
Radboud University Nijmegen

Faculty of Science

Uncertainty
Ensembles Of Deep Neural Networks As Predictive Distribution For

Regression

Thesis MSC Artificial Intelligence

Author:
Thomas Manuel Rost
4469259

Supervisor:
dr. Johan Kwisthout

Second reader:
prof. dr. Maurits Kaptein

December 2019

Dedication

To my family, who somehow managed to understand the important parts, no matter
what. Thank you.

1

Acknowledgements

I want to thank my Supervisors, Maurits Kaptein and Johan Kwisthout for their con-
tinuous help and support. This can’t have been easy.
I’d like to thank Max Hinne for commenting on an early draft. The comments were
appreciated.

2

Abstract

Recent years have seen the rise of Deep Neural Networks (DNN) and Bayesian Ap-
proaches in machine learning. Combining the mathematical expressiveness of DNNs
with the quantification of their predictions’ reliability through the Bayesian approach
into Bayesian Neural Networks (BNN) promises a revolution for decision making both
by humans and artificial agents. However, certain theoretical and practical hurdles
stand in the way of the reliable use of BNNs. This work aims to provide a primer on the
theoretical problems encountered when building fully Bayesian Neural Networks and
argues that the use of ensembles of DNNs can lead to a simple, practical substitute.
To do so, we compare six different popular approaches to explicit and implicit ensem-
bling of DNNs from the literature in the context of regression problems. We evaluate
them on two synthetic and one real-life data sets with respect to the common metrics
mean squared error (mse) and negative log predictive density (nlpd). Additionally, we
introduce one metric that captures the correlation of the uncertainty of the predictive
distribution on its error (’correlation between error and uncertainty,’ cobeau). We focus
on comparability between the methods by forcing them to ensemble a shared, indepen-
dently determined network architecture with a predetermined training schedule in order
to obtain their predictive distribution.

3

Contents

1 Introduction 7

2 Theoretical Considerations 12
2.1 Background . 12
2.2 Posterior predictives and analytical solutions 14
2.3 Ensembles as a predictive distribution 16

3 Ensembles 19
3.1 Comparability of architectures . 19
3.2 The base model . 20
3.3 Multi-model ensembles . 20
3.4 Snapshot based ensembles . 21
3.5 Dropout . 22

4 Methods 23
4.1 Experimental Setup . 23

4.1.1 Datasets . 23
4.1.2 Reproducibility . 23
4.1.3 Baselines . 24

4.2 Analysis . 25
4.2.1 Measures . 25
4.2.2 Outlier Detection . 26

5 Experiments 27
5.1 Small synthetic dataset . 27
5.2 Large synthetic dataset . 27
5.3 Housing data . 30

6 Discussion 33
6.1 Discussion of results . 33
6.2 Limitations . 34
6.3 Future research questions . 35

7 Conclusion 38

A Technology used and Code Repository 39

B Additional theoretical considerations 40

C Additional experimental outcomes 45

4

List of Figures

4.1 Data sets used in the empirical evaluation 24
4.2 Typical priors for different ensemble classes on the large synthetic data set 25

5.1 Uncertainty typical for different ensembles on small synthetic dataset. . 28
5.2 Uncertainty typical for different ensembles on larger synthetic dataset. . 29
5.3 Uncertainty typical for different ensembles on the housing dataset. . . . 32

B.1 typical training loss over epochs for different ensemble classes 43

C.1 Uncertainty typical for different ensembles on small synthetic dataset af-
ter 40 epochs . 46

C.2 Uncertainty typical for different ensembles on small synthetic dataset af-
ter 1000 epochs . 47

5

List of Tables

4.1 Network architectures for synthetic and real world datasets 24

5.1 Large synthetic dataset results, no out of sample data, means ± standard
deviations . 30

5.2 Large synthetic dataset results, out of sample data present, means ±
standard deviations . 30

5.3 Housing data results, means ± standard deviations 31

6

Chapter 1

Introduction

’You’re wrong–but even if you
weren’t wrong, you still can’t do the
computation.’

Frequentists to Bayesians, probably[1]

Recent years have seen the rise of Deep Neural Networks (DNN) and Bayesian Ap-
proaches in machine learning. Combining the mathematical expressiveness of DNNs
with the quantification of their predictions’ reliability through the Bayesian approach
into Bayesian Neural Networks (BNN) promises a revolution for decision making both
by humans and artificial agents1. However, certain theoretical and practical hurdles
stand in the way of the reliable use of BNNs. This work aims to provide a primer on
the theoretical problems encountered when building fully Bayesian Neural Networks and
argues that the use of ensembles of DNNs can lead to a simple, practical substitute. To
do so, we compare six different popular approaches to explicit and implicit ensembling
of DNNs from the literature in the context of regression problems. We evaluate them
on two synthetic and one real-life data sets with respect to the standard metrics mean
squared error (mse) and negative log predictive density (nlpd). Additionally, we intro-
duce one metric that captures the predictive power of the uncertainty of the predictive
distribution on its error (’correlation between error and uncertainty,’ cobeau). We focus
on comparability between the methods by forcing them to ensemble a shared, indepen-
dently determined network architecture with a predetermined training schedule in order
to obtain their predictive distribution.

Bayesian Deep Neural Networks

Bayesian Methods The history of the Bayesian approach to statistics is full of ups
and downs. Invented sometime during the 1740s by a monk of the name Thomas Bayes
and rediscovered by Pierre Simon Laplace, it is a framework that was initially designed to
integrate new evidence with previously obtained experience to perform a coherent update
of personal belief. The resulting subjectivity was, in the end, one of the major reasons
why it faced decades-long opposition from theoreticians and policymakers alike[3].
In simple words, the central idea behind the Bayesian approach is described by ‘previous
belief + new evidence = new and improved belief.’ This simple concept can conveniently

1see, e.g., [2] for recent work on the topic of using BNNs to solve the problem of Exploration vs.
Exploitation.

7

Uncertainty

be formulated using Bayes’ rule, leaving us with the probability distribution

P (θ|E) =
P (E|θ)P (θ)

P (E)
(1.0.1)

where θ is the hypothesis2, E is our data or evidence3, P (θ) is the previous belief in the
probability of the hypothesis, the Prior, P (E|θ) is the likelihood of the data given the
hypothesis θ and p(θ|E) is the posterior, the belief in the hypothesis after observing new
evidence. The term P (E) is called the model evidence, the prior probability of the data.
It is conceptually slightly more taxing than the previous parts of the equation–as it is
computed as the sum of the probability of the data given each possible hypothesis. As
it turns out, the headache people get when first trying to understand this concept has
a tendency to stay for various reasons–and it plagued whole generations of Bayesians
until the development of sophisticated sampling methods and the advent of powerful
computing devices4.
The big contender to Bayesian statistics are so-called ‘Frequentist’ approaches, named
after the belief that probabilities should capture naturally occurring frequencies rather
than personal beliefs in the likelihood of an event occurring. While this claim to objec-
tivity was one of the main reasons why Frequentist approaches had the upper hand over
their Bayesian counterparts for a while, the additional computational complexity that
comes with having to propagate full distributions (and thus often integrals) during in-
ference in the Bayesian case compared to computing point estimators on a pre-collected
sample in the Frequentist case played a significant role in giving proponents of the
Bayesian theory a hard time.
However, with the advent of the information age and thus more capable computing ma-
chines as well as the discovery of Monte Carlo methods and variational approximation–as
well as the release of previously classified material on code-breaking and other war-
related mathematics–Bayesian Methods went through a resurgence. More and more
practitioners and theoreticians recognized the benefits of Bayesian statistics over Fre-
quentist approaches for certain applications5. [4], for example, is generally considered
one of the most influential papers in sociology, and it introduces strictly Bayesian meth-
ods[5].

Neural Networks The discussions about which way of analyzing data is preferrable
took place in a time when the interest in scientific insight and data collection was at
a height. Be it cosmology, epidemiology, finance, or neuroscience–every field suddenly
found a wealth of information that they needed to analyze with novel mathematical
methods. This lead to many insights and new kinds of mathematical models in many
fields.
In 1957, for example, [6] devised a new algorithm based on the mathematical descrip-
tion of neuroscientific research of the time: the perceptron. This perceptron was made
up of computational nodes that abstractly mimic the structure of the brain in so far
as the strength of its output is derived from many input nodes6. It was, somewhat

2In our case the hypothesis often describes the likely distribution over parameters for a parameterized
model

3Later comprised of a feature vector X and a target vector y.
4Which, as we will see, is a commonality shared with the other topic of this thesis, deep artificial

Neural Networks.
5The best stance to have in the fight between Frequentists and Bayesians seems to be one of the

middles–both approaches tend to perform well on different problems. As we will see, this work mostly fo-
cussed on enabling Bayesian approaches employs some Frequentist methods such as Fisher’s correlation
coefficient.

6Which does not exactly mimic neural computations in the brain – spiking neural networks, which
fire only after a certain input threshold has been passed are a more realistic representation.

Chapter 1 Thomas Manuel Rost 8

Uncertainty

prematurely, declared to be the prototype of a machine that would soon begin to talk,
walk, and learn like a human baby[7]. Soon after, however, [8] showed that a perceptron
made up of a single layer could only learn linearly separable functions and thus were,
for example, unable to learn the XOR function, and that was that for a long time.
Decades later, after research in Artificial Intelligence (AI) had been focussing on other
directions7, [9] showed that Neural Networks of a single layer using a sigmoid activation
function could be used to approximate any continuous function8. [10] later proved this
flexibility to be a property of the hidden layer structure rather than the choice of the
activation function, laying the foundation for much of today’s machine learning.
In a development that somewhat mirrors the rise of Bayesian methods, the potential of
Neural Networks, too, was held back until the technology and mathematics to circum-
vent computational intractabilities–in the form of gradient descent–had caught up with
its development. In this case, the breakthrough came when people realized that Graph-
ical Processing Units (GPUs) were almost perfect for running the highly distributed
mathematics that power the training of Neural Networks. Within a few years, Neural
Networks rose to new glory. Latest when [11] showed the efficacy of Neural Networks
on tasks such as image recognition they had proven their worth, rekindling interest in
Neural Networks from research and industry[12].
Today, Deep Neural Networks (DNNs) are all around us. Whether the application is
in parsing natural language ([13] and it’s more efficient version introduced in [14], [15],
[16]), deriving insights from data ([17], [18]), predicting medical conditions ([19]), pro-
ducing and augmenting images, sounds and videos([20]9, [21] and [22] respectively) or
enabling agents to act and play games ([23], [24] and [25]), they seem to power the future.

Bayesian Neural Networks These two approaches, both rising to the top of their
respective fields in a similar time and connected through the quest for better predictive
models, then surely have to be combined to form an even stronger alliance of informing
scientists and leaders all over the globe–letting them make decisions based not only on a
point estimate but also on the uncertainty that their model exhibits for its prediction. In
the end, even the field that birthed DNNs is moving towards Bayesian treatments, both
for data analysis as well as for a theoretical framework explaining the human mind10.
Unfortunately, this is not currently the case, Bayesian Neural Networks(BNN), while
getting more and more traction in research, remain a niche in the effort of finding new
and better performing models; although they promise to solve problems beyond more
accurate predictions11. As we shall see in more detail in later sections when we turn
to Bayesian methods for predicting unseen values–which is generally seen as an area in
which DNNs excel–we use the Posterior Predictive Distribution. This distribution spec-
ifies how new predictions ŷ are distributed according to the distribution of the model’s
parameters.
Unfortunately, this distribution relies on two sources of computational complexity–the
Neural Network as a model architecture and the posterior distribution over the param-
eters θ–and as we will see in section two of this work, this combination is hard to even
approximate. Additionally, Bayesian methods are generally specified with regard to a
Prior distribution–which, in the case of the ample, non-linear space of DNN parameters,
poses a more conceptual challenge. This work will focus on a subspace of solutions to
the first problem of intractability while leaving the problem of the prior specification to

7mostly logical programming languages and other logic-based approaches
8the so-called ”universal approximation theorem”
9for examples see the fantastic https://thispersondoesnotexist.com/

10See e.g., [26]
11For an excellent introduction into how BNNs can increase safety in self-driving cars, for example,

read the first few paragraphs of [27]

Chapter 1 Thomas Manuel Rost 9

https://thispersondoesnotexist.com/

Uncertainty

another time12.

Related work

Previous work on obtaining a predictive distribution from Neural Networks is relatively
vast; the following will provide an overview with typical approaches.

1. Predicting the scale parameter of the predictive distribution directly:
In this approach, the neural network additionally outputs a node that represents
the scale parameter of a distribution in addition to the location parameter. It
is used in two distinctive ways: By turning Autoencoders into distributions over
outcomes that can be drawn from, [29] and [30] and in a more traditional way for
regression as, e.g., [31].

2. [32] Introduces dropout forward passes to turn previously deterministic Neural
Networks into probabilistic models.

3. Ensembles themselves are often used as a method of regularization without the
claim of approximating a posterior distribution simply because they work well in
practice, see, e.g., [33] or [34]. They are also the basis of impactful approaches
such as random forests, as discussed in [35].

4. Outside of Neural Networks, they have been used to produce posterior distributions
with elaborate theoretical and practical motivation, e.g., [36].

5. Established methods such as Monte Carlo (MC) methods and variational inference
(VI) methods have been tried on Neural Networks to derive a predictive posterior
distribution, see, e.g., [37]. However, for reasons that go beyond the scope of this
work, they either tend to underperform through a limitation of network parameters
or become impractical for large networks and datasets relatively quickly.

6. An interesting approach to solving the previous problem comes from [38] (under
review), who introduces a novel approach for stochastic variational approximation.

7. Finally, the use of a predictive distribution on practical applications is a broad
field, a recent example is [39], in which the authors use a method called Gaus-
sian Processes to obtain uncertainty over a space of possible experiments on fluid
dynamics which in turn drives the setup for continuous experimentation.

Contribution

We aim to contribute to the field of approximate predictive distributions with DNNs
in two ways. On the theoretical side, we provide intuition on how ensembling different
DNNs can be seen as a valuable substitute for proper BNNs for problems of mean
squares regression with a normally distributed target by directly assessing the predictive
distribution and providing a description and overview of over six popular approaches
of creating such ensembles. The practical contribution then is to compare these six
approaches with regard to two classical measures of quality; the mean squared error

12However, interested readers are referred to, e.g., [28] for an in-depth explanation of the problem
and some suggestions for solutions.

Chapter 1 Thomas Manuel Rost 10

Uncertainty

and the negative log predictive density as well as a novel13 measure for the correlation
between a model’s uncertainty and its error. The comparison is done on synthetic-
as well as real-life datasets and focussed on controlling as many variables as possible
through the use of model architectures that are as similar to each other as possible.

Structure of this work

The remainder of this work is structured as follows: Section 2 aims to provide some
theoretical background to the problem of obtaining predictive distributions from Deep
Neural Networks, Section 3 introduces the ensembles used in this work.
Section 4 introduces the experimental setup, datasets, and models used, as well as the
analysis, i.e., the measures and baselines used, as well as the motivation behind removing
outliers from the experimentally obtained dataset. Section 5 contains empirical results
derived from the experiments and a short analysis. A brief discussion of the results, as
well as an outlook into future research, is given in Section 6. Section 7 recollects the
most essential findings and conclusion. The appendix contains mathematical proofs and
intuitions not fitting for the main body of this work as well as the exact specifications
of hardware used and additional experimental results.

13While the authors could not find a definition in the literature, the absence of evidence is not to be
taken as evidence of absence.

Chapter 1 Thomas Manuel Rost 11

Chapter 2

Theoretical Considerations

This chapter will provide a general overview of the mathematics behind Deep Neural
Networks, and intuition of why obtaining a predictive distribution from them is an active
area of research. While some core concepts will be reviewed, the reader is assumed to
be familiar with the basics of machine learning, statistics, and the Bayesian approach.
The first part introduces the problem as well as a recursive description of DNNs. The
second part introduces the posterior predictive distribution, from which we then intuit
how the large parameter space in such models leads to computational and analytical
intractabilities and explain the need for approximate methods to solve the problem of
generating reliable posterior predictive distributions from DNNs. The last part explains
some theory behind ensembling, and how to turn their predictions into a substitute
predictive distribution as well as reasons for promoting diversity in ensembles.

2.1 Background

This section covers notation, problem statement, and a definition of Deep Neural Net-
works and their training objective.

Notation

We introduce the notation used in this work. We assume familiarity with mathematical
conventions when it comes to notation and will only introduce cases with most frequent
use or where our notation carries additional information not covered by the convention.

Basics Scalars are non-bold, lower-case letters such as, e.g., y unless they indicate
dimensionality in which case they are upper case, e.g., N . Upper case letters are over-
loaded to indicate sets depending on the context such as D = {xi,yi}Ni=1. We deviate
from this notation in the case of θ, a lower case, greek letter that is defined to indicate
the set of parameters of a neural network. Vectors are lower case, bold letters such as
x, matrices are upper case, bold letters such as W.
ŷ indicates a prediction for y. Data are represented as row vectors and drawn from the
underlying population, e.g. x ∈ X, independently and identically distributed.

Distributions p(x) indicates a probability density distribution over x, p(y|x) indi-
cates that the distribution over y is conditional on the observation of x. In case x is
emphasized to be a point estimator rather than a distribution, we indicate that by writ-
ing p(y;x). E[x] indicates the expected value, or expectation of x, which is a (possibly

12

Uncertainty

weighted) average over the entries xi ∈ x. E[y|x] indicates the expected value of y given
the input x, Eθ[x] indicates the expected value is computed given some parameters of
the underlying model, θ.

Models, Ensembles, and Members Given the ambiguity of the word ‘model’ in a
hierarchical context–it would be fair to refer to an ensemble as a ‘model,’ but in the same
way, the members that make up its prediction are ‘models’–we decided to differentiate
between three, more specific words:

1. ‘Ensemble’ will refer to a collection of M (potential) models that are trained to
solve the same problem and then combined in some way to obtain the solution.
Mathematically, it is described as a set of M sets of parameters θm, {θ}Mm .

2. ‘Member’ or ‘Ensemble Member’ either refers to an instantiation of a model com-
prising an ensemble or a draw from a distribution over the parameter space spanned
by the ensemble. In any way, in our work, it is a set of parameters θm ∈ {θ}Mm

3. Further, the ‘model’ will refer to any mathematical model that is being used to
model some output. We will use it in contexts where the differentiation between
Ensemble and Member either is given by context or irrelevant (or in cases where
we refer to neither Ensemble nor Members).

Problem statement

We assume a training data set D comprised of N independent and identically dis-
tributed data points D = {xn, yn}Nn=1 drawn from a true data distribution p(D|θorigin)
dependent on unknown parameters θorigin where x ∈ RF are the F dimensional fea-
tures, and y is assumed to be real, y ∈ R. We further assume the target y to be
normally distributed conditional on the feature vector x and the parameters θorigin,
y ∼ N (µthetaorigin(x), σorigin) with unknown noise σorigin.
Given the input vector x, we use ensembles of M DNNs comprised of L layers to pre-
dict a distribution over the target ŷ, p{θ}Mm=1

(ŷ|x). The parameters {θm}Mm=1 where

θ = {{W}Ll=1, {b}Ll=1} with Wl and bl are the weights and biases of layer l, of the
ensemble members θm are obtained in various different ways as described in 3.5.

Recursive Description of Deep Neural Network’s Expectation

Equations (2.1.1) show the recursive definition of the expectation E of a Deep Neural
Network of L layers towards the predicted target ŷi given given the input xi and the
network’s parameters as a set of weights and biases {W}Ll=1 and {b}Ll=1 for each layer
l ∈ L. The mathematically more rigorous derivation of this equation from generalized
linear models following [28] is presented in Appendix B.
This definition will help us in determining what options we have for generating the
predictive posterior.
We define the output of our neural network of L layers as the expected value of a
distribution over predicted target values ŷ :

E{W}Ll=1,{b}
L
l=1

[ŷi|xi] = g−1(hL(xi; {Wl}Ll=1, {bl}Ll=1)WL+1 + bL+1) (2.1.1)

where the hypothesis hl is recursively defined for each l ∈ [0, L] as

hl(xi; {Wj}lj=1, {bj}lj=1) = fl(hl−1(xi; {Wj}l−1j=1, {bj}
l−1
j=1)Wl + bl) (2.1.2)

Chapter 2 Thomas Manuel Rost 13

Uncertainty

The end of the recursion happens when we ran through all the layers; in the end, we
plug in the training sample itself:

h0(xi) = xi (2.1.3)

Going forward, the model’s weights and biases are merged into the set describing all
the parameters of our neural network, θ = {{W}Ll=1, {b}Ll=1}, to free the notation from
unnecessary clutter. Note that in our case of regression the output link, g−1, is simply
the identity function (and for the gradient descent its inverse–the identity function!). fl
are generally non-linearities. Popular choices include the Rectified Linear Unit (ReLU),
leaky ReLu, Tangens Hyperbolicus as well as the sigmoid function. All these functions
have different benefits and pitfalls, for an in-depth review see, e.g., [40].

Training objective

To train this Neural Network, we define a training objective that is used to find a set of
parameters θ∗ that optimizes this objective via some form of gradient descent.
We use the mean squared error (mse):

θ∗ = argmin
θ

1

N

N∑
i=1

(yi − Eθ[ŷ|xi])2 (2.1.4)

For least squares regression it can be shown that minimizing the mse yields the same
parameters as minimizing the Kullback-Leibler Divergence DKL between the the empir-
ical distribution over the data depending on the hidden generating parameters θorigin,
p(D|θorigin), and the distribution over the data given the model parameters p(D|θ)
1[41],[42].

θ∗ = argmin
θ

DKL(p(D|θorigin)||q(D|θ)) (2.1.5)

where DKL is defined as

DKL(P ||Q)) =

N∑
i

p(xi) log
p(xi)

Q(xi)
(2.1.6)

We are thus free to define θ∗ with regards to this measure depending on the original
choice of θ and p(D|θorigin) which will be useful in defining the implementations of our
ensembles.

2.2 Posterior predictives and analytical solutions

From the posterior distribution over the parameters θ, as defined in equation (1.0.1), we
look towards a predictive posterior distribution to turn our beliefs about the hypothesis
into predictions of our target variable y:

p(ŷ|x,D) =

∫
p(ŷ|x, θ)p(θ|D)dθ (2.2.1)

where p(ŷ|x, θ) is the distribution over the estimated target ŷ evaluated at the point x
given the parameters θ of a model and p(θ|D) is the posterior distribution over these
parameters given the training Data. We marginalize over the parameter space to obtain

1see B for an intuition

Chapter 2 Thomas Manuel Rost 14

Uncertainty

p(ŷ|x,D), the distribution over the estimated target evaluated at a novel data point x
given the training Data D.
While it is easy enough to write this equation down, two problems are apparent: We
do not know how to specify a prior over an ensemble, and the dependency on the
posterior p(θ|D) is problematic. Evaluating this distribution becomes intractable for
large parameter spaces2. In general, we have three options to evaluate this equation to
obtain a valid distribution over plausible output values:

Analytical solution

For a limited set of problems, the posterior distribution can be computed analytically
via a closed-form expression. This set of problems is defined in a way that prior and
posterior distributions are compatible with each other, more specifically by being part
of the same family of probability distributions. An example of an analytically solvable
problem through so-called conjugate priors are the beta-binomial distribution and the
Poisson-Gamma.
Unfortunately, only certain distributions of particularly simple makeup have known
conjugates. Deep Neural Networks generally have no known conjugate priors. Specifying
a prior over DNNs is a complex matter in itself. Were they known, closed-form analytical
solutions for GLMs with a link function other than the identity are generally not known
even for the case of point estimates3. Since our description in (2.1.1) shows our neural
network to be a stack of GLMs where only the output layer employs the identity function,
finding such a solution seems unlikely.

Variational solutions

Variational inference is a way of providing an analytical expression to an approximation
of the posterior distribution through optimization[44]. The general idea is that a known
family of parametrized distributions Q, such as a Gaussian, can approximate the distri-
bution underlying the ‘true’ and unknown distribution p. An ‘optimal’ instance of this
family, q∗(θ), can then hopefully be found by minimizing a measure of dissimilarity D
between p and Q. In the case of our predictive distribution, this can be expressed as
follows:

p(ŷ|x,D) =

∫
p(ŷ|x, θ)q∗(θ)dθ (2.2.2)

q∗(θ) = argmin
q(θ)∈Q

D(q(θ)||p(θ|D)) (2.2.3)

The most common choice for the dissimilarity D is the Kullback-Leibler Divergence
DKL, as defined in equation (2.1.6)4.
For DNNs, this is usually done by assuming the distribution over weights to be normal.
These normal distributions can then be tackled either analytically, e.g., by factorization
such as performed by [45] or numerically, such as e.g., presented in [46].
The downside of the variational approach–apart from the possibility that q fails to cap-
ture important properties of p, e.g., when approximating a multi-modal distribution
with a normal–is that its derivation is quite finicky in all but the most basic cases.
This often leads to replacing one intractable distribution with a slightly less so, but
still intractable approximation. [45], for example, is only computable in cases of very

2For an intuition of where the complexity arises, see Appendix B
3However, for certain classes of GLMs, there seems to be, such as provided by [43]–so fingers crossed
4The KL divergence is not symmetrical. In practice, DKL(q||p) has more benign properties and is

used more often.

Chapter 2 Thomas Manuel Rost 15

Uncertainty

small Neural Networks; however, it is still the basis for many more recent approaches
to variational inference in BNNs[47]. At the moment of writing, we are not aware of a
general, explicit and efficient description of variational inference for the case of Neural
Networks, although works like [48] provide valuable insights into the topic.

Sampling solutions

An alternative to the analytical description of the posterior predictive distribution or its
variational approximation is by generating multiple plausible draws from the posterior
distribution to approximate its shape[49].

p(ŷ|x,D) =

∫
p(ŷ|x, θ)p(θ|D)dθ (2.2.4)

≈ p(ŷ|x, θ(s)), θ(s) ∼ p(θ|D) (2.2.5)

This then allows us to approximate metrics of our distribution easily, as for example
the expectancy: E[p(ŷ|x,D)] ≈ 1

S

∑S
s=1 p(ŷ|x, θ(s)). Generally, to do this, we need

a probabilistic model that can provide us with such draws, by repeatedly querying
the output for a specific input value. These draws are assumed to approximate the
underlying distribution with enough samples. This process is referred to as Monte
Carlo methodology and is a widely used process in statistics.
As we can see in (2.1.1), this description of a DNN will not be able to provide us with
such draws: it is deterministic, and thus, we will not be able to sample a distribution
over values by repeatedly querying it for a specific x.
However, a technique that has long been used to derive more exact predictions via a
simple combination of models uses an approach that is related in that it approximates
a distribution over predictions from many point estimators. The following section will
explain the basics of ensembling in Neural Networks.

2.3 Ensembles as a predictive distribution

Definition

The definition of an ensemble varies more or less slightly depending on the context
in which it is discussed5. In this work, we refer to an ensemble as a collection of M
models with parameters {θm}Mm=1 that can generate predictions on a data set of interest.
These ensemble members are being considered when making the final prediction of the
ensemble itself. In the case of a regression problem, this is usually done by averaging
over their predicted values in order to obtain a predictive mean that tends to perform
better than any member itself6, for example as in (2.3.2). Indeed, ensembling Neural
Networks seems to work particularly well, so much so, that in many competitions such
as on kaggle or the imagenet challenge, ensembles of Neural Networks are usually among
the winners.
When using ensembles to derive a predictive distribution, we can simply compute the
metrics of the distribution we are looking for, in our case the Normal which we then

5It was used by [50] to describe a large (or infinite) number of states describing a possible system–in
essence, a probability distribution over the state of the system

6for an explanation of voting in ensembles for classification and how it lowers the likelihood of
assigning a wrong class, see, e.g., [51]

Chapter 2 Thomas Manuel Rost 16

http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/

Uncertainty

treat as our predictive distribution:

q∗(ŷi|xi, D) ∼ N (µ{θ}Mm (xi), σ{θ}Mm (xi)) (2.3.1)

µ{θ}Mm (xi) =
1

M

M∑
m=1

Eθ∗m [yi|xi] (2.3.2)

σ{θ}Mm (xi) =

√∑M
m=1(Eθ∗m [yi|xi]− µ{θ}Mm (xi))2

M
(2.3.3)

where q∗(ŷi|xi, D) is the predictive distribution over the ith data point ŷi with location
parameter µ{θ}Mm (xi) and scale parameter σ{θ}Mm (xi). Eθ∗m [yi|xi] is the expectation of
the m-th DNN in our ensemble as defined in (2.1.1) with it’s set of parameters θ∗m
independently obtained according to our definition of mse in (2.1.4):

θ∗m = argmin
θ

1

N

N∑
i=1

(yi − Eθm [ŷ|xi])2 (2.3.4)

which we can express in terms of the KL divergence as we did in equation (3.4.2):

θ∗m = argmin
θ

DKL[p(D|θorigin)||q(D|θm)] (2.3.5)

While this work will not explore the theoretical foundations of how to specify Priors
for ensembles of DNNs upfront, it should be noted that for ensembles derived via this
method, an empirical Prior exists, which we can compute by simply computing the
mean and the standard deviation of the distribution over the members before training.
We will use this in the later sections of this work.

Diversity

The effectiveness of ensembles of DNNs in practice compared to approaches utilizing a
single model seem to stem from the different strengths and weaknesses of their individ-
ual members.
An intuitive explanation for this behavior can be found when considering that the num-
ber of possible local minima grows exponentially with the parameter space[52] and that
local minima often have comparable error rates when averaged over the whole data set
while differing in where the error occurs. DNNs usually have vast parameter spaces,
and thus it is likely that different models would tend to converge towards different such
minima of comparable average errors while making different individual mistakes[53]. As
we can see in our distribution and especially in equation (2.3.2), these individual errors–
assuming they are distributed around the true target in an unbiased manner–would
average out and give the ensembles an advantage over each singular model.
As we can see, the quality of this approximate posterior depends largely on both the
fit of the parameters θm to the data as well as their diversity. Their dependency on
sufficiently different members is a well-known property of any ensemble. Additionally,
the tendency to agree or disagree of different but equivalent models as computed in
(2.3.3) can intuitively be interpreted as the uncertainty of the ensemble.
The next section will introduce ways of encouraging diversity among ensembles of neural
networks.

Intuition

While Bayesian prediction itself can be seen as a form of averaging over an infinite model
space where the ensembles themselves are weighted by the likelihood of their parameters

Chapter 2 Thomas Manuel Rost 17

Uncertainty

(see, e.g., [54] for further reading), the link between deriving a predictive distribution
from several independently trained Neural Networks and proper Bayesian inference is
not conclusively established (see e.g., [47] for an in-depth review and [55] for a current
attempt to solve the problem).
There seem to be two major problems with deriving Bayesian networks from Ensembles:
The specification of a prior distribution over the large and non-linear parameter space of
the ensemble itself is not a trivial task, although the literature on this topic is continually
growing. For an in-depth review, see, e.g., [28].
The other problem is that inference over the posterior distribution is impossible for
ensembles, again through the non-linear combination that happens in DNNs–it is not
possible to average over the parameters as we have done for the output.
However, through the use of KL divergence to optimize the parameters of the ensemble
members might point towards a link between the distribution spanned by the ensemble
and variational inference towards the true data distribution p(D|θorigin). While the
scope of this work limits the attention this link receives here, it is an intriguing direction
for further investigation.

Chapter 2 Thomas Manuel Rost 18

Chapter 3

Ensembles

This section gives a short reasoning for the choice of ensembles used in the experimental
section of this work as well as an introduction of the individual methods. We will
introduce their origin, including the original publication and possible amendments made
to facilitate comparability in the experimental setup, the mathematical description of the
origin of their diversity by utilizing equation (3.4.2), as well as notes on their practical
implementation.

3.1 Comparability of architectures

Ensembles are a complex and powerful tool for improving the predictive quality on a
data set, and as we shall see, to obtain a predictive distribution over the target. In
theory, there are few restrictions on what kinds of architectures can be used as members
of an ensemble. Even different classes of algorithms can be sampled together, using their
respective strengths and weaknesses to build ever stronger models. This work, however,
will focus on ensembles made up entirely of DNNs, and all members within an ensemble
were treated the same way during training.
Unfortunately, even ensembles made up of one class of members are very hard to com-
pare in a generalizable way. While in practical situations where a problem needs to be
solved, a grid search can yield a set of parameters that is ‘optimal enough,’ in a com-
parison like ours, it is not enough to pitch arbitrary subsets of parameters and training
regimes against each other.
The reason for this is: Different methods might react differently to underlying architec-
tures. An approach, as proposed by [31], for example, is likely to perform well within
the parameters that are usually used for a certain problem, given that it only introduces
small and passive changes to classical DNN theory. An approach like [46] on the other
hand, which uses a custom loss function as well as additional parameters to capture the
variation of its weights is by no means guaranteed to function optimally when treated
as a classical DNN and might well show its best outcomes in rarely encountered regions
of the architectural space.
Optimizing each approach separately, which would work sufficiently well for practical
applications, also is not an option that satisfies comparability. A reason for this is that
it is not clear on which measure this optimization should be carried out. A low score
for mean squared error on a model does not give us information about the performance
of its uncertainty at all, and as we shall see in the experimentation 5, different metrics
capturing different qualities of the predictive distribution can vastly disagree on the fit
of the distribution. Thus, an architecture and training regimen leading to similar out-
comes for one metric still cannot be said to be unanimously comparable.

19

Uncertainty

This problem shines through the lines of many publications; it is, however, made explicit
in at least one: While [56] reports their method breaking several benchmarks and even
surpassing explicit Variational Methods, [48] criticizes the comparison as potentially un-
fair, mentioning that the VI approach was not used in an optimal fashion which might
have given it the edge over the ensemble.
Our solution to this conundrum is to only include ensembles that can reasonably be
assumed to be ‘similar enough’ to make a comparison fair. The criterion we used to
select ensembles for our comparison is that they need to be expressible through a change
to their training criterion, as defined in (3.4.2). An extension of this criterion can be
expressed as ‘each ensemble in the comparison has to be defined through changes to
either the distribution p(D|θorigin) or q(D|θm).’ Since the choice of the class of distri-
bution for q is the normal, the ensembles have to be expressed by augmenting either
the training data set D, their choice of initial parameters θm or by post-processing the
optimal value for it, θ∗m.
While this is by no means a perfect approach, it at least ensures that the results ob-
tained through our experiments are obtained on a shared architecture, which is likely in
a similar level of optimality for each ensemble.

3.2 The base model

All ensembles are based on the same DNN architectures, with one specification for each
dataset in the comparison defined by the set of parameters {θ} and trainable via mini-
mizing the mse. This approach limits the selection of ensembles in such a way that they
can only be included if their general idea can be expressed in terms of these parameters.
We feel it actively aids comparability between ensembles as comparing different architec-
tures of Neural Networks is a non-trivial task given their complexity1. The parameters
of this base model were determined by a grid search limited to reasonable values for layer
sizes in regression problems, non-linearities, and other parameters, such as the decay rate
of the optimizer. It is implemented as an extension of Pytorch’s nn.module[57], trained
via Adam optimizer[58] and initialized via Pytorch’s default initialization scheme[59]
The number of epochs was determined empirically by closely monitoring the test set
loss and finding convergence, then rounding to the nearest clean integer.

3.3 Multi-model ensembles

This class of ensemble is characterized by training M different instances of a base model,
which are then combined in a straight forward fashion as described in (2.3.1). The
number of models M is 10, following literature on similar topics. They are described in
[60] or [61] and have long been a staple of ensembling techniques.

1Imagine two vastly different DNNs–we would like to compare them at similar levels of efficiency,
which is determined by hyperparameter tuning. Even with the best methods, we could not be sure that
we find a comparable set of hyperparameters for each architecture and would have to rely on empirical
measures. However, optimizing an architecture on one measurement does not mean that it is also co-
optimized for another measure. For some models, such as the snapshot model, we can, to some extent,
circumvent this problem by taking the idea originally expressed in their inception and changing it up
slightly to arrive at a model that works on comparable intuition. Models like the one introduced by
[46], while conceptually interesting and practically proven, have to be excluded from this comparison
for reasons of architectural incompatibility.

Chapter 3 Thomas Manuel Rost 20

Uncertainty

Mult-initialisation ensemble

This very basic ensemble derives its diversity simply by using M different initialization
values for θm. Note that all the other multi-model ensembles inherit this behavior
without explicitly being stated.

θ∗m = argmin
θ

DKL[p(D|θorigin)||q(D|θm)], θm ∼ U(−
√
k,
√
k) (3.3.1)

where U denotes the Uniform distribution and k = 1
F where F is the number of fea-

tures[59].

Fixed data shuffling

This ensemble is derived from the initialization ensemble by adding and locking random
shuffling of the training data for each ensemble member.

θ∗m = argmin
θ

DKL[p(Dm|θorigin)||q(Dm|θm)] (3.3.2)

where Dm is a random shuffling of the original dataset D fixed for each set of parameters
θm.

Bootstrap sampling

The bootstrap is a very established technique in statistical modeling. The idea is to gen-
erate M different training sets {Dm}Mm generated by sampling from the original training
set D with replacement.
In our implementation, due to the resampling, the class initialization additionally re-
quires the length of the data set.

θ∗m = argmin
θ

DKL[p(Dm|θorigin)||q(Dm|θm)] (3.3.3)

where Dm is a randomly drawn resampling of the original dataset D fixed for each set
of parameters θm.
Interestingly, [62] highlights similarities between bootstrapped ensembles and the pos-
terior distribution of Bayesian methods, even more specifically, [63], chapter 8, p 261
mentions that samples obtained via a bootstrap ensemble are ‘a poor man’s’ posterior–
since it approximates the distribution well enough. Noteworthy is that [64] devised a
method for bootstrapping in real-time. While Neural Networks generally do not perform
very well with on-line methods, as soon as we find out how to handle this problem, we
will be able to derive expressive models based on the bootstrap on the fly.

3.4 Snapshot based ensembles

The snapshot ensembles are two variations on a technique devised by [56]. In the original
specification, the authors trained a neural network with a learning-rate decay cycle that
was reset whenever the model converged. Whenever this happened, the authors copied
the current state of the network, reset the learning rate to a high value, and started the
training again. They report training gains through hopping from one local minimum
to the next in addition to ‘train[ing] 1, get[ting] M for free’–a reference to the fact that
the snapshots generated in this approach were used to form an ensemble that performed
well on their benchmarks while saving computational cost by only training one network
instead of M. The particular training schedule introduced in the original paper would

Chapter 3 Thomas Manuel Rost 21

Uncertainty

pose a problem to our goal of model comparability because most of our models are only
trained to converge once. To overcome this limitation, we implemented two slightly
different schemes utilizing the snapshot nature of the underlying publication.
Note that for this type of ensemble, θm is replaced with θt in the mathematical descrip-
tions to emphasize the time that passes between epochs. We take a snapshot every epochs

20
epochs while using only the last ten saved models to generate the ensemble, resulting in
a comparable set of predictions to the other ensembles introduced in this work.

Snapshot ensemble

This ensemble uses the scheme defined above, taking snapshots every few epochs and
saving them to disk. During experimentation, the last ten snapshots are loaded and
initialized, and their predictive distribution computed as usual.

θ∗t = argmin
θ

DKL[p(D|θorigin)||(q(D|θt−1)], θ0 ∼ U(−
√
k,
√
k) (3.4.1)

where θt−1 is the previous snapshot, θ0 is the randomly initialised set of parameters and
θ∗t is the most recent set of parameters found by going through the full cycle of epochs.

Bobstrap

The Bobstrap was devised after a novel ([65]), which explores a set of main characters
who are repeatedly digitally cloned at several points in time. Each clone’s experience
differs from the others with more or less slight variations, which leads to them coming to
different conclusions and developing sightly different characters. In our implementation
of this idea, each time a snapshot is taken in the same way as in the snapshot ensemble,
the data is additionally resampled with replacement as we would do for the bootstrap.

θ∗t = argmin
θ

DKL[p(Dt|θorigin)||(q(Dt|θt−1)], θ0 ∼ U(−
√
k,
√
k) (3.4.2)

where Dt is a full sample of the training dataset D with replacement, θt−1 is the previous
snapshot, θ0 is the randomly initialised set of parameters and θ∗t is the most recent set
of parameters found by going through the full cycle of epochs.

3.5 Dropout

Dropout is a technique originally devised for the regularization of neural networks.
In essence, it randomly excludes nodes from the network (dropped out nodes) during
training, thus avoiding overfitting and reliance on single nodes in the network [66].
[32] used this established technique to derive a posterior predictive distribution from a
Neural Network by keeping the dropout for the prediction pass as well, rendering the
DNN probabilistic depending on the dropout2.

θ∗dropout,m = θ∗m · Filter (3.5.1)

θ∗m = argmin
θ

DKL[p(Dm|θorigin)||q(Dm|θm · Filter)] (3.5.2)

where Filter is a matrix of the same dimensionality as θm where the corresponding
entries to the weights of the Neural Network are replaced by draws from the Bernoulli
distribution with probability p = 0.05, resampled each time a prediction is made.

2While there is a discussion ongoing on whether the probabilistic nature of the dropout leads to
proper posteriors (see, e.g., [67]). As some other discussion about risk vs. uncertainty (see, e.g., [68]),
for the very modest goal of this work, these are not relevant.

Chapter 3 Thomas Manuel Rost 22

Chapter 4

Methods

This section describes the experimental setup, such as datasets and data preparation,
the parameter selections for the base model used for the ensembles, the use of baselines,
and measures taken to ensure reproducibility. It also explains the measures used to
quantify the difference in predictive uncertainty as well as the decision process for the
removal of outliers. The complete list of software and hardware used can be found in
appendix A. The reader is assumed to be familiar with the basics of machine learning
experimentation.

4.1 Experimental Setup

4.1.1 Datasets

We use two synthetic datasets, one for visual inspection inspired by [69], generated by
the function fsmall(x) = x3 + εsmall where εsmall ∼ N (0, 9) containing 20 data points
in the interval [-4,4]. This dataset is used to inspect the out of sample distribution
behavior of the models on a simple dataset. The test set is thus equal to the training
set with added values at -6 and 6. A visualisation can be found in figure 4.1a
A second synthetic dataset was generated by the function flarge(x) = sin(x × 20) +
sin(x × 7.5) + εlarge where εlarge ∼ N (0, 0.3) for the interval from [0.1,0.9]. The ex-
periments are conducted with and without out of sample data points at 0.0 and 1.0 in
the test set to add out of sample data. This dataset with one predictor variable was
mainly used in order to test the performance on a dataset with known parameters. A
visualization can be found in 4.1b.
Additionally, we used one real-world regression dataset based on [70] to test our mod-
els in a more complex, multidimensional case. Since the goal of this work is not to
challenge state-of-the-art predictive power on this dataset, we removed all non-numeric
feature columns from the dataset to avoid elaborate pre-processing, leaving us with 37
predictors- and one target variable. For visualizations, the dataset has been sorted by
target value to aid understanding, see 4.1c.
Both datasets have been scaled by subtracting the mean and standard deviation to
obtain a more Neural Network friendly dataset (as suggested by, e.g., [71]).

4.1.2 Reproducibility

We performed 20 different train/test splits and shuffling at random with a training data
size of 80% of the dataset and a test size of the remaining 20%. Given the goal of this
work and the fact that at no point were the models’ parameters repeatedly optimized

23

Uncertainty

6 4 2 0 2 4 6
x

200

100

0

100

200
y

small synthetic dataset

(a) small synthetic dataset

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

(b) large synthetic dataset

0 200 400 600 800 1000

2

1

0

1

2

3

(c) real life housing dataset

Figure 4.1: Data sets used in the empirical evaluation. Fig 4.1a shows the small syn-
thetic dataset generated by the function y = x3 + N (0, 9), training data evaluated on
[-4,4], test data interval [-6,6]. Dotted line is the ground truth. 4.1b shows the large
synthetic dataset constructed via y = sin(x ∗ 20) + sin(x ∗ 7.5) +N (0, 0.3) and evaluated
on [0,1] Dotted line is the ground truth. 4.1c shows the real life housing dataset; y is
the target house price mean centered and standardised by dividing through the data stan-
dard deviation. X is an indicator rather than the 37 dimensional feature space. Green
indicates original sorting, black is sorted by ascending y value for better visualisation.

on the measures of interest, we decided to forego a hold-out validation dataset.
Each experimental outcome was fixed via a different random seed to ensure reproducibil-
ity. Note that these seeds mainly influence the probabilistic parts of the model, i.e., the
initialization matrices of the Neural Network as well as the bootstrap samples, the data
shuffling and split, and the dropout where applicable.

Base Model Parameters The base model used for the ensembles is a feedforward
DNN. Table 4.1 shows the final choice of architecture for each data set. The parameters
were found by grid search over a space restricted by reasonable choices for regression
models from the literature. Dropout was only applied to the dropout ensemble, where
it was added before each nonlinearity in accordance to the literature [47].

small synthetic large synthetic housing

layer sizes [500,300,200,10,1] [100, 100, 10, 1] [500, 500, 15, 1]
non-linearity ReLU Tanh Tanh
optimizer adam, decay 0.001 adam, decay 0.0005 adam, decay 0.005
epochs 100 500 300
Bootstrap Probability 0.7 0.7 0.7
Dropout Probability 0.05 0.05 0.05

Table 4.1: Network architectures for synthetic and real world datasets

4.1.3 Baselines

We compare the models’ outputs to one data derived baseline that uses the empirical
mean ± standard deviation of the training target, as well as the models’ empirical prior

Chapter 4 Thomas Manuel Rost 24

Uncertainty

distributions where available1. A visualisation of the two priors used can be found in
figure 4.2. In the case of the large synthetic dataset, we included the data generating
process defined by the data generating function flarge(x) fo compare mse and nlpd to
this ‘gold standard.’ Note that because for this function the uncertainty is constant,
cobeau can not be computed.

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(a) ensemble prior

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0
observed
test set prediction
ensemble member prediction
mean

(b) dropout prior

Figure 4.2: Typical priors for different ensemble classes on the large synthetic data set

4.2 Analysis

4.2.1 Measures

Three measures are reported for the experimental outcomes on the test dataset, each
one characterized by the mean and standard deviation in the results section:

Mean Squared Error Equivalent to the training criterion defined in (2.1.4). The
MSE does not capture predictive uncertainty and is thus used only as a minor comparison
to observe the training success of the networks.

Negative log predictive denstiy The negative log predictive density (nlpd) is a
strictly proper scoring rule [72][73] commonly used to compare the quality of predictive
uncertainty between different models[74][75][76].
It is pointwise computed as defined in equation (4.2.1):

L = − 1

n

n∑
i

log(p(yi|xi)) (4.2.1)

1Note that the priors were the same for all the models directly derived from the random initialization
ensemble, i.e., the Shuffle and the bootstrap ensemble. Priors were not available for the ensembles relying
on self-ensembling through time since the empirical prior can only be computed for ensembles in which
a pre-initialization of the models takes place. See more on priors in this work in the Discussion 6.2

Chapter 4 Thomas Manuel Rost 25

Uncertainty

In our case of a regression with assumed normally distributed errors, the terms are:

Li =
1

2

(ŷi − yi)2

σi
+ log(σi)(+C) (4.2.2)

where ŷi is the ensembles predictive mean as defined in (2.3.2), σi is the ensembles
predictive uncertainty as defined in (2.3.3), yi is the actual target value and C is a
constant. To avoid numerical instabilities from very low uncertainty, we added 0.0001
during the computation.
Like most likelihood measures, nlpd can only be used to compare models’ performance
on the same dataset and are not transferable.

Correlation between uncertainty and error Correlation Between Error and Un-
certainty (cobeau) is simply put Pearson’s Correlation Coefficient computed between
the vector of errors and the vector of uncertainty a model produces. It is a measure
of how much linear correlation the models uncertainty has with the error the model
makes[77].

cobeau =

∑
i(εi − ε̄)(σi − σ̄)√∑

i(εi − ε̄)2
√∑

i(σi − σ̄)2
(4.2.3)

Where ε̄ and σ̄ respectively denote the mean and the standard deviation of the error
ε and of the uncertainty σ and εi and σi the i-th entry in the vector of error and standard
deviation.

P-values corresponding to cobeau We also report the p-values indicating the prob-
ability of observing values of this effect or higher by chance2.

4.2.2 Outlier Detection

Unfortunately, Neural Networks are susceptible to bad initialization values, which lead to
numerical instabilities or vanishing gradients [79]. In order to filter out models for which
the initialization was bad enough for them to generally not be considered representative
of the ensemble’s behavior under good conditions, the instances where this happens need
to be removed from the experimental data. Fortunately, we can query the dataset for
outliers based on a metric largely independent of the performance of the uncertainty of
the Network, solving the dilemma of removing outliers based on the score the experiment
is meant to measure. The MSE, which is available for each model, was used to identify
and remove offending instances from the analysis by computing a z-score over the error
and removing models that exceed three standard deviations.

2The application of p-values has recently gone through a time of criticism because they were mis-
and abused, especially in the social sciences, see, e.g., [78]

Chapter 4 Thomas Manuel Rost 26

Chapter 5

Experiments

In this section, we report the outcomes of the experiments carried out on each dataset.
Shown are the mean squared error, negative log predictive density, the correlation be-
tween error and uncertainty, and the corresponding p-value of each ensemble as well as
baseline models as available. Reported are each measure with mean and standard devi-
ation for each experiment with a different randomized train-test split after removing the
outliers. Lower values are better for mse, nlpd, and the p-value, where larger values are
better for cobeau. Visualizations report a credible interval of four standard deviations.

5.1 Small synthetic dataset

Results

Figure 5.1 shows the ensembles’ behavior after 200 epochs of training. All models exhibit
higher uncertainty in the out of sample regions than over the training data, with only the
random initialization ensemble and the shuffle ensemble exhibiting negligible uncertainty
over the training data.

Analysis

All models seem to perform adequately and as one would expect for out of sample un-
certainty. Interestingly, [31] reports significantly overconfident estimations from multi-
model ensembles on a similar dataset. However, note that we did not aim to perform
a 1:1 comparison with their work, differences include the number of epochs as well as
architecture. The original literature works with different hyperparameters for learning
rate decay and subsequently only trains their model for 40 epochs. In our experiments,
this leads to severe underperformance. A visualization of the same models after 40 and
1000 epochs respectively can be found in figure C.1 and C.2.
The outcomes of these experiments seem to support the claim that comparing different
ways of generating a predictive distribution carries the risk of comparing suboptimally
optimized architectures rather than the actual way of generating distributions.

5.2 Large synthetic dataset

Results

Figure 5.2 shows a prototypical visualisation of the models’ performance on the larger
synthetic data set after 500 epochs. The models based on standard ensembling exhibit

27

Uncertainty

6 4 2 0 2 4 6

200

100

0

100

200

(a) multi initialisation

6 4 2 0 2 4 6

200

100

0

100

200

(b) shuffle ensemble

6 4 2 0 2 4 6

200

100

0

100

200

300

(c) bootstrap

6 4 2 0 2 4 6

200

100

0

100

200

(d) snapshot

6 4 2 0 2 4 6

200

100

0

100

200

(e) bobstrap

6 4 2 0 2 4 6

200

100

0

100

200

(f) dropout

Figure 5.1: Uncertainty typical for different ensembles on small synthetic dataset. The
x-axis shows the x value, the y-axis shows the target. The dotted line represents the
ground truth, small dots indicate training data, big dots are the models prediction. The
predictive mean of the model is given by the continuous line, the models uncertainty in
four standard deviations is given by the purple shade.

stronger uncertainty in out of sample regions compared to the models based on snap-
shots, with the dropout model seemingly exhibiting similar levels of uncertainty at every
region of the data. All models seem to capture the true distribution reasonably well in
areas where training data was given, interestingly in the snapshot and the dropout mod-
els the regularizing effect seems most substantial, preventing them from approximating
the generating function as well as the other models in this particular train-test-split.
Table 5.1 reports the experimental outcomes for the synthetic data set without out of
sample, table 5.2 reports the outcomes including out of sample data points.

No out of sample data As we can see, the mse of all models is significantly lower
than that of the priors and the minimally informed model consisting of mean and std of
the training data, with the bobstrap and the Dropout performing worst and the multi-
model ensembles performing best. Unsurprisingly, the models are outperformed by the
generating function in this respect.
When looking at the nlpd, the multi-model ensembles perform best, outperforming the
generating function. They are followed by the bobstrap, the dropout, and the snapshot
ensemble performing worst of the six. Notably, all models perform better than the priors
and the empirical mean and standard deviation of the training data.
The cobeau is minimal for all models; the p-values indicate that the correlations could
very well be chance.

Chapter 5 Thomas Manuel Rost 28

Uncertainty

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

3

(a) multi initialisation

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

3

(b) shuffle ensemble

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

3

(c) bootstrap

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) snapshot

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(e) bobstrap

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(f) dropout

Figure 5.2: Uncertainty typical for different ensembles on larger synthetic dataset. The
x-axis shows the x value, the y-axis shows the target. The dotted line represents the
ground truth, small dots indicate training data, big dots are the models prediction. The
predictive mean of the model is given by the continuous line, the models uncertainty in
four standard deviations is given by the purple shade.

Out of sample data included When adding the oos data, as the mse increases the
gap in performance between the models closes.
The nlpd of all models becomes significantly worse, most notable for the snapshot
ensemble, which is now outperformed even by the empirical metrics derived from the
training data set. None of the models outperform the generating function after the
inclusion of the oos data. The Bootstrap ensemble, previously very similar to the other
multi-model ensembles, now differentiates itself with the best value.
Regarding the cobeau, the three multi-model ensembles now report high correlations
between their error and their uncertainty, with p-values indicating that a random ob-
servation is unlikely to exhibit this behavior while the other three models’ error seems
uncorrelated to their uncertainty.

Analysis

A salient comparison stems from how the models’ relative performance changes with and
without out of sample data. The mse of the models increases in similar ways while no-
ticeably closing the gap between the ensembles. The nlpd rating of the models changes,
with the bootstrap dominating the other ensembles on this measure after the inclusion
of the new data points whereas it performed comparatively well but not outstanding
compared to the others without those data. The snapshot model, arguably the weakest
in both cases, even loses to the empirical metrics after the inclusion of the oos samples.
The cobeau becomes large for the three multi-model ensembles with the extra data
while being negligible without it. Compared to the nlpd, however, the ranking between

Chapter 5 Thomas Manuel Rost 29

Uncertainty

errors nlpd cobeau p-val

VanillaEnsemble 0.29 ±0.07 -1.47 ±0.68 0.19 ±0.31 0.43 ±0.36

ShuffleEnsemble 0.29 ±0.07 -1.47 ±0.68 0.19 ±0.31 0.43 ±0.36

BootstrapEnsemble 0.29 ±0.07 -1.43 ±0.33 0.09 ±0.3 0.45 ±0.33

snapshotModel 0.31 ±0.08 -0.81 ±1.3 0.12 ±0.27 0.44 ±0.26

BobstrapEnsemble 0.34 ±0.09 -0.91 ±0.86 -0.08 ±0.22 0.49 ±0.23

DropoutModel 0.36 ±0.08 -0.88 ±0.42 -0.08 ±0.19 0.63 ±0.28

multi initialisation prior 0.93 ±0.01 1.37 ±0.41 0.05 ±0.29 0.39 ±0.27

Dropout Model prior 0.94 ±0.03 16.12 ±2.76 0.04 ±0.2 0.55 ±0.25

train set mean/std 0.93 0.57 - -
generating function 0.26 -1.03 - -

Table 5.1: Large synthetic dataset results, no out of sample data, means ± standard
deviations

errors nlpd cobeau p-vas

VanillaEnsemble 0.44 ±0.05 -0.78 ±0.56 0.66 ±0.16 0.02 ±0.06

ShuffleEnsemble 0.44 ±0.05 -0.78 ±0.56 0.66 ±0.16 0.02 ±0.06

BootstrapEnsemble 0.44 ±0.06 -0.9 ±0.24 0.63 ±0.13 0.02 ±0.02

snapshotModel 0.45 ±0.06 0.81 ±2.32 0.4 ±0.23 0.18 ±0.24

BobstrapEnsemble 0.45 ±0.07 -0.23 ±0.72 0.17 ±0.29 0.36 ±0.31

DropoutModel 0.46 ±0.06 -0.56 ±0.32 0.04 ±0.21 0.51 ±0.26

multi initialisation prior 0.89 ±0.0 1.18 ±0.37 0.12 ±0.26 0.41 ±0.3

Dropout Model prior 0.9 ±0.02 15.23 ±2.59 0.06 ±0.23 0.54 ±0.34

train set mean/std 0.89 0.53 - -
generating function 0.28 -0.98 - -

Table 5.2: Large synthetic dataset results, out of sample data present, means ± standard
deviations

the two measures is reversed with the oos data: where the bootstrap is the weakest with
regards to cobeau, it exhibits the strongest value for nlpd. This seems to indicate two
things: On the one hand, cobeau seems to be a good indicator of how well a model
treats out of sample data, on the other, it shows that a model can perform relatively
better with regards to nlpd while having relatively weaker cobeau.

5.3 Housing data

Results

Figure 5.3 shows a prototypical visualisation of the models’ performance on the housing
data set with four standard deviations after 300 epochs of training.
Table 5.3 shows the outcomes for the real-world housing data. Since the data generating
process is not available in this case, the comparison is omitted.
The mse of the ensembles is similar, outperforming the priors and empirical metrics by
a wide margin.
The nlpd of the bobstrap is the best, followed by the multi-model ensembles (bootstrap
slightly worse than the other two) and the dropout. The snapshot ensemble shows bad
performance in this measure, being outperformed by both the empirical metrics as well
as the multi-model prior.

Chapter 5 Thomas Manuel Rost 30

Uncertainty

The cobeau of the snapshot ensemble is the highest; next, are the three multi-model
ensembles with bootstrap and shuffle ensemble scoring slightly higher than the third one.
The Bobstrap, while slightly outperformed, still shows a strong correlation between error
and uncertainty. The dropout ensemble performs poorly with regards to this measure,
with no correlation to speak of.

Analysis

Visual inspection seems to indicate similar performance concerning mse with very dif-
ferent levels of confidence. The Dropout model exhibits large uncertainty almost ev-
erywhere; the snapshot ensemble seems overly confident. Given how the uncertainty
is generated, this can be blamed on small changes through the latter epochs. Indeed,
training the model on fewer epochs or adding older snapshots to the prediction seems a
remedy to this issue to some extent. This difference to the other models points towards
the need for a framework that enables a fair comparison. The experimental results seem
to reinforce our findings from the previous experiments about the orthogonality of nlpd
and cobeau. Especially when taking into consideration the very similar values for mse:
While the multi-model ensembles are in the mid-field for both cobeau and nlpd, the
snapshot ensemble exhibits both the best score for cobeau and simultaneously the worst
for nlpd, being outperformed by the empirical metrics as well as the multi-model prior.
Also, the Dropout, which is relatively close to the well-performing models when it comes
to nlpd shows no correlation between its error and its uncertainty.
Compared to the synthetic data set, the bobstrap and the snapshot models gain with
regards to cobeau, to the point where they are now among the better performers. A
possible explanation for this divergence could lie in the way these models obtain their
predictive uncertainty, which might work better on more complex data, but this is in
the area of speculation.

errors nlpd cobeau p-val

VanillaEnsemble 0.21 ±0.01 -2.02 ±0.29 0.37 ±0.14 0.0 ±0.0

ShuffleEnsemble 0.21 ±0.01 -2.02 ±0.29 0.38 ±0.13 0.0 ±0.0

BootstrapEnsemble 0.21 ±0.01 -2.04 ±0.08 0.39 ±0.12 0.0 ±0.0

snapshotModel 0.21 ±0.01 1.27 ±2.3 0.44 ±0.14 0.0 ±0.02

BobstrapEnsemble 0.21 ±0.01 -2.14 ±0.12 0.33 ±0.1 0.0 ±0.0

DropoutModel 0.22 ±0.01 -1.73 ±0.09 0.03 ±0.08 0.51 ±0.35

multi initialisation prior 0.78 ±0.01 1.16 ±0.24 -0.02 ±0.08 0.34 ±0.22

Dropout Model prior 0.78 ±0.03 13.85 ±1.82 0.04 ±0.08 0.39 ±0.3

train set mean/std 0.77 0.47 - -

Table 5.3: Housing data results, means ± standard deviations

Chapter 5 Thomas Manuel Rost 31

Uncertainty

0 50 100 150 200

1

0

1

2

3

(a) multi initialisation

0 50 100 150 200

1

0

1

2

3

(b) shuffle ensemble

0 50 100 150 200

1

0

1

2

3

4

(c) bootstrap

0 50 100 150 200

1

0

1

2

3

(d) snapshot

0 50 100 150 200

1

0

1

2

3

(e) bobstrap

0 50 100 150 200

2

1

0

1

2

3

4

(f) dropout

Figure 5.3: Uncertainty typical for different ensembles on the housing dataset. Black
dots indicate the true test data; the horizontal lines indicate the model’s prediction.
The horizontal lines indicate the credible interval of four standard deviations. The y-
axis shows the target value; the x-axis indicates the sample. Two amendments were
made solely for the visualization given the high dimensionality of the data as well as its
origin in real-life data: the x-axis shows an indicator of the sample since the original x
values have a dimensionality of 37; the data has been sorted by ascending y value to aid
interpretability.

Chapter 5 Thomas Manuel Rost 32

Chapter 6

Discussion

Following, we will provide some discussion on the results of the practical evaluation,
point out some limitations of the experimental setup, and look towards possible future
research directions.

6.1 Discussion of results

In this section, we will discuss the main results from the practical evaluation of the six
ensembles as well as some theoretical observations.

Practical Results

We draw three major conclusions from the practical results:

Measures A measure of the correlation of uncertainty and error seems to comple-
ment standard measures of likelihood such as nlpd. They capture different–but equally
important–qualities of the predictive distribution. While the nlpd focusses on the overall
fit with regards to error and the scale of uncertainty, measures such as cobeau indicate
how reliable the uncertainty is concerning predicting an actual error the model is going
to make.

Ensembles The ensembles perform adequately on the data sets with different strengths
and weaknesses and no clear winner. While the mse of most models seem close to each
other, the dropout model generally showed the weakest performance of the six, if not by
a lot. The reason for this could be that while dropout seems like a minimal adjustment
of architecture–only affecting 5% of many hundred nodes–it could already be enough to
warrant, e.g., larger training cycles due to information lost through the dropout. On the
other hand, the snapshot ensemble seems to be trained for too many epochs, which leads
to large values for nlpd. Another interesting observation in this regard is the apparent
failure of the Dropout model to capture the correlation between error and uncertainty in
cases where the other models seemed to show medium-strong performance. In relative
accordance with [31], the multi-model ensembles seem to perform most consistently over
the synthetic and real-life data.

Experimental setup The comparison of predictive distributions in an experimental
setup is a complicated task. As seen from the point above, even changes in architecture
thought minuscule could have a significant effect on the performance of the models’

33

Uncertainty

distribution. Additionally, these different architectures might affect one measure while
not changing the performance measured by others. Examples of this include the perfor-
mance of the snapshot and the dropout ensembles, which exhibited bad nlpd and cobeau,
respectively, while being competitive in regards to the mse. Additionally, some of our
outcomes differ significantly from reports in the literature, even though we used a similar
methodology. Notable is the performance of the ensembles on the small synthetic data
set evaluated visually compared to the findings of, e.g., [31], where our ensembles failed
to converge in meaningful ways with similar choices for the number of epochs. These
differences, likely stemming from small adjustments made in the selection of hyperpa-
rameters, reinforce the authors’ belief that comparing predictive distributions needs to
be done in a very controlled environment. Even small differences in training regimen
can significantly skew the results towards one of the models being compared. We rec-
ommend the expenditure of resources to find an experimental set up that facilitates
comparability between different approaches to the generation of predictive distributions
independently of architectures chosen to avoid false conclusions on the performance of
different predictive distributions due to unfair comparisons.

6.2 Limitations

In the following section, we talk about some of this work’s limitations and how they
could be addressed in the future.

A note of the scale of uncertainty

There is ample literature on the calibration of uncertainty. [80] and his references are
an exciting and useful place to start for the interested reader. For some of the models
used in the comparison, the authors provide ways of stretching the uncertainty to proper
scales, such as in [47]. However, due to the scope of this work as well as in the interest
of comparability, we chose to only report the unscaled standard deviations over the
distributions the ensembles themselves provided. For measures like the negative log
predictive density, this could potentially lead to problems, given that they rely on the
scale of the uncertainty measuring up to the scale of the error. Readers interested in
applications of predictive distributions, such as Thompson sampling for reinforcement
learning or other kinds of active learning or decision processes, are advised to read into
the topic before trusting the methods described in this work.

Aleatoric vs. epistemic uncertainty

An important distinction in the research of predictive uncertainty is the difference be-
tween aleatoric and epistemic uncertainty. While many definitions exist, in essence, it
is a question on which part of the uncertainty comes from the model being ill speci-
fied (e.g., through a faulty training regimen) vs. irreducible uncertainty stemming from
noise in the data. While this work had to omit looking into this topic, several inter-
esting approaches exist to estimate aleatoric vs. epistemic uncertainty, such as closely
monitoring how well the distributions converge towards the generating function ± the
noise added to the values given a large number of data points.

Models with intrinsically different architectures and the problem
of optimization

A significant amount of thought went into this work’s approach to forcing comparability
between models. As a solution, we chose to omit models that could not be cast into

Chapter 6 Thomas Manuel Rost 34

Uncertainty

a shared architecture to ensure all models could be compared on a similar baseline of
performance. While ensuring basic comparability of the models, this solution is unsat-
isfactory for several reasons. The most glaring one is that it is already suspected to
introduce some bias via the fixed number of epochs, which might overfit the snapshot
while underfitting the dropout. Another significant limitation of this approach is having
to drop interesting methods such as the formalisms introduced by [46] and [31] as they
can’t be guaranteed to show comparable performance in the restricted training regimen
used for the models in this work. Research is needed into how to compare predictive
distributions obtained via models on the complexity level of DNNs to avoid preferential
treatment based on biased training regimens and parameter selections. A possible addi-
tion to the framework used in this work could include comparisons through time, which
in our case could allow the snapshot model to conclude its training earlier while giving
the Dropout model more time to develop fully.

Priors defined through ensembles

While research into prior distributions useable with BNNs and ensembles exists1, this
work consciously paid the issue minimal attention apart from using an empirical prior
derived from multi-model ensembles and the dropout to give context to model perfor-
mance. The prior of an ensemble of DNNs in our case is of the form N (µ{θ}Mm , σ{θ}Mm), in
which the location and scale parameters are computed as in equation (2.3.2) and (2.3.3).
In the multi-model ensemble, this means it is dependent on draws from the distribution
U(−
√
k,
√
k) as defined in equation (3.3.1). In the case of the dropout, the spread is

dependent on the dropout probability p that is applied to each neuron of a single draw
from the same distribution, which defined the location parameter. Finally, in the case
of the snapshot ensemble, the prior is a degenerate distribution with location dependent
on a single draw where σ{θ}Mm equals 0 because we only have one instance of the model
unless we train it for enough epochs to trigger a snapshot. Visualizations of the priors
for multi-model and dropout can be found in figure 4.2

6.3 Future research questions

This section contains thoughts and comments on topics not included in this work due
to scope as well as possible future lines of research in the area of predictive distributions
from DNNs.

Possible link between Predictive distribution and variational ap-
proximation to the data generating process

While the relationship between the predictive distribution defined in equation (2.3.1)
and the posterior predictive distribution derived via a proper BNN in equation (2.2.1)
can quickly be challenged–e.g. by pointing out that with this kind of ensembling we
do not get a posterior over the parameters of the ensemble–the distribution might be
related to a different form of Bayesian inference. As we can see in formula (3.4.2), in
our case of mse regression, the parameters of the trained models can be assumed to
be approximations of parameters that we would find by minimizing the KL divergence
between the predictive distribution and the data generating process. This might imply
a link between the predictive distribution of ensembles and a variational approximation
of the empirical distribution of the training data through a family of distributions whos

1see, e.g., [28] for an overview and [81] for a recent publication on the topic

Chapter 6 Thomas Manuel Rost 35

Uncertainty

parameters are defined by the ensemble architecture. If this link indeed holds, ensembles
of DNNs can, at least in this one scenario, be seen as proper Bayesian. This would give
their already widespread practical use some additional theoretical basis2. However, some
more research is necessary to probe this intuition for validity.

Recovering BNNs from snapshot models

While the argumentation above holds for general ensembles of DNNs, indicating that
they can usually not be used as proper BNNs due to the lack of an explicit distribution
over parameters, this might not be true for the snapshot model.
In the usual ensembling process, M independent networks are trained. Because their
different initialization and the various effects of stochastic gradient descent on their
nodes, it is not possible to compare the values of corresponding neurons to obtain a
distribution over parameters (neuron 1 in model 1 might respond strongly to a feature
whereas neuron 1 in model 2 might react strongly to a different feature–thus averaging
over them would not lead to improved performance but would likely be detrimental to
the inference process).
However, in the snapshot ensembles, as trained in this work, the parameters of the dif-
ferent snapshots are not trained entirely independently, with different values quantifying
the change through time for each parameter rather than an independently trained and
thus incomparable DNN. This might open up the possibility of recovering an approxi-
mate posterior prediction over the parameters in this case.

Predictive power of the spread of the predictive distribution on
the prediction error

The practical evaluation shows how a measure of the correlation between the predictive
uncertainty on the model error, such as cobeau, can highlight different characteristics of a
model compared to more conventional measures such as nlpd. More research is necessary
to evaluate the quality of the measure and possibly derive a more robust measure based
on a similar principle that is more sensitive to in-sample vs. out-of-sample data points.

Different architectures

Our base model architecture was found using grid-search with the average mse through
several iterations as an optimization objective. While this approach was chosen to avoid
interference with the other measures, a slightly different hyperparameter setup could
be thought of. For example, one that optimizes, e.g., for a large spread of the mse to
optimize the diversity of the multi-model ensembles or uses an entirely different measure
to find an optimal architecture.

Proactive boosting through uncertainty estimates

Boosting is an approach in which an ensemble is iteratively grown by training weak
learners and re-weighting the input data by the error of the previous iteration[60].
In the presence of a predictive distribution, it is possible to conceive of an algorithm
that uses information about its uncertainty to weight training examples. For example,
a data point with low uncertainty but a large error could lead to a stronger adjustment
in weights than a data point with low uncertainty and low error. Conversely, high

2Not limited to artificial Neural Networks, either. It might have exciting implications for neuroscience
as well.

Chapter 6 Thomas Manuel Rost 36

Uncertainty

uncertainty could indicate a datapoint carrying high educational value for the model
and might thus be learned with a learning rate upscaled by high uncertainty.

Transfer of findings to classification

It is common for publications on BNNs to talk about regression and classification both.
This work’s scope, however, was limited to regression problems. While some of the
theoretical assumptions will have to be overhauled for classification, the basic set up
seems compatible with the problem of classification.

Predictive Distributions in Reinforcement learning

One area in which predictive uncertainty is valuable is in reinforcement learning. Know-
ing where a model is and is not confident about its predictions enables an approach
where the next action is chosen in relation. Thompson sampling, as used by [64] sam-
ples from the predictive distribution over different possible input values and then plays
the one carrying the highest expected reward to solve the dilemma of exploration vs.
exploitation. Other approaches, such as [39], aim to maximize the knowledge obtained
over a particular domain. Thus they always play the action with the highest predictive
uncertainty until it goes below a certain threshold. Classically, these approaches utilize
Gaussian Processes, linear Bayesian Regressions, or ensembles of decision trees. While
these approaches carry their benefits such as explainability, in many situations using the
more expressive class of models defined by DNNs is preferred.

Chapter 6 Thomas Manuel Rost 37

Chapter 7

Conclusion

We conclude the following insights from our work on predictive distributions derived via
ensembling DNNs on regression problems:

• Our theoretical and practical results point towards the predictive distribution de-
rived via ensembling of DNNs being a valuable and computationally benign sub-
stitute to Bayesian Neural Networks for regression problems if used with caution
and awareness of the models’ strengths and weaknesses.

• A measure for the predictive power of a model’s uncertainty on its error adds
quantification of out of sample behavior of models’ predictive distribution. Our
measure, COBEAU, could be used as a starting point in the development of such
a metric.

• Research into a standardized practical framework under which to compare different
ways of obtaining a predictive distribution is likely to yield a ‘fairer’ comparison
between the methods. By avoiding arbitrary and non-representative advantages of
one model architecture over another, better insights can be derived about which
approach is preferable in specific situations. The approach presented in this work
is a first step towards such a framework with obvious drawbacks when it comes to
the type of model it is applicable for.

38

Appendix A

Technology used and Code
Repository

Code repository

All code used in this work can be found at https://github.com/wooohoooo/uncertainty_
regression_pytorch

Hard- and software used

This section contains a list of the hard- and software used in this project.

1. models were trained on a Dell XPS 13 with i7 CPU and 16 gb RAM, model of
2019.

2. programs written in python [82]

3. neural nets in pytorch [57]

4. train test split and other experimental approaches scikit learn[83]

5. scipy stats for outlier detection and the computation of the cobeau [84]

6. pandas for general data processing [85]

7. mathematical functions not found in pytorch: NumPy [86]

8. matplotlib and seaborn for visualisation [87], [88]

9. Code was developed in jupyter notebooks, [89]

10. LaTeX for writing [90]

39

https://github.com/wooohoooo/uncertainty_regression_pytorch
https://github.com/wooohoooo/uncertainty_regression_pytorch

Appendix B

Additional theoretical
considerations

This appendix contains additional theoretical considerations and intuitions that had to
be cut from the main body of the text due to scoping issues. In some cases, they only
serve as the basis for an intuition and are not fully-fledged mathematical arguments.
Note that they are not mathematically rigorous since they are provided to aid an in-
tuition rather than full proofs. The general assumptions and definitions from the main
text still apply.

Intractability intuition for bayes rule for models with
large number of θ

This section provides a primer for big parameter spaces and why they make computation
problematic.
This result is widely known, so we will focus on the main idea behind it: obtaining the
model evidence by integrating out the parameters. A more thorough introduction to
the topic can be found e.g., in [41] p128-132, section 5.5.

P (θ|D) =
P (X|θ)P (θ)

P (X)
=
P (X, θ)

P (X)
(B.0.1)

for one theta: P (X) =

∫ ∞
−∞

P (X, θ)dθ (B.0.2)

for two thetas: P (X) =

∫ ∞
−∞

∫ ∞
−∞

P (X, θ1, θ2)dθ1dθ2 (B.0.3)

for N thetas: P (X) =

∫ ∞
−∞

∫ ∞
−∞

...P (X, θ1, θ2, ..., θn)dθ1dθ2...dθn (B.0.4)

Derivation of recurrent definition of neural networks

[28] provides a derivation of DNNs from generalized linear models. The result, a recursive
definition of DNNs, is used in section 2.1.1. For convenience, we will retell the derivation
in its basic steps here. We begin with a generalized linear model (glm) deriving its
expected value for yi on a new data point xi from a combination of weights w, a bias
variable b and a link function, g−1

40

Uncertainty

E[yi|xi] = g−1(xiw + b) (B.0.5)

We then define this glm with an adaptive basis function by wrapping x in a function
h depending on parameters Φ, which perform some augmentation of the input data.

E[yi|xi] = g−1(h(xi; Φ)w + b) (B.0.6)

From here we simply assume the data augmentation part to be another glm depending
on a different set of weights and biases, recovering the definition of a Neural Networks
with one hidden layer

E[yi|xi] = g−1(h(xi;W1, b1)w2 + b2) (B.0.7)

where h(xi;W1, b1) = f(xiW1 + b1)
We can now keep stacking them recursively, arriving at

E[yi|xi] = g−1(hL(xi; {Wl}Ll=1, {bl}Ll=1)WL+1 + bL+1) (B.0.8)

where

hl(xi; {Wj}lj=1, {bj}lj=1) = fl(hl−1(xi; {Wj}l−1j=1, {bj}
l−1
j=1)Wl + bl) (B.0.9)

with recursion stop at l = 0: h0(xi) = xi.

Parameters obtained by minimizing KL divergence through
mse for large data sets in regression

We provide an intuition based on argumentation found in [41] or [42]. First, we show
that the minimizing mse yields the same parameters as maximum likelihood estimation
(MLE) in a gaussian model, then we show the link between MLE and DKL.

Minimizing the Mean Squared Error as Maximum likelihood es-
timation for the parameters in a Gaussian model

Assume the Data is generated by a model y = f(x|w) + ε, where ε ∼ N(0, σε). Assume
σε is known, and the data points are conditionally iid given w. We are modelling the
data with a model ŷ = f̂(x, θ) + ε̂. In step (B.0.11) we used the fact that the noise is
normally distributed
the log-likelihood of the model is

logp(y|x, θ) =
∑

log p(yi|xi, θ) (B.0.10)

=

N∑
i=1

logN (yi; f̂(x, θ), σ2)) (B.0.11)

=

N∑
i=1

log
1√

2πσ2
ε

exp(− (yi − f̂(x, θ)2

2σ2
ε)

(B.0.12)

= −N
2

log 2πσ2
ε −

N∑
i=1

(yi − f̂(x, θ)2

2σ2
ε)

(B.0.13)

Chapter B Thomas Manuel Rost 41

Uncertainty

where N is the number of observations. In (B.0.15) all constant terms have been dropped
from (B.0.13).

θmle = argmax
θ

log p(y|x, θ) (B.0.14)

= argmax
θ
−N

N∑
i=1

(yi − f(x, θ)2) (B.0.15)

= argmax
θ

1

N

N∑
i=1

(yi − f(x, θ)2) (B.0.16)

(B.0.17)

This is equal to the loss function defined in (2.1.4).

MLE maximization as approximation to KL minimization for suf-
ficiently large N

Assume we want to find the parameters θ by minimizing the KL divergence θminKL =
argminθDKL(p̂data||pmodel) and by applying the maximum likelihood principle, θmle =
argmaxθ and show that they converge towards the same values for large N.

θminKL = argmin
θ

DKL(p̂data||pmodel) (B.0.18)

= argmin
θ

Ex∼p̂data
[p̂data(X)− log pmodel(x|θ)] (B.0.19)

= argmin
θ
−Ex∼p̂data

[log pmodel(x|θ)] (B.0.20)

In the next step, we turn the argmin of the negative value into an argmax, and given
that the data are iid, we exchange the Expected value with a sum with a limit ∞:

θminKL = argmax
θ

lim
N→∞

1

N
log(p(xi|θ) (B.0.21)

which, is the same as (B.0.14) up to a constant which does not change the choice of θ

Theoretical assessment of uncertatinty

Additionally, to the practical results in the main text, we provide some intuition into
a possible interpretation of uncertainty stemming from theoretical considerations in
combination with the outcomes of the experiments.

Multi model ensembles

The multi-model ensembles seem to derive their predictive uncertainty via a comparison
of equally competent but differently specialized members. A representative development
over the individual models’ losses, as can be seen in B.1a, supports this interpretation,
showing the members converging to similar levels of competence. This seems coherent
with the intuitive explanation for their better performance when using ensembles on
datasets such as is common in competitions such as kaggle or the imagenet classification
challenge. The uncertainty generated by this approach can point to data points that
have very varying interpretations for each member, thus indicating them being hard to
predict.

Chapter B Thomas Manuel Rost 42

Uncertainty

(a) typical ensemble loss (b) typical bobstrap loss (c) typical dropout loss

Figure B.1: typical training loss over epochs for different ensemble classes

Snapshot ensembles

The snapshot ensembles generate a distribution over their predictions from different
points in time, with the bobstrap additionally changing the portion of the dataset that
is being observed each time. It thus seems possible to pin down a source of their un-
certainty as ‘surprise,’ i.e., how much was learned in the passes over the data set since
the last snapshot. Alternatively, it can be phrased as the difference between the prior
belief over the best hypothesis and the posterior belief. Figure B.1b shows the pro-
totypical loss for a bobstrap ensemble with the switch of training data indicated by a
spike in training loss followed by a region of a quick recovery. In situations where the
old model predicts significantly different values to the newer one, the distribution has a
large spread. In contrast, it is low when the old version of the model and the new agree.
A similar notion of surprise is described, e.g., in [91] in the context of attention mech-
anisms. A combination of these notions might yield valuable insights into ensembling
theory.

Dropout

The dropout ensemble derives its uncertainty from implicit ensembling[92]. Its deriva-
tion has an interesting contrast to multi-model ensembles, with the dropout utilizing
slightly smaller architectures for their members due to the deactivation of nodes through
dropout. Additionally, the parameters of the ensemble are shared in extreme fashion;
each member subsamples several parameters from the ensemble space to make a predic-
tion. This leads to two interesting observations:
While the multi-model ensembles are comprised of several specialized but equally com-
petent members, the deactivation of certain nodes in the dropout inhibits such spe-
cialization. This is what dropout was originally conceived for - to regularize DNNs by
removing the reliance on single neurons[66].
Instead, the dropout ensemble turns DNNs probabilistic by randomly sampling sub-
networks. This behavior leads to the characteristic ‘wiggly’ training loss shown in figure
B.1c. Thus, the uncertainty derived from Dropout could be seen as a proper distribution
over the networks likely spread of output values, with each sample being influenced by
a subset of beliefs the network carries.
Interestingly, this means that each sample could already be seen as a draw over the
distribution of possible values (- whereas for the other ensembling methods, a single
draw is determined by the network it was trained on - meaning we do not have infor-
mation about how likely that particular draw is. It might be a freak outlier for all we
know, and if we continuously resample from the members, it is likely to get an unfair
share of attention). This is especially notable for methods using sampling from the final

Chapter B Thomas Manuel Rost 43

Uncertainty

distribution over predictions such as Thompson Sampling (see, e.g., [93]), which can
save a few computational cycles by simply using a forward pass as a draw.

Chapter B Thomas Manuel Rost 44

Appendix C

Additional experimental
outcomes

In addition to the experimental outcomes reported in 5, we performed other experiments
that seemed interesting but were not strictly within the parameters set for the original
research, mainly because they employ architectures not in line with the paradigm of
finding the optimal architecture via grid-search optimized on mse.

Small Synthetic toy data set, 40 epochs

Our outcomes on the small synthetic data set were obtained via grid searching parame-
ters and thus did not reflect the choice of parameters used in [31]. To obtain an intuition
of the effect on these parameter spaces, we tried to replicate similar results by training
our network on 40 epochs. Our outcomes can be found in figure C.1. As we can see,
our model severely under fits with this number of epochs.

Small synthetic dataset, 1000 epochs

Additionally, we trained the network for 1000 epochs to observe its behavior. The
outcomes can be found in C.2. As we can see, for the multi-model, the bootstrap,
and the dropout, this leads to even better fit while keeping the predictive uncertainty
relatively high.

45

Uncertainty

6 4 2 0 2 4 6

200

100

0

100

200

(a) multi model ensemble

6 4 2 0 2 4 6

200

100

0

100

200

(b) shuffle ensemble

6 4 2 0 2 4 6

200

100

0

100

200

(c) bootstrap

6 4 2 0 2 4 6

200

100

0

100

200

(d) snapshot

6 4 2 0 2 4 6

200

100

0

100

200

(e) bobstrap

6 4 2 0 2 4 6

200

100

0

100

200

(f) dropout

Figure C.1: Uncertainty typical for different ensembles on small synthetic dataset after
40 epochs. The x-axis shows the x value, the y-axis shows the target. The dotted line
represents the ground truth, small dots indicate training data, big dots are the models
prediction. The predictive mean of the model is given by the continuous line, the models
uncertainty in four standard deviations is given by the purple shade.

Chapter C Thomas Manuel Rost 46

Uncertainty

6 4 2 0 2 4 6

200

100

0

100

200

300

(a) multi model ensemble

6 4 2 0 2 4 6

200

100

0

100

200

300

(b) shuffle ensemble

6 4 2 0 2 4 6

200

100

0

100

200

300

(c) bootstrap

6 4 2 0 2 4 6

200

100

0

100

200

(d) snapshot

6 4 2 0 2 4 6

200

100

0

100

200

300

(e) bobstrap

6 4 2 0 2 4 6

200

100

0

100

200

300

(f) dropout

Figure C.2: Uncertainty typical for different ensembles on small synthetic dataset. The
x-axis shows the x value, the y-axis shows the target. The dotted line represents the
ground truth, small dots indicate training data, big dots are the models prediction. The
predictive mean of the model is given by the continuous line, the models uncertainty in
four standard deviations is given by the purple shade.

Chapter C Thomas Manuel Rost 47

Bibliography

[1] David Malakoff. Bayes Offers a ‘New’ Way to Make Sense of Numbers.(Bayesian
statistics). Tech. rep. 1999.

[2] Carlos Riquelme, George Tucker, and Jasper Roland Snoek. “Deep Bayesian Ban-
dits Showdown”. In: 2018. url: https://openreview.net/pdf?id=SyYe6k-CW.

[3] Sharon Bertsch McGrayne. The theory that would not die : how Bayes’ rule
cracked the enigma code, hunted down Russian submarines, & emerged triumphant
from two centuries of controversy. Yale University Press, 2011, p. 320. isbn:
9780300169690.

[4] Adrian E Raftery. “Choosing models for cross-classifications”. In: American soci-
ological review 51.1 (1986), pp. 145–146.

[5] A History of Bayes’ Theorem - LessWrong 2.0. url: https://www.lesswrong.
com/posts/RTt59BtFLqQbsSiqd/a- history- of- bayes- theorem (visited on
10/27/2019).

[6] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory,
1957. url: https://books.google.nl/books?id=P_XGPgAACAAJ.

[7] Mikel Olazaran. A Sociological Study of the Official History of the Perceptrons
Controversy. doi: 10.2307/285702. url: https://www.jstor.org/stable/
285702.

[8] Marvin Minsky and Seymour Papert. Perceptrons; an introduction to computa-
tional geometry. MIT Press, 1969, p. 258. isbn: 9780262130431.

[9] G. Cybenko. Approx By Superposition.Pdf. 1989. doi: 10.1007/BF02551274.

[10] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In:
Neural Networks 4.2 (1991), pp. 251–257. issn: 08936080. doi: 10.1016/0893-
6080(91)90009-T.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. Tech. rep. url: http://code.google.
com/p/cuda-convnet/.

[12] From not working to neural networking - Technology. url: https://www.economist.
com/special-report/2016/06/23/from-not-working-to-neural-networking

(visited on 10/26/2019).

[13] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: (2018). arXiv: 1810.04805. url: http://arxiv.
org/abs/1810.04805.

[14] Zhenzhong Lan et al. “ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations”. In: (2019). arXiv: 1909.11942. url: http://arxiv.
org/abs/1909.11942.

48

https://openreview.net/pdf?id=SyYe6k-CW
https://www.lesswrong.com/posts/RTt59BtFLqQbsSiqd/a-history-of-bayes-theorem
https://www.lesswrong.com/posts/RTt59BtFLqQbsSiqd/a-history-of-bayes-theorem
https://books.google.nl/books?id=P_XGPgAACAAJ
https://doi.org/10.2307/285702
https://www.jstor.org/stable/285702
https://www.jstor.org/stable/285702
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/
https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking
https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942

Uncertainty

[15] wav2vec: Unsupervised Pre-training for Speech Recognition - Facebook Research.
url: https://research.fb.com/publications/wav2vec-unsupervised-pre-
training-for-speech-recognition/ (visited on 10/26/2019).

[16] Understanding searches better than ever before. url: https://www.blog.google/
products/search/search-language-understanding-bert (visited on 10/26/2019).

[17] Saining Xie et al. “Exploring Randomly Wired Neural Networks for Image Recog-
nition”. In: (2019). arXiv: 1904.01569. url: http://arxiv.org/abs/1904.
01569.

[18] Hans-Eric Jönsson and Kristian Nilsson. A comparison of image and object level
annotation performance of image recognition cloud services and custom Convolu-
tional Neural Network models. Tech. rep. 2019. url: www.bth.se.

[19] Weicheng Kuo et al. “Expert-level detection of acute intracranial hemorrhage on
head computed tomography using deep learning”. In: Proceedings of the National
Academy of Sciences (2019). url: https://www.pnas.org/content/early/
2019/10/15/1908021116.

[20] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architecture
for Generative Adversarial Networks”. In: (2018). arXiv: 1812.04948. url: http:
//arxiv.org/abs/1812.04948.

[21] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. “Waveglow: A Flow-based Gen-
erative Network for Speech Synthesis”. In: ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - Proceedings. Vol. 2019-May.
Institute of Electrical and Electronics Engineers Inc., 2019, pp. 3617–3621. isbn:
9781479981311. doi: 10.1109/ICASSP.2019.8683143. arXiv: 1811.00002.

[22] Hany Farid. “Creating, Weaponizing, and Detecting Deep Fakes”. In: Santa Clara,
CA: USENIX Association, Aug. 2019.

[23] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529 (2016), pp. 484–503. url: http://www.nature.com/
nature/journal/v529/n7587/full/nature16961.html.

[24] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. Tech.
rep.

[25] Deepak Pathak et al. Curiosity-driven Exploration by Self-supervised Prediction.
Tech. rep. arXiv: 1705.05363v1. url: http://pathak22..

[26] Johan Kwisthout and Iris van Rooij. “Bridging the gap between theory and prac-
tice of approximate Bayesian inference”. In: Cognitive Systems Research 24 (2013),
pp. 2–8. issn: 13890417. doi: 10.1016/j.cogsys.2012.12.008.

[27] Deep Learning Is Not Good Enough, We Need Bayesian Deep Learning for Safe AI
- Home. url: https://alexgkendall.com/computer{_}vision/bayesian{_
}deep{_}learning{_}for{_}safe{_}ai/ (visited on 11/21/2019).

[28] Eric Thomas Nalisnick. UC Irvine UC Irvine Electronic Theses and Dissertations
Title On Priors for Bayesian Neural Networks. Tech. rep. 2018. url: https:

//escholarship.org/uc/item/1jq6z904.

[29] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
(2013). arXiv: 1312.6114. url: http://arxiv.org/abs/1312.6114.

[30] Diederik P. Kingma and Max Welling. “An Introduction to Variational Autoen-
coders”. In: (2019). arXiv: 1906.02691. url: http://arxiv.org/abs/1906.
02691.

Chapter C Thomas Manuel Rost 49

https://research.fb.com/publications/wav2vec-unsupervised-pre-training-for-speech-recognition/
https://research.fb.com/publications/wav2vec-unsupervised-pre-training-for-speech-recognition/
https://www.blog.google/products/search/search-language-understanding-bert
https://www.blog.google/products/search/search-language-understanding-bert
https://arxiv.org/abs/1904.01569
http://arxiv.org/abs/1904.01569
http://arxiv.org/abs/1904.01569
www.bth.se
https://www.pnas.org/content/early/2019/10/15/1908021116
https://www.pnas.org/content/early/2019/10/15/1908021116
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://doi.org/10.1109/ICASSP.2019.8683143
https://arxiv.org/abs/1811.00002
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1705.05363v1
http://pathak22.
https://doi.org/10.1016/j.cogsys.2012.12.008
https://alexgkendall.com/computer{_}vision/bayesian{_}deep{_}learning{_}for{_}safe{_}ai/
https://alexgkendall.com/computer{_}vision/bayesian{_}deep{_}learning{_}for{_}safe{_}ai/
https://escholarship.org/uc/item/1jq6z904
https://escholarship.org/uc/item/1jq6z904
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1906.02691

Uncertainty

[31] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In: (). url:
https://papers.nips.cc/paper/7219-simple-and-scalable-predictive-

uncertainty-estimation-using-deep-ensembles.pdf.

[32] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Rep-
resenting Model Uncertainty in Deep Learning”. In: (2015). arXiv: 1506.02142.
url: http://arxiv.org/abs/1506.02142.

[33] Ensembles and model combination. Tech. rep. url: http://www.inf.ed.ac.uk/
teaching/courses/mlpr/2017/1.

[34] Jeffrey De Fauw et al. “Clinically applicable deep learning for diagnosis and re-
ferral in retinal disease”. In: Nature Medicine 24.9 (2018), pp. 1342–1350. issn:
1546170X. doi: 10.1038/s41591-018-0107-6.

[35] Leo Breiman. “Random Forests. transparencias”. In: Statistics 45.1 (2001), pp. 1–
33. issn: 08856125. doi: 10.1023/A:1010933404324. arXiv: /dx.doi.org/10.
1023{\%}2FA{\%}3A1010933404324 [http:]. url: http://dx.doi.org/10.
1023/A:1010933404324.

[36] Hugh A Chipman, Edward I George, and Robert E Mcculloch. “Bayesian Ensemble
Learning”. In: (). url: http : / / papers . nips . cc / paper / 3084 - bayesian -

ensemble-learning.pdf.

[37] Bayesian Deep Learning. url: https : / / twiecki . io / blog / 2016 / 06 / 01 /

bayesian-deep-learning/ (visited on 10/27/2019).

[38] Shengyang Sun et al. FUNCTIONAL VARIATIONAL BAYESIAN NEURAL
NETWORKS. Tech. rep.

[39] D. Fan et al. “A robotic Intelligent Towing Tank for learning complex fluid-
structure dynamics”. In: Science Robotics 4.36 (2019). url: https://robotics.
sciencemag.org/content/4/36/eaay5063.full.

[40] Bing Xu et al. “Empirical Evaluation of Rectified Activations in Convolutional
Network”. In: CoRR abs/1505.00853 (2015). arXiv: 1505 . 00853. url: http :

//arxiv.org/abs/1505.00853.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. MIT Press, 2016.

[42] Nando De Freitas. CPSC540 Probabilistic linear prediction Probabilistic linear pre-
diction and maximum likelihood. Tech. rep. 2013.

[43] Stan Lipovetsky. “Analytical closed-form solution for binary logit regression by
categorical predictors”. In: Journal of Applied Statistics 42.1 (2015), pp. 37–49.
issn: 13600532. doi: 10.1080/02664763.2014.932760.

[44] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference: A
Review for Statisticians”. In: (2016). doi: 10.1080/01621459.2017.1285773.
arXiv: 1601.00670. url: http://arxiv.org/abs/1601.00670http://dx.doi.
org/10.1080/01621459.2017.1285773.

[45] Geoorey E Hinton and Drew Van Camp. Keeping Neural Networks Simple by
Minimizing the Description Length of the Weights. Tech. rep.

[46] Charles Blundell et al. “Weight Uncertainty in Neural Networks”. In: (2015).
arXiv: 1505.05424. url: http://arxiv.org/abs/1505.05424.

[47] Yarin Gal. “Uncertainty in Deep Learning”. In: (2016). url: http://www.cs.ox.
ac.uk/people/yarin.gal/website/thesis/thesis.pdf.

Chapter C Thomas Manuel Rost 50

https://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles.pdf
https://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles.pdf
https://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/1
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/1
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs//dx.doi.org/10.1023{\%}2FA{\%}3A1010933404324
https://arxiv.org/abs//dx.doi.org/10.1023{\%}2FA{\%}3A1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://papers.nips.cc/paper/3084-bayesian-ensemble-learning.pdf
http://papers.nips.cc/paper/3084-bayesian-ensemble-learning.pdf
https://twiecki.io/blog/2016/06/01/bayesian-deep-learning/
https://twiecki.io/blog/2016/06/01/bayesian-deep-learning/
https://robotics.sciencemag.org/content/4/36/eaay5063.full
https://robotics.sciencemag.org/content/4/36/eaay5063.full
https://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1080/02664763.2014.932760
https://doi.org/10.1080/01621459.2017.1285773
https://arxiv.org/abs/1601.00670
http://arxiv.org/abs/1601.00670 http://dx.doi.org/10.1080/01621459.2017.1285773
http://arxiv.org/abs/1601.00670 http://dx.doi.org/10.1080/01621459.2017.1285773
https://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
http://www.cs.ox.ac.uk/people/yarin.gal/website/thesis/thesis.pdf
http://www.cs.ox.ac.uk/people/yarin.gal/website/thesis/thesis.pdf

Uncertainty

[48] Marcin B Tomczak and Richard E Turner. Neural network ensembles and varia-
tional inference revisited. Tech. rep. 2018.

[49] Alan E. Gelfand and Adrian F.M. Smith. “Sampling-based approaches to calculat-
ing marginal densities”. In: Journal of the American Statistical Association 85.410
(1990), pp. 398–409. issn: 1537274X. doi: 10.1080/01621459.1990.10476213.

[50] Josiah Willard. Gibbs. Elementary Principles in Statistical Mechanics : Developed
with Especial Reference to the Rational Foundation of Thermodynamics. Cam-
bridge University Press, 1902, p. 232. isbn: 1108017029.

[51] Ludmila I Kuncheva. “Combining Pattern Classifiers Combining Pattern Clas-
sifiers Methods and Algorithms”. In: (). url: http://www.ccas.ru/voron/

download/books/machlearn/kuncheva04combining.pdf.

[52] Kenji Kawaguchi. “Deep learning without poor local minima”. In: Advances in
Neural Information Processing Systems. Neural information processing systems
foundation, 2016, pp. 586–594. arXiv: 1605.07110.

[53] Timur Garipov et al. Loss Surfaces, Mode Connectivity, and Fast Ensembling of
DNNs. Tech. rep. arXiv: 1802.10026v4. url: https://github.com/timgaripov/
dnn-mode-connectivity.

[54] Tiago M Fragoso and Francisco Louzada Neto. Bayesian model averaging: A sys-
tematic review and conceptual classification *. Tech. rep. 2014. arXiv: 1509 .

08864v1.

[55] Tim Pearce et al. “Bayesian Inference with Anchored Ensembles of Neural Net-
works, and Application to Exploration in Reinforcement Learning”. In: (2018).
arXiv: 1805.11324. url: http://arxiv.org/abs/1805.11324.

[56] Gao Huang et al. “Snapshot Ensembles: Train 1, get M for free”. In: (2017). arXiv:
1704.00109. url: http://arxiv.org/abs/1704.00109.

[57] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: NIPS Autodiff
Workshop. 2017.

[58] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: (2014). arXiv: 1412.6980. url: http://arxiv.org/abs/1412.6980.

[59] pytorch/linear.py at master · pytorch/pytorch. url: https://github.com/pytorch/
pytorch/blob/master/torch/nn/modules/linear.py (visited on 10/23/2019).

[60] David Opitz and Richard Maclin. “Popular Ensemble Methods: An Empirical
Study”. In: Journal of Artificial Intelligence Research 11 (1999), pp. 169–198.
issn: 10769757. doi: 10.1613/jair.614. arXiv: 1106.0257.

[61] Thomas G. Dietterich. “Ensemble methods in machine learning”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Vol. 1857 LNCS. 2000, pp. 1–15. isbn:
3540677046. doi: 10.1007/3-540-45014-9_1.

[62] B. Efron. “Bootstrap Methods: Another Look at the Jackknife”. In: The Annals of
Statistics 7.1 (1979), pp. 1–26. issn: 0090-5364. doi: 10.1214/aos/1176344552.

[63] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Springer Series in Statis-
tics The Elements of Statistical Learning Data Mining, Inference, and Prediction.
Tech. rep.

[64] Dean Eckles and Maurits Kaptein. “Thompson sampling with the online boot-
strap”. In: (2014). arXiv: 1410.4009. url: http://arxiv.org/abs/1410.4009.

[65] Dennis E. Taylor. We are legion : (we are Bob), p. 299. isbn: 9781680680584.

Chapter C Thomas Manuel Rost 51

https://doi.org/10.1080/01621459.1990.10476213
http://www.ccas.ru/voron/download/books/machlearn/kuncheva04combining.pdf
http://www.ccas.ru/voron/download/books/machlearn/kuncheva04combining.pdf
https://arxiv.org/abs/1605.07110
https://arxiv.org/abs/1802.10026v4
https://github.com/timgaripov/dnn-mode-connectivity
https://github.com/timgaripov/dnn-mode-connectivity
https://arxiv.org/abs/1509.08864v1
https://arxiv.org/abs/1509.08864v1
https://arxiv.org/abs/1805.11324
http://arxiv.org/abs/1805.11324
https://arxiv.org/abs/1704.00109
http://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
https://doi.org/10.1613/jair.614
https://arxiv.org/abs/1106.0257
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1214/aos/1176344552
https://arxiv.org/abs/1410.4009
http://arxiv.org/abs/1410.4009

Uncertainty

[66] Nitish Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Tech. rep. 2014, pp. 1929–1958.

[67] Jiri Hron, Alexander G. de G. Matthews, and Zoubin Ghahramani. “Variational
Gaussian Dropout is not Bayesian”. In: (2017). arXiv: 1711.02989. url: http:
//arxiv.org/abs/1711.02989.

[68] Ian Osband and Google Deepmind. Risk versus Uncertainty in Deep Learning:
Bayes, Bootstrap and the Dangers of Dropout. Tech. rep. arXiv: 1602.04621.
url: http://bayesiandeeplearning.org/2016/papers/BDL{_}4.pdf.

[69] José Miguel Hernández-Lobato and Ryan Adams. “Probabilistic backpropagation
for scalable learning of bayesian neural networks”. In: International Conference
on Machine Learning. 2015, pp. 1861–1869.

[70] Dean De Cock. Ames, Iowa: Alternative to the Boston Housing Data as an End
of Semester Regression Project. Tech. rep. 3. 2011. url: www . amstat . org /

publications/jse/v19n3/decock.pdf.

[71] Yann LeCun et al. “Efficient BackProp Lecture Notes in Computer Science”. In:
Machine Learning and Knowledge Discovery in Databases. Chapter 3. Springer
Berlin Heidelberg, 2012, pp. 9–48. doi: 10.1007/978-3-642-35289-8_3. url:
http://link.springer.com/10.1007/978- 3- 642- 35289- 8{_}3http:

//link.springer.com/content/pdf/10.1007{\%}2F978- 3- 642- 35289-

8{_}3.pdfhttp://link.springer.com/chapter/10.1007/978-3-642-35289-

8{_}3http://link.springer.com/chapter/10.1007/978-3-642-35289-

8{_}3.

[72] Tilmann Gneiting and Adrian E Raftery. “Strictly Proper Scoring Rules, Predic-
tion, and Estimation”. In: (). doi: 10.1198/016214506000001437. url: https:
//www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf.

[73] Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive infor-
mation criteria for Bayesian models *. Tech. rep. 2013.

[74] Joaquin Quiñonero-Candela et al. “Evaluating Predictive Uncertainty Challenge”.
In: (). url: https://pdfs.semanticscholar.org/2e5a/fed6eb2ef1e360618b7b1d545b7616d750b8.
pdf.

[75] John Geweke and Gianni Amisano. Wo r k i n g Pa P e r S e r i e S n o 9 6 9 / n oV
e M B e r 2 0 0 8 CoMParing and eValuating BayeSian PrediCtiVe diStriButionS
of aSSet returnS. Tech. rep. 2008. url: http://www.ecb.europa.eu.

[76] César Ojeda et al. Variable Attention and Variable Noise: Forecasting User Activ-
ity. Tech. rep.

[77] K Pearson. Notes on Regression and Inheritance in the Case of Two Parents
Proceedings of the Royal Society of London, 58, 240-242. 1895.

[78] It’s time to talk about ditching statistical significance. 2019. doi: 10.1038/d41586-
019-00874-8.

[79] Siddharth Krishna Kumar. On weight initialization in deep neural networks. Tech.
rep. 2017. arXiv: 1704.08863v2.

[80] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. “Accurate Uncertain-
ties for Deep Learning Using Calibrated Regression”. In: (2018). arXiv: 1807.

00263. url: http://arxiv.org/abs/1807.00263.

[81] Danijar Hafner and Google Brain Dustin Tran Google Brain Timothy Lillicrap
DeepMind Alex Irpan Google Brain James Davidson. Noise Contrastive Priors
for Functional Uncertainty. Tech. rep. arXiv: 1807.09289v3.

Chapter C Thomas Manuel Rost 52

https://arxiv.org/abs/1711.02989
http://arxiv.org/abs/1711.02989
http://arxiv.org/abs/1711.02989
https://arxiv.org/abs/1602.04621
http://bayesiandeeplearning.org/2016/papers/BDL{_}4.pdf
www.amstat.org/publications/jse/v19n3/decock.pdf
www.amstat.org/publications/jse/v19n3/decock.pdf
https://doi.org/10.1007/978-3-642-35289-8_3
http://link.springer.com/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/content/pdf/10.1007{\%}2F978-3-642-35289-8{_}3.pdf http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3
http://link.springer.com/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/content/pdf/10.1007{\%}2F978-3-642-35289-8{_}3.pdf http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3
http://link.springer.com/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/content/pdf/10.1007{\%}2F978-3-642-35289-8{_}3.pdf http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3
http://link.springer.com/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/content/pdf/10.1007{\%}2F978-3-642-35289-8{_}3.pdf http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3
http://link.springer.com/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/content/pdf/10.1007{\%}2F978-3-642-35289-8{_}3.pdf http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3 http://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3
https://doi.org/10.1198/016214506000001437
https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf
https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf
https://pdfs.semanticscholar.org/2e5a/fed6eb2ef1e360618b7b1d545b7616d750b8.pdf
https://pdfs.semanticscholar.org/2e5a/fed6eb2ef1e360618b7b1d545b7616d750b8.pdf
http://www.ecb.europa.eu
https://doi.org/10.1038/d41586-019-00874-8
https://doi.org/10.1038/d41586-019-00874-8
https://arxiv.org/abs/1704.08863v2
https://arxiv.org/abs/1807.00263
https://arxiv.org/abs/1807.00263
http://arxiv.org/abs/1807.00263
https://arxiv.org/abs/1807.09289v3

Uncertainty

[82] G. van Rossum. Python tutorial. Tech. rep. CS-R9526. Amsterdam: Centrum voor
Wiskunde en Informatica (CWI), 1995.

[83] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[84] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. [Online; accessed ¡today¿]. 2001–. url: http://www.scipy.org/.

[85] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference (2010), p. 51.

[86] S. Chris Colbert Stéfan van der Walt and Gaël Varoquaux. “The NumPy Ar-
ray: A Structure for Efficient Numerical Computation”. In: Computing in Science
Engineering 13 (), p. 22.

[87] John D. Hunter. “Matplotlib: A 2D Graphics Environment”. In: 9 (2007), p. 90.

[88] Michael Waskom et al. mwaskom/seaborn: v0.8.1 (September 2017). Sept. 2017.
doi: 10.5281/zenodo.883859. url: https://doi.org/10.5281/zenodo.

883859.

[89] Thomas Kluyver et al. “Jupyter Notebooks – a publishing format for reproducible
computational workflows”. In: Positioning and Power in Academic Publishing:
Players, Agents and Agendas. Ed. by F. Loizides and B. Schmidt. IOS Press.
2016, pp. 87 –90.

[90] Leslie. Lamport. LaTex : a document preparation system. Addison-Wesley, 1986,
p. 242. isbn: 0201157969.

[91] Pierre Baldi and Laurent Itti. “Of bits and wows: A Bayesian theory of surprise
with applications to attention”. In: Neural Networks 23.5 (2010), pp. 649–666.
issn: 08936080. doi: 10.1016/j.neunet.2009.12.007.

[92] Kazuyuki Hara, Daisuke Saitoh, and Hayaru Shouno. “Analysis of dropout learn-
ing regarded as ensemble learning”. In: (2017). doi: 10.1007/978-3-319-44781-
0_9. arXiv: 1706.06859. url: http://arxiv.org/abs/1706.06859http:

//dx.doi.org/10.1007/978-3-319-44781-0{_}9.

[93] Shipra Agrawal et al. “Analysis of Thompson Sampling for the Multi-armed Bandit
Problem”. In: 2326.39 (2012), pp. 1–39. url: http://proceedings.mlr.press/
v23/agrawal12/agrawal12.pdf.

Chapter C Thomas Manuel Rost 53

http://www.scipy.org/
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.1016/j.neunet.2009.12.007
https://doi.org/10.1007/978-3-319-44781-0_9
https://doi.org/10.1007/978-3-319-44781-0_9
https://arxiv.org/abs/1706.06859
http://arxiv.org/abs/1706.06859 http://dx.doi.org/10.1007/978-3-319-44781-0{_}9
http://arxiv.org/abs/1706.06859 http://dx.doi.org/10.1007/978-3-319-44781-0{_}9
http://proceedings.mlr.press/v23/agrawal12/agrawal12.pdf
http://proceedings.mlr.press/v23/agrawal12/agrawal12.pdf

	Introduction
	Theoretical Considerations
	Background
	Posterior predictives and analytical solutions
	Ensembles as a predictive distribution

	Ensembles
	Comparability of architectures
	The base model
	Multi-model ensembles
	Snapshot based ensembles
	Dropout

	Methods
	Experimental Setup
	Datasets
	Reproducibility
	Baselines

	Analysis
	Measures
	Outlier Detection

	Experiments
	Small synthetic dataset
	Large synthetic dataset
	Housing data

	Discussion
	Discussion of results
	Limitations
	Future research questions

	Conclusion
	Technology used and Code Repository
	Additional theoretical considerations
	Additional experimental outcomes

