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Abstract

Although only recently introduced in 2014, Generative Adversarial Networks
(GANs) have already undeniably shown their potential. However, there is still a
lot of room for improvement regarding the understanding of the latent space. This
thesis aims to improve this understanding by exploring the representation of iden-
tity, gender and emotion in the structure of the latent space of styleGAN trained
on two different face-datasets (i.e., FFHQ and CelebA-HQ). Latent representations
of input images from the Radboud Faces Database (RaFD) were found, which were
analyzed using Representational Distance Matrices (RDMs) and visualized using
t-SNE. The results for the latent spaces of the two styleGAN networks were ana-
lyzed both individually and comparatively, in order to determine the effect of the
training dataset on the structure of the latent space. The results of this thesis
indicate that both networks cluster for identity and gender in their latent space,
yet not for emotion. However, for all identities, distinct directions were found for
the different emotions when considering the average face of an individual as the
origin point. Lastly, the two networks both represent identity, gender and emotion
similarly in their latent space, thus the training dataset does not seem to have a
substantial effect on the structure of the latent space for the investigated features.
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1 Introduction

The Generative Adversarial Network (GAN) was introduced in 2014 by Ian Goodfellow
et al. [10] which made it possible for computers to create new faces [8], change the facial
expressions of existing faces [4], translate text into images [18] and even create convinc-
ing artwork [7]. In contrast to previously introduced generative models, samples can be
generated in parallel, there is no need for Markov chains, and there are few limitations
for the generator function [9].

A GAN is an architecture consisting of two networks: a discriminator and a generator.
These two networks are adversaries, trained simultaneously and in competition with
each other. A common analogy is to think of the generator as an art forger and the
discriminator as an art expert. These networks force each other to improve by partic-
ipating in a competitive game, where the generator (forger) tries to make convincing
art work while the discriminator (expert) tries to differentiate real from fake art pieces
(see Figure 1). The generator has to create more realistic images to keep fooling the
discriminator, as the discriminator gets better at deciding whether an image is fake or
real. [5] The concept of a GAN is explained in more detail in Section 1.1.

Figure 1: GAN: art forger (generator) tries to fool the art expert (discriminator)

Although GANs have been introduced only recently, the networks have already shown
their massive potential, rapidly improving the resolution and quality of generated images
[12, 13]. However, since most of the research has been devoted to improving metrics
to generate better outputs, there is still a lot of room for improvement regarding the
understanding and visualisation of the networks and image synthesis process [2, 13].
Moreover, more quantitative ways are necessary for the comparison of different genera-
tors [13].

The purpose of this thesis is to improve the understanding of the “black box” that is the
latent space (see Section 1.2). To achieve this, the latent space of styleGAN [13] (see
Section 1.3) is explored to gain a better understanding of its structure. The focus of this
thesis is on the representation of faces in the latent space specifically. The latent spaces
are first investigated individually to determine how faces of a certain identity, gender,
and expressing different emotions are represented. Particularly, whether the latent space
clusters for identity, gender and/or emotion. Finally, the networks are compared to see
whether they make similar distinctions or not, i.e., whether the dataset used to train
the network affects the structure of its latent space.

Additionally, Puzer [16] has demonstrated the possibility of learning directions of specific
features in the latent space of an original pre-trained styleGAN network [17]. These
directions can in turn be used to manipulate images. For example learning a smiling
direction and moving images (faces) into that smiling direction. This implies that the
latent space of styleGAN might not simply be clustered for emotion, but that it contains
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directions for specific emotions instead. This possibility is also explored in this thesis.

1.1 Generative Adversarial Networks

As already briefly explained, the general idea of a GAN is to set up an adversarial game
between a generator and a discriminator. As the names indicate, the task of the genera-
tor is to generate realistic samples to fool the discriminator, which in turn has to decide
whether the sample it gets is either real or fake. The structure of a GAN can be found
in Figure 2. The type of output that the generator learns to generate depends fully on
which dataset the network is trained. In this thesis, only datasets consisting of images
of faces are considered, thus the generator learns to generate faces and the discriminator
has to make a verdict on the genuineness of its input image.

Figure 2: GAN architecture: discriminator D and generator G

More formally, a GAN is a structured probabilistic model. The generator, G, and dis-
criminator, D, are usually multi-layer neural networks made up of convolutional and/or
fully connected layers [5]. The task of D in a GAN is simply to classify its input data.
It predicts p(y|x), the probability of label y (real/fake) given input sample x. The goal
of G in a GAN is to maximize the classification error of D. To achieve this, G receives
a random input vector z and outputs a generated data sample x′, which is connected
directly to D as an input.

To train a GAN, a competitive (minimax) game is set up between G and D using some
training dataset [9] [5]. In this game, the two networks fight over one number: the
classification error of D. D wants a low classification error, whereas G wants a high
classification error. The competition in this game forces both players to improve.

The game develops as follows:

1. G receives a random input and generates a sample x′,

2. D alternately receives a sample x from the training dataset or a generated sample
x′ from G,

3. D classifies the input sample, which provides a signal that G uses to update its
weights,

4. D updates its weights simply by receiving the source of the input (either G or the
training dataset) as feedback,

5. Repeat.
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For G to succeed against D, G needs to learn how to generate samples which are indistin-
guishable from real ones. When this has been achieved, the output of D will always be
0.5, having reached the Nash Equilibrium [9]. The end result is a generator that is able
to generate very realistic samples, at which point the discriminator can be disregarded.

1.2 The Latent Space

The latent space, also called the hidden space, is the non-observable part of a neural
network. The input and output of neural networks can be observed, but everything
in between is hidden and operates as a black box. This is called the latent space. It
can be viewed as a massive multidimensional distribution, in which the features of your
training dataset lie (i.e., the latent space captures the structure of the training data).
The training datasets in this thesis consist of images of faces, consequently the latent
space is a multidimensional distribution with its data points representing faces. In this
distribution, similar data points are closer together. For instance, one can expect two
smiling faces to be closer together in the latent space than a smiling face and an angry
face.

Since the latent space is hidden, its structure is unknown, which means it is unknown
how the network makes its decisions. Exploring and understanding the latent space
is relevant, because it can help improve networks by gaining the ability to find causes
for strange results, which not only makes it possible to figure out correct and efficient
solutions, but also helps to improve future networks.

Exploring the latent space of a GAN corresponds to exploring the latent space of the
generator, since the generator has to represent all the information necessary to be able
to generate realistic images indistinguishable from the ones in the training dataset [2].
Therefore, in this thesis, representations of the input images are found in the latent
space of the generators of the pre-trained styleGAN networks.

There are multiple ways to explore the latent space. It is for example possible to
sample from the latent space. Previous work has already shown that representations
(i.e., locations) of images can be found in the latent space using gradient descent [15].
Furthermore, many parts of a GAN can be interpreted, with neurons not only correlating
with certain objects, but also functioning as variables with causal effect on the object
synthesis [2]. It has also been shown that the latent space of GANs in particular seems
to linearize the image space, resulting in smooth image transformations when moving
through latent space [3]. Moreover, performing linear arithmetic in latent space leads
to meaningful results [3]. For example, if you take the latent representation of an image
showing a smiling man, subtract the representation of a man, and add the representation
of a woman, the result will map to an image of a smiling woman.

1.3 StyleGAN

In March 2019 Karras, Laine and Aila introduced the styleGAN network in their arti-
cle “A Style-based Architecture for Generative Adversarial Networks” [13]. With this
article they managed to develop a GAN that is not only able to generate authentic
high-quality images, but also has control over the style of the generated image, allowing
for a better understanding of the generated output.

Previous efforts to improve GANs have mainly focused on improving the discriminator
model [1, 19] in an attempt to consequently end up with a better generator. With the
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development of styleGAN however, the focus was put on improving the generator model,
using the architecture of Progressive GAN [12] as a baseline. Progressive GAN was in-
troduced to tackle the problem of generating high-quality high-resolution images. This
was solved by training the GAN starting with low resolution images (4x4), while gradu-
ally increasing the resolution during training up to high resolution images (1024x1024).
This not only improves the quality of the output images, but also speeds up and sta-
bilises the training process. Nevertheless, entangled features still caused for very little
control over specific features. StyleGAN enhances the generator of Progressive GAN to
solve this by providing a way of controlling the visual features in every level, namely by
modifying the inputs of each level separately. This way coarse features up to fine details
can be controlled, without affecting any of the other levels.

The structure of styleGAN can be found in Figure 3, which shows the difference be-
tween a traditional and styleGAN generator. In contrast to a traditional generator, the
styleGAN generator does not simply feed the random input z through the input layer,
but instead maps the random input vector z onto an intermediate latent space W us-
ing a fully-connected 8-layer mapping network f . The intermediate latent vector w in
turn controls the 18-layer (two layers for each resolution 42 - 10242) synthesis network
g through Adaptive Instance Normalization (AdaIN) at each convolutional layer, after
which Gaussian noise is added. 1x1 convolution is then used to convert the output of
the last layer to RGB. [13]

Figure 3: While a traditional generator (a) feeds the latent code through the input layer only,
the style-based generator (b) first maps the random input z to an intermediate latent space
W , using the 8-layer mapping network f . This then controls the 18-layer synthesis network g
through AdaIN at each convolution layer, after which Gaussian noise is added before evaluating
the nonlinearity. ‘A’ stands for a learned affine transform, and ‘B’ applies learned per-channel
scaling factors to the noise input. ‘FC’ indicates a fully-connected layer. [13]
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For more detailed information on styleGAN, refer to the paper “A style-based generator
architecture for generative adversarial networks” by Karras et al. [13].

1.3.1 Implementation

The pre-trained versions of styleGAN used in this thesis are from the official Tensor-
Flow implementation [17] of the styleGAN paper by Karras et al. [13]. A styleGAN
encoder implemented by Dmitry Nikitko1 (known as Puzer on Github) [16] is used to
find representations (locations) of input images in the latent space of these pre-trained
styleGANs. How this code is used exactly is explained in more detail in the Methods
section.

1.3.2 Training Datasets

The two StyleGANs were both trained on a different face-dataset: the Flickr-Faces-HQ
(FFHQ) dataset and the high-quality version of the CelebFaces Attributes (CelebA)
dataset. Exploring the latent space of the same network, but trained on different
datasets consisting of similar content, allows for examining the effect of the training
dataset on the structure of the latent space.

The CelebA dataset was introduced in 2015, containing more than 200,000 celebrity
images with a large variety of poses and background clutter. The high-quality version of
this dataset was presented by NVIDEA developers in 20182 in their paper “Progressive
Growing of GANs for Improved Quality, Stability, and Variation” [12].

The FFHQ dataset was introduced in the same article as styleGAN [13] specifically
designed as a benchmark for GANs, containing 70,000 high-quality images from Flickr,
aligned and cropped using dlib. It was created as an improvement upon the existing
CelebA(-HQ) dataset, to include more variation with regard to age, ethnicity and image
backgrounds.

2 Research Question & Hypothesis

Concluding, the research question for this thesis is:

How are identity, gender and emotion represented in the structure of the
latent space of styleGAN trained on different face-datasets?

For this question, there are three main hypotheses (Figure 6a, 6b and 6c respectively):

1. The latent space of styleGAN is clustered for individuals, i.e., images of the same
person are clustered together

2. The latent space of styleGAN is clustered for gender, i.e., images of females are
clustered together and images of males are clustered together

3. The latent space of styleGAN is clustered for emotion, i.e., images representing
the same emotion are clustered together

1The original code is available at: https://github.com/Puzer/stylegan-encoder
2The dataset and full implementation are available at: https://github.com/tkarras/progressive_

growing_of_gans

7

https://github.com/Puzer/stylegan-encoder
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans


The possibility of emotion directions is summarized in the exploratory hypothesis that
the direction from a certain “base” towards an emotion are the same for all individuals.
More specifically, that the vectors starting from that origin (base) location, towards
the emotion locations have the same direction for all individuals (i.e., that there is a
“happy”, “sad”, “angry”, etc. direction for all identities). In this thesis, two base vectors
are considered, which concludes the following two exploratory hypotheses (Figure 7):

4. The latent space of styleGAN contains emotion directions considering neutral as
the base vector (origin point)

5. The latent space of styleGAN contains emotion directions considering average as
the base vector (origin point)

The final hypothesis does not regard the individual latent spaces of the two networks,
but concludes the comparison of two latent spaces:

6. The structure of the latent space of styleGAN trained on FFHQ and the latent
space of styleGAN trained on CelebA-HQ is similar, i.e., identity, gender and
emotion are represented in a similar manner

3 Methods

The first step to investigating the representation of identity, gender and emotion in the
structure of the latent space, was to establish and pre-process the input images (Section
3.1). Then the data was collected by finding the representations in latent space of these
input images (Section 3.2), after which the data was processed (Section 3.3) to be able
to conduct the analysis (Section 3.4).

Data was collected and analysed using Google Colaboratory3 [11]. This is a product of
Google Research that offers a hosted Jupyter notebook service for users to run Python
code online for free. The sections of the Methods correspond to the sections of the
Colab. The most relevant functions of the Colab can also be found in Appendix C.1.

3.1 Input

To be able to determine whether identity, gender and emotion are clustered in latent
space, input was required that could be classified into these three categories. For this
purpose, images from the Radboud Faces Database (RaFD) [14] were used. The RaFD
is an initiative of the Behavioural Science Institute of the Radboud University Nijmegen.
It is a database consisting of images of 67 models, including female and male Caucasian
adults and children and Moroccan male adults. For all these models eight images are
included expressing different emotions (angry, contemptuous, disgusted, fearful, happy,
neutral, sad and surprised) according to the Facial Action Coding System. Each emo-
tion is displayed for three different gaze directions and for five different camera angles.

For this thesis, only Caucasian adults were considered with frontal gaze direction and
camera angle. This selection was made with practical regards to data availability and
concludes a total of 39 identities, of which 19 are female and 20 are male. For each of
these individuals there are eight images, one for each of the emotions, giving a total of
312 (39*8) images. Figure 4 shows an example of all images for one identity expressing
each of the eight emotions, with frontal gaze and camera angle.

3The Google Colab containing the implementation of all methods mentioned can be found at: https:
//colab.research.google.com/drive/185vviMJ4m0b0e_z9F09q8OpKboaMFhUW
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(a) Angry (b) Contemptuous (c) Disgusted (d) Fearful

(e) Happy (f) Neutral (g) Sad (h) Surprised

Figure 4: Original images from the RaFD dataset [14] for one of the Caucasian female models,
showing the eight different emotions

3.2 Data Collection

To collect all the data (i.e., find representations of input images in latent space), two
functions were used from the existing styleGAN-encoder [16]. A few minor alterations
were made in order to use the correct pre-trained generator and to change the in- and
output folders (Appendix C.2). The first function is align_images.py, which was used
for the pre-processing of the data, and the second is encode_images.py, which was used
to find latent representations of the aligned input images (i.e., the latent vector that
approximates the input image best). Figure 5 shows the process from original input
image to a (generated) latent representation for a single input image. This was done for
all 312 input images, for both styleGAN trained on the FFHQ dataset and styleGAN
trained on the CelebA-HQ dataset.

Since encode_images.py requires a 1024x1024 image, the input data had to be pre-
processed using align_images.py, by extracting the faces from the original images and
aligning them. Step 1 and 2 in Figure 5 show the process of aligning an original image
to an input image.

The latent representations were found using encode_images.py. This file encodes
aligned images (1024x1024) and finds their representative latent vectors (18, 512) (enc)
and corresponding generated images (gen) (Step 2-5 in Figure 5). As shown in Fig-
ure 3, the latent space of the generator of styleGAN consists of a random input vector
z (qlatent in Puzer’s code [16]) of shape (512), and an intermediate latent vector w
(dlatent) of shape (18, 512). Mapping network f transforms qlatent to dlatent, and
synthesis network g (g) transforms dlatent into an image.
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Figure 5: Process of data collection: align images.py extracts and aligns the faces from the
original input images, and encode images.py takes an aligned input image and finds its latent
representation (enc) and corresponding image (gen)
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To encode an input image x, the generator and perceptual model weights are frozen
completely. The process starts with a random dlatent. Using a pre-trained VVG16
model for perceptual loss, gradient descent is then used to minimize the mean squared
error of VVG16(x) and VVG16(gen(dlatent)). Once this process has finished, the opti-
mized dlatent (i.e., latent representation) is then also turned into an image by mapping
it through the synthesis network g(dlatent).

3.3 Data Processing

Once all encoded latent representations were gathered, these first had to be processed
before any analysis could be done. To do this, all of the latent vectors (18, 512) of
one network were concatenated and collected into one matrix (312, 18*512), with each
row containing a concatenated latent vector (18*512) representing one of the 312 input
images (Appendix C.1.1). This original space was then sorted on identity, gender and
emotion respectively (Appendix C.1.2), to use for analysis on these features.

The spaces for the emotion directions were constructed using the sorted identity space.
As discussed in the hypothesis (Section 2), two possible options for the base vector
were examined: (1) the neutral vector of an individual, that is, the latent vector rep-
resenting the neutral image, and (2) the average vector of an individual, which is the
average of all the latent vectors of that individual (angry, contemptuous, disgusted,
fearful, happy, neutral, sad and surprised). For both the neutral and average base
vector case, the new spaces did not include the representations of the neutral input
images. This resulted in a new space of shape (273, 18*512)4 with the rows of the
matrix containing the vectors calculated by subtracting the base vector from the orig-
inal vector (see get_space_without_neutral() and get_space_without_average()

in Appendix C.1.4). The matrix was then sorted on the seven different emotions, using
the get_sorted_emotion_space() function (Appendix C.1.4).

3.4 Data Analysis

The processed data was analysed in a few different manners. Firstly, Representational
Distances Matrices (RDMs) were constructed for all of the sorted spaces (Section 3.4.1).
These RDMs were then visualized using dimensionality reduction techniques, specifically,
t-Distributed Stochastic Neighbour Embedding (t-SNE) (Section 3.4.2). Lastly, the
significance was tested by comparing the RDMs to hypothesis RDMs using Spearman’s
rank correlation coefficient (Section 3.4.3). Significance testing was also performed to
compare the latent spaces of styleGAN trained on FFHQ to the latent space of styleGAN
trained on CelebA-HQ.

3.4.1 RDMs

For all of the sorted spaces an RDM was computed using cosine as the distance measure.
An RDM captures the structure of the latent space as distances between pairs of data
points, where in this case a data point amounts to a representation (location) of an input
image in latent space. This technique was used to maintain as much information as pos-
sible that is captured in the highly dimensional latent space. The RDMs were computed
using the Python functions pdist and squareform from the scipy.spatial.distance

library.

4312 - 39 (all neutrals) = 273
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(a) Identity

(b) Gender

(c) Emotion

Figure 6: Hypothesis RDMs for the identity, gender and emotion hypotheses respectively

12



Figure 7: Hypothesis RDM for the emotion-directions hypotheses

Each value in an RDM represents the distance between its indices. Therefore, in for
example a latent space that clusters perfectly for identity, the pairwise distances between
all images of one identity are zero, and the pairwise distances between one identity and
another are one. The same way of thinking was used to compose the other RDMs. This
resulted in the three hypothesis matrices shown in Figure 6 and the hypothesis matrix
for the emotion directions shown in Figure 7. Section 3.4.3 explains how these matrices
are used for significance testing.

3.4.2 Visualization

Since the highly dimensional latent space cannot be plotted, t-SNE was used to map it
onto a 2-dimensional space, while trying to keep the distance between points the same.
The information obtained from t-SNE was then visualized in scatter plots and coloured
for different features, depending on the space (identity, gender or emotion). The emotion
directions, however, were visualized as vectors and not scatter plots. The scatter and
quiver functions from the matplotlib.pyplot library were used to plot the results for
the main hypotheses and exploratory hypotheses, respectively.

3.4.3 Significance Testing

The previously explained hypothesis RDMs (Figure 6, 7) were used to do the signifi-
cance testing. By comparing these “perfect” RDMs to the RDMs representing the latent
spaces, it was possible to make conclusions about the clustering of the latent spaces for
particular features (depending on the feature the hypothesis RDM represents).

The RDMs found were compared to the hypothesis RDMs using Spearman’s rank cor-
relation coefficient (Spearman’s ρ). The p-value, however, could not be used since the
input images did not satisfy the independence requirement. Therefore, to still be able
to make conclusions regarding significance, a different approach was taken, which is ex-
plained in the following example.

Consider testing the significance of the RDM sorted on identity for styleGAN trained on
FFHQ. First, the make_significance_vector() (Appendix C.1.3) function is used to
put the top right half of the RDM into an array, excluding the diagonal since it is trivially
zero (thus adds no additional information). This is also done for the identity hypothesis
RDM. The correlation coefficient (ρ) between these two arrays is then computed using
the spearmanr function from the scipy.stats library. Thereafter, the correlation values
are interpreted as described by Dancey and Reidy [6] and shown in Table 1. After this,
one of the RDMs (e.g., the one sorted on identity for styleGAN trained on FFHQ) is
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shuffled using the shuffle_RDMs() function (Appendix C.1.3) and turned into a new
array. This is repeated many times, where each time the new random array is compared
to the identity hypothesis array, eventually resulting in a distribution of random ρ values
(get_random_rhos() in Appendix C.1.3). If the previously found original ρ value (of
the non-shuffled and hypothesis array) is outside of the 95-percent confidence interval,
it means that the correlation is significant. This 95th percentile boundary value is
computed using the python numpy.percentile function.

Table 1: Interpretation of Spearman’s Correlation Coefficient according to Dancy & Reidy [6]

ρ Interpretation
+1 -1 Perfect

+0.9 -0.9 Strong
+0.8 -0.8 Strong
+0.7 -0.7 Strong
+0.6 -0.6 Moderate
+0.5 -0.5 Moderate
+0.4 -0.4 Moderate
+0.3 -0.3 Weak
+0.2 -0.2 Weak
+0.1 -0.1 Weak
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4 Results

All (unrounded) significance values can be found in Table 3 in Appendix A.

4.1 Identity

As can be seen in Figure 8, for both styleGAN trained on FFHQ and styleGAN trained
on CelebA-HQ, the latent spaces are clustered for identity, i.e., clustering the eight im-
ages of each individual together.

The latent space (RDM in Figure 8a) of styleGAN trained on FFHQ has a weak corre-
lation (ρ = 0.2239) with the identity hypothesis RDM (Figure 6a), which is significant
(0.2239 > 0.0048). The latent space (RDM in Figure 8b) of styleGAN trained on
CelebA-HQ also has a weak correlation (ρ = 0.2064) with the identity hypothesis RDM
(Figure 6a), which is significant (0.2064 > 0.0053).

(a) FFHQ

(b) CelebA-HQ

Figure 8: Results for latent space sorted on identity for styleGAN trained on FFHQ (a) versus
CelebA-HQ (b). The RDMs are visualised in the corresponding t-SNE scatter plots, which are
coloured for identity.
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4.2 Gender

As can be seen in the Figure 9, for both styleGAN trained on FFHQ and styleGAN
trained on CelebA-HQ, the latent spaces are clustered for gender, i.e., clustering the
data points representing male together and the data points representing females to-
gether.

The latent space (RDM in Figure 9a) of styleGAN trained on FFHQ has a weak corre-
lation (ρ = 0.1703) with the gender hypothesis RDM (Figure 6b), which is significant
(0.1703 > 0.0062). The latent space (RDM in Figure 9b) of styleGAN trained on
CelebA-HQ also has a weak correlation (ρ = 0.1617) with the gender hypothesis RDM
(Figure 6b), which is significant (0.1617 > 0.0064).

(a) FFHQ

(b) CelebA-HQ

Figure 9: Results for latent space sorted on gender for styleGAN trained on FFHQ (a) versus
CelebA-HQ (b). The RDMs are visualised in the corresponding t-SNE scatter plots, which are
coloured for gender.
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4.3 Emotion

As can be seen in the Figure 10, for neither styleGAN trained on FFHQ nor styleGAN
trained on CelebA-HQ, the latent space seems to cluster for emotion, i.e., the data points
representing the same emotion are not clustered together in the latent space.

However, the latent space (RDM in Figure 10a) of styleGAN trained on FFHQ does
have a weak correlation (ρ = 0.1431) with the emotion hypothesis RDM (Figure 6c),
which is significant (0.1431 > 0.0048). The latent space (RDM in Figure 10b) of style-
GAN trained on CelebA-HQ also has a weak correlation (ρ = 0.1621) with the emotion
hypothesis RDM (Figure 6c), which is significant (0.1621 > 0.0055).

(a) FFHQ

(b) CelebA-HQ

Figure 10: Results for latent space sorted on emotion for styleGAN trained on FFHQ (a)
versus CelebA-HQ (b). The RDMs are visualised in the corresponding t-SNE scatter plots,
which are coloured for emotion.
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4.3.1 Directions with Neutral Base

As can be seen in Figure 11, for neither styleGAN trained on FFHQ nor styleGAN
trained on CelebA-HQ, the latent space seems to have any specific emotion direction
when considering neutral as the base vector. Figure 12, which contains the emotion
vectors plotted separately for every identity, also confirms the lack of specific emotion
directions, since all emotion directions for one identity are very similar, i.e., the happy,
sad, etc. vectors for one individual have essentially the same direction.

However, the latent emotion-vector space with neutral as base vector (RDM in Figure
11a) of styleGAN trained on FFHQ does have a weak correlation (ρ = 0.2508) with the
emotion direction hypothesis RDM (Figure 7), which is significant (0.2508 > 0.0083).
The latent emotion-vector space with neutral as base vector (RDM in Figure 11b) of
styleGAN trained on CelebA-HQ also has a weak correlation (ρ = 0.2486) with the
emotion hypothesis RDM (Figure 7), which is significant (0.2486 > 0.0080).

(a) FFHQ

(b) CelebA-HQ

Figure 11: Results for emotion vectors with neutral as base vector (origin) for styleGAN
trained on FFHQ (a) versus CelebA-HQ (b). The RDMs are visualised in the corresponding
t-SNE quiver plots, which are coloured for emotion (all except neutral).
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(a) FFHQ (b) CelebA-HQ

Figure 12: Results for emotion vectors with neutral as base vector (origin) for styleGAN
trained on FFHQ (a) versus CelebA-HQ (b). The RDMs from Figure 11 are visualised in these
t-SNE quiver plots, in which the vectors are plotted separately for each identity and coloured
for emotion.
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4.3.2 Directions with Average Base

As can be seen in Figure 13, for both styleGAN trained on FFHQ and styleGAN trained
on CelebA-HQ, the latent space does have specific emotion directions when considering
the average vector as the base vector. For both networks, the vectors for the Disgusted,
Fearful, Happy and Surprised emotion all have a rather distinct direction, whereas the
directions are less clear for Angry, Contemptuous and Sad. Moreover, the Fearful and
Surprised direction are nearly identical, and the Disgusted and Happy direction are also
fairly similar.

Figure 14, which contains the emotion vectors plotted separately for each identity, also
supports the idea of distinct emotion directions using an average base, by showing that
the emotion directions for one identity are indeed different (i.e., that the happy, sad,
etc. vectors for one individual all have a different direction).

The latent emotion-vector space with average as base vector (RDM in Figure 13a) of
styleGAN trained on FFHQ has a moderate correlation (ρ = 0.4307) with the emotion
direction hypothesis RDM (Figure 7), which is significant (0.4307 > 0.0090). The latent
emotion-vector space with average as base vector (RDM in Figure 13b) of styleGAN
trained on CelebA-HQ also has a moderate correlation (ρ = 0.4254) with the emotion
hypothesis RDM (Figure 7), which is significant (0.4254 > 0.0088).

(a) FFHQ

(b) CelebA-HQ

Figure 13: Results for emotion vectors with average as base vector (origin) for styleGAN
trained on FFHQ (a) versus CelebA-HQ (b). The RDMs are visualised in the corresponding
t-SNE quiver plots, which are coloured for emotion (all except neutral).
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(a) FFHQ (b) CelebA-HQ

Figure 14: Results for emotion vectors with average as base vector (origin) for styleGAN
trained on FFHQ (a) versus CelebA-HQ (b). The RDMs from Figure 13 are visualised in these
t-SNE quiver plots, in which the vectors are plotted separately for each identity and coloured
for emotion.
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4.4 Comparison

The previously discussed results have shown that styleGAN trained on FFHQ and style-
GAN trained on CelebA-HQ both represent identity, gender and emotion similarly in
the structure of their latent space.

As an additional comparison, for both networks the latent representations of eight
aligned example input images were found (i.e., for one identity) using the encode_images.py
function as described in the Methods (Section 3.2). Table 2 contains the loss values for
the found latent representations, of which the corresponding generated images can be
found in Figure 15. As can be seen in Table 2, the average loss value for styleGAN
trained on CelebA-HQ (0.35) is quite a bit higher than the average loss value for style-
GAN trained on FFHQ (0.17). As can be seen in Figure 15, the representation in latent
space of the face itself is very similar to the aligned input for both networks, yet for
styleGAN trained on CelebA-HQ, the background colour and hair colour do not match
the input image for most representations (dark-blue/brown instead of white/grey back-
ground colour, and brown instead of blonde hair).

The latent spaces of styleGAN trained on FFHQ and styleGAN trained on CelebA-HQ
have a moderate correlation (ρ = 0.4856), which is significant (0.4856 > 0.0539).

Table 2: Loss for found representations of example input images in the latent space of style-
GAN trained on FFHQ and CelebA-HQ. The corresponding generated images can be found in
Figure 15.

Input Loss

angry 0.21 0.35

contemptuous 0.15 0.35

disgusted 0.17 0.37

fearful 0.17 0.37

happy 0.18 0.25

neutral 0.13 0.35

sad 0.19 0.36

surprised 0.19 0.38

average 0.17375 0.3475

FFHQ CelebA-HQ
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Angry

Contemptuous

Disgusted

Fearful

Happy

Neutral

Sad

Surprised

(a) Aligned (b) FFHQ (c) CelebA-HQ

Figure 15: Generated images for latent representations found of aligned example images (a)
for styleGAN trained on FFHQ (b) versus CelebA-HQ (b). The loss of these images can be
found in Table 2.
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5 Discussion

The purpose of this thesis was to advance the understanding of the latent space, of
GANs in particular. This was accomplished by investigating the representation of iden-
tity, gender and emotion in the structure of the latent space of styleGAN trained on
different face-datasets (i.e., FFHQ and CelebA-HQ) using input images from the RaFD
database. The structure of the latent space of the networks was first explored individu-
ally, after which they were also compared.

The results show that, as hypothesized, the latent spaces of both styleGANs are clearly
clustered for identity as well as gender. However, the latent space of both styleGANs
does not seem to cluster for the eight emotions examined in this thesis. This could
simply be explained by the fact that the latent space is already clustered for iden-
tity, thus clustering together all faces of one identity regardless of the emotion the face
is expressing. This also confirms the possibility of emotion directions in latent space,
i.e., that for one identity there is a specific direction from its “base” towards an emotion.

The results for the exploratory hypotheses regarding emotion directions show that, in
contrast to the first hypothesis, the latent vector of the neutral face of an identity is
not a good origin point for the emotion directions of that identity. This interpretation
is reinforced when separating the data (Figure 11) into different plots for each emotion
(Figure 16 in Appendix B), which does not show distinct directions for any of the emo-
tions. A possible explanation might be that the representation (location) of the neutral
face of an individual in latent space is not centrally located between the representations
of the other emotions of that individual. In other words, that the neutral location rel-
ative to the other emotion locations may be different for all individuals. The plots for
each identity in Figure 12 support this idea by showing that the emotion vectors for one
individual all have nearly the same direction (e.g., the direction from the base to happy
is virtually the same as the direction from the base to angry).

An additional base considered in this thesis was the average face of an identity, which
was computed by taking the average of all eight latent vectors for that individual. The
results for this base indicate that, in correspondence with the hypothesis, the average
face works remarkably well as an origin point for the emotion vectors, as multiple distinct
directions were found for the emotions (Figure 13). This interpretation is reinforced by
looking at the vectors for each individual separately (Figure 14), which show distinct
directions for each of the emotions. In fact, this is confirmed even more when plotting
the vectors separately for each emotion (Figure 17 in Appendix B) by also showing dis-
tinct directions for the different emotions.

However, a clear direction was not visible for all of the emotions, which is probably since
not all emotions considered in this thesis are very distinctly visible in the expression of a
face. A contemptuous face for example is more similar to an average face than a happy
face and an average face. In addition, the expression of the contemptuous emotion might
vary more between different identities than for instance a happy face. Moreover, some
different emotions are expressed in the face very similarly, such as fearful and surprised,
which both involve an open mouth and widely opened eyes. This corresponds to the
similar directions found for fearful and surprised in the plots shown in Figure 17 (Ap-
pendix B).

The final hypothesis of this thesis concerned the comparison of the two latent spaces
(i.e., the latent space of styleGAN trained on FFHQ and the latent space of styleGAN
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trained on CelebA-HQ) to investigate the effect of the training dataset on structure of
the latent space. The analysis performed in this thesis confirmed the similarity of the
representation of identity, gender and emotion in the latent space of the networks. This
implies that the training dataset does not affect the structure of the latent space regard-
ing these features. However, to be able to draw any definite conclusions more features
and datasets need to be examined.

Although the training datasets explored do not seem to affect the structure of the la-
tent space for identity, gender and emotion, some differences were found. The main
difference between the two latent spaces is that the loss of the encoded vectors found in
the latent space of styleGAN trained on CelebA-HQ is much higher than the loss of the
encoded vectors found in the latent space of styleGAN trained on FFHQ (Table 2). This
difference between loss values can be explained by looking at the generated images of
the found latent vectors (Figure 15). Although both networks appear to represent faces
very well in their latent space, the hair and background colour of the generated images
from styleGAN trained on CelebA-HQ do not match those of the input images. For
styleGAN trained on CelebA-HQ, only the generated image for “happy” has a similar
background colour to the input image, consequently the loss value is much lower (i.e.,
0.25 instead of ±0.36). Hence, the higher loss values can likely be explained by the dif-
ference in hair and background colour. The difference between the two networks in the
resemblance of the generated results and the input images may be explained by the fact
that the FFHQ dataset was created as an improvement upon the CelebA dataset, thus
containing move variation and better quality images. Since the latent space relies com-
pletely on the training dataset, more variation in the dataset also entails more variation
represented within the latent space, also with respect to for instance background colour.
The FFHQ dataset might contain more uniform light-coloured backgrounds than the
CelebA dataset, allowing for better results for these specific input images.

However, this might raise the question of the importance of background colour when
computing the loss of found representations, i.e., in determining how well a network has
learned to represent faces. The results indicate that faces are in fact represented very
well in both of the networks (Figure 15), which is what the networks were supposed
to learn. Yet, the loss for styleGAN trained on CelebA-HQ is still very high. Thus it
is up to consideration whether the loss as it is now is completely representative of the
quality of the found representations. However, since hair colour is a relevant feature in
identifying individuals, this does seem like an important feature to take into account
when representing faces, thus should in fact be included when calculating the loss.

There are a two major things that need to be taken into account when considering the
findings of this thesis. First of all, the highly dimensional latent space (i.e., 18*512 =
9216) is approximated using RDMs and t-SNE, reducing the dimensions into a value
(distance) and 2D plot, respectively. Consequently, information is lost. This reduction
of dimensionality on top of shifting of the data makes for complex interpretation. Ad-
ditionally, the latent space might be better explained in more than just two dimensions,
but this would need additional inspection.

Secondly, the significant correlation values merely indicate that the latent space makes
some sort of distinction for a specific feature. However, most correlation values are quite
low, thus do not indicate a strong (or even a moderate) correlation. This makes sense
since they are calculated using hypothesis RDMs that represent a “perfect” space, con-
taining only distances of either zero or one, which will never correlate perfectly with the
true latent space. Additionally, the hypothesis RDMs suggest the clustering of a only
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a single feature (and no others). Higher correlation values might be found for instance
by comparing the computed RDMs to hypothesis RDMs suggesting the clustering for
multiple features (e.g., identity as well as gender). Therefore, the significant correlation
values indicate that the latent space does distinguish somewhat for the features exam-
ined, but to what extent exactly warrants further investigation.

To conclude, the results found in this thesis should be considered carefully and in combi-
nation with each other, due to the loss of information captured in the high-dimensional
space and the RDMs representing a perfect space for one feature at a time.

This thesis has attempted to improve the understanding of the latent space of styleGAN,
but additional research is necessary and possible to further improve this comprehension.
First of all, the research done in this thesis could be compared to many more other
GAN architectures trained on face-databases. Moreover, the research can be expanded
by investigating the representation of more features, like ethnicity, age, hair colour, etc.
Eventually it might even be possible to compare the representation of faces in the latent
space of GANs to the representation of faces in the human brain. Lastly, the effect of
training datasets on the structure of the latent space can be examined for more datasets,
including ones not consisting of faces.

The research into emotion directions could be expanded by computing the actual direc-
tion vectors for the emotions, for example by using logistic regression as implemented
by Puzer [16]. These directions can then be used to manipulate images, for instance by
moving a neutral face into the angry direction, which in turn can be compared to the
original angry face to asses the quality of the found direction. An additional interesting
idea would be to, for example, examine possible differences between male and female
regarding these emotion directions. Finally, future research could explore the possibility
of a better base vector for the emotion directions.

6 Conclusion

In summary, this thesis explored the representation of identity, gender and emotion in
the latent space of styleGAN trained on two different face-datasets. The key findings,
emerged from the results, are that both networks cluster for identity and gender in their
latent space, but no considerable clustering was found for emotion. However, the results
of this thesis confirmed previous findings about the possibility of emotion directions in
latent space, for which the average face of an individual seems like a remarkably good
estimate, but the neutral face of an individual does not. Moreover, the results for both
networks regarding the three features examined in this thesis were very similar, indicat-
ing that the training dataset does not have substantial effect on the representation of
faces in the structure of the latent space.

Although this thesis may have only scratched the surface, it highlights the realm of
possibilities yet to be explored on this exciting subject.
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A Significance Values

Table 3: Significance results for comparing the found RDMs to the hypothesis RDMs. Corre-
lation is significant if rho is bigger than the 95th percentile. Interpretations of the rho values
can be found in Table 1.

rho 95th percentile significant

Identity
FFHQ 0.2239372705691981 0.004781192671666683 True

CelebA-HQ 0.2063895019389554 0.005280024072033491 True

Gender
FFHQ 0.17026036333740513 0.006179444378317391 True

CelebA-HQ 0.1617119774914968 0.006377531902659089 True

Emotion
FFHQ 0.14308099217756795 0.004778783037530968 True

CelebA-HQ 0.1620805507342279 0.0055042964187941535 True

Neutral base
FFHQ 0.2508150354331845 0.00830191970508079 True

CelebA-HQ 0.24863765916274677 0.00797638352660076 True

Average base
FFHQ 0.4307068903733777 0.009048542219578062 True

CelebA-HQ 0.4254103216944323 0.008802474360076614 True

FFHQ vs CelebA-HQ 0.4856444687406472 0.053893917137200424 True
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B Emotion Vectors

(a) FFHQ

(b) CelebA-HQ

Figure 16: Results for emotion vectors with neutral as base vector (origin) for styleGAN
trained on FFHQ (a) versus CelebA-HQ (b). The RDMs from Figure 11 are visualised in these
t-SNE quiver plots, coloured and plotted separately for each emotion.
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(a) FFHQ

(b) CelebA-HQ

Figure 17: Results for emotion vectors with average as base vector (origin) for styleGAN
trained on FFHQ (a) versus CelebA-HQ (b). The RDMs from Figure 13 are visualised in these
t-SNE quiver plots, coloured and plotted separately for each emotion.
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C Code Listings

C.1 Google Colab

For the complete Google Colab notebook, containing all implemented methods and re-
sults, refer to: https://colab.research.google.com/drive/185vviMJ4m0b0e_z9F09q8OpKboaMFhUW.
This Appendix only contains the most relevant functions.

C.1.1 Data Processing

import os

import numpy as np

For latent representations found in styleGAN trained on FFHQ:

assert len(os.listdir('enc_ffhq') ) == 312

identity_space_ffhq = np.zeros((312, 18*512)) # (312, 9216)

i = 0

for enc in sorted(os.listdir('enc_ffhq')):

array = np.load('enc_ffhq/' + enc)

identity_space_ffhq[i] = np.concatenate(array, axis=0)

i+=1

np.save('identity_space_ffhq.npy', identity_space_ffhq)

For latent representations found in styleGAN trained on CelebA-HQ:

assert len(os.listdir('enc_clba') ) == 312

identity_space_clba = np.zeros((312, 18*512)) # (312, 9216)

i = 0

for enc in sorted(os.listdir('enc_clba')):

array = np.load('enc_clba/' + enc)

identity_space_clba[i] = np.concatenate(array, axis=0)

i+=1

np.save('identity_space_clba.npy', identity_space_clba)

C.1.2 Sorting Spaces

Spaces sorted on identity (1 - 39):

# Since the original results were sorted for identity already,

# this space does not need to be sorted

identity_space_ffhq = np.load('identity_space_ffhq.npy')

identity_space_clba = np.load('identity_space_clba.npy')

Spaces sorted on gender (Female, Male):

gender_space_ffhq = np.zeros((312, 18*512)) # (312, 9216)

for i in range(19): # Add females

for j in range(8):

gender_space_ffhq[8*i + j] = identity_space_ffhq[8*female_index[i] + j]

for i in range(20): # Add males

for j in range(8):

32

https://colab.research.google.com/drive/185vviMJ4m0b0e_z9F09q8OpKboaMFhUW


gender_space_ffhq[152 + 8*i + j] = identity_space_ffhq[8*male_index[i] + j]

gender_space_clba = np.zeros((312, 18*512)) # (312, 9216)

for i in range(19): # Add females

for j in range(8):

gender_space_clba[8*i + j] = identity_space_clba[8*female_index[i] + j]

for i in range(20): # Add males

for j in range(8):

gender_space_clba[152 + 8*i + j] = identity_space_clba[8*male_index[i] + j]

Space sorted on emotion (Angry, Comtemptuous, Disgusted, Fearful, Happy, Neutral,
Sad, Surprised):

emotion_space_ffhq = np.zeros((312, 18*512)) # (312, 9216)

count = 0

for i in range(8):

for j in range(39):

emotion_space_ffhq[count] = gender_space_ffhq[i + 8*j]

count+=1

emotion_space_clba = np.zeros((312, 18*512)) # (312, 9216)

count = 0

for i in range(8):

for j in range(39):

emotion_space_clba[count] = gender_space_clba[i + 8*j]

count+=1

C.1.3 Significance Functions

# Take right top half of rdm (excluding diagonal) and turn into vector

def make_significance_vector( rdm ):

n = rdm.shape[0]

l = n-1

vector_length = int( (np.square(n)-n)/2 )

vector = np.zeros(vector_length)

start, end = 0, l

# Loop through rows

for i in range(l):

length = l - i

vector[start:end] = rdm[i][-length:]

start = end

end += length-1

return vector

# Shuffle hypothesis rdm randomly

def shuffle_rdm( rdm ):

n = rdm.shape[0]

idx = np.random.permutation(n)

new_rdm = np.zeros((n,n))

for i in range(n):

for j in range(n):

if(j > i):

break
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else:

if(i == j):

new_rdm[i][j] = 0

if(j < i):

x = rdm[idx[i]][idx[j]]

new_rdm[i][j] = x

new_rdm[j][i] = x

return new_rdm

def get_random_rhos( hyp_vector, rdm, n ):

rhos = list()

for i in range(n):

vector = make_significance_vector(shuffle_rdm(rdm))

rho, pval = spearmanr(hyp_vector, vector)

rhos.append(rho)

return rhos

C.1.4 Emotion Directions

def get_space_without_neutral( original_space ):

# 312 - 39 (all neutrals) = 273

direction_space = np.zeros((273, 18*512)) # (273, 9216)

for i in identities:

x = i*7

y = i*8

neutral = original_space[y+5] # 5th index is neutral vector

direction_space[x] = original_space[y] - neutral # angry

direction_space[x+1] = original_space[y+1] - neutral # contemptuous

direction_space[x+2] = original_space[y+2] - neutral # disgusted

direction_space[x+3] = original_space[y+3] - neutral # fearful

direction_space[x+4] = original_space[y+4] - neutral # happy

direction_space[x+5] = original_space[y+6] - neutral # sad

direction_space[x+6] = original_space[y+7] - neutral # surprised

return direction_space

def get_space_without_average( original_space ):

direction_space = np.zeros((273, 18*512)) # (273, 9216)

for i in range(39):

x = i*7

y = i*8

average = np.average( original_space[y:y+7], axis=0 )

direction_space[x] = original_space[y] - average # angry

direction_space[x+1] = original_space[y+1] - average # contemptuous

direction_space[x+2] = original_space[y+2] - average # disgusted

direction_space[x+3] = original_space[y+3] - average # fearful

direction_space[x+4] = original_space[y+4] - average # happy

direction_space[x+5] = original_space[y+6] - average # sad

direction_space[x+6] = original_space[y+7] - average # surprised

return direction_space

def get_sorted_emotion_space( direction_space ):

direction_space_sorted = np.zeros((273, 18*512)) # (273, 9216)
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count = 0

for i in range(7):

for j in identities:

direction_space_sorted[count] = direction_space[i + 7*j]

count+=1

return direction_space_sorted

C.2 Contributions

The contributions to the original Puzer code [16] are indicated between ”# -- KB: --”
and ”# -- end KB --”. encode_images.py was turned into encode_images_ffhq.py

and encode_images_clba.py to find representations in the latent spaces of styleGAN
trained on FFHQ and CelebA-HQ respectively.

encode_images_ffhq.py:

import os

import argparse

import pickle

from tqdm import tqdm

import PIL.Image

import numpy as np

import dnnlib

import dnnlib.tflib as tflib

import config

from encoder.generator_model import Generator

from encoder.perceptual_model import PerceptualModel

# -- KB: add --

import shutil

# -- end KB --

def split_to_batches(l, n):

for i in range(0, len(l), n):

yield l[i:i + n]

def main():

parser = argparse.ArgumentParser(description=

'Find latent representation of reference images using perceptual loss')

# -- KB: add default locations --

parser.add_argument('--src_dir',

help='Directory with images for encoding',

default='aligned')

parser.add_argument('--generated_images_dir',

help='Directory for storing generated images',

default='gen_ffhq')

parser.add_argument('--dlatent_dir',

help='Directory for storing dlatent representations',

default='enc_ffhq')

# -- end KB --
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# for now it's unclear if larger batch leads to better performance/quality

parser.add_argument('--batch_size', default=1,

help='Batch size for generator and perceptual model', type=int)

# Perceptual model params

parser.add_argument('--image_size', default=256,

help='Size of images for perceptual model', type=int)

parser.add_argument('--lr', default=1.,

help='Learning rate for perceptual model', type=float)

parser.add_argument('--iterations', default=1000,

help='Number of optimization steps for each batch', type=int)

# Generator params

parser.add_argument('--randomize_noise', default=False,

help='Add noise to dlatents during optimization', type=bool)

args, other_args = parser.parse_known_args()

ref_images = [os.path.join(args.src_dir, x) for x in os.listdir(args.src_dir)]

ref_images = list(filter(os.path.isfile, ref_images))

if len(ref_images) == 0:

raise Exception('%s is empty' % args.src_dir)

# -- KB: add --

shutil.rmtree(args.generated_images_dir, ignore_errors=True)

shutil.rmtree(args.dlatent_dir, ignore_errors=True)

# -- end KB --

os.makedirs(args.generated_images_dir, exist_ok=True)

os.makedirs(args.dlatent_dir, exist_ok=True)

# Initialize generator and perceptual model

tflib.init_tf()

# -- KB: put in comments --

# with dnnlib.util.open_url(URL_FFHQ, cache_dir=config.cache_dir) as f:

# generator_network, discriminator_network, Gs_network = pickle.load(f)

# -- KB: add --

# FFHQ

with open('karras2019stylegan-ffhq-1024x1024.pkl', 'rb') as f:

generator_network, discriminator_network, Gs_network = pickle.load(f)

# CelebA-HQ

# with open('karras2019stylegan-celebahq-1024x1024.pkl', 'rb') as f:

# generator_network, discriminator_network, Gs_network = pickle.load(f)

# -- end KB --

generator = Generator(Gs_network, args.batch_size,

randomize_noise=args.randomize_noise)

perceptual_model = PerceptualModel(args.image_size, layer=9,

batch_size=args.batch_size)

perceptual_model.build_perceptual_model(generator.generated_image)
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# Optimize (only) dlatents by minimizing perceptual loss between

# reference and generated images in feature space

for images_batch in tqdm(split_to_batches(ref_images, args.batch_size),

total=len(ref_images)//args.batch_size):

names = [os.path.splitext(os.path.basename(x))[0] for x in images_batch]

perceptual_model.set_reference_images(images_batch)

op = perceptual_model.optimize(generator.dlatent_variable,

iterations=args.iterations,

learning_rate=args.lr)

pbar = tqdm(op, leave=False, total=args.iterations)

for loss in pbar:

pbar.set_description(' '.join(names)+' Loss: %.2f' % loss)

print(' '.join(names), ' loss:', loss)

# Generate images from found dlatents and save them

generated_images = generator.generate_images()

generated_dlatents = generator.get_dlatents()

for img_array, dlatent, img_name in

zip(generated_images, generated_dlatents, names):

img = PIL.Image.fromarray(img_array, 'RGB')

img.save(os.path.join(args.generated_images_dir, f'{img_name}.png'), 'PNG')

np.save(os.path.join(args.dlatent_dir, f'{img_name}.npy'), dlatent)

generator.reset_dlatents()

if __name__ == "__main__":

main()

encode_images_clba.py:

import os

import argparse

import pickle

from tqdm import tqdm

import PIL.Image

import numpy as np

import dnnlib

import dnnlib.tflib as tflib

import config

from encoder.generator_model import Generator

from encoder.perceptual_model import PerceptualModel

# -- KB: add --

import shutil

# -- end KB --

def split_to_batches(l, n):

for i in range(0, len(l), n):

yield l[i:i + n]
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def main():

parser = argparse.ArgumentParser(description=

'Find latent representation of reference images using perceptual loss')

# -- KB: add default locations --

parser.add_argument('--src_dir',

help='Directory with images for encoding',

default='aligned')

parser.add_argument('--generated_images_dir',

help='Directory for storing generated images',

default='gen_clba')

parser.add_argument('--dlatent_dir',

help='Directory for storing dlatent representations',

default='enc_clba')

# -- end KB --

# for now it's unclear if larger batch leads to better performance/quality

parser.add_argument('--batch_size', default=1,

help='Batch size for generator and perceptual model', type=int)

# Perceptual model params

parser.add_argument('--image_size', default=256,

help='Size of images for perceptual model', type=int)

parser.add_argument('--lr', default=1.,

help='Learning rate for perceptual model', type=float)

parser.add_argument('--iterations', default=1000,

help='Number of optimization steps for each batch', type=int)

# Generator params

parser.add_argument('--randomize_noise', default=False,

help='Add noise to dlatents during optimization', type=bool)

args, other_args = parser.parse_known_args()

ref_images = [os.path.join(args.src_dir, x) for x in os.listdir(args.src_dir)]

ref_images = list(filter(os.path.isfile, ref_images))

if len(ref_images) == 0:

raise Exception('%s is empty' % args.src_dir)

# -- KB: add --

shutil.rmtree(args.generated_images_dir, ignore_errors=True)

shutil.rmtree(args.dlatent_dir, ignore_errors=True)

# -- end KB --

os.makedirs(args.generated_images_dir, exist_ok=True)

os.makedirs(args.dlatent_dir, exist_ok=True)

# Initialize generator and perceptual model

tflib.init_tf()

# -- KB: put in comments --

# with dnnlib.util.open_url(URL_FFHQ, cache_dir=config.cache_dir) as f:
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# generator_network, discriminator_network, Gs_network = pickle.load(f)

# -- KB: add --

# FFHQ

# with open('karras2019stylegan-ffhq-1024x1024.pkl', 'rb') as f:

# generator_network, discriminator_network, Gs_network = pickle.load(f)

# CelebA-HQ

with open('karras2019stylegan-celebahq-1024x1024.pkl', 'rb') as f:

generator_network, discriminator_network, Gs_network = pickle.load(f)

# -- end KB --

generator = Generator(Gs_network, args.batch_size,

randomize_noise=args.randomize_noise)

perceptual_model = PerceptualModel(args.image_size, layer=9,

batch_size=args.batch_size)

perceptual_model.build_perceptual_model(generator.generated_image)

# Optimize (only) dlatents by minimizing perceptual loss between

# reference and generated images in feature space

for images_batch in tqdm(split_to_batches(ref_images, args.batch_size),

total=len(ref_images)//args.batch_size):

names = [os.path.splitext(os.path.basename(x))[0] for x in images_batch]

perceptual_model.set_reference_images(images_batch)

op = perceptual_model.optimize(generator.dlatent_variable,

iterations=args.iterations,

learning_rate=args.lr)

pbar = tqdm(op, leave=False, total=args.iterations)

for loss in pbar:

pbar.set_description(' '.join(names)+' Loss: %.2f' % loss)

print(' '.join(names), ' loss:', loss)

# Generate images from found dlatents and save them

generated_images = generator.generate_images()

generated_dlatents = generator.get_dlatents()

for img_array, dlatent, img_name in

zip(generated_images, generated_dlatents, names):

img = PIL.Image.fromarray(img_array, 'RGB')

img.save(os.path.join(args.generated_images_dir, f'{img_name}.png'), 'PNG')

np.save(os.path.join(args.dlatent_dir, f'{img_name}.npy'), dlatent)

generator.reset_dlatents()

if __name__ == "__main__":

main()
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