take 

develops during the game then the entrant will be more willing to enter the market as the 

game progresses and after a certain number of rounds the entrant will even enter constantly. 
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Which leads to the following behavior of the entrant when the risk that the entrant is willing 

to take is based on the following formula: 0.21 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.  

 
Figure 10. Decision of entrant 

 

Based on the decision that the entrant is making, it seems that the monopolist should concede 

somewhere after round 40. However, if the monopolist bases the probability that the entrant 

will enter on the entire history of the game then it takes a very long time until the probability 

that the entrant will enter is high enough for the monopolist to calculate the expected payoffs 

from fighting in such a way that they are lower than the expected payoffs from conceding. 

The development of the probability that the entrant will enter looks as follows: 

 
Figure 11. Probability of entry 
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The probability of entry jumps to one as soon as the monopolist concedes, because then the 

entrant will most definitely always enter since the entrant then knowns that the monopolist 

is weak. From this it follows that if the monopolist would base the probability on the entire 

history of the game this would lead to irrational behavior of the monopolist, because the 

monopolist is making a considerable loss by fighting off entry while it clearly no longer can 

deter entry. It is therefore likely that if the entrant adjusts the amount of risk that it is willing 

to take during the game the monopolist will not base the probability that the entrant will enter 

on the entire history of the game, but rather only on recent history. When the monopolist for 

example only uses the past 20 rounds to determine their choice, the probability of entry 

develops as follows: 

 
Figure 12. Probability of entry 

 

Clearly, if this decision is based on recent history then the monopolist will concede much 

earlier in the game. For the rest of the analysis the number of rounds that the monopolist 

storages to base the probability of entry on is therefore taken into account.  

 

5.3. Linear and growing risk 

While the analysis with the constant amount of risk is very different, the other three forms of 

risk are more similar. That is, both three forms of risk develop during the game. Therefore, the 

equations for the amount of risk are in all three cases determined in such a way that they lead 

to approximately the same value in the 100th round of the game. For the analysis of this model 

this value was set equal to the discounted payoff for entry followed by fighting. So, in the 100th 
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round of the game the risk that the entrant is willing to take is equal to 10.5. The amount of 

risk is based on the following three equations: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.105 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ = 0,0001 ∗ 1.1226^𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.0001, 1.5)  

Based on these three equations, the following behavior can be observed if the monopolist 

bases their decision on the past twenty years and the discount rate is set at 5%: 

 Linear Increasing growth Declining growth 
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Table 3. Results of simulation of different attitudes towards risk 

 

Logically, if the model is extended over a longer period of time, at some point the monopolist 

will concede as well in the model of increasing growth. An interesting difference is that there 

is a difference in the number of times that the monopolist fights off entry before conceding. 

Besides, the entrants clearly differ in the number of rounds that it takes them before entering 

the market. While in the model with declining growth for risk the entrant is fought off more 
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times than in the other models, the monopolist concedes much sooner than in the other 

markets. If there is too much time between entries the monopolist will fight off entry for a 

longer time, because it takes more time for the monopolist to update the probability that the 

entrant will enter to a level at which it is better for them to concede. However, although some 

attitudes lead to less fighting on behalf of the monopolist, they might not be the most 

profitable attitude for the entrant to choose, because it takes much longer for the monopolist 

to concede.  
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6. Validity of the model 

As stated in chapter three there are three different types of validity tests: structural tests, 

structure-oriented behavior tests, and behavior pattern tests. All three of these tests will be 

used to determine the validity of the model in this chapter.   

 

6.1. Structural validity 

The structural validity test can be tested with the structure verification test, parameter 

verification test, extreme condition test, boundary adequacy, and dimensional consistency 

test (Forrester & Senge, 1980). The structure verification test, parameter verification test, and 

extreme condition test did not lead to any alterations to the model. The model structure is in 

line with what is known about the structure of the real system; that there is a loop in which 

each decision is based on the previous decision of the other player. Furthermore, each 

parameter matches an element in the real system and their values lie within plausible ranges. 

The payoffs that are used in the model are based on the payoffs that can be derived from a 

generalized version of the entry deterrence that can be found in Carmichael (2005). Moreover, 

the model still behaves plausible under extreme values and the maximum risk that the entrant 

is willing to take can never exceed the amount that a rational player is willing to take. Based 

on the boundary adequacy test the model was altered in such a way as to include the time 

that the monopolist stores history. Based on the counter intuitive behavior that was gained 

from analysis there was the doubt that something was missing. Based on this doubt structure 

was added so that the monopolist would only store the history for a certain number of years. 

This alteration had great influence on the model and made sure that the monopolist would 

concede much sooner if the behavior of the entrant changed during the game. Lastly, the 

dimensional consistency test was conducted. Vensim has a ‘units check’ function that was 

used to test this. The tests stated that the equations are dimensionally consistent. Based on 

all these tests it should be mentioned that there is one aspect of the real world that is not 

considered in the model. In the real world both the monopolist and entrant are likely to have 

limited funds. Based on these limits funds an entrant might go bankrupt after entry is followed 

by fight or the monopolist might not have enough funds to fight of entry. Such a limitation 

could lead to the monopolist conceding earlier in the game or to the entrant never entering if 

their funds run out before the monopolist concedes.  
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6.2. Structure-oriented validity 

Due to the nature of the model not all structure oriented tests are of importance. The tests 

conducted for the model are the pattern/event prediction test, anomaly test, family member 

test, surprise behavior test, and sensitivity test. The pattern/event prediction test, anomaly 

test, and surprise behavior test did not lead to any alterations to the model. The behavior that 

is predicted by the model is plausible in the real system. Although the behavior that an entrant 

who is not willing to take any risk or has a low constant amount of risk stays out if the 

probability that the monopolist will fight is high enough might seem surprising, the observed 

behavior is in line with research from Melles & Nitsche (2016). Lastly, the sensitivity test was 

conducted in Vensim. Different model inputs were altered and the range of outputs that were 

generated was observed. Since the model is made with a free version of Vensim, Vensim PLE, 

the sensitivity analysis cannot be conducted automatically by Vensim. Therefore, the test was 

conducted with the help of the ‘SyntheSim’ function in Vensim. This function allows the 

modeler to make changes in their parameters while immediately observing the behavior. 

During the analysis, it was clear that changing parameters values influences the behavior in 

the model, but that the overall behavior mode remains. The discount rate has little influence 

on the decision of the monopolist: 

 
Figure 13. Multiple runs of expected payoff for fighting 

 

This is the result of run in Vensim in which the discount rate varies between 0.1% and 8%. 

Clearly, the discount rate has little influence on the moment that the expected payoff for 

fighting become negative. This is not the case for alterations in payoffs or the years that the 

monopolist stores history. If the monopolist stores history longer then it will take longer for 

the monopolist to concede. Moreover, if the payoffs are altered then this can influence the 
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decision that the entrant and monopolist make. Although in the model this is not a separate 

parameter, the risk that the entrant is willing to take is crucial for the model as well. The less 

risk that the entrant is willing to take per round, the longer it will take before the entrant will 

enter consecutively and thus for the monopolist to concede.  Consequently, the payoffs, the 

risk the entrant is willing to take, and the years that the monopolist stores the history of the 

game, influence the moment at which the entrant will enter and the monopolist concede. 

However, as long as the basic assumptions of the model are in place, at some point the 

monopolist will concede. These assumptions are that the risk the entrant is willing to take is 

increasing over time and that entering the market when followed by concede will lead to a 

profit for the entrant.   

 

6.2.1. Behavior pattern validity 

For behavior pattern validity, the plausibility test and consistency test were conducted. In the 

plausibility test the model is ran to the end of simulation to test if it is going in the right 

direction. Running the model for 1000 rounds showed that this is not a problem. After the 

monopolist concedes once the monopolist no longer fights, no matter how long the simulation 

lasts. The other test that was conducted is the consistency test. The consistency test checks 

that if the model is run more than once it still produces the same results and if the model is 

duplicable. Running the model over and over did not give any different results. Although no 

validity problems arise from the plausibility and consistency test, the model clearly lacks 

validity when it comes to the observed behavior in the model. There is no reference mode of 

behavior that the model tries to capture and therefore it is impossible to validate the model 

in this way.  
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7. Conclusion & discussion 

This chapter contains the conclusion and the discussion. In the conclusion, the main research 

question will be answered based on the results of this research.  In the discussion, the validity 

of the research and opportunities for further research will be examined.   

 

7.1. Conclusion  

The central research question of this research was: 

What are the dynamic mechanisms in the iterated entry deterrence game? 

 

This main research question was divided into several subquestions that have been answered 

during this research. Furthermore, a system dynamics model of the entry deterrence game 

was built and analyzed to help answer the research question.  

 

The entry deterrence game is greatly known for the paradox of backward induction. This 

paradox follows from analyzing the last round of the game first and then using backward 

induction to work back to the first round. Since backward induction relies on players’ belief 

about what they later will believe, this is not a suitable method for a system dynamics 

approach. In system dynamics, it is assumed that the true future is not known to anyone and 

future information can therefore not be taken into account. Moreover, it was already stated 

that such a chain of beliefs cannot be comprehended by a player (Bacharach, 1992).  

 

The system dynamics model tries to represent the real world. Therefore, the solution to the 

entry deterrence game of Kreps & Wilson (1982) was modeled. In their solution, there is 

incomplete information about the monopolist pay-offs. According to Kreps & Wilson, the 

entrant determines if the monopolist is weak or strong through Bayesian updating. However, 

the system dynamics model showed that it is not possible to solve this game through Bayesian 

updating since even a weak monopolist will choose to fight if the probability that the 

monopolist will enter is low enough. Instead, both the monopolist and entrant will base their 

decision on the history of the game.  
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Clearly, the dynamic mechanisms in the iterated entry deterrence game consist of both the 

entrant and the monopolist who make decisions over time which are affected by past 

decisions. The decisions that the monopolist and entrant make are stored in the history of the 

game. Based on the history of the game the probability of entry and the probability of fight 

are determined. The monopolist and entrant then use this probability to calculate their 

expected payoffs in the game and make their decision based on these expected payoffs. 

Moreover, for the entrant another important factor is the amount of risk that the entrant is 

willing to take to enter the market. If the entrant is not willing to take any risk, then the entrant 

will not enter the market if the probability that the monopolist will fight is sufficiently high. 

This result is in line with earlier research conducted by Melles & Nitsche (2016). The entrant 

will only be able to enter the market if the amount of risk they are willing to take is sufficiently 

high. 

 

The model explored both a constant amount of risk for the entrant and an amount of risk that 

developed over time. While the above applies both to the stable and developing amount of 

risk, the model in in which the amount of risk developed over time provided some extra 

insights. While all three modeled attitudes towards risk were able to enter the market 

successfully at some point in the game, the amount of time that it took them and the number 

of times that they were fought varied greatly. The declining growth model was fought most 

often followed by the linear and increasing growth model. The increasing growth model took 

the longest time to enter the market successfully followed by the linear and declining growth 

model. Although the declining growth model for risk was fought more often by the 

monopolist, the entrant entered the market sooner which on the long term is more profitable. 

Nonetheless, a high enough stable amount of risk will always be more successful, because the 

sooner the entrant enters consistently the sooner a weak monopolist will concede.  

 

To conclude, the results of this study are not in line with the theoretical game theory solutions. 

Moreover, Bayesian updating does not work as a solution in the system dynamics model since 

a weak monopolist will try to fight off entry as well. According to game theory the subgame 

perfect Nash equilibrium of the game is entry followed by concede. However, the system 

dynamics model shows that this is not always the outcome of the game. Besides, it can take a 

long time to reach the Nash equilibrium, entry followed by concede. The entrant will only 
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enter the market if the amount of risk that the entrant is willing to take is high enough. This 

amount of risk needs to be higher than the expected loss of entering. If the entrant is not 

willing to take this amount of risk, then the entrant will not enter if the probability that the 

monopolist is strong is sufficiently high.  In addition, the sooner the entrant consistently enters 

the market the sooner the monopolist will concede.  

 

7.2. Discussion 

The discussion contains a methodological reflection, and recommendations for both theory 

and practice.  

 

7.2.1. Methodological reflection 

The methodological reflection encompasses the validity and limitations of this research. This 

research focuses on answering the main research question by simulating a system dynamics 

model. The goal of the research was to uncover the dynamic mechanisms in the iterated entry 

deterrence game with the help of a system dynamics approach. The validity of the study can 

be divided into internal and external validity. Internal validity refers to the quality of the 

research design, while external validity refers to the transferability of the results of this study 

to reality. In general, system dynamic models are simplified representations of reality. The 

validity of system dynamic models is seen from a relativist point of view. A system dynamic 

model is just one of many representations of reality and model validation is the gradual 

process of building confidence in the model’s usefulness (Barlas & Carpenter, 1990). In other 

words, the validation process of system dynamic models is an iterative process in which 

various tests are used to scrutinize the model and gain confidence in its usefulness. The tests 

that were used to validate this model are described in chapter 6. As stated before, the main 

validity problem for this model is that there is no reference mode of behavior. Likewise, from 

the model it follows that there are still parts of the reference system that are not fully 

understood. These will be discussed more in the next subchapter, namely recommendations 

for theory. Moreover, this model assumes unlimited funds for both the monopolist and 

entrant. In practice, it is likely that this will not be the case and that this could influence the 

monopolist’s and entrant’s decision. However, these limitations do not mean that this model 

is not useful. The model still has great explanatory power. Although it has its limitations, the 
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model provides clear insight into the dynamic mechanisms of the iterated entry deterrence 

game and the solution of the model provides a plausible alternative for the theoretical game 

theory solution.  

 

7.2.2. Recommendations for theory 

The system dynamics model contradicts the theoretical game theory results for the entry 

deterrence game. Furthermore, based on the system dynamics model Bayesian updating is 

not a viable solution method for the game.  As stated before, a weak monopolist is willing to 

fight off entry if on the long-run this is more profitable (Boone, Trautmann & Raes, 2013). 

Consequently, Bayesian updating will not work, because as long as the expected payoffs from 

fighting are high enough the probability that the weak monopolist will fight is equal to 1.  

There are several areas that could be explored for further research. In general, this research 

once again proves that the modelling of game theory models with system dynamics is 

worthwhile. By letting go of game theoretical assumptions and instead following system 

dynamic principles, different solution concepts can be found for games. Consequently, this 

could lead to new insight. Additionally, it is likely that not all game theory assumptions hold 

up in the real world.  

 

Based on the system dynamics model there are some elements of the system dynamics model 

that need to be examined more closely. Related to the entrant the main area in need of 

exploration is how the entrant determines if they are willing to take risk and if and how this 

amount develops over time. It makes sense that an entrant is willing to take risk, since if the 

monopolist is in fact weak the entrant can make a profit on the long-term by accepting a loss 

on the short-term. However, it is still unclear how the entrant exactly determines the risk that 

they are willing to take. Consequently, further research should be carried out to establish 

more confidence in the system dynamics model. An experiment in which entrants and 

monopolist have the same information available as in the system dynamics model could be 

conducted to test whether they behave in a similar fashion as in the model.  

 

7.2.3. Recommendations for practice 

Although this model mainly focused on theory it provides some valuable insight for practice 

as well. In practice, existing firms often deliberately try to deter the entry of other firms 
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(Edwards, 1955). The system dynamics model provides insight in the rationale behind these 

strategies and the behavior that the entrant could follow.  

 

Based on the system dynamics model it is clear that for the monopolist it is worthwhile to 

fight entry in some cases. Especially if the entrant is not willing to take any risk or only a small 

amount, the entrant will not enter if the probability that the monopolist is strong is high 

enough. Hence, fighting pays off in this case. In addition, the monopolist can deter entry for 

at least some time if the entrant has a risk attitude that develops over time. In this case, it can 

still payoff for the monopolist to fight off entry, because during the time that they remain a 

monopolist and entry is deterred their profits are higher than when they allow the entrant on 

the market. If the entrant has, however, a risk attitude that develops over time then it would 

be smart for the monopolist to not base their decision on the entire history of the game. If 

they do this, then it will take considerably longer for the monopolist to update the probability 

of the entrant to a sufficiently high level for the monopolist to concede. This results in 

paradoxical behavior, since the monopolist is fighting the entrant for a very long time even 

though it is clear that the entrant will consecutively enter. When it comes to the entrant, the 

research has shown that entering consecutively is the best option for the entrant. The sooner 

the entrant answers consecutively, the sooner the weak monopolist will update their beliefs 

about the entrant and concede.   
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Appendix I: Structure of system dynamic models 

This appendix contains information about the structure of system dynamic models. 

 

Components of system dynamic models 

System dynamics originally consisted out of four foundations: simulation technology, 

computing technology, strategic decision making, and the role of feedback in complex systems 

(Forrester, 1958; Forrester, 1961). Over time the foundations of system dynamics were, 

however, expressed differently. The focus was no longer on the four foundations that inspired 

Forrester to come up with system dynamics, but shifted to the structure of the approach. 

System dynamics makes use of a four-tiered structural hierarchy that looks as follows 

(Forrester, 1968a): 

• Closed boundary around the system 

o Feedback loops as the basic structural elements within the boundary 

∗ Stock variables representing accumulations within the system 

∗ Flow variables representing activity within the system 

 Goal 

 Observed condition 

 Detection of discrepancy 

 Action based on discrepancy 

The first hierarchical level is the closed boundary around the system. The second hierarchical 

level are the feedback loops that form the basic structural elements within the boundary. At 

the third hierarchical level are the stock and flow variables. The fourth level consists of the 

substructure of the flow variables. Each substructure of a flow variable consists of the goal of 

a decision-making point in the system, the observed condition, a means for detecting a 

discrepancy between the goal and the observed condition, and the desired action in case of a 

discrepancy (Forrester, 1968b).  

 

Closed boundary 

The concept of the closed boundary entails that when building a model one should always ask 

the question where the boundary is. When determining the boundary of a system it is 

important to determine the boundary in such a way that within the model the smallest 



 62 

number of components are included that allow the dynamic behavior to be studied (Forrester, 

1968a). This does not mean that from the system that is being modelled, nothing goes beyond 

the boundary, but signifies that what is outside the boundary of the system is not important 

for studying the problem at hand. Hence, variables that lie outside the system boundaries do 

not create the causes and symptoms of the behavior that is being modelled (Forrester, 1968b). 

The concept of the closed boundary thus implies that the system behavior is generated within 

the boundary and not imposed from outside (Forrester, 1969). From the first hierarchy, the 

closed boundary, it follows that system dynamics upholds an endogenous point of view. 

Consequently, system dynamics focuses on uncovering and understanding endogenous 

sources of system behavior (Richardson, 2011).  

 

Feedback loops 

As stated before, system dynamics has an endogenous view. The dynamic behavior of 

variables is generated within the system. Based on the endogenous point of view, all causal 

influences should be included in the model to form feedback loops. Without these feedback 

loops, causal forces would come from outside the system boundary. Feedback loops thus 

enable the endogenous point of view and give it structure (Richardson, 1991). Accordingly, 

feedback loops are the basic structural elements of systems. Within these loops every decision 

is made. Furthermore, every decision that is made interacts with the existing condition of the 

system and influence the condition of the system (Forrester, 1968b).  

 

Stock and flow variables 

Stock and flow variables are two significant components of system dynamics models. Stock 

variables describe the condition of the system at any moment in time. The flow variables 

change the values of the stock variables. Stocks are variables that accumulate the effects of 

flows (Forrester, 1968b).  

 

The distinction between stock and flow variables is crucial when modelling. A stock is always 

an object that can be captured in time. If one is to take a snapshot of a moment, then 

everything that is on such a picture is a stock. Consequently, a stock is an amount that exists 

at a specific point in time. Stock can be physical or non-physical. Physical stocks are natural 
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stock, capital stock, and goods-in-process and use. Non-physical stocks are information 

(knowledge), psychological passion (human emotion), and indexed figures (Yamaguchi, 2000).  

 

Changes in stocks are described as flows. While a stock is defined at a moment of time, this is 

not the case for flow variables. A flow is always defined over a period of time. A flow is the 

increment or decrement of stock during a unit interval. Any dynamic movement can be 

operatively understood in terms of stock and flow relation. Since a flow is part of a stock, the 

quantitative unit of flow and stock must coincide. There are many different kinds of flow 

variables possible. Flows can be discrete or continuous, and autonomous or stock-dependent. 

In the latter case, the value of the flow is determined by the stock itself (Yamaguchi, 2000).   

  

The substructure of flow variables 

The equations of flow variables are the policy statements in a system. The equation entails 

the rules whereby the state of the system determines action. A policy statement is always 

made up out of four components: goal, observed condition, detection of discrepancy, and 

action based on discrepancy. These four components together form the fourth hierarchical 

level of system dynamic structures.  The goal is the objective towards which the system is 

striving. The observed condition consists of the information inputs on which the decision-

making process is based. The observed condition of a system is not necessarily in line with the 

true state of a system. Any system can be delayed, distorted, biased, depreciated, or 

contaminated. Thus, the decision is not based on the true state of the system, but on an 

apparent state. After observing the apparent condition of a system, the policy determines the 

discrepancy between this state and the goal, and defines the desired action that should be 

taken to close the discrepancy (Forrester, 1968b). 
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Appendix II: Model Equations 

(01) decision of entrant = IF THEN ELSE(-risk that entrant is willing to take < (Expected payoff 

entering - Expected payoff for not entering), 1, 0) 

 Units: Dmnl/Year 

  

(02) decision of monopolist = IF THEN ELSE(Expected payoff for Fighting > Expected payoff 

for Conceding, 1, 0) 

 Units: Dmnl/Year 

  

(03) Discount rate = 0.05 

 Units: Dmnl 

  

(04) Expected payoff entering = probability of fight * payoff entry when fight + (1 - 

probability of fight) * payoff entry when concede 

 Units: Dmnl 

  

(05) Expected payoff for Conceding = payoff concede + payoff concede/discount rate + 

(payoff concede + payoff concede/discount rate) / discount rate 

 Units: Dmnl 

  

(06) Expected payoff for Fighting = payoff fight + (payoff fight * probability of entry + (1-

probability of entry) * payoff do nothing)/discount rate 

 Units: Dmnl 

  

(07) Expected payoff for not entering = payoff not entering + payoff not entering / discount 

rate 

 Units: Dmnl 

  

(08) maximum amount of risk = payoff entry when concede + payoff entry when 

concede/discount rate 

 Units: Dmnl 
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(09) payoff concede = 0 

 Units: Dmnl 

  

(10) payoff do nothing = 2 

 Units: Dmnl 

  

(11) payoff entry when concede = 0.5 

 Units: Dmnl 

  

(12) payoff entry when fight = -0.5 

 Units: Dmnl 

  

(13) payoff fight = -1 

 Units: Dmnl 

  

(14) payoff not entering = 0 

 Units: Dmnl 

  

(15) probability of entry = IF THEN ELSE(total concede > 1 , 1, total entry/(total entry + total 

no entry)) 

 Units: Dmnl 

  

(16) probability of fight = IF THEN ELSE(total concede > 1, 0, total fight/(total fight + total 

concede)) 

 Units: Dmnl 

  

(17) rate concede = IF THEN ELSE(decision of entrant = 1, ABS(decision of monopolist - 1), 

0) 

 Units: Dmnl/Year 

  

(18) rate entry = decision of entrant 
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 Units: Dmnl/Year 

  

(19) rate fight = IF THEN ELSE(decision of entrant = 1, decision of monopolist, 0) 

 Units: Dmnl/Year 

  

(20) rate forget entry = DELAY FIXED(decision of entrant, years that monopolist storages 

history, 0) 

 Units: Dmnl/Year 

  

(21) rate forget no entry = DELAY FIXED(ABS(decision of entrant - 1), years that monopolist 

storages history, 0) 

 Units: Dmnl/Year 

  

(22) rate no entry = ABS(decision of entrant - 1) 

 Units: Dmnl/Year 

  

(23) rate number of rounds = rate no entry + rate entry 

 Units: Dmnl/Year 

  

(24) risk that entrant is willing to take = MIN(0.105 * total number of rounds, maximum 

amount of risk) 

 Units: Dmnl 

  

(25) total concede = INTEG (rate concede, 1) 

 Units: Dmnl 

  

(26) total entry = INTEG (rate entry - rate forget entry,1) 

 Units: Dmnl 

  

(27) total fight = INTEG (rate fight, 1) 

 Units: Dmnl 
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(28) total no entry = INTEG (rate no entry - rate forget no entry, 1) 

 Units: Dmnl 

  

(29) total number of rounds = INTEG (rate number of rounds, 0) 

 Units: Dmnl 

  

(30) years that monopolist storages history = 20 

 Units: Year 

 

(31) TIME STEP  = 1 

 Units: Year 

 The time step for the simulation. 
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