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Abstract 

Recurrent Neural Networks (RNN) are a popular type of neural network which are effective              

at processing language. The Gated Recurrent Unit (GRU) is a well known network that often               

outperforms other RNNs. Recently, a new neural network architecture has been introduced;            

the Transformer. In this investigation, the GRU and the Transformer are compared in their              

ability in predicting human sentence processing. The human language processing data is            

provided by Electroencephalography (EEG) measuring brain activity. This study investigates          

whether the GRU and Transformer differ in predicting human language processing measured            

by EEG. The language models of both types were trained to increase their language model               

accuracy. The language models compute surprisal values on a corpus of English sentences.             

This gives us surprisal values of different levels of how accurate the model is in capturing                

linguistic patterns. The surprisal values are compared to the human data given by the EEG               

experiment on the same corpus. A mixed linear model and a Generalized Additive Model              

(GAM) are used to compute the goodness-of-fit between the models and the human data, and               

its confidence interval for each human data set with the surprisal values. The findings show               

that the GRU and Transformer differ significantly in predicting human language processing            

data; the Transformer shows higher goodness-of-fit scores for the vast majority of the             

training. This implies that the Transformer outperforms the GRU as cognitive model.  

keywords: neural networks, Google Transformer, n400, surprisal, GRU.  
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1. Introduction 

Language is a complex and interesting form of data. Processing language is a complicated yet               

useful skill. A neural network is an example of a computational model able to perform natural                

language processing tasks. To efficiently perform these tasks on sentences, a network should             

know some rules of syntax, semantics and pragmatics (Kidd, 2018). Hansen and Salamon             

(1990) describe a neural network as a pattern recognition device, trained under supervision by              

demonstrating input and output pairs. The Recurrent Neural Network (RNNs), which is a             

common used neural network structure, has its strength in processing sequential data (Graves,             

Mohamed, & Hinton, 2013). Since language is a sequential signal, RNNs are used for              

language related tasks like machine translation, natural language processing tasks, speech           

recognition, handwriting recognition and time series analysis (Salvaris, Dean, & Tok, 2018).  

Although these neural networks seem to be far away from our day to day life, they are                 

common in many applications. Some examples are the acoustic modeling of the speech             

recognition from your navigation system, the machine translation for translating a word,            

sentence or text (Zaremba, Sutskever, & Vinyals, 2015; Mikolov, Karafiát, Burget, Cernocký,            

& Khudanpur, 2010), as well as traffic flow prediction (Fu, Zhang, & Li 2016). These are just                 

some of the many modern communication tools we use on a daily basis. Since computational               

systems are able to perform tasks we as humans do as well, they might serve as a model of                   

human cognition. If language models are able to perform these tasks in a similar way as                

humans, it could also give us insight into our own language processing. Collobert and Weston               

(2008), for example, mention six aspects of language processing that can be done by neural               

networks; Part-of-Speech Tagging, Chunking, Named Entity Recognition, Semantic Role         

Labeling, Language Models and Semantically Related Words. These tasks are elements of            

human sentence processing. Overall, we are able to communicate using syntax, semantics and             

pragmatics. Ferrer i Cancho and Solé (2001, p. 2261) state that:  

“Human language allows the construction of a virtually infinite range of           

combinations from a limited set of basic units. The process of sentence generation is              

astonishingly rapid and robust, and indicates that we are able to rapidly gather words              

to form sentences in a highly reliable fashion.”  
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According to Ferrer i Cancho and Solé (2001) we communicate through sentences of             

interacting words. In creating these sentences, we pick words from the mental lexicon that are               

most frequent and highly probable under the current context. Estimating the probability of a              

word in context is called next-word prediction. According to Crystal and House (1990), next              

word prediction plays a key role in human language processing. It gives a probability based               

on the previous words of the sentence. From the probability of a word given by next-word                

prediction, it is possible to compute a measure called surprisal. Surprisal is the extent to               

which a word could be expected given its prior context. Simply put, surprisal is the extent to                 

how (un)expected a word is in a particular sentence. A word with a high probability is highly                 

expected and would be assigned a low surprisal and vise versa (Aurnhammer, 2018). We can               

compare the surprisal of the neural network with human behavioural data, like brain activity.  

Previous studies already compared several types of neural networks on their fit with human              

language processing. Aurnhammer and Frank (2018) investigated whether there is a           

difference between three different types of RNNs, namely; Simple Recurrent Networks           

(SRNs), Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). The           

difference between these networks is that the GRU and LSTM have an implemented gating              

mechanism that controls the flow of information and thus allows the cells to memorise and/or               

forget information over time. The LSTM and GRU have already proven itself in             

outperforming simple recurrent networks (SRNs) in several natural language processing          

tasks; on number agreement (Linzen et al, 2016) and conversational speech recognition            

(Xiong et al., 2017). Even though the LSTM and GRU reach a higher language model               

accuracy than the SRN in Aurnhammer and Frank’s investigation (2018), the results show             

that there was no significant difference between the RNN types in terms of how well they                

explained the behavioural data. This means that neither the LSTM nor GRU performed             

significantly better as cognitive models of sentence reading than the SRN (Aurnhammer &             

Frank, 2018). Additionally, there was no significant difference between the LSTM and GRU.  

Recently, a new network architecture was introduced by Vaswani, Shazeer, Parmar,           

Uszkoreit, Jones, Gomez, Keizer, & Polosukhin (2018) and is called the Transformer . The              

architecture is based on attention mechanisms and is thus distinctly different than the RNN              

architectures, which makes it interesting to investigate this network. Vaswani et al. delineate             
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the Transformer as; “a model architecture eschewing recurrence and instead relying entirely            

on an attention mechanism to draw global dependencies between input and output.” (Vaswani             

et al, 2018, p.2). When conducting this study, to the best of my knowledge, this new network                 

has not been tested yet regarding surprisal ratings in correlation with human processing data.  

As human processing data I used data collected by Frank et al (2015). With              

Electroencephalography (EEG), brain activity was measured by picking up potential          

differences on the scalp surface. This is done with the use of electrodes attached to the scalp                 

of a person (See image 1). On the basis of EEG, an event related potential response (ERP),                 

like N400, can be recorded.  

“We emphasize the effectiveness of the N400 as a dependent variable for examining             

almost every aspect of language processing and highlight its expanding use to probe             

semantic memory and to determine how the neurocognitive system dynamically and           

flexibly uses bottom-up and top-down information to make sense of the world.”  

(Kutas & Federmeier, 2011, p. 621).  

The EEG, ERP and N400 will be explained in further detail in the theoretical framework (see                

section 2.2). For now, it is important that the N400 is related to the semantic integration of                 

stimuli (Kolb & Whishaw, 2000), and will thus show a high amplitude for an unexpected               

word. By comparing the N400 amplitudes with the surprisal ratings from the neural networks,              

we can learn more about how humans process language.  

In this bachelor thesis I compare the Transformer architecture and the GRU on their ability to                

predict brain activity, to answer the following research question: Do the Transformer and the              

GRU network differ in predicting human language processing measured by EEG? 
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2. Theoretical framework 

2.1 Recurrent Neural Networks 
As explained in the introduction, neural networks are computational models that are used in              

natural language processing tasks. The Linear Neural Network is a basic network, while the              

Recurrent Neural Network (RNN) is more advanced. The difference between these two            

network types can be seen in Figure 1; which shows (a) the architecture of a Linear Neural                 

Network and (b) a visual illustration with the unfolded structure of the model of the RNN. As                 

displayed in the Figure 1b, the RNN takes information from the previous input into account,               

while the linear network computes the output estimation (y) by only passing the information              

of the input (x) to the next layer. It is important to know that the RNN computes the hidden                   

state sequence (St-1, …, St+1) and the output vector sequence (o t-t, …,ot+1) by following              

equations (1 and 2) at time step ‘t’ (Graves et al, 2013): 

 

st =  σ(Wst-1+ Uxt)  (1) 

 

Let’s dig deeper into the RNN structure (Figure 1b). To start, we represent the input (xt) as                 

vectors. Each vector is multiplied with a weight matrix (U), added to the hidden weight               

matrix (W) with the hidden state (St) from the previous input and passed through a sigmoid                

activation function (σ) (equation 1). With the hidden state output (ot), the softmax function of               

the hidden state output over time (Vst) (equation 2), we are able to calculate a probability                

distribution of the lexicon by using a feed-forward layer.  

 

ot = softmax (Vst )  (2) 
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To calculate the surprisal value, the next-word probability is used. Surprisal is inversely 

related to the probability of the particular word and is thus computed as the negative 

log-probability of the next word given the previous words (Levy, 2008; Aurnhammer & 

Frank, 2018):  

 

Surprisal (wt ) = - log P(w t | w 1, …, w t - 1 )  (3) 

 

“[Surprisal] defines the word-based measure of cognitive effort in terms of the prefix-based             

one.” (Hale, 2001, p. 4). Easily put, the surprisal rate is high for a particular word (wt) when it                   

is unexpected (low probability) given its previous context and vise versa. In the following              

sentences, an example is given of (1) an expected word, with a low surprisal rate, and (2) an                  

unexpected word, with a high surprisal rate.  

 

1. Every evening, my mom cooks dinner 

2. Every evening, my mom cooks grass 

2.1.1 Vanishing Gradient Problem  

Aurnhammer (2018) states that the RNN’s advantage is the ability to take the entire sequence               

of the prior words into account to predict the next word. A popular recurrent neural               

architecture is the Simple Recurrent Network (SRN). However, the SRN has difficulties with             

decay of information in the learning method due to ‘vanishing gradient problem’ (Hochreiter,             

1998; Aurnhammer & Frank, 2018). The basic idea of this problem is that the language               

model has difficulties learning which information from past input has to be stored to create               

the desired output (Hochreiter, 1998).  
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2.1.2 The GRU and LSTM 

The vanishing gradient problem is addressed by the Gated Recurrent Unit (GRU) and the              

Long Short-Term Memory (LSTM), which contain gates with trained weights. These gating            

mechanisms are able to control the flow of information to make sure that the cells can                

memorise or forget adequately certain information over time (Aurnhammer & Frank, 2018).            

Due to this, the network becomes more accurate in encoding long distance dependencies             

(Bahdanau, Cho, & Bengio, 2015). Since the study of Aurnhammer and Frank (2018) showed              

no significant difference between the SRN, LSTM and GRU in performing as cognitive             

model of sentence processing, I will only use the GRU. Previous studies shown that the GRU                

is comparable to the LSTM and even out performs it in some tasks (Dey & Salemt, 2017);                 

like polyphonic music modeling and speech signal modeling (Chung, Gulcehre, Cho, &            

Bengio, 2014). “The GRU can be regarded as a more lightweight variation on the LSTM,               

making use of only two gates and a single hidden state, whereas the LSTM architecture               

provides three gates and introduces an additional memory state.” (Aurnhammer & Frank,            

2018, p. 1). The GRU network has also shown to be successful in performing sequential task                

over long distance (Dey & Salemt, 2017).  

2.1.3 The GRU and the Transformer 

While the GRU and the LSTM are rather similar, there is a major difference between the                

GRU and the Transformer. One important difference is that the GRU receives the information              

of the input in a indirect way as a set of hidden states passed on through the sequence of the                    

input. While the Transformer is able to pay attention to every previous single aspect of the                

input in a direct way. As exemplified in Figure 2b, with the Transformer, the word ‘dogs’ has                 

direct access to information about ‘my’, ‘mom’ and ‘loves’. With the GRU, the word ‘dogs’               

only receives indirect information, passed on through ‘loves’, about ‘my’ and ‘mom’.  

The architecture of the recurrent cell of the GRU is delineated in Figure 3 with the                

architecture of recurrent cell of the Transformer next to it in Figure 4. Although the               

Transformer seems like a sequential system, the input is converted and processed as a unit.               

The GRU on the other hand, processes every word-embedding one by one in the recurrent               
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layer cell combined with the hidden state of the previous word. In a sentence with 35 words,                 

for example, the last word receives only indirect information about the first word and is thus                

not able to ‘look’ at this word directly. This is where the GRU and Transformer network                

differ in processing their input.  

 

The hidden state of an input in the GRU (see figure 4) is computed as: 

 

Zt = σ ( Wz  [ht-1, Xt]) (4) 

Rt = σ ( WR [ht-1, Xt]) (5)  

ȟt = tahn( W. [ Rt  ht-1, Xt])× (6) 

ht = ( 1 - Zt )  ht-1 + Zt  ȟt× × (7)  

  

Where Zt and Rt are the sigmoid activations (σ) of the previous hidden state (ht-1) and input                  

(Xt) multiplied by the weight matrix (Wz and Wr). Then, ȟt is the tahn activation of the                 

product of Rt, previous hidden state(ht-1), and input (Xt) multiplied by the weight matrix (W.)               

ht is the next hidden state computed as 1-Zt multiplied by the previous hidden state + Zt + ȟt.                   

The hidden state can be seen as the model’s memory. In the model, it gets passed on to the                   

processing of the next word.  
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                            Figure 3. GRU architecture        Figure 4. Transformer architecture 
 

To predict the next word in a sentence, the network looks at the previous words. However,                

some previous words are more important than others. The importance of the words is not               

directly related to their position. The penultimate word, for example, is not always most              

relevant. However, in a GRU, the information is passed throughout the network indirectly in              

the form of a weighted hidden state. With the use of attention (see equation 8), the                

Transformer network is able to pay less attention to less important words and more to the                

important ones in a direct way.  

 

Attention (Q, K, V) = softmax ( )V
√d k

QK T (8) 

 

Where the product of the query (Q) is computed with all keys of the transposed key matrix                 

(KT) and divided by the square root of the key dimension (dk). The output gets then                

multiplicated by the V matrix and converted by a softmax function. Vaswani et al (2018)               

describe the attention function as “a weighted sum of the values, where the weight assigned               

to each value is computed by a compatibility function of the query with the corresponding               

key.” (p. 4).  
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Due to the MultiHead attention (see equation 9 and 10) of the query-, values-, and keys                

matrices, the importance of the relationship between the words is weighted. To make sure the               

sequence of the sentence stays intact, they implemented positional encodings in the input.             

The Multi-Head Attention allows the model to take information from different representation            

subspaces due to matrix multiplications (Vaswani et al, 2018): 

 

MultiHead (Q, K, V) = Concat (head1, …, headh)WO (9) 

where headi = Attention (QWiQ, KWiK, VWiV)  (10) 

 

By using multiple heads, the features of the weight matrix are divided over n matrices. Each                

head computes its own attention output, which are all concatenated (Concat) as the final              

attention output. Both the MultiHead Attention layer and Feed Forward layer are followed by              

a residual connection (Add & Norm). Here, the input is added (Add) to the attention output                

without going through the attention layer. Because of this, the network is able to look directly                

at the ‘original’ input. Additionally, it normalises (Norm) the data, of the now residual output,               

have a 0 (zero) mean and a unit (1) variance. Finally the residual output goes through the                 

Feed Forward layer and another Add & Norm layer, and computes the final Transformer              

output. The Transformer is originally meant as encoder/decoder structure (see for complete            

architecture Vaswani et al., 2018). However, since it is not necessary to decode in this study,                

I only use the encoder. The designers of this architecture explain the attention function as               

“mapping a query and a set of key-value pairs to an output, where the query, keys, values and                  

output are all vectors.” (Vaswani et al, 2018). The compatibility function of the query with               

the corresponding key computes the weight assigned to each value. The sum of these values               

is computed as the output. Since these matrix computation can be done in parallel, this               

architecture is fast. Furthermore, there are less steps in which information can be lost. If the                

Transformer has a better fit with the human language processing data than the GRU, it could                

be that our brain is more likely to pay direct attention to single aspects at any previous                 

position in a sentence. This gives us more information about how our brain processes              

language and how we could construct networks for applications that need to work as similar               

as possible with our brain.  
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2.2. Electroencephalography (EEG) 

The human language processing data in this study is brain activity measured by             

Electroencephalography (EEG) by Frank et al (2015). EEG is used to measure brain activity              

by detecting potential differences on the scalp surface. In their book, Kolb and Whishaw              

(2000) explain that by attaching electrodes on the scalp, one is able to produce a record                

(nowadays on the computer) showing electrical activity waves of the brain (see image 2).              

EEG is mainly used in research and for medical reasoning regarding brain functioning, sleep              

stages, coma, head injuries and other brain (ab)normalities. A change in the brain activity due               

to a certain stimulus is called Event related potential response (ERP). ERP is the average of a                 

multiple EEG records in a specific time frame responding to a discrete sensory stimulus. This               

stimulus can be written words, sound, pictures, etc. By using more than just one response               

record (see image 3), one is able to average recordings together and represent a distinctive               

wave pattern as a clear line with a number of positive and negative waves in a timelapse of a                   

few hundred milliseconds (Kolb & Whishaw, 2000). This distinctive wave pattern (see image             

4), distincts from the baseline activity. The baseline is the brain activity measured by the               

EEG without manipulating it by using a stimuli.  

One of these waves of the ERP is the N400 (‘N’ stands for negative), which is used in this                   

study. Lieberman (2015) explains the ERP effects including the N400 as follows; The brains              

first reaction, on sound for example, is a combination of the N100 and P200 that occur in the                  

first 200 milliseconds after the stimulus. If the sounds over a time are similar, think of the                 

same first letter or syllable, the effect will be low. The ERP effect will be high if the sound is                    

rather new or different. Between 300ms and 500ms the N400 shows, this effect reflects the               

cost of semantic integration. In simple words, how well you think the word fits in the                

sentence. Finally, you have the P600 curve that will react on the syntax and linguistic               

correctness of the sentence. In this study we use the N400 effect compared to the baseline of                 

the EEG, since a correlation has been found between the N400 amplitude and word surprisal               

and next word prediction (Frank, Otten, Galli, & Vigliocco, 2015; Frank & Willems, 2017).              

According to Kutas and Federmeier (2011), is N400 a highly effective dependent variable in              

investigating aspects regarding language processing, meaning processing, and many more. In           
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their article they give an overview of all the study areas on which N400 was used as measure                  

tool, since it was invented almost 40 years ago (Kutas & Federmeier, 2011). 

 

3. Methodology 

3.1. Neural Networks 

As explained before, the GRU and Transformer were compared in the fit of their surprisal               

output with the human processing data. Since the neural networks start with random weights,              

which could influence the outcome, we train several models of each network type. Six              

different neural network models of each network type were trained. This gives us a total of                

twelve networks, that were trained and compared at the same stages in the training to see if                 

they differ at any point in the training. I took 9 points; after 1K, 3K, 10K, 30K, 100K, 300K,                   

1M, 3M, and 6,47M sentences. Due to this, it is possible to compare the models at iqual                 

language model quality levels. 

3.1.1. Architectures 

For the GRU network, we used the parameters used in the similar experiment from              

Aurnhammer and Frank (2018). The architecture of the GRU consisted of a 400-unit word              

embedding layer, a single 500-unit recurrent layer, a 400-unit feed-forward layer with tanh             

activation function and a output layer mapping to the lexicon with log-softmax activation             

function. The most important part for us is the 500-unit recurrent layer. This is where the                

model differs in being an GRU, LSTM or Transformer, depending on which cells you use.               

For the Transformer, we used a single Transformer cell with a 400 unit word embedding               
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layer, 8 attention heads and a 1024 feedforward layer. The size of the Transformer was               

chosen to approximate the amount of weights in the GRU as closely as possible. For the                

Transformer and GRU, this model consists of the same word embedding layer, feed-forward             

layer with tanh activation function and output layer with log-softmax activation function. The             

softmax activation function converts the output of the networks into a probability distribution             

over the output lexicon (0 to 1). As mentioned by Aurnhammer and Frank (2018), pre-trained               

word embeddings are not used. The weights, which are random in the beginning, are adjusted               

and learned during the training task. 

3.1.2. Network training 

Since the weights of the neural networks are random in the beginning, the estimation will not                

be accurate at all in the beginning. To train the network, it needs training data. In this case it                   

was provided a corpora of english sentences. To train the GRU, Aurnhammer and Frank              

(2018) used section 13 of the Corpora from the Web (COW, 2014 version; Schäfer, 2015)               

which consists of randomly ordered sentences from web pages. From this corpus, they took              

the 10.000 most frequent word types as the model’s vocabulary. To this vocabulary, they              

added 103 words that were not present in the 10.000 most frequent word types but were in the                  

experimental stimuli (see 3.2.2). At this point, they only kept the sentences that contained the               

word types from their vocabulary of 10.103. Ultimately, since the maximum sentence length             

in the experimental stimuli was 39 words, sentences with more words were removed from the               

training corpora (punctuation was not counted as word). We use the final training corpora              

which consists of 6.470.000 sentences with 94.422.754 tokens in total (Aurnhammer &            

Frank, 2018). When comparing the actual next word to the estimated probability probability             

of the next word and computing the cross entropy loss between those, one can see how                

accurate the network is. According to the loss for all words, the network applies slight               

changes in the network’s weights. To compare the development of networks’ fit with the              

human data during the trainings, the surprisal ratings were taken at 9 points over time in                

every training repetition (after 1K, 3K, 10K, 30K, 100K, 300K, 1M, 3M, 6,47M sentences).              

This gives us a total of 9 (points during training) 6 (initials per network type) 2 (GRU          ×       ×    

and Transformer) = 108 sets of surprisal ratings .  
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3.2. Human Processing Data 

The human processing data in this experiment contains the ERP amplitudes of the N400 (see               

section 2.2). This data is taken from the experiment by Frank et al (2015), where the ERP                 

response was measured indicating the amount of information conveyed by words in a             

sentence. 

 

Table 1. Data of participants and processing corpus  

Participants Sentences Range  
sent. length 

Mean  
sent. length 

Tokens Total  
data points 

24 205 5-15 9.4 1931 46,344*  

* 24 (participants)  1931 (tokens) = 46,344 (Total data points)×  
*After excluding a set of data (see 3.3), 24,618 data points remained 
 

3.2.1. Participants 

The 24 participants were all native English speakers from the UCL Psychology subject pool,              

of which 10 female and 14 male participants with a mean age of 28 years (Frank et al, 2015). 

3.2.2. Processing corpus 

To measure the human processing data, the participants were asked to read British-English             

sentences. The corpus consisted of 205 sentences, containing 1931 word tokens, taken from             

the UCL corpus of reading times (Frank, Monsalve, Thompson, & Vigliocco, 2013). For this              

study, three British-English short novels were taken from a website for aspiring writers to              

publish their, otherwise unpublished, work (www.free-online-novels.com). With a list of          

most frequent word, a selection of 361 sentences was made. Finally, for an eye-tracking              

experiment, 205 sentences that fitted the display were left. 

3.2.3 The EEG 

While the participants read the sentences, the electrodes attached to their scalp measured the              

brain activity. The sentences were presented word by word on the participant’s monitor. The              

duration of the every word being shown equalled 190 + 20m ms (m is number of characters                 
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of the word) (Frank et al, 2015). For 166 sentences, a comprehension question (yes/no) had to                

be answered. All participants answered at least 80% of these questions correctly. “The EEG              

signal was recorded continuously at a rate of 500 Hz from 32 scalp sites and the two mastoids                  

relative to a mid-frontal site using silver/silver-chloride electrodes with impedances below 5            

kΩ.” (Frank et al, 2015, p. 3). As the N400 is an indicator for lexical, semantic and                 

conceptual processing (Aurnhammer & Frank, 2018; Frank et al, 2015), the signals were             

filtered between 0.01 and 35 Hz (offline between 0.05 and 25 Hz) and allocated into trials of                 

100 ms before each word and 924 ms after each word (Frank et al, 2015).  

3.3. Goodness-of-fit 

The neural network predicting surprisal values that fits the human processing data more             

accurate, tend to be better language models and gives us information on how humans process               

language. To define the goodness-of-fit between the estimated surprisal and N400 response, I             

used a mixed linear models approach. As explained (in 2.2.) the N400 size is the difference of                 

the ERP effect and the baseline of the brain activity between 300ms and 500ms. With this                

baseline, the effects of the most important variables, other than surprisal, influencing N400             

(e.g. word length) got factored out (Aurnhammer & Frank, 2018). A small set of data got                

excluded, like the data from words with an initial position, a final position, attached to a                

coma, and clitics. Further, any peaks in the N400 data over 100 V got excluded as well. To           μ       

measure the predictive power of the surprisal ratings, a mixed linear model by Statsmodels              

(Seabold & Perktold, 2010) is used. The goodness-of-fit of the N400 data equals the              

log-likelihood ratio between the baseline and a regression model, with surprisal as fixed             

effect and a by-subject random intercept. 

3.4 Mixed Linear Model 

The mixed linear model is used to model the relationship between the surprisal ratings of our                

neural network models and the N400 data. Compared to a linear regression model, the mixed               

linear model has some advantages in this case. With the simple linear regression model, fixed               

effects and random slopes and intercepts are not taken into consideration. The mixed linear              

model makes sure that the results show the effect of the variable you are interested in, while                 
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accounting for known effects like word frequency. For this study, a mixed linear model of the                

results was fitted to the network’s surprisal estimates and the N400 data including all fixed               

effects and a by-subject random intercepts. In this case, the fixed effects are the word length,                

the word frequency, the word position and baseline activity. To take possible differences             

between the participants into account, the by-subject random intercept and by-subject random            

slopes were added for all fixed effects. Additionally, the same test was done excluding the               

surprisal data, which we call the baseline model. It is important to note, this is another                

baseline than the one mentioned in the explanation of the EEG and N400 data. By subtracting                

the baseline model from the model, including the surprisal, we get the log likelihood ratio               

(i.e. goodness-of-fit).  

I apply the Generalized Additive Model to the goodness-of-fit scores. This is a useful              

technique for measuring non-linear analysis over time (Dominici, McDermott, Zeger, &           

Samet, 2002). With the use of GAM, it is possible to transform a nonlinear function of non                 

parametric functions into a generalized linear model. The strength of this method is the              

ability to process non-linear and non-monotonic relationships between the variables and the            

response and to compute a smooth model from this data (Guisan, Edwards, & Hastie, 2002).               

Because of its flexibility, compared to parametric techniques like the GLM, the GAM is              

popular in many research fields like weather trends, seasonality, genetics, epidemiology,           

medicine research, air pollution and many more. 

4. Results 

Figure 5a show the goodness-of-fit of each set human data with the surprisal values of all                

versions of the neural models over the training procedure. The average surprisal values of the               

models are given in the model as ‘weighted average log-prob’ and indicate the language              

model accuracy. The data in the figure equals the log likelihood ratio between the surprisal               

and the baseline model. This ratio displays the goodness-of-fit of the surprisal values to the               

human data set as a function of language model accuracy. The plot clearly shows that the                

goodness-of-fit improves as the neural network models proceed in the training procedure and             

thus acquire a higher level of language model accuracy.  
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   a. GRU and Transformer 

    b. GAM fitted curves GRU and Transformer     c. Difference GRU and Transformer 
 
Figure 5a shows the goodness-of-fit of each set of human data (N400) with the average 
surprisal values (higher is better) as the independent function.  
Figure 5b displays the curves fitted of the GRU and  Transformer by the Generalized 
Additive Model (GAM) using pyGAM.  
Figure 5c displays the difference between the GRU and Transformer. The shaded areas, in b. 
and c., indicate the 95% confidence interval of this model. 
 
In the beginning, with the neural networks only trained on a relatively small set of sentences,                

the language model accuracy of both the GRU as the Transformer is fairly low. With this                

level of language model accuracy, the goodness-of-fit is low as well. As can be seen in the                 

figures displaying data from the Transformer, some network versions give a high            

goodness-of-fit score while having limited training (weighted average log-prob < -7.5). This            
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could be due the fact that each network version holds random weights at the beginning of the                 

training. Since these weights are not pre-trained or adjusted at the start, there is a possibility                

that the network overfits on the few examples it has seen and that these training examples                

generalize well to the training data. This possibility is kept in mind without excluding other               

potential factors. However, with the progression of the language models becoming           

well-trained and thus more accurate in capturing linguistic patterns, the goodness-of-fit           

clearly improves. Figure 5b displays the fitted curves by the GAM (using pyGAM) indicating              

the goodness-of-fit as a linear function model of both the GRU and Transformer. The 95%               

confidence interval is displayed as the shaded areas surrounding the fitted curves. With this              

confidence interval, we can see if the models differ in a significant way from each other at                 

any given point of this data. In Figure 5b, at some parts of the curves, the goodness-of-fit of                  

the GRU lies apart from the shaded confidence interval of the Transformer and vise versa.               

This implies that the language models differ significantly regarding the goodness-of-fit. In            

Figure 5c. the difference between the curves of the models is displayed. The zero line (black)                

is the assumption that there is no difference between the two curves. when the curve and its                 

confidence interval (the shaded area) lie above or beneath the zero line, the difference is               

significant. Where the curve is situated beneath zero, the GRU has significantly higher             

goodness-of-fit scores than the Transformer. Additionally, where the curve is situated above            

zero, the Transformer scores higher regarding the goodness-of-fit. In this figure, we see that              

the GRU has significantly higher goodness-of-fit scores than the Transformer for the first sets              

of training sentences (average surprisal < - 6.4). This difference takes a turn when the               

Transformer starts to give significantly higher goodness-of-fit scores (average surprisal > -            

5.7). The part where Figure 5b and 5c displays a significant difference in the advantage of the                 

GRU might look like more than half of the training process. However, the GRU only reaches                

significantly higher goodness-of-fit scores until the fourth point of the training, which is till              

the 30K sentences and thus only covers 0.46% of the entire training corpora of 6.47 million                

sentences. On the other hand, the Transformer shows significantly higher scores after 300K             

sentences (point six of the training) which covers 95.4% of the training sentences. 
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5. Discussion and Conclusion 
The comparison of the GRU and the Transformer revealed significant differences in terms of              

the ability in predicting human data. With these results, it is possible to answer the research                

question of this study; Do the Transformer and the GRU network differ in predicting human               

language processing measured by EEG? Since the GAM curves diverge from each others             

confidence interval, in the majority of the figure, the GRU and Transformer differ             

significantly. In the first part of the training process (till 30K sentences; 0.46%) the GRU               

showed higher goodness-of-fit scores, while the Transformer scored higher in terms of the             

goodness-of-fit for the obvious majority of the training process (from 300K sentences;            

95.4%). These findings imply that the Transformer has a better fit with the human sentence               

processing data than the GRU. This might suggests that human sentence processing involves             

a mechanism more akin to the direct access to context of the Transformers rather than toe                

gating mechanism of the GRU. 

In a similar study by Aurnhammer and Frank (2018), the GRU, LSTM and SRN were               

compared in the goodness-of-fit with human processing data. The difference between gated            

and non-gated recurrent network types was not significant, unlike the difference between the             

GRU and the Transformer. The fundamental difference between recurrent and attention based            

networks might explain why our results differ from the findings by Aurnhammer and Frank              

(2018). Although significant differences provide us with interesting insight on how we            

process language, getting insignificant results could be as relevant. Since the Transformer is a              

relatively new network architecture (2018), any research including this network might be            

relevant. By comparing the Transformer with other neural network architectures, we gather            

potential information to determine the position of the Transformer in the neural network field.              

This is useful for further research as well as for projects considering the use of a Transformer                 

model. 

In this case, the findings imply that our brain processes a sentence with directly paying               

attention to the previous words of the sentence. This might be a big game changer in several                 

fields like; language acquisition, second language learning, language development of          

children, and other language related areas. It provides compelling opportunities for further            
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research in these fields. In terms of the EEG part of this research, there are a lot of potential                   

areas to investigate regarding the fields of communication, language and culture. Some            

examples could be; the differences between age or gender, differences between first language             

and second language, different stages in the language development of children. Furthermore,            

similar studies could be conducted with taking into account different languages and cultures.             

Arabic and Chinese, for example, have an entirely distinct alphabetic structure than Germanic             

languages.  

For further research, in terms of the technical analysis, it should be considered that with using                

Statsmodels (Seabold & Perktold, 2010) it is not possible to include more than one random               

factor. In this study, I included the by-subject random intercepts and slopes as random              

variable. If a different module for conducting the statistical analysis would be used in further               

research, the by-item random intercept could be included. Furthermore, instead of using the             

data from Frank et al (2015), it might be valuable to collect EEG data in an experiment where                  

subjects are presented complete sentences instead of a word by word paradigm to investigate              

a more natural reading scenario. 

In summary, in this thesis I have shown that there are significant differences between the               

GRU and the Transformer with regard to predicting human behavioral data represented by             

N400. The Transformer showed a significantly higher goodness-of-fit score with the N400            

size for the vast majority of the training. This might suggests that human sentence processing               

is more likely to be similar to the ‘direct access to context’ mechanism of the Transformer                

than to the gating mechanism of the GRU.  
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