
Radboud University Nijmegen

Department of Psychology and Artificial Intelligence

The Development of
Bayesian generative models

Comparing model reduction and model construction

Bachelor Thesis in Artificial Intelligence by

Francesca Drummer
s4770099

Supervised by

Johan Kwisthout1

Danaja Rutar1

1
Donders Institute for Brain, Cognition and Behaviour

January 31, 2020

Contents

1 Introduction 2
1.1 Model Updating . 4
1.2 Model Revision . 4

1.2.1 Model Reduction . 5
1.2.2 Model Construction . 6

2 Explaining away Prediction Error 7
2.1 Updating Hidden States . 9
2.2 Revision of Causal Relations . 11

2.2.1 Model Revision Process . 11

3 Simulation 13
3.1 General Simulation outline . 13

3.1.1 Simulation Outline . 14
3.1.2 Environment . 15
3.1.3 Agent . 16
3.1.4 An Adaptation of the Simulation . 17

3.2 Specific Design choices . 17
3.3 Implementation . 19

3.3.1 Experimental Settings Environment . 19
3.3.2 Experimental Settings Agents . 20
3.3.3 Pseudo Code for Model Revision . 21

3.4 Results . 23
3.4.1 Model reduction . 23
3.4.2 Model construction . 26

4 Discussion 28
4.1 Possible Modifications . 29
4.2 Cognitive relevance . 30

4.2.1 Evolutionary challenge . 30
4.2.2 Developmental challenge . 30

5 Conclusion 31

6 Future research 32

Appendices 35

A Simulation code (Python) 35
A.1 Environment . 35
A.2 Analyzation methods . 37
A.3 Model Reduction . 42

A.3.1 Execute Model Reduction Trial . 45
A.4 Model Construction . 46

A.4.1 Execute Model Construction Trial . 49

1

Abstract

The predictive processing (PP) framework is one of the leading theories to explain cognition.
According to PP, the brain continuously predicts sensory inputs given its generative model of the
world. An interesting question is how such a generative model of the world is developed. Two
approaches for developing a generative model are model updating and model revision. Model
updating refers to updating the probabilities over the hypothesis in the model. Compared to
that, model revision can take place by constructing or reducing a generative model. While
most research focuses on the model updating, in this Bachelor thesis, we will investigate the
development of a Bayesian model by model revision. Particularly interesting is the question,
how development of a generative model compares in terms of accuracy and causal relations
between the two existing model revision processes. Model reduction and model construction are
compared by using a computer simulation. In general, neither of the approaches converge to the
‘true’ model of the environment. However, both approaches developed a model that captures
the association rules of the environment. Despite showing that model development can underlie
the process of model reduction, as well as model construction, more research in complex areas
is necessary to generalize these findings.

1 Introduction

Over the past years, the predictive processing (PP) framework gained an increasing amount of
attention. In general, PP is a computational level theory that offers a unifying perspective on action
and perception. According to this unification theory, the brain works as a prediction machine, which
suggests that actions are both predicted and perceived (Friston, 2003). Because the brain predicts
actions in a top-down process, it implies that processing sensory inputs does not exclusively occur
in a bottom-up fashion. Rather the brain continuously predicts future sensory evidence based on
a generative causal model that represents the world. The mismatch between the predicted future
sensory information by the model, and the actual sensory observation is called prediction error
(PE) (Kwisthout et al., 2016). After generating the prediction error, it is processed in an upward
fashion through the hierarchical generative model. The aim is to minimise future prediction errors
by adjusting the model accordingly (Clark, 2013). Minimising the prediction error is coupled with
the free-energy principle. The free energy principle defines that any agent must minimise the entropy
of its sensory interaction with the world. In the context of predictive processing, entropy defines the
uncertainty in predictions. To resolve uncertainty about the world states, the agent must maximise
the accuracy of its generative model (Friston et al., 2017). Thus, an agent‘s generative model must
be adjusted such that uncertainty about the environment is resolved and in turn, the accuracy of
predictions increases.

The predictive processing literature proposes different ideas about how the brain can minimise
prediction errors. Two examples of these propositions are model updating and model revision. Firstly,
model updating refers to changing the prior probabilities over the different hypothesis of the model
(Kwisthout et al., 2016). Model updating is the more popular approach in the predictive processing
field to explain model learning. However, it offers limited possibilities for change, because it can not
cause structural revision of the model. Instead, model updating focuses on testing current hypothesis
(Perfors, 2012). Nevertheless, in some situations a structural change of the model is required, for
example, if the environment is dynamic or the model misrepresents knowledge. In these situations,
restricting the change in the model by solely updating the hypothesis is not sufficient (Kwisthout
et al., 2016). More specifically, imagine the following example of language learning: Assume an
established association between word ‘A’ and meaning ‘M1’. Now consider moving to a different
country where the word ‘A’ relates to a different meaning ‘M2’. Integrating this new knowledge

2

requires adding a variable, connection or value to expand the possible meanings of word ‘A’. Thus,
a structural change of the model is necessary. The latter approach, model revision, can account for
such a structural change by adding or removing hypothesis and causal relation between variables to
the model (Kwisthout et al., 2016).

Both methods, model updating and model revision, are applied to the generative models of agents.
Generative models aim to capture the underlying statistical nature of observed inputs. Particular
hypothesised causes of the observations help to predict the sensory input. The more accurate
the model represents the statistical nature of the input data, i.e. environment, the better the
prediction it makes, which increases the posterior probability of the model (Clark, 2013). In this
Bachelor thesis, the generative models of the agents are causal Bayesian networks modelled using
categorical probability distributions as described by Kwisthout, Bekkering and Rooij (Kwisthout
et al., 2016). The advantage of causal Bayesian networks is that the stochastic causal relationships
between variables can easily be represented (Kwisthout et al., 2016). Besides, that Bayesian models
can encode an agents prior belief about the environment and use the probability distribution of the
hyperpriors to define how confident the agent is about these beliefs (Otworowska et al., 2018).

In contrast to the commonly used model updating approach, the focus will lie on model revision.
Model revision is a umbrella term for model reduction and model construction which both enable
structural changes in the model. However, they differ in their initial models and revision methods.
Model reduction starts with a high complexity model which integrates the assumption that every
variable is dependent on each other (‘dependency prior ’). On the other hand, the beginning model
for model construction is of low complexity where each variable is independent of each other (‘in-
dependency prior ’). Given these two different initial models, an interesting question to consider
is how the states and causal relations of an agent‘s generative model come about during develop-
ment. A large research area of development in cognitive science presumes abductive reasoning in
the behaviour of children. Problematic is that abductive reasoning assumes that the agent already
knows the structure of the model itself (Friston et al., 2017). Therefore, e.g. Friston et al., considers
development itself as a process of model reduction over existing accumulated sensory evidence. In
contrast to this common assumption, we want to argue that it is also plausible for children to be
born with a generative model of low complexity that does not include prior beliefs about the models
structure yet. Therefore, instead of only focusing on explaining the process of development with
model reduction we hypothesise that the process of model construction is also relevant.

With that in mind, the goal of this paper is to compare the model development of two agents, where
one is performing model reduction and the other model construction. The aim is, to investigate
how these two approaches that initially assume opposing relations between variables (‘dependency’
vs ‘independency prior’) can integrate association rules from a specific environment in their model.
We expect to show that via both model revision approaches, model construction or model reduction,
it is possible to minimise the prediction error of the agent. After all, model revision is one of
the different ways to deal with prediction errors as described by Kwisthout et al. (2016). When
the prediction error decreases, then the generative model of the agent must represent (some of)
the rules underlying the environment. Because in a stochastic environment one can not guarantee
that the agent will encounter all possible states, we hypothesise that the generative models do not
necessarily need to converge to a ‘true’ model of the environment. Instead, different models can be
accurate representations of an environment, in the sense that they minimise their prediction error.
Thus, due to the random nature of the environment, one agent might encounter different states
than another agent. Finally, it is likely that their resulting generative models describe parts of the
environment equally accurate. However, it is highly unlikely that each model also describes the same
environmental components. In addition to the stochastic nature of the environment, the environment

3

also has some degree of uncertainty in observations. Thus, the brain might not be able to establish
a one-on-one mapping between causes and observations (G ladziejewski, 2015). The above-stated
hypotheses that both model revision approaches will settle to an accurate but not necessarily ‘true’
generative model will be tested with the following research question:

How do the final generative models developed under model reduction or model construction compare
in terms of dependency relationships and accuracy1?

The remainder of this section, describes the principles and workings behind model updating and
model revision.

1.1 Model Updating

Model updating is one possible approach for adjusting an agent s generative model without the
structure of the model itself. Rather, it focuses on updating the hyperpriors of the agent. Hyperpriors
represent initial beliefs about the environment. These beliefs are updated over time to include
the observations in the environment. In that sense, model updating is the same as updating the
probability distributions of the prior beliefs (Kwisthout et al., 2016).

The magnitude of the model updating step depends on the size of the prediction error. Never-
theless, a high prediction error can have different causes, and thus should not always generate a
probability updating step. One reason for a non-meaningful prediction error might be caused by
a non-deterministic environment. Therefore, it is crucial to distinguish prediction errors caused by
misrepresentation of the environment or observation of an outlier. Given the first case, the model
does not represent the environment correctly, e.g. because environmental properties changed, and
therefore it is appropriate to update the model. On the other hand, updating the model should
be avoided if the observed mismatch was random (Kwisthout et al., 2016). For example, consider
observing that a person wears a scarf in summer. Such an observation will cause a high prediction
error because based on initial beliefs, people do not wear a scarf in summer. In this context, the
observation should not induce a high increase of the probability that people wear scarfs in summer
because the observation is an outlier. However, if the season changed and now it is winter, then, due
to the change in the environment, there should be a model updating step taking place. The new
probability distribution should predict that people are more likely to wear scarfs when it is winter.

The example, shows that model updating should ideally only occur under certain conditions. How-
ever, this Bachelor thesis does not focus on exploring the conditions for model updating. Instead,
the focus will lie on model revision. Therefore, there are no constraints on updating the model in
this Bachelor thesis because the goal is to evaluate model revision.

1.2 Model Revision

Model revision describes how a generative model can be changed in structure by adding or removing
variables, increasing or decreasing the number of variables in the model or by updating the con-
ditional probability distributions (Kwisthout et al., 2016). The first two examples correspond to
a change in the model in terms of its model structure. These aspects of model revision still need
to be investigated in the predictive processing context, thus, adding novel variables and values to
a model space will not be considered (Kwisthout and Rooij, 2019). In this work, the definition of
model revision is restricted to adding or removing causal relationships between variables.

1Accuracy refers to the size of the prediction error, e.g. a low prediction error implies high accuracy.

4

As described in the previous section, model updating should only be performed if it is certain that
the prediction error did not occur by chance, but is caused by an environmental change. Similarly,
it is essential to only change the structure of the generative model, if there exists a definite causal
relation originating from the observed pattern of prediction errors. Therefore, a structural change of
the agent’s model should only be applied if it would cause an overall increase of prediction accuracy
in the model (Smith et al., 2019).

In the context of the PP theory, the specific conditions that should induce a revision of the model
remain an open question. The example, mentioned earlier, only focuses on the situation when a
model change occurs because of a high prediction error. However, there do exist other possible
causes for model change as described by Rutar et al. (ress). The authors for example discuss that
multiple small prediction errors could also cause a model change, because when combined they might
elicit a high prediction error. Despite the many different possibilities for model change, the focus
here lies on model revision caused by a high prediction error.

1.2.1 Model Reduction

As introduced above, a common assumption in developmental cognitive science is that model re-
duction is considered the main process to describe development. Model reduction is applied to a
full generative model that has causal relations between all variables (‘dependency prior’). The goal
of model reduction is to reduce causal relations between nodes that are not important, to develop
a new and less complex model. The reduced model is selected if it represents the evidence in the
environment better than the full model. Because the process of model reduction follows a top-down
approach that reduces a full model to a simpler model with less ambiguity, it has an abductive
reasoning aspect (Friston et al., 2017).

Figure 1 illustrates a simple example of Bayesian model reduction. The figures shows how three
different weather conditions (‘Rainy’, ‘Cloudy’ and ‘Sunny’) can help to predict whether a person will
use an umbrella or not. Figure 1a shows the full model where each weather node has a causal relation
to both prediction nodes (‘Umbrella’ or ‘No umbrella’). After exposing the full model to training
data, the model could reduce that, e.g. if it is sunny, a person would take no umbrella. Therefore, the
final model does not include causal relations that add no information about the connection between
the weather state, and if a person is wearing an umbrella or not. In Figure 1b one possible reduced
model is shown. In that reduced model, only the causal relation between ‘Sunny’ and ‘Umbrella’
is removed. A possible explanation why both causal relations between ‘Cloudy’ to ‘Umbrella’ and
‘No umbrella’ still exist is because when it is cloudy, the model observed no significant difference
between people wearing and umbrella or not. Differently, one would expect that most people do
take an umbrella when it is raining. However, the causal relation between ‘Rainy’ and ‘No umbrella’
might still exist, because in the last days it has not rained a lot and therefore no relation could be
identified.

Rainy Cloudy Sunny

Umbrella No umbrella

(a) Full model.

Rainy Cloudy Sunny

Umbrella No umbrella

(b) Possible reduced model.

Figure 1: Full (a) and possible reduced model (b) of a causal Bayesian network.

5

1.2.2 Model Construction

The process of model construction can be described as a bottom-up approach to develop more
complex models. Therefore, model construction contrasts the process of model reduction. Until now,
most research on developmental cognitive science evades essential aspects of the model construction
process. Thus, challenging questions, such as how it is possible to develop models in a bottom-up
fashion by adding novel variables (Friston et al., 2017) remain answered. Moreover, other researches
conflict the opinion that adding and creating new variables is a form of realistic learning. For
instance, Perfors (2012) argues that every learner (whether human or computer) has an initial
generative model that already contains all possible states in the implicit hypothesis space. According
to Perfors the process of learning does solely involve (a) moving hypothesis from the implicit to
explicit hypothesis space (hypothesis generation) and (b) manipulating hypothesis, e.g. by updating
their probabilities, in the explicit hypothesis space (hypothesis testing). Thus, Perfors excludes the
possibility of adding new states into the implicit hypothesis state altogether (Perfors, 2012). The
questions imposed by Perfors are strongly connected to questions about the innateness of one‘s
initial model space. Because these questions concentrate on evolutionary aspects instead of model
development, we will not focus on them in this Bachelor thesis. However, the until now unanswered
question concerning how to add new values to a models state space does restrict the implementation
possibilities of model construction.

In order to implement learning as a process of model construction, the definition of construction is
limited in this work to adding causal relations. Considering the same weather example from above
Figure 2 shows how model construction can occur. This time, the initial model contains all nodes
representing the world state, however, without dependencies, or causal relations, between these
nodes (Figure 2a). After observation of relevant data, newly discovered dependencies were added to
the model by introducing causal relations between nodes (Figure 2b).

Rainy Cloudy Sunny

Umbrella No umbrella

(a) Empty model.

Rainy Cloudy Sunny

Umbrella No umbrella

(b) Possible expanded model.

Figure 2: Empty (a) and possible expanded model (b) of a causal Bayesian network.

In both model revision approaches, establishing causal relations between nodes can be explained
via Hebb’s rule: “Cells that fire together, wire together” (Donald O. Hebb) that was proposed by
Donald Hebb in 1949 (Hebb, 1949). The principle explains one way of organizing new experiences
in the brain in an unsupervised manner. For this, consider the language learning example from
above again. In this example word ‘A’ would be increasingly often observed in combination with
meaning ‘M2’ after moving to a different country. Thus, more neurons encoding the meaning ‘M2’
get activated when hearing the word ‘A’. Therefore, their relationship strengthens and maybe, in the
case of model construction, introduces a causal relation between them. On the other hand, in model
reduction, two nodes are more likely to stay connected if the nodes are often activated together. If
a causal relation between two nodes is less often activated, the relation between those nodes is more
likely not to be that relevant. It is important to note that two nodes might only be active together by
chance. Therefore, the observation of two nodes to together should not necessarily induce a causal
relation between them. Instead, the co-occurrence of these two nodes only specifies that they are
more likely to have a causal relation.

6

Although the Hebbian principle underlies both model reduction and construction, it does not follow
that both models converge to the same ‘true’ generative model. For this consider Figure 1 and
Figure 2 again, where it is interesting to note that the developed models (Figure 1b and Figure 2b)
are not identical. For example, in Figure 2b the nodes ‘Sunny’ and ‘Umbrella’ have a causal relation
while they do not in Figure 1b. The different final generative models illustrate the idea that models
do not necessarily have to converge to the same ‘true’ model. One reason for the development of
different generative models could be the random or stochastic nature of the environment. That means
that the established relations depend on observations. Considering that most of our observations
originate from a non-deterministic environment, we do not necessarily observe the same. Therefore,
the models we establish are tailored to our observations and not automatically to the entire possible
observation space of the environment. In respect of the differences between Figure 1b and Figure
2b this could be interpreted as that the first agent observed more people walking around without
umbrella when it is raining while the latter agent observed more people taking an umbrella when it
is sunny.

2 Explaining away Prediction Error

As mentioned above, the predictive processing aspect is based on a generative models which, in
most research, are represented as Bayesian models2. Every generative models visualization is called
a graphical model. Graphical models display a hierarchical structure either in the form of prediction
layers 3 or as a result of a hierarchical structure within one ‘layer’ of the hierarchy, due to vari-
able dependency on hyperparameters. The latter is shown in Figure 3. Particularly, the graphical
model consists of three different types of nodes that represent hyperparameters, hidden and observed
variables. The top area of the model in Figure 3 shows diamond nodes which represent the hyper-
parameters α and β. In Figure 3 the combination of α and β models our beliefs about the hidden
variable θ. More specifically, that means updating θ follows the probability distributions over α
and β. Hyperparameters are initially set to a certain probability distribution to represent the prior
beliefs about the situation. After data observation, the hyperparameters are updated to capture the
nature of the observed data better. In contrast to hyperparameters, hidden variables are learned
over different trials and not initially set to a specific probability distribution. Hidden variables do
most of the time contain the probability distributions of interest. Lastly, the shaded nodes represent
observed variables. These are the only variables which can be directly observed in the environment.
Independent of the type of variable, all nodes are connected by arrows that indicate dependencies.
For example, the dependency θ → y (”θ causes y”) implies that we specify the following probability
dependency: P (y | θ); (Kruschke, 2010).

2Research papers on predictive processing that use Bayesian models are, for example, Kwisthout et al. (2016),
Friston et al. (2017) and Clark (2013)

3Hierarchical models representing layers of causal chains identify predictions made on one level of the hierarchy
with hypotheses on the following layer. For more detail on these model, see, i.e. Kwisthout et al. (2016)

7

y

θ

a b hyperparameters

hidden variable

observed variable

Figure 3: Basic structure of a hierarchical graphical model

Most important for the implementation of model revision are hidden variables. These variables form
a so-called hidden state, also referred to as latent state, which defines all possible existing states.
Thus, hidden states must contain all variables that can influence the current state of the world.
However, since these variables are hidden, the agent can not observe them directly. Instead the
agent has to use the observed variables to infer the hidden variables that increase his knowledge
about the dependencies in the world (Friston et al., 2017).

A practical example of inferring a hidden state (W) from two specific observed nodes (OV and OA)
is shown in Figure 4. This example could illustrate a situation in which a person is sitting in a room
without windows but would like to know how the weather (W) is outside. The direct observation
of the weather is not possible, because there are no windows in the room. However, when a friend
comes to visit the visual observation (OV) about if she is carrying an umbrella or not can provide
knowledge about the weather outside. Besides an additional observable auditory cue (OA), e.g. how
much your friend talks, can help you infer about the hidden variable ‘Weather’ (W). Overall the
goal is to infer the hidden node W that independently causes the observed variables OV and OA.

W

OAOV

Figure 4: Graphical model with hidden variable W (indicating what the weather conditions are, e.g.
rainy, cloudy or sunny) that infleunce the two observed variables: (1) the auditory OA (how much
your friend is talking) and (1) the visual cue OV (did your friend carry an umbrella or not).

In the following two sections (Section 2.1 and Section 2.2) the methods behind the two techniques
updating or revision are explained. Similarly to the paper by Kwisthout and Rooij (2019) updating
will refer to the process of Bayesian updating of the probability distributions over the model. On
the other hand, revising a model refers to adding or removing causal relations by using the predic-
tion error in order to accommodate a changing world. This definition of model revision limits its

8

possibilities to add or remove causal relations. Therefore the definition of model revision here is a
simplified version of the common definition of model revision used in other papers, as i.e. Kwisthout
et al. (2016). In general model revision would include a structural change in the model by adding or
removing variables, or changing the different states a parameter can take. For example, consider a
generative model describing the implications of ‘Weather’ on if people are carrying umbrella‘s or not.
In general, model revision would, for example allow adding a hidden variable ‘Wind’ to the model.
‘Wind’ could then help inferring if people will take an umbrella or not. However, as also mentioned
in the paper by Kwisthout and Rooij (2019), in the context of predictive processing aspects, such
as adding novel variables, still need to be studied.

2.1 Updating Hidden States

As stated in Section 2 an increase in the posterior probability of a generative models relates to a
more accurate representation of the input data. The posterior probability of the model p(θ | y)
stands in relations with the models prior p(θ) and likelihood p(y | θ) as indicated by the Bayes rule
(Equation 1).

p(θ | y) =
p(y | θ)p(θ)

p(y)
(1)

The Bayes rule (Equation 1) defines a framework to update beliefs about latent variables of a
statistical model with parameters θ given data y using Bayesian inference. Consider the Bayesian
network from above again (Figure 1 and 2), where the parameters of the model θ represent concrete
states of the hidden node θi = {θ1 = Cloudy, θ2 = Rainy, θ3 = Sunny}. The Bayes rule (Equation
1) is used to update the probability of one specific state of θi given the observed outcome data y,
also called the posterior (p(θi | y)). Next to the posterior, the prior probability (p(θi)) can basically
be seen as a summary of past information excluding the information of the current iteration (Vilares
and Kording, 2011). Typically the prior starts with a uniform distribution over all possible states,
because there are no prior beliefs about the environment yet. That means we initially belief that all
possible outcomes of θi are equally likely. After observing data y the distribution of θi is updated
accordingly. Now the prior includes the knowledge about the most current observation. Compared
to that the likelihood p(y | θ) favours causal relations that increase the probability of co-occurring
events.

Figure 5 shows a possible way of updating a discrete categorical probability distribution over the
hidden node θ. Initially probabilities are uniformly distributed over all possible states (Cloudy, Rainy
and Sunny) of the hidden node θ. After multiple iterations of updates almost all the probability
mass is moved to θ3 = Sunny and moved away from θ2 = Rainy (Figure 5b).

9

(a) Prior uniform distribution over θ.
(b) Probability distribution over θ after
multiple iterations.

Figure 5: Example of updating the categorical probability distribution of the hidden variable θ with
the possible states θ = [cloudy, rainy, sunny]. Initially the probability is uniformly distributed over
all states (a). After multiple updates most probability mass shifted to ‘Sunny’ and away from ‘Rainy’
(b).

After distributing the probabilities over the model parameters, the prediction error between the
generative model and the true model of the environment is calculated. A common measure is the
Kullback-Leibler Divergence, also referred to as relative entropy. Equation 2 shows the (forward)
Kullback-Leibler divergence, which measures the information lost when one (predicted) probability
distribution Pr(Pred) is used to approximate the other (‘true’) probability distribution Pr(Obs). That
means a lower value of the KL divergence indicates that two distributions diverge less from each
other. Thus, a lower KL value is favourable.

DKL(Pr(Obs) || Pr(Pred)) =
∑

p∈Ω(Obs)

Pr(Obs)(p) log2

Pr(Obs)(p)

Pr(Pred)(p)
(2)

Two characteristics that the probability distributions over Pr(Pred) and Pr(Obs) must usually fulfil is
that (1) both Pr(Pred)(x) and Pr(Obs)(x) must sum up to 1 and that (2) each of them must be higher
than zero (Pr(Pred)(x) > 0 and Pr(Obs)(x) > 0) for all values x ∈ X (Han). The first condition is
fulfilled in the context of the simulation explained in Section 3. Whereas, when the agent makes
a deterministic prediction, instead of returning a probability distribution, the second condition is
violated. Allowing deterministic predictions of the agent is important in case there is only one causal
relation between the hidden states and outcomes or when the agent randomly guesses an outcome.
Because the KL divergence (Equation 2) does only yield an error if the denominator is zero one can
use the reverse Kullback-Leibler divergence (Equation 3) can instead be used to approximate the
distance between the predicted and observed probability distribution.

DKL(Pr(Pred) || Pr(Obs)) =
∑

p∈Ω(Pred)

Pr(Pred)(p) log2

Pr(Pred)(p)

Pr(Obs)(p)
(3)

Compared to the forward Kl divergence, the reverse KL divergence measure will not error in case of
a deterministic agent prediction, because the environment is surely non-deterministic4.

4Even though the reverse KL divergence does not change the direction of the measure it does, however, change

10

2.2 Revision of Causal Relations

While the probability distribution over the hidden states is updated after each iteration, as described
in the previous Section 2.1, a revision of the causal relations should only occur if it helps to resemble
the environment more accurately. Therefore, it is necessary to settle conditions under which model
revision should occur. Within the predictive processing framework, the concrete conditions that
cause model revision still need to be explored. However, there exists a postulation of different
scenarios for which model revision might be favourable to model updating (Rutar et al., ress).
Possible causes, such as multiple smaller PE’s, are described in the first section. Inspired by the
paper of Rutar et al. (ress) model revision here occurs dependent on the context. Taking the context
into account, one can separate the following causes that generate a high prediction error: (1) random
or stochastic causes due to a non-deterministic environment or (2) misrepresentation or unawareness
of rules that regulate the environment. This distinction is needed such that only addition of relevant
causal relation between two different variables X and Y occurs if their co-occurrence X → Y
(“X causes Y ”) is important. In other words, a causal relation between two variables should only
exist if the probability for p(Y | X) is high enough. Therefore, differently to the updating of
the probability distributions, revision will only occur when it adds new information or removes
unnecessary knowledge of the agents model.

In the next section describes the methods to simulate the model revision process.

2.2.1 Model Revision Process

The model revision process consists of two phases (Figure 6): At first, if the possibility exists a
revised model m2 is created (Phase 1 in Figure 6). In the second phase of Figure 6, called Model
comparison, the revised agent’s model m2 is compared to the current agent’s generative model m1.
If the revised model is a better representation of the environment than the current model m1 is
replaced by the revised model m2.

Model Revision Process

Phase 1:
Create revised model m2

Phase 2:
Model comparison

Step 1:
Revise causal

relation e

Step 2:
Redistribute
probabilities

Step 3:
Calculate PE

for m1 and m2

Step 4:
Choose model with

lower PE or less
causal relations.

Figure 6: Flowchart of two phase model revision process

(Step 1) The first step in order to create a revised model m2 requires identifying a causal relation
that can be revised (Phase 1 in Figure 6). Which causal relation should be revised depends on which
model revision approach the agent is using. If the agent is performing model reduction, then the
activated causal relation e between the currently active hidden state used to predict the outcome

the magnitude of the error, because it is not a symmetric distance measure.

11

and the predicted outcome is revised. Consider a world that has a set of different observed nodes
O = {O1, O2, ..., On} and hidden nodes H = {H1, H2, ...,Hm}. Every observed Oi or hidden node
Hj represents different states of the world. Again, look at Figure 1 from above. In this scenario the
world would consist of one hidden node (H = Weather) which can take on three different states
H = {h1 = Rainy, h2 = Cloudy, h3 = Sunny} and one observed node (O = Umbrella) with the
following states: O = {o1 = True, o2 = False}. Now if the agent predicts a specific outcome i
based on the hidden node j then the causal relation between e = hj → oi will be revised That
means, the revised model m2 is a copy of the original model without the causal relation e, such
that m2 = m(Red) = m1 − {e}. On the other hand, when the agent performs model construction it
chooses a random causal relation e that is added to the original model. Adding the causal relation e
creates a revised model m2, such that m2 = m(Cons) = m1 +{e}. It is necessary to choose a random
causal relation initially, because the agent believes that all variables are independent to each other.
That implies the agent will not consider the possibility of dependency between variables if it is not
explicitly passed as an alternative, revised model.

(Step 2) After removing or adding a causal relation, the number of variables in a specific hidden
state Hi changed. Consequently, the sum of the probability over the hidden state does not add
up to one anymore. Therefore, a redistribution of the probability is necessary. Redistributing the
probability is equal to performing a model updating step, that will be explained later in Section
3.2. For now, it is most important to know that the probabilities are sampled from a Dirichlet
distribution. The Dirichlet distribution, also called multivariate Beta-distribution, samples over a
vector α (Kruschke, 2010). In this paper α is a concentration vector which keeps track of how often
a combinations of hidden states H and outcomes O occurred together. When sampling the new
probability distributions for the revised model, the Dirichlet distribution will only sample over the
states that have a causal relation.

The second phase of the defined model revision process describes model comparison (Figure 6).
During this phase, the current model m1 and revised model m2 are compared via their prediction
error to the environment mE . Overall this phase measures which of the two models (m1 or m2)
capture the structure of the environment the best. The model comparison step is inspired by the
basic idea of Bayesian model comparison (Equation 4). Bayesian model comparison compares the
posteriors of each model (p(m1 | D) and p(m2 | D)) on the basis of each models evidence (p(D | m1)
and p(D | m2)) and prior (p(m1) and p(m2)). Because it is assumes that the two models have the
same likelihood they must have the same variable. In other words, model comparison requires the
parameters of the different models to be equal and that the only difference between models exists
in the underlying probability distribution (Friston et al., 2018).

p(m1 | D)

p(m2 | D)
=
p(D | m1)

p(D | m2)

p(m1)

p(m2)
(4)

(Step 3) The last fraction of Equation 4 measures the ratio of the prior beliefs over the two models.
When performing model comparison in this work, we do not favour any of the two models a priori.
Therefore, the last term equals out, and model comparison is only based on the evidence of models
(Bayes factor). However, instead of using the ratio of evidence for each model we will immediately
compare the posterior odds of the models using the Kullback-Leibler divergence (PEm1

= DKL(m1 ||
mE) and PEm2

= DKL(m2 || mE)).

(Step 4) Based on the calculated prediction errors (PEm1
and PEm2

) the agent can decide which
model it favours. The following three scenarios can arise

1. PEm1
> PEm2

12

2. PEm1 < PEm2

3. PEm1
= PEm2

In general, the model selection process should always favour the model with the lowest prediction
error. Therefore, in the first two cases, the model with the lower PE is selected by the agent. In
the third case, both models encode the same amount of environmental information. If that is the
case, the decision of the agent follows the simplicity principle, also referred to as Occam’s razor.
This states, that, if the observation can follow a simpler explanation, it should be chosen over more
complex solutions (Feldman, 2016). In other words, only if the data requires it, the agent will
keep the more complex model5. Note that if the original model m1 or revised model m2 should be
favoured is dependent on the approach of model revision. The revised model m2 is simpler for the
process of model reduction. However, m2 is more complex for the process of model construction.
Thus, which model the agent should decide to use as its generative model is dependent on the model
revision approach.

After the agent performed the model revision process (Figure 6), the agent could have changed its
generative model. While the process of model reduction is guided by the assumptions of reducing
model complexity, due to the initial dependency between all variables, it might be unclear why an
agent should consider a more complex model during the model construction approach. The reason is
that adding necessary dependencies between two variables also reduces the free energy of the model,
in the sense that the minimization of the overall prediction error causes a reduction in free energy
(Friston et al., 2017).

3 Simulation

The previous section focused on the methods for updating and revising a generative model. This
section describes the simulation which is used to investigate the development of a generative model.
In the following simulation, the agent’s goal is to develop a model that integrates the association
rules from the environment. The implemented environment is simplified which allows us to observe
the interaction of variables and reason about the changes in the generative model of the agent in a
step-by-step manner.

The general version of the simulation was developed together with the Bachelor thesis group. Thus,
Section 3.1 is written in collaboration with Isabel Burgos, Lennart Geertjes and Ellen Schrader.
Following Section 3.1 describes the general simulation environment and Bayesian models used for
implementation. Section 3.2 specifies the specific design choices and changes to the Bayesian models.
After that, Section 3.3 defines the experimental settings and lastly, Section 3.4 shows the results
obtained after running the simulation.

3.1 General Simulation outline6

In the following part, the general simulation environment is described as the group built it. The
goal was to form a common foundation for the individual research questions of all group members.

5The model selection principle, using Occam’s razor, is also embodied in Bayesian Inference itself. There is balances
the trade off between complexity and structural fit of the model (Tenenbaum et al., 2011).

6This section is written in collaboration with the students (Isabel Burgos, Lennart Geertjes and Ellen Schrader)
in the Bachelor thesis group.

13

3.1.1 Simulation Outline

The simulation environment aims to simulate the construction of generative models over time, based
on the individual research questions. The performance of the agent is measured by, for instance, the
change of prediction error over time.

The simulation environment consists of an agent that is repeatedly shown coloured tiles in different
positions. The steps of a single iteration of the simulation can be imagined in the form of an empirical
experiment: (Step 1) The agent only sees three empty positions (Figure 7A) (Step 2) then, on one
of the positions, a coloured tile is shown (Figure 7B). (Step 3) Depending on the colour and the
spatial position, the agent makes a prediction regarding which object it believes to be underneath
the tile. (Step 4) Afterwards, the tile will be flipped, showing an object located underneath the tile
(Figure 7C). The tile which is flipped is determined by the environment, not the agent (implying a
passive agent). (Step 5) Afterwards, the tile flips back, and the agent once again sees three empty
positions (Figure 7D). This process is repeated for a given number of iterations together forming
one single trial. The goal is that the agent learns to correctly predict the object underneath a tile,
based on the feature (in this case colour) and the spatial position of the tile.

The general simulation has certain properties, which will be explained in detail in this paragraph.
A tile can have one of three colours: ‘blue’, ‘red’ or ‘yellow’ (Figure 8A). Each of these colours is
associated with an object: ‘blue’ is associated with ‘square’; ‘red’ with ‘triangle’; and ‘yellow’ with
‘circle’ (Figure 8D). The spatial position is related to where the tile appears; this can be either ‘left’,
‘centre’ or ‘right’ (Figure 8B). The spatial position only influences the object underneath if the tile
appears in the centre position. The centre position is always associated with a ‘star’, independent of
the colour. The effect of the spatial position can be seen in Figure 8C, taking Figure 8A as a row of
example tiles. The blue and yellow tiles display a ‘square’ and ‘circle’, respectively, as expected by
their mapping of colour. Although ‘red’ is mapped to a ‘triangle’, the red tile in the centre displays
a star due to its spatial feature. Do note that the row in Figure 8A is exemplary; in the actual
simulation tiles are never shown simultaneous but always sequential, as shown in Figure 7.

Figure 7: An example of a single iteration in the general simulation. First the agent sees 3 empty
positions (A), then, at one of the positions, a tile appears (B). After perceiving the stimuli, the agent
makes a prediction, then the tile is flipped revealing the object underneath (C). Lastly the object is
covered again (D) and a new iteration starts.

14

Figure 8: Which object is shown depends on the interaction between the colour of the tile (A)
and spatial position (B). The mapping from colour to object is shown in figure (D). However, the
mapping does not only depend on colour but also on spatial position so, for example, all centre tiles
are mapped to a star (C).

In the following two sections, the model of the environment and the generative model of the agent
will be explained. The environment model is used to generate events, such as colour and spatial
position of a tile. The agent uses the generated events to predict an object. While the environment
model is needed to generate events, the general framework aims to investigate the generative model
of the agent.

3.1.2 Environment

o

f s

θ1 θ2k m

ψij n

i=1...k
j=1...m

Figure 9: The graphical model of the environment: Here node o represents the object. The object
is dependent on the probability distribution ψij given the spatial position and feature of the tile,
represented by nodes s and f respectively. Nodes k, m and n represent the amount of possible fea-
tures, spatial positions and objects respectively. θ1 and θ2 are two uniform categorical distributions
from which the features and spatial position for each iteration are drawn. Diamond shaped nodes
indicate (hyper)parameters which are given to the environment, and the dark grey colour indicates
that the (hyper)parameters are constant throughout the trial.

Environment model:

15

f | θ1, k ∼ Categorical(θ1, k) (5)

s | θ2,m ∼ Categorical(θ2,m) (6)

o | ψij , f, s, n ∼ Categorical(ψfs, n) (7)

In Figure 9 the graphical model of the environment is shown. The node o represents the object
which can be found underneath a tile. As explained above, the object which is shown when the tile
is flipped depends on the feature of the tile f (e.g., red), the spatial position of the tile s (e.g., left),
and their corresponding probability distributions, as can be seen in the environment model. For our
general environment, the corresponding probability distributions are nearly deterministic. The fea-
ture and spatial position of the tile that will be shown are drawn from a categorical distribution with
a uniform distribution over all features and spatial positions, respectively. This uniform distribution
is represented by the vector of category probabilities θ1 or θ2. In general, dark grey diamond-shaped
nodes indicate (hyper)parameters that are given to the environment. The hyperparameter k repre-
sents the number of possible features, the hyperparameter m the number of spatial positions, and
the hyperparameter n the number of possible objects. Note that the number of possible objects and
features do not have to be the same, as illustrated in Section 3.1.1. Depending on the environment
and conditions needed, these numbers can be adjusted.

3.1.3 Agent

o

f
k

sm

ψijαij n

i=1...k
j=1...m

Figure 10: The graphical model of the agent: Here node o represents the object. The object is
dependent on the probability distribution ψij given the spatial position s and feature of the tile
f . Nodes k, m and n represent the amount of possible features, spatial positions and objects
respectively. The categorical probability distribution ψij is dependent on αij , which represents the
concentration vector. Diamond nodes indicate the (hyper)parameters. (Hyper)parameters k, m and
n are stable over multiple iterations, while the parameters f and s differ between iterations and
hyperparameter αij is learned throughout the trial.

Generative model:

ψij | αij , n ∼ Dirichlet(αij , n) with i = 1...k, j = 1...m (8)

o | ψij , f, s, n ∼ Categorical(ψfs, n) (9)

16

In Figure 10 the graphical model of the agent is shown. As described in Section 3.1.2 (hyper)parameters
are represented by diamond nodes. However, in this case, there is a difference between some of the
parameters indicated by the colour. Dark grey nodes are given by the environment, where k, m
and n are stable over multiple iterations, while the parameters f and s differ between iterations,
depending on which feature and spatial location has been selected by the environment. White pa-
rameter nodes such as αij are learned over multiple iterations through observation. The light grey
node represents the prediction of the agent.

Each of the feature and spatial specific concentration vectors αij is initially set to a uniform vector
with one pseudo-observation for each object. The probability distribution ψij of the objects, given
the features and spatial positions, is sampled from a Dirichlet distribution with the concentration
vector αij . As for the environment (Figure 9), k represents the number of possible features, m the
number of spatial positions, and n the number of possible objects. The prediction of the object is
based on a categorical distribution over the probability distribution ψfs given the observed feature
f and spatial position s.

3.1.4 An Adaptation of the Simulation

The environment as it is currently implemented is quite simplistic: there is no volatility in the envi-
ronment, and it is not very challenging for the agent to understand the environmental contingencies.
The group aimed to make a simulation that can serve as a foundation to expand upon for the indi-
vidual research questions. Therefore everything described above is potentially subject to change in
the individual projects.

3.2 Specific Design choices

The general simulation outline is further simplified such that the centre position is associated with
object ‘square’ instead of ‘star’. The goal of the agent is to ‘understand’ and represent the association
rules (Figure 8) with the hidden variable ψij . Other design choices to the simulation are the
following:

• Non-deterministic environment : As explained in the previous Section 3.1.1, the environment
is not deterministic. That means, even though the combination of a feature f and spatial
position s are theoretically associated with a specific object o sometimes a different object can
follow the co-occurrence of f and s. Co-occurrences that do not follow from the association
rules, originate from the uncertainty of the environment.

• Passive agent : Instead of letting the agent actively choose its next action (active inference),
the agent is passive. First of all, that means the agent can not test or confirm its sensory
predictions by performing specific actions. However, the agent does have the means to change
its predictive model to fit the environment better (perceptual inference); (Seth, 2015). Thus,
the agent is limited to predict the outcome given a certain policy7. Secondly, the agent has no
prior belief to minimize free energy in the world. Instead, the only way an agent can resolve
uncertainty about the world is by creating a generative model that resembles the environment
closely (Friston et al., 2017).

• No explicit feedback : The agent can not directly observe the object below a tile in the environ-
ment. Thus, updates or revision do rely on unsupervised mechanisms to learn the association

7A policy refers to a sampled feature f and spatial position s from the environment.

17

rules. Instead, the agent uses a unsupervised paradigm to develop its generative model. There-
fore, the most probable object is not directly compared with the actual object. However, the
agent can observe the prediction error, which gets fed back through the model. In case the
prediction error is high, the agent concludes that the prediction was incorrect. However, it is
not possible to observe what the correct object below the tile is. That means updating and
revision of the model is only based on the prediction error minimization process and not on
supervised learning (Smith et al., 2019).

• Random guessing : If there is no causal relation between the sampled feature f and spatial
position s from the environment, and an object o, then the predicted object is a random guess
over the different object possibilities. A random guess is defined as a categorical distribution
over a uniform distribution of objects O.

• Model comparison using the same policy : When comparing two models, these are compared
using the same policy over a specified amount of iterations n (Algorithm 2). Thus, the agent
will compare the prediction of the models m1 and m2 given the same feature f and spatial
position s instead of sampling a new feature fnew from the environment every iteration.

Because the design choices did not impact the environment, it was not necessary to change the
environment model (Figure 9). However, the design choices and integration of the model revision
process (Figure 6) required a change in the agent’s generative model of Figure 10.

o

f

sψijAijαij

Bij
i=1...k
j=1...m

Figure 11: The updated graphical model of the agent: Node o represents the object which is
dependent on the probability distribution ψij given a feature f and spatial position s of the tile.
The categorical probability distributions ψij is sampled from the categorical distribution Aij . Aij

includes all pseudo count for the hidden nodes that have a causal relation to an outcome. In turn
Aij is determined given Bij , which represents the causal relations between nodes, and αij , which
is the concentration vector over all states.

Generative model:

Aij | αij , Bij ∼

{
αij , Bij = 1

0, Bij = 0
with i = 1...k, j = 1...m (10)

ψij | Aij , n ∼ Dirichlet(Aij , n) with i = 1...k, j = 1...m (11)

o | ψij , f, sj , n ∼ Categorical(ψfsf , n) (12)

18

In Figure 11 the updated graphical model of the agent is shown. As explained in the previous
Section, the concentration vector αij is initially a uniform distribution, where each combination of
feature’s f ∈ F and spatial position’s s ∈ S has a pseudo-count of one for every object o ∈ O. The
vector Bij encodes the dependency relations by zero’s (there does not exist a relation between the
feature f , spatial position s and object o) and one’s (there does exist a relation between the feature
f , spatial position s and object o). The concentration vector Aij gets updated dependent on αij

and Bij . If Bij has a one at the current policy then the pseudo-counts from αij are transferred to
Aij . Otherwise, αij is set to zero for the current policy (Equation 10). The updating step of ψij is
equal to the updating explained in Section 3.1.3 for Figure 10, except that the Dirichlet distribution
is now sampled overAij instead of αij (Equation 11). Lastly, the object is drawn from a Categorical
distribution (Equation 12), equal to the process explained in Section 3.1.3.

3.3 Implementation

This section describes the experimental settings of the environment and agents. Overall, the im-
plementation includes two agents, one performing model reduction (agent 1) and the second model
construction (agent 2). Both agent’s are defined with the same generative model (Figure 11), yet
they differ in their variable settings. To be able to compare the different model revision processes
and developed final generative models, the basic environment must be the same for both agent’s
(Figure 9).

3.3.1 Experimental Settings Environment

The environmental settings are equal for both agent’s. Every feature f or spatial position s has an
associated probability that it can occur with. The probability distributions for each feature f and
spatial position s are:

Feature Probability

Blue 1
3

Red 1
3

Orange 1
3

(a) θ1: Probability for the features f ∈ F .

Spatial position Probability

Left 1
3

Center 1
3

Right 1
3

(b) θ2: Probability for the spatial positions s ∈
S.

Table 1: Probability distributions over θ1 and θ2 that indicate the probability to choose a certain
feature f (a) or spatial position s (b), respectively.

Table 1 defines the probabilities of θ1 (probability distribution to choose a feature f) and θ2 (prob-
ability distribution to choose a spatial position s) defined in the environment model (Figure 9).
As explained above the probability distribution over the features and spatial positions is uniform.
That means every feature f or spatial position s is equally likely to occur. The uniform distribution
ensures that the agent can theoretically experience all possible combinations equally often.

Besides that Table 2 specifies the probability distribution over the possible objects o ∈ O given
features f ∈ F and spatial positions s ∈ S. Except for feature ‘red’ in combination with spatial
positions ‘left’ and ‘right’ there is little uncertainty in the environment.

19

Feature Spatial Probability
Red Left 0.5
Red Center 0.0001
Red Right 0.5
Blue Left 0.0001
Blue Center 0.0001
Blue Right 0.0001

Orange Left 0.0001
Orange Center 0.0001
Orange Right 0.0001

(a) Probability of object o1 = triangle combined
with feature f ∈ F and spatial position s ∈ S.

Feature Spatial Probability
Red Left 0.25
Red Center 0.0001
Red Right 0.25
Blue Left 0.0001
Blue Center 0.0001
Blue Right 0.0001

Orange Left 0.9998
Orange Center 0.0001
Orange Right 0.9998

(b) Probability of object o2 = square combined
with feature f ∈ F and spatial position s ∈ S.

Feature Spatial Probability
Red Left 0.25
Red Center 0.9998
Red Right 0.25
Blue Left 0.9998
Blue Center 0.9998
Blue Right 0.9998

Orange Left 0.0001
Orange Center 0.9998
Orange Right 0.0001

(c) Probability of object o3 = circle combined
with feature f ∈ F and spatial position s ∈ S.

Table 2: Probability distributions of ψij for the possible objects (o1 = square (a), o2 = circle (b),
o3 = triangle (c)) given each combination of feature f ∈ F and spatial position s ∈ S of a tile.

3.3.2 Experimental Settings Agents

In contrast to the common environment of both agents, almost all parameter settings for the agents
model (Figure 11), are different for the agents performing model reduction or model construction,
except for the concentration vector αij .

First consider αij which has the same setting for both agent’s. Assume an environment that
consists of the different features F = {f1, f2, ..., fk}, spatial positions S = {s1, s2, ..., sm} and objects
O = {o1, o2, ..., on}. The concentration vector αij initially includes a pseudo count of one for each
combination of feature f ∈ F , spatial position s ∈ S and object o ∈ O (Equation 13).

∀f ∈ F,∀s ∈ S,∀o ∈ O,αfso = 1 (13)

The initialization of the remaining parameters Bij , Aij and ψij is different per agent. However, the
values of Aij and ψij are sampled according to the Equations 10 and 11. Thus, it is only required to
set the values of αij and Bij before running the model development phase for n iterations (Algorithm
1). Unlike αij , Bij is dependent on the model revision process. The following paragraphs define
the settings of Bij for every agent:

20

Agent 1: Model reduction Agent one should start with a model where each all variables between
states are ‘dependent’ on each other (‘dependency prior’). Thus, initially vector Bij defines an
existing stochastic causal relation for all possible transitions between hidden states (in this simulation
features F and spatial positions S) and outcomes (objects O). In the context of this simulation that
means, vector Bij is a uniform distribution where every possible combination of feature f ∈ F ,
spatial position s ∈ S and object o ∈ O is assigned a value of one (Equation 14). As explained
earlier, a value of one in vector Bij means that there does exist a causal relation.

∀f ∈ F,∀s ∈ S, ∀o ∈ O,Bfso0 = 1 (14)

Agent 2: Model construction In contrast to agent one, the condition of the initial model for
agent two is that all variables between states must be ‘independent’ on each other (‘independency
prior’). Thus, agent two starts with a value of zero for each position in Bij (Equation 15). That
means, in the initial model of agent two there do not exist any causal relations.

∀f ∈ F,∀s ∈ S, ∀o ∈ O,Bfso = 0 (15)

3.3.3 Pseudo Code for Model Revision

Algorithm 1 shows the pseudo-code for training the generative model of the agent using model
updating and model revision. Differences between the two model revision approaches are indicated
in the Algorithm 1 by different colouring. ‘Dark green’ colouring stands for the model reduction
and ‘Dark blue’ for the model construction procedure. Both model revision processes are run for
the same amount of iterations (n = 250) which is sufficient for learning the simple environment
presented here.

21

Algorithm 1 Training of agent’s generative model

procedure Model Reduction or Model Construction(n)
. n, the number of iterations to run the simulation

. Initialize α and B
α ← uniform distribution initialized according to Equation 13
B ← initialized following Equation 14 or Equation 15
for i in n do

. Sample from the environment a feature f , a spatial position s and a object o

. The agent predicts the object o′ given f and s from the environment
o′ ← agent(f, s)
. Model reduction: Check if there exists a causal relation between f , s and o′ in Bagent

. Model construction: Choose a random causal relation between f ∈ F , s ∈ S and o′ and

. check if it does not yet exist in the agents Bagent

if Bagent.e(f, s, o
′) or not Bagent.e(f, s, o

′) then
. Create the reduced/expanded model by copying B and ψagent

. and removing/adding the causal relation e in the copies
B‘ [f, s, o′]← 0 or B′ [f, s, o′]← 1
ψagent‘← Dirichlet(α [B′])
if ModelComparison(ψ′

agent, f, s) then
. When the revised ψ′

agent resembles the environment better,
. keep ψagent with the removed/added causal relation e
ψagent ← ψ′

agent

B ← B′

end if
end if
PE ← DKL(ψagent || ψenv)
. Update the concentration parameter α
α(f, s, o)← α(f, s, o) + 1

end for
end procedure

Algorithm 2 specifies the pseudo-code for the second phase of the model revision process (Figure
6). Again the same colour coding is used to differentiate between model reduction and model
construction. During the model comparison the prediction error is calculated for n repetitions.
Because children do only need a handful events to learn causal relations the model comparison is
limited over n = 10 iterations (Tenenbaum et al., 2011).

22

Algorithm 2 Model Revision process (Phase 2)

function ModelComparison(f , s, ψ′
agent)

. f , feature sampled from the environment

. s, spatial position sampled from the environment

. ψ′
agent, revised model of the agent

. For n repetitions test the performance of the original and revised models on each other

. Each time calculate the PE and save it
for i in n do

. Calculate the PE for the original model
PEoriginal[i]← DKL(ψagent[f, s] || ψenv[f, s])
. Calculate the PE for the revised model
PErevised[i]← DKL(ψ′

agent[f, s] || ψenv[f, s])
end for
. Compare the average prediction errors of the original and revised model
if PEoriginal.AV G > PErevised.AV G then

. When the PE of the original model is larger then the revised model is preferred
return 1

else if PEoriginal.AV G = PErevised.AV G then
. In case the PE is equal for both models, then prefer the simpler model
. Model reduction: Prefer the reduced/revised model
. Model construction: Prefer the original model
return 1/0

else
. The agent keeps its orginal model
return 0

end if
end function

3.4 Results

In this section, the line plots for both model reduction (Figure 12) and model construction (Figure
14) show the development of the prediction error averaged over features F or spatial positions S.
Note that features and spatial positions are sampled from the environment. Therefore not every
agent observes the same features and spatial positions equally often. Thus, the number of iterations
over which the average PE is calculated differs. In addition to the PE line plots, the section also
includes Likelihood matrices for each agent. The Likelihood matrices show the established relations
and their ‘strength’ between the hidden states and outcomes (Figure 13 and Figure 15).

3.4.1 Model reduction

The prediction errors averaged over either the features f ∈ F or spatial positions s ∈ S within one
model reduction trial can be found in Figure 12.

23

(a) Prediction error averaged over the spatial po-
sitions S for every feature f ∈ F

.

(b) Prediction error averaged over the features F
for every spatial position s ∈ S.

Figure 12: Prediction error of one model reduction trial (agent 1). The left Figure (a) shows the
PE averaged over the spatial positions S per feature f ∈ F . The right Figure (b) shows the PE
averaged over the features F per spatial position s ∈ S.

The prediction error of each feature f ∈ F averaged over all spatial positions S is plotted in Figure
12a. At the start, the PE is highest for the ‘left’ and ‘centre’ and lowest for the ‘right’ position, with
a size of approximately 5 or 2.5, respectively. During the first three iterations, the PE decreases to
(more than) half of its previous size for the ‘left’ and ‘centre’ positions. After that, up until the 15th

iteration, the PE fluctuates from iteration-to-iteration for all spatial positions S. At the end of the
trial, the fluctuations descend, and the PE progressively decreases to zero. While the decline of the
PE is different for each spatial position, they all reach the same minimum after approximately 25
iterations. Note that the PE is unlikely to settle at zero because it calculates the mismatch between
a deterministic prediction by the agent and a non-deterministic environment. If the agent predicts
an outcome to occur with a probability of zero, while it theoretically has a low chance of occurring
in the environment (i.e. combination of feature ‘red’ and spatial position ‘centre’ in Table 2a has
the probability of 0.01%) the PE can never converge to zero. Thus, the value of the minimal PE in
the line plots of Figure 12 and 14 are most likely not exactly zero, but only close to zero.

Figure 14b shows the averaged PE over the spatial positions S. Both features, ‘yellow’ and ‘blue’,
have a high PE initially with a size of about 6. Compared to that the PE of feature ‘red’ is initially
lowest, with a size of approximately 1. Within the first iterations, the PE of the features ‘yellow’
and ‘blue’ has the steepest decrease. During their decrease, the PE fluctuates over iterations. Later,
both PE’s of features ‘yellow’ and ‘blue’ reach a minimum after approximately 15 iterations. The PE
for feature ‘red’ decreases more progressively with fewer iteration-to-iteration fluctuations. Around
the 25th iteration the PE of ‘red’ reaches the same value as ‘yellow’ and ‘blue’.

24

(a) Likelihood Matrix of agent 1 before Model Reduction trial.

(b) Likelihood Matrix of agent 1 after Model Reduction trial.

Figure 13: Likelihood matrices of agent 1 (model reduction) before (a) and after (b) one training
trial. The Likelihood matrices show the causal relations and the corresponding probabilities for each
transitions between hidden states (combination of feature f ∈ F and spatial position s ∈ S) and
their corresponding outcome (object o ∈ O).

The likelihood matrices in Figure 13 show the causal relations in the model of agent one before and
after the model reduction process. In general, likelihood matrices display the transitions between
the hidden states (each features f ∈ F and spatial positions s ∈ S) to the outcomes (objects o ∈ O).
Every likelihood matrix consists of three separate blocks, corresponding to the features ‘red’, ‘blue’
and ‘yellow’. Each block has a row for each spatial position s ∈ S, ‘left’, ‘centre’ and ‘right’. Within
one block the columns correlate to a object o ∈ O, ‘triangle’, ‘circle’ or ‘square’. Every row of the
likelihood matrix, in a specific block, represents a probability distribution over the specific objects
O. Thus, every field indicates how probable the agent is to predict a object o given feature f and
spatial position s. The probability of a causal relation is associated with a color according to the
probability scale on the right side of the likelihood matrix. Figure 13a shows the likelihood matrix
of the agent before the model is reduced. Initially, all causal relations of the agent have a equal

25

probability of 33%. Figure 13b presents the likelihood matrix of agent one after the model reduction
trial. The most causal relations have been reduced for features ‘blue’ and ‘red’. Figure 13b shows
that for ‘blue’ and ‘red’ the probability mass is completely shifted to one object o. In the left block
of the likelihood matrix (Figure 13b) the feature ‘red’ in combination with the spatial positions
‘left’ and ‘right’ has only reduced one causal relation. For the combination ‘red’ and ‘left’ there
is a higher probability for object ‘triangle’ to occur with 98% over object ‘circle’ (1.7%). Finally,
the agent predicts the object ‘triangle’ to occur with a probability of 69% and ‘square’ with 31%.
Within the same block only one causal relation remains for the ‘centre’ position.

3.4.2 Model construction

The prediction errors averaged over either the features f ∈ F or spatial positions s ∈ S within one
model construction trial can be found in Figure 14.

(a) Prediction error averaged over the spatial po-
sitions S for every feature f ∈ F

(b) Prediction error averaged over the features F
for every spatial position s ∈ S.

Figure 14: Prediction error of one model construction trial (agent 2). The left Figure (a) shows the
PE averaged over the spatial positions S per feature f ∈ F . The right Figure (b) shows the PE
averaged over the features F per spatial position s ∈ S.

The PE of each feature f ∈ F averaged over all spatial positions S is plotted in Figure 12a. At
the start, the PE is highest for the spatial position ‘left’ with a size of 12, then ‘right’ (size of 8)
and lastly ‘left’ with a size of 4. For all spatial positions, the PE decreases in a step-wise fashion
without fluctuations. Both averaged PE’s for ‘left’, and ‘right’ decrease the most within the first
five iterations. The PE for ‘centre’ reaches its minimum at first during the 7th and 9th iteration.
From the 10th iteration on the averaged PE’s for all spatial positions are approximately equal with
only small sized fluctuations of at most 0.5.

Figure 14b shows the average PE decrease over the spatial positions S for each feature f ∈ F
within one trial. At the beginning, the feature ‘yellow’ has the highest with a size of almost 12.
Features ‘blue’ and ‘red’ both have lower PE’s of roughly 8 and 4.5, respectively. Both features
‘blue’ and ‘yellow’ have a steep decreasing prediction error which reaches a size below 0.5 before
the 5th iteration. The PE of feature ‘red’ is decreasing progressively for the first seven iterations.
After that, the PE of ‘red’ decreases steeply to a size close to zero. For all three features, not many
fluctuations from iteration-to-iteration occur. If a fluctuation occurs the size of the prediction error
does not change more than 0.5.

26

(a) Likelihood Matrix of agent 2 before Model Construction trial.

(b) Likelihood Matrix of agent 2 after Model Construction trial.

Figure 15: Likelihood matrices of agent 2 (model construction) before (a) and after (b) one training
trial. The Likelihood matrices show the causal relations and the corresponding probabilities for each
transitions between hidden states (combination of feature f ∈ F and spatial position s ∈ S) and
their corresponding outcome (object o ∈ O).

The likelihood matrices of agent two performing model construction are shown in Figure 15. Before
the model construction process starts, the agent has no transition probabilities established between
the hidden states and outcomes (Figure 15a). After finishing one trial, the likelihood matrix (Fig-
ure 15b) shows that some relations between specific hidden states and outcomes are constructed.
Deterministic relations are established for the feature ‘blue’ in combination with all possible spatial
positions to the object ‘square’. In the right block (representing feature ‘yellow’) of Figure 15b de-
terministic relations exists to the object ‘circle’ for the ‘left’ and ‘right’ spatial positions. In the same
block, a causal relation to all objects was constructed given spatial position ‘centre’. However, the
distributed probabilities over the causal relations indicates that ‘square’ is predicted with a highest
probability of 97% and with the remainder 3% either ‘triangle’ or ‘circle’ is predicted. The first
block, representing feature ‘red’, has a deterministic relation to object ‘square’ given spatial position

27

‘centre’. However, for the other spatial positions ‘left’ and ‘right’ the transition probabilities are
distributed over all spatial positions s ∈ S. The combination of feature ‘red’ and spatial position
‘left’ has the highest probability (51%) associated with object ‘triangle’, 31% with ‘circle’ and 18%
with ‘square’. Lastly, the probability distribution of combination of feature ‘yellow’ and spatial
position ‘right’ has the following probabilities associated per outcome: 56% with ‘square’, 31% with
‘triangle’ and 13% with ‘circle’.

4 Discussion

The simulation created for this Bachelor thesis is as a tool to gain insight about the different model
revision processes namely model reduction and model construction. In particular, the developed
generative models of the two agent’s provide a more detailed understanding of the processes. This
section discusses the results (Section 3.4) with respect to the initially introduced hypothesis; both
models will establish accurate but not necessarily ‘true’ representations of the environment.

According to the observed results, two generalizations are possible. The first generalization is that
both model reduction and model construction led to accurate agent model. Figures 12 and 14 support
this conclusion by showing that the PE is reduced to almost zero. However, the decline of the PE
over time differs per model revision process. During model reduction, the progressive decrease of
the PE shows iteration-to iteration fluctuation. Two possible causes for the fluctuation are (a) the
stochastic nature of the environment and (b) non-active agent behaviour. Firstly, (a) the stochastic
environment introduces randomness to the agent‘s observations. When the number of observations
in a stochastic environment are limited, the different possible observations do not automatically
occur equally often. Secondly, (b) the agent can not actively sample from the environment (no
active inference) and resolve uncertainty in that way. Missing active inference limits the agent to
exclusively update its generative model. In brief, the observations are dependent on the random
experiences in the environment because the agent relies on perceptual inference. Fluctuations of
the prediction error should then be interpreted as observation of previously not perceived or many
unlikely events, and not as poor learning. Unlike model reduction, the PE for model construction
decreased step-wise with no sharp fluctuations. The non-existent fluctuations could suggest that
model construction is less sensitive to a stochastic and uncertain environment. One possible reason
is that the initial model of agent two does not contain causal relations for unlikely observations. On
the other hand, in model reduction there would initially exists a causal relation to such an unlikely
event and thus many observations of that event would increase its probability in the model. In brief,
the results suggest that the missing active inference and stochastic nature as well as uncertainty
in the environment might influence the process of model reduction more than model construction.
Nevertheless, as summarized in the first generalization, the results also show that both model revision
processes can develop an accurate model.

When comparing the average PE development between features and spatial positions (Figures 12
and 14), neither of them seem to influence the agent‘s learning more. In contrast, the PE seems
influenced by higher uncertainty in the environment. In this simulation feature ‘red’ has the highest
uncertainty. Especially for model reduction, the prediction error averaged over ‘red’ is initially low,
because the relation between ‘red’ and one specific object is less certain. For similar reasons, the
PE is initially lower over the ‘red’ feature when performing model construction. Besides the lower
initial PE, the higher uncertainty requires more iterations to reduce the prediction error to almost
zero. In the likelihood matrices, the increased uncertainty over feature ‘red’ causes both agents to
establish more causal relation relations for ‘red’ in combination with all possible spatial positions.

28

Based on the likelihood matrices, the second generalization is that the established generative models
do not correspond to the ‘true’ generative model of the environment. Therefore, even though both
agents learn a accurate model of the environment, the established causal relations differ. The causal
relations do not only vary between the different model revision approaches, but also within a specific
model revision approach across trials. Most of the differences in causal relations occur over the
higher uncertainty feature ‘red’. These observations support that the changing causal relations are
caused by the stochastic nature of the environment, as explained above.

Summing up, the results are in line with the hypotheses: Although an agent‘s generative model
might not converge to a ‘true’ model of the environment, the model is still representative. Despite
confirming the results, it is essential to note that those conclusions might not be representative
of how learning takes place in a complex environment. In any case the results are based on a
simplified simulation of an environment. In the preceding discussion, some of the simplifications
that potentially influence the results have been mentioned. The next section considers some possible
modification of these simplifications such that the findings can be better generalized.

4.1 Possible Modifications

Besides increasing the complexity of the simulation and thus improve its generalization, some other
aspects could lead to better representative learning of humans. Two possible adjustments are:

Firstly, a form of active inference can be added to the agent‘s behaviour. Active inference would
allow the agent to sample from the environment actively, instead of being limited to infer the out-
comes given a specific policy. The possibility to sample from the environment would improve the
psychological plausibility of the simulation concerning how human learning takes place. It is proven
that especially learning in children is based on the exploration of uncertainty in the environment.
When growing older a large amount of exploration is replaced with exploitation of high reward states
(Gopnik et al., 2015). Explorations require active interference, to allow choosing states that contain
the most considerable uncertainty first. Even though exploration is less evident in older humans,
successful exploitation of the environment also requires active inference, because it enables choosing
the most certain states at first. Besides that, active inference would increase the psychological plau-
sibility; one key aspect of active inference is also that it diminishes the random and stochastic effects
in the environment (Friston et al., 2017). Active inference thus limits the possibilities that random
observations influence model development. Hence, allowing for active inference could potentially
influence model development. That premise is motivated by the results which suggest that model
revision processes are influenced in different ways by perceptual inference. Thus, including active
inference allows testing how model development changes when the agent can actively determine
which states to discover.

Secondly, the current simulation limits agent‘s to learn the environment either by model reduction
or model construction. However, it is unlikely that an agent is limited to reduce or expand its
model. Instead, an agent might combine both processes of model revision to develop an accurate
model. How model reduction and model construction can be applied together can be illustrated
by the language learning example from the beginning. Word ‘A’ was first associated with meaning
‘M1’ but then the agent learned that ‘A’ instead means ‘M2’. Changing the word meaning does
not succeed by only removing or adding one single relation. Instead, a combination of model
reduction, removing the current causal connection between ‘A’ and ‘M1’, and model constructing,
establishing the new causal relation between ‘A’ and ‘M1’, is required. Besides language learning,
maybe also other processes require a combination of model reduction and model construction to
develop an accurate model. For instance, Smith et al. (2019) propose that concept learning requires

29

a combination of model reduction and model construction. Further Friston et al. (2017) propose
that together the model revision processes can resemble the mechanism of sleep. While awake, the
process of model construction would add new causal relations. During sleep, model reduction would
cut down redundant causal relations (Friston et al., 2017). In conclusion, combining model reduction
and model construction could offer new insights about model development and interaction of the
two model revision processes.

4.2 Cognitive relevance

Model revision is one approach for prediction error minimisation that is used within the framework
of predictive processing. Predictive processing is a cognitive theory explaining the workings of the
brain as a prediction machine. Naturally, all processes involved in predictive processing must be
useful in a cognitive context to add something to the framework. Earlier mentioned evolutionary
and developmental assumptions, e.i. assuming a built-in state space, potentially limit the cognitive
relevance of model revision. This section discusses how some of those evolutionary and developmental
assumptions could limit approaches of model revision or explains how other assumptions are not
plausible.

4.2.1 Evolutionary challenge

In cognitive science a central question regards innateness of knowledge(Perfors, 2012). When working
with Bayesian models, this issue does concern the question about: How does creating hypotheses
or prior beliefs occur in the first place? Answering this question requires a look at the evolutionary
nature of the generative model. Rutar et al. (ress) propose that most researches consider the built-in
state space of a model to be evolved through evolution. In their paper, Rutar et al. (ress) describe
that the details about how such an evolutionary process can occur currently remain unanswered.
However, for now, assume that generative models evolved over generations. Given that assumption,
one key question is how such highly complex and increasingly large generative models could be passed
on from generation to generation. This question is especially interesting in the context of the model
reduction approach, which is based on the assumption that the initial model has an explicit state
space. One possibility would be that the explicit state space is passed on over genomes. However,
according to the paper by Zador (2019), genomes do not provide enough space to encode a blueprint
of the generative model. Thus, unlike in the applied simulation, where the initial model for the model
reduction contained all possible states, it seems more likely that the initial model combines multiple
states in one node. A different consideration would be that instead of being born with explicit state
space, the generative model could encode rules, that make it easier to learn associations faster over
time.

4.2.2 Developmental challenge

Assuming that the initial generative model evolved through evolution, the next fundamental ques-
tion concerns how a model can develop further. Especially debated is the question if learning in
the form of adding novel variables can take place. In Section 1 we introduced that this question
often gets avoided or receives diverse opinions, such as that learning something new is impossible.
The latter statement is for instance supported by Perfors (2012) which argues, that “any learner
(whether computer or human) must have a built-in hypothesis space” (Perfors, 2012, p.127). Perfors
believes that learning anything new is impossible. In her opinion, the only possible way of learning
involves hypothesis testing or hypothesis generation. According to Perfors (2012), hypothesis testing

30

exists within an already-specified hypothesis space. Within this explicit hypothesis space, hypothe-
ses are tested by deciding which of the assumptions should be preferred. In theory, this process
might correspond to model updating because it does not change the structure of the model but
‘weighs’ hypothesis against each other. The ‘weighing’ of hypothesis could, therefore, be interpreted
as probability updating. Furthermore, a special form of hypothesis testing can involve updating the
strength of causal relations. Additionally, the latter learning process, called hypothesis generation,
defines moving hypothesis from the implicit hypothesis space to the explicit hypothesis space (Per-
fors, 2012). If one compares the hidden state with the implicit hypothesis space, then hypothesis
generation might correspond to establishing causal relations by moving them to the explicit state
space. On the other hand, a ‘reverse’ hypothesis generation could be a specific form of model re-
duction. Thus, hypothesis generation might describe the restricted version of model revision used in
this Bachelor thesis, which focuses on revision as adding and removing causal relations. However,
the term of hypothesis generation would not be sufficient when considering the original definition
of model revision which allows for, i.e., adding novel variables to the hidden or implicit hypothesis
space. Perfors (2012) argues that learning as ‘learning something novel’ would correspond to ran-
domly adding things to the hypothesis space. In her opinion, ‘learning something novel’ is no form
of structural learning, and based on that, Perfors (2012) concludes that nothing can be learned. As
discussed by Rutar et al. (ress), this argumentation seems rather unstable because it builds on the
following reasoning: “If we cannot establish how X could be learnt, X must be innat” (D’Souza
and Karmiloff-Smith, 2016). Thus, Perfors bases her argument on inductive reasoning because it is
based on a finite number of particular observations. Inductive reasoning is logically invalid since it
is based on a finite amount of examples. Therefore, it provides no good support for her restrictive
definition of the learning process. In addition to that, human learning is a complex process which
mostly occurs on unsupervised paradigms (Zador, 2019). That means the correct hypothesis is not
directly given to the agent but must be inferred from the outcomes. Thus, the agent has to be
equipped with a way of searching the implicit hypothesis space while comparing which hypothesis is
most likely given the observed outcomes. Searching the hypothesis space would not only be highly
computationally expensive but also identifying the correct hypothesis without being provided with
a supervised learning technique that provides the correct hypothesis. Therefore, before learning is
restricted to moving and testing hypothesis, it is necessary to explain how the correct hypothesis
selection can take place given an unsupervised learning paradigm.

5 Conclusion

Neither model reduction or model construction learned the ‘true’ model of the environment. How-
ever, both model revision approaches developed a accurate representation of the environment. When
comparing the developed models, the applied model revision approach does not significantly impact
the accuracy of the final generative model. Additionally neither of the causal relations show a spe-
cific trend depending on what model revision approach was applied. Overall do the results support
the hypotheses that even though neither model reduction or model construction learn the ‘true’
model both can develop an accurate model of the environment. Despite confirming the hypotheses
the results provide new insight about how a uncertain and stochastic environment might influence
the process of model reduction more than model construction. To determine if the uncertainty
and randomness of the environment is the actual cause for the different model developments it is
necessary to adjust the simulation. One possible modification to test the origins of the differences
between model developments is to e.i. allow for active inference.

31

6 Future research

In the simulation above, we analysed the model development using a hierarchical generative model.
The model used for the simulation has its hierarchical properties in one layer, in the sense of hav-
ing hyperparameters. Despite hierarchical properties within one layer, a model might consist of
multiple layers upon each other. Such hierarchies have a fundamental importance in the predictive
processing account because predictions from one level can represent a hypothesis of the lower level
(Kwisthout et al., 2016). Thus, an interesting aspect to investigate would be how model revision
can develop and maintain a multi-layered hierarchical model. This would require to, e.i. identify
conditions when a layer should be removed (model reduction) or when the model should be expanded
with an additional layer (model construction), instead of adding information linearly. Particularly
challenging would be to determine which variables are related, especially given that human learning
follows an unsupervised learning paradigm. Besides classifying necessary conditions that can cause
an adjustment of the models hierarchy, another critical point is that hierarchical properties intro-
duce detail in the model (Kwisthout et al., 2016). If the speculation holds that children predict
with lower detail, then this assumption imposes additional conditions on the model development.
In this situation, one could investigate if during early development model construction should occur
more often compared to later in the development stage. Consequently, focusing on these aspects of
hierarchical model development could account for higher cognition processes instead of only lower
cognition.

Besides that, the simulated model revision process here is based on the assumption that model
revision is conditioned to the existence of a high prediction error. However, as pointed out in
earlier sections, a high PE is only one possible cause of model revision. As mentioned above, some
possible causes of model revision are discussed in the paper by Rutar et al. (ress). In addition to
the high PE, the authors suggest that e.i. multiple small successive PE’s could combine suggest
a misrepresentation of the environment. Thus, in follow up research it might be interesting to
compare how different causes influence model revision and how these various conditions impact the
development of the model. Besides that, simulating model development under diverse conditions
could increase our insight about how external causes influence model revision.

32

References

Clark, A. (2013). Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive
Science. The Behavioral and brain sciences, 36:1–24.

D’Souza, D. and Karmiloff-Smith, A. (2016). Why a developmental perspective is critical for under-
standing human cognition. Behavioral and Brain Sciences, 39:e122.

Feldman, J. (2016). The simplicity principle in perception and cognition. Wiley interdisciplinary
reviews. Cognitive science, 7:330–340.

Friston, K. (2003). Learning and inference in the brain. Neural networks : the official journal of the
International Neural Network Society, 16:1325–52.

Friston, K., Lin, M., Frith, C., Pezzulo, G., Hobson, J., and Ondobaka, S. (2017). Active Inference,
Curiosity and Insight. Neural Computation, 29:1–51.

Friston, K., Parr, T., and Zeidman, P. (2018). Bayesian model reduction. pages 1–20.

G ladziejewski, P. (2015). Predictive coding and representationalism. Synthese, 193:559 – 582.

Gopnik, A., Griffiths, T., and Lucas, C. (2015). When Younger Learners Can Be Better (or at Least
More Open-Minded) Than Older Ones. Current Directions in Psychological Science, 24:87–92.

Han, J. 2.4.8 kullback-leibler divergence.

Hebb, D. (1949). The Organization of Behavior .A Neuropsychological Theory. Wiley, 193.

Kruschke, J. K. (2010). Doing Bayesian Data Analysis: A tutorial with R and BUGS. Academic
Press.

Kwisthout, J., Bekkering, H., and Rooij, I. (2016). To be precise, the details don’t matter: On
predictive processing, precision, and level of detail of predictions. Brain and cognition, 112.

Kwisthout, J. and Rooij, I. (2019). Computational Resource Demands of a Predictive Bayesian
Brain. Computational Brain and Behavior.

Otworowska, M., Rooij, I., and Kwisthout, J. (2018). Maximizing entropy of the Predictive Process-
ing framework. pages 1–40.

Perfors, A. (2012). Bayesian Models of Cognition: What’s Built in After All? Philosophy Compass,
7:127 – 138.

Rutar, D., de Wolff, E., Kwisthout, J., and Rooij, I. (in progress). Learning Generative Models
for/from Predictive Processing: Problems and Observations.

Seth, A. (2015). The cybernetic Bayesian brain: From interoceptive inference to sensorimotor
contingencies. Open Mind Project, pages 1–24.

Smith, R., Schwartenbeck, P., Parr, T., and Friston, K. (2019). An active inference approach to
modeling concept learning. pages 1–60.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D. (2011). How to Grow a Mind:
Statistics, Structure, and Abstraction. Science, 331(6022):1279–1285.

33

Vilares, I. and Kording, K. (2011). Bayesian models: the structure of the world, uncertainty,
behavior, and the brain. Annals of the New York Academy of Sciences, 1224(1):22–39.

Zador, A. (2019). A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature Communications, 10:1–7.

34

Appendices

A Simulation code (Python)

The simulation was programmed in Python (version 3.7.6). The the following packages were im-
ported:

• Matplotlib as plt

• Seaborn as sns

• Pandas as pd

• Numpy as np

• scipy.stats

• sklearn.metrics

In the following subsections all relevant code that is used for the simulation is included. The code
is provided with the documentation.

A.1 Environment

class Experiment:

”””Class to initialize experimental parameters and basic methods.”””

def init (self):

”””Initilization of eperimental parameters.”””

vector of category probabilities of the objects given the features (almost
deterministic)

self.psi env = np.array(

[[[0.5,0.25,0.25],[0.00001,0.00001,0.99998],[0.5,0.25,0.25]],

[[0.00001,0.00001,0.99998],[0.00001,0.00001,0.99998],[0.00001,0.00001,0.99998]],

[[0.00001,0.99998,0.00001],[0.00001,0.00001,0.99998],[0.00001,0.99998,0.00001]]])

vectors with names of features , spatial positions and objects
self.f names = ["red", "blue", "yellow"]

self.l names = ["left", "center", "right"]

self.o names = ["triangle", "circle", "square"]

self.n features = len(self.f names)

self.n locations = len(self.l names)

self.n objects = len(self.o names)

Vectors with uniform probability distributions over al l objects
self.objects = np.full(self.n objects , 1/self.n objects)

35

vectors of category probabilities of the features and locations
self.theta 1 = np.repeat(1/self.n features ,self.n features)

self.theta 2 = np.repeat(1/self.n locations ,self.n locations)

Set amount of iterations for model comparison step
self.size = 10

def environment(self):

”””Sampling from the environment a specific feature , object and location of the
t i le .

RETURN:
idx feature = index of feature sampled from the environment
idx object = index of object sampled from the environment
idx location = index of spatial position sampled from the environment
”””

#Draw feature from a categorical distribution
feature = np.array(multinomial.rvs(p = self.theta 1 , n = 1))

location = np.array(multinomial.rvs(p = self.theta 2 , n = 1))

#Get index of location and feature (starting at 0)
idx feature = list(feature).index(1)

idx location = list(location).index(1)

#Draw the object from a categorical distribution given the feature
obj = multinomial.rvs(p = self.psi env[idx feature , idx location].flatten(), n

= 1)

#Get index of object
idx object = list(obj).index(1)

return idx feature , idx object , idx location

def agent(self, idx feature , idx location):

”””Given a feature sampled from the environment the agent predicts the location of
a t i le and object below that t i le

according to the causal relations that exist . Besides that the agent updates its
psi and omega.

INPUT:
idx feature = index of feature sampled from the environment
idx location = index of spatial position sampled from the environment

OUTPUT:
idx predObject = predicted object below the t i le by the agent

36

”””

The agent predicts the object below the t i le given the specific feature and
predicted location .

By either :
1) randomly picking a object or
if not (self.Bn[idx feature ,idx location ,:].any()):

obj = multinomial.rvs(p = self.objects, n=1)

2) sampling an object according to the probability distibution of psi agent
else:

self.psi agent[idx feature , idx location ,:][self.Bn[idx feature , idx location

,:]==1] = dirichlet.rvs(self.alpha[idx feature , idx location ,:][self.Bn[

idx feature , idx location ,:]==1])[0]

self.psi agent[idx feature , idx location ,:][self.Bn[idx feature , idx location

,:]==0] = 0.0

Normalize values from array float32 to float64 to avoid errors with the
multinomial distribution

self.psi agent[idx feature , idx location ,:] = np.asarray(self.psi agent[

idx feature , idx location ,:]).astype(’float64’)

self.psi agent[idx feature , idx location ,:] = self.psi agent[idx feature ,

idx location ,:] / np.sum(self.psi agent[idx feature , idx location ,:])

Choose a object using categoritcal distribution
obj = multinomial.rvs(p = self.psi agent[idx feature , idx location , :], n=1)

idx predObject = list(obj).index(1)

return idx predObject

A.2 Analyzation methods

class AnalysisModel(Experiment):

”””Methods to analyse the outcomes and generative models created using the experiment.
”””

def init (self):

”””Initialization of the analysis techniques for experiment.”””

Inherit defined experimental parameters from Class Experiment
Experiment. init (self)

True and predicted labels per feature and location combination
Rows indicate location and columns the feature y true [location] [feature]
self.y trueAll = [[[] for in range(self.n features)] for in range(self.

n locations)]

self.y predAll = [[[] for in range(self.n features)] for in range(self.

n locations)]

True and predicted objects for confusion matrix

37

self.y trueObject = []

self.y predObject = []

number of test trials to run the model
self.n test = 1

def average(self, lst):

”””Calculate average of l i s t

INPUT:
ls t = l i s t to calculate the average over

RETURN:
(float) average over given l i s t
”””

return sum(lst) / len(lst)

def graphPredictionErrorAverage Feature(self, pre errors , name):

”””Create a plot for each feature which shows prediction error of spatial
locations in different colours

INPUT:
pre errors = multi−dimensional array with al l prediction errors
name = name of model revision process (used for saving the plots)

OUTPUT:
Single graph; line plot for each feature value averaged over the spatial positions
”””

average perF = [[] for in range(self.n features)]

#Average over different features
k=0

for i in range(self.n features):

find longest l i s t
longest = 0

for j in range(self.n locations):

if len(pre errors[i][j]) > longest:

longest = len(pre errors[i][j])

calculate the mean over each feature
for p in range(longest):

mean = []

for j in range(self.n locations):

if len(pre errors[i][j]) > p:

mean.append(pre errors[i][j][p])

average perF[i].append(self.average(mean))

38

plt.plot(average perF[0], ’−r’, average perF[1], ’−b’, average perF[2], ’−y’,
linewidth=1.5)

plt.title("Average PE for features ({})".format(name), fontsize=13)
plt.xlabel("Number of Iterations")

plt.ylabel("Size of Prediction Error")

plt.legend(self.f names)

remove the comment on the following line i f you wish to save the figure to local
machine:

plt . savefig(name + ”PE AverageFeature.png”)

plt.show()

def graphPredictionErrorAverage Location(self, pre errors , name):

”””Create a plot for each feature which shows prediction error of spatial
locations in different colours

INPUT:
pre errors = multi−dimensional array with al l prediction errors
name = name of model revision process (used for saving the plots)

OUTPUT:
Single graph; line plot for each spatial position value averaged over the features
”””

average perS = [[] for in range(self.n locations)]

#Average over different features
k=0

for i in range(self.n locations):

find longest l i s t
longest = 0

for j in range(self.n features):

if len(pre errors[j][i]) > longest:

longest = len(pre errors[j][i])

for p in range(longest):

mean = []

for j in range(self.n features):

if len(pre errors[j][i]) > p:

mean.append(pre errors[j][i][p])

average perS[i].append(self.average(mean))

plt.plot(average perS[0], ’−r’, average perS[1], ’−b’, average perS[2], ’−y’,
linewidth=1.5)

plt.title("Average PE for spatial positions ({})".format(name), fontsize=13)
plt.xlabel("Number of Iterations")

plt.ylabel("Size of Prediction Error")

plt.legend(self.l names)

39

remove the comment on the following line i f you wish to save the figure to local
machine:

plt . savefig(name + ”PE AverageLocation.png”)

plt.show()

def plot confusion matrix(self,cm, y, name):

”””Given a python confusion matrix plot its heatmap

cm = confusion matrix
y = labels of the predicted and actual classes
name = name of model revision process
”””

normalize confusion matrix (2 options)
1) dividing over axis=0 to get precision (fraction of class−k predictions that

have ground truth label k)
cm = cm / cm.astype(np.float).sum(axis=0)

2) dividing over axis=1 to get how many samples per class have received their
correct label

cm = cm / cm.astype(np. float) .sum(axis=1)

create pandas dataframe with corresponding labels
df cm = pd.DataFrame(cm, index = [i for i in y], columns = [i for i in y])

plt.figure()

get heatmap using pandas dataframe
ax = sns.heatmap(df cm , annot=True, cmap = ’Blues’, linewidths=.5)

#set bottom and top to show fu l l heatmap
bottom, top = ax.get ylim()

ax.set ylim(bottom + 0.5, top − 0.5)

set t i t l e and axis labels of matrix
plt.title(’Confusion matrix for ’ + name)

plt.xlabel(’Predicted class’)

plt.ylabel(’Actual class’)

remove the comment on the following line i f you wish to save the figure to local
machine:

plt . savefig(name + ”CM.png”)

print figure in jupyter notebook
plt.show()

def likelihoodMatrix(self, psi, name):

40

”””Creating likelihood mapping between hidden states and outcomes for each
location and feature combination

Code based on the following example to generate heatmaps side by side : https://
stackoverflow.com/questions/42712304/seaborn−heatmap−subplots−keep−axis−ratio−
consistent

INPUT:
psi = [n feature ∗ n location∗ n objects] : indicating the likelihood for a objects

outcome given
a specific feature and location

name = [’environment ’ , ’Model reduction ’ , ’Model construction ’] : name of the topic
for which the likelihood

mapping is created

OUTPUT:
returning a subfigure 3x1 for each feature a likelihood matrix over al l locations
”””

Create a subplot to save al l heatmaps
fig,(ax1,ax2,ax3, axcb) = plt.subplots(1,4, figsize = (10,5), gridspec kw={’

width ratios’:[1,1,1,0.08]})
ax1.get shared y axes().join(ax2,ax3)

data feature1 = psi[0]

df feature1 = pd.DataFrame(data feature1 , columns = self.o names , index = self.

l names)

g1 = sns.heatmap(df feature1 , annot=True, cmap="Blues", cbar=False,ax=ax1, vmin=0,

vmax=1, linewidths=.5)

g1.set ylabel(’Spatial positions’)

g1.set xlabel(’Objects’)

g1.set title(’Red’)

#set bottom and top to show fu l l heatmap
bottom, top = ax1.get ylim()

ax1.set ylim(bottom + 0.5, top − 0.5)

data feature2 = psi[1]

df feature2 = pd.DataFrame(data feature2 , columns = self.o names , index = self.

l names)

g2 = sns.heatmap(df feature2 , annot=True, cmap="Blues", cbar=False,ax=ax2, vmin=0,

vmax=1, linewidths=.5)

g2.set ylabel(’’)

g2.set xlabel(’Objects’)

g2.set title(’Blue’)

g2.set yticks([])

#set bottom and top to show fu l l heatmap
bottom, top = ax2.get ylim()

ax2.set ylim(bottom + 0.5, top − 0.5)

41

data feature3 = psi[2]

df feature3 = pd.DataFrame(data feature3 , columns = self.o names , index = self.

l names)

g3 = sns.heatmap(df feature3 , annot=True, cmap="Blues", ax=ax3, cbar ax=axcb, vmin

=0, vmax=1, linewidths=.5)

g3.set ylabel(’’)

g3.set xlabel(’Objects’)

g3.set title(’Yellow’)

g3.set yticks([])

#set bottom and top to show fu l l heatmap
bottom, top = ax3.get ylim()

ax3.set ylim(bottom + 0.5, top − 0.5)

remove the comment on the following line i f you wish to save the figure to local
machine:

plt . savefig(name + ”LM.png”)

fig.suptitle("Features")

plt.show()

A.3 Model Reduction

class ModelReduction(Experiment):

”””Run experiment using model reduction process.”””

def init (self):

”””Initialization of model reduction parameters/variables .”””

Inherit defined experimental parameters from Class Experiment
Experiment. init (self)

Concentration vectors
self.alpha = np.full((self.n features , self.n locations , self.n objects), 1)

List for prediction errors
self.pre errorsRule = [[[] for in range(self.n locations)] for in range(self.

n features)]

self.pre errorsTotal = []

Probability distributions of hidden states
self.psi agent = np.full((self.n features , self.n locations , self.n objects), 1/

self.n objects)

#Connections between the hidden states and the outcomes. All 1 i f model reduction
self.Bn = np.full((self.n features , self.n locations , self.n objects), 1)

42

def modelReductionStepBn(self, idx feature , idx predLocation , idx predObject):

”””Perform a model reduction step of the causal relations between the rule and the
objects below the t i le .

INPUT:
idx feature = feature sampled from the environment
idx predLocation = predicted location of feature by the agent
idx predObject = predicted object below the t i le by the agent

OUTPUT:
Bn reduced = reduced matrix indicating causal relations of rule
psi reduced = probabilities over the rules given the reduced causal relations

of Bn reduced
”””

psi reduced = np.copy(self.psi agent)

Bn reduced = np.copy(self.Bn)

Bn reduced[idx feature , idx predLocation , idx predObject] = 0

Update the probabilities in the reduced psi matrix
1) If there do exist causal relations given a specific feature and the predicted

object then use dirichlet distribution
2) Otherwise set al l probabilities of psi to zero.
if Bn reduced[idx feature , idx predLocation ,:].any() > 0:

psi reduced[idx feature , idx predLocation ,:][Bn reduced[idx feature ,

idx predLocation ,:]==1] = dirichlet.rvs(self.alpha[idx feature ,

idx predLocation ,:][Bn reduced[idx feature , idx predLocation ,:]==1])[0]

psi reduced[idx feature , idx predLocation ,:][Bn reduced[idx feature ,

idx predLocation ,:]==0] = 0

else:

psi reduced[idx feature , idx predLocation ,:] = 0

return Bn reduced , psi reduced

def modelComparisonPsi(self, psi alternative , idx feature , idx location):

”””Compare two probability distributions of psi and determine which represents the
environment better

(returns lower prediction error) .

INPUT:
psi alternative = alternative probability distribution of psi
idx feature = feature sampled from the environment
idx location = location of the feature sampled from the environment

OUTPUT:

43

1 = alternative psi is prefered
0 = original psi is prefered
”””

Prediction error array to store the prediction errors for the original (row 1)
and alterntive model (row 2)

preErrorsArray = np.zeros((2,self.size))

for i in range(0,self.size):

if not (self.psi agent[idx feature ,idx location ,:].any()>0):
psi random = multinomial.rvs(p=self.objects, n=1)

preErr original = entropy(psi random , self.psi env[idx feature ,

idx location], base=None)

else:

preErr original = entropy(self.psi agent[idx feature , idx location],self.

psi env[idx feature , idx location], base=None)

if not (psi alternative[idx feature ,idx location ,:].any()>0):
psi random = multinomial.rvs(p=self.objects, n=1)

preErr alternative = entropy(psi random , self.psi env[idx feature ,

idx location], base=None)

else:

preErr alternative = entropy(psi alternative[idx feature , idx location],

self.psi env[idx feature , idx location], base=None)

preErrorsArray[0,i] = preErr original

preErrorsArray[1,i] = preErr alternative

The alternative model is simpler and therefore prefered i f the prediction error
is equal

if np.mean(preErrorsArray[0,:]) >= np.mean(preErrorsArray[1,:]):
return 1

return 0

def trial(self, n iter):

”””Updating the agent ’s generative model.

INPUT:
n iter = number of times that the agent ’s model is updated

OUTPUT:
pre errorsRule = matrix with the predictions error of each combination between

feature , location and object .
”””

for i in range(0, n iter):

#Get feature and observation from environment

44

idx feature , idx object , idx location = Experiment.environment(self)

#Prediction of the agent
idx predObject = Experiment.agent(self, idx feature , idx location)

if self.Bn[idx feature , idx location , idx predObject] == 1:

Bn reduced , psi reduced = self.modelReductionStepBn(idx feature ,

idx location , idx predObject)

if self.modelComparisonPsi(psi reduced , idx feature , idx location):

self.psi agent = np.copy(psi reduced)

self.Bn = np.copy(Bn reduced)

#Calculate prediction error using relative entropy (Kullback−Leibler
divergence)

if not (self.Bn[idx feature ,idx location ,:].any()):

agentPrediction = np.full(self.n objects , 0)

agentPrediction[idx predObject] = 1

pre err = entropy(agentPrediction ,self.psi env[idx feature , idx location],

base=None)

else:

pre err = entropy(self.psi agent[idx feature , idx location],self.psi env[

idx feature , idx location], base=None)

#pre err = Experiment.calculatePredictionErr(self , idx feature , idx location ,
idx predLocation , idx predObject)

self.pre errorsRule[idx feature][idx location].append(pre err)

self.pre errorsTotal.append(pre err)

#Updating hyperparameters
self.alpha[idx feature , idx location , idx object] += 1

A.3.1 Execute Model Reduction Trial

Initialization of classes
Exp = Experiment()

MReduction = ModelReduction()

Likelihood matrix of psi agent before training
Analysis.likelihoodMatrix(MReduction.psi agent , "Before ModelReduction")

Training of model using model reduction
MReduction.trial(250)

Plot the prediction errors and liklihood matrices
. . .

45

A.4 Model Construction

class ModelConstruction(Experiment):

”””Run experiment using model construction process.”””

def init (self):

”””Initialization of model construction parameters/variables .”””

Inherit defined experimental parameters from Class Experiment
Experiment. init (self)

Concentration vectors
self.alpha = np.full((self.n features , self.n locations , self.n objects), 1)

self.beta = np.full((self.n features , self.n locations), 1)

List for prediction errors
self.pre errorsRule = [[[] for in range(self.n locations)] for in range(self.

n features)]

self.pre errorsTotal = []

Probability distributions of hidden state
self.psi agent = np.full((self.n features , self.n locations , self.n objects), 0.0)

#Connections between the hidden states and the outcomes. All 1 i f model reduction
self.Bn = np.full((self.n features , self.n locations , self.n objects), 0)

Set amount of iterations for model comparison step
self.size = 10

def modelConstructionStepBn(self,idx feature , idx location , idx predObject):

”””Perform a model construction step of the causal relations between the rule and
the objects below the t i le .

INPUT:
idx feature = feature sampled from the environment
idx predLocation = predicted location of feature by the agent
idx predObject . = predicted object below the t i le by the agent

OUTPUT:
Bn reduced = reduced matrix indicating causal relations between features

and spatial locations
psi reduced = probabilities between features and spatial locations given the

reduced causal relations of Dm reduced
”””

psi expanded = np.copy(self.psi agent)

Bn expanded = np.copy(self.Bn)

46

if there is no relation yet for the predicted object , consider to expand a
relation there

otherwise choose a random object index to construct a alternative model
if Bn expanded[idx feature , idx location , idx predObject] == 0:

indexObject = idx predObject

else:

psi random = multinomial.rvs(p=self.objects, n=1)

indexObject = list(psi random).index(1)

Bn expanded[idx feature , idx location , indexObject] = 1

psi expanded[idx feature , idx location ,:][Bn expanded[idx feature , idx location

,:]==1] = dirichlet.rvs(self.alpha[idx feature , idx location ,:][Bn expanded[

idx feature , idx location ,:]==1])[0]

psi expanded[idx feature , idx location ,:][Bn expanded[idx feature , idx location

,:]==0] = 0.0

return Bn expanded , psi expanded

def modelComparisonPsi(self, psi alternative , idx feature , idx location):

”””Compare two probability distributions of psi and determine which represents the
environment better

(returns lower prediction error) .

INPUT:
psi alternative = alternative probability distribution of psi
idx feature = feature sampled from the environment
idx location = location of the feature sampled from the environment

OUTPUT:
1 = alternative psi is prefered
0 = original psi is prefered
”””

Prediction error array to store the prediction errors for the original (row 1)
and alterntive model (row 2)

preErrorsArray = np.zeros((2,self.size))

for i in range(0,self.size):

if not (self.psi agent[idx feature ,idx location ,:].any()>0):
psi random = multinomial.rvs(p=self.objects, n=1)

preErr original = entropy(psi random , self.psi env[idx feature ,

idx location], base=None)

else:

preErr original = entropy(self.psi agent[idx feature , idx location],self.

psi env[idx feature , idx location], base=None)

if not (psi alternative[idx feature ,idx location ,:].any()>0):
psi random = multinomial.rvs(p=self.objects, n=1)

preErr alternative = entropy(psi random , self.psi env[idx feature ,

idx location], base=None)

47

else:

preErr alternative = entropy(psi alternative[idx feature , idx location],

self.psi env[idx feature , idx location], base=None)

preErrorsArray[0,i] = preErr original

preErrorsArray[1,i] = preErr alternative

The alternative model is more complex and therefore not prefered i f the
prediction error is equal

if np.mean(preErrorsArray[0,:]) > np.mean(preErrorsArray[1,:]):

return 1

return 0

def trial(self, n iter):

”””Updating the agent ’s generative model.

INPUT:
n iter = number of times that the agent ’s model is updated

OUTPUT:
pre errorsRule = matrix with the predictions error of each combination between

feature , location and object .
”””

for i in range(0,n iter):

Get feature and observation from environment
idx feature , idx object , idx location = Experiment.environment(self)

Prediction of the agent
idx predObject = Experiment.agent(self,idx feature , idx location)

#if self .Bn[idx feature , idx location , idx predObject] == 0:
if 0 in self.Bn[idx feature , idx location , :]:

Bn expanded , psi expanded = self.modelConstructionStepBn(idx feature ,

idx location , idx predObject)

if self.modelComparisonPsi(psi expanded , idx feature , idx location):

self.psi agent = np.copy(psi expanded)

self.Bn = np.copy(Bn expanded)

#Calculate prediction error using relative entropy (Kullback−Leibler
divergence)

if not (self.Bn[idx feature ,idx location ,:].any()):

agentPrediction = np.full(self.n objects , 0)

agentPrediction[idx predObject] = 1

agentPrediction[agentPrediction == 0] = 0.0000001

pre err = entropy(agentPrediction ,self.psi env[idx feature , idx location],

base=None)

48

else:

agent = self.psi agent[idx feature , idx location].copy()

agent[self.Bn[idx feature ,idx location ,:]==0] = 0.0000001

agent[self.Bn[idx feature ,idx location ,:]==1] − 0.0000002
pre err = entropy(agent,self.psi env[idx feature , idx location], base=None

)

#pre err = entropy(self . psi agent [idx feature , idx location] , self .psi env [
idx feature , idx location] , base=None)

#pre err = Experiment.calculatePredictionErr(self , idx feature , idx location ,
idx predLocation , idx predObject)

self.pre errorsRule[idx feature][idx location].append(pre err)

self.pre errorsTotal.append(pre err)

#Updating hyperparameters
self.alpha[idx feature , idx location , idx object] += 1

A.4.1 Execute Model Construction Trial

Initialization of classes
Exp = Experiment()

MConstruction = ModelConstruction()

Likelihood matrix of psi agent before training
Analysis.likelihoodMatrix(MConstruction.psi agent , "Before ModelConstruction")

Training of model using model reduction
MConstruction.trial(250)

Plot the prediction errors and likelihood matrices
. . .

49

