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ABSTRACT: People can employ mnemonic techniques to achieve better memory skills. Memory athletes of the
World Memory Championships train in these mnemonic techniques for years and have stated to use one mnemonic
technique in particular called the method of loci. In a previous study by Dresler et al., 23 of the world’s memory
athletes and 51 participants, of which as small part newly trained in the method of loci, were selected to perform
a memory test [1]. It was shown that the athletes possess speci�c functional brain networks to support their su-
perior memory performances and that similar connectivity patterns were present in the trained group. However,
it remains an open question which exact changes occurred in the functional connectivity patterns of the newly
trained participants. In this paper, a new method is applied to the datasets used by Dresler et al. to verify the results
previously published and to uncover the areas responsible for the increase in memory capabilities in the newly
trained group. The algorithm is called Spatial Patterns for Discriminative Estimation (SPADE). SPADE produces
linear �lters that can discriminate two groups optimally in terms of their covariance patterns, which are associated
with functional connectivity networks. The results demonstrate that the SPADE �lters can be used to classify the
athletes and their controls accurately. Moreover, the classi�cation could be extended to the newly trained group
in the method of loci, separating their pre-post-training stage. In this work, we present unique spatial patterns of
brain activity connected with the athletes and controls during encoding. In conclusion, the results reinforce that
memory athletes and controls di�er in their functional connectivity networks and that they can be classi�ed based
on these di�erences. Finally, it is con�rmed that this classi�cation can be extended to a newly trained group before
and after training.
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Introduction
It is still not fully understood if people inherently have

better memory or if superior memory can be trained. Mem-
ory can be subdivided into di�erent types such as episodic
memory, which is related to autobiographical events, and
working memory, which holds temporarily relevant infor-
mation [2], [3]. In recent years, it is believed that the use of
speci�c memory techniques can explain a large part of su-
perior working memory [4]. These memory techniques are
called mnemonics and are utilised to help people remem-
ber certain structured information such as names, numbers,
word-lists etc. Memory is usually understood of consisting
of three di�erent processes: encoding, storage and retrieval
[5]. Mnemonic skills are based on practising techniques that
assist with the encoding and retrieval steps that can then

support better memory performance [1]. The fact that one
can practice these skills indicates that ordinary people over-
all can achieve these capabilities and increase their memory
capacity for speci�c information.

Exceptional people train for years in mnemonic tech-
niques to become so-called memory athletes and compete
in the World Memory Championships [6]. One of the main
approaches applied by the memory athletes is the method of
loci [7]. The technique involves people imagining a known
spatial path and at speci�c locations (loci) make imaginary
associations with the items they want to remember [8], [9].
Afterwards, when the person decides to revisit the route,
they will encounter the retained information in order of
placement. When applying this method, di�erent skills are
essential. First, the athletes need to be able to create explicit
spatial scenes with precise loci. Second, they need to a�liate
the to-be-remembered information to these loci by employ-
ing imaginative associations. Lastly, they need to be able to
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move from loci to loci in a smooth manner.
In a previous study by Dresler et al., 23 of the world’s

memory athletes were recruited to perform a memory test
[1]. Their functional connectivity networks were analysed,
using functional magnetic resonance imaging (fMRI). These
athletes all con�rmed that they made extensive use of the
method of loci to perform the memory test. It was demon-
strated that speci�c functional connectivity patterns sup-
port the superior memory displayed by the athletes. After-
wards, Dresler et al. recruited 51 students to see if they could
be trained in the method of loci in a six weeks time frame
[1]. It was con�rmed that the trained group had a signi�-
cant increase in their capability to remember di�erent types
of word lists.

Furthermore, by comparing the functional brain data of
the memory athletes and controls to the group of novice
subjects before and after training, Dresler et al. con�rmed
that a similar connectivity pro�le could be established in
the trained group [1]. The paper highlighted certain areas
as displaying noticeable increases in functional connectiv-
ity for the athletes and the novice subjects after mnemonic
practice. These regions included the right dorsolateral pre-
frontal cortex (DLPFC), the medial prefrontal cortex (MPFC)
and the medial temporal lobe (MTL). However, it could not
be determined, using univariate methods, where the trained
group di�ered in their network pre-post-training. There-
fore, it is still not clear which exact connectivity patterns
changed in the trained group that allows for the increase in
memory performance.

In a follow-up analysis, by Müller et al., the functional
connectivity networks of the athletes were reanalysed us-
ing a more hypothesis-driven approach [10]. The main con-
nectivity pro�le shown to be predictive of the athletes rank
in the World Memory Championships was the anterior hip-
pocampus to the posterior hippocampus and the caudate
nucleus. These two areas have been linked to stimulus-
response learning and the spatial component of the method
of loci [10]. The strength of the method of loci has been hy-
pothesised to be the cooperative utilisation of the caudate
nucleus and the hippocampus [10].

In conclusion, these two papers found distinct functional
brain networks present in the athletes, that support their su-
perior memory performance. Moreover, similar brain net-
work patterns have been found when comparing the pre-
post-training group connectivity pro�les to the athletes-
controls connectivity pro�les. Nevertheless, it remains an
open question which exact changes occur in the functional
connectivity patterns of novice participants trained in the
method of loci.

In this paper, a new method is applied to the datasets
previously used by Dresler and Müller et al. to con�rm the
earlier published results and to uncover the areas respon-
sible for the increase in memory capabilities in the newly
trained group [1], [10]. The algorithm is called Spatial Pat-
terns for Discriminative Estimation (SPADE) [11]. Devel-
oped by Llera et al., SPADE has demonstrated to be able
to identify di�erent cognitive states or experimental con-
ditions based on functional connectivity variations. SPADE
produces linear �lters that can discriminate two groups op-
timally in terms of their covariance. These �lters can be
back-projected onto the brain to show which connectivity
pro�les are present during di�erent tasks. The method was
illustrated using the 0-back and 2-back working memory
tasks. It was determined that brain areas frequently related
to working memory were present for the 2-back task and ar-
eas primarily involved with the attention and salience net-
works were present for the 0-back task [11]. Therefore, con-
�rming that the 2-back task is more related to memory pro-
cessing and the 0-back task more to attention sustainment.

Furthermore, it was established that the discriminative
�lters could be used to classify di�erent cognitive states ac-
curately. The SPADE algorithm was able to detect the subtle
network changes during similar tasks and classify them, as
it relies on the covariance between regions of the brain in-
stead of the mean signal di�erences, such as used in a gen-
eral linear model (GLM) analysis [11]. For distributed net-
work changes, the covariance data can contain more infor-
mation than the mean signal.

In this study, we expect the same brain regions previ-
ously demonstrated by Dresler et al. as being related to
superior memory, to be represented by the SPADE �lters
for the athletes. With the �lters being a representation of
the connectivity patterns. These areas include the DLPFC,
MPFC, MTL and the hippocampus, as this region has pre-
viously been shown to be essential for encoding tasks and
applying the method of loci [1], [4], [10], [12]. For the
LOC group, the network changes after extensive training
in the method of loci seem to be distributed in nature [1].
The SPADE method is highly sensitive to these distributed
connectivity changes. Therefore, it is hypothesised that the
SPADE algorithm can provide us with more insight into the
distributed connectivity changes of the newly trained par-
ticipants that could not be detected with previous methods.
We anticipate that SPADE can distinguish the connectivity
pro�le of the novice group pre-post-training in the method
of loci and demonstrate similarity to some of the athletes’
network connectivity mentioned above. Three main ques-
tions will be addressed in this paper:
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1. Is it possible to reproduce the results demonstrated by
Dresler et al. that the athletes can be distinguished
from their controls based on their functional connec-
tivity pro�le using SPADE?

2. Can we distinguished the novice group practising the
method of loci pre-post-training based on their func-
tional connectivity pro�le and can we visualise the
changes in network connectivity?

3. Can it be demonstrated that the connectivity pro�le
of the athlete-control group, captivated by the SPADE-
�lters, can classify the group practising the method of
loci pre-post-training?

For the �rst question, we will explore the di�erence in
functional connectivity networks between athletes and con-
trols during encoding using SPADE. SPADE will be utilised
to make discriminative �lters. These �lters indicate which
ROIs combined explain most of the connectivity for the ath-
lete group or their controls. Then, we will examine if the
participants of the two groups can be accurately classi�ed
based on their SPADE �lters. For the second question, the
same will be done for the pre-post-training group in the
method of loci. For the �nal question, we will determine
if the �lters found for the athlete-control group can be used
to classify the newly trained group pre-post-training.

Answering these questions will con�rm the underlying
neural connections associated with the di�erence in mem-
ory performance between the athletes and their controls,
shown previously by Dresler et al. [1]. Furthermore, by
analysing the change in functional networks of the novice
training group, insight could be given into the underly-
ing changing brain mechanisms when engaging in superior
memory training.

Methods

Dataset
For the �rst part of the experiment, the fMRI data of 23

memory athletes (age 28± 8.6 years, 14 males) of the top-50
of the 2010-2013 World Memory Championships were anal-
ysed [1]. The fMRI data from a control group, matched in
age, sex handedness, smoking, and IQ, were used to compare
to the athletes. From these 23 athletes and controls, 17 com-
pleted an encoding task in the fMRI. They performed a word
memorisation assignment of 72 concrete nouns of which the
details can be found in [1]. Behaviourally, they have shown
to possess better memorisation skills: 70.8±0.6 vs 39.9±3.6
words recalled after 20 minutes of encoding with a signi�-
cance of p<0.001 using the Wilcoxon signed-rank test.

For the second part of the analysis, the fMRI task data
of 51 participants (age 24 ± 3.0 years, all men) were used.
The participants were assigned to one of the following three
groups: loci memory training group (LOC), active-control
working memory training group (WMN), or passive-control
group (PAS). The groups were matched in age, sex, handed-
ness, smoking and IQ. The participants of the LOC group
got a 2-hour introductory course into the method of loci,
ensuring they had an active grasp of this approach. Every
day the participants in the LOC group were asked to train
in the method of loci for 30 minutes on a web-based plat-
form. In total, they prepared for over 20 hours during a six
weeks time-frame. The WMN group was asked to do an n-
back working memory training during the same time-frame,
using no speci�c memorisation technique. The PAS group
received no training during this time-frame. One fMRI ses-
sion was conducted pre-training, and a second fMRI session
was performed post-training. During the fMRI sessions, 72
concrete nouns were encoded, with di�erent lists of words
being given pre and post-training.

All the fMRI data were acquired in the Max Plank Insti-
tute of Psychiatry using a 3T scanner and a 12-channel head
coil. During the encoding task, 292 T2∗-weighed blood oxy-
genation level-dependent (BOLD) images were made. The
EPI sequence used was: repetition time (TR) 2.5 s, echo time
(TE) 30 ms, �ip angle 90 degrees, and a slice thickness of 2
mm with 42 ascending axial slices [1].

Preprocessing
All the data acquired was prepossessed utilising SPM8.

The following preprocessing steps were performed on the
data: T1-equilibration, realignment to the mean image, co-
registration, spatial normalisation, and smoothing with an
8mm full width at half maximum (FWHM) Gaussian. After-
wards, a general linear model (GLM) was used to determine
the functional connectivity during the encoding task. The
GLM included six nuisance regressors capturing the transla-
tional and rotational displacement. If the frame-wise move-
ment proved to be higher than 0.3 mm, the scan was ex-
cluded. Finally, a high-pass �lter was applied to the data
with a cut-o� of 128 s. For more details on the preprocess-
ing steps, see [1].

SPADE algorithm
The preprocessed athlete and control datasets were used

to �nd the most informative brain regions in terms of covari-
ance using the SPADE algorithm. The following steps were
taken while applying the SPADE algorithm [11]:

1. Spatial dimensionality reduction
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2. Computing the covariance matrices

3. Simultaneous diagonalisation

4. Model order selection

5. Classi�cation

6. Visualisation

An overview of all the steps is presented in �gure 1.

Spatial dimensionality reduction

Before applying SPADE, a dimensionality reduction was
performed on each subjects’ data. In total, 70 regions of in-
terest (ROIs) were de�ned that are related to the six main
networks of memory and visuospatial processing [1], [14].
We wanted to compare the results of SPADE to the paper of
Dresler et al. and therefore chose to apply the same ROIs se-
lection. The ROIs were located in the dorsal and ventral de-
fault mode networks, the visuospatial and higher visual net-
works, and the left and right medial temporal lobes. These
networks are hypothesised to be related to general mem-
ory processes and therefore deemed essential when using
the method of loci [14]. Next, the BOLD time courses were
extracted for each ROI. Afterwards, a z-transformation was
applied to ensure a mean of zero and a standard deviation
of one.

Computing the covariance matrices

Subsequently, the covariance between the ROIs was cal-
culated using the BOLD time courses, giving a 70x70 covari-
ance matrix per participant. These covariance matrices were
used as a proxy for the functional connectivity present be-
tween the ROIs during the encoding task.

Simultaneous diagonalisation

The athletes’ and controls’ covariance matrices were
given to the SPADE algorithm. The SPADE algorithm used
the two covariance matrices for simultaneous diagonalisa-
tion, which renders a set of discriminative spatial �lters. For
more details, see the supplementary material or refer to [13].

Model order selection

Afterwards, model order selection was used to select
only the relevant spatial �lters that optimally maximise the
covariance for one group while minimising it for the other.
One option for model order selection is a procedure based on
permutation testing. When permutation testing is used, �l-
ters are selected that describe signi�cantly more covariance
for the original groups than when the groups are randomly
permuted [11]. Typically, the �lters are at the opposite sides

of the Eigen spectrum and by de�nition maximise the co-
variance between the two groups [11].

Classi�cation
A linear discriminant function was applied with a leave

one out cross-validation scheme to test if the �lters can be
used to classify the two groups signi�cantly. Typically, a
leave one out cross-validation is very expensive, but as the
groups’ sizes were small, this remained within bounds. The
number of folds is equal to the total group size for a leave one
out cross-validation. At each fold, the SPADE �lters were
made using all the groups’ data except one participant’s.
These �lters were then used to transform the data and com-
pute the logarithmic variance of the time-series (LVTS). The
LVTS was used as training data for a Regularized Linear Dis-
criminant Analysis (RLDA) classi�er to distinguish between
the two groups. Afterwards, a classi�cation was made for
the LVTS of the test data to which group it belongs. The
�nal classi�cation accuracy was decided by the number of
correctly classi�ed samples divided by the number of folds.

Visualization
Finally, the top most discriminative �lters were trans-

formed into spatial maps that were projected onto the brain,
to understand with which brain areas the spatial �lters cor-
respond. The data were �ltered by selecting all the data be-
tween the 5th percentile and the 95th percentile. The �rst
�lter indicates the areas that synchronise together to explain
most of the covariance of the control group while minimis-
ing it for the athlete group and vice versa for the last �lter.
Functional connectivity can be understood as the covaria-
tion of brain regions during a task [15]. Therefore, the �l-
ter’s projections can be interpreted as the most informative
connectivity patterns present for the groups during encod-
ing.

SPADE out of sample
Finally, the �lters found from the athlete and control

datasets were tested on the LOC, CON and WMN groups
to see if the �lters could successfully discriminate the LOC
pre-post-training, as compared to the control groups. The
discrimination procedure was done by using the same clas-
si�cation scheme as described above, but replacing the test-
ing data with the pre-post-training data of the three groups.

Results

SPADE �lters athletes and controls
We gave the athletes and controls covariance matrices

to SPADE and selected permutation testing for model or-
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Figure 1: Overview of the Spatial Patterns for Discriminative Estimation (SPADE) algorithm applied to the memory athletes and their controls. 1) The
regions of interest (ROIs) were selected, related to memory and visuospatial processing, and the BOLD time series extracted. 2) The covariances between
the ROIs were calculated, giving 70x70 covariance matrices. 3) Simultaneous diagonalisation was performed, providing spatial �lters [13]. 4) The most
explanatory �lters for the two groups were decided upon in terms of covariance, using model order selection based on permutation testing. 5) A classi�er
accuracy value of the found �lters was calculated, using cross-validation with a Linear Discriminant Classi�er. 6) The top two discriminative spatial �lters
were visualised by projecting them back onto the brain.

der selection. In total, 1000 permutations were performed.
Two �lters (#1, #70) were determined, as maximising the co-
variance for one group while minimising it for the other.
Afterwards, a two-dimensional projection of the data onto
the �lters was made to illustrate that the �lters produced
by SPADE separated the two groups visually, see �gure 2.
The �rst and the last �lter were multiplied with the time-
courses of the original data. Then, the log of the variance of
the transformed time-series was plotted according to:

W = �lter

X = timecourse

X̂ = W T ∗ X

Y = log(var(X̂T ))

In �gure 2, a clear separation between the two groups in
the SPADE �lter space is shown, which gives an indication
that the classi�cation algorithm should provide a satisfac-
tory classi�cation accuracy.

Classi�cation athletes and controls
The SPADE classi�cation accuracy using the �rst and

the last �lter is 91%. A permutation test was constructed,
to test if the resulting accuracies were signi�cant. First, the

indices of the data signifying if a participant belonged to the
athletes or the controls were randomly shu�ed. Second, the
SPADE algorithm was applied to the shu�ed groups, and
the shu�ed-accuracies were recorded. Third, it was checked
how many times the shu�ed accuracies were higher than
the original accuracy or lower than one minus the original
accuracy, giving a two-tailed permutation test, see �gure 3.
The �nal count was divided by the number of permutations,
in this case, 10000, presenting us with a p-value for the clas-
si�cation accuracy. The �nal results of the classi�cation are
displayed in table 1 showing that the p-value of the accuracy
is 0.0043 < 0.05 and therefore signi�cant.

Brain maps athletes and controls
The projection of the �lters onto the MNI152 brain map

was made, to see the spatial connectivity patterns that were

Comparison Selected �lters Accuracy P-value

ATH-CON #1, #70 0.91 (0.28) 0.0043

Table 1: Overview of the results produced by the SPADE algorithm. The
two datasets compared are the athletes and controls task fMRI data. The
SPADE accuracy gives the classi�cation results when using an RLDA clas-
si�er with a one leave out cross-validation scheme. The p-value is deter-
mined by a two tailed permutation test for the SPADE accuracy.
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Figure 2: Showing the 2D representation of the fMRI data in the SPADE �lter space. The data used is the athletes task data (blue) vs. the CON task data
(red). The transformed data set is visually separable into two distinct clouds.

Figure 3: Two-tailed permutation test of the classi�cation accuracy of the
athletes and controls obtained with the SPADE algorithm. The red stars
indicate the original classi�cation accuracy.

learned with the SPADE �lters, see �gure 4. The �lter ex-
plaining most of the covariance of the control group (#1),
shows the bilateral hippocampus, thalamus, parahippocam-
pal gyrus, supramarginal gyrus, cingulate gyrus, precuneus
cortex and the brainstem. Most of these brain areas have
been noted in previous papers to be related to memory pro-
cessing and working memory tasks [11], [16]. On the other
hand of the Eigen spectrum, brain regions that together ex-
plain most of the covariance for the athletes (#70), are sim-
ilar to the controls with extension to the occipital pole and
prefrontal cortex. These two areas have been established to
be relevant during visual mental imagery [17]. One of the

critical elements of the method of loci is to use visual im-
agery to link the to-be-remembered information to the loci.
Therefore, it could be that the connectivity between these
areas is relevant for the athletes during encoding, but not
for the controls.

Classi�cation pre-post training
The SPADE algorithm was also tested on the three

groups (LOC, WMN and PAS) pre-post-training. Model or-
der selection with permutation testing was used to �nd the
most signi�cant �lters. However, using permutation testing
gave zero signi�cant �lters for the three groups. The insepa-
rability was expected for the CON and WMN group, as their
technique pre-post training did not vary. For the LOC group,
previous connectivity analysis performed by Dresler et al.
could also not separate them pre-post-training [1]. Nev-
ertheless, it was anticipated that the new SPADE analysis
could separate the pre-post-training LOC group, as SPADE
has proven to be highly sensitive to small network changes
[11]. It could be that the di�erence pre-post-training in the
covariance matrices were too small compared to the noise
for SPADE to e�ectively separate.

SPADE out of sample results
Lastly, we tested if the �lters that were learned from the

SPADE algorithm with the athletes and controls could also
be used to classify the LOC trained group pre-post-training,
as opposed to their controls (WMN and PAS). The algo-
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Figure 4: Projection of the discriminative �lters found with the SPADE algorithm onto the MNI152 brain map. The #1 �lter explains most of the covariance
for the CON group. The #70 �lter explains most of the covariance for the athletes’ group. The covariance being a direct proxy for the connectivity of
these groups during encoding. It can be noted that the athletes’ group demonstrates more connectivity in the frontal, occipital and parietal brain regions,
as compared to controls.

rithm SPADE out of sample was used to analyse this. To
the algorithm, we gave the covariance matrices of athletes
and controls to train and learn the �lters. The �lters se-
lected by permutation testing remained the same (#1, #70).
The classi�cation was done using an RLDA classi�er, as de-
scribed above, with the LOC, WMN and PAS groups as test
data. In table 2 the �nal results are displayed. Showing the
test set classi�cation accuracy of the LOC, WMN and PAS
groups. The classi�cation accuracy for the LOC group us-
ing the athletes and controls �lters proved to be 81%. The
p-value was computed for the accuracy, using a two-tailed
permutation test, according to the steps explained above.
The results show that the only data set the athletes and con-
trols �lters can signi�cantly classify is the LOC pre-post-
training group (p-value = 0.0036<0.05). The LOC group was
the only group that was trained in the method of loci, and
it was demonstrated before that the distributed functional
connectivity patterns of the athletes-controls are similar to
the LOC pre-post-training group [1]. Therefore, it was ex-
pected that the LOC group contained the participants that
could be separated pre-post-training, using the athletes and
controls �lters. In conclusion, the �lters that signify the
brain areas that explain most of the covariance di�erences
between athletes and controls were also discriminative for

the LOC group pre-post-training.

Discussion
In this paper, a new method is applied to the datasets

previously used and published by Dresler and Müller et al.
to con�rm and uncover the distributed networks responsi-
ble for the superior memory capabilities, in memory athletes
and a newly trained group [1], [10]. The datasets used, en-
compassed fMRI encoding task data of participants trained
in the method of loci, and the fMRI data of memory ath-
letes of the 2010-2013 World Memory Championships. The
algorithm employed is called SPADE, which created spatial

Comparison Test accuracy P-value

LOC pre vs. LOC post 0.82 (0.35) 0.0036

CON pre vs. CON post 0.55 (0.5) 0.24

WMN pre vs. WMN post 0.5 (0.5) 0.81

Table 2: Summary of the results of the SPADE out of sample analysis. The
�lters are learned from the athletes and controls. These �lters are then used
for classi�cation of the three groups (LOC, WMN, PAS) pre-post-training
using an RLDA classi�er. The column ‘test accuracy’ gives the RLDA clas-
si�cation accuracy of the athletes and controls �lters to classify the pre-
post-training state of the groups.
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�lters that correlate with the brain regions containing the
most information in terms of covariance for the groups dur-
ing encoding.

Our results con�rmed the outcomes found by Dresler et
al. that the athletes could be distinguished from their con-
trols based on their functional connectivity pro�les [1]. The
brain regions that were shown to be essential for superior
memory performance by Dresler et al. were also con�rmed
to be present in the connectivity pro�le of the athletes in
this paper, including the DLPFC, MPFC and the MTL. In
the connectivity networks of both the athletes and controls
during encoding, the following areas were determined to
be present: the bilateral hippocampus, thalamus, parahip-
pocampal gyrus, supramarginal gyrus, cingulate gyrus, pre-
cuneus cortex and the brainstem. The athlete group showed
additional brain regions that covariate, located in the occip-
ital pole and the prefrontal cortex.

A complicated issue with multivariate pattern analysis
(MVPA) methods such as SPADE, is that they are generally
not well suited to test a hypothesis regarding the speci�c
involvement of certain brain regions during tasks [18]. It
could be due to various reasons that covariance occurs be-
tween di�erent brain regions — for example, certain brain
areas and processes covariate naturally due to the organi-
sation of the brain [19]. Furthermore, a multitude of brain
processes could be induced by external factors, not of in-
terest to researched behavioural mechanisms. In general,
covariance patterns are di�cult to localise and susceptible
to a mixture of signals that covary with the attended stimu-
lus [20]. Therefore, the �lters provided by SPADE give lim-
ited information about the exact role of a particular ROI,
and the patterns of weights can only be interpreted in cor-
respondence to each other. To further understand the re-
sults demonstrated by the �lters, they should be compared
to earlier literature on these networks.

In previous research, the brain areas mentioned above,
have been associated with working memory, visual imagi-
nation, and spatial navigation, among others. Frontal brain
regions in combination with the hippocampus have been
linked to attention and the maintenance of active memory
representations during working memory tasks [21], [22],
[23]. The mediodorsal thalamic-prefrontal cortical network
has been shown to activate during successful encoding tasks
[24], [25], [26]. The precuneus and frontal regions are
present in spatially guided actions, mental imagery and
episodic memory [27]. Extending these observations to our
results implies that for athletes and controls, most of the
aforementioned brain areas covariate to support extensive
encoding during a working memory task.

We suggest that the additional prefrontal, parietal and
occipital areas that showed to covariate for the athletes can
be understood in terms of the networks activated when per-
forming the method of loci, related to visual imagination
and scheme-like-operations. The hippocampus, parahip-
pocampal, retrosplenial, prefrontal, and parietal cortices
have been pinpointed as essential during actual and imag-
ined spatial navigation [28], [29], [30]. Furthermore, the
hippocampal-prefrontal cortex connection has proven es-
sential in assimilating new information into existing knowl-
edge schemas [31], [32]. For visual imagination, the frontal
regions direct the type of image to be formed and orches-
trate the brain areas corresponding to the imagined senses
[33]. The parietal cortex provides the sensory representa-
tions of the imagined image [34]. Lastly, the occipital cortex
renders the visual component of the imagined scene [35].
The role of these areas have also been juxtaposed with gen-
eral functions needed in memory tasks [36]. However, the
only obvious behavioural di�erence between the athletes
and controls is the use of the method of loci and therefore we
hypothesise that these areas become more connected when
applying this method.

Our results demonstrated that the SPADE �lters could
be applied to correctly decode and classify the athletes from
their controls using an RLDA classi�er. One of the prob-
lems with using MVPA to train classi�ers is that it is hard
to ultimately dictate what information the classi�er used to
make its predictions [37]. When a classi�er is being applied
on small samples, over�tting will always remain a problem.
For example, when one or two participants demonstrate a
lot of movement or other artefacts, it will skew the entire
dataset, and the classi�ers could be trained on noise [38].
In this paper, there were two methods tested to ensure that
the found classi�cation accuracy corresponded to a stable
connectivity pattern. First, a leave-one-out cross-validation
was performed in combination with a permutation test that
determined that the classi�cation accuracy for the athletes
and controls was statistically signi�cant. Second, the found
�lters were tested on an independent testing set LOC pre-
post-training, which also gave a signi�cant classi�cation ac-
curacy.

The results presented in this paper con�rmed that the
connectivity pro�le established in the novice group pre-
post-training could be classi�ed using the athletes and con-
trols’ connectivity pro�le. This classi�cation reinforces the
results earlier found by Dresler et al. that the connectiv-
ity patterns between the athletes-controls are comparable to
the pre-post-training group [1]. The trained group used the
same techniques to accomplish the encoding assignment as
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the athletes. Hence, we suspected this group could be classi-
�ed using the connectivity patterns of the athletes-controls.

One fundamental limitation of our study is that to apply
SPADE an ROI selection needs to be made beforehand due to
memory constraints [11]. Therefore the conclusions made
in this study will always be limited to the 70 brain regions
chosen. For this paper, we selected brain regions located
in networks related to memory and visuospatial processing.
However, some results previously found for the athletes us-
ing the method of loci could not be demonstrated due to
this constraint. One of them being the usage of the caudate
nucleus by the memory athletes, as this was not an ROI in
our selection [10]. Therefore, for future studies, it would be
informative to test di�erent ROI selections.

Conclusion
In conclusion, we demonstrated that we could decode

based on connectivity patterns, if a person belongs to a
memory athlete or control group using SPADE. Moreover,
we can visualize the unique spatial patterns of brain activ-
ity connected with these groups. Furthermore, this classi-
�cation can be extended to a newly trained group in the
method of loci, separating their pre-post-training stage. Ac-
cordingly, these results con�rm earlier work by Dresler et al.
that the athletes and controls can be separated based on dis-
tributed changes in their functional connectivity networks
and that these distributed network changes are also present
in a newly trained group.

Supplementary

Simultaneous diagonalization
The SPADE algorithm stands for Spatial Patterns for Dis-

criminative Estimation. It is a combination of dimensional-
ity reduction, simultaneous diagonalisation, model order se-
lection, and the visualization of the associated spatial maps
[11]. If there are two covariance matrices C1 and C2, which
are by de�nition symmetric, then they can be simultane-
ously diagonalised as follows:

1. The covariance matrix C1 is whitened by:

Y = Θ–1/2φTX (1)

C1φ = φΘ (2)

φTφ = I (3)

With Θ the eigenvalues and φ the eigenvector matrix.

2. After, the matrices C1 and C2 are transformed:

Θ–1/2φTC1φΘ–1/2 = I (4)

Θ–1/2φTC2φΘ–1/2 = K (5)

3. Finally, the orthonormal transformation is applied to
diagonalise K.

Z = ΨTY (6)

KΨ = ΨΛ (7)

ΨTΨ = I (8)

With Λ the eigenvalues and Ψ the eigenvector matrix

Therefore, the two matrices are then simultaneously diag-
nolised by the transformation matrix φΘ–1/2Ψ. For more
details refer to [11], [13].
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