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Abstract

This thesis combines convolutional neural networks with autoencoders, to form a convolutional au-
toencoder. Several techniques related to the realisation of a convolutional autoencoder are investigated,
and an attempt is made to use these models to improve performance on an audio-based phone classifi-

cation task.

1 Introduction

Speech recognition research has long been domi-
nated by research into hidden Markov models (for
example, see Lee and Hon (1989); see also Rabiner
(1989) for a theoretical review). Hidden Markov
models are probabilistic constructs that work on
observed time series (in this case, speech record-
ings), and attempt to retrieve the state variables
(actual phones pronounced) that caused these ob-
servations. However, in recent years, convolutional
neural networks are increasingly taking over hid-
den Markov models on grounds of classification per-
formance (see Hinton et al. (2012), Sainath et al.
(2013b); see T6th (2014) for state-of-the-art per-
formance). Hybrid approaches are also possible
(Abdel-Hamid et al., 2012).

Convolutional neural networks come from the
field of image classification, where they are the
dominant and best-performing technique (e.g., see
Lawrence et al. (1997), Ciresan et al. (2010)),
and modified variants of them continue to achieve
state-of-the-art performance (e.g., Krizhevsky et al.
(2012)). Additionally, they appear biologically
plausible to some extent, as some of their character-
istic properties are indeed found inside the brain,
such as receptive fields that increase in size (Gliglii
and van Gerven, 2014) and the use of a hierarchical,
feature-based representation (Kruger et al., 2013).

However, convolutional neural networks re-
quire supervised training, which in turn requires
painstakingly labelled data. Autoencoders, on the
other hand, are methods of learning higher-level
representations of a data set in an wunsupervised
manner, requiring only the data (which is abun-
dant), and not the labels (which need to be man-
ually matched to the data points). Many variants
exist, including the contractive autoencoder (Rifai
et al., 2011), the sparse autoencoder (Ng, 2011),
the denoising autoencoder (Vincent et al., 2008)
and, importantly, the stacked autoencoder (Bengio
et al., 2007). The latter can also be combined with

the other techniques, such as in a stacked denois-
ing autoencoder (Vincent et al., 2010). Since the
autoencoder is an unsupervised network architec-
ture aimed at learning representations, and convo-
lutional neural networks intrinsically learn hierar-
chical feature-based representations, it seems natu-
ral to combine these techniques, to attempt to cre-
ate an unsupervised hierarchical feature-based rep-
resentation learner.

The combination between convolutional neural
networks and autoencoders has been made before
(Masci et al. (2011), Tan and Li (2014), Leng et al.
(2015)), though not frequently, as autoencoder re-
search tends to be based on conventional neural net-
works (without convolution). Most convolutional
autoencoders are applied to visual tasks, as that is
the origin of convolutional techniques. Hence, the
application of convolutional autoencoders to audio
data is rare (though it has been done, e.g. Kayser
and Zhong (2015)). As this work tries to do exactly
this, it does not tread into completely new territory,
but it is still relatively novel.

Apart from investigating feasibility and tech-
niques for constructing and training convolutional
autoencoders, this work also attempts to utilise
these models for phone classification, a supervised
learning task that is part of speech recognition.
Phones are the basic speech sounds that can be
found in a language, such as the sounds [i] or [n]
found in English (among many other languages).
As data, we use the TIMIT data set (Garofolo et al.,
1993), a ‘classic’ within speech recognition. The ob-
jective is to correctly classify small audio fragments
of phones into the right category.

State-of-the-art performance for this task is in
the order of 75-85% accuracy (Hinton et al. (2012),
T6th (2014)), and relative improvements of several
percentage points are worthy of publication. How-
ever, this work will not focus on ‘beating’ the state
of the art, but will instead investigate whether au-
toencoders can be utilised to improve classification
networks for this task. It has already been shown



that autoencoders in general can indeed increase
classification performance by pretraining (see e.g.
Masci et al. (2011), Tan and Li (2014)), which
uses an adequately-trained autoencoder to initialise
weights of the classifying network. However, to my
knowledge, convolutional autoencoders have not
been applied to a phone classification task.

In this thesis I will describe the complete pro-
cess from data set to autoencoder-aided classifica-
tion, and detail the considerations made during the
course of the project. Section 2 will detail the pre-
processing of the TIMIT data set, Section 3 de-
scribes how to train a reference classification net-
work, Section 4 discusses the convolutional autoen-
coder and how to use them for classification, Sec-
tion 5 describes the main experiments of this thesis,
Section 6 discusses the results of these experiments,
and it is followed by my conclusions in Section 7 and
a discussion section, Section 8. Importantly, there
are two appendices. Appendix A contains the full
results for the experiments described in Section 5,
and Appendix B extensively details the mathemat-
ics behind convolutional neural networks, as well as
convolutional autoencoders. Mathematical detail is
therefore left out of the main text of this thesis, and
deferred to this appendix.

2 Data preprocessing

Whether we work on supervised classification tasks
or unsupervised autoencoder models, we need data
to feed into our network. Therefore, in this section
I discuss the preprocessing we used to convert our
initial TIMIT data set to a more handleable form,
which we thereafter use as input to our networks.
(Disclaimer: the work described in this section (in
particular the exchange, realisation and testing of
various ideas on preprocessing) was performed in
a group of three, consisting of Churchman (2015),
Kemper (2015) and myself.)

2.1 Data selection and reshaping

Given that we use the TIMIT data set from Garo-
folo et al. (1993), we start with a number of .wav
audio files of English spoken sentences recorded by
a number of native speakers from different dialects,
labelled with timestamps per phone and per word.
Given that we are doing a phone classification task,
we slice our data on individual phones, i.e. we di-
vide each sentence up into its constituent phones.
These will eventually be converted into the actual
data points fed into our network.

The TIMIT data set contains both sentences that
were recorded by all speakers of the data set, and
sentences that were only recorded by one speaker.
To avoid over-representation of certain phones or
phone combinations, we focus only on the latter
category, where every sentence is only present in
our data set once (as in Abdel-Hamid et al. (2012)).

Sentences that were recorded by all speakers are
discarded.

We then apply the mapping proposed by Lee and
Hon (1989) to the phone labels. We discard glot-
tal stops (“q”) altogether, and several phones are
pooled together. This reduces the number of differ-
ent labels from 61 to 48. Furthermore, within these
48 labels, some labels are put into label groups,
where within-group confusions do not count as an
error. In other words, our network will have 48
output units, and can therefore assign phones to 48
classes, but effectively there are less distinct phone
categories (namely, 39).

Now that we have our data slices and their la-
bels, we ensure all of our data points are the same
length, as this is required for a standard convolu-
tional neural network (though ‘variable-size’ convo-
lutional neural networks exist, see e.g. LeCun and
Bengio (1995)). We make our data points the same
length simply by zero-padding our slices on both
sides, to the largest phone. This prevents any dis-
tortion of the sound, and any loss of information
or sound quality. This does, however, dramatically
increase the size of the data set. This effect is am-
plified by the fact that, while most phones are quite
short, a few phones in the TIMIT data set are ex-
tremely long (e.g., certain ‘silence’ phones), so all
other (shorter) phones in the data set are signifi-
cantly lengthened. The consequence is that the re-
sulting preprocessed data set is far too large to hold
in even large amounts of memory. To combat this
problem, we discard the 5% longest phones. The
largest remaining phone, then, is short enough to
zero-pad to, such that the whole zero-padded data
set can readily be preprocessed given a reasonable
amount of memory.

2.2 Time-frequency representations
2.2.1 Type of representation

Now, we have equal-sized slices containing phones
in .wav format, i.e. their amplitude waveforms.
However, it is hard to use the full power of con-
volutional neural networks for these kinds of 1D
signals.

This is the case because the convolutional aspect,
which by definition provides translational invari-
ance for learnt features, can only provide tempo-
ral invariance in these waveforms (simply because
time is the only dimension being varied along the
axis). In particular, this means that features are
not pitch-invariant. Therefore, a feature encoding
for [a] would need different learnt representations
for a low-pitch (e.g., recorded by a male speaker) [a]
phone and a high-pitch (e.g., female speaker) one.
Given that humans recognise these sounds as being
the same phone, we may find a 1D representation
that only provides temporal invariance undesirable.

Instead, what we want is a representation in
which convolutional layers can give us both tem-
poral and frequency invariance. This naturally



brings us towards a 2D representation of sound,
with time on one axis, and frequency on the other.
There are a couple of major, often-used candidate
representations: the short-time Fourier transform
(STFT), the mel-frequency cepstrum (MFC) (see
e.g. Zheng et al. (2001)) and what we will refer to as
the ‘gammatonogram’, or gammatone-based spec-
trogram (Patterson et al. (1992), Patterson et al.
(1987)). We have tried all three methods and set-
tled for the STFT approach, but I will nevertheless
describe the other two methods, and explain why
these were not chosen.

Gammatonograms are similar to spectrograms,
but are constructed to share certain properties with
human audio representation in the ear and nervous
system, in particular with the cochlea and basilar
membrane in the human ear, and tries to simu-
late the neural activity of the ear’s outgoing audi-
tory neurons (Patterson et al., 1992). Specifically,
it uses a so-called gammatone filter bank (Patter-
son et al., 1987) to convert audio into a number
of channels concerning motion of this basilar mem-
brane, and then it uses a ‘transducer’ simulation
that converts this into a pattern of neural activity
sent out by the cochlea to the brain. A particularly
relevant property of gammatonograms, for our pur-
poses, and the reason we tried it out, is that in the
human ear, low- and medium-frequency sounds are
represented with higher precision than very high-
frequency sounds, and in particular this includes
speech sounds, the object of our classification task.
In contrast, the STFT represents all frequency
ranges equally precisely. Therefore, gammatono-
grams could have higher precision for speech than
STFT, and thereby achieve better phone classifi-
cation performance. Unfortunately, gammatono-
grams of decent resolution cost too much memory
to fit inside reasonable amounts of memory, and as
a result we could not practically test this approach
on an actual network.

Mel-frequency cepstra (MFCs) (see Zheng et al.
(2001)) are based on the short-time Fourier trans-
forms described next, but transform the found
Fourier spectra to MFCs by first mapping the
Fourier coefficients to the mel scale, (in some com-
mon versions) taking their logarithms, and then
taking the (discrete) cosine transform of the re-
sultant list of ‘mel frequencies’. For a MFC-based
cepstrogram (i.e., including time as a dimension),
one divides the audio signal into small, overlapping
time windows (often using a Hamming window),
and computes the MFC for each window.

The crucial component of these MFCs is the ap-
plication of the mel scale, which is constructed
to mimic subjective human hearing experience, by
rescaling the Hertz scale of frequencies to ‘mel fre-
quencies’. For mel frequencies, when two notes
are perceived to be equally ‘far’ from each other,
they always have a difference of a fixed number of
‘mels’, regardless of the actual notes in question
(only dependent on the perceived distance between

the two notes). This does not hold for the Hertz
scale, which works multiplicatively: the note one
octave up from 440 Hz is 880 Hz, whereas one oc-
tave below 440 Hz is the note of 220 Hz. Therefore,
a fixed perceived distance of one octave is not an
equal distance in Hertz (440 Hz. vs. 220 Hz in the
previous example), whereas the difference between
these notes in mels is equal. This means, again,
that MFCs represent lower and medium frequency
ranges, including speech, with more precision than
STFTs. Furthermore, MFCs do not have the mem-
ory problems of gammatonograms, as MFCs are di-
rectly based on the Fourier transform also used by
STFTs.

The short-time Fourier transform (STFT; used
in e.g., Abdel-Hamid et al. (2012)), similarly to the
MFCs, divides the audio fragment into small, over-
lapping time windows, using a Hamming window
function, and simply takes the (discrete) Fourier
transform for each window. As mentioned before,
this approach represents all available frequency
ranges with equal precision, which might not be
ideal given that we mostly only use low and medium
frequency ranges.

In the decision process, we compared the STFT
and MFC approaches using the classification of
practical networks. In these tests, STFT-based net-
works appeared to perform better than MFC-based
networks, conflicting with the aforementioned ar-
gument. We have also tried removing the final dis-
crete cosine transform from the MFC algorithm, to
try if only using the log-mel scale improved per-
formance, but it did not perform better than with
regular MFCs. However, it should be noted that it
is entirely possible that the apparent performance
difference was only due to the particular networks
or parameters used in our tests, and that more
complex MFC-based networks, or simply versions
with a different architecture or different parameter
settings, do perform better than STFT-based net-
works. Regardless of whether this is true or not,
our tests pointed out that STFT-based networks
appeared to run better, so we settled for the STFT
approach.

2.2.2 Parameter settings

Apart from classification performance, another im-
portant measure that we can evaluate our audio
representations by is reconstruction performance.
In other words, if we invert the short-term Fourier
transform to reconstruct our original audio signal,
then we want that reconstruction to be as good as
possible; after all, we eventually want to work with
autoencoders that also try to reconstruct the orig-
inal audio fragment. We evaluate reconstruction
quality by calculating the cross-correlation between
the original signal and the reconstruction.

To improve reconstruction quality, we can tweak
certain parameters related to the STFT transfor-
mation: the window size, the amount of overlap be-



Table 1: Cross-correlations between original input
and reconstructions, for different numbers of fre-
quency bins, and when discarding or keeping phase
information after Fourier transform.

| [[ 101 bins | 201 bins | 301 bins |

0.67 0.92 N/A
0.36 0.91 0.98

available
discarded

tween successive windows, and the desired amount
of frequency bins. These all directly affect the
size of the resulting spectrogram: the former two
affect the amount of time windows, the horizon-
tal axis, and the latter equals the number of fre-
quency bins, the vertical axis. There is a significant
trade-off related to these dimensions: larger spec-
trograms yield better reconstructions, but larger
spectrograms are also computationally more inten-
sive, thus taking longer to train. Thus, we make
the compromise of choosing the parameters lead-
ing to the smallest spectrograms that still gives a
high-quality reconstruction.

For the time dimension parameters, we base our-
selves on the literature (Abdel-Hamid et al., 2012)
and then slightly tweak our parameters for better
reconstruction. The final parameters used in pre-
processing are a 17-millisecond (g5 second) Ham-
ming window size, with 7.5-millisecond overlaps,
giving us 16 time windows per phone, which should
still contain quite enough time information for our
purposes (i.e., leaving enough time points to con-
volve over) while not being overly large.

For the frequency dimension, we varied the num-
ber of frequency bins and looked at the cross-
correlation described above (see Table 1). When
using a high number of frequency bins, such as 301,
the reconstruction becomes near perfect. However,
when using a relatively low number of frequency
bins, the reconstruction can become deplorable and
(when played back) unintelligible. As stated above,
we make a compromise between data size (which
influences computation time) and both reconstruc-
tion quality and classification performance, and
chose to use 201 frequency bins for our spectro-
grams.

2.3 Data transformation

Lastly, we need to consider what exact numbers
we put in the matrices that form our data set.
The short-term Fourier transform returns a spec-
trogram containing complex numbers, but convo-
lutional neural networks are not designed to work
with complex numbers. As such, we need to con-
vert our complex numbers into one or more real
numbers, with which our network is able to work.

Complex numbers have two main canonical rep-
resentations, both in 2D. Firstly, we have polar co-
ordinates, where a complex number is represented
as an amplitude, and its phase angle with the real

number line. It is possible to feed the network data
with multiple channels per unit (cf. RGB images
with red, green and blue channels per pixel). Thus,
in our context, we can test performance with only
amplitude information, but we can also consider
adding the complex numbers’ phase information to
our final data set. Note that using only phase in-
formation is not an option, as phase in undefined
for zeros (which are definitely present due to zero-
padding). Thus, the network would not know how
to distinguish between meaningless data (padding)
and relevant data. Hence, if we use the polar coor-
dinates of our complex numbers, we need to choose
between using only the amplitude, or using both
the amplitude and phase.

However, if we look at the improvement in cross-
correlations between using only the amplitude, and
using both amplitude and phase (see Table 1), we
see that phase information only yields a signifi-
cant performance increase for lower numbers of fre-
quency bins (e.g., 101), but that phase information
is largely made redundant by simply increasing the
data’s resolution. As phase information did not
give the network any significant increase in classifi-
cation performance either, it can be discarded, and
using only the absolute value suffices as representa-
tion for the complex coefficients from the spectro-
gram (if polar coordinates are used).

Secondly, we have Cartesian coordinates, where
a complex number consists of a real and a com-
plex part. However, using this representation is
not convenient to reason with, as a loud sound
could, for example, either have a strongly posi-
tive, strongly negative or near-zero real (or com-
plex) part, whereas it always has a high amplitude
and some ‘random’ phase. Hence, for representing
the whole number, the Cartesian representation is
not preferred. However, we find that using only
the real parts of the complex numbers improves the
reconstruction relative to using the polar represen-
tation described above. This comes at a cost of a
few percentage points of classification performance,
but given that we ultimately want to be able to
faithfully reconstruct our original audio inputs, we
value the reconstruction performance increase over
the slight classification performance decrease, so we
settle for simply including the real parts of the spec-
tral coeflicients in our preprocessed data set.

A minor, but noteworthy transformation we also
apply is data normalisation. From every spectro-
gram, we subtract the average spectrogram (per
element), leading to zero-centred spectrograms.
Given that convolutional filters work multiplica-
tively, they work best with zero-centred data, even
though non-zero-centred data can is still usable
(e.g., by accordingly adjusting the biases, if the net-
work considers this to be useful).

One final addition we have tried making to
our data set was adding A and AA values, the
frame-by-frame first-order and second-order tempo-
ral derivatives, to our data in additional channels.



This cannot influence reconstruction performance,
as these values can be readily calculated simply
from the regular data, but it can improve classi-
fication performance. The reasoning behind this is
that, even though these temporal derivatives can
simply be found inside the network by learning a
simple convolutional filter (or two sequential filters
for the second-order ones), by simply adding the
deltas to our data these filters would not be neces-
sary, possibly allowing for more higher-level layers
to reason about this potentially meaningful infor-
mation. However, after successfully implementing
the generation of these deltas, no significant classi-
fication performance was found in our experiments,
so they were left out.

3 The forward network

To understand how convolutional auto-encoders be-
have and should be constructed, we first need to
know how regular convolutional neural networks
are constructed, and how they behave. In partic-
ular, it is important to have a reference network
architecture with reasonable classification perfor-
mance, which we can later use for reference when
dealing with autoencoders.

State-of-the-art performance on the TIMIT data
set, as discussed in Section 1, entails an accuracy
in the order of 75-85%, but given that there are
as many as 39 effective classes (i.e., chance level
is below 3%), we set as our objective a network
that reaches 50% accuracy (or more). After all,
reaching high classification performance is not the
main objective of our forward network.

The reason we need a ‘forward’ network (i.e.,
from spectrogram to class label), is that such a for-
ward network will already have learnt some kind
of meaningful representation of our data set, with
sufficient predictive power to achieve such a level
of performance. Given that autoencoders are con-
structed for the purpose of learning representations
of the data, this forward network will provide us
with a working example of the type of architecture
(e.g., configuration, size, number of filters needed)
that can fit these types of representations. Further-
more, it will serve as a reference point for classifica-
tion performance, with which we can compare the
performance of our own networks, when we eventu-
ally use autoencoders for classification.

In this section I discuss the chosen architecture
of our forward network, as well as several imple-
mentational details of our networks. (Disclaimer:
the work described in this section (in particular the
exchange, realisation and testing of various ideas
on architectures, implementations and efficiency-
related issues) was performed in a group of three,
consisting of Churchman (2015), Kemper (2015)
and myself.)

Figure 1: Number of occurrences of different phones
in the TIMIT data set. The top peak is a ‘silence’
phone.

3.1 Implementation

Before we can investigate these forward networks,
we first need a way to train convolutional neural
networks in general. For this, we use MatConvNet,
a convolutional neural network framework in MAT-
LAB from Vedaldi and Lenc (2014). However, we
have modified MatConvNet to better fit our pur-
poses (see also Section 3.2 and Section 4).

One rather significant modification to the nor-
mal training mechanism followed the observation
that the distribution of phone labels within the
TIMIT data set is very unbalanced. This is caused
by the fact that some phones are naturally abun-
dant in some languages, whereas others are rare
(or nonexistent). For example, in English, phones
corresponding to E or N might be very common,
whereas the phone for J is rare. Since the TIMIT
data contains regular English sentences, this imbal-
ance carries over to our data set. As a result, some
networks adopt the rather oversimplified strategy of
reporting that every phone was a silence (the most
common phone in the TIMIT data set), accounting
for approximately 7% of the data set and therefore
leading to 7% accuracy.

To combat these kinds of strategies, we artifi-
cially remove this imbalance in the data set by us-
ing stratified (re-)sampling every epoch, such that
the phone label distribution becomes uniform. If
a class has more than 500 associated data points,
500 of these are randomly selected at the begin-
ning of each epoch, and only these will be included
in the training set (the same happens with the test
set, but here the number of examples per class is
chosen to be 200). If, however, a class has less
than 500 associated data elements, we first repeat
the entire set of examples for that class as many
times as possible (within the assigned 500 or 200
spots), and fill the remainder of space up with ran-
domly sampled data points. For example, at the
start of a training phase, if there are 2000 exam-
ples of a ‘silence’ phone, we will randomly select
500 of these to form the ‘silence’ part of our train-
ing set. If, however, there are only 60 examples of
a ‘J’ phone, every spectrogram from this category
is represented in the training set 8 times, and 20 of



them will be represented 9 times during that epoch.
As a result, in the effective training set, we will find
an equal amount of ‘silence’ phones as ‘J’ phones.
This makes the above strategy of mapping every-
thing to ‘silence’ no longer viable, as this would give
the network a training error merely at chance level.
It will also give the network more incentive to focus
on rarer phones, as opposed to silences.

Another problem with training convolutional
neural networks is that it is not always clear when a
neural network has ‘completed’ training. Normally,
when the network’s training error does not decrease
anymore, one decreases the learning rate and con-
tinues training. This allows the network, being
‘in the right neighbourhood’; to ‘fine-tune’ itself
towards even better performance. Instead of do-
ing this manually, we have implemented AdaGrad
(Duchi et al., 2011), an adaptive learning rate an-
nealing algorithm that automatically decreases the
learning rate per individual filter (or bias) element
on the basis of the sum of squares of the magnitudes
of all previous updates to that element. In other
words, filter elements that have been updated rela-
tively much will be updated less strongly than be-
fore, whereas updates to filters that have not been
updated as much will be (relatively) boosted. See
Section B.9 for a more mathematical description.

3.2 Efficiency

Now that we have a working implementation, how-
ever, given the amount and complexity of our data,
a problem quickly arises: training non-trivial net-
works takes a large amount of time. This is es-
pecially problematic since there are many different
possible architectures, with many parameters that
could be tweaked, but there is no time to test any
reasonable portion of architectures and settings.
Thus, we base ourselves on literature (see also Sec-
tion 3.3), but even only comparing certain chosen
models takes relatively much time, with some larger
networks possibly taking weeks to finish training.
All in all, it is important to find ways to improve
the efficiency of training these networks.

One straightforward approach to increasing the
efficiency of our networks is already implemented
and supported by default by MatConvNet, namely
training our networks on a GPU. This only works
for NVIDIA GPUs supporting NVIDIA CUDA, but
we have access to one. Unfortunately, though this
did increase training speed by an approximated 20-
30%, it was not as large an improvement as we had
hoped, given the massive parallellism employed by
GPUs.

We achieve another significant efficiency upgrade
by programming a ‘prefetch’ feature in C++, en-
abling us to train our network in one thread, while
another thread loads the next batch of spectro-
grams. This requires a partial rewrite of the ac-
tual MATLAB-based training code of MatCon-
vNet. C++ is used because MATLAB’s built-

in multithreading functionality is not adequate for
our purposes, but MATLAB does support running
C++ code as MEX functions. The exact efficiency
upgrade depends largely on the relative comput-
ing times required for normally loading a batch
of spectrograms and the actual training by back-
propagation (among others, dependent on network
size): for large networks where the majority of
computing time is spent doing back-propagation,
prefetch will not have a profound effect, but for
smaller networks (including our final architecture,
see Section 3.3) its effect can range from a 25%
efficiency increase (for our chosen architecture, ap-
proximately) to 50% (in the ideal case) for small
networks.

3.3 Architectures

We can now evaluate the performance of networks
in a reasonable amount of time, so it is time to
choose an architecture for our forward network.
There are uncountable possible architectures, so in-
stead of guessing, we base ourselves on the litera-
ture.

Given that most convolutional neural network
research is concerned with visual tasks, most ad-
vances have been made in this area. However,
the architectures suited best for these tasks do not
carry over to audio tasks. A big reason for this is
that, whereas in visual tasks each dimension (ver-
tical, horizontal) within an image has a similar sig-
nificance, in audio tasks the dimensions (frequency,
time) within a spectrogram have a wholly different
meaning.

In particular, this implies that convolution with
rectangular or square filters, as is common in net-
works for visual tasks, might be suboptimal; it
might be more beneficial to learn filters that only
recognise frequency or time patterns.

Thus, there are several possible general architec-
tures. We could do 2D convolution (which is stan-
dard in visual tasks), where our filters convolve over
both axes. Time convolution, where the whole fre-
quency range is collapsed into a size of 1 by the
first convolutional layer (which therefore must span
the entire frequency range) and subsequent layers
only convolve and pool over the time axis, is an-
other possibility, as well as frequency convolution,
where instead the time range is collapsed and the
frequency axis convolved and pooled over.

Note that the ‘collapsing’ convolutional layer
need not be 1 x 16 (if it collapses time) or 201 x 1
(if it collapses frequency). Indeed, it could be ben-
eficial to have filters such as 8 x 16, or 201 x 3,
to be able to capture time patterns inside a small
frequency range (instead of, initially, only within
one bin) and local variations in frequency (instead
of initially only being able to reason with ‘snap-
shots’), respectively.

Different axes of convolution provide different
benefits to the network. By the nature of convolu-



Network Depth H Accuracy ‘
Time convolution 2,2 48.7%
Frequency convolution, 2.9 56.4%
large filters
Frequency convolution 2,2 59.1%
Frequency convolution,
deeper, fully-padded, 4,3 61.8%
pooling overlap .
Frequency C(.)IIVOhIthIL 3.4 62.6%
deeper, pooling overlap

Table 2: Classification accuracies for several well-
performing architectures. The depth column indi-
cates the number of convolutional and fully con-
nected layers, respectively.

tional neural networks, the network becomes invari-
ant to translations of the input across the axis being
convolved over. Thus, frequency convolution learns
a representation concerned with certain (combina-
tions of) time patterns within frequency bands, but
is invariant to the pitch or base frequency of these
patterns. Conversely, time convolution learns cer-
tain frequency patterns, and reasons with how these
patterns’ activations change over time.

All of these techniques are viable and applicable,
but literature suggests frequency convolution is the
best, followed by 2D convolution (e.g., see Abdel-
Hamid et al. (2013)). However, in the process of
discovering a concrete architecture that worked,
we also ran our own experiments, also indicating
that frequency convolution is superior to time con-
volution (we did not find a well-performing 2D-
convolution network architecture). Test results for
some of the most well-performing architectures can
be found in Table 2.

Full padding, referred to in this table, is de-
scribed in Section 4.2. The large filters refer to, for
example, a 40 x 16 filter instead of an 8 x 16 filter in
the first layer, which caused a larger error rate (see
also Abdel-Hamid et al. (2014)). Pooling overlap
refers to using (in our case) a 5 x 1 pooling region,
instead of a (non-overlapping) 2x 1 window, causing
elements to be in multiple pooling regions simulta-
neously. In the literature, our choice for a stride-2
max-pooling layer is also supported: Abdel-Hamid
et al. (2014) reports that max-pooling outperforms
average-pooling, and that the error rate goes up for
higher strides for phone classification. As point-
wise non-linearity, we use the rectified linear unit
(ReLU), as Zeiler et al. (2013) and Sainath et al.
(2013a) report that rectified linear units work bet-
ter than logistic units (e.g., the hyperbolic tangent
and the sigmoid).

We see that, in our tests, frequency convolution
performs significantly better than time convolution.
Additionally, pooling overlap slightly improves per-
formance, whereas full padding decreases it (but
only a little). Interestingly, our final architecture
uses a minimal amount of distinct filters per con-

volutional layer (as few as 8 in the first layer), and
still achieves very decent performance (over 60%
accuracy, whereas 75-85% is the state of the art).
This is helpful if we want to use our forward net-
work as a model for our autoencoder, as too many
hidden units cause the network to learn the simple
identity function, instead of learning a representa-
tion of our data. For this work, the network variant
with full padding (with 61.8% accuracy) was chosen
to be the forward network, for reasons explained in
Section 4.2. See Figure 2 for details on our archi-
tecture.

4 Convolutional autoencoders

Now that we have an understanding of regular,
forward convolutional neural networks, and have
found an architecture with very decent classifica-
tion performance, it is time to turn our attention to
our main objective, the convolutional autoencoder.

4.1 Objective

An autoencoder, in general, is a type of neural net-
work aimed at the unsupervised learning of higher-
level representations of data. A supervised neural
network attempts to learn to produce certain tar-
get responses T (e.g., a class assignment) for cer-
tain inputs X. For an autoencoder, T is equal to X.
In other words, an autoencoder is a model trained
such that its output mimics its input as closely as
possible, where closeness is commonly defined by
the Euclidean error.

This seems like a rather trivial task. However,
the difficulty is caused by the fact that the net-
work’s hidden layers (in most cases) grow succes-
sively smaller in size, before they grow larger once
again so that the representation size returns to the
original input size. In other words, an autoencoder
must learn a compressed representation of the data.
It has been found that for regular autoencoders
with at most one layer using the sigmoid activation
function, and all (other) layers linear, the optimal
resulting network is strongly related to the princi-
pal components analysis, or singular value decom-
position, of the data set (Bourlard, 2000). In other
words, regular autoencoders are able to correctly
learn a meaningful representation of the data.

4.2 Inverting layers

Regarding autoencoders as a representation learner
gives rise to the concept of the encoder-decoder
view of autoencoders. Essentially, the autoencoder
consists of two parts: the ‘encoder’, which converts
the data into a meaningful, compressed representa-
tion, and the ‘decoder’, which reconstructs the orig-
inal input from the output of the encoder. The en-
coder learns an encoding function from our phones
to these smaller representations, which the decoder
attempts to invert as well as possible. For regular



Figure 2: Our finalised full-padding architecture with convolution over the frequency axis. Denoted sizes
refer to the feature map sizes (i.e., output sizes) of each layer. Each pooling layer and fully-connected
layer is implicitly followed by a relu unit, and there is a dropout layer with dropout rate 0.9 between the
‘feature extraction’ and ‘classification’ parts. Adapted from Churchman (2015) with permission.

(fully-connected) neural networks, this boils down
to using fully-connected layers that invert the di-
mension change of the encoder’s layers, one by one:
if the an encoder layer has connections from 128
inputs to 1000 outputs, then its corresponding de-
coder layer is fully-connected with 1000 input units
and 128 output units. Weights are then simply
learnt with back-propagation.

Note that, in many autoencoder models, there is
a certain symmetry between the encoder and de-
coder. If we can approximately invert every en-
coding layer in isolation, we can arrange the layer-
wise decoders in the reverse order as the encoders
they attempt to invert, and append this sequence
of decoders to our encoder model. Given that every
single encoder-decoder layer pair is approximately
reduced to the identity function, it is expected that
the entire network also approximates the identity
function, or in other words, that is will form a de-
cent autoencoder.

Now, we might be able to simply do this us-
ing regular neural networks, as above, but convo-
lutional neural networks work differently than reg-
ular neural networks. To be precise, convolutional
neural networks are a special case of regular neural
networks, so they bring extra limitations with them
(in particular, not all regular neural network layers
can be used in convolutional neural networks, as
in the latter weights are shared and operators are
(mostly) applied locally, placing extra constraints
on the possible connections).

In general, convolutional neural networks can
have convolutional and pooling layers, as well as
layers that compute activation functions, layers
that implement dropout, etcetera. 1 x 1 fully-
connected layers can simply be decoded using other
1 x 1 fully-connected layers, but the problem with
convolutional autoencoders is that this does not
hold in a straightforward way for convolutional and
pooling layers.

The reason convolutional and pooling layers can-
not be decoded by other instances of themselves is
that, whereas they generally decrease the ‘image
size’ (i.e., size of one spectrogram or feature map),
they cannot increase it, and neither can other types
of layers allowed in convolutional neural networks.
Furthermore, the only cases when the image size
is not decreased by such a convolutional or pool-
ing layer are when its ‘stride’, or subsampling rate,
is 1 (i.e., no subsampling is performed) and when
its filters or pooling regions are fully padded (i.e.,
the total horizontal padding is 1 less than the fil-
ter width, and similarly for the vertical direction).
However, for pooling layers a subsampling rate e of
1 somewhat defeats their purpose (which, after all,
is subsampling), so for all practical purposes, we
can assume that the representations shrink as we
go through the network, but then it cannot grow
back to its original size, as no supported type of
layer is capable of this. Therefore, our output will
have different dimensions than our input, causing
the Euclidean error to be undefined and thus the
task absolutely impossible without further work.

4.2.1 Convolutional layers

Therefore, we first need to understand how to ap-
proximately invert convolutional and pooling lay-
ers. Firstly, for convolutional layers we ought to
limit ourselves to fully-padded layers with stride 1,
as described above. The lack of stride for convo-
lutional layers is not particularly constraining, as
most networks use pooling layers for their subsam-
pling. Full padding increases the number of base
positions from where convolution can take place,
which makes the network train slightly more slowly
as higher-level representations are simply larger.
Care must be taken, however, in simply chang-
ing all convolutional layers to be fully padded, as
what was previously a 1 x 1 representation fed into
fully connected layers is now larger (e.g., 22 x 2),



since the size decrease of convolutional layers was
blocked out. This is a problem, because now the
(previously) fully-connected units (as they use 1x 1
filters) are no longer fully connected.

As all these units in essence code for the same fea-
tures as in not-fully-padded networks, and we (for
classification) are only interested in whether these
features are present or not (and not in where they
were present, as the remaining base positions were
only artificially introduced by padding), we simply
insert another pooling layer before the 1 x 1 fully-
connected units, which pools the entire feature map
(in this case, 22 x 2) back to a 1x 1 size per channel.
In our tests (see Section 3.3), this conversion from
unpadded convolutional layers to their fully-padded
versions did not significantly impact classification
performance of the forward network. See Figure 2
for the architecture used.

The advantage of using stride-1 fully-padded con-
volutional layers is that, as mentioned above, this
allows for convolutional layers that learn to invert
another convolutional layer. Thus, we do not need
to invent and implement a completely new layer to
be able to invert convolutional layers.

However, we do need to think about how we at-
tempt to invert convolution. It is possible to sim-
ply learn these filters with back-propagation, but
it might be beneficial to consider other options in
which we can be ‘smart’. In particular, we should
consider the ‘convolutional transpose’ (Zeiler and
Fergus, 2014) as an option, which is aimed specif-
ically at inverting convolution (though within the
context of ‘deconvolutional networks’ (Zeiler et al.,
2010), not autoencoders). The convolutional trans-
pose, apart from permuting the input and output
channel dimensions of all filters (simply to make
the two mathematically able to be combined), flips
all filters in the horizontal and vertical directions.
This is equivalent to traversing the filter elements
in reverse order in every input-output channel pair.
The hope is that this sufficiently approximates the
identity function, i.e. that convolution using ‘trans-
posed’ filters approximately inverts regular convo-
lution. See Section B.8.1 for a more mathematical
description.

Note that, for non-square filters, the term convo-
lutional transpose is a slight misnomer, since taking
the regular transpose of the filters changes the di-
mensions of our filters, but this might not be legal.
For example, applying a 5 x 1 filter on 20 x 1 data is
quite possible, but if the transpose gives us a 1 x 5
filter, it is mathematically not allowed or possible
to apply this transposed filter to our data. Never-
theless, for ease of reading we will sometimes refer
to it simply as the transpose, or filter transpose.

Now, we can apply this convolutional transpose
in different ways in autoencoders. For example,
we can initialise decoder filters to the transpose of
the corresponding encoder filters before training.
We could even fiz the decoder to use the encoder’s
transposed filters, so that after every update of an

encoding convolutional layer, the corresponding de-
coding layer is again set equal to the transpose of
the updated encoding filters. These methods, and
more, are described in more detail in Section 4.3,
and I compare these approaches in the experimen-
tal part of this thesis; see Section 5.

4.2.2 Pooling layers

Next, we want to invert pooling layers. As here,
subsampling is involved, we cannot invert pooling
layers with pooling layers, or any other supported
type of layers, because we need to be able to in-
crease the size of our data points. This means we
need to define a new unpooling layer of some sort,
that attempts to invert the pooling layer as well as
possible.

For this, we use a technique called switch un-
pooling (Ranzato et al. (2007), Zeiler and Fergus
(2014)), aimed specifically at invert max-pooling
layers (the most common type of pooling layers). In
max-pooling, we examine all input elements inside
the pooling region (which is shifted over all possi-
ble base positions as in convolution), and set the
output element for that base position to be equal
to the maximum of these input elements. In other
words, we map the elements of each pooling region
to their maximum, and shift the pooling region over
the input in a convolutional manner.

Now, to use switch unpooling, we additionally
save which element was the maximum (breaking
ties in some consistent way) when traversing the
pooling layer. We call these locations of maximum
elements the ‘switches’. Then, in switch unpool-
ing, the input data contains the (decoded) value
of these maximum elements, so together with these
switches, in theory we can perfectly invert max-
pooling, for these maxima, by setting the unpooled
value of these maximum elements to the input of
the unpooling layer. However, we have no knowl-
edge of any other elements than the recorded max-
imum, except that their value is lower than our
maximum. Therefore, we simply set all unpooled
non-maximum elements to zero, since our data is
centred around zero. See Section B.8.2 for a math-
ematical description.

Whereas switch unpooling works well for autoen-
coder performance, it may do so in an unintended
way. Information containing the switches is ‘leaked’
from the first pooling layer (the second layer of the
encoder, and of the whole network) to the corre-
sponding decoding layer (the second-last layer of
the decoder, and thus of the entire network) with-
out any intermediation by other layers. Put in an-
other way, we are not purely decoding the encoded
representation of the data, but we are making use
of information internal to the encoder not normally
available to ‘the outside’.

To illustrate that this is indeed the case, and that
this is unintended, consider the following experi-
ment, due to Churchman (2015). Convert a non-
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Figure 3: Results for the ‘chirp’ experiment, for an
example autoencoder. The ‘mangled’ output refers
to the condition where the encoded representation
is zeroed out. Used with permission from Church-
man (2015).

speech sound (in his case, a ‘chirp’) to the learnt
representation, using the encoder. During this pro-
cess, the switches are saved, and sent to the de-
coder. Now, before starting the decoding process,
zero out the output of the encoder, thereby leav-
ing only the switch information available to the de-
coder. It would be expected, and perhaps desired,
that this would dramatically decrease the quality
of the reconstruction, as the output of the encoder
‘should’ be the main body of information for the de-
coder. However, instead we find a remarkably good
reconstruction of the input ‘chirp’, even though the
only information we have about our input is con-
tained in these switches. This generalises, to some
extent, to speech sounds from our actual data set,
as well, though for those especially there were prob-
lems in the frequency bands where no input signal
was found. See Figure 3.

The amount of information kept in these switches
may be disadvantageous for the representation
learnt in the encoder, as the autoencoder could
overly rely on this information for performance, in-
stead of maximising the information content of its
output. This is especially bad for our main goal,
classification, as the classifier only has access to the
encoder’s output, and not to the switches (see Sec-
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tion 4.4 for how exactly a trained autoencoder can
be used for classification).

As such, we may want to reconsider our use of
switch unpooling in our autoencoders. However, if
we want to remove the switch information from the
equation, that leaves only the value of the maxi-
mum element per pooling region available, and the
resulting unpooling layer has no way of knowing
where this maximum element resided in its pooling
region. Furthermore, we cannot make any approxi-
mations such as simply mapping everything to zero
(or some other fixed value). Especially in the case
of zero, this would be disastrous for further decod-
ing due to the multiplicative nature of convolution
(after all, 0- ¢ = 0,Vc € R), which would leave only
biases to work with. For any other fixed constant,
we cannot even know whether it is in the desired
range of values or not (e.g., a fixed output value
of 1 is a horrible choice if the network happens to
output values between -0.1 and 0.1).

These considerations give rise to the blind up-
sampling method, where we simply give all ele-
ments in a pooling region the recorded value of their
maximum (as this is the only value other than zero
we know is of the correct order of magnitude). As
some elements may be part of multiple pooling re-
gions, we have to slightly adjust this definition to
make this well-defined: the unpooled value of an
element Y;;q, is the average of the input values cor-
responding to all pooling regions which Yj;q is a
part of. In practice, this is a fairly terrible inver-
sion, but we simply do not have any more knowl-
edge available. Blind upsampling is mathematically
described in Section B.8.3.

I have implemented switch unpooling in
C++/CUDA inside the existing MatConvNet
toolbox, so that max-pooling layers save their
switches, which can be used by the all-new switch
unpooling layers in our networks. Additionally, I
have implemented blind upsampling in a similarly
new unpooling layer. Thus, we can rely on switch
unpooling and blind upsampling to invert max-
pooling layers in our autoencoder experiments
in Section 5, and their performance will also be
compared there.

4.3 Training methods

Now that we can approximately invert all necessary
layers, it is possible to train autoencoders. How-
ever, how exactly is it possible to learn meaningful
representations with these models, without know-
ing anything about the data we are seeing (specif-
ically, without knowing the class each data point
belongs to, or having access to an already trained
classification model)? The answer is very simple:
train everything with regard to the reconstruction
error. More specifically, we can randomly initialise
both our encoder as our decoder filters and simply
use back-propagation to learn both of these from
scratch, minimising the Euclidean error between



the reconstruction and input.

However, apart from random initialisation, we
also have the convolutional transpose as an option
to invert convolutional layers. One straightforward
way of using it, is by initialising the decoding fil-
ters to the transposed filters of the corresponding
encoding layer, and then training the network as
usual. Since the transposed layer is expected to be
a good approximation of the inverse of the encod-
ing layer, this should be a fairly decent initialisa-
tion of our decoding filters, given the (in this case)
randomly-chosen encoding filters.

There is also a more extreme version of using the
convolutional transpose, which relies on this tech-
nique even more. In essence, instead of merely ini-
tialising the decoder using the filter transpose and
allowing them to diverge during training, we fix the
decoding layer’s filters to always be the transpose
of the corresponding encoding layer’s filters. Thus,
if the encoder is updated during training, the de-
coder is correspondingly updated, such that the de-
coder again uses the current filter transpose of the
encoder’s filters.

This requires not only the ability to merely turn
off training for convolutional layers, but it also re-
quires a layer that is constantly updated to be the
transpose of the corresponding encoding layer. 1
have modified MatConvNet’s Matlab code accord-
ingly, adding the ability to turn off learning of filters
and biases (separately) in specific layers, if needed,
and adding a convolutional transpose pseudo-layer,
which uses the existing code of convolutional layers,
but which is constantly updated to be the encoding
layer’s convolutional transpose as described above.

Given that we now have the ability to turn off
training for specific layers, we can experiment with
this as well. For example, by randomly initialising
the encoder’s weights, and turning off learning, it is
possible to evaluate the performance of a decoder
given a randomly-chosen encoder. It is, of course,
also possible to train the encoder that is best in-
verted by a randomly-chosen decoder, but this is
not of any particular use, given that we are trying
to learn meaningful representations.

All of the above training methods are relatively
simple: we lay down a network architecture, pos-
sibly fix certain filters to certain values (e.g., by
turning off learning or fixing a decoder filter to the
transpose of an earlier encoder filter), and start
training. In contrast, the stacked autoencoder is
an autoencoder that is trained step by step, suc-
cessively higher into the autoencoder hierarchy. For
better understanding stacked autoencoders, we in-
troduce the term ‘autoencoder unit’ (or just ‘unit’).
An autoencoder unit consists of an encoder and
decoder part, and represents one ‘level’ in the au-
toencoder hierarchy. Its encoder is comprised of
one convolutional layer, one max-pooling layer, and
finally a rectified linear unit, a non-linear activa-
tion function that maps negative numbers to zero,
and leaves non-negative numbers unchanged. Con-
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Figure 4: One autoencoder unit. Its encoder con-
sists of a fully-padded stride-1 convolutional and a
pooling layer, implicitly followed by a ReLU layer.
Its decoder consists of an implicit ReLLU layer, an
unpooling layer and a fully-padded stride-1 convo-
lutional layer, all three aimed at inverting the corre-
sponding encoder layer. Made using material from
Churchman (2015) with permission.

versely, its decoder starts with a rectified linear
unit, followed by a switch-unpooling layer and a
convolutional layer. See Figure 4.

Now, using our forward network’s architecture as
a model for an autoencoder, we get an autoencoder
with four units if we train up to the point where the
data size is down to 1 x 1. The ‘regular’ training
method would be to train the entire network right
from the start, which means we train these four
units simultaneously. However, the stacked autoen-
coder works differently. First, train only the first
(i.e., outermost) unit until convergence. Then, be-
tween the trained encoder and decoder of the first
unit, insert the (randomly initialised) second unit,
and train until convergence again. Repeat until all
layers have been trained.

There are two alternative versions of this training
method, which differ in how the units are trained
when there are multiple units. In the original
stacked autoencoder, previously-trained units are
fixed, so units cannot be altered after they have
been trained until convergence. This corresponds
to the first unit learning some fixed representation
R (X) of the data X, and the next unit learning
a higher-level representation Ry (R4 (X)) of R4 (X).
However, it is possible that the representation R;
is useful for a single-unit autoencoder, but not op-
timal for a two-unit system. Thus, a variant of
the stacked autoencoder could initialise the outer-
most unit to the learnt representation R, instead
of fixing it. This way, both units can be trained
together until convergence. The newly-added unit
can still make use of the previously-learnt represen-
tation R, but if there is a first-unit representation
R’; that is more useful for two-unit autoencoders
(i.e., R2(R’1(X)) is more informative), the system
can still favour R’; over Ry, instead of being forced
to use R;.



4.4 Classification

Now that we are able to train convolutional autoen-
coders, it is time to use them for our final objective:
classification. With the convolutional autoencoder,
we should be able to learn meaningful representa-
tions of our data set, but how do we utilise these
to decide to which class a certain spectrogram be-
longs?

One straightforward way is to take only the en-
coder part of a trained autoencoder, and use it to
initialise the filters of part of a forward network
before training it. For example, for our forward ar-
chitecture, four-unit autoencoders can be trained,
and its filters used to initialise the first four con-
volutional layers of the forward network. After ini-
tialisation, all layers are trained. This technique is
called pretraining, and is a common application of
autoencoders (e.g., see Masci et al. (2011), Tan and
Li (2014)).

However, there is also a method that makes even
more use of the learnt representation. Similarly to
the stacked autoencoder, instead of merely initial-
ising the first units to those of the trained encoder,
we can fix them to that value, not training them
any further. This enforces that the learnt repre-
sentation is used, while the fully connected layers
(which are not part of the autoencoder) are still
able to learn to properly classify the data.

5 Experiments

Until now, we have gathered many ideas about in-
verting the convolutional layer, the max-pooling
layer, and about how to train an autoencoder. It is
now time to put these ideas to the test, in several
series of experiments.

5.1 Inversion and small autoen-

coders

The first series of experiments is aimed at under-
standing how convolutional layers can best be in-
verted. Specifically, the value of the convolutional
transpose as an inverter of convolutional layers is
investigated, as well as small-scale autoencoder ex-
periments intended both to serve as a baseline for
the inversion experiments and to examine how dif-
ferent styles of autoencoders compare to each other,
and to the inversion experiments. Switch unpooling
was used in these experiments.

We test the decoding power of three different
techniques for inverting the convolutional layer.
Firstly, we take for the decoding convolutional layer
a non-learning filter, which is fixed to be the con-
volutional transpose of the corresponding encoding
layer at all times (1). Secondly, instead of fixing
the decoder’s filters to the transpose, we could in-
stead only initialise these filters to the encoder fil-
ters’ transpose, and subsequently train the decoder
(2). This, crucially, allows the decoder to diverge
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from the transpose if this would be beneficial to the
autoencoder’s performance. A third option, used as
a baseline, is to not use the transpose at all, and to
simply train randomly-initialised filters (3).

The convolutional transpose requires filters to
take the filter transpose of, so we used the trained
filters of our forward network for our encoder fil-
ters, as we already know these learn some kind of
meaningful representation. However, it is not cer-
tain if this representation is anywhere near optimal.
Therefore, apart from training a decoder for this
fixed encoder representation (a), one condition also
allows the encoder to be trained (b).

As with the type of decoder, this ‘variable’ in our
experiment also deserves a baseline. This immedi-
ately brings us into the realm of autoencoders, as
we will no longer use the filters trained via super-
vised learning, but instead we will use a randomly-
initialised encoder.

I tested a number of autoencoder techniques.
Firstly, as a baseline for autoencoders, both the en-
coder and decoder are randomly initialised and not
trained. It is important to have a completely ran-
dom baseline, as random representations already
lead to decent performance, when followed by fully
connected layers. Secondly, another baseline was
used, where the encoder was randomly initialised
and not trained, but the decoder is instead fixed
to be the convolutional transpose. A third baseline
was used, where the encoder is fixed to the trained
encoder from our forward network, but the decoder
is randomly-initialised and not trained.

Then, akin to the combination (1b) above, we
evaluate how well the convolutional transpose can
be used by an encoder, by fixing the decoder to
the transpose of the encoder, and then training a
randomly-initialised encoder. Conversely, and sim-
ilarly to combination (3a) above, we evaluate well a
random representation can be decoded by randomly
initialising and fixing an encoder, while training a
randomly-initialised decoder freely. Lastly, we try
to obtain an estimate for optimal performance, by
randomly initialising both the encoder and decoder,
and training both freely (similar to combination
(3b) above).

The above discussion only describes how the en-
coder and decoder filters are initialised and, possi-
bly, related. By doing so, it left out the concrete
network architecture, because this is another ex-
perimental parameter, used to find out how cer-
tain techniques scale, and interact with pooling and
ReLU layers in a network. Since we have a large
array of experimental conditions to test, we keep
these networks as small as possible, while still rele-
vant, so it is still feasible to train all experimental
networks until convergence or a fixed boundary (50
epochs), whichever comes earlier. Note that exact
filter sizes and pooling regions were taken from our
forward network.

The first architecture we used is concerned only
with convolution, as it consists of one encoding con-



volutional layer and a second, decoding convolu-
tional layer (I). For the second architecture, we look
at a one-unit network, where the encoder consists
of a convolutional layer followed by a pooling layer
and a ReLU, and the decoder consists of a ReLL.U,
a switch unpooling layer, and a decoding convolu-
tional layer (II). The third architecture (III) is a
two-unit system, consisting of two of the encoders
that were used in (II), in a row, followed by the
decoder, which contains (II)’s decoder twice.

5.2 Full-scale autoencoders

The second series of experiments focusses mainly on
two issues raised in Section 4. Firstly, we compare
blind upsampling and switch unpooling in autoen-
coders. The outcome is very likely to be in favour
of switch unpooling, since more relevant informa-
tion can be used. However, the definitive judge-
ment will have to wait until after the next series of
experiments, described in Section 5.3, where repre-
sentations learnt using these unpooling techniques
are compared. Secondly, the stacked autoencoder is
compared against the regular training method (i.e.,
initialising and training all layers together). Two
versions of stacked autoencoders were described in
Section 4.3, a ‘strong’ version which fixed the pre-
viously learnt representations and a ‘weak’ version
where the representations are used in initialisation,
but then further trained; they are briefly compared.
A third question is also addressed (for the regular
training method), namely whether the decoder, at-
tempting to recreate the forcedly positive (because
of the encoder’s ReLU layers) inputs to the cor-
responding encoding layer, should also contain a
ReLU of its own, or if alternatively a decoding unit
should consist only of an unpooling layer followed
by a convolutional layer.

As baseline, networks were randomly initialised
and not trained, in all combinations of using switch
unpooling or blind upsampling, and keeping or dis-
carding the ReLU layers in the decoder.

As network architectures, we start with a regular
one-unit system and build our way up, adding units
in the middle as with the aforementioned two-unit
system. We run these tests for systems of one, two,
three and a maximum of four units, as after the
fourth unit the fully-connected part of the network
starts, and it reasons only with 1 x 1 data (which
is even harder to decode).

5.3 Classification

The third and last series of experiments is intended
to provide insight into autoencoders, as used for
classification. Specifically, here we test the classifi-
cation performance of several networks and training
methods, instead of looking at the Euclidean error
between reconstruction and input. The classifica-
tion performance of a network that uses autoen-
coder should also logically be linked to the quality
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of the representation learnt by the autoencoder, as
high-quality, meaningful representations of the data
will be ‘easier’ to reason about for the networks’
fully-connected layers than a low-quality represen-
tation with less informative value.

These experiments answer some of the same
questions as in the previous section, but now in
the context of a classifier. Specifically, we com-
pare the classification performance achieved when
using a regular autoencoder, versus a stacked au-
toencoder, and furthermore we compare the classi-
fication rate when blind upsampling versus switch
unpooling was used while training the autoencoder.
Additionally, we compare the two major methods
of using an autoencoder for classification, namely
by using the autoencoder’s encoder as a fixed rep-
resentation, and by pretraining, where the forward
network’s filters are merely initialised to the au-
toencoder’s encoder, but are allowed to be trained
further (see also Section 4.4).

As baseline, a randomly-initialised encoder is
used in both conditions. Note that using pretrain-
ing with a randomly-initialised encoder is equiv-
alent to using no autoencoder at all (i.e., simply
training the classification network with randomly-
initialised weights).

6 Results

As the tables containing experimental results are
too large to included here, they can be found in-
stead in Appendix A.

6.1 Inversion and small autoen-

coders

The first thing we notice is the enormous error when
we fix the encoder to the one from our trained net-
work, and simply use the fixed convolutional trans-
pose as decoding filters. Given that, on average,
a spectrogram lies 3.1 Euclidean distance from the
null spectrogram (which is also the average spectro-
gram, as we use zero-centred data), and even a com-
pletely randomly-initialised fixed network achieves
a Euclidean error of 8.81 on the small convolution-
followed-by-transpose network, the average error of
107 for this small network, only by using the fixed
transpose, is gigantic.

Thus, clearly, something is wrong with this par-
ticular set-up. Given that even this simple set-up
experienced these large errors, either the encoding
filters taken from our forward network employ a
‘bad’ representation, or the transpose is not actu-
ally a good inverse for convolution. Given that ei-
ther allowing the encoder to be trained, or allow-
ing the decoder to deviate from the transpose dur-
ing training already returns performance to a more
normal order of magnitude, the case could be made
that both the encoder is ‘bad’, and the transpose is
a poor approximation for the inverse of convolution.



However, other experiments point out that, while
the forward network’s representation is indeed sub-
optimal, the transpose not approximating the in-
verse of convolutional layers well is the main
cause of the abysmal performance of the simple
convolution-followed-by-transpose set-up. There is
a slight indication of this when we initialise our ex-
periment to this network, and then train either the
encoding or decoding filters. If we train the en-
coder, but leave the decoder fixed to the encoder’s
transpose, the result is a Euclidean error of 3.75
on the small network. If we instead train the de-
coder, however, and leave the encoding filters fixed
to the forward network’s trained ones, we obtain
a Euclidean error of 2.88. More conclusive evi-
dence is obtained when not merely initialising filters
to the trained forward filters and their transpose,
but when they are randomly initialised and then
trained. Randomly initialising the encoder while
keeping the decoder fixed to the transpose leads
to a Euclidean error of 2.90 after training, whereas
training a randomly-initialised decoder for our fixed
forward encoder gives us a network that performs
significantly better, with a Euclidean error of 0.39.

More conclusive evidence that the transpose is
not a good approximate inverse comes from our
baselines. If we randomly initialise an encoder
without training it, while using the (fixed) trans-
pose for the decoder, we get a Euclidean error of
28.7. If we replace the transpose by a completely
random decoder, we get the (significantly better)
Fuclidean error of 8.81.

All this evidence suggests the convolutional
transpose is somehow rather worthless for recon-
struction. However, a closer look at what the net-
work actually outputs reveals the truth: the net-
work’s reconstructions actually do look remarkably
similar to their input for lower layers (see Figure 5).
The reason the Euclidean error skyrocketed was not
due to the convolutional transpose not being use-
ful, but it was caused by the fact that the network’s
output varied from the input in intensity. To illus-
trate this, consider the arrays [1, -4, 3, 7] and [2,
-8, 6, 14]. It is easy to see that the second ar-
ray is twice the first, and thus we would find this
a very good reconstruction: it captured the varia-
tions in the input in perfect detail. However, taking
the Euclidean error tells us something different: the
Euclidean error here is /75 ~ 8.7, which is not par-
ticularly good. To summarise, the Euclidean error
concerns itself with the specific numbers, whereas
the transpose (and, plausibly, us human judges of
our networks’ performance) cares more about the
‘shape’ of the output. The transpose, in this case,
serves as an example to suggest that the Euclidean
error might not be the best choice of error functions
for autoencoders.

If we look further into the results table, we
also find information about the representation as
trained by the forward network. Specifically, we
see that it is clearly not optimal for reconstruction.
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Figure 5: An example reconstruction of a one-unit
network using the transpose as decoder

Without training and using a randomly-initialised
decoder, our trained encoder leads to a Euclidean
error of 17.8, whereas a correspondingly random en-
coder gives an error of 8.81. For networks with a de-
coder fixed or initialised to the encoder’s transpose,
allowing the encoder to train its representation, in-
stead of fixing it to that of the forward network,
significantly increases performance, indicating the
learnt representation is not optimal.

However, more definitive results can be obtained
by looking at when the encoder is randomly ini-
tialised, and then trained. We see that, in these
cases, the resulting networks (“real” autoencoders,
as they do not make use of the network trained
in a supervised manner) perform significantly bet-
ter than their equivalents when the encoder is ini-
tialised or fixed to the forward network’s.

This is a more general trend in the table. Not
only does randomly initialising the encoder improve
performance compared to when it is initialised to
the trained, classification-purpose representation,
randomly initialising the decoder’s filters also sig-
nificantly improves performance compared to when
they are initialised with the transpose. It is to be
expected that allowing the network to learn makes
it perform better than keeping parts of it fixed, but
these results seem to suggest that random initiali-
sation is superior (in terms of Euclidean-error per-
formance) over more informed initialisation.

Lastly, there is one general but conflicting trend
related to the network architecture used. It is only
expected that 2-unit networks perform less well
than smaller networks, as they have more parame-
ters to learn and they throw away more data. How-
ever, in about half the examined networks, the full-
unit architecture (i.e., encoding convolution, max-
pooling, ReLU, switch unpooling, decoding convo-



lution) performs noticeably better than the smaller
architecture, which only has an encoding convolu-
tional layer followed by a decoding one. Further
tests (not shown) have indicated that a larger pool-
ing ‘stride’, or subsampling rate, enhances this ef-
fect.

Looking closer, we see that in fact, all networks
for which the pooling layer seems to increase per-
formance (or at least not decrease it) either promi-
nently feature the convolutional transpose, or use a
completely random, untrained encoder or decoder.
Judging by our earlier observations, this means the
‘bad’ networks seem to benefit from pooling. This
has a rather simple reason: pooling followed by
switch unpooling pulls all values but the pooling
regions’ maxima towards zero, which is fixed to be
the average for all input elements (since they are
zero-centred). Thus, given a network that performs
badly, pulling part of the output towards the av-
erage could increase performance over relying on
‘wild guesses’ or (in the case of the convolutional
transpose) a technique suffering from an incompat-
ibility between its main benefit (giving an output
that ‘looks’ like the original input) and the mea-
surement device (the Euclidean error, which is con-
cerned with absolute numerical differences). We
also see that the better networks among the exam-
ined ones, including mainly the autoencoders and
the experiments with more ‘randomness’ (either in
learning or in initialisation) in them, do not bene-
fit from the pooling layer, and indeed they become
worse, presumably because their fairly-correct re-
construction is being pulled back towards the aver-
age (which lies farther away from their input than
the reconstruction they generated).

6.2 Full-scale autoencoders

Here, the most noticeable effect is that autoen-
coders using blind upsampling are dominated vir-
tually everywhere by their equivalents using switch
upsampling, including when a random representa-
tion is used and not trained. This is the expected
outcome, as switch upsampling has access to rel-
evant information that blind upsampling cannot
make use of. Switch upsampling is a perfect in-
verse for all maximum elements, and outputs the
average for all non-maximum elements, whereas
blind upsampling also only inverts the maximum el-
ements correctly, but greatly overestimates all non-
maximum elements.

This can also clearly be seen if we examine the
actual reconstruction. If we look at the reconstruc-
tions given by networks using blind upsampling, we
notice that the output is always the same, and does
not actually depend on the input: these networks
have simply learnt to output the average spectro-
gram, regardless of input. Networks with switch
upsampling perform better, and commonly produce
recognisable reconstructions (though definitely not
always).
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Whether the poor performance of blind-
upsampling networks is caused by a bad encoder
(which uses a null representation), or by a decoder
that has not properly learnt to make use of the in-
formation in the encoder’s representation, will be
partially answered in Section 6.3: if a classifica-
tion network fails to find information with predic-
tive value in the encoder’s output, then the encoder
clearly has not learnt a proper representation of the
data. If, however, a classification network can make
use of the encoder, even though the autoencoder’s
decoder could not, then clearly the autoencoder’s
decoder must be at fault, possibly due to blind up-
sampling being inadequate for decoding.

In the results, we can also see that strongly-
stacked autoencoders seem to be outperformed by
regular autoencoders, while weakly-stacked autoen-
coders achieve a lower (or at least similar) Eu-
clidean error than both for smaller network sizes,
when switch unpooling is used. Four-unit networks
proved significantly harder than three-unit variant
for all but the non-stacked, switch-unpooling net-
works, slightly weakening this conclusion.

Again, we can examine the actual reconstructions
made by the networks. Here, we see a slightly dif-
ferent sight: strongly-stacked autoencoders, whose
reconstructions are mostly decent, actually perform
better than weakly-stacked autoencoders, whose re-
constructions have, as it seems, activations ran-
domly spread over the spectrogram with no clear re-
lation to the input. However, regular autoencoders
beat both types of stacked autoencoders, with re-
constructions that can be very good.

No significant difference was found between keep-
ing and discarding decoder ReLU layers, except
for the baselines where no actual training took
place. Here, discarding the ReLU layers nega-
tive impacted performance, which can be easily ex-
plained by the fact that ReLUs pulled the (random)
feature maps more towards zero, by zeroing out all
negative values. Since zero is the average, keeping
the ReLU layers therefore improved performance,
but not in a way that provides insights into the in-
ner workings of normally-functioning autoencoders.

6.3 Classification

Unfortunately, we see that the baseline of random
initialisation has not been surpassed. However, one
of the tested networks with pretraining did end up
with only 5% higher train error, and only 2% higher
test error, which is quite close.

Expectedly, we that networks with pretraining
mostly perform better than those with only a fixed
encoder, as pretraining allows the network to find
an even better encoder representation than the one
trained from the autoencoder. There are two ex-
ceptions to this, but they are both networks that
evidently do not have a good representation of the
data, as they are the two worst-performing net-
works. Therefore, they do not form particularly



strong evidence against this conclusion.

However, it is interesting that the difference be-
tween the fixed-encoder and pretraining conditions
can vary between zero (or slightly negative) and
nearly a massive 30% of classification performance.
This indicates that, when a given representation
may be fairly bad for reconstruction, it can still be
a good initialisation point.

Apart from this expected conclusion, no clear
and consistent patterns can be found. Blind up-
sampling is outperformed by switch unpooling on
a regular autoencoder, but beats switch unpool-
ing when using a weakly-stacked autoencoder. The
strongly-stacked autoencoder achieves a lower error
than the weakly-stacked variant for switch unpool-
ing, but there is not enough data (in particular, no
strongly-stacked autoencoder that uses blind up-
sampling) to conclude that this pattern is robust.

7 Conclusion

The main objective of this thesis was to assess the
feasibility of convolutional autoencoders, and (if
found feasible) use them to improve classification
performance. Convolutional autoencoders were in-
deed found to be feasible, and experiments have
been performed to better understand how it per-
forms. However, using them for forward networks
has not shown to be an improvement over random
initialisation.

Nevertheless, this thesis is not one without any
useful results. Importantly, it was found that the
Fuclidean error is, despite being standard, a bad
measure of autoencoder performance. It places
too much emphasis on getting the numbers exactly
right: it may assign a very large error to reconstruc-
tions humans would judge as being near-perfect
(e.g., that of the transpose, which led to outputs
that looked strikingly similar to the input, but re-
turned output elements in a different number range
than the input), and it may assign a (relatively)
small error to an autoencoder that always outputs
the average spectrogram, regardless of its input.

It has also proven to be a bad predictor of ‘useful-
ness’ of the learnt representation. Apart from the
above point, where the Euclidean error does not
predict how much the reconstruction (subjectively)
‘looks like’ the input, it is also not very informative
for the classification performance when the encoder
is used in a forward network. Networks with similar
average Euclidean errors led to radically different
classification performances when used, even when
excluding the random initialisation of a regular for-
ward network (which has a similar Euclidean error
to some ‘real” autoencoders) from the evidence for
this conclusion.

Additionally, how much an autoencoder’s recon-
structions ‘look like’ the input does not seem to be a
robust indicator of subsequent classification perfor-
mance either. For example, one network (blind up-
sampling, weakly-stacked) output the average spec-
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trogram regardless of the input, but still proved of
some use for a classifier. Between two networks
(switch unpooling, weakly-stacked and blind up-
sampling, regularly-trained) whose reconstructions
both looked fairly random and dissimilar to the in-
put, one had a representation so bad the forward
network hardly exceeded chance level even when
the encoder was only used for initialisation (and
thus, subject to training), whereas the other learnt
slowly and was still terrible compared to other net-
works, but still significantly exceeded chance level.

We can conclude from this last point, as well as
the absence of performance improvement when us-
ing autoencoders for classification, that representa-
tions that are good (or optimal) for reconstruction
are not necessarily good (or optimal) for classifica-
tion. The converse can be concluded from the inver-
sion experiments, where random initialisation con-
sistently beat the trained encoder. Thus, we con-
clude that good autoencoder representations and
good classifying representations are distinct, and
one cannot be used to improve another. Instead,
random initialisation beats the more informed ini-
tialisations considered in this work in all of the ex-
periments described here. However, if the results
are genuine (and not caused by possible issues in
the experiment itself, see Section 8), this is not too
worrying for (convolutional) autoencoders and pre-
training in general, as Saxe et al. (2011) already
notes that random weights can work remarkably
well for good architectures, and as such the good
performance of random weights was already known
in literature.

More conclusions can be drawn within the sepa-
rate ‘stages’ of this thesis. The convolutional trans-
pose looks like a good way to invert convolutional
layers, but when measured by Euclidean error, it
does not perform well because its reconstruction
had scaling issues (its elements were not in the same
range of numbers as those of the input). Never-
theless, its reconstructions do look noticeably sim-
ilar to the original input. Switch unpooling works
well in autoencoders, but it does so by ‘leaking’
information through channels other than the ac-
tual representation. The leaked information is so
predictive that chirps could be recognisably recon-
structed from deep inside the network even when
the encoded representation was zeroed out. Blind
upsampling does not have this problem, but instead
leads to terrible autoencoder performance and not
uncommonly to the network not learning a proper
representation of the data (instead opting to always
output the average).

An example of the unpredictiveness of the Eu-
clidean error is that stacked autoencoders are
outperformed by regularly-trained networks when
measured by Euclidean error, but outperform
regularly-trained networks when used in pretrain-
ing for classifying networks. This example also
shows that a representation can be a good initialisa-
tion point without being particularly predictive it-



self, because we also see that these stacked autoen-
coders do not do nearly as well when the autoen-
coder’s representation is fixed. This is slightly ex-
pected: random filters make for good initialisation
points, as consistently proven in all experiments
in this work, but a randomly-initialised encoder is
still far from optimal, as training the encoder can
greatly improve performance.

In summary, the main conclusions of this work
are as follows. Good autoencoder representations
do not make good classifier representations and vice
versa, but random initialisation is beneficial for
learning both. The Euclidean error is a bad pre-
dictor of autoencoder performance and subsequent
classification performance, and whether an autoen-
coder’s reconstructions ‘look like’ the original in-
put is not indicative of classification performance
either. The convolutional transpose works well as
a decoder of convolution, but has scaling issues.
Switch unpooling works optimally, but leaks vital
information an autoencoder can and will rely on;
blind upsampling does not leak information, but
performs badly. Stacked autoencoders are superior
to regular networks when used in pretraining, but
random initialisation is still better than using any
of the autoencoders tested.

8 Discussion

Looking back at the work reported in this the-
sis, the conclusion that using convolutional autoen-
coders for classification does not improve perfor-
mance over a random initialisation, is slightly dis-
appointing, as this was one of the main objectives
of this thesis.

As already mentioned, there are two main expla-
nations for this result. The first is that randomly-
initialised weights, by themselves, already make
for a good and predictive representation. This
has been acknowledged in the literature (Saxe
et al., 2011), and would imply that our autoen-
coders’ representations are not necessarily terri-
ble, they might just not be good enough than
the apparently-informative random ones. How-
ever, there are alternative explanations for why
the random-initialisation baseline was not beaten
in this project (despite getting quite close with pre-
training), and therefore we can formulate new di-
rections of future research.

Firstly, as mentioned in Section 7, the Euclidean
error proved to be rather unhelpful in predicting
both human-judged autoencoder performance and
the usefulness of the learnt representation for clas-
sification. However, it is not only used in the se-
lection of architectures and techniques to experi-
ment with (especially those chosen for classification
experiments), it is also used in the autoencoders’
learning rule during training, thereby influencing
the representations learnt. Thus, the effect of us-
ing different error functions, or autoencoder tech-
niques which change the objective function, should
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be investigated.

Specifically, part of the experiments could be re-
peated using sparse autoencoders Ng (2011), forc-
ing a more compact representation (and therefore,
hopefully, leading to the development of more in-
formative features) that could be easier to reason
with for subsequent classification. Contractive au-
toencoders (Rifai et al., 2011), which are trained
to use a more stable and invariant representation,
might also perform better when used for classifica-
tion. These techniques may also help compensate
for the lack of dropout or a similar mechanism in
the autoencoders, which might have caused similar
features to be learnt across different units.

Another method that could be tried out is the
denoising autoencoder (Vincent et al., 2008), which
artificially adds noise to the training data, so the
learnt representation becomes invariant to it. Sim-
ilarly, data augmentation (e.g., adding noise to the
input, or slightly shifting it) during training might
help the network build more robust representations.

Ultimately, it is impossible to try out all archi-
tectures. Just as our results indicate good clas-
sifier representations may not make good autoen-
coder representations, it is possible architectures
that work well for classification do not always work
well for autoencoders. Then, it is also possible that
this held for the architecture of our forward net-
work, which was, after all, only selected based on
classification performance. Given that only this for-
ward architecture was used as a reference for all
autoencoder architectures tested here, it is possible
the number of filters per layer, the filter sizes, or
the number of layers, was adequate for our classi-
fier, but not for autoencoders (since they do require
more information than classifiers).

It is also possible that our preprocessing caused
problems. Specifically, if a working set of param-
eters for mel-frequency cepstra was found, with a
corresponding network that performed better than
the STET version, the preprocessed data could have
been ‘easier’ to reason with for our autoencoders
and classifiers based thereon.

Some research also suggests that using rectified
linear units as activation function is suboptimal.
Thus, the reconstruction error and possibly the sub-
sequent classification rate could improve when they
are replaced by hyperbolic tangent function (as in
Kayser and Zhong (2015), also on speech data) or
a sigmoid function (as in Ranzato et al. (2007)).
However, sources disagree, as Kayser and Zhong
(2015) reports the hyperbolic tangent improving
performance over rectified linear units, whereas
Zeiler et al. (2013) and Sainath et al. (2013a) re-
port that rectified linear units work better than lo-
gistic units, such as the hyperbolic tangent and the
sigmoid.

In addition, it is possible that the networks con-
sidered here actually do perform better than reg-
ular convolutional neural networks, but that this
was not seen in the 50-epoch experiments consid-



ered here. This would mean that initialisation with
autoencoder filters (or using these as a fixed rep-
resentation) leads to a lowered convergence point
of the test error, for example by combating overfit-
ting or preventing the network to tread into a local
minimum it cannot get out of. This can easily be
seen by letting the considered networks run until
test-error convergence, but was not possible within
this project due to time constraints.

Also, it is possible using ensemble strategies
could have improved performance. For example,
Churchman (2015) reports a decrease in reconstruc-
tion error when averaging over several stochastic
models, or when only one deterministic model is
used, when averaging over reconstructions of the
noise-augmented spectrogram (cf. denoising au-
toencoder). It is not unthinkable ensemble strate-
gies can be used to benefit classification perfor-
mance, as well (e.g., classification by majority
vote).

As a result of the convolutional transpose caus-
ing a large Euclidean error when used for inverting
convolution, representations learnt using this tech-
nique have not been examined for full-scale autoen-
coders, and have not been used for classification. It
would be interesting to see if, despite having a re-
construction in the wrong range (and order of mag-
nitude) of numbers, representations learnt with this
technique are of sufficient quality to surpass ran-
dom initialisation.

In virtually all experiments described in this
work, including both autoencoder and classification
experiments, the recorded test errors were consis-
tently lower than the training errors. This cannot
be explained by the fact that, in the training phase
of an epoch, the network is still improving, causing
the average error of that epoch to include errors
made by worse, slightly earlier versions of the net-
work: not only is the magnitude of this difference
larger than the amount of improvement the net-
work makes in one epoch, this effect even persists
for experiments where no learning takes place at
all. Given that the TIMIT data uses a fixed parti-
tion to divide its data into a training and test set,
a plausible explanation is the two sets do not have
the exact same phone distribution, and that the
test set is somehow ‘easier’ than the training set.
However, a more interesting effect could be at play,
so this is open to investigation.
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A Full experimental results

This appendix contains the full array of results obtained for the experiments described in Section 5
(included as an appendix because the tables are too large to be included in the main body). Both the
encoder and decoder are trained, unless it is explicitly stated that they are fixed. n stands for the number
of epochs the network was trained. In cases where this number is marked with the dagger SymbolT, the
network was manually stopped, as it either fundamentally had no capability to learn (due to only having
fixed filters), or showed that it did not learn for an extended number of epochs (at least 5). For the other
networks, the training phase was capped at the fiftieth epoch.

For reference, the average Euclidean distance from a spectrogram to zero (also the average spectrogram,
as we have zero-centred our data), is 3.1, and the achieved Euclidean errors for random initialisation
without training can be found at the top of each table.

A.1 Inversion and small autoencoders

Table 3: Results of the experiments described in Section 5.1.

’ Euclidean error H conv. + inverse \ 1 unit 2 units
Baseline: no training, encoder fixed and initialised ran- train 9.45 train 3.46 | train 3.61
domly, decoder fixed and initialised randoml test 881 test 3.29 | test 3.37

omly, decode ed a alised randomly el — a—
Baseline: no training, encoder fixed and initialised ran- frain 30.2 frain 4.13 | train 3.40
domlv. decoder fixed £o transpose test 28.7 test 3.85 test 3.20

v x P n=2 n=111 | n=>5
Baseline: no training, trained fixed encoder, decoder fixed train 18.7 train 4.13 | train 13.7
d initialised doml test 17.8 test 3.85 test 12.8
and initialised randomly e - —l
train 114 train 28.8 | train 426
Fixed trained encoder, decoder fixed to transpose test 107 test 27.1 test 400
n =67 n="7 n=>5"
train 3.06 train 1.40 | train 4.75
Fixed trained encoder, decoder initialised to transpose test 2.88 test 1.29 test 4.41
n =44 n = 50 n =234
train 0.39 train 1.28 | train 3.00
Fixed trained encoder, decoder initialised randomly test 0.36 test 1.20 | test 2.82
n =39 n=12 n =47
train 4.02 train 3.21 | N/A
Initialised to trained encoder, decoder fixed to transpose || test 3.75 test 3.04 N/A
n =49 n = 50 N/A
e 1 . e 1 train 1.85 train 1.83 | train 3.06
Inl’?lallsed to trained encoder, decoder initialised to trans- tost 173 tost 173 tost 2.83
pose n = 50 n =50 n =42
e 1 . e s train 0.29 train 0.82 | train 3.06
flnlrtrﬁihsed to trained encoder, decoder initialised ran- tost 0.27 tost 078 tost 2.80
oy n =33 n=50 | n=43
train 3.16 train 3.14 | train 3.18
Encoder initialised randomly, decoder fixed to transpose || test 2.90 test 2.92 test 3.02
n =297 n =117 n=_8"
e T train 0.26 train 1.47 | train 2.32
Far;cc(l)(iirl fixed and initialised randomly, decoder initialised tost 0.24 tost 136 tost 991
Y n =50 n=26 | n=15
P T train 0.14 train 0.73 | train 1.89
dEn;lolder initialised randomly, decoder initialised ran- tost 0.13 tost 0.69 tost 177
oy n=35 n=50 | n=47
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A.2 Full-scale autoencoders

Table 4: Results of the experiments described in Section 5.2. Note that, for single-unit networks, neither
stacked vs. regular training (as there is nothing to stack on), nor the decoder ReLU layers (the encoder
ReLU still exists) actually change anything, so they are only listed once, in the uppermost row with an

equivalent set-up.

’ Euclidean error H 1 unit \ 2 units \ 3 units \ 4 units
. .. TP . train 3.46 | train 3.37 | train 3.35 | train 3.38
Baseline: no training, random initialisation, switch tost 399 | test 391 | test 316 | test 3.15
unpooling, with decoder ReLUs o 1.7T pra 2} o 23[ o 3T
Baseline: no training, random initialisation, switch :2:;11332'35 E:;n?):&l'g:s :2311441'4114
unpooling, without decoder ReL.Us — 3;r e 2% e 33[
Baseline: no training, random initialisation, blind :2311457'36 Ezzén332.4616 Ezz‘in33iz7 Ezzéngi;;lo
upsampling, with decoder ReLUs o 4;r pra— 5% pra 3T - 8%
Baseline: no training, random initialisation, blind Ezzéng)?’;f? EZ:;HS?)l'gO EZ:;HG’ZgG
upsampling, without decoder ReLUs pra 3% pra 4% pra 26T
. . . . train 0.73 | train 1.89 | train 2.49 | train 2.67
Regular training, switch unpooling, with decoder test 0.69 test 177 | test 9.99 test 2.48
ReL.Us n=50 |n=47 | n=25" |n=200
N/A train 2.39 | train 2.61
Regular training, switch unpooling, without de- N? A tz::; 59 tg:;HQ 11
coder ReLLUs N/A pr— 32 prg— 56
train 3.24 | N/A N/A train 3.34
Regular training, blind upsampling, with decoder tgz‘zn?, 03 N? A N; A tz:;ng 6
ReLUs n=19" | NJA N/A n =121
N/A N/A train 3.38
Regular training, blind upsampling, without de- N? A N? A tzz‘inf% 17
coder ReLLUs N/A N/A P 1;5T
train 2.30 | train 2.97 | train 3.33
Stacked (strong), switch unpooling, with decoder tost 220 | test 277 | test 3.18
ReLUs n=19" | n=09T n="1
) . . train 1.63 | train 2.48 | train 3.59
Stacked (weak), switch unpooling, with decoder Re- test 152 | test 2.32 | test 3.41
LUs n =17 n =48 n = 50
train 3.20 | train 3.35 | train 3.35
Stacked (weak), blind upsampling, with decoder test 3.03 | test 311 | test 3.17
ReLUs n=18 |n=17" | n=97
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A.3 Classification

Table 5: Results of the experiments described in Section 5.3.

| Classification error (%) || fixed encoder | pretraining

train 69.1 train 50.2

Baseline: randomly-initialised encoder! test 66.3 test 48.2
n =45 n = 50
train 79.4 train 79.3

Regularly-trained autoencoder, switch unpooling || test 74.4 test 66.6
n =44 n =39
train 97.0 train 97.2

Regularly-trained autoencoder, blind upsampling || test 97.9 test 95.8
n=8T n=43
train 84.6 train 55.7

Strongly-stacked autoencoder, switch unpooling test 73.4 test 50.5
n =47 n = 50
train 87.5 train 88.2

Weakly-stacked autoencoder, switch unpooling test 83.3 test 80.0
n =43 n = 30
train 79.7 train 61.1

Weakly-stacked autoencoder, blind upsampling test 75.4 test 56.1
n =49 n = 50

INote that a classifying network that uses pretraining with a randomly-initialised encoder is completely equivalent to a

regularly-trained forward network.
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B Mathematical descriptions and derivations

In this section I will describe in precise mathematical detail what a neural network consists of, how it
is represented and how a given network computes its output. Furthermore, I will describe how a neural
network can be trained using gradient descent, and derive formulas to calculate the derivatives that are
necessary to execute this algorithm for convolutional neural networks. Finally, I will give a mathematical
description of convolutional auto-encoders, and extra layers and derivatives necessary for these types of
models.

The definitions used herein are all standard definitions from the field, but the relevant derivations
described in this appendix are all my own work (except where indicated). The relevance of this appendix
is both so we have a solid mathematical account of what happens in convolutional neural networks and
autoencoders, and to clear up several ambiguities and (occasionally) mistakes in Vedaldi and Lenc (2014).

B.1 Representation of a neural network

Very generally, a neural network in our context is a function f that maps an input matrix X € R#UxD
to some output matrix Y € R#U K, given a collection of weights w. Here, #U and #U’ stand for the
number of units that encode the input and output of f, and D and K are the number of dimensions each
unit can encode (this is needed for e.g. complex-number or multidimensional input). This mechanism is
displayed in Figure 6.

Instead of referring to input and output as these matrices, we will also refer to them in their vectorised
forms x = vec(X) € R#*UL and y = vec(Y) € R#U'D which makes it easier to define certain derivatives
described later. Note that the vec operator is invertible given fixed dimensions, which allows us to switch
freely between these representations. For a precise definition of vectorisation, see Graham (1981).

Figure 6: Generic view of a neural network

However, this generic view of a neural network is oversimplified. In reality, a (deep) neural network is
not a single arbitrary mapping, but it consists of L layers. Each layer ¢ computes its own function f; given
respective inputs x;, weights w; (however, note that not all types of layers actually make use of weights)
and output y,;. Here, the output of one layer is fed to the next, so we set x;41 := y; (barring border
cases). Thus, we have that the total function computed is the composition of the individual functions
f=1f ofy0...0f, where the concrete individual functions implemented f; depend on their weights
w;. The total weight vector w from the previous paragraph is an array containing all layers’ weights wy;,
making the layered view a special case of the previous, more generic view. This layered configuration
can be seen in Figure 7.

=X =X =X
X=X, f, Y 4 f, MRS Yo mX f, y,=y
w, w, w,

Figure 7: More specific, layered view of a neural network

B.2 Training by gradient descent

Gradient descent is a general optimisation technique that attempts to minimise some error function by
slightly changing a certain set of parameters in the direction where the error decreases the most. To
use gradient descent, we need to know not only the data set’s inputs x™, so that we can calculate the
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network’s outputs y” := f(x", w), but we also need to know the desired outputs of the network t™. This
necessity makes this a supervised learning technique.
Given the above data, we can calculate the gradient of E(w):

_ OE(w) _ (aE(W) aE(w))
ow owy, T Ow, 7

VE(w)

where m is the number of weight elements in w. This gradient tells us the direction in which an update
of w will result in the strongest increase in the error function, and —VE(w) tells us the direction of
strongest error decrease. We can use this in the update rule of gradient descent,

w < w—nVE(w), or

Wt = w®) _ v E(w®),

for a small positive learning rate n and time step ¢ > 0. Repeating this update rule until (approximate)
convergence has been reached, guarantees that with the resulting network weights we are in a local
minimum of the error function, i.e. we have locally reached top performance. Note that it is not
guaranteed the network ends up in a global minimum.

The above is known as a batch update rule, or as a whole batch gradient descent. The error function
E(w) = Zﬁle E"(w) sums over the element-wise errors for all N data elements, and therefore calculating
its value and its gradient requires examining the entire data set. This means the network has to process
every single data point to execute one update. This is computationally very expensive for large data
sets such as TIMIT. Thus, for our purposes it is easier to use stochastic gradient descent. In stochastic
gradient descent, we do not compute the gradient of the total error function F(w), but we use only the
element-wise error function E™(w), as defined above. The update rule then becomes

W w — nVE™(w), or

WD = w®) _ g g (w®),

where n is randomly circulated through the data elements. This is easier to compute, and usually
converges faster (Bottou, 1991).

For practical purposes, a hybrid approach is often preferable, since basing updates on single data
points leads to rather jittery updates. In this hybrid approach, the above batch update rule is used,
but instead of summing over the entire data set (which is computationally expensive), we sum over a
mini-batch that contains a reasonable number of randomly chosen data points (e.g., 64 or 128 points).
This way, the jitter is mostly removed from the updates, since it will be averaged out over the elements
of the mini-batch, but batches are still small enough to be computationally efficient. The mini-batch
approach is also a form of stochastic gradient descent, and we will use that term to refer to the mini-batch
approach from here on.

B.3 Back-propagation of errors

As noted above, to use stochastic gradient descent we need to be able to compute the gradient of the
element-wise error function, VE™(w). However, it is obviously not feasible to fully expand ¢ and f, and
“simply” compute the derivative of the expanded function, since the resulting function will be rather
large and complex. Instead, we will use the (multivariate) chain rule to decompose the gradient into
smaller, more handleable parts.

First of all, we use the fact that all interaction between E™ and w is mediated by the value of y™, so
we can focus on these parts separately (using the chain rule):

OE" OB y"
ow  Oy" ow

The first part, ‘gf—: is simply the derivative of the error function given the network output, given
the network output. This depends on the particular choice of error function, and thus can be found in
Section B.4.

For the second part, %Lv:, we have the same problem as for the original gradient we wanted to find,
namely that y™ does not depend directly on w, but that this dependency first goes through intermediate
layers. Say we want to compute the partial derivative of y™ with respect to w;, the weight vector of
layer i. The data point’s index n is left out of the equations for readability from this point onwards, as
it is not particularly relevant in these derivatives.
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We can apply the multivariate chain rule to our partial derivative, given that y =y, = fr.(xr,wpr).

This gives us that
dy Oy, 0Oy, o0x; Oy owyp

8wi 8WZ o axL 6‘W1 8wL 8W7 '

Here, gi—L and gyL can be obtained by examining the function implemented by layer L (see Sec-
L WL

aWL
8W7;

aWL
8W7;

tion B.6). Furthermore, is easily determined. In the case where i = L, will be equal to the iden-

tity matrix. Furthermore, w; = w, does not depend on the input of that layer, xy,, so % = ngLL =

Thus, we simply end up with the trivial equation gi’vF = gz'f in this case. As mentioned before, the
. . . . 2 . L

value of this derivative depends on the function layer L implements.

However, it could also be that ¢ # L. In this case, given that weights are independent from one

another, we get that %"V‘\’,f =0 and we end up with

dyp _ Oy 0xg
ow,;  Oxp Ow;

Note that, per construction, x;, =y, _;, giving us

dy |, _ Ay Oyr_1
aWi 8xL awi ’

Now, we can repeat exactly the same argument as before. If i = L — 1, then we have

Iy _ Iy _ dyr, Oy
(9wi 8WL71 8xL 8WL,1 ’

which is determined by the functions implemented by layers L — 1 and L. If i # L — 1, we again apply
the chain rule to give us

dyy, _ Oy 0yr_1 0xp_1

6Wi B 8XL 8XL_1 6WL_1 ’

We can repeat this argument several times, applying the chain rule until we arrive at layer i. The
general formula we arrive at is

dy _ Iy, 0y Iyt %
Bwi aXL 8XL,1 o 8XZ—+1 8w2 '

Combining the previous results, we see that

OE"™ _OE"Oy"™ OE"dy} Oyi_,  Oyiy Oy}
ow;  Oy™ Ow; Oy} Ox Ox}_, T oxI, Ow;’

where the remaining partial derivatives are determined by layers ¢ and up. As we will later see, it can
also be convenient to collapse this back to

OE" 0" Oypdyi_, Oyl Oyl OE" Oyl
ow;  Oyn oxpoxp_, T OxI, Ow; Oy} Ow;

Gradient descent using these resulting rules is called back-propagation of errors, or simply back-
propagation, because the value of a partial error derivative in layer ¢ influences (propagates through) the
partial error derivatives of the layers lower in the network (closer to the input, hence ‘back’).

B.4 The error function

Furthermore, we need to define an error function E(w) that we want to minimise. For classification
problems, including our TIMIT phone classification task, the logarithmic loss function is often used for
our error function. This function takes the summed negative logarithm of all input elements in the
feature channel that belongs to the correct class. Formally, if ¢® € {1,2,..., K} is the correct class of
data point n out of N, and Y" € R#U'>K the output of the network with weights w and input X", then
we could say

N N
E(w) =Y _E"(w):= Y I1(Y".c"),

n=1

where the logarithmic loss function [ for a single data point is defined as

#U'
(Y,c) == logYi.
i=1
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Note that the dependency of the element-wise error, E™, on w lies in the fact that Y" = (X", w)
depends on w.

There is, however, a problem with using the plain logarithmic loss function as error function: given that
it computes the logarithm of elements of output matrix Y, it may be undefined (or infinite) if elements
of Y are negative or zero, which they might be, given that weights (and thus, the precise behaviours of
function f) are initialised randomly. Obviously, updating our weights by an infinite amount is not a good
idea, so we need an alternative error function that can handle both negative and positive numbers. For
this, we combine the logarithmic loss function with the softmax function o. o(Y) is defined by

eYik

25:1 eYia’

where k € {1,...D} and where ¢ € {1,...,#U} (and thus, the dimensions of X and Y are the same).
The outputs of the softmax function are in the range (0, 1), and per unit i, the output elements sum to
one (i.e., ZEZI o(Y;r) = 1 for every unit i). Therefore, every output unit of the softmax function can be
said to encode a categorical probability distribution over its dimensions.

The softmax function and the logarithmic loss can be combined into what we will call the softmax-loss
function £ = [ o o, which gives us the following error function (note that the dependence of E on w lies
in the fact that Y" = f(X", w) is a function of w):

=Y E"(w):=> (YY"

[o(Y)]ix =

#U' #U'
Zlog :_Z<Zc logzezd>.
i=1 Zd* e i=1

As stated in Section B.3, to use the back-propagation algorithm we need to know the derivative of this
softmax-loss function ¢ with respect to the network output Y.

For an output element Yy, there is a case distinction to be made between the case k = ¢ and k # c,
because of the special mention that Y;. gets in the formula for ¢. However, this case distinction is
conveniently expressed using the Kronecker delta, making sure we do not need a case distinction in our
final formula:

Wi 1 ife=k
e FTN0 ifc#£k.

The derivative of the log term is independent of the question whether ¢ = d, and thus can be expressed
conveniently in the following form:

O (o) = e = ey
i = . A = |O i
oYk & ZdDzl eYid ZdDzl eYid k

d=1

We can now put these two expressions together to find our final error derivative, in matrix form:

o

o =~ (7 D) —o(Y)) = a(¥) —1# - (D)7,

c C

where 1#U" € R#U’ is the all-ones vector and e? € {0,1}P the c-th indicator vector ([eP]y = dex, i.e.
the c-th element is a 1 and the rest are zero). Note that, therefore, 1%V . (eP)” is a matrix with the
same dimensions as Y that has a 1 in all elements of the c-th column, and a 0 everywhere else.

B.5 Convolutional neural networks

Convolutional neural networks form a specific subclass of the neural networks described in Section B.1.
These are characterised by having one or more convolutional layers (see Section B.6), as well as having
an image-like structure in their input. They are especially fit for perceptual tasks, such as object
classification and facial recognition. Inspired by visual tasks, but also applicable to other domains,
convolutional neural networks employ in specific a rectangular grid structure (cf. an image) in the
configuration of its units (including, crucially, the network’s input and output).

Formally, their input is a matrix X € REXWxD and the output is Y € RH XW'%D For example, for an
RGB image, we have H x W take on the image’s height and width, and D = 3 to allow for each one ‘pixel’
(input unit) to process each of the R, G and B channels separeately. As stated before in Section B.1, we
will also refer to the vectorisations of these matrices, x = vec(X) € RFWP and y = vec(Y) € REW'K,
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Figure 8: An example of a convolutional layer. The output is computed as 3-2+0-4+1--2—1-
142-240--1=7. No padding is used, and the stride is 1. Adapted from Churchman (2015) with
permission.

Recall that the vec operator is invertible for given dimensions, so these representations can be converted
back and forth where needed.

Note also that this formalism is compatible with our earlier definition of a neural network, where we
had X € R#¥U*P and similarly Y € R#U' XK. we can simply take the number of units to be #U = HW
and #U’ = H'W’, and then the convolutional inputs and outputs can be invertibly converted to this
representation, making the two representations of convolutional neural networks equivalent.

B.6 Specific layers and their derivatives

A neural network’s behaviour is implemented by, and therefore defined by, its specific layers. Therefore,
the layers used in convolutional neural networks deserve proper description. As noted in Section B.3, to

use back-propagation we also need to be able to compute gi’f for all types of layers in our network, as
well as gg’vi_ for those types of layers we want to learn weights for. Thus, we also need to derive these

i
expressions for layers of interest to convolutional neural networks in particular.

B.6.1 Convolutional layers

The distinguishing feature of a convolutional neural network is that it has one or more convolutional
layers. A convolutional layer uses as weights a filter bank F € RHrxWrxDXK (with the vectorisation
vec(F) =: f € RIFWrDK) containing K filters as matrices from REFXWrXD "that can be learnt using
back-propagation. Furthermore, they have an array of biases b € R¥, containing one bias per output
dimension, which can also be trained.

Convolutional layers compute the output Y € RH WK 49 the convolution of the input X €
REXWXD with the filters from its filter bank F, and using its biases b specified above.

Normally, H = H—Hp+1 and W/ = W —Wpg+1, but it is also possible to zero-pad the data X at the
edges. If we pad the data with zeros P; at the top, P, at the bottom, P; to the left and P, to the right, we
will instead have the relations H' = H — Hp + P, + P, +1 and W = W — Wg + P, + P, +1 on the output
size of our layer. As a rule, P;, Py, P, and P, are all non-negative and P; + P, < Hp, P, + P, < Wr must
hold. Thus, we always have H' < H and W’ < W. We will ignore padding in our further derivations, as
it can be interpreted as simply extending the input matrix X with zeros, and running this through the
convolutional layer instead. This removes the need to take account of whether padding is used, as far as
the relevant derivatives are concerned.

We shift a given filter k£ from F over all possible base positions in X, and record elements of Y as the
sum of the element-wise multiplications in all dimensions of the input and the filter. Formally, we have

that
Hr Wrp D

Yir o = bi + E E g Fipirdk Xitvip—1,4'+jr—1,ds

ir=1jr=1d=1
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Figure 9: An example of a fully-connected (convolutional) layer, where each output element depends on
every single element of the previous layer. No padding is used. Used with permission from Churchman
(2015).

where 1 < < H', 1 <j < W and 1 < k < K code for the possible base positions and filters (not
accounting for padding). See Figure 8.

Convolution also supports using stride, or subsampling of the input. It takes two stride parameters, dp
and &,,, which are integers greater than or equal to one. The stride parameters have two major effects.
Firstly, certain elements of X are generally skipped as base positions for the convolutional filter when
a stride parameter is larger than 1. The base positions that are recorded are spaced equally from each
other, with §, x d,, rectangles in-between adjacent base positions. Instead of the above formula, we then

get
Hr Wrp D

Yk =brt D D> Fipirdb Xi—1)ontin(i'—1)ou+ird

ip=1jrp=1d=1

Thus, an output element Yj/ ;s 3, corresponds with the base position X(;s_1)s,41,(j'—1)s,+1,4 (the input
dimension d is summed over). Note this reduces nicely to the initial formula of convolution in the case
that 6, = §,, = 1. The second effect of the stride parameters is that they directly affect the output size
H' x W', to account for the spread of convolution base positions. The output size is

H-—Hp+ P, +P - P+ P,
H“:{ F; r%bJ+LWﬂ:{W/ WZ+ r%TJ+L
h w

Though it is important to know how stride works, we do not actually use it for convolutional layers
in our networks, for reasons explained in Section 4.2. Therefore, in this section we assume (without loss
of generality, within our context) that §, = d,, = 1. However, stride will be important in max-pooling
layers, see Section B.6.2.

Finally, note that fully connected layers are a special case of convolutional layers, with H = Hp, W =
W (and therefore H' = W' = 1). The effect of this is that the 1 x 1 ‘images’ of the output depend on
all elements in X. See Figure 9 for an example.

Now, given our element-wise definition of convolution, it is not easy to directly take the derivative
of this expression, since it would only give us an (inefficiently computable) element-wise derivative.
Therefore, it is easier to use another, equivalent definition of the convolutional layer, which is essentially
a single matrix multiplication (Vedaldi and Lenc, 2014). Define ¢ to be the im2row operator, which
takes all Hrp x Wg patches from its input and stores them as rows of its output matrix. Formally,
¢ : REXWXD _y RH'W'xHrWrD g defined by

[6(X

PO i)
where ¢ is defined such that p =i + H'(j' — 1), g =ir + Hr(jr — 1) + HeWp(d—1), i =i +ip — 1
and j = j' + jr — 1. Respective bounds apply (1 <i < H, 1< j < W, ete., like before). Note that this
is well-defined, i.e. 7, j and d can be determined uniquely from p and q.

It is easy to see that ¢ is a linear transformation, given that it only copies fixed elements of its
input, and does not alter them. Linear algebra tells us that, therefore, there must be a matrix H €
RH'W HrWrDxHWD gych that

vec(p(X)) = H - vee(X).
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Given that there is such a matrix, we can also define the row2im operator ¢* : RH'W'xHpWrD _,
RIXWXD ¢4 be given by

vec(¢p*(M)) = HY - vec(M).

With the above vectorised form, we can also write ¢* as follows:

[¢" ;Jd Z

t(p7q)=(i,j7d)

Now that we have this definition of ¢, we can describe convolution as a single matrix multiplication.
However, since matrix multiplication only works on 2D matrices, we need to reshape the relevant matrices.
We reshape F into F? € REFWrDXK and reshape Y into Y’ € RH'W'*K  Note that this is an invertible
transformation, and that we can therefore formulate convolution in terms of F’ and Y’ as follows (where
17" e RH'W’ is the all-ones vector of length H'W’'):

Y =17V pT 4 (X)) - F?

Now we want to derive the partial derivatives of Y with respect to X and F, as well as b. However,
matrix-by-matrix derivatives in general are not defined, so for the former two, we will instead work with
the (vectorised) vector-by-vector derivatives % and %. We can base ourselves on the vectorised version
of the equation above:

y = vee(Y?) = vec(1TW . bT 4 (X) - F?) = vec(1'V" . bT) + vec(p(X) - F?).

Let us first derive ay The second half of y, ¢(X) - F’, is independent from b, so we can leave it out
of the equation:

dy 0

9y _ 9 HW' T ) = 9 HW' T
55 — Bh (Vec(l b*) + vec(¢(X) - F )) 8bvec(l b*).
If we look at a single element of this derivative, we get

oY}, — 5,

Oby, I

This is already a sufficient expression for our derivative g%, since the mapping from Y’ to y is invertible.
However, later in this section we will adopt a more convenient form for backprop.

Let us now derive % and 8y The first half of y, Vec(lH w’ bT), is independent from both x and
f, so it is irrelevant for these two derivatives. Hence, we can assume without loss of generality that all
biases are zero (b = 0), given that the relevant derivatives do not change.

For the following derivations we use two identities relating to the vec operator, taken from Graham

(1981). Let A € R¥*!, B € R™*™. Then we have
vec(A - B) = (I, ® A) - vec(B) = (BY @ T,) - vec(A),

where ® denotes the Kronecker product (for a formal definition, see Graham (1981)) and I,, represents
the n x n identity matrix. Applying this to the equation for our convolution layer gives us that

= (Ix ® (X)) - vec(F) = (F)" @ Iyw) - vec(d(X)).

We can now derive %’; = avT(F’) Since Ix ® ¢(X) does not depend on F?, we get that
dy 0 Ovec(F?)
oy __ 9 . (q X)) - vee(F?)) = (I X)) 2T g X
5 = raat (e © 0(X) - vee(F) = (L © 0(X)) - oot = T 6(X)
since gvzzg,g I, the identity matrix (of suitable size).

gi = c'?ve(?:%’X’)' For this we use the second vectorisation identity mentioned above,
together with the fact that (F*)” @ Iy does not depend on X:
= s
0x  Ovec(X)  Ovec(X)
Ovec(d(X))
- F, T I ’ 7)) s —m——
(B @ Tw) =505

= ((F’)T & IH'W/) -H,

Now we will derive

F)T @ L) - vee(¢(X))
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where H is the matrix that defines ¢ by vec(¢(X)) = H - vec(X).

In principle these expressions are enough to do gradient descent, but as noted in Section B.3, we still
need to multiply by ‘gf—: to get the actual gradient. We could do this by repeated matrix multiplication,
but there is a more compact way to write this down without needing the relevant varlables vectorisations.
By doing so, we can write the above partial derivatives directly in terms of -2 BY’”' The -™ superscript is
left out for convenience.

: : oF .
First, let us examine & :
o8 ooy NN om, NN oF
O~ Oy Obi L vy T oy

We can easily write this as a matrix-vector multiplication, where we multiply over the H'TW’ base filter
positions:

OFE ([ OF W

ob ~ \ Y’ '

Now, let us turn to %—?. So far we have found that

8E 22 8y OE
— -(I X)).-

Let us examine the transpose of the right-hand expression, using several properties of the Kronecker
product from Graham (1981). Note that, while they contain the same partial derivatives in the same

order, 2£ = 9F__ is a row vector, whereas vec ( BE,) is a column vector. Hence, we know that
' dy dvec(Y?) oY ’

T
3y = (vee (3%)) -

(%) = (% teaomy)
— (L @ (X)) - (M)T
— (1" © ¢(X)T) - vec <8E)
— (Ix @ 6(X)T) - vec <§5,> .

However, applying our vectorisation identity in reverse and taking the transpose tells us that this is

equivalent to
OE r OE\\"
o (Vec <¢<X> 'av))

. T
Given that 22 = (vec (2£))" by the same argument as for y and Y’, we get that

% (s (35)) - (o )

Therefore, by taking the transpose and using invertibility of vec (for fixed dimensions), we get

OE r OE
oF’ ¢X)" oY’

We can carry out a similar derivation for 2 a . So far we have

OE _0EJy OE

? 2 ! .
ox  dyox Oy (B @ Typw) - H,

where H was the matrix for which vec(¢(X)) = H - vec(X). We again examine the transpose of this
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Figure 10: An example of a max-pooling layer with a 2 x 2 pooling region and stride 2. No padding is
used. The output is computed as the maximum of the elements in the pooling region. Adapted from
Churchman (2015) with permission.

expression:

oF OE
—-— F’ Igw:) -
(%) = (G ot m)
OE
—HT (P @I ) - [ ZE
()" @ Lww) (W)
T
—H () @ Tew ") - (5
=1 ((F)) @ Ty ) - vee [ 2E
=H (((F)) ®IHW) Vec(aY,).
For this, we can use the second identity we had for vectorisation, giving us
9EN" .1 OE .7
aix =H" - vec aY’(F) .

As above, we have that aE = vec (gf;) . However, this is where the row2im operator ¢*, which we

defined earlier, comes 1nto play. We defined ¢* such that vec(¢*(M)) = H vec(M), and we can apply

this here: .
oF oF oF
(&)V“Qm>‘meQW<FV»'

Thus, we arrive at the equation
oF oF
—— =0 S(F)T ).
%= (ov @)

B.6.2 Max-pooling layers

Max-pooling layers are used in convolutional neural networks to decrease the input size in higher-level
layers. They use almost the same rules for input and output size as convolutional layers: the input
X € REXWXD ig transformed into output Y € RH xW'xD using a pooling region of size Hrp x Wg,
where H, Hp, H' are related as described in Section B.6.1. See also Figure 10.

As in that section, we ignore padding without loss of generality, as we incorporate padding into the
input X. Given that we use max-pooling, however, padding simply with zeros can cause issues when
all elements are negative. Therefore, we instead pad with —oo, so no actual element of X is smaller
our padding values. In most cases, pooling layers will have stride larger than 1, so we do keep stride in
the equations here, as opposed to our assumption that they were always 1 for convolutional layers ,in
Section B.6.1.

Then, we arrive at the following expression for max-pooling:

Y/ i 4 = Imax X;_ 1 i ; .
i'5',d T 1<ip<Hp (' =1)0n+ir,(j' =1)0w+ir,d
1<jrp<WFg
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Now, it must be mentioned that the max operator is not differentiable for all inputs x. Specifically,
when (at least) two elements ¢ and j of x inside the same pooling region are exactly equal to each other
and to the maximum of their pooling region, 8873' and 8y are undefined. This is because, if we increase
x; by any amount, then max(z;,z;) = z;, and thus the derivative with respect to x; is equal to one.
However, if we instead decrease x; by any amount, we get max(x;,z;) = ;, and thus the derivative with
respect to x; is equal to zero. Since the derivative would be both equal to one and zero if it existed, it
cannot exist and max is not differentiable for ties. The upside, however, is that this rarely ever happens,
and these cases can therefore be safely ignored (a small error in one gradient update does not cause large
problems, as it will be straightened out by many more updates to follow).

As before, we want to express this in matrix form, so that we can compute the total derivative %.
For this, it useful to remember that all the max operator does is select one of the matrix elements it
evaluates. Therefore, there must exist a ‘selector matrix’ S(x) € {0, 1}#'W'PxHWD (Vedaldi and Lenc,

2014), for which it holds that
y=9S(x) -x

[S(x)];; contains a 1 if z; is the maximum element of the pooling region of y;, and a 0 otherwise, and is
unique, since ties are ignored. If ties are allowed (i.e., in practical applications), we require that every
row of S(x) contains exactly one 1 for ¢ maximum element of the corresponding pooling region, and that
all other elements are 0. This does make S(x) non-unique, but this is not a problem as long as these ties
are broken in a consistent way (which is reflected in S(x)).

Now, let z; be an element of x, inside the pooling region whose maximum is recorded in y;. z; is
either the maximum element of this pooling region, M, or it is smaller than M. Thus, the following
expression holds at least in some neighbourhood of x; (since ties are ignored):

) ifx; =M
YTAM ite; <M

This expression is easy to differentiate:

Oy )1 ifa;=M
dx; |0 ifa; <M’

8111

For z; outside the pooling region of y;, 31} is always zero. Thus, all all zero, except where x; is the
maximum of the pooling region of y;. However, this is exactly our deﬁnltlon of S(x). This gives us very
simply:

Jy
— = S(x).
ox (%)

Given this simple expression of ay , we easily get a simple expression for 3—5.

op_opoy _opg.
ox Oy ox Oy '

B.6.3 Rectified linear unit (relu) layers

A rectified linear unit, or relu, layer applies the following non-linear activation function to every input
element:

Yija = relu(X;;q) = max(X;;q,0).

The dimensions of Y and X are the same.

Analogously to the max-pooling layer of Section B.6.2, is undefined (i.e., y; is not differentiable
with respect to x;) when x; = 0, but these cases can be 1gnored Similarly to max-pooling, there exists
a diagonal matrix S(x) € {0, I}HWDXHWD with y = S(x) - x, where S(x) is defined as:

8y1

1 ifi=jandz; >0

0 otherwise ’

ﬁ@b{

and as was the case for max-pooling layers, we have

dy 8E oE
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B.6.4 Dropout layers

Dropout layers are used to fight overfitting in our networks. For an input X with vectorisation x €
RIWD "5 dropout layer uses a ‘mask’ s € {0, 1}"P whose elements indicate whether the corresponding
element in x is allowed to continue onwards, or whether it is blocked (dropped out), as follows:

Yi = Ti " Si.

This again gives us a very simple matrix form, as with the rectified linear units of Section B.6.3. Define
the diagonal matrix S(s) € {0, 1}JHWDXHWD a4

Sl = { s

0 otherwise

Then, again, we have

B.6.5 Softmax-loss layers

In Section B.4, we have already defined the softmax-loss function ¢ of the network output for a given
input, and the correct class label ¢ for that input. In that section, the derivative was also already
evaluated, so most of the work here has already been done before. For completeness, the results of
Section B.4 are repeated here, rephrased to use the same notation as the previous sections, about other
layers.

H W D
y =X, c) = —ZZ (X'ch - logZeXW> ,
=1 j=1 k=1
ot
Jh— X) — 1HW . D\T
o0X U( ) (ec ) )

where 17V is the all-ones vector of length HW and e? € {0,1}” the c-th indicator vector ([€2]q = dcq,
i.e. the c-th element is a 1 and the rest are zero), and o was the softmax function where

eXijd

P

The only thing of relevance that has not been done in Section B.4 is to derive a direct expression for
OE.
a.

[0(X)]ija =

OF _0Edy OF _ JHW ( D\T
ox Oy ox Oy (U(X) 1 (e2’) )

B.7 Autoencoders

The previous few sections have been about convolutional neural networks, specifically used for classifi-
cation. However, these are trained in a supervised manner, and we want to learn a representation of our
data in an unsupervised way, using autoencoders. As explained in Section 4, autoencoders are trained
such that their output is as close as possible to their input, as defined by the Euclidean error. In other
words, instead of using the softmax-loss classification error of Section B.4, we use the following error
function:

Ef(w) = [ly* = x"|]* =

Again, the dependence on w is caused by the fact that y* = f(x*, w) depends on w.
To be able to use back-propagation, we need to evaluate the derivative g—g (superscripts -* are left out
for convenience, as they are not relevant). Let us first examine a single element of this vector:

0B 9 ('L, ) .
= ST —ah)? | =2 ((F —2h)?) =2y — ).
Oyi Oy = dyi
This gives us the following expression for the error gradient:
oF
— =2(y — x).
oy ~ 2y =%

Note that the constant factor of 2 can be absorbed into the learning rate, and is therefore irrelevant.
It is wholly equivalent to use y — x as error gradient, while doubling the learning rate.
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B.8 Inverting network layers

As noted in Section 4.2, we need a few additional definitions to be able to invert convolutional and
pooling layers.

B.8.1 Convolutional transpose

For convolution, we only need to define the convolutional transpose, as either this or simply learning new
filters is enough to invert convolution (see Section 4.2.1). The convolutional transpose can be formulated
as a linear transformation 7' : REXWXDxK _y REXWXKXD 'where

[T(F)]ijkd=Fra—iti,w—j+1.dk

where 1 <i < H and 1 < j < W as before. In other words, the input and output channels are permuted,
and for each input-output channel pair the filters are flipped vertically and horizontally.

For the convolution-transpose pseudo-layer, simply copy the corresponding convolution layer earlier in
the network, but instead of using its filters F for the pseudo-layer, use T'(F'). Biases need to be created
anew, as there is a (possibly) different output dimension. The derivatives of this pseudo-layer can be
computed with the formulas derived for regular convolutional layers in Section B.6.1.

B.8.2 Switch unpooling

To invert pooling layers, however, we need to define an all-new unpooling layer. As noted in Section 4.2.2,
there are two techniques for this, and one of these is switch unpooling. Given is a corresponding max-
pooling region earlier in the network, which used a pooling region of size Hr X Wr and stride parameters
81, 0. For an input X € REXWXD the output is Y € REXW'*D guch that

{H/HF+Pt+PbJ il—H {W’WF+PI+PT

1=
- a J+ w

holds. Note this is not unique when 6, > 1 or §,, > 1. However, we use as additional constraint that
the output size of this unpooling layer equals the input size of the corresponding layer (this includes
the above requirement, which is listed for completeness). Padding is incorporated in the input as in
Section B.6.1.

We first need to slightly adapt our definition of max-pooling, so that it saves the ‘switches’ when it
runs. This does not change its derivative, but gives it extra outputs. See Section 4.2.2.

Our definition of max-pooling was that it gave an output Y € R¥*W*D (note the output of the
corresponding max-pooling layer must the same size as the input of switch unpooling), such that

Y, ig=max X(_ (i d
1,5,d 1<ip<Hp (i=1)0n+ir,(j—1)0w+jr,d
1<jr<WF

Now define two ‘switch’ matrices P, Q € RFXWXD 'guch that

Pija= argmax max X 1)s,+ip,(j—1)8u+ir.d>
1<ip<Hp 1<jp<Wr

Qija = argmax max X 1)s,tip,(j—1)6w+ir.d-
J \<sp<Wp 1<ir<Hp (i=1)dn+ir,(i—1)0w+jr

In other words, P; ;4 and Q, ; ; simply store the indices ip and jp (respectively) for which the corre-
sponding element in the pooling region is the maximum.
Then switch unpooling works as follows. For all 1 <i< H,1 <j <W,1<d < D, it holds that

Y1)+ Pi g as (= 100+ Qi g.ard = Xijod>
and for all 1 <# < H',1 <35 <W’,1 <d < D that did not fall under the above definition,
Yirjr.a=0.

In other words, all maximum elements are placed on their original positions in the output of switch
unpooling, whereas all non-maximum elements are set to zero. See Figure 11.

There are two minor remarks that have to be made. One is that, there may be ties when taking the
maximum. However, as we noted in Section B.6.2, we can ignore these, as they will be rare; we can
assume that they are consistently broken, and use the same tie-breaking mechanism in the formulas for
Y, P and Q. Secondly, when Hg > §;, or Wg > §,, an element of Y might have been the maximum of
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Figure 11: An example of switch unpooling with a 2 x 2 pooling region and stride 2. No padding is
used. The recorded maximum is set as the value on the location of the maximum in the (encoder’s)
corresponding pooling region, other elements are set to zero. Adapted from Churchman (2015) with
permission.

multiple pooling regions during max pooling, causing it to be written to more than once by the above
equations. However, this is not a problem, because the same value is written to that element, so the
output is still uniquely-defined.

For the derivative, we again remark that, since we only select certain elements from X and place these
in Y, and the rest is set to 0, switch unpooling is a linear transformation. Hence, there is a selector
matrix S(x) € {0, 1}7'W'PXHWD "aq in Section B.6.2, such that

y =8S(x) - x.
Then, as we have seen before, we have

dy OFE OF

ax X 5y = 5y S

B.8.3 Blind upsampling

For our input and output dimensions, we use the same set-up as in Section B.8.2.
However, instead of defining the switch matrices, we define the sets

Py={i:1<i<H (i—1),+1<d<(i—-1)0,+ Hr},

Qi ={j:1<j<W,(j—1dy+1<5 < (1), + Wr},

forall 1 < i < H',1 <j < W' In other words, Py x Q; is the set of indices (,) such that Yy ;s 4
belongs to the pooling region of X ;4. Note that Py, Q; # @ for all allowed ¢, j/, as each input element
of max-pooling must have belonged to at least one pooling region.

For blind upsampling, as described in Section 4.2.2, we simply put the recorded maximum of each
pooling region back in all of its member elements, averaging when an element belongs to multiple regions.

This gives us the formula:
e XY e

lGP/JEQ v

This is defined, as Py, Q;» # <, and therefore also #P; - #Q;+ # 0. See Figure 12.

Note that, again, blind upsampling is a linear transformation, as it only selects elements from X and
places them in Y (multiplied by a constant, but this is no problem for linearity). Thus, there must again
exist a selector matrix, S(x) € [0, 1]H W' PXHWD (gince fractions between 0 and 1 are also possible), such
that

Yirgra =

y = S(x) - x, and

dy 8E oE
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Figure 12: An example of blind upsampling with a 2 x 2 pooling region and stride 2. No padding is
used. The recorded maximum is set as the value for all unpooled elements in the corresponding pooling
region. Adapted from Churchman (2015) with permission.

B.9 Adaptive Gradient algorithm (AdaGrad)

AdaGrad (Duchi et al., 2011) is a mathematically-sound learning rate annealing algorithm, using the
sum of squares of earlier gradient updates per filter (or bias) element. Updates to often-changed filter
elements are decreased in strength, whereas updates to seldom-changed filter elements are (relatively)
strengthened. We ignore the biases in this description, but as the filter elements are only used as a
vector, they can easily be replaced by the biases for the bias version of the algorithm.

Let f € RHrWrDK he the vectorisation of the filter bank to be trained, and define G; €
RHrWrDEXHrWrDK 5 diagonal matrix for each ¢ > 0, where Gy is the all-zero matrix.

Normally in gradient descent (see Section B.2), we update these filters as follows:

fef—n%—?, or

oFE
1) _ ft) _
04 = 10— S8

where E is the error function used (it is irrelevant to this discussion whether E is the element-wise or
total error function) and where ¢ indicates the time step. Now, when updating f in this way, we also

update G:
2
oF
th»ﬂ) _ th) + 6 | — ]
J J v 3f§t)

where ¢;; is the Kronecker delta (ensuring that only diagonal elements of G are updated). In other
words, G; contains the sum of squares of previous gradients.

Then, with AdaGrad, the filters are updated as (the expression is slightly unwieldy due to the square
root of a matrix not being defined properly):

fHHD @ oFE
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