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This thesis reports on the development of a hand gesture driven musical instrument.
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the former a recognition performance of above 99% is reached with a single training

example. For the latter, a music-motion study is conducted on listener associations

between musical changes and hand motions. The results indicate that many motional

features are significantly affected by many musical parameters. This provides essential

knowledge for musical mappings utilizing the holistic gestures, which is investigated by

a proof-of-concept prototype of the musical instrument.
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Chapter 1

Introduction

Traditional musical instruments have gradually been complemented with electronic coun-

terparts. The advent of computerized virtual instruments introduced a whole new genre

where more often than not, music is composed through computer keyboards. The Stan-

ford and Princeton Laptop Orchestras are prominent examples of this digitally created

live music [19, 53]. Concurrently gestural control has established itself as an interaction

paradigm, enabling novel forms of rich user interactions. Digital devices are no longer

solely controlled by mouse or keyboards but recognize complex repertoires of multi-touch

gestures. Moreover, the use of 3D gestures has entered our living rooms through the

use of popular control devices like the Microsoft Kinect, Sony Playstation Move, and

the Nintendo Wii. These developments on musical and gestural control provide the set-

ting for the work presented here. This thesis reports on the research and development

towards an hand gestural controlled digital musical instrument, which combines both

wonders in digital music making and computerized understanding of physical gestures.

The instrument is designed to provide an intuitive and natural form of interaction by

recognizing musical hand gestures in mid air. For this purpose an holistic interaction

paradigm was adhered to. This type of interaction affords the user an unnoticeable

direct transition between actions and sounds [25]. This in contrast to analytic systems,

where the attention of users is directed towards analyzing their actions. In the context

of music, the holistic approach is reflected by a phrase by Marc Leman:

“What is needed is a transparent mediation technology that relates musical involve-

ment directly to sound energy. Transparent technology should thereby give a feeling

of non-mediation, a feeling that the mediation technology “disappears” when it is

used.” - Leman [35]

1
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It is such an interface we strived for by combining an selection of pre-defined hard-

and software technologies. This interface is used as a basis for a hand gesture driven

musical instrument (DMI). The system detects and transforms the two dimensional

hand motions to musical control, which is analogue to buttons or switches in regular

instruments. Further visual feedback of the user’s gestures is provided. Two types of

gestures are distinguished by the system: analytic and holistic musical control gestures.

The former acts as discrete control for musical events, such as play or next setting,

whereas the latter is the primary musical controller for continuous sound production.

Figure 1.1: A schematic impression of the instrument in the design phase. A camera
detects the hand and a computer system provides visual feedback.

Designing an holistic gestural DMI requires that the system complements the physical ca-

pabilities of the user and interprets the gestural message conveyed. Musical involvement

is often based on corporeal articulations [5, 11] and captures which idea that created

sound structure encodes aspects of the user’s bio mechanical energy from actions. The

theory of embodied music cognition describes this relationship between a human sub-

ject and its environment, analyzing the coupling of action and perception along with

the body’s engagement with music [35]. Until now, the design of previous input devices

and their interaction techniques has been driven more by what is technologically feasible

than from an understanding of human performance [9]. To design more usable interac-

tion techniques, a more user centered gestural design should be embraced. This implies

that research to gestures and their relation to music is equally important. Therefore this

thesis reports on a study conducted of user’s associations between musical parameters

and motional features. The knowledge thereof will be utilized to shape intuitive musical

mappings in the DMI.
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The following research questions are visited in this thesis.

R1 Can we design an affordable, portable interface that captures hand/finger ges-

tures in an accurate, fluent manner without delay?

R2 Do there exist natural/intuitive repertoires of analytic and holistic hand/finger

gestures?

R2.1 Do these gestures adhere to well-known usability constraints such that they

are easy to learn, easy to use and distinguishable by the system in a robust and

efficient manner?

R3 Do there exist relations/associations between sound and holistic gestures?

R3.1 How can we use this information in a musical performance?

Organization of the the thesis In Chapter 2 the field of musical gestures and

gesture driven musical instruments is explored in order to discover how it shapes the

design of our interface. In the following chapter the development of this interface,

both soft- and hardware, is presented and results in the description of the basis of

the hand gesture driven instrument. In Chapter 4 the development of a repertoire of

analytic control gestures is created. Furthermore a classifier system is evaluated on

the recognition of this repertoire. Chapter 5 presents a study on listeners associations

between musical parameters and hand motions. The knowledge thereof can be used

as a basis for musical mappings from motions to sound, as described in Chapter 6.

This chapter also reports on a developed musical prototype. In the final Chapter 7 our

findings are concluded.



Chapter 2

Gesture Driven

Digital Musical Instruments

In this chapter the development from regular musical instruments to electronic variants

is explored. First it is described how the invention of electronic musical instruments

(EMIs) evolves to digital musical instruments (DMIs). Subsequently it is investigated

what the definition of gestures constitutes and entails, whereafter different types of

musical gestures is explored. At the end of the chapter, the combination of gestures and

DMIs is covered in order to discover how it shapes the design of the hand gesture driven

interface.

2.1 EMI & DMI Development

Since the 18th century, musical instruments have made use of electricity. The first elec-

trified musical instrument was the ‘Denis d’or’, invented in 1753 [13]. Strings of a piano

were electrified to enhance the sound they produced. However the sound output was not

amplified until in 1861, when the first speaker was created by Johann Philipp Reis. In

1876 the first electronic musical instrument was developed: an electric synthesizer, in-

vented by Elisha Gray [10]. Sound was controlled by a vibrating electromagnetic circuit

which resulted in the underlying concept of an oscillator.

An electronic musical instrument can be defined as a musical instrument that gener-

ates sounds by utilizing electric power. Further, the instrument outputs these generated

sounds as an electrical audio signal amplified by loudspeakers. EMIs have a direct

electronic relationship with sound output. This in contrast to DMIs where a micro-

processor mediates the output by altering a digital representation of sound. Therefore,

4



Contents 5

DMIs represent a subset of EMIs. Before the beginning of the 21st century, EMIs were

primarily designed as an output device, with synthesizers as primary sound generating

devices. In 1954, Max Matthews developed the first sound generation program at Bell

Labs. After personal computers made their affordable entrance into homes and offices,

musicians became proficient in utilizing this new computer potential. At first only used

as a sequencer or sound editor, soon synthesizers could be emulated virtually matching

the same quality as their hardware equivalents. However, DMIs were still largely built

like synthesizers with the desire to be controlled by keyboard-like inputs. It became

common practice that DMIs largely powered these virtual synthesizers while still using

the keyboard paradigm [45].

The field of DMIs is currently very active. Since 2001 the conference of New Interfaces

for Musical Expression (NIME) [2] is annually organized, drawing researchers and musi-

cians to share their developments of new technologies for musical expression and artistic

performance. The rise of research institutes like CCRMA, IRCAM and MIT Media Lab

show the desire to gather further knowledge around DMI’s. Numerous state of the art

DMI examples are also occasionally presented at the The Music Hack Day series [1]. In

Figure 2.1 Berkeley University professor David Wessel plays on one of his custom DMIs:

the SLABS. The instrument consists out of an matrix of pressure sensitive touch pads,

capable of sending finger coordinate and pressure data to a computer. The software

MAX/MSP [3] then translates these events to sounds.

Figure 2.1: The SLABS being played by Berkeley University professor David Wessel.
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During the course of this thesis, the following definition of a DMI is adhered to. It

entails that in DMI development, both hard- and software are equally important.

Def: A digital musical instrument is a device where a microprocessor controlled de-

vice mediates between hardware input and audio output by processing/transforming

a digital representation of sound. This requires that the computer does not solely

act as a direct coupler of hardware input to audio output but processes the input to

a higher level of information.

2.2 Gestures

Wherever music is present, movements are ubiquitous. Literally by the vibrations of the

air, but furthermore by the people moving to the sounds they perceive or make. People

surrounded by sound often dance, wave or imitate the source of the sound [5, 56]. The

movements that accompany sounds are coined as ‘musical gestures’ [28]. The term

gesture has a broad range of definitions and refers to a great variety of phenomena. A

general definition of a gesture is given by Hatten [24]:

Def: “A significant energetic shaping through time.”

However this broad definition can have too many interpretations. The physical charac-

teristics as a vehicle of information should be added to the definition to emphasize the

usage of gestures by humans:

Def: “A significant bodily motion through time, bearing meaning.”

A comprehensive framework for the categorization of gestures can be made using the

work of McNeill and Zhao [28, 42, 61]. Three categories can be distinguished: commu-

nication, control and metaphor.

Communication Gestures The fields of linguistics, behavioral psychology and so-

cial anthropology primarily make use of the term communication gestures. These ges-

tures convey information in social interactions. Examples are the physical movements

accompanied with speech, like hand gestures and facial expressions or even movements

which generate speech or writing. These communicative movements are also named ges-

ticulation. They are not accidental irrelevant motions, as McNeill [41, 43] showed that

these gestures contain communicative information.
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Control Gestures Human-computer interaction (HCI) is interested in how gestures

can be used as an input for controlling computers. Traditionally, humans have only

partially interacted with computers by using gestures. For example, the entire gesture

involved pressing a key on the keyboard cannot be seen as a significant gesture since

the movement as a whole holds no inherent information. More recently HCI is trying to

expand this interaction by recognizing more complex hand gestures [14] or body gestures

[50].

Metaphoric Gestures Instead in the physical domain, gestures can further be

viewed metaphorically. The term is best explained by an example of Middleton [44]

who writes: “How we feel and how we understand musical sounds is organized through

processual shapes which seem to be analogous to physical gestures.”. Hence a gesture is

here defined as a sensational interpretation as a metaphor for a physical event.

2.2.1 Musical Gestures

Musical gestures are gestures with any relation to music. Based on the works of Jensenius

et al [28] there are four main categories of these gestures discernible:

• Sound-producing gestures.

Gestures directly generating sound either by direct excitation or modification. Strik-

ing a string in a guitar is excitatory whereas bending the guitar’s tremolo/vibrato

arm, thereby creating a vibrato or a portamento effect, is a modifying sound pro-

ducing gesture.

• Communicative gestures.

Gestures which serve the main purpose of communication either performer-performer,

performer-perceiver or perceiver-performer. For example in a musical ensemble a

conductor indicates tempo with perceiver-performer communicative gestures, trying

to control the sound production. The term controller-performer is also appropriate

here.

• Sound-facilitating gestures.

Gestures which support the sound-producing gestures, but are not directly involved

in the production of sound. For example in piano playing, the movements the hands,

arms and body make in addition to the fingers which hit the piano keys.

• Sound-accompanying gestures.

Gestures which do not produce sound, but accompany or follow the music as a

reaction to them.
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Note that a specific musical gesture can fall into multiple categories. For example, a

sound-accompanying gesture can also be communicative.

Based on these distinct types, a musical gesture can be defined by extending the general

gesture definition in the following way:

Def: “A significant bodily motion through time, bearing meaning, that goes along

with music, either while producing, adjusting, communicating, facilitating or ac-

companying the music.”

2.2.2 Analytic and Holistic Musical Control Gestures

The interface we created is designed to work similarly to an instrument. Therefore

sound needs to be controlled. Since the interface further is hand gesture driven, musical

controlling gestures need to be recognized. We can distinguish two types of these musical

control gestures, inspired from writings of Marc Leman [35].

• Analytic Control Gestures.

Motion information is not used during the gesture, only the resulting motion symbol

counts. Similar to pressing buttons. Analytic refers to discrete and rational decision

making, like for instance in a classifier. They can also be described as discrete

control gestures. The analytical gestures have a binary and thus discrete existence,

one gesture is either present or it is not.

• Holistic Control Gestures.

Motion information is continuously used. A change in motion results in a direct

change of the control of sound. Holistic refers to a higher level of reasoning or

processing, where the actual motion pattern is not of prime interest, but for example

its inherent features or attributes are. They can also be described as continuous

control gestures. The holistic gestures are more continuous in the sense that at each

point in time inherent properties of the gesture are of interest.

The analytic gestures will be used in the system for event control and not for direct

music production. An example would be switching between instruments or quitting the

program. The holistic gestures will be used for direct sound production and manipula-

tion.
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2.3 Hand-Gesture Driven Digital Musical Instruments

A subset of digital musical instruments require hand gestures as input. Because our

interface strives for ‘making music in the air’, the focus in this section will be on hand

gestures made without physical interaction with objects, like keys or strings as in regular

instruments. Also named as remote hand tracking.

Using hands to create gestures for sounds as opposed to other body parts is not unrea-

sonable. Hands are the main parts of the body used in manipulating the environment

and have a wide degree of movement and positioning freedom. Hand gestures are a

combination of rough torso, less rough arm, fine wrist and detailed finger movements.

Hence the positioning capability for creating gestures is large. Further, the most com-

mon instruments are controlled with the hands [45], hence their proficiency in creating

gestures for music is already proven successful.

Below a summary is given of sensing techniques that can achieve remote hand recognition

and tracking. In the next section it is described which combination of these techniques

is used for our interface.

• Electromagnetic Sensing

This utilizes the interactions between magnetic fields of different objects. Antennae

creating such a field can be used as a sensor detecting moving hands.

• Optical Sensing

Cameras output consecutive frames which can be analyzed to distinguish a 2D[60]

or 3D[34] hand motion. LED markers can be worn [7] to facilitate the recognition.

• Acoustic Sensing

A high frequency sound source, typically 20-40 kHz, is tracked by 3 orthogonally

placed microphones [58]. Tracking is achieved by taking into account the time the

sound takes to arrive at each microphone. The disadvantage of such systems is that

only a small space can be used for tracking (<1 m3) and only one source can be

tracked each time instance. It is also sensitive to differences in air temperature and

humidity, wind, occlusion, ultrasonic noise and echoes.

• Inertial Sensing

Relative hand position is determined with an accelerometer and a gyroscope at-

tached to the hand. The sensors provide information of direction and the speed

differences. Most sensors are slightly imprecise, resulting in inaccurate acceleration

reports and thus positional drift. For example, a bias of just 1 milli-g (0.0098 m/s2)

results in a drift of 4.5 meters over 30 seconds [58].
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Often multiple techniques are combined to overcome individual disadvantages or to

increase the tracking accuracy. For example, a bias inertial sensing can be corrected

with optical sensing information.

Examples The most prominent and one of the earliest examples of electromagnetic

sensing for sound control is the theremin/aetherphone [20], ceated by Professor Léon

Theremin in 1919. The main design consists out of two antennae. Both sense the posi-

tions of the user’s hands and converts this information to an electric signal by controlling

either the frequency or amplitude of an oscillator. This electric signal is then amplified

and transformed to sound by a loudspeaker. This EMI does not require physical inter-

action and can ‘track’ the hands in mid air.

Figure 2.2: A theremin being played by its inventor Léon Theremin.

In later years, a wave of conductor-following systems were created, tracking hand motions

indirectly by following the baton1 of a conductor. In 1983, Haflich and Burns [23] used an

combination of acoustic and optical sensing in order to track a baton in two dimensions.

It was the first system to extract and analyze the conductor’s gestures2. A later system

1A stick that is used by conductors to exaggerate and enhance the hand movements with the purpose
of directing an ensemble.

2Previous research of conductor’s gestures used joysticks, knobs or tablets to derive motions [39].
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by Max Mattews made use of a baton emitting radio frequency signals which were

detected by a metal plate [40] (see Figure 2.5).

Acceleration sensing was used in 1989 in the MIDI Baton, developed by Keane and

Gross [29]. Changes in acceleration cause contact between a metal ball and the baton,

triggering an electrical signal. The main purpose of this system was to detect beats.

Positional data was not obtained. Another, more recent system used the Nintendo Wii

remote controller’s accelerometer to recognize hand gestures [49]. Again no positional

data was obtained, just relative differences in direction. Optical sensing was used in

another baton device, using a CCD camera in 1992 [7]. A lamp on the baton’s tip was

placed which was tracked by software that read out the CCD camera’s data.

Figure 2.3: The radiobaton. A metal plate detects radio waves in order to track the
baton.

In 1997, a more sophisticated baton was created, combining multiple sensing technolo-

gies. The Digital Baton by Marrin and Paradiso [38] contained an infrared LED at the

tip of the Baton, a pressure sensor and acceleration sensors. The LED was tracked by a

camera and the other sensors provided additional gesture information.

These baton-type of systems are still being developed today. Recently, Sony Computer

Entertainment released the PlayStation Move: a motion-sensing game controller plat-

form for the PlayStation 3 game console (see Figure 2.4). The working principle is also

based on optical sensing, although more sophisticated than the Digital Baton or Bertini’s

Baton. The controller uses a sphere to diffuse RGB-LEDs light. The resulting light blob

is then tracked as a marker by the PlayStation Eye, a plugin webcam for the gaming

console. The system automatically derives the most distinct color in the surrounding

scene and applies this to the controller to be emitted. The color is dynamically updated

such that the tracking is optimized.
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Figure 2.4: Sony’s motion-sensing controller: the Move. The left semi-translucent
sphere acts as a light diffuser.

Other Interfaces Some interfaces which are not designed particularly for hand ges-

tural musical control, have the potential to do so.

One of such systems is the Color Glove, created by Wang [57]. It is capable of accurate

and fast tracking the position and posture of a glove with a color pattern. Wang suggests

that it could be used in in artistic musical applications.

Figure 2.5: The color gloves. Colored areas on the glove fortify recognizability by
optical sensors.

Another system developed by Johnny Chung Lee tracks fingertips by using the Nintendo

Wii remote gaming controller’s infrared camera. The system can track infrared reflec-

tions from fingertips [32, 33]. The Wii controller is capable of tracking up to four blobs

of infrared light and transmits this information wirelessly to a computer via Bluetooth.

This results in an accurate 2D hand motion tracking system with little delay and a

relatively high refresh rate (µ accuracy: 1mm, µ delay: 49.6 ms, µ refresh rate: 98 Hz

[31]).

Another advanced motion tracking system is Microsoft’s Kinect [50]. Apart from full

body motion tracking it can recognize individual body part positions. A camera plus

depth sensor outputs via software a 20-joint representation of the user’s body. Recently,

it was made accessible through the release of a non-commercial development kit3. The

main downside of this system is the low refresh rate (µ 30Hz). Further, the resolution

3http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/
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of detected joints is relatively low and only a rough position is calculated. Moreover the

system has a large and noticeable delay (µ 218 ms) due to the complexity of the joint

tracking computations.

2.4 Music Glove

Considering the recent developments in acquisition technology for remote hand move-

ments tracking described in the previous sections, we have opted for a combination of

several techniques. The following elements from previous research which are used in the

interface are summarized:

• Chung Lee’s Wii controller technique.

Tracking up to 4 blobs of IR light.

• Marrin and Paradiso their LED Baton

Creating a reliable IR source at the user’s fingertips.

• Sony’s Move Diffuser

Creating an diffuse blob of light to transform a divergent IR-LED source to a om-

nidirectional marker.

In the next chapter we will further justify the choice for selecting these hardware elements

for the use in our digital musical interface.



Chapter 3

Interface Development

Developing a hand gesture driven DMI involves hardware and software design. This

chapter addresses the different steps involved in the design and presents comprehensive

summary of the elements used for the DMI. During the development, an iterative process

was adhered to for which evolutionary prototyping was used to incrementally improve

the design.

3.1 Hardware Development

Because hardware often sets restrictions on software rather than vice versa, first the

hardware for the interface is determined . In the next section requirements and con-

straints of the hardware is specified.

3.1.1 Requirements

The specification of requirements captures what the system is expected to provide: the

user requirements. It states in plain language what is required for the end user. The

user requirements are divided into functional requirements and constraints. The first

describes the functional services of the system, the second the constraints which the

system should satisfy.

Functional Requirements - Qualita-
tive

Functional Requirements - Quanti-
tative

Positional tracking of one or two hands (x,y) per hand or finger

14
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Constraints - Qualitative Constraints - Quantitative

Fast tracking, i.e. without significant de-
lay between movement and system pro-
cessing

< 50 ms

Accurate tracking, i.e. high resolution
motion detection and high refresh rate

detectable change of 1 mm finger-
movements at operation distance at 100
Hz

High degree of movement freedom, i.e.
range and orientation: hands must be
trackable with stretched arms and in any
orientation

195 cm left-to-right and up-down span
(95th percentile male radius of fingertip
boundary [4]) at 180 degrees in horizontal
and vertical planes

Affordable and easily available hardware < 20 euro

Portable < 1 dm3

Easy to build < 1 hour build time

3.1.2 Architectural Design

Based on the requirements listed above, this section presents how the system should

provide these services while satisfying the constraints by the describing of our re-iterative

design of the interface. First the main hardware is determined after which 3 consecutively

improved prototypes are described.

Wii Remote The main component of the hand tracking system consists of an optical

sensor: the Nintendo Wii remote controller (Figure 3.1). It was originally designed to be

a gaming controller and holds a set of sensors such as a gyroscope, accelerometer and an

infrared camera. Internal hardware processes the output from the camera to detect and

track blobs of infrared light. Up to 4 blobs can be tracked by the system simultaneously.

The output of the tracked blobs are specified as:

O(t) = { B1(t), B2(t), B3(t), B4(t) }

where Bi(t) = { x(t), y(t), s(t) }

Hence of the ith LED at time t the horizontal and vertical position relative to the Wii

controller and the blob size are produced. The blob size output is rescaled to range

with 6 values, thus only a low resolution depth approximation is produced. Further, the

device attempts to track each blob and assigns an unique position in the output for each

blob. The output is transmitted via Bluetooth and can be received and processed by

using a personal computer. [32].

Johnny Lee [33] suggested a setup to utilize this Wii remote property. It functioned by

adding reflective tape to fingertips which reflect light emitted from an array of IR-LEDs

back to the Wii remote’s camera. Four fingers could thereby be tracked. Although a
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Figure 3.1: Top and front view of a Nintendo Wii remote controller.

fluent result without delay was realized, the angles of operation and range were limited

in this approach (see Section 3.1.2). Further, the reflective tape does not reflect the

infrared light in all directions equally due to bending of the reflective material, causing

occasional loss of the signal.

IR-LED Source To overcome the shortcomings in Johnny Lee’s approach, the idea

of Marrin and Paradiso [38] was adapted to strenghten the input signal to the Wii remote

by sending out infrared light directly from the fingertips. For this purpose we designed

a glove with IR-LEDs and a power source attached. In Figure 3.2 the initial design of

this glove is shown.

Figure 3.2: Initial design of the glove. A battery in the wrist powers IR-LEDs situated
at the thumb and index finger. Two gloves emit a total of 4 IR sources.

First Prototype The first glove prototype used one 25 mW LD271 IR-LED1 per

finger. To verify that this configuration was sufficient to meet the requirements, two

1wavelengths: λ > 760nm
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important quantities were assessed: 1) range2 and 2) angles of operation3.

Results indicated an improved range and angles of operation compared to the reflective

method. A comparison study where the method of Johnny Lee was replicated, provided

a maximum range of 0.75 meters and a 40 degree angle of operation. The first glove

prototype improved this to 0.85 meters and a 60 degree angle of operation.

During testing of the first prototype, a disturbance in the output of the tracking system

was noticed. When 2 or more infrared sources became too close to each other, they

became indistinguishable which resulted in the switching of the output order of the

two blobs. In Section 3.3.2 we propose a software solution to handle this problem of

switching.

Not all requirements were met using this combination of hardware. Although the setup

provided fast tracking ( µ delay: 49.6 ms), accurate tracking (µ refresh rate: 98 Hz), both

the maximum operation angle (60◦<180◦) and distance were not satisfactory. Stretched

arms were not possible at a distance of 0.85 meters.

The requirement of accuracy is further not met by using the Wii remote controller. At a

195 cm stretched arm length window and with a resolution of the Wii remote’s camera

of 1024x768 pixels, this results in an accuracy of 1950mm
1024px = 1.90 mm/px horizontally and

1950mm
768px = 2.54 mm/px vertically. Hence the user must at least move 1.90 mm in the

horizontal plane or 2.54 mm in the vertical plane in order for the system to detect a

change in movement.

The hardware is affordable with a maximum cost of 17 e. For around 10 e a Wii

remote controller can be obtained. The cost of the gloves is around 2 e whereas the

LEDs and circuitry are valued at a maximum of 5 e. Furthermore the glove is easy to

assemble within 1 hour.

Second Prototype In order to increase the range and angle of operation, the IR-

LEDs were modified. In Figure 3.3 an abstract representation before and after modifi-

cation is presented. Modification was achieved by removing the epoxy lens. The regular

LED emits a slightly divergent beam, whereas the modified version disperses the light

multi-directionally. The more spread the beam of light the better it can be recognized

2Determining the maximum distance for proper operation was done by drawing circle via a visual
feedback system while the user walked backwards. Whenever a circle failed, the current distance to the
Wii controller was measured as the maximum distance of operation. For the maximum angle, the user
was situated at the maximum distance, minus 10 cm. One finger of one glove was pointed towards the
Wii controller. Next the hand was rotated, either to the left, right, upwards or downwards. When the
signal disappeared, the angle was measured relative to the starting point.

3Measured relative to pointing directly at the Wii controller at 0 degrees. Directions measured were
left, right, up and down. For all directions the maximum angles were equal.
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from more directions, improving the angle of operation. Furthermore, the surface was

sandblasted 4 in order to further increase the dispersion of light.

Figure 3.3: Abstract representations of LEDs. On the left a typical Light Emitting
Diode (LED). On the right the modified version where the lens is removed and the body
is sandblasted. Image courtesy of Inductiveload from Wikimedia Commons, modified.

The effect of this modification can be shown in the visual light spectrum by using

Red-LEDs5 (see Figure 3.4 ). This comparison indicates that the maximum angle of

operation will be increased because the light is dispersed at a greater angle. Moreover,

the intensity of the beam does not seem to be largely effected by the dispersion, hence

the maximum distance of operation is expected not to reduce.

Verification of these modifications confirmed these predications. The range remained

equal (0.85 m) but the operation angle was increased to a 100 degree view in all planes.

However, both the range and angles of operation were not satisfactory. To increase the

range, the amount of electrical current through the LEDs was increased to 125 mW.

This effectively increased the maximum range to 3.00 meters. At this distance the user

can use a stretched arm, covering a span of 195 cm from left-right and up-down.

Third Prototype In order to increase the angle of operation, the idea of diffusion

used in Sony’s Move controller was applied where a semi-translucent plastic sphere

diffuses the LED’s light underneath, enabling the sensor camera to track the device

irregardless of the angle of operation.

4Given our constraint of easiness to build, using regular sandpaper instead of sandblasting equipment
also suffices. A rough surface should be the result.

5wavelengths: 610nm < λ < 760nm
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Figure 3.4: Photograph of two light beams (top 2 blobs) from a regular Red-LED
(left) and a modified Red-LED (right). LEDs (bottom 2 blobs) were placed in a dark
room, 5 cm in front of a white papered wall. The photographic was taken with a Canon
EOS 400D at ISO 100, F 5.6 and 1/4 exposure time. The image’s colors were inverted
to change the black room background to white. Further, hue was inverted next to

retrieve the red-LED color.

In Figure 3.5 a diffuser, designed especially for our interface, is shown. It is made from

a semi-translucent plastic, and contains small particles which disperse the light to a all

angles. Because the light is partially absorbed by the plastic, two LEDs per diffuser

were required to compensate for the loss of light.

Figure 3.5: A diffuser: a piece of diluted plastic with two holes for inserting standard
5mm LEDs. The divergent LED light is emitted through the plastic omnidirectional,

creating a ‘blob’ of light rather than a beam.
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Testing this third prototype delivered satisfactory results, meeting the requirements for

range and angels of operation. The range was slightly reduced to 2.30 meters, however

the angle of operation was increased to a view of 180 degrees in all planes. Both proved

to be sufficient, allowing gestures with stretched arms, pointing in every direction. In

Figure 3.6 the circuit diagram of the electronics in the third prototype is shown.

Figure 3.6: Circuit diagram of the final glove.
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3.2 Software Development

The behavior of a DMI is determined by software. In the context of DMIs, three main

functions of the software can be recognized. 1) Continuous data acquisition of human

generated control signals and 2) transforming hardware signals to auditory information

and 3) output it as audio signals. As will be further detailed below, we have considered

two options for the development of the required software: 1) develop from scratch and

2) integrate existing modules. A detailed specification of the software requirements is

given in the next section.

3.2.1 Requirement Specification

Functional Requirements - Qualita-

tive

Functional Requirements - Specifics

Interface with relevant hardware Bluetooth Wii controller data

Transform and output control signals to

auditory information

MIDI or audio signal

Transform control signals to visual infor-

mation

Visual feedback of (x,y) per IR blob

Constraints - Qualitative Constraints - Specifics

Versatile Adjustable for adding functionality

Efficient No computational delays

Distributable Compiled & Open Source

Modular Easily replaceable individual components

Platform independent Windows and Mac OSX

Gesture recognition > 99 % recognition rate

3.2.2 Architectural Design

No single software framework was found which met all requirements, apart from devel-

oping a framework from scratch. Multiple different frameworks were found which each

partially provided the required functionality. This approach to combine these frame-

works was chosen above building a new framework from the ground up in order to be

able to quickly build prototypes.

The requirements are split to 3 software frameworks. In Figure 3.7 an overview of the

chosen frameworks and their interactions are visualized.
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Figure 3.7: The architecture consisting out of the three software frameworks, their
respective functions and data flows.

Data Acquisition OSCulator is a program that is able to capture Bluetooth data

from the Wiimote and sends it to a wide variety of different programs via different

protocols [52]. The program is not freeware nor platform independent, however multiple

freeware solutions for both platforms exist [30].

Open Sound Control was chosen as a platform independent protocol to transfer the

Wiimote data over the intra/internet. Designed as an alternative to MIDI at CNMAT,

it features higher resolution data transfers which are distributed faster compared to

MIDI.

Data Processing Max Msp is a modular visual programming language for multime-

dia designed at IRCAM by Miller Puckette [3]. Given the OSC input from OSCulator, it

can perform operations on the data and transform it to audio information. The frame-

work is multi platform. Further, a build in Java editor and compiler provide the the

capability to implement novel algorithms.

Inside Max Msp, objects are represented visually. In Figure 3.8 a part of the final

implementation is shown. This can either be compiled as a stand-alone application, or

released editable as source code. Components can be easily replaced, as long as the

inputs and outputs remain equal.

Note that Max MSP is not freeware. Source code cannot be edited without a purchase,

however compiled software can be distributed freely.

Data Visualization Processing is a Java-based programing framework specifically

designed for efficient visualizations [18]. It can receive this information by UDP messages

sent over the intranet by Max MSP. Although Processing could also receive motion

information directly from OSCulator, the route via Max MSP was chosen such that

also auditory information could be sent in synchrony when required. The functionality

implemented by the software program provides the user with visual feedback of the hand

position in space.
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Figure 3.8: A part of the implemented structure in Max MSP. Three areas are shown
in grey, each with a unique function. Objects within these areas receive inputs at the

top and produce output at the bottom. Data is ‘transported’ via red links.

3.3 Final System

3.3.1 Hardware Result

In Figure 3.9 the final result can be observed. A glove with two infrared sources attached

to the index finger and thumb are powered by a hidden power source inside the wrist.

The hardware approaches the requirements and constraints. The Wii remote tracks the

hand quickly (delay: < 50 ms, refresh rate: 98Hz), which according to a user study did

not add a disturbing experience of lag or was not even noticeable at all. The resolution

of motion detection was not met (2.54 mm/px > 1.90 mm/px > 1.0 mm/px), however

according to user studies the maximum resolution of 2.54 mm/px was sufficient enough

for proper movement generation (4.03/5 points, stdev 0.99 points). Furthermore, the

glove is comfortable to wear and its presence feels to disappear when it’s used (see

Section 5.4.2). At a distance of 2.30 meters, users can have stretched arms (195cm in

the horizontally and vertically) in every direction (180 degrees) while the Wii remote

can still track the hand motions. Further, the hardware is affordable (< 20 e), easy to

build (< 1 hour) and portable (0.2 dm3 < 1 dm3)
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Figure 3.9: The final version of the glove (top). The power source (bottom) is hidden
inside the wrist.

3.3.2 Software Result

On the software side a framework was created consisting of 3 separate components.

The framework meets the requirements. It captures gestural control signals of the user

via Bluetooth, which is transformed to an audio representation within Max MSP (see

Chapter 6). The gestural data is further visualized via Processing, providing visual

feedback to the user (see Section 3.3.2).

Almost all constraints are met. The framework is versatile in the sense it is not re-

stricted to a fixed set of functions. Novel algorithms can be implemented if required.
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Furthermore, the modular approach enables developers to replace or add components to

improve or alter the functionality. The software runs efficiently without noticeable delay

(see Section 5.4.2). Besides being platform independent, the software can be distributed

as a compiled package, including the editable source code.

Hand gestures are tracked and they can further be recognized. Specific symbols can

be drawn and classified with a satisfactory performance (>99%) (see Chapter 4). Fur-

thermore, motional features can be extracted in real-time which can be used as holistic

continuous gestures for sound control (see Chapter 5 and 6).

Visual Feedback The visual feedback provided to the user shows positional data

faded over time (see Figure 3.10). Minor issues exist with the accuracy and signal gaps

regularly occur. This might be caused due to small finger tremors or noise in the device.

A possible solution is to filter the output by for example a smoothing filter [36].

Pinching An important final design feature eradicates the undesired property of the

blob switching output from the Wii controller’s tracking algorithm. Instead of allowing

the sources to switch, they are forced as a interaction design to a single source when

they come too close to each other. Because the user has infrared sources on the index

finger and thumb, this enables the user to ‘pinch’. This is a similar to pen up/down

interactions in tablets [17] which provides another level of interaction for the user.

Figure 3.10: The visual feedback software end result: the x and y position of 2 IR

blobs from one glove are tracked and rendered as individual black dots at 50Hz. Over

a timespan of 1,5 seconds, each dot fades from black to white. Two areas of interest

are highlighted. Number 1 shows a slight inaccuracy in the tracking. Number 2 shows

occasional gaps in the signal. Both issues are typical in trajectory sampling.
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Analytic Control Gestures

Abstract

This chapter reports on the development and analysis of a set of analytic control gestures

for the DMI, resulting in a repertoire of 17 symbols. As a proof of concept, they are

distinguished by a Hidden Markov Model, trainable by the user with only a few samples.

Furthermore, the performance is compared to results from a k-nearest neighbor classifier,

specialized in recognizing similar gestures. The results are promising: a recognition

performance of 100% can be achieved after a few hours of practice.

Analytic control gestures are motions intended for controlling discrete events in a digital

musical instrument. They are like buttons or switches, which trigger either a music or

system event (see Chapter 6). The gestures are much alike symbols which can be drawn

in the air. In the following section the requirements for these gestures is specified. After

this the repertoire design is described, providing the design rationale behind the choice

of symbols. Next the classifier software is determined whereafter it is evaluated on its

performance given the gesture repertoire. The results of this exploratory study is then

compared to a second classifier in order to determine if the chosen classifier for our

system is performing properly.

26
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4.1 Requirement Specification

• Functional Requirements

– A suitable repertoire (10+) of 2D hand gestures.

– A classifier system which recognizes these gestures.

• Repertoire Constraints

– Gestures should feel natural/intuitive, i.e. fluently drawable.

– Gestures should be easy to learn and reproduced by the user.

– Gestures should be visually pleasant. During live musical performance, esthetics

are important.

– Gestures should be easy to distinguish.

• Classifier Constraints

– A high recognition rate of the gestures, i.e. above 99%

– Fast recognition, i.e. no delay between drawing and classification.

– Pre-defined and Java-based, or as a plugin for Max MSP.

– The classifier should be trainable by the user, i.e. a low amount of required

training samples.

4.2 Gesture Repertoire Design

In previous research, easy-to-use and distinguishable 2D gesture symbol sets are already

developed. The most prominent set contains the unistroke gestures from Goldberg[21,

22], depicted in Figure 4.1. They are characterized by their creation as a single stroke.

In other sets using multiple strokes, uncertainty is introduced, making it harder to be

distinguished by the system. The major advantage of unistrokes is that it eliminates

this uncertainty, also known as the segmentation problem. After its success, many other

symbol sets were based on Goldberg’s idea [27, 55].

Figure 4.1: A subset of Goldberg’s and Richardsons’s unistroke: a simplified alphabet

gesture repertoire.
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With our interface, it is possible to draw such unistrokes by utilizing the pinching prop-

erty (see Section 3.3.2) as a pen up or down event. When the user starts or releases a

pinch, it respectively indicates the beginning or the ending of a gesture. However Gold-

berg’s set of unistroke gestures do not adhere to our requirements. A more musically

intuitive and visually pleasant set is required. Therefore the unistroke idea is combined

with the musical gestures made by conductors, such as depicted in Figure 4.2. This type

of gestures are positively associated with musical performances and hence it is assumed

that this would be a good starting point for our repertoire creation.

Figure 4.2: Example 2D traces of conductor’s gestures. Starting at the top, a down-

ward movement is made whereafter a directional hopping movement is continued up-

ward. Numbers indicate points in time where a beat occurs [37].

The result is an initial repertoire of 12 gestures shown in Figure 4.3. Gestures are

created by pinching at the top whereafter a downward movement precedes an upward

directionally distinct motion. As will be discussed in Section 4.4.5, the initial repertoire

is modified to improve the recognizability by the classifier. The modified set is shown

in Figure 4.4.

Figure 4.3: The initial repertoire of analytic control gestures.
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Figure 4.4: The final repertoire of analytic control gestures.

4.3 Classifier Determination

In order to classify the analytical control gestures, IRCAMs predefined Hidden Markov

Model (HMM) based classifier is used [8]. The classifier is specifically designed for

artistic performances and features incremental1 gesture recognition especially designed

to be trained with a single example. It is very well suited for consistently performed

temporally differing gestures, in which it is known musicians are proficient [46, 47].

4.3.1 Classifier Operation

The classifier ‘follows’ a gesture by calculating at each subsequent point in time an

updated likelihood value for each class. In this section the algorithmic workings thereof

are described.

Learning First the model has to be trained by providing a single example per class.

Assumed is that the gestures can be represented as a multidimensional temporal curve2.

The learning procedure for a single class is summarized in Figure 4.5.

Each state i outputs an observable O with a probability bi which follows a normal

distribution in the following manner:

bi(O) = 1
σi
√
2π

exp[ -(O−Ti2σi
)2 ] ,

1At each point in time, the classifier outputs a likelihood distribution of target classes. This distri-
bution is updated after new evidence is presented to the classifier. Hence gestures are incrementally
recognized over time.

2For example the values of x(t) and y(t) from the output of Wii remote controller are temporal curves.
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Figure 4.5: The learning procedure: modeling a training sample in a left-to-right
HMM. Figure taken from [8].

where Ti is the value of a temporal curve at time point i in the training sample and σi

is the standard deviation of Ti between training samples. Since σi does not exist when

only one training sample is present, it is estimated using prior knowledge of the context.

This knowledge can be obtained in for example a user study where the average standard

deviation of an obtained gesture set can be calculated to serve as σi.

Furthermore, transition probabilities between states are restricted to a0, a1 and a2 as

depicted in Figure 4.5. Satisfying the constraint that
2∑
i=0

ai = 1. In most applications

the following transition values suffice:

a0 = a1 = a2 = 1
3 or a0 = a1 = 0.25 and a2 = 0.5.

Decoding The decoding follows a standard forward procedure HMMs. Let O1,O2...Ot

be the observation sequence of a gesture. In order to derive the probability distribution

at point t in time, αt(i) is computed by initialising:

α1(i) = πibi(O1) 1≤ i ≤ N ,

where π is the initial state distribution, and b is the distribution of observation proba-

bilities. Hereafter αi(t) is inducted by:
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αt+1(i) = [
N∑
i=1

αt(i)aij ] bi(O t) 1≤ t ≤ T-1 , 1≤ j ≤ N ,

where aij is the state transition probability distribution. When αi(t) is computed, the

likelihood of the observation sequence and the time progression in the test sample can

be calculated by:

time progression index(t) = argmax [αi(t)], and

likelihood(t) =
N∑
i=1

αi(t).

4.4 Exploratory Study

To determine the recognizability of the gesture repertoires given the chosen HMM clas-

sifier, exploratory studies were performed. For this purpose, data was collected and

classified in a simulation based on repeated random sub-sampling validation.

Data was collected in 4 stages. After each stage, either the gestures, the glove or the

visual feedback was modified to check improvements in performance. The following

conditions were used for each data collection:

1: Glove prototype 2, initial gesture set, with tracks, 50 samples/class.

2: Glove prototype 2, final gesture set, with tracks, 20 samples/class.

3: Glove prototype 2, final gesture set, without tracks, 20 samples/class.

4: Final glove, final gesture set, without tracks, 20 samples/class.

For an explanation of the use of tracks, see the next section.

4.4.1 Method

Participants Up to 3 subjects participated in each data collection. All subjects

were right handed and had prior knowledge of the system’s inner workings and all were

familiar with the interface and goals of the study.

Materials The 2nd and 3rd generation glove prototypes were used. Both consisted

of 2 sources of IR light, placed on the index finger and thumb on a right handed glove.

No fixed setup was used, however identical interaction situations were realized for each

session. A solid stand with a variable height was positioned in the room. On this stand
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an Apple Cinema HD Display (23-inch LCD @ 1920 x 1200 pixels) was placed, connected

to a Macbook Pro 13” 2010 model (2,4 GHz Intel Core Duo, 4GB 1067 MHz working

memory). The Wii remote controller was placed on a leveled surface at the same height

of the center of the screen, pointing towards the participant.

A modified version of the visual feedback was presented by Processing. The background

color of the visualization was black. Positions of the participants’ two fingertips were

displayed as red circles (ø10 pixels). When the participant pinched, both circles were

displayed a singular white circle of equal size. Further, participants were able to see

a fading trail of these circles representing their previous movement positions. These

positions were faded entirely after 1.5 seconds. Positional data per finger and pinch

information (x(t), y(t) and p(t)) was saved to disk at 50Hz.

Procedure Participants were situated equidistant across data sessions at 1.5 meters

in front of the screen. Target gesture classes were presented in a randomized order. A

red dot (ø50 pixels) appeared at a random position on the screen3. Participants were

instructed to move over this dot before moving at the starting position of the gesture.

At this position, they were required to pinch and complete the gesture sample. The

sample was ended by a pinch release.

On average, a single recording took 1.5 hours to complete for gesture set 1 and 0.75

hours for gesture set 2. To counter fatigue, subjects could pause the recording when

they required a brake. When a sample drawing failed due to user errors, the participant

could redo the gesture by pressing spacebar.

In the conditions with tracks, guiding boundaries of the target gesture were shown,

as depicted in Figure 4.6. The other conditions presented a small bar at the bottom,

highlighting the target gesture.

4.4.2 Segmentation & Resampling

To accommodate the data for simulation usage, it was segmented and resampled. Seg-

mentation is desired to solely obtain the data points ( x(t),y(t) ) which constitute the

relevant part of the gesture. Resampling is necessary for proper prototype creation from

multiple samples.

Segmentation is achieved by exclusively selecting the parts in the data where the users

pinch. Furthermore, when multiple pinches exist in the data, the whole sample is dis-

carded because the HMM can only cope with unistroke gestures.

3This was implemented to avoid a bias in starting positions.
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Figure 4.6: A screenshot of the condition with tracks while a gesture is made. For
this image, the background color is inverted.

Resampling is performed in two ways: spatially and temporally. The former discards

velocity information and reorders gestural coordinates equidistantly throughout the ges-

tural form. The latter preserves the velocity information and results in gestures with

non-equidistant coordinates.

4.4.3 Simulation

A simulator was programmed in Java and loaded inside Max MSP. It derives a prototype

training sample per class, trains the classifier and writes the results to file.

Prototype Generation Because the HMM classifier is trained by a single example

per class, a perfect prototype is derived from multiple samples in order to optimize

recognition results. The calculation is performed as follows:

xP(t) =

i∑
i=0

xS
(t)

i−1 and yP(t) =

i∑
i=0

yS
(t)

i−1 ,
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where {xP(t) , yP(t)} and {xS(t) , yS(t)} are the coordinates in the prototype and samples

respectively.

Training For each class, the classifier is trained with a prototype derived from random

samples not used in the test set. Next the classifier is tested by randomly providing a

test sample per class. When all classes are tested, the procedure is repeated for a total

of 150 times.

Exploratory simulations were run in order to approximate optimal parameter settings.

The range of {1,2,5,10,15,20} samples per prototype was evaluated. For {spatial, tempo-

ral} resampling the range of {5,10,15,20,25,30,35,36,37,38,50,75} as the number of data

points was evaluated. Results indicated that at a 15 sample prototype on temporally

resampled data to 37 data points proved the best classifier performance. Therefore all

simulations are performed using these settings.

4.4.4 Results

Condition 1 Three subjects {S1, S2, S3} participated in this condition. The perfor-

mances in the simulation were 85.38%, 84,71% and 64.45% respectively.

Condition 2 One subject {S1} participated in this condition. The performance in

the simulation was 99.15%.

Condition 3 Two subjects {S1, S2} participated in this condition. The performances

in the simulation were 98.84% and 94.87% respectively.

Condition 4 Two subjects {S1, S3} participated in this condition. The performances

in the simulation were 100% and 80.56% respectively. A follow-up simulation with a

single sample prototype from Subject S1, resulted in a performance of 99.15%.

4.4.5 Discussion

The performances in condition 1 were not satisfactory since the recognition performance

is required to exceed 99%. Therefore ways improvement were sought by investigating the

confusion of the classifier between classes. In Figure 4.7 an example confusion matrix is

depicted used for this analysis.
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Figure 4.7: Confusion matrix from results of subject S1 in condition 1, over 25

train/test cycles. Each cell m(i,j) contains a value which equals the number of times

the classifier labels a target class i as a predicted class j . With perfect classifier

performance, the values in cells m(i,i) should be equal to the number or train/test

cycles, whereas in all other cells the value equals 0. Values in each row should al-

ways add up to the number of train/test cycles. Colors indicate relative performance
m(i,j)

numberoftrain/testcycles .

The confusion matrix summarizes the classification results per target class. Hence it

provides insight how the classifier confuses classes with one another. According to Fig-

ure 4.7, classes {2, 6, 7, 10, 11} are perfectly recognized. Other classes are not properly

distinguished by the classifier.

Multiple causes for this confusion may exist. First some gestures might not have been

easy to perform, resulting in erroneous samples and high sample variance. Further, some

gestures might not have been optimally distinguishable by the system, for example the

gesture classes in Figure 4.8.
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Figure 4.8: All samples from subject S2 in condition 1 of class 7 (left) and class 8

(right) drawn on top of each other.

To improve the recognizability, the gesture repertoire was adjusted by modifying the

classes {1, 2, 7, 8, 9, 10, 11} by adding more directional differentiation. Other classes

{3, 4, 5} were removed. Furthermore all classes4 were mirrored to increase the total set

size to 17. Since the classifier is sensitive to directional differences, it is expected not to

effect the performance.

This modification of the repertoire led to condition 2. The performance of the simulation

on the corresponding data set satisfies the requirements. However, a supporting gestural

track is still present in the visual feedback. Hence it was removed to investigate the

participant’s ability to perform gestures without support.

This led to the results from condition 3. Though performance for subject S1 dropped

with an absolute percentage of 0.31%, this indicates that the gestures can be drawn

without guidance while maintaining the performance level.

The final condition differed from the previous condition in the use of a different glove.

The increased angle of operation of the interface makes it less restrictive to perform

gestures. This increases the precision of the motions by allowing the most preferred

posture of the user. This in combination with learning effects, optimizes the performance

of subject S1.

4Except for class 1 to avoid directional ambiguity.
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4.5 Classifier Performance Comparison

To assess the performance of the HMM classifier compared to other classifiers, a compar-

ison with a baseline gesture recognition classifier was performed. This type of classifier

employs the well-known k-nearest neighbor technique (knn). By comparing the perfor-

mance of this classifier to the performance of the HMM classifier, it can be established

whether both classifiers can achieve similar recognition rates and robustness. The knn

classifier uses a number of prototypical samples pi with known classification ci to clas-

sify a new, unknown, test sample x. Classification is performed by computing the match

between each pi and x and subsequently using majority voting on the k best matching

prototypes [15].

The match m(p, x) is computed using the Euclidean distance between the feature vector

representations of both p and x. The feature extraction technique has been extensively

researched in our department for the recognition of various types of pen-input data,

such as handwriting and sketching [59]. Each gesture trajectory is spatially normalized

and resampled to 30 (x, y) coordinates. The feature vector is extended with the running

angle (cos(φ), sin(φ)) per coordinate pair and the angular difference (δcos(φ), δsin(φ))

per pair of running angles. The number of 30 coordinates is based on empirical evidence

that a fairly complex Western character contains 5 velocity-based strokes and that 6

coordinates per stroke suffice for proper reconstruction. Note that this approach is

distinct from the previously described technique of incremental recognition of the HMM

classifier, since a complete gesture trajectory is required before processing of the gesture

can be engaged.

Method For two subjects, S1 and S3, the classification performance of the knn clas-

sifier was determined using different k and different number of training prototypes Np

per class. For each condition (k,Np), 100 random prototype sets were selected. For each

configuration, classification was performed on the remaining samples.

Results For k=1 the results were optimal. In the following table the results are

summarized.

Discussion & Conclusion For the data of subject S1, both the KNN and HMM

perform equally well. For the data of subject S3 however, the KNN outperforms the

HMM. This indicates that the performance in the HMM is suboptimal for some datasets.

The low performance could be caused by IRCAM classifier’s inability to cope with data

with a larger variances [8]. Visual inspection (see Figure 4.9) of the data confirms the
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larger variance for subject S3. A possible solution to increase the performance of the

HMM is to estimate the the σi parameter from the data per subject. However further

efforts are needed to validate the cause and solutions and moreover to quantify inter-

subject variance.

Figure 4.9: All samples from class 2 from subject S1 (left), S2 (center) and S3 (right)
in condition 1. Samples are drawn on top of each other.
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4.6 Conclusion

An analytical control gesture repertoire was created for the control of musical events.

The goal was to create an easy to learn and distinguish natural/intuitive and visually

pleasant set of symbols. Based on the proven concept of unistrokes [21, 22, 27, 55] and

in combination with musically associated conductor’s gestures [28].

During simulations the HMM based classifier proved proficient in distinguishing the

gestures in the repertoire. For users making consistent gestures, which are commonly

produced by musicians [46, 47], only a single training example suffices for a recognition

performance of 99.15%. For less consistent users, practice could make perfect. The

incremental nature of the classifier holds various opportunities. For example, the visual

feedback can at each point in time indicate the belief distribution of the classifier. This

could enable the user to release the pinch when the target class is recognized, hence

speeding up the interaction or providing the ability to time the pinch release in with

the music. A useful property of the classifier is that the classifier is trainable by novice

users within reasonable time due to the low amount of samples (≥ 1)per class needed to

derive a prototype. The supporting track in the visual feedback can help users to train

themselves and the classifier accordingly.

Still the HMM classifier does not perform equally well for all users, hence further efforts

are needed to improve the performance. The comparison study with a KNN classifier

suggests that the same acceptable performance (> 99%) can be reached for all users.



Chapter 5

A study on listener associations

between musical changes and

hand motions.

Abstract

This chapter reports on an experiment that was conducted to measure the effect of

changes in dynamics, pitch, brightness, articulation, syncopation or rhythm on hand

motions. This was measured by derivatives of motional features. Results indicated that

many features of the motions are significantly affected by many musical parameters.

Furthermore, between and within participants there is a low amount of motional type

variance. These results will provide essential knowledge to create an intuitive musical

mapping from hand motions to sounds. Moreover, supporting the musical embodied cog-

nition thesis, it suggests that people have an internalized abstract representation of sound

generating movements: a culturally shared representation of abstract sound features di-

rectly linked to movement.

5.1 Introduction

Music and motion are interconnected: wherever music is present, motions are nearby.

Literally by movement in the air, but also by people which tend to move to music [5, 11,

56]. Research shows that listening to music often is associated with body movements

which are often synchronized with its periodic structure [51]. However to what extend

and in which form both phenomena are related is highly debated [35]. One cause of

this relation is thought to lie in the empirical world. When people generate music

40
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through instruments, they perform a specific pattern of motion to cause changes in

sound. Acoustic dimensions, such as pitch or loudness, are the result of a particular

movement. These co-occurrences are thought to produce expectations inside humans.

Associations might arise when either of the two modalities is activated [28]. Moreover,

the notion of embodied music cognition assumes that music perception is based on a

multi-modal encoding of auditory information that contains the coupling of perception

and bodily action. This is opposed to a disembodied view in which only the perception-

based analysis of musical structure gives musical meaning [35].

Music conductors represent a specific case in which hand movements are associated with

music. Research to this relation dates back to 1928 when Becking made a classification of

conductors’s hand movements, while performing to different types of classical music [6].

In Figure 5.1 a categorization of conductor’s gestures are summarized. Results indicated

that, given a type of music to be conducted, a corresponding gesture was made.

Figure 5.1: Becking’s table of categorized conducting curves.

Similar to Becking, Sievers made a more extended categorization of movement curves

associated with music. In Figure 5.2 his categorization findings are presented.

The methods Sievers used to obtain these curve categorizations lacked scientific rigor,

but the underlying idea formed the starting point for Truslit [54]. In 1938 he published

“Gestaltung und Bewegung in der Musik” in which an experiment is described that

tests the hypothesis that motions will always co-occur with certain sound patterns.
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Figure 5.2: Categorization of movement curves by Eduard Sievers.

Two subjects (N. and T.) participated. Subject N. chose a motion curve and sketched

it on paper and carried it out with hand and arm movements. From this movement

and written motion curve, subject N. then created an accompanying musical pattern.

These musical patterns were then presented to subject T. who tried to determine the

corresponding motion curves. The results are depicted in Figure 5.3 and indicated

that 13 of these the recovered motions were almost identical. 6 Of them had only

minor differences. These results were in favor for Truslit’s hypothesis. Although an

improvement on Sievers’ method, the experiment also lacked scientific rigor. Methods

were not specified and only 2 subjects participated [48].
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Figure 5.3: Experiment results on the recovery of original motion from notated music.

Study by Eitan and Granot A recent study investigated how listeners associ-

ated changes in sound with perceived images of motion [16]. Subjects were presented

with musical stimuli in which each stimulus had one musical parameter intensified or

reduced. The subjects were asked to associate these melodic stimuli with imagined mo-

tions of a fictional character and to report several attributes of these movements on a

questionnaire. Analysis of this data showed that the majority of the musical parameters

significantly affected multiple dimensions of the imagined motions. The main conclusion

is that decreasing musical parameters are strongly associated with descents, whereas in-

creasing musical parameters are associated with increasing speed rather than ascent. A



Contents 44

surprising finding of this study is that musical-spatial analogies are often asymmetrical,

as a musical change in one direction evokes a significantly stronger spatial analogy than

its opposite. The study reported in this section is similar to Eitan and Zohar. How-

ever, instead of looking at imagined movement, the effect on physical hand movements

is investigated. Similar tendencies in these two studies are expected.

For our study, we postulate the following hypotheses.

• H1: Between subjects there is a high amount of variation in types of motions patterns

within stimuli.

A type of motion pattern is here defined as a family of gestures: a set of which the

gestures look very similar. Because subjects will be unrestricted in their movements,

a large variety of gestures are expected.

• H2: Within users there is a low amount of variation in types of motion patterns.

A preferred baseline motion is expected within a user.

• H3: There is a high amount of agreement between subjects within stimuli in higher

order extracted feature derivatives.

Although the baseline motion between subjects is expected to differ, it is anticipated

that feature derivatives1 of those movements between subjects will postulate equal

tendencies2.

Based on Eitan’s and Zohar’s findings, we propose the following additional hypotheses

regarding H3:

• H4: Decreasing musical parameters are associated with descending motions.

• H5: Increasing musical parameters are associated with ascending motions.

• H6: Decreasing musical parameters are associated with decreasing speed.

• H7: Increasing musical parameters are associated with increasing speed.

• H8: Rhythmic variation has a large effect on change of direction.

• H9: Subjects tend to move along with the beat.

• H10: One-to-multi relations between musical parameters and motion features exist.

• H11: The relations between musical parameters and motion features are asymmetri-

cal 3.

1Features such as verticality, speed orcurvature and derivatives such as minimum, maximum or
average.

2For example, subject A performs a circular motion whereas subject B performs a vertical line
movement. Hence the baseline motion differs. When looking at the derivative average of feature speed,
H3 predicts a similar pattern.

3A change in a musical parameter in one direction evokes a different size of change in a motion feature
than its opposite.
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5.2 Method

5.2.1 Participants

Thirty people participated in the experiment (15 females, 15 males, mean age = 22.9,

St.Dev. = 1.7 years.). The group contained both non-musicians and musicians with

varying amounts of musical experience. All participants were students at the Radboud

University Nijmegen and participated on a voluntary basis. Four participants were left

handed.

5.2.2 Materials

Hardware All experiments were conducted with a fixed setup. A solid stand with a

variable height was positioned in the room. On this stand an Apple Cinema HD Display

(23-inch LCD @ 1920 x 1200 pixels) was placed, connected to a Macbook Pro 13” 2010

model (2,4 GHz Intel Core Duo, 4GB 1067 MHz working memory). The height of the

stand was adjusted such that the center of the screen was level with the eyes of the

subject. Adjacent to this stand, on the left side of the screen (on the right for the

perspective of the subjects), an height adjustable microphone stand was used with a

Nintendo Wii remote controller attached to the end of arm. The arm end was pointed

towards the participant, resulting of a parallel position of the Wii remote controller

and the ground. The height of the microphone stand was adjusted such that the Wii

Remote was level with the center of the Cinema Display. This relative position was

determined optimal during pilot testing. A line mark on the ground was positioned in

order to indicate where subjects were required to stand. Participants used one of our

glove interfaces with two infrared LEDs, both situated on the index finger. Further, the

diffuser module was present to ensure light transmission at different orientations. All

subjects had to wear the glove on their right hand4 The (x,y) position of the infrared

LEDs were subsequently registered using the Wii remote’s infrared camera.

4This was done to avoid that bodily constraints would affect their movements. For example, move-
ment to the right is more easy with their right hand than with their left. This introduces a directional
bias other than the result of variation in the independent stimuli.
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Software A program for the experiment was written in Max/MSP (v. 5.1.7) [3] and

Processing (v. 1.2.1) [18]. Processing provided the visual information of the experiment

for the subject. Max/MSP provided the auditory stimuli and coordinated the timing for

displaying events through the Processing framework. The position of the index finger

was channeled from Max/MSP to Processing at 100Hz. The program OSCulator (v.

2.10.5) [52] provided the channeling of LED coordinates from the Wii remote controller

to Max/MSP.

5.2.3 Stimuli

In total 18 auditory stimuli were created with Ableton Live (v. 8.2)., consisting of notes

of equal length placed isochronous on a 1 bar segment in 4/4 time, played at 80BPM.

Hence with a duration of 3 seconds each. They can be divided into two main groups

and 2 special cases.

The first group consists of 3 pairs of musical contours of 8th note length. For each pair,

a specific musical parameter was either increased or decreased over time while other

musical parameters where held constant. The musical parameters varied were intensity,

pitch and brightness5.

The second group consists of rhythmic stimuli of note length 1/16, 1/8, 1/4 or 1/2. Other

parameters were held constant. Another rhythmic stimuli contained an syncopated

interval in order to simulate missed beat syncopation with 1/16 notes. Further, one

stimulus of 1/8 notes was modified by adding accents on the first and fifth note.

For the first special case, articulation was varied by adding staccato to all notes.

The second special case consists of pitch intervals. Two stimuli were created with a

sudden change in pitch, one bigger than the other. The first 4 notes were equal in pitch

whereas the last 4 notes were played either with a small increase or a high increase in

pitch.

An overview of all stimuli can be found in Figure 5.5. Note that the starred numbered

stimuli are equal.

5Brightness is a timbre feature of the sound. Increase of this parameter results in a brighter sound
whereas decreasing results is a dull sound.
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Figure 5.4: Overview of stimuli. S3, S4, S5, S6, S9 and S10 are musical contours.
S3 And S4 are the brightness contours decreasing and increasing. S5 And S6 are
the dynamics contours decreasing and increasing. S9 And S10 are the pitch contours
increasing and decreasing. S1, S2, S7, S8, S11 and S12 are the special case stimuli.
S1 And S2 are the accented and unaccented pair. S7* And S8 are the legato/staccato
pair. S11 And S12 are the pitch intervals pair: small and large. S13, S14, S15, S16,
S17, and S18 are the rhythmic stimuli. S13 Is the rhythmic sixteenth stimulus, S14*
the rhythmic eighth, 15 the rhythmic quarter and 16 the rhythmic half. 17 And 18 are

the syncopated and unsyncopated pair.

5.2.4 Procedure

Participants were situated in a noise free recording studio. They were asked to position

their upper arm parallel to their bodies and their lower arms parallel to the ground,

pointing with the index finger towards the Wii remote controller. Next their position was

shifted forwards or backwards such that their right hand floated above the marked line.

They were instructed to hold their right hand floating above the line in the orthogonal

plane with this line during the experiment. The line on the ground was position parallel

with the width of the screen on a distance of 1.5 meters. Thereafter the stand with

the display was adjusted such that the bottom of the screen matched the height of their

hands. Next the microphone stand with the Wii remote controller was adjusted to match

the center height of the screen. Participants wore the interface glove on their right hand.
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Figure 5.5: A graphical representation of the experimental setup.

Participants were allowed to familiarize themselves with the experimental setup. Their

hand position was displayed as a small red circle (� 10 pixels). Further, participants

were able to see a fading trail of these circles representing the course of their hand

movements. These trails were faded entirely after 1.5 seconds. A pre-experiment check

ensured that left-handed participants could successfully make use of the glove. For

this purpose a black screen was introduced with randomly appearing red dots (� 30

pixels). Participants were asked to move their hand such that the movement circle hit the

stationary red circle. This was repeated approximately 20 times until the experimenter

and the participant together decided the participant was in control. Next the participant

was asked to move to all four corners in the visual feedback. If there was no difficulty
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detected or reported by a left-handed subject, the experiment continued to the next

phase.

During this next phase, the participant was informed about the upcoming experimental

procedure. Participants were presented with the following instructions. After each

participant read the instructions, a summary was verbally repeated by the experimenter

and questions could be answered. When everything was clear, the actual experiment

commenced.

Instructions “During this experiment we will present sounds6. For each sound

type there are two phases. Phase 1: Practice Phase. Phase 2: Recording Phase.

During Practice Phase: Try to associate hand movement with the sound you hear.

Draw this movement. When you have found an intuitive movement, select both red

squares at the top. After selecting both squares, will go to the Recording Phase.

During Recording Phase: You will see a countdown7. The sound starts playing at

zero. Try to make the same movement as you decided was best in the previous phase.

This phase is repeated once, so you can draw the same movement twice. After the

two recording phases, two red squares appear at the bottom. You can now take a

little break if necessary or select them both to go to a new sound. Press [spacebar]

to start the experiment.”

A within subject design was chosen in which all participants completed all conditions in

a randomized order. The actual experimental procedure follows the instructions above.

During the recording and practice phases of a stimulus, coordinate data of the motion

was sampled at 50Hz and saved to file. After the participants completed the experiment,

they filled in a questionnaire that assessed personal information, musicality and their

evaluation of the experiment and glove.

6Each sound represents one stimulus
7The countdown consisted of a succession of the numbers 4, 3, 2 and 1. The time between numbers

was equal to the time between beats of the control stimulus, thus 3/8 seconds.
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5.2.5 Data Analysis: Features

To capture higher order relationships in the data, a set of movements features were

defined. These features were chosen to describe the primary motion’s attributes. The

following features were extracted: horizontal position, vertical position, energy/speed,

horizontal energy/speed, vertical energy/speed, curvature, direction, direction difference

and running angle. These features can be calculated real-time through Java in Max/MSP

by using time windows of 2 successive coordinates. At a given time point i, features are

defined as follows:

Horizontal Position : HP = xt(i)

Vertical Position : V P = yt(i)

Energy/Distance : E =
√

(xt(i+1) − xt(i))2 + (xt(i+1) − xt(i))2

Horizontal Energy : HE = xt(i+1) − xt(i)
Vertical Energy : V E = xt(i+1) − xt(i)
Curvature : Curvature = i

R , where

R8 =
√

(xt(i) − CX)2 + (yt(i) − CY )2, where

CY 9 = (−1S1 ) ∗ (CX − xt(i)+xt(i+12)

i+2 ) + (
yt(i)+yt(i+12)

i+1 ),

CX10 =
S1∗S2∗(yt(i)−yt(i+24))+S2∗(xt(i)−xt(i+12))−S1∗(xt(i+12)−xt(i+24))

2∗(S2−S1) ,

S111 =
(yt(i+12)−yt(i))
(xt(i+12)−xt(i))

,

S212 =
(yt(i+24)−yt(i+12))

(xt(i+24)−xt(i+12))

Direction : D = atan2(xt(i) − xt(i+1), yt(i) − yt(i+1))

Change in Direction : DC13 = Dt(1)−Dt(2)

Running Angle : RA14 = atan(
yt(2)−yt(1)
xt(2)−xt(1)

)

8Radius of intersecting circle
9The y coordinate of the center of the intersecting circle.

10The x coordinate of the center of the intersecting circle.
11Slope of first en second coordinate
12Slope of second en third coordinate
13Since the direction function outputs values between 0 and 2π where 0 and 2π are equal directions,

an additional computation has been performed in order to obtain DC. Without this computation, the
actual difference between two directions in a movement can be very small, but as seen by the direction
difference function as very large. For example, the difference between an angle of 2π radians and 0
radians equals 0 and not 2π. The computation eliminates this error by ‘connecting’ 0 and 2π as-if they
were circular, counting beyond 2π by starting at 0. Since this introduces 2 possible solutions for each
pair of input, the minimum solution is chosen which represents the actual direction difference.

14The running angle is defined as the relative angle of a vector with respect to the horizontal plane.
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Feature Validation Features were validated by performing exemplar gestures

and evaluating the feature output. Results from these investigations are show in

Figure 5.6.

Figure 5.6: Feature outputs over time. In Subfigure 9, the hand motions A to H are
shown. They were drawn sequentially with breaks. This resulted in feature values over
time, shown in Subfigures 1 to 8. Where in time the hand motions occur in time is
indicated by the corresponding letter. Subfigure 1 represents the Horizontal Position
feature. Subfigure 2 represents the Vertical Position feature. Subfigure 3 represents the
Energy/Speed feature. Subfigure 4 represents the Horizontal Energy feature. Subfigure
5 represents the Vertical Energy feature. Subfigure 6 represents the Curvature feature.
Subfigure 7 represents a thresholded Direction Difference feature where a high difference
in direction represents a ‘beat’ in a movement. Subfigure 8 represents the Direction

feature, visualized in a polar plot.

Feature Derivatives Derivatives from features are also calculated in order to

summarize a set of values over time to a singular value per motion. They were

chosen to cover general descriptive aspects of a feature. The derivatives per feature

are: minimum, maximum, standard deviation, average. For the X and Y features,

also the start-end differences are calculated.
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5.3 Quantitative Results

5.3.1 Feature Distributions

These initial analysis focusses on feature distributions which display between-user

trends in our data. In Figure 5.7 three examples are given. The top two figures

display a difference in energy distribution for the accented an unaccented stimuli at

points 0 and 0.5 relative in the stimulus’s playback in time. The middle two figures

show a decreasing and increasing tendency of the Energy feature in the when the

intensity of the sound increases and decreases respectively. The bottom two figures

indicate the trends in listeners to move to the right and upwards when the pitch is

increased. These trends are subsequently verified using statistical tests (see Table

5.2).

Figure 5.7: Examples of feature distributions.



Contents 53

5.3.2 Statistical Report: Control Stimuli Comparisons

MANOVAs: A series of MANOVAs were performed in order to detect differences

in derivatives of features between a stimulus with a varied musical parameter and

the control stimuli without varied parameters.

Independent variables

– Stimulus: Varied{S1‖ S3 ‖ S4 ‖ S5 ‖ S6 ‖ S8 ‖ S9 ‖ S10 ‖ S11 ‖ S12 ‖ S13 ‖ S15 ‖
S16 ‖ S17 ‖ S18} , Control{S2 ∧ S7 ∧ S14}

Dependent variables

– Feature X: D1, D2, D3, D4, D5.

– Feature Y: D1, D2, D3, D4, D5.

– Feature Energy: D3, D4, D5.

– Feature Horizontal Energy: D3, D4, D5.

– Feature Vertical Energy: D3, D4, D5.

– Feature Curvature: D3, D4, D5.

– Feature Direction: D3, D4, D5.

– Feature Direction Change: D3, D4, D5.

– Feature Running Angle: D3, D4, D5.

Where

D1 = start-end,

D2 = average,

D3 = standard deviation,

D4 = maximum,

D5 = minimum.

A summary of effects of the analyses is shown in Table 5.1. First the F(37,82)

values of the MANOVAs on the Stimulus versus Control on Feature Derivatives are

presented. Next the follow-up ANOVAs per Feature Derivative are presented with

the F(1,118) values. Significance levels are indicated with asterisks.

Discriminant Analyses: The multivariate tests evaluate the correlation be-

tween dependent variables and therefore are strong in detecting group differences.

Follow-up ANOVAs are then performed to assess which dependent variables con-

tribute significantly to this differences. The univariate tests omit interaction effects.

To take this into account, follow-up discriminant function analyses are performed.
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Table 5.1: Summary of Analyses
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Figure 5.8: Summary table of discriminant analyses: effect sizes and direction per fea-
ture derivative in stimulus versus control. Boxes indicate relevant findings (see Section

5.5).

5.3.3 Statistical Report: Pairwise Comparisons

MANOVAs: 5 Separate MANOVAs were performed in order to detect differ-

ences in derivatives of features between a stimulus and its corresponding opposing

pair.

Independent variables

– Brightness Contour(S2,S3), Intensity Contour(S5,S6), Pitch Contour(S10, S9),

Pitch Interval(S11,S12), Syncopation(S17,S18)

Dependent variables

– Feature X: D1, D2, D3, D4, D5.

– Feature Y: D1, D2, D3, D4, D5.

– Feature Energy: D3, D4, D5.
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– Feature Horizontal Energy: D3, D4, D5.

– Feature Vertical Energy: D3, D4, D5.

– Feature Curvature: D3, D4, D5.

– Feature Direction: D3, D4, D5.

– Feature Direction Change: D3, D4, D5.

– Feature Running Angle: D3, D4, D5.

Where

D1 = start-end,

D2 = average,

D3 = standard deviation,

D4 = maximum,

D5 = minimum.

A summary of effects of the analyses is shown in Table 5.2. The F(37,22) values

of the MANOVAs and F(1,118) values of the follow-up ANOVAs are presented.

Significance levels are indicated with asterisks. In Figure 5.9 a summary of the

discriminant analyses is presented.

5.3.4 Beat Synchronization

In order to find evidence for beat synchronization [51], frequency analyses were

performed for each subjects’ energy level per rhythmic stimulus and for all 8th note

stimuli. In Figure 5.10 and Figure 5.11 the results are plotted.

5.4 Qualitative Results

5.4.1 Subjective Motion Interpretations

In Appendix A some example motions per participant per stimuli are depicted.

The starting positions are marked with a red circle. Visual inspection of these

data suggests between participants that there is low variance in types of motion

patterns. Further, participants tend to agree (n=28) to often move along the beat

by making small hills per beat. Alternately, they create a circular movement per

beat. Other shapes are uncommon. Another observation is that participants move

primarily from left to right but do not use all space available. Participants tend

to center their movements, both horizontally and vertically. Their hand position is

near the center of the screen halfway during a gesture. Participants also tend to

move upwards and downwards respectively when a musical parameter is increased

or decreased.
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Table 5.2: Summary of Analyses

20 Out of 30 participants make a near equal motion in one or both Pitch Interval

stimuli. This motion starts bottom left and moves horizontally. After a sudden

pitch increase, the motion also moves suddenly to a higher level. The amount of

vertical increase depends on the strength of the pitch increase.

For the control stimuli S2, S7 and S14, 7 participants made 3 different types of

movements, 15 participants made 2 different types of movements and 8 subjects

make 1 type of movement. Hence, 77% of the participants made two or three

similar types of movements while 23% made differing types of movements.

Furthermore, 10 participants made a single type of movement for all stimuli whereas

14 participants made 2 types of movements.

Participant 10 is a possible outlier given the repetition of gestures. However, this

subject conforms to H2 and could add to the between subject similarity as posed in

H3.
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Figure 5.9: Summary table of discriminant analyses: effect sizes and direction per
feature derivative in stimulus contour up versus stimulus contour down. Boxes indicate

relevant findings.

In order to validate these subjective claims, statistical tests could quantify these

findings.

5.4.2 Questionnaire Results

On a 1 to 5 point scale, where higher implies a better evaluation, subject’s replied

to 5 questions regarding the experiment and the interface.

To the question assessing the difficulty of associating sounds with movements, sub-

jects replied positive with 3.93 out of 5 points with a standard deviation of 1.11

points. This indicates that most subjects found it easy, or as the standard deviation

indicates, at least without any problems or even very easy to associate sounds with

movements.

To the question assessing the difficulty of performing movements, subjects replied

positive with 4.03 out of 5 points with a standard deviation of 0.99 points. This

indicates that most subjects found it easy, or as the standard deviation indicates,

at least without any problems or even very easy to perform these movements.
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Figure 5.10: Frequency analysis of rhythmic stimuli. The red lines indicate individual
results, the blue line the average of all subjects.

Figure 5.11: Frequency analysis of all stimuli with 1/8 notes. The red lines indicate
individual results, the blue line the average of all subjects.
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To the question assessing the experience of latency of performed movements and

visual feedback, subjects replied positive with 4.10 out of 5 points with a standard

deviation of 0.99 points. This indicates that most subjects found that there was a

low amount, or as the standard deviation indicates, at least no disturbing experience

of lag or even no lag at all while performing the movements.

To the question assessing the comfortability of the glove, subjects replied positive

with 3.87 out of 5 points with a standard deviation of 1.13 points. This indicates

that most subjects found the glove comfortable to wear, or as the standard deviation

indicates, at least without discomfort or even very comfortable to wear.

To the question assessing the physical tiredness of the hand and/or arms, subjects

replied positive with 3.98 out of 5 points with a standard deviation of 1.04 points.

Thus this indicates that most subjects found that performing was not tiring, or as

the standard deviation indicates, at least no disturbing experience of tiredness or

even no tiredness of the hands and/or arms at all while performing the movements.

Overall subjects were very positive with an average of 3.98 out of 5 points per

question with a standard deviation of 0.09 points. Other feedback subjects left to

report experiences, suggestions, improvements or other thoughts, were as follows.

– “In particular the slow motions felt good, for there I felt I could keep up with

the speed while staying accurate.”

– “I liked it, but the lower corners were hard to get.”

– “Use less boring sounds.”

– “The visual feedback might have had influence on the movement you selected. A

concatenation of points lets you make one smooth movement.”

– “The visual feedback caused me to perform different movements by focussing

more on shapes and large movements. No visual feedback would direct the atten-

tion more to the body en perhaps help to associate movement better with sound.”

– “I heard one particular sound multiple times, though I’m unsure.”

– “The latency makes it hard to perform movements.”

– “Please continue developing this product and make it affordable for buyers!.”

– “The abnormal rhythms were very hard to perform.”

– “I had a movement strategy, however I changed it during the course of the

experiment.”
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5.5 Discussion

Against hypothesis H1, results show there is is low amount of variation between sub-

jects in types of motion patterns. Indicated by the qualitative results, the primary

tendency of the participants was to move from left to right while making a hopping

type of motion. Further, the most common motion is either horizontal, linearly

upward or linearly downward. On the other hand, within participants there is a

low amount of variation in types of motion patterns used. This in favor of hypoth-

esis H2. Subjective motion interpretation confirms that participants preferred one

or two baseline motions, of which they altered the attributes. However, statistical

tests must yet confirm this finding by providing a quantified result. This remains

future research.

According to H3, higher order features extracted from motion patterns show similar

tendencies, independent from the motion type. The statistical analyses confirm this:

there are significant differences between derivative values of motional features of the

varied stimuli and the control stimuli. H4−11 specify these tendencies. Regarding

these hypotheses, Figure 5.8 and Figure 5.9 provide the results. Box 6 in the former

figure and Box 1 in the latter, show a positive and negative significant start-end

difference when a musical parameter is increased or decreased respectively. This

in favor of H4+5. Decreasing musical parameters are associated with descending

motions whereas increasing musical parameters are associated with ascending mo-

tions. This partially confirm the results of Eitan and Granot [16]. Their findings

indicate that decreasing musical parameters are strongly associated with descents,

whereas increasing musical parameters are associated with increasing speed rather

than ascent.

When looking at the Increasing and decreasing musical parameters, they are associ-

ated with increasing and decreasing and increasing speed/energy respectively. Box

2 in Figure 5.8 also shows that this does not hold for the pitch parameter. Further,

solely the vertical component in the energy parameter is affected. This partially

confirms H6+7.

Directional change is significantly affected by rhythm, confirming H8. In Box 8 in

Figure 5.8 this effect is highlighted. Furthermore, there appears to be periodicity

in the participants’ movements. In Figure 5.10 the frequency distributions for the

rhythmic stimuli are plotted. For each rhythm, peaks in the power spectrum are

present around the expected frequency. For example, for the rhythmic 16th stimuli,

peaks are present at 16beats
3seconds = 5.33 Hz. In Figure 5.11 the frequency distributions of

all stimuli with 8th isochronous notes is displayed. The expected peaks are present

at 2.66 Hz. This confirms H9: participants move along with the beat. Note that the
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average peak appears lower by peak cancellation due to slight differences of motion

synchrony. Further, other peaks are present at a factor of the expected frequency

due to periodic repetitions. This supports the findings of Toiviainen and Luck [51]

who found that periodicities are present in music induced movement.

According to Figure 5.8 not a single motion parameter is solely effected by one

musical parameter. Moreover, multiple musical parameters affect multiple motional

features. Hence multi-to-multi relations exist, partially confirming H10 and the

findings of Eitan and Granot [16].

In Figure 5.9 it becomes apparent that asymmetry is present in some of the effect

sizes between opposing pairs of stimuli. Significant effects should be absent when

asymmetry occurs due to equal feature derivatives. Therefore we conclude that the

relations between musical parameters and motion features are partially asymmet-

rical. For example, the energy feature is asymmetrical effected by brightness and

intensity, but not by pitch (see Box 2).

An unforeseen tendency is the effect of accenting on the energy levels, specifically

the vertical component of the energy. This is indicated by the significant increase

of maximum and standard deviation of Y and maximum energy levels, as depicted

in Box 1 in Figure 5.8.

When a sound is played in staccato, this effects increase changes in direction and

curvature (see Box 3, Figure 5.8). This could indicate that subjects have made a lot

of shaped gestures, rather than hopping lines. Cross checking with the qualitative

data, this is confirmed.

Box 4 in Figure 5.8 shows the effect of changes in musical parameters in different

sizes on the motional features. It is shown that a larger increase of such a parameter

produces a larger effect size on the motional features.

Syncopation effects primarily the curvature of a motion. Box 9 in Figure 5.8 displays

this effect. Multiple participants reported the following: “The abnormal rhythms

were very hard to perform.”. Cross-checking with the raw motion patterns, partic-

ipants create complex forms, explaining these curvature values. Hence, a complex

rhythm is associated with more complex motions.
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5.6 Conclusion

Our study provides a detailed view on the effects of musical parameters on hand mo-

tions by evaluating their physical characteristics. Remarkably, participants highly

agreed in the type of motions associated with sounds. Further they produced a

low amount of variation in types of motions individually, even though they were

unrestricted. However, the suggestive evidence requires future research to quantify

this finding.

Our findings partially confirm the results of Eitan and Granot [16]. Their findings

indicate that decreasing musical parameters are strongly associated with descents,

whereas increasing musical parameters are associated with increasing speed rather

than ascent. The former is confirmed by the findings in our study, however for the

latter contradictory evidence was produced. Our study indicates that reverse holds,

increasing musical parameters are associated with ascent rather than increasing

speed. Furthermore, Fourier analysis provided supporting evidence for findings of

Toiviainen and Luck [51] and Dahl [12] is found, suggesting that body movements

synchronize with the periodic structure in music.

Evident is that tendencies between musical changes and motional features exist,

though the relations are complex in nature. Multi-to-multi mappings are present

and not all effects are symmetrical. The associations and tendencies found with

this study, provide coherent knowledge for creating a solid musical mapping for

the hand gesture driven interface (see Chapter 6). Moreover, it provides further

support for the musical embodied cognition thesis [35]. The tendencies in the results

indicate that people have internalized abstract representations of sound generating

movements. This might be a culturally shared representation of abstract sound

features, directly linked to movement. Hence this provides a coupling between

perception-action as postulated by the musical embodied cognition thesis.
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Towards Sound Production

In this chapter it is explained how the hand gestural information, existing out of of

analytical control gestures (see Chapter 4) and continuous motional feature values

(see Chapter 5), can be used for sound production. Furthermore a developed proof-

of-concept DMI is described.

The musical possibilities are to some extend restricted by the glove interface. How-

ever, the control gestures still provide a large possibility space. The two gestural

types of information provide different types of control. First, the discrete nature

of the analytical control gestures provide trigger signals for musical events. These

events could encompass functionalities like play, pause, next instrument, previous

filter or enable loop. The ‘pinching’ functionality (see Section 3.3.2) can be used to

determine the start and ending of an analytical control gesture. After the classifier

component has recognized such a gesture with enough certainty, the trigger signal is

sent to a sound generating component, which consequently initiates a musical event.

In Figure 6.1 they are represented in Max MSP at the top left. The second type

of gestural information contains the continuous motional feature values, or ‘holistic’

gestures. As described in Section 2.2.2, these are not actual gestural motions but

higher order derivatives of the gesture made. These motion properties such as speed

and curvature are continually updated when the user is making a hand movement.

In Figure 6.1 they are represented in Max MSP at the top right as sliders. These

continuous values can be coupled to musical parameters, such as pitch or loudness.

Both types of control gestures connect to a sound generating component (see bot-

tom 6.1), which determines how the control gestures are mapped to sound. This

musical mapping for each control value can be achieved in 4 ways, described by the

possible connections between motional parameters and musical parameters. They

are summarized in Figure 6.2.

64
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Figure 6.1: Outputs from the interface inside Max MSP. 17 Analytical control gestures
(top left) provide a sound module (bottom) with a signal via red lines. 7 Holistic control
gestures (top right) provide a continuous signal to via blue lines. In the image, gesture

4 is triggered and sliders represent the values of the holistic gestures.

Figure 6.2: Possible types of mappings from motion parameters (left dots) to musical
parameters (right dots).

According to a study of Hunt and Kirk [25], the many-to-many mappings are pre-

ferred by users since it provides a more challenging and richer experience compared

to one-to-one mappings. This finding is further supported by results from our music-

motion-study (see Chapter 5), which concluded that many-to-many mappings from

musical parameters to motion parameters were associated within users. Apparently

listeners prefer to use more complex moving strategies, which makes it plausible they

also prefer this as a performer. These findings suggest that for a musical mapping,

a many-to-many approach should be adhered to.

A musical mapping can be realized internally or externally of Max Msp. Inter-

nally, the control gestures can be transformed to an audio signal. Externally, the

information can be transmitted via MIDI to control other digital instruments.



Contents 66

An example of such an external sound producing system is the software synthe-

sizer Absynth 5 [26]. In Figure 6.3 its graphical user interface is depicted. The

synthesizer’s parameters can be controlled via MIDI channels. In this manner, it

can be controlled by the gestural information of our DMI. The latter is used in our

prototype, which will be described in the next section.

Figure 6.3: GUI of Absynth’s from Native Instruments.

6.1 DMI Prototype

As a proof of concept, we created a DMI prototype using our interface and the preset

‘arcadia repeats’ in Absynth 5. One-to-one and one-to-many musical mappings

were chosen. The gestural feature value of horizontality was mapped to pitch,

whereas horizontality was mapped to the 8 synthesizer parameters displayed in

Figure 6.3. The pinch property of the interface was used as a switch to mute/unmute

the performance. The visual and auditory results can be viewed at:

http://vimeo.com/rbrth/dmi-prototype-demo

For this prototype the gesture recognition functionality was omitted. However an

example without auditory events can be viewed at:

http://vimeo.com/rbrth/gesture-recognition-demo

http://vimeo.com/rbrth/dmi-prototype-demo
http://vimeo.com/rbrth/gesture-recognition-demo


Chapter 7

Conclusion

This thesis described the creation of a hand gestural controlled digital musical instru-

ment. Using an iterative design methodology, we explored different glove designs.

The final glove design features two diffused infrared light sources at the fingertips,

which can be tracked at every angle by the Nintendo Wii remote controller up to a

range of 2.30 meters. This enables users to have a stretched arm in any direction

while performing while the movement resolution remains high (1.90-2.54 mm/px).

The hardware required for this setup is affordable (< 20 e), fast (< 50 ms) and has

a high sampling rate (µ 98 Hz). Moreover, the system is portable (0.2 dm3) and

easy to replicate within an hour. According to a user study, part of Chapter 5, the

glove is comfortable to wear and gestures can be easily performed with it.

On the software side we merged predefined software frameworks to i) obtain a system

which could acquisition hand generated control signals and ii) transform and output

these signals to auditory information and iii) display the gestural information as

visual feedback. The first functionality is achieved by OSCulator [52], sending the

data via OpenSoundControl towards Max MSP [3]. The latter component takes care

of the second functionality. This framework is a visual programming environment

especially designed for musical productions. It can transform the gestural data to

auditory data and output it as either an audio signal or as MIDI data. Furthermore

it forwards the gestural information to Processing via UDP, which provides the

third functionality. Users reported (see Chapter 5) that software provides a smooth

visual feedback without disturbing delay. An important final design feature in the

software merges tracked blobs together when they are close. This enables the user

to ‘pinch’, adding an extra dimension in the interaction.

The interface is capable of interpreting 2 types of motional information: analytical

and holistic control gestures. The first are like symbols with a binary existence.

They can act as buttons or switches. The second type of motion information is

67
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based on features derived in real-time from the gestures. This continuous stream of

higher order data can act for direct control of musical parameters.

In Chapter 4 the development and analysis of a set of analytical control gestures

was explored. In total 17 unistroke symbols were designed, inspired on the musical

gestures made by conductors. A Hidden Markov Model was included in Max MSP to

classify these symbols. This classifier was especially designed to recognize gestures

made with a low variance between samples [8], in which it is known that musicians

are proficient [46, 47]. Moreover, the model is trainable with only a single example.

After multiple gesture data collections, simulations were run in order to determine

to what extend the classifier was performing. After a few hours of training, users can

achieve a recognition rate above 99.15 % by using only a singular training example.

However, this did not hold for all participants. The performance of the classifier

was compared to a second KNN classifier. Results indicated that for all subjects

a performance above 99% could be reached. Hence indicating further efforts are

needed to improve the HMM classifier.

In Chapter 5 the associations of listeners between musical parameters and holistic

control gestures were investigated. The chapter reported on an experiment that was

conducted to measure the effect of changes in dynamics, pitch, brightness, articu-

lation, syncopation or rhythm on hand motions. This was measured by derivatives

of motional features. Results indicated that many features of the motions are sig-

nificantly affected by many musical parameters. Furthermore, there is suggestive

evidence that between and within participants there exists a low amount of motional

type variance. These results will provide essential knowledge to create an intuitive

musical mapping from hand motions to sounds, as described in Chapter 6. More-

over, supporting the musical embodied cognition thesis, it suggests that people have

an internalized abstract representation of sound generating movements: a culturally

shared representation of abstract sound features directly linked to movement. The

results confirm findings in earlier studies [12, 16, 51]

Finally in Chapter 6 it is explained how the hand gestural information can be used

for sound production. Multiple types of musical mappings are available. According

to our study in Chapter 5 and previous research [25], it is thought that many-to-

many mappings from movement parameters to musical parameters provide the most

promising sound production.

As future research we suggest to use the findings from Chapter 5 as a basis for

an investigation to usable musical mappings. Eventually this should result in a

mature DMI, utilizing both gestural control types. We further suggest to perform

a quantitative approach on the thesis that between and within participants there
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exists a low amount of motional type variance. Also the HMM classifier should be

made more robust for inter-subject variance. Moreover, the eventual goal for this

system is to be made usable and accessible for others, sharing the freedom of making

music in the air.
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