
Masked Autoregressive Flows with a Marginalising Flow Framework

Bachelor’s Thesis in Artificial Intelligence by
Isaac Lee1
s1007848

Supervised by:
Luca Ambrogioni2

1Department of Artificial Intelligence, Radboud University
2Donders Institute for Brain Cognition and Behaviour, Radboud University

July 31, 2020

Abstract— Invertible deep networks, or normalising flows,
are the focus of an influx of new research in the field of
machine learning. In this paper marginalising flows, which can
be applied on top any normalising flow, will be implemented
over the existing Masked Autoregressive Flow framework.
The performance will be compared between different masked
autoregressive models with and without marginalising flows.
Additionally image generation will be analysed after training
on CIFAR-10.

I. INTRODUCTION

In the world of statistics and by extension, machine
learning, it is vitally important to be able to mathematically
describe the process through which data is produced. This
can range from some ‘distribution’ as simple as a Gaussian,
which has a known probability density calculation, to images
of faces, which are too complex to describe with a formula.
Being able to describe the density and efficiently sample
from complex distributions is a goal of modern machine
learning. Normalising flows, a type of generative model, have
recently been used as a new method to solve this problem.

Normalising flows make up a subcategory of neural net-
works which possess specific properties. It is these properties
that allow them to function as generative models. Typically
a normalising flow learns to map data from a complex distri-
bution to a more simple one. Therefore the flow acts as a sin-
gular transformation or series of individual transformations
that are able to transform a point in a complex distribution
to a point in a simple one. Normalising flows can function
as generative models because the transformations they use
are restricted such that they are not only invertible but also
both the transformation and its inverse are differentiable.

This paper mainly explores the possible performance im-
provements of adding a marginalising flow to masked au-
toregressive flows [10]. Comparisons will be made between
masked autoregressive flows with and without a marginal-
ising component. Additionally, Planar flows will be briefly
experimented with and analysed.

II. RELATED WORK

After the introduction of Planar and Radial flows by
Rezende and Mohamed [13] for variational inference along
with the NICE framework for density estimation by Dinh et
al. [1], normalising flows have spiked in popularity. Many
more advanced and complex frameworks have been created
such as RealNVP [2], Glow [6] and Flow++ [4] for the
purpose of accurate density estimation in high-dimensional
images. Normalising flows have also been adapted from
autoencoders, as is the case in Masked Autoregressive flows
[10], upon recognition that autoencoders share the properties
that normalising flows require.

More recently, there has been literature written to serve as
an introduction to the concepts of normalising flows and the
state of the field. [11][7].

III. BACKGROUND

A. Normalising flows

A normalising flow is typically made up of multiple layers
each performing a single transformation. The combination

of the transformations of those layers is referred to as T .
Equation 1 shows how T is made up of the transformations
of each layer.

T = Ti ◦ Ti−1 ◦ ... ◦ T2 ◦ T1 (1)

For a normalising flow to be fully functional it is a require-
ment that T , and therefore all transformations that make up
T , is invertible. In addition, both T and its inverse T−1 are
required to have a tractable differentiation. This requirement
is necessary to be be able to compute the determinant of the
Jacobian. The Jacobian matrix is made up of the first order
partial derivatives of the transformation function T . The
absolute value of the determinant of this matrix represents
the amount of expansion and shrinkage in the transformation.
Satisfying these conditions allows us to describe the density
of complex distributions via the combination of another
distribution and a flow.

px(x) = pu(T
−1x)|detJT−1(x)| (2)

Formula 2 describes the probability density of x, our com-
plex density, in terms of u, our simple one, and the transfor-
mation T−1. [11]
A normalising flow can be trained by sampling from the com-
plex distribution, passing the sample through transformation
T , and then computing a loss against a target distribution.
The target distribution, pu(u), is typically taken to be a
simple Gaussian.

Normalising flows have seen many uses, including density
estimation, variational inference and image generation. In
this paper we consider the performance of normalising flows
in the context of density estimation and in the generation of
images, specifically, in regard to implementing a marginal-
ising flow framework to try and improve performance.

B. Marginalising flows

Marginalising flows are an adaptation of the generic
normalising flow. It consists of an existing normalising
flow model which has inputs that are augmented by an
additional amount of dimensions. The additional dimensions
are given as input to the original normalising flow in an
attempt to capture any information that is lost when the
original input data is passed through the normalising flow’s
transformations.

A simple example is to consider the squared function:

f(x) = x2 (3)

In this simplistic transformation the sign of the data is lost
with no method of recovery. If an additional dimension is
used the transformation can learn to capture the information
to increase the likelihood of recovering the original input.

f([x]) = [x2, sign(x)] (4)

Equation 4 demonstrates how extending the dimensionality
allow for more information to survive the transformation.

Marginalising flows are a novel framework that can be
built on top of any existing normalising flow. This offers
flexibility and allows it to be easily tested without having to

build your normalising flow again from the ground up. The
size of the additional dimensions added is called epsilon and
can be of any size.

C. Planar flows

A planar flow has transformation f given in the following
equation.

f(z) = z + u · h(wT · z + b) (5)

Planar flows act to stretch and contract space in the direction
perpendicular to the hyperplane wT · z + b = 0. In formula
5, u, w and b are learned parameters while h is a non linear
function that is smooth. The hyperbolic tangent function is a
common choice. The Jacobian determinant is calculated by
means of the matrix determinant lemma. [13]

|detJf | = |1 + uT · (h′(wT · z + b) · w)| (6)

Where h′ is the derivative of h, in this implementation, tanh.

h′(z) = 1− tanh(z)2 (7)

In the field of normalising flows, planar flows can be
considered basic. They have limited expressiveness when
they are used alone, although their ability to approximate a
more complex distribution can be increased by incrementing
the number of planar flow layers so that the flow is made
up of many transformation layers with each having their
own parameters. Additionally, to note, planar flows have
no analytical inverse although an inverse function can be
guaranteed to exist by restricting the free parameters.

D. Masked Autoregressive flows

Masked Autoregressive Flows (MAFs) are made from
alternating layers of two different transformations. The first
transformation is batch normalisation and the second is a
masked autoencoder.

1) Batch normalisation: This first layer normalises the
data of each mini-batch to allow each layer to deal
with similarly distributed data [5]. By calculating the
mean and variance of each batch of input data you can
normalise the input to make the mean and unit variance
both approximately zero. Batch normalisation, as is
required in a normalising flow, has both an algebraic
easy inverse and a computable Jacobian.

2) Masked autoencoder: The second transformation is
a masked autoencoder for density estimation, coined
MADE [3]. MADE is an adaptation of autoencoders
that can be efficiently used for density estimation. An
autoregressive property is enforced to allow an autoen-
coder to be used to calculate probabilities on data.

x̂d = p(xd|x<d) (8)

Equation 8 shows the autoregressive property. The out-
put x̂d must be the probability of xd using only the
previous values x<d. This property is enforced by the
use of masks, such a binary mask is multiplied element-
wise with the weight matrix of the fully connected

autoencoder and initialised to enforce the autoregressive
property.
The MADE model also shares properties with normalis-
ing flows, such as the ability to be invertible and having
a tractable Jacobian and thus can be easily used as part
of a flow. A tractable Jacobian is possible because the
autoregressive property causes the Jacobian matrix to
be triangular and the determinant of a triangular matrix
is the product of the diagonals.

Masked autoregressive flows combine the two transfor-
mations in blocks, made up of both, that can be stacked
much like increasing the depth of other normalising flows.
The stacking of these blocks has been shown to increase
the flexibility of the autoencoder, e.g. giving it the ability to
handle multimodal distributions [10].

While MAFs have an efficient forward pass, as it can
be calculated with parallelisation on GPUs, the inverse is
conversely sequential and does not benefit from offloading
the calculations to a GPU. This means that training is fast
but using the inverse to generate samples in the complex
distribution is slow.

IV. EXPERIMENTS

In the following section the experiments performed will
be detailed. After which the results will be discussed.

All normalising flow and training implementations were
done in Python with PyTorch [12].

A. Datasets

Three datasets have been used and trained on: MNIST
[9], CIFAR-10 [8] and samples generated from a half moons
distribution. MNIST is made up of handwritten digits. Each
image has a single channel and consists of 28x28 greyscale
pixels with a centered digit. This totals 784 input values.
CIFAR-10 is made up of colour images of 10 different
classes. Each image has 3 channels, RGB, and consists of
32x32 pixels with the subject of the image centered. The
complexity of this dataset is far greater than MNIST and
also has 3072 input values.

Both the MNIST and CIFAR datasets are the preprocessed
versions from the MAF paper [10]. They are used to test the
performance of generative modelling and density estimation.

A half moons dataset has also been used for testing
planar flows. This is created by sampling 25000 values from
sklearn’s make_moons function with noise=0.05. Noise
is added to add some randomness to the data.

All datasets have been reshaped to [b,N] as input to
the normalising flow models, where b is the mini-batch
size and N is the number of individual data points. For
example a mini-batch of 100 MNIST images is reshaped
from [100, 28, 28] to [100, 784]. This is done to simplify
adding epsilon dimensions in the case that a marginalising
flow is used.

All experimentation was done with a Gaussian as the base
distribution and using the Adam optimiser with a learning
rate of 5e− 4.

B. Planar flows

Planar flows were the first flow considered. They are
simple, fast and easy to work with. After early testing, 8
layers of the planar flow transformation was decided on
because it added enough flexibility while still allowing quick
training.

Initial experiments were performed on the half moons
dataset both without and with the marginalising flow frame-
work. MNIST was used next to further evaluate the ability to
learn complex densities. The performance of planar flows on
MNIST was poor on all accounts. This led to further research
and discovery of masked autoregressive flows which became
the focus of my experimentation.

C. Masked autoregressive flows

Masked autoregressive flows have been chosen for their
performance on density estimation tasks and their simplistic
architecture. MAFs offer comparative performance with Real
NVP, that has many more layers and architecture complexity,
and outperform it on density estimation tasks. [10] Masked
autoregressive flows were first tested on MNIST to be able
to evaluate comparative performance against planar flows.
From there CIFAR-10 has been the focus of experimentation.
Marginalising flows have also been briefly tested on MNIST
with an epsilon of 256. The MAF configuration for MNIST
was with two hidden layers of size 1024 for each MADE.

Regarding CIFAR-10 two different MAF configurations
are used. The first uses three hidden layers for each MADE
of size 1024 and the random mode for configuring masks.
The second uses a single hidden layer for each MADE
of size 3072 and the sequential mode. Both are made up
of 5 blocks of alternating MADE and batch normalisation
layers and use the ReLU activation function. A model with
three hidden layers of size 1024 was chosen to contrast
the model with a single hidden layer of size 3072. In
addition, the marginalising model for the first instance does
not have its hidden layer size augmented whereas in the
case of the second model the single hidden layer size is
increased to 3584 to match the input size. Each configuration
is tested with and without a corresponding marginalising flow
framework. An epsilon value of 512 has been tested and was
chosen to be double the value from MNIST because of the
increased number of inputs.

For all datasets used with masked autoregressive flows the
gradients were clipped with a value of 5e − 6. This was
necessary to avoid NaN’s and aid in preventing artifacts from
appearing in the data generation.

V. DISCUSSION

This section analyses the results of my experimentation
and shows results from the generative normalising flows. The
negative log likelihood results of the experimentation with
masked autoregressive flows and CIFAR-10 can be found in
table I.

(a) 20 epochs (b) 40 epochs

(c) 60 epochs (d) 100 epochs

Fig. 1: 1000 half moon data samples passed through a planar
flow after a varying amount of epochs.

A. Planar results

Figures 1 and 2 demonstrate the difference a marginalising
flow can make on a simple distribution such as the half moon
dataset with a planar flow. There is no generated data as
planar flows have no analytical inverse that can be used to
pass Gaussian data through the inverse transformation.

The performance of the flow can instead be analysed by
how it is able to transform the half moon data to approximate
the base Gaussian distribution. It is evident in the figures
that the marginalising flow has a significant impact on the
ability of this flow to do this. Fig. 1 can be seen to struggle
in distorting the original data in contrast to fig. 2. It is
suspected that the second model, with a marginalising flow,
has captured the random noise of the appended epsilon
dimensions to aid in transforming the data.

The model from the fig. 1 achieved a negative log-
likelihood of −0.88 compared to the fig. 2’s model with
−7.27.

Both models were only trained for 100 epochs each
although it is possible the performance would converge if
trained for longer. Additionally, it should be said that it
is impossible to know if the second model would achieve
better performance in generation compared to the first model
despite it being able to learn to approximate a Gaussian more
accurately after 100 epochs.

The added complexity of MNIST over the half moons data
is evident by the performance of the planar flow in fig. 3.
The flow manages to create random noise around the edges
of each image but not the center. The flow, for some reason,
seems to leave the digit untouched perhaps due to its innate
transformative properties.

B. MAF results

MNIST was initially experimented on to clarify the perfor-
mance improvements over planar flows. This is evidenced in

(a) 20 epochs (b) 40 epochs

(c) 60 epochs (d) 100 epochs

Fig. 2: 1000 half moon data samples passed through a planar
flow with a marginalising flow framework after a varying
amount of epochs.

(a) Without (b) With

Fig. 3: 16 MNIST samples after being passed through a
planar flow after 100 epochs of training with and without
a marginalising framework.

fig. 4 where MAF performance can be compared with and
without the marginalising framework. The experimentation
with MNIST was brief and CIFAR-10 is the focus of this
research.

The first MAF model’s MADE layers each have three
hidden layers of size 1024. The input size is 3072 and 3584
in the case of the marginalising flow being added. Results
can be seen in fig. 5 which should be compared to the image
generation results in fig. 6. The first model reached a negative
log likelihood of −1272.4 while the second model with the
added marginalising framework reached −624.1. As can be
seen, both models show poor results in generating consis-
tently plausible images that compare to the MAF paper. This
contrasts with the more accurate images generated by the
models with a large single layer. Both of these models also
display tendencies to generate images that have very similar
colour and structure as can be seen clearly in fig. 6 across
all 4 instances.

It should be pointed out that all MAF models have artifacts

(a) Without (b) With

Fig. 4: Generated MNIST digits after 100 epochs of training
with MAF with two hidden layers of size 1024, without and
with a marginalising framework.

that crop up in the generated images that are defined by a
complete take over of black and red pixels, and in some
cases green/yellow. These artifacts become more common
the longer the model has been trained and have already been
significantly reduced by gradient clipping but not eliminated.

Figures 7 and 8 show the results of the MAF model trained
with a large single hidden layer in each MADE, the first
being without the marginalising flow and the second with.
Both results have significant artifacts but the images that do
not show comparable results to the original MAF paper. The
first of these two models achieved a negative log likelihood
of −3195.9 compared to the second which reached −3229.6.
There is no significant difference between the results of these
two models. It seems that the marginalising flow does not
aid the normalising flow on such a complex distribution
contrasting the impact it had on the half moons dataset with
planar flows. In comparison to the previous set of MAF
models, using the models with large single hidden layers
offers a large performance improvement and is seen in both
the negative log likelihood value and the generated images.

TABLE I: Negative log likelihood (lower is better) for
density estimation on the masked autoregressive flow exper-
iments.

CIFAR10
without MF with MF

MAF 1024x3 −1272.4 −624.1

MAF 3072 −3195.9 −3229.6

C. Future work

Much of the research and experimentation performed
above can be easily extended and expanded.

Marginalising flows’ impact on the simple planar flow
can be examined to determine how the added dimensions
play a part in transforming the distribution to a Gaussian
one. In addition, the poor performance planar flows show in
transforming the digits of MNIST could offer insights into
how the flow can perform as the complexity of data increases.

Masked autoregressive flows have a lot of potential, not
only for density estimation, but also for generative modelling.

(a) 40 epochs (b) 80 epochs

(c) 200 epochs (d) 400 epochs

Fig. 5: Results of image generation in the MAF model with
three hidden layers of size 1024 and no marginalising flow.

(a) 40 epochs (b) 80 epochs

(c) 200 epochs (d) 400 epochs

Fig. 6: Results of image generation in the MAF model with
three hidden layers of size 1024 and the marginalising flow
framework.

(a) 40 epochs (b) 80 epochs

(c) 200 epochs (d) 400 epochs

Fig. 7: Results of image generation in the MAF model with
a single hidden layer of size 3072 and no marginalising flow
framework.

(a) 40 epochs (b) 80 epochs

(c) 200 epochs (d) 400 epochs

Fig. 8: Results of image generation in the MAF model with
a single hidden layer of size 3584 and the marginalising flow
framework.

Additional flow layers such as 1x1 convolutions could be
added alongside MADE and batch normalisation layers to
help capture the structure of images which could lead to
improved image generation.

Regarding marginalising flows, there is a wealth of re-
search that could be performed to incorporate the framework
on top of already existing flows or to build new flows around
the concept of capturing lost data in auxiliary dimensions.
The performance shown regarding planar flows with a simple
distribution like half moons gives promise to the impact they
could possibly have. With further GPU parallelisation and
increased memory larger epsilon dimensions could be added
for experiments on complex datasets, e.g. 3072 pixels and
3072 epsilon dimensions in the instance of a 32x32 RGB
image.

VI. CONCLUSION

In this paper the impact of marginalising flows are inves-
tigated regarding simple flows and simple distributions as
well as more complex flows and larger, complex data such
as natural images. While they seem to have negligible effect
on such complex instances there are promising results with
regards to augmenting a simple normalising flow such as
a planar flow in learning to transform data to a Gaussian.
Marginalising flows are extremely flexible and can be built
on top any normalising flow with minimal adjustment and
there is great potential for further research into the impact
they can have.

REFERENCES

[1] Laurent Dinh, David Krueger, and Yoshua Bengio.
NICE: Non-linear Independent Components Estima-
tion. 2014. arXiv: 1410.8516 [cs.LG].

[2] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using Real NVP. 2016. arXiv:
1605.08803 [cs.LG].

[3] Mathieu Germain et al. MADE: Masked Autoencoder
for Distribution Estimation. 2015. arXiv: 1502 .
03509 [cs.LG].

[4] Jonathan Ho et al. Flow++: Improving Flow-Based
Generative Models with Variational Dequantization
and Architecture Design. 2019. arXiv: 1902.00275
[cs.LG].

[5] Sergey Ioffe and Christian Szegedy. “Batch Normal-
ization: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift”. In: Proceedings of
the 32nd International Conference on Machine Learn-
ing. Ed. by Francis Bach and David Blei. Vol. 37.
Proceedings of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 448–456. URL: http:
//proceedings.mlr.press/v37/ioffe15.
html.

[6] Diederik P. Kingma and Prafulla Dhariwal. Glow:
Generative Flow with Invertible 1x1 Convolutions.
2018. arXiv: 1807.03039 [stat.ML].

[7] Ivan Kobyzev, Simon Prince, and Marcus Brubaker.
“Normalizing flows: An introduction and review of
current methods”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020).

[8] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning
multiple layers of features from tiny images”. In:
(2009).

[9] Yann LeCun and Corinna Cortes. “MNIST handwrit-
ten digit database”. In: (2010). URL: http://yann.
lecun.com/exdb/mnist/.

[10] George Papamakarios, Theo Pavlakou, and Iain Mur-
ray. Masked Autoregressive Flow for Density Estima-
tion. 2017. arXiv: 1705.07057 [stat.ML].

[11] George Papamakarios et al. Normalizing Flows for
Probabilistic Modeling and Inference. 2019. arXiv:
1912.02762 [stat.ML].

[12] Adam Paszke et al. “Automatic differentiation in Py-
Torch”. In: (2017).

[13] Danilo Jimenez Rezende and Shakir Mohamed. Varia-
tional Inference with Normalizing Flows. 2015. arXiv:
1505.05770 [stat.ML].

