RADBOUD UNIVERSITY

G.
QW
orre

O’”ING'€®

Visualising Learnt Representations

of k-GGANs

THESIS BSC ARTIFICIAL INTELLIGENCE

Author: Supervisor:
Rory QUINN-BAILIE Umut GucLu

July 2019



Contents

1

Introduction

1.1 The Black Box Problem . . . .. ... ... ... ... ........

1.2 Using Visualisation to Better Understand DNNs . . . . ... ... ...
1.2.1 Previous Work . . . .. ... ... ... ...

1.3 GANSs - Learning & Challenges . . . . . . . .. ... ... ... .....
1.3.1 GANs Explained . . . . . . .. .. ...
1.3.2 Challenges in GAN Learning . . . . . . ... ... ... .....

1.4 k-GANS . . . o

Methods

2.1 Network Architectures . . . . . . . . . . . . .. ... ..
2.1.1 k-GANs . . . . e
2.1.2  Visualisation Ensemble . . . .. ... ... ... .........
2.1.3 The Prior Model . . . . . . ... .. ...
214 VGG-16 . . . oo oo

2.2 Visualisation Techniques . . . . . . .. . .. .. .. oL
2.2.1 Step by Step Explanation . . . .. ... ... ... ..... ...
2.2.2  Generator Visualisation . . . . . .. ... .. ... ... ...,

Experiments & Results
3.1 Dataset . ... .. ..

3.1.1 Preprocessing . . . . . . . ... Lo
3.1.2 Data for Prior Network Training . . . . ... ... .. ... ...
3.2 k-GAN Training . . . . . . . .. .
3.3 Results. . . . . . . e
3.3.1 Generator Visualisation . . . . . .. ... .. ... ... .....
3.3.2 Discriminator Visualisation . . . . . ... ... ... .. .....
3.4 Discussion . . . . . . .
3.5 Limitations . . . . . . . . . .
3.6 Future Work . . . . . . . . ..
3.7 Conclusion . . . . . . . . . e
References
Appendix

5.1 Prior Network Training

5.1.1 Prior Learning Progression . . . . . .. ... .. ... ... ...

CUOU R = WD N

[ssIiNoRNe BN N e e =)



1 Introduction

1.1 The Black Box Problem

Neural networks have been a powerful advancement in the field of Machine Learning,
profoundly transforming the state of the art in several important areas of machine
learning research[1][2]. With the growing popularity of these networks, specifically deep
neural nets (DNNs), increasing the comprehensibility of these technologies is of vital im-
portance now more than ever. DNNs have had successful application in many real-world
areas, such as the medical domain [3]. There are wide-ranging implications concerning
the increased application of deep learning in the real world, and the lack of transparency
of DNNs is a pressing and complex issue that is prevalent with this application. As long
as the internal representations and learning process of these networks remain opaque,
DNNs will encounter restrictions and obstacles in several fields. Other issues such as the
relationship between data and privacy also intertwine here[4]. Lack of interpretability is
a well-known shortcoming in deep learning, and the reliability and usabilility concerns
associated with this are well-established[5].

This issue contains deep intricacies that are beyond the scope of this paper, but
at one level the problem involves a lack of explanation of the causal connections in a
neural network, as well as an absence of insight into the decision processes behind any
conclusions a network may draw. This is aptly referred to as the Black Box problem](]
(Although neural networks are not complete black boxes in the sense there is some
interpretability of their behaviour, see 1.2). This is a vulnerability that leaves deep
learning applications prone to multiple problems. One such problem is adversarial at-
tacks, which have demonstrated that the robustness of deep networks is a lot weaker
than previously thought [7]. Here changing a few pixels values of an input image, for
example, completely shifts the classification probabilities of a network, while the change
between original and adversarial image is unrecognisible to the human eye. Therefore,
due to the extensive internal structure of a DNN, with its potentially millions of param-
eters, network transparency proves a complex and critical problem to solve, but also an
extremely important and rewarding one. One tool that can give aid into beginning to
resolve this extensive challenge is visualisation techniques.

1.2 Using Visualisation to Better Understand DINNNs

The importance and the pressing nature of improving neural network transparency has
been introduced and established. Next, the question of how to tackle this problem
naturally arises. Can one open the black box of DNNs and if so, what tools are necessary
for this task? There are several approaches that have been researched and applied
with some success in illuminating DNN learning and furthering Explainable Artificial
Intelligence[3] [6][7]. These works have illustrated that indeed neural networks are not
complete black boxes, in other words that their workings are somewhat interpretable.
Interpretation is prone to error however, and this work has only begun to excavate the
area of transparency in deep learning.

The approach of utilising visualisation techniques is of growing popularity and has
seen some illusive applications in the field of deep learning [9]. The research area is young
and has already seen impressive discoveries. One possibility in apply visual techniques to
DNNEs is to visualise learned representations of a network. In other words, what features
the network has deemed important its respective task and has therefore encoded into
its weighted connections, whether on the neuron or layer level. Visualisation of learned
representations is one effective approach to gain insight into the internal mechanisms of
DNNSs, whether during or after training the network.



1.2.1 Previous Work

In terms of increasing network transparency, DNN visualization has already proven
extremely useful in gaining insight into the inner workings of neural nets[10]. Great
strides have been made in improving the intricacies that feature visualisation entails,
namely optimisation and regularisation methods [10]. Multiple approaches have been
made in visualising components of DNNs. Feature visualisation can be done at the level
of a single neuron,taking a whole layer or , in the case of convolutional nets, visualising
an entire channel. The level at which one intends to investigate the networks inner
workings will determine which technique is applied. Taking the approach of visualising
layer by layer, for example, can help build an insight into how a DNNs representations
develop as one traverses deeper into the network. These techniques have resulted in
valuable progress for this direction of research [10]. Visualisation is a powerful tool that
has been developing steadily and may prove deeply beneficial in the long process toward
building a more complete picture of DNNs.

In terms of a specific example,Olah et al’s comprehensive paper is complimented
by an interactive website that truly shows the power of a tool like visualisation. The
authors explore optimisation as a method of effective feature visualisation, emphasising
the different facets of this approach and its challenges [10].

The process of visualisation involves reconstructing features encoded inside the lay-
ers of a DNN. Methods of inverting representations have been successfully applied to
obtain knowledge about what information these layers encode [11]. This conceptually
straightforward and elegant approach consists of taking an input of random noise and to
adjust this input such that the activation of a certain neuron or layer is maximized [12]
(example in figure 1). This technique alone is relatively ineffective at giving clear visual-
isations however, but has be improved upon greatly via regularization techniques, such
as taking a natural image prior[13] [9]. Without this prior maximally activated inputs
are often unrecognizable[14], making visualisation with this method alone inefficient and
inaccurate. However, with tools like regularization, such as taking a natural image prior
when updating the values of the (initially random) pixel vector, this approach has been
shown to create incredibly useful visualisations. This improved route to visualising has
been a substantial step in the research field. This has lead to researchers being able to
draw inferences about the networks learning process. Yosinki and his colleagues showed
that DNN representations are interpretable even at the neuronal level, as well as showing
the network learns features not explicity trained for (such as text detectors when being
trained on discerning if an image is a library). This is a clear indication of promising
beginnings for DNN visualisations and includes concrete examples of when and how this
method is useful [9].

Figure 1: An initial image of random noise being optimised for a particular neuron of

VGG-16 (2.1.4)



1.3 GANSs - Learning & Challenges

One specific type of DNN that can benefit greatly from visualisation is GANs. Gener-
ative Adversarial Networks (GANSs) have established themselves as a powerful tool in
the field of machine learning. In the relatively short period of time since their popu-
larisation they have had numerous compelling applications, especially in the sphere of
photo-realistic image generation [15][16].They have also been applied with great success
to image reconstruction[17], text-to-image synthesis [18] and a wide variety of other do-
mains [19]. The improvement in the state of the art is swift and impressive. This makes
the research field of GANs a compelling one to participate in and also makes GANs
an area fit for attempting to create transparency and gain insight into their learning
process. GANs involve regular classification, a popular application of neural networks,
but also data generation. This creates complexity when quantifying GAN learning, and
visualisation techniques can help give clarity in this regard. Specifically this paper’s
goal is to use these techniques to visualise the learnt representations that generative
adversarial networks encode.

1.3.1 GANs Explained

The goal of a GAN is to model some probability distribution. If trained correctly, the
model will be able to successfully generate realistic samples from that distribution. For
example, a GAN could be trained on a dataset of pictures of faces, modelling the dis-
tribution of that data. After successful training it would be able to generate new faces
not seen previously in the dataset. GANs consist of two adversarial networks, com-
peting against over a shared cost function. One network attempts to minimise while
the other attempts to maximise this objective function. One of these networks is the
discriminator, whose role is to successfully differentiate between actual data samples
taken from the dataset, and samples created by the generator. Its output is therefore
a probability value that the given sample is real. Hence, the generators mission is to
fool the discriminator by producing realistic samples. The objective function is used to
measure the difference between the real data distribution and the one created by the
generator model..

minmaxV (D, G) = Borpyyy, (@) [109D(@)] + Eerp. ) [log(1 = D(G(2)))]

Above is the objective function utilised in this paper, taken from the DCGAN im-
plementation [20]. Here the generator is attempting to minimise an error function while
the discriminators goal is to maximise it. This formula consists of the summation of two
terms. The first, E,p,.,. () [logD(x)] , is the discriminator attempting to maximise the
probability value the discriminator returns for data sampled from the real distribution.
The second term, E..,_(2) [log(l - D(G(z)))], the discriminator tries to minimise the
probability value given for data sampled from the generator. Therefore the discrimina-
tor’s goal is to maximise the objective function. The generator’s aim is the opposite,
namely to minimise the first term and maximise the second. If these networks compete
successfully and with stability, the generator successfully models the data distribution
and be used to generate indistinguishable samples (at least indistinguishable to the
discriminator- the quality of data provided and the power of both networks constitutes
whether or not generated data is indistinguishable by the human eye).



1.3.2 Challenges in GAN Learning

There are numerous trade—offs and questions to be considered when training GANs
[21]. The original GAN model [22] encounters several potential issues during training,
some of which are hard to identify and counter[23][24]. Specifically, GAN training
encounters frequent issues in terms of the general instability of training. This makes
the process of creating generative models a potentially slow and challenging one, and
their implementation requires much tuning and trail-and-error. Such issues include non-
convergence of the objective function, vanishing gradient problems and mode collapse.
Mode collapse is expanded upon further in the next section(1.4), an interesting problem
that this paper aims to give insight into.

Given these concerns in the effective and efficient implementation of GANS, within
the sphere of generative neural networks there has been deep interest and effort shown in
tackling these issues. Out of this research several effective solutions have been created,
being applied to improving GAN stabilisation, as well as to eliminating the vanishing
gradient problem, and effective approaches to combating the mode collapse problem
encountered by the generator [25] [26] [27].

The evaluation of GANs is also a challenging topic. Reaching a conclusive clear
metric is difficult compared to, for example, a DNN trained for image recognition, where
the error between a predicated class and the actual class is intuitively computable. In
generated class samples, effectively quantifying just how realistic generated samples
are proves a difficult and poignant issue. The diversity of generated samples is also
important so that the network accurately models the given data and not just a subset
of its classes.One widely-used metric for this measurement is Inception score[27]. This
is useful in that it measures both the quality of samples within a class as well as the
diversity of samples produced. Keeping evaluation empirically grounded is of course
essential as GANs continue to develop [28].

1.4 k-GANs

As mentioned in section 1.3, one difficult challenge commonly encountered in GAN
training is that of mode collapse. This issue relates to a lack of sample diversity which
implies the generator does not accurate model the actual distribution of the data. This
is due to the fact that data is almost always multimodal. The generator may learn to
model only one mode or cluster of the data distribution, and may even switch between
clusters during training. This proves a near-impossible problem to note during training
and difficult to identify and fix.

There have been several solution proposed in the literature to solve this problem.
These variations of GANs have been implemented with quite a bit of success, eliminating
or greatly reducing mode collapse[18][26][24]. One such solution is to use an ensemble
of GANs to model the data-space.

k-GANSs is one such ensemble of generative networks. The authors aim to improve
upon the empirical aspect of ensemble techniques in GANs. They apply optimal trans-
port theory [29] to do this, ensuring each k in the ensemble models a differing section
of the data space. In order to investigate how each k£ models the data space, this paper
aims to visualise the learnt representations of each GAN in the ensemble. This may lend
some insight into the nature of the specific k-GANs model as well as ensemble GANs in
general.

A more specific route to explore this issue is to draw a comparison between the
visualisations created for each k generator-discriminator pair of the k-GAN ensemble and
those created for one GAN that models the whole dataspace (in the interest of fairness
this is simply a k-GAN model where k£ = 1). In order to create a fair comparison k of
these single (k = 1) all-data GANs will be trained and their models combined (where



k is the number of GANs in the k-GAN ensemble). Visually comparing the results
of encoded representations for this seperate models, as well a difference in performance
between these models could be an indication that k-GAN clusters are modelling separate
parts of the data space. Initially visualisations could give insight into the specifics of
this learning, lending aid to the k-GANs authors work.

2 Methods

In this section the specific process of visualisation utilised in this paper is explained.
The pipeline structure of the visualisation mechanism is illustrated with figures and a
step-by-step description of each part of the process is given for clarity. The architectures
of the models used in this process are also introduced and an overview of their structure
is given, along with motivating their reason for being chosen.

2.1 Network Architectures
2.1.1 k-GANs

A k-GAN ensemble consists of a collection of Wasserstein GANs, a variation of GAN that
increases the general stability of vanilla GAN learning as well as mode collapse issues[26].
k of these GANs model are trained on separate, non-overlapping partitions of the data.
Choosing the number of GANs (k) to train requires hyperparameter tuning. A higher k
will also be resource intensive, which influences this papers choice of ensemble size. Each
discriminator consists of two convolutional layers and a final linear layer, producing a
scalar probability output. The generator network has a linear input layer with three
deconvolutional layers following, outputting a generated image.

2.1.2 Visualisation Ensemble

The visualisation process will require an array of networks as pictured in figure 2. As
mentioned in 1.2.1, maximising activation by backpropagating error directly to the input
image may produce unclear and uniterpretable images. A prior network will therefore
be used to increase the realism and interpretability of the visualisations. The prior
specifically used in this paper is a generator network taken from the DCGAN model[20].

This generator is trained to reproduce an input image given some activation vector
from a layer. In other words, when an image is passed through a network, it causes
some activation in each layer. Attempting to reconstruct one of these layer’s activations
is the role of the prior model. In the example 2, the network is trained on face data.
This means when a random latent vector is passed as input to the generator, it produces
some random output. Instead of random pixels however, the image produced contains
some facial structure, e.g it is constrained by the prior to have some semblance to an
image of a face.

Here the generator network acts as the prior for maximising the activation of some
layer j in the k-GAN model, thus visualising what representations that layer finds im-
portant and is encoding. An initially random input image is generated by the prior
(taking a random latent vector as input) and incrementally updated to maximise acti-
vation. The image is passed through the network one is visualising, and the activation
from layer j is computed. Using the maximisation of the average activation of this layer
as a loss function, the latent vector is then updated, the prior then generating an image
that causes higher layer activation. Through this process a visual representation of the
encoded features at layer j of the k-GAN discriminator can be produced. From this,
insights and observations can be made about the networks learned features.
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Figure 2: A basic diagram of the overall architecture of the visualisation process.

2.1.3 The Prior Model
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Figure 3: Figure of the training process for the prior network

A popular and impressive improvement to GANs was introduced by Radford et
al. in 2015[20]. This generative model extended GANs by incorporating convolutional
networks into the architecture. The DCGAN model does not utilise max pooling (instead
using convolutional stride) and does not incorporate any fully connected layers. It is
a simple and compact network, making it straightforward and efficient to implement,
while also producing great results on benchmark tasks [20]. This makes it a popular and
strong GAN variation. Convolutional layers are used in the discriminator to reduce an
input image to a scalar probability value.Deconvolutional layers are used in the generator
network to transform a latent vector input into an image. The discriminator takes as
input an rgb image (3x64x64) outputting a scalar probability value. The generator takes
a 100 dimension latent vector as input, producing an RGB image (3x64x64).

This DCGAN architecture, shown in figure 4, is used for the prior network, trans-
forming layer activations into their (decoded) image representations. To facilitate this



the generator’s latent space is a dataset of vector activations (as opposed to the nor-
mally implemented latent space of a gaussian distribution), their original input image
being used as a label. Thus the generator will learn how to decode activation vectors
into their original input image.

Generator : p Discriminator

Praject and reshape

Figure 4: DCGAN Generator and Discriminator Models [20]

In order to ensure a correct implementation of the architecture, the network is first
test-trained on face data, namely the fashion MNIST dataset [30] (Pipeline in figure
3. This involved first passing fashion MNIST images through a pretrained VGG-Face
model (see 2.1.4) and collecting the activations from a layer of this network. This
activation vector has the original input image as its label. This data is then used to
train the DCGAN model. Once trained, the generator from the model can decode layer
activations into the original input image ( see example in figure 11). This was first done
with a different dataset (fashion-MNIST data as opposed to LFW ) due to the multiple
components of the visualisation ensemble. It seemed beneficial to ensure that if future
errors occured during the implementation and integrating of the entire visualisation
structure, it would be somewhat clear that the prior model was not the source of error,
and also for the fact face visualisations are more clearly interpretable to see the model
is decoding correctly. The Fashion-MNIST dataset consists of 60,000 training images
(see figure ?77) and 10,000 testing images (64x64 size, grayscale). There are 10 output
classes for these images, each class label being a different clothing type. (See Appendix
for fashion MNIST training results).

Actual Image Decoded Image

]
10 10
20 20
30 30
40 40
50 50
60 &0
o 20 B0

Figure 5:

Prior network trained on Fashion MNIST data.




2.1.4 VGG-16
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Figure 6: VGG-16 Model

In order to train the decoder, labelled data of layer activations must be collected. This
involves training a network on image recognition, which, if successful, encodes features
of these images into the networks layers. After training is completed, input images can
be forward passed through the network and their corresponding layer activations can be
collected, the activations containing encoded features associated with that input image.
This constitutes the training dataset for the prior network.

A VGG-16 model [31], shown in figure 6, pretrained on ImageNet [32] is used for
this purpose. ImageNet is a vast dataset (currently over 14 million annotated images)
containing 1000 classes, and is the most widely used dataset for object recognition bench-
marking, also proving effective in transfer learning [33]. VGG-16 is a deep convolutional
network with 16 layers. 13 convolutional layers (along with 5 max pooling instances)
are followed by 3 fully connected layers at the end of the network. The channel width of
the convolutional layers is 64 initially, doubling after each pooling operation, finishing
at 512 channels which are fed into the fully connected layers. This is a powerful network
that has achieved excellent results in object recognition (top-5 accuracy of 92.3% on
ImageNet [31])

2.2 Visualisation Techniques
2.2.1 Step by Step Explanation

Visualising the internal representations of each k’s discriminator involves optimising an
input image through the discriminator network such that a particular layer is maximally
activated (indeed singular neurons could also be visualised, but for the purpose of this
paper layers are used). This pixel optimisation is done via the fixed prior network to
ensure a regularised updating of pixel values, constraining the form of the image for
increased realism as dicussed (as shown in figure 2).

For clarity and intuitive understanding, the following is a sequential explanation of
visualising in this way. The process works as follows:

1. A random latent vector v is passed as input to the prior model, producing a random
output image ¢ (constrained under the context of faces are seen in 2)

2. This image vector i is forward passed through a trained k-GAN discriminator.



3. The activation vector of some layer j from this discriminator given input 7 is stored.

4. The average of this activation vector computed, and maximising the value of this
vector is used as error for v, adjusting its values.

5. v is again passed through the prior, creating a different output which more maxi-
mally activates the discriminator layer j.

6. This process is repeated until some stopping criterion is reached (e.g until some
number of iterations).

2.2.2 Generator Visualisation

In terms of visualising each k’s generator, the approach is more straight-forward than
discriminator visualisation, as it won’t involve decoding learned features in the networks
layers and instead just generating images to see what features the generator has learned.
This involves one-hot vector encoding on the input, e.g fixing one dimension of the latent
space and then sampling from the space as is normally done in generation, effectively
'freezing’ one dimension of the latent space. Multiple images are then sampled from the
generator and through visual analysis inferences may be drawn about which feature(s)
the generator has learned to produce, and which parts of the latent space the generator
has mapped features of the data onto.

3 Experiments & Results

3.1 Dataset

The LFW dataset [31] was used to train the k-GAN and prior models. The deep fun-
neling variant of this dataset is chose for the visualisation process due to its relative
efficiency in training the dataset (less resource intensive than the vanilla LFW dataset)
in training and testing, while also having the capacity to produce more illusive visu-
alisations than the use of an simpler dataset such as fashion-MNIST. [35]. The LFW
dataset consists of 13,000 images (see figure 7?). Each image is labelled with the name
of the corresponding celebrity.

3.1.1 Preprocessing

Images were resized from 250x250 pixels to 128x128. Images were also normalised to
contain values between 0 and 1.

3.1.2 Data for Prior Network Training

Training the prior network required collecting labelled activation data.This labelled data
consists of some activation vector from a layer, with its original input image as a label.
These activations were collected from a layer of the VGG model, and along with the
input image were used to train the prior to transform (decode) encoded representations
from a networks layer (activation vector) into an image (input image).

The activations from the final convolutional layer of the VGG-16 network were taken
to train the prior network. This layer is chosen due to the fact it contains more abstract
representations than earlier layers, having a richer array of encoded representations,
resulting in more illustrative visualisations when decoded.

The prior generator takes as input the activation of the vgg layer. Thus, the latent
space size is adjusted to facilitate this. Since there are 512 channels in the convolutional
layer, the generator latent space size = 512. It outputs an rgb image
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( 512x8x8 activation vector — 3x128x128 image).
The discriminator is trained as normal, taking an image as input and outputting a
probability value that that image is a real sample.

( 3x128x128 image vector — scalar probability value).

Training Images

Figure 7: Training examples for the LFW dataset

3.2 k-GAN Training

For training the k-GAN ensemble on the LFW data,k = 3 GANs were chosen. This
number of generator-discriminator pairs was a realistic measure given the resource in-
tensive nature of training a higher k, while also still training enough models to produce
a sufficient array of visualisations. This allows the investigation of the difference in what
section of the data the different ks modelled, as well as what features or collection of
features they focused on during learning.

3.3 Results
3.3.1 Generator Visualisation

From each medoid (the mean image that the generator models) of the 3 generators,
it is clear the k-GAN model is working as intended in the facet of modelling different
sections of the dataspace (see 8). Sampling from each generator makes this distinction
even clearer (see 9). k=0 is attempting to model darker skin tone faces, while k=1
samples are more feminine in their appeareances. k=2 Also seems to be clustering
based on skin tone, the samples appearing red in their skin colour.

Training on this dataset illustrated the instability of GAN learning mentioned in the
challenges of GAN learning (see 1.3). Training was unstable in terms of a greatly shifting
medoid, and a lack of an increase in sample realism from early in training to later. At
the end of training, the faces produced are noisy, especially in the k=2 generator where
each sample produced seems to have a tile pattern of noise. Indeed samples from all

11



Figure 8: Medoid for each generator

generators appear to have this tile pattern. It is interesting nonetheless however that
the differences in feature modelling is relatively clear, at least in respect to the k=1
model, where more feminine facial features are being encoded by the generator.

Freezing parts of the latent space (as mentioned in section 2.2.2) to produce varying
feature values in samples in order to investigate learned features proved unsuccessful.
Produced samples were noisy and indiscernable in their nature, giving no clear insight
into the internal mapping each generator created onto the latent space.
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Figure 9: Random sample for each generator

3.3.2 Discriminator Visualisation

A large task in this paper is the visualisation of the model’s k discriminators, using
the structures and visualisation pipeline previously detailed(2). Due to the instabil-
ity of learning however, the visual pipeline was not successful in reconstructing the
discriminator’s latent representations. Activation maximisation failed to illustrate any
meaningful features of the discriminator’s final convolutional layer (see 10). This is po-
tentially due to an error in the implementation of maximisation, or the combined noise
of the prior networks reconstructions and the noisy nature of the k-GAN discriminator
representations.

50

(a) Visualisation without a prior (b) Visualisation with a prior

Figure 10: Activation maximisation for final layer of k=1 discriminator’s convolutional
layer, with and without a prior. Left: Initial input image, Right: Maximised Image
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3.4 Discussion

The following paper aspired to apply the tool of visualisation techniques to visualising
the representations encoded by a k-GAN ensemble. The intention of this was to visually
analyse the features learned from each of the constituent GAN networks of the ensemble,
and to aim to use this illustrations in drawing insights about how the ensemble partitions
the dataset into sections during learning. The method of doing this is showing visually
what features are learned by the different discriminator-generator pairs in the ensemble.
From these visualisations conclusions may be drawn about the representations of the
networks and general remarks of the learning process can be made. To outline this
specifically, do the different models learn different parts of the dataspace? Can insights
be made from the visualisations gathered? This would give credence to the tool of
visualisation, which can be used to gain understanding in the area of DNN transparency
and illuminate the black box problems encountered in deep learning. The findings made
are outlined and discussed in this section, with shortcomings being examined in the
Limitations section. Additional steps in the investigation this project undertook are
explored in the Future Work section.

The nature of the k-GAN learning process, namely that each discriminator-generator
pair models a non-overlapping section of the data distribution, means that insights are
already given into the most prominent features in the dataset, e.g which one each model
seperately focuses on, or finds important. With this in mind, training a k-GAN model
with k=3 on LF'W data indeed shows that this is how the ensemble seems to operate and
learn. Results from generated samples (see figure 9) from each k support this claim that
the model is learning different sections of the dataspace as generated samples from each
k differ in the types of faces they appear to be learning e.g encoded different intervals
of feature values.

3.5 Limitations

There were several shortcomings and oversights encountered in this project. In terms of
the prior model, training on the fashion MNIST dataset provided much cleaner visual
results due to its simplicity in resolution and structural differences of each class (see
5.1). This did not directly transfer to training on a more complex dataset as is seen in
the results of the LFW prior.

One major limitation that undermined the clarity of results in this project was the
challenging nature of training generative adversarial networks. The instabilty of GAN
training is a cumbersome barrier and can be clearly seen in the produced visualisations
in the results section. This instability and failure to produce realistic or interpretable
results can be seen both the k-GAN and prior models, the k-GAN generators produc-
ing interpretable samples but somewhat lacking realism in the faces produced, while
the prior failing to produce interpretable reconstructions in the activation maximisation
process. In terms of analysing and approaching this failure, during training hyperpa-
rameter tuning was not performed to attempt to produce stronger samples, which would
be a necessity in creating clearer visualisations (more realistic generated samples). Tech-
niques such as adding input noise to both the generator and discriminator could also
be applied, and were done so to the prior model (DCGAN architecture) but not to the
k-GAN discriminators nor the generators.

The instability of training in the prior model could also be a result of the loss
function in the generator. The generator in this model is essentially being trained for
two purposes. Firstly, to produce realistic faces, and secondly, to accurately reconstruct
faces from a specific activation vector. Therefore the loss from the discriminator (sample
realism) is combined with the error difference in the sample image and the original vgg
input image (reconstruction accuracy). Different approaches to combining and weighing
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these loss functions could also be explored. First creating a generator that produces
realistic samples and then specialising it to reconstruct specific activations is another
approach to creating a stronger prior.

3.6 Future Work

There are many aspects of improving and strengthening the results found in this project
that could be explored in future applications of visualisation or indeed in k-GAN train-
ing. The use of this form of visualisation could also be extended. For examples, applying
these visualisation techniques to the process of a network learning to represent human
faces could give insight into the internal learning processes and could even be applied in
the field of neuroscience, a field of research closely interlinked with artificial intelligence.

During the research of literature in the technical aspects of visualising, another inter-
esting aspect of using the visualisation technique arose. This concerns the subjectivity
in the choice of prior when training an image to maximise a layers output. One limi-
tation of visualising using an image prior is that a different prior may have to be used
for visualising different data. Although creating more realistic and illustrative imagery
whe compared to the use of other regularisation techniques , the problem in natural
image priors is the lack of separation between which part of the visualisation is from the
layer /neuron visualised, and which part is due to the prior, in other words, how much
of a role each aspect contributes in producing the final visualisation. Investigations into
this problem could lead to important insights into the use of a prior in visualisation
regularisation, and indeed work is already being done on creating general priors that
can be used across visualisations [10].

3.7 Conclusion

It is clear from this paper’s implementation of k-GANs that this variant of generative
adversarial nets can give great insight into the nature of datasets with complex features
and that their visualisation can potentially give insight into the nature of DNN learning
processes. The partitioning of the dataset into different, easily recognisible face types
by the different k generators shows already gives the beginning of this insights. Due
to the instability issues of GAN learning however care is needed in training and tuning
hyperparameters to ensure a sufficient amount of feature encoding, which can then be
extracted by visualisation techniques. In this sense this project encountered difficulties.
Implementing activation maximisation also requires care in the choice of and training
of the prior network, as well as hyperparameter tuning when updating gradients.

Overall however, the research direction of visualisation is one of great promise but
requires careful consideration in its application. GANs are also a powerful tool that
would benefit from feature visualisation, in both the discriminator, through activation
maximisation, and the generator, through simply generating samples as well as hot
encoding the latent space when creating samples.
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5 Appendix

5.1 Prior Network Training

Below are some examples after training the prior network on fashion-MNIST. All 60,000
training examples were used to train the DCGAN architecture. 10 epochs of training
were performed. Images were then randomly sampled from the dataset, being passed
through the pretrained vgg model to collect the 13th layer’s (final convolutional layer)
activations. Then these activations were passed through the generator, creating the
decoded images below. Beside each image is the real image label for each activation.

Actual Image Decoded Image

Actual Image Decoded Image

10 10

20 20

30 30 30 0
40 40 40 40
50 50 50 50
&0 60 60 &0
] 20 40 B0 0 20 40 &0 ] 20 40 &0 ] 20 40 60
Actual Image Decoded Image Actual Image Decoded Image
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Figure 11:

Prior network trained on a small subset (1000 samples) of LFW data.
Left to Right: Actual image, decoded image at beginning of training, decoded image
after 15 epochs of training. This example is probably overfitting, e.g the network is
remembering as opposed to learning features.
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5.1.1 Prior Learning Progression

(a) Initial Input Noise (b) Actual Image

0 10 0 0 40 50 60

(f) Final Reconstruction

Figure 12: Progression of Prior Training for Fashion MNIST Data
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