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2. Abstract 

In the present paper, Multilink (Dijkstra & Rekké, 2010) was tested, a computational 

model of isolated word translation that integrates theoretical notions from the Revised 

Hierarchical Model (RHM) (Kroll & Stewart, 1994) and the BIA+ model for bilingual word 

recognition (Dijkstra & Van Heuven, 2002). Simulations were conducted, using the stimulus 

materials from a word translation production experiment by Pruijn (2015, in collaboration with 

Peacock). The model’s performance to the reaction times in this experiment was then 

compared to empirical data from Pruijn and from Christoffels, De Groot, and Kroll (2006). In 

these experiments, Dutch speakers of English had to translate printed Dutch or English 

words as accurately and quickly as possible into English or Dutch, respectively. Each input 

item was a high or low frequency word that could be a cognate or noncognate. Simulations 

of the experimental data were then analyzed through 4 sets of statistical tests: Spearman's 

rank correlation, analysis of variance, generalized regression modelling, and divergence 

testing. The simulations showed a strong cognate effect (cognates are translated faster than 

noncognates) and a weak frequency effect (high-frequency words are translated faster than 

low-frequency words). However, the simulation neither exhibited a statistically significant 

translation direction effect (L1→L2 translation equivalents should be translated faster than 

L2→L1), nor were certain experimentally-observed interactional effects. Although Multilink 

did produce translations with a high level of accuracy, the simulated results did not match 

those of the empirical data in detail. A number of adjustments and modifications of the model 

will be necessary to obtain better fits between model and experimental data. The findings 

are interpreted and compared to the predictions made by other theoretical models (RHM, 

BIA+). Suggestions for future experiments and model adaptations are discussed. 

 

 

 

 

Keywords: computational model, simulation, bilingualism, lexical facilitation, Multilink, 

translation, latency, visual word naming, mental lexicon, cognate, interactive activation, 

lexical access, recognition & production, BIA+, RHM. 
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4. Introduction 

The modern era of globalization continues to bring distant populations into closer 

contact than ever before. Increasingly ubiquitous communication technologies and digital 

infrastructure have rapidly diminished the time required to exchange messages and 

information in the 21st century. As a consequence, multilingualism has become very 

important, in order to share and propogate ideas for business, culture, and science. As 

Bhatia and Ritchie (2013: XXI) point out, multilingualism is currently the rule throughout the 

world and will become increasingly more important in the future. With approximately 38 

languages being spoken per country, knowledge and use of two or more languages is the 

common state for most communities on the planet. In all likelihood, multilingualism has been 

the predominant condition of human cultures and interactions since the first human diaspora 

from Africa. 

Inevitably, when speakers of different languages meet, there will be a need for 

translation. Conversation is only the outward sign that translation is taking place; the act of 

translation must always first arise in the mind of a bilingual speaker. This begs the question: 

how does a bilingual speaker internally represent, recognize, and produce from these two 

systems? What are the cognitive implications of bilingualism? In order to answer these 

questions, studies have been conducted in the past to determine the nature of bilingual 

lexical access. The findings of these studies have been noteworthy for describing 

phenomena such as code-switching (Kootstra et al., 2010; 2011), language asymmetry 

(Meuter & Allport, 1999), language mode (Grosjean, 1998), and the neuroanatomical effects 

of bilingualism (Xiang, 2012). 

In order to restrict the variation inherent to bilingual discourse (c.f. Muysken, 2000, 

2004), most experiments have been concerned with single lexical items only. Some of the 

experimental tasks regularly used include: word-naming (Jared & Szucs, 2002), lexical 

decision (De Bot et al., 1995), picture naming (Christoffels et al., 2006), and semantic 

priming (Matsumoto et al., 2005). Successive experimentation has motivated theories 

concerning the operations of a bilingual lexicon. These theories generate predictions about 

task behaviour, spawning models of bilingual lexical processing & access. Some of these 

models, which have varying scope, specification, and architecture (covered later in Section 

5), include the Dual-route Model (Coltheart et al., 1993) Revised Hierarchical Model (Kroll & 

Stewart, 1994), Inhibitory Control model (Green, 1986; 1998), SOPHIA (Van Heuven & 

Dijkstra, 2001), Bilingual Interactive Activation Plus (Dijkstra & Van Heuven, 2002), and, 

lastly, the MULTILINK model of Dijkstra & Rekké (2010) the last of which has been 

employed for the simulation in this thesis. These models of human cognitive processing are 

primarily built from "naming" paradigm behavioural measurements, but more recent studies 
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have applied analagous paradigms with electrophysiological and hemodynamic 

measurement devices, demonstrating how bilingualism affects neural connectivity and 

functionality. The observations produced by these empirical data collections efforts are 

tested against empirically-based models, in order to refine their predictive capacities 

(Abutalebi & Green, 2006; Abutalebi, 2008; Van Heuven & Dijkstra, 2010). 

We must realize that words, having an internal structure, do not act as wholistic units. 

Preceding literature shows that words in the lexicon have quantifiable dimensions (c.f. 

Schreuder & Weltens 1993). These dimensions comprise specific properties present at all 

grammatical levels: phonetic, or syllabic/phonotactic constraints; and conceptual, semantic, 

morphological, syntactic, or pragmatic units. When the lexicon is accessed via recognition or 

production of stored word forms or concepts, these dimensions engender active, 

experimentally-testable effects, found to be significant in lexical access. Known as "lexical 

effects", they are observed to occur in both monolingual & bilingual speakers in two flavours: 

facilitatory (aiding access), and inhibitory (impeding access). Individual words in the mental 

lexicon have these effects due to their interactions with other concepts, categories, words, 

and constructions within the lexical system. Lexical effects are tested by manipulating the 

aforementioned dimensions as independent variables. Manipulations correlate with observed 

systematic variations in dependent variables such as naming latency/response-time (Antos, 

1979; Griffin & Bock, 1998), ERP components (Pylkkanen et al., 2004), BOLD (Blood 

Oxygen Level Dependent) signals (Edwards et al., 2005), or gaze duration (Schilling et al., 

1998; Dahan et al., 2001). The observed variation informs us about the types of cognitive 

operations transpiring within the mental lexicon, and also within our more general Human-

Language Computational System. When considering the operation of a bilingual system, 

these effects become more significant: a bilingual lexicon is, after all, theoretically double 

that of a monolingual lexicon. How do these lexical dimensions interact within the bilingual 

lexicon? How do lexical effects influence cognitive processing and access routes? Are 

languages within the mental lexicon equal, or unbalanced, and how does that affect 

individual and interacting lexical dimensions? What types of models have been created to 

explain these effects, and are their predictions accurate? Many questions arise regarding the 

nature of the bilingual lexicon; this study examines and attempts to generate solutions to 

these questions by comparatively testing the predictive performance of the Multilink model 

against recent empirical data, simulated in a visual bilingual word-naming task. 

There are many lexical dimensions generating facilitatory and inhibitory effects in the 

bilingual lexicon, far too many to be described and tested in one study. For the current 

thesis, the following dimensions have been considered experimentally-relevant, and are 

categorically-manipulated by the stimulus as the independent variables (these are covered in 

greater detail in Section 5.2.1): translation direction (whether translation is from L1→L2, or 
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L2→L1); frequency (how often a particular word occurs to a speaker); and cognate status 

(the orthographic or phonological similarity between two translation equivalents). 

Furthermore, outside of the manipulated dimensions under direct consideration, other lexical 

dimensions such as concreteness, length, and onset phoneme are statistically-controlled. It 

should be noted that this simulation is focused on the empirical task of translation 

production, where a participant not only must recognize a presented token1 as a word 

belonging to one language, but must also enounce the equivalent of that token in a different 

target language within a reasonable time-frame. In other words, translation production 

involves recognizing a particular input word, linking it up to its semantics and concept, and 

then produce an output word in another language that as approximately the same meaning. 

Translation recognition involves only the first step. By focusing on production rather than 

recognition, the results of this simulation are more applicable to the modelling of natural 

bilingual contexts than recognition experiments. Limitations to this methodology are detailed 

in section 6.4. 

This thesis is broadly-structured as follows: Section 5 surveys the literature of 

bilingual lexical access; section 6 specifies the hypotheses, and the methodology used to 

create and evaluate the data; section 7 covers data analysis, and the results of the statistical 

tests employed; section 8 interprets the tests, discusses and compares the results to the 

findings of other studies, and proposes directions for future research; section 9 concludes 

the paper with a general summary; cited works and supplementary materials are found in 

sections 10 and 11, respectively. 

 

  

                                                           
1
 "token" being defined as any individual item in the stimulus, not as a logical or linguistic type-token distinction (c.f. Wetzel, 2009) 
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5. Background Review 

This section covers the literature and concepts pertinent to the current study, 

focusing on 4 topics: section 5.1 reviews various current theoretical and computational 

models of bilingual lexical access; section 5.2 covers several of the dimensions relevant to 

the bilingual lexicon, dividing these into 3 subsections: independent variables, controlled 

variables, and uncontrolled nuisance variables; section 5.3 examines the incongruences 

within the bilingual lexicon, the phenomenon known as "bilingual asymmetry"; and lastly, 

section 5.4 discusses 3 prior bilingual visual word-naming studies that have informed the 

current debate, and contributed to the motivation for the current experiment; section 5.5 

concludes and summarizes the review. 

 

5.1 Models Of The Bilingual Lexicon 

Some models of bilingual lexicon are discussed, particularly the BIA+ and Multilink 

computational models. 

 

5.1.1. Revised Hierarchical Model (RHM) (Kroll & Stewart, 1994; Kroll et 

al., 2010) 

The seminal paper of bilingual lexical access and processing is Kroll and Stewart 

(1994), which introduces the Revised Hierarchical Model (RHM), following the results of 3 

experiments. From these results, an asymmetry was observed in participants: "Subjects 

were consistently faster to translate into the first language than into the second language." 

(Kroll & Stewart, 1994: 157). This pre-computational model accounts for the translation 

asymmetry by showing two potential routes for translation (see Figure 1, next page): the 

lexical association route, in which the L2 is translated via the L1; and the conceptual route, 

where a lexical item is directly linked with its concept. In particular, this explains why 

cognates are translated faster. Summing up their findings, Kroll and Stewart (1994: 168) 

state, "The data we have presented support the claim that translation from the first language 

to the second is conceptually mediated, whereas the translation from the second language 

to the first is lexically mediated. Taken together, the data support the predictions of a revised 

model of bilingual memory representation in which cross-language connections between 

lexical representations and concepts are asymmetric." Iterating, the latency of L1→L2 

production is less than the latency of L2→L1 production, due to the extra step required by 

lexically mediated bilingual production. 
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The RHM is not 

without problems, as 

noted by Brysbaert and 

Duyck (2010). Per the 

summary found on page 

368: "There is little 

evidence for separate 

lexicons, and for 

language selective 

access; excitatory 

connections between 

lexical equivalents 

impede word 

recognition; the L2 conceptual route is stronger than proposed by the RHM; and it appears 

necessary to distinguish language-dependent and language-independent semantic 

features." Rebutting to Brysbaert and Duyck (2010), Kroll et al. (2010) agrees that the RHM 

is in need of revision after 10+ years of citation and testing, but charges that it was never 

intended to be a model of bilingual visual word recognition, but rather a model of late-in-life 

L2 acquisition, production, and imbalanced lexical proficiency. Arguments concerning the 

RHMs predictions about language nonselective access, translation, conceptual and 

semantic access routes, and L2 development are then brought up, and compared to current 

studies. 

 

5.1.2 Inhibitory Control 

model (IC) (Green, 1986; 1998) 

The IC model of Green 

(1986, 1998) is a pre-computational 

descriptive framework for 

explaining speech production 

errors, and how neurotypical and 

impaired or aphasic bilinguals 

control two languages, focusing on 

bilingual lexico-semantic access 

Figure 2. Architecture of the Inhibitory Control model (Green, 1998: 4) 

Figure 1. The Revised Hierarchical 

Model (Dijkstra & Rekké, 2010: 

403) 



10 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

and selection systems. It was deliberately designed to accommodate data from both 

neurotypical and pathological studies within the model. To explain how the switch from L1 to 

L2 (and vice versa) is accomplished, the concept of "language nodes" is employed, which 

identify the language membership 

(and activate the node for each 

language) of inputs and outputs. 

This design is in opposition to the 

concept of "language mode" 

(Grosjean, 1998), but allows a 

shared lexicon to be implemented 

(also in opposition to the language-

specific lexicons employed by the 

RHM). The primary concepts of the 

model are summed up as: control, 

activation, and energy (originally 

called "resource"; "The resource 

idea makes explicit the fact that a 

system needs energy to operate" 

(Green, 1986: 215)). The model 

itself separates into 3 parts (see 

Figure 2, previous page): control of 

language task schemas, lemma-

level lexical selection, and 

inhibitory control. Ultimately, it is 

the intended to predict bilingual 

performance and selection, 

mediated by a limited pool of resources, much like the cognitive process of coordinating, 

planning, and producing other physical actions. Many aspects of its design are shared by 

other models, such as the BIA+ (Dijkstra & Van Heuven, 2002). 

 

5.1.3 Bilingual Interactive Activation Plus (BIA+) (Dijkstra & Van Heuven, 

1998, 2002) 

The BIA+ model began as an extension of McClelland & Rumelhart's Interactive 

Activation (IA) model (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982), a 

visual perception model of symbol and word recognition. This class of model was originally 

defined as follows: 

Figure 3. The BIA Model (Dijkstra & Van Heuven, 1998: 200) 
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"[. . .] information processing takes place through the excitatory and inhibitory 

interactions among a large number of processing elements called units. Each unit is 

a very simple processing device. It stands for a hypothesis about the input being 

processed. The activation of a unit is monotonically related to the strength of the 

hypothesis for which the unit stands. Constraints among hypotheses are represented 

by connections. Units which are mutually consistent are mutually excitatory, and units 

that are mutually inconsistent are mutually inhibitory [. . .] When the activation of a 

unit exceeds some threshold activation value, it begins to influence the activation of 

other units via its outgoing connections; the strength of these signals depends on the 

degree of the sender's activation. The state of the system at a given point in time 

represents the current status of the various possible hypotheses about the input; 

information processing amounts to the evolution of that state, over time [. . .] This 

'interactive activation' process allows each hypothesis both to constrain and be 

constrained by other mutually consistent or inconsistent hypotheses."   

       (McClelland & Elman, 1986: 2) 

 

 

Using an approach 

known as "nested modelling", 

the BIA model — sans plus sign 

— was created (Dijkstra & Van 

Heuven, 1998), extending the 

utility of the IA from monolingual 

word recognition, into the 

bilingual domain. Like the IC, it 

employs languages nodes; but 

unlike the RHM and IC models, 

the BIA is a functional 

computational  recognition 

model. It uses a 4-layer 

architecture (see Figure 3, 

previous page), each layer 

corresponding to a different 

resolution level within the lexical 

access system: letter features 

Figure 4. Architecture Of The BIA+ model (Dijkstra & Van Heuven, 2002: 182) 
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(14 for each letter position), letters (26 for each position within the word), words (complete 

with a combined lexicon of 1,324 English and 978 Dutch words), languages (one node per 

language), and contains separate excitatory (arrows) and inhibitory (dot-heads) connections; 

the direction indicates the flow of activation. As Figure 3 illustrates, activation is directed 

from bottom-up, beginning with the identification of features, then letters, to words (stored in 

the lexicon file), with language as the last activated nodes, isolating the language 

membership for each word. This design makes the model capable of simulating a variety of 

task specifications, according to a language non-selective access model. 

The BIA model had its limitations, primarily lacking full specifications: a lack of 

integrated phonological or semantic representations, underspecified representations for 

form-similar tokens, a lack of "participant"-specified task descriptions, and the relationship 

between token identification and the task is not suitably specified, among a few others. 

Dijkstra and Van Heuven (2002) presented an updated architecture for the model. Because 

it incorporated a large portion of the original model with the same nested-modelling method, 

it was dubbed the BIA+ model (see Figure 4, previous page), and solved the forementioned 

limitations while also adding in a Task Schema system, inspired by the "language task 

schema" subroutine for the IC model. Formally, the model separates the two systems into 

the Word Identification system and the Task Schema system, the former feeding information 

about active representations into the subroutines of the latter. A major modification was 

effected within the Word Identification system: no longer do the language nodes 

asymmetrically inhibit the word nodes from top-down; this function was transferred to the 

Task Schema component. These changes and improvements helped the model to better 

predict and resolve questions about the inner workings of the bilingual lexicon. However, 

with respect to word translation, the BIA+ model was lacking in another aspect entirely: 

performing accurate bilingual recognition is only half the equation. In order to comprehend 

the core of the translation process through computational modelling, the other half is needed 

as well: production. 

 

5.1.4 Multilink (Dijkstra & Rekké, 2010; Dijkstra et al., in prep.) 

Recently, a new model has been designed to implement the word translation process 

as a whole: Multilink (Dijkstra & Rekké, 2010; Dijkstra et al., in prep.). As a successor to the 

BIA+, Multilink is part of the latest generation of computational bilingual lexical processing 

models, incorporating developments from previous generations into a localist-connectionist2 

design that simulates common tasks and scenarios regularly found in psycholinguistic 

                                                           
2
 Also known as an "artificial neural network"; the term "connectionist model" is generally preferred by 

(psycho)linguists because they are simplified computational representations of neurons, only partly modelling 
neuron behaviour and action (c.f. Grainger & Jacobs, 1998; Christiansen & Chater, 2001). 
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behavioural studies: lexical decision, language decision, cognate recognition, semantic 

spreading activation, and word translation. Like its predecessor, it is (largely) an interactive-

activation-based model, and constructed through the same principle of nested-modelling. 

Multilink is intended to faithfully simulate each step of the process: recognition, meaning 

retrieval, and word production, in both beginning and proficient bilinguals. It shares 

similarities with the RHM, IC, BIA+, and WEAVER++3 models: it correlates resting-level 

activation of each input item with its word form frequency; distinguishes orthographic, 

phonological, semantic, and language membership representations, which form the 

integrated lexico-semantic system; incorporates a task & decision system; L1 and L2 word 

form and conceptual representation links are flexible and the model assumes that the 

lexicons can vary in size; and can test the presence of word association links between 

languages, and also the presence of inhibitory links between word forms. 

Inputs for Multilink proceed in a similar fashion to the BIA+ model as well: a token 

(present in the lexicon, of course) activates lexical-orthographic representations, and 

examines tokens in the lexicon — regardless of language membership, the final activated 

representation level in the model — for their form-similarity (using a length-normalized 

Levenshtein Distance algorithm for cognate selection), and word form frequency. When an 

orthographic representation for a token becomes active, semantic and lexical-phonological 

representations are also activated, following the same procedure as with the orthographic 

representations: activation is input to each semantic node, and, in turn, activation is received 

to the activated token from each semantic node, proportional to its "association strength" (0-

1 scale) contained within a database file. For each time-step — called a "cycle" — the level 

of activation is calculated as the sum of the activation — both excitation and inhibition — in 

the previous time-step, plus the input from each active connected representation.  When a 

candidate's activation surpasses a specific threshold, the model is ready to select an output; 

the lexical-phonological component — representing word production — activates, and the 

final output is generated, representing spoken production in the target language. Candidates 

with higher frequency and lower LD scores are more likely to be chosen as the principal 

output; being constructed around these parameters, activation results in several candidates, 

contingent upon the summed activation that ranks each active representation. The 

fundamentals of the activation processes employed by Multilink remain largely the same as 

in McClelland & Rumelhart's original IA model. 

                                                           
3
 WEAVER++ is a predominantly monolingual computational model, constructed to demonstrate how natural 

language lemmas are planned, controlled, and produced for spoken utterances (Roelofs, 1992, 1997). Roelofs 
(2003) applied it to bilingual utterances for the first time. 
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Figure 5 (above) illustrates the human word translation process as a whole. It shows 

how the English word "fork" is translated into the Dutch word "vork": first, the input letter-

string activates all other form-similar tokens, the orthographic neighbourhood, regardless of 

language, including the orthographic representation of the input ("fork" → FORK); next, the 

orthographic representation activates the semantic representations (FORK → /fork/); the 

active semantic representation triggers the target language lexical-phonological token (/fork/ 

→ /vork/), which outputs the lexical-orthographic form (/vork/ → "vork"). While this 

architecture is certainly more complex than the BIA+ model, Multilink extends the utility of its 

predecessor into roles where the BIA+ could not adequately perform. Producing more 

accurate results, utilizing an empirically-based design, doubling of the length restriction 

criterion from 4 to 8 letters, a wider scope-of-use, and recognition & production mechanisms 

all make Multilink a more advanced model for the simulation of bilingual lexical cognitive 

processing. 

Multilink is (currently) programmed in Javascript, and natively contains a lexicon of 

approximately 1,000 Dutch-English word-pairs. Word form frequencies are derived from 

CELEX (Baayen, Piepenbrock, & Van Rijn, 1993). As of December, 2015, it is version 1.02, 

with a possible major revision planned for the near future. For the formulas used to calculate 

normalized Levenshtein Distance and resting-level activation, see the appendix. 

 

 

5.2 Lexical Dimensions 

As stated in the introduction, interactions between individual and sets of lexical items 

— and respective dimensions — facilitate or inhibit access to word forms stored in the 

mental lexicon. These interactions are especially important in bilingual systems, because 

each word form has, in theory, twice as many other word forms to interact with, since there 

are two languages through which activation can propagate (if the lexicons are considered to 

be integrated, like in Language Non-selective Access Models (French & Jacquet, 2004; De 

Bot, 2004). This section lists several of the best-studied lexical dimensions, and details their 

effects (with the exception of translation direction and proficiency, which are covered in 

Figure 5. Activation process within Multilink, showing the translation of the English token "fork" into the 

Dutch token "vork". (De Wit, 2014: 9) 
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section 5.3). It is partitioned into 3 groups: 5.2.1 details the manipulated dimensions, 5.2.2 

details the controlled variables, and 5.2.3 discusses two important, but uncontrolled, lexical 

effects. 

 

 5.2.1 Independent Variables 

 The dimensions subsumed under this section represent the manipulated dimensions 

of the simulation. Frequency and cognate status are discussed here.  

 

5.2.1.1 Frequency 

Frequency of usage is an important factor for determining a word's speed of lexical 

access. Numerous studies, stretching back to Zipf (1935, 1949) have demonstrated its 

importance, and have demonstrated significant correlations between frequency and other 

linguistically-salient dimensions (which themselves can engender other facilitation effects): 

length (Piantadosi, Tily, & Gibson, 2010), gaze duration (Rayner, 1998; Pollatsek et al., 

2008) , particle detection (Kapatsinski & Radicke, 2007), sentence length (Sigurd et al., 

2004), and even speech rate (Lorenz, 2015). 

Within translation production, frequency is highly correlated with latency, as 

measured in visual word-naming studies like Pruijn (2015), Christoffels et al. (2006), De 

Groot et al. (1994), inter alia. High-frequency tokens have significantly lower latency, while 

Low-frequency tokens have significantly higher latency. Data on word form frequency is 

typically obtained from corpora, although this can be problematic for bilingual word-naming: 

frequency of usage requires exposure, which will be subjective for each participant, and is 

highly-correlated with L2 proficiency. It is more accurate to state that corpus frequency data 

represents a potential frequency that each person is exposed to, and will subsequently 

produce. 

 Frequency data for Dutch and English stimuli in the present simulations were 

originally obtained from the SUBTLEX-US (Brysbaert & New, 2009) and SUBTLEX-NL 

(Keuleers, Brysbaert, & New 2010) databases, as was the binary frequency distinction 

(please refer to section 4.1.1.ii): tokens with a 10-Log frequency of 1.50 or lower were 

classed as "Low Frequency", and tokens with a 10-Log frequency of 1.60 or higher were 

classed as "High Frequency". 

Stimuli used in the simulation are balanced for frequency on a 10-Log scale, 𝑋̅English = 

1.59, and 𝑋̅Dutch = 1.55. 

 

5.2.1.2 Cognate Status 
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Cognates (as defined according to Dijkstra & Rekké, 2010; Schepens, Dijkstra, & 

Grootjen, 2012; and Pruijn, 2015) are words that have form-similar translations in both L1 

and L2. Form similarity is determined using the Levenshtein Distance (henceforth, "LD"), an 

"edit-distance" algorithm that quantifies the difference between two letter-symbol sequences 

(Levenshtein, 1965; 1966), using three distinct "edit operations": insertion — add a symbol 

into the sequence; deletion — remove a symbol from the sequence; and substitution4 — 

exchange one symbol in the sequence for another. For every operation conducted upon a 

single symbol, the measurement score increases by 1, the total representing the number of 

edits necessary to make one sequence the same as another. Although originally designed 

for correcting errors in binary signals, the LD algorithm eventually found its way into 

linguistics as a technique for measuring similarity ratings for cognates, such as Kessler 

(1995), which used the LD of transcribed phonetic strings to compute linguistic distance for 

dialect groupings in Irish Gaelic. 

LD allows the manipulation of cognate similarity within the lexical processing system, 

resulting in a "cognate facilitation effect" relative to non-cognates. Unlike interlingual 

homographs — which have an orthographic LD of 0 (as with the Dutch and English word 

"film") and shared meaning — cognates have an orthographic LD of approximately 1-3, or 

share 75% form-similarity; consider, for instance, the Dutch word "tomaat", and the English 

word "tomato", which have an LD of 2 (English→Dutch: deletion, insertion). Due to their 

interlingual nature, being tagged by both L1 and L2 language nodes in the lexicon, these 

words have significantly faster access, as demonstrated by studies like Christoffels et al. 

(2006). On the opposite end, consider the non-cognate pair, "Art-Kunst", which has no form-

overlap at all. Non-cognates are neither inhibited nor facilitated within the lexicon. 

Like the above studies, the current simulation only considers LD in orthography and 

visual bilingual word-naming, but there are studies that have considered phonological LD 

(Gooskens & Heeringa, 2004; Nerbonne & Heeringa, 1997). Tokens are balanced according 

to this dimension: 50% of the experimental stimuli are cognates, and the other 50% are non-

cognates. For an overview of cognate facilitation and processing, the reader is referred to 

Dijkstra (2005). 

 

  5.2.2 Controlled Variables 

 The dimensions in this section represent the controlled non-manipulated dimensions 

of this study. Previous studies (see section 5.4) have proven the necessity of rigorous 

                                                           
4
 Substitution is sometimes seen as a combination of the insertion and deletion operations; other edit distance 

algorithms can have fewer, or greater, numbers of edit operations built into the metric.  
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statistical balancing in order to detect lexical effects with high significance. The variables 

detailed here include: length, concreteness, and phonetic onset. 

 

 

 

5.2.2.1 Length 

Length — the number of graphemes or phonemes in a word — has a measureable 

effect on lexical retrieval. As discovered by New et al. (2006) through statistical 

investigations of the English Lexicon Project lexical decision data, word length has a 

facilitatory effect for lengths of 3-5 letters, no significant facilitatory or inhibitory effect for 

lengths of 5-8 letters, and an inhibitory effect for words with lengths of 8-13 letters. 

Additionally, orthographic frequency, number of syllables, and orthographic neighbourhoods 

all had their own inhibitory and excitatory effects. The so-called "Word Length Effect" — first 

described by Baddeley et al. (1975) — is the observation that shorter words have a higher 

recall rate than longer words, but recent investigations have since called this effect into 

question (Neath et al., 2003; Lovatt et al., 2000), and others have found no significant effect 

attributed to length at all (Bachoud-Levi et al., 1998). In general, it is still believed that length 

plays an important role in lexical processing and access, the reasoning being that shorter 

words require less articulatory planning than longer words, thus being produced at a faster 

rate. At least one study has reported a "sign length effect" for signers, analogous to the word 

length effect in speech (Wilson & Emmorey, 1998), demonstrating the potential for a general 

symbol-sequence length effect despite studies showing otherwise. 

Regardless of any present-or-otherwise effect, stimuli employed for this study are 

length-balanced per language: all tokens are 3-8 letters in length, 𝑋̅English = 5.02, and 𝑋̅Dutch = 

4.91. 

 

5.2.2.2 Concreteness 

"Concreteness" is a subjective measure of how substantive or abstract a word is, 

defined by Gee, Nelson, and Krawczyk (1999: 1) as: "[. . .] the extent to which one can 

readily form a mental image of a word's referent, and it is measured by asking subjects to 

rate words on a numerical scale." It is closely related to, and highly correlated with, yet also 

distinct from, the phenomenon of "imageability" (Richardson, 1975, 1976; Altarriba et al., 

1999). Consider the pairs "saxophone" and "essentialness"; both are nouns, however one is 

much more easily pictured than the other. According to the raw data from Brysbaert et al. 

(2014), these words lie at opposite ends of the concreteness spectrum, rating at 5, and 1.04, 

respectively. This quantitative and qualitative difference foments the aptly named 
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"concreteness effect", in which highly concrete words like "saxophone" are processed faster 

— and by a different route — than abstract words like "essentialness" (Kroll & Merves, 

1986). Other experiments, however, have questioned the nature of this effect, testing 

whether there is truly a cognitive separation between concrete and abstract words in the 

mental lexicon (Van Hell & De Groot, 1998). Follow-up studies by Barber et al. (2013) and 

Jessen et al. (2000) have shown electrophysiological and hemodynamic evidence for 

divergent cognitive routes between words based on concreteness. 

Dutch and English stimuli are balanced for concreteness, with ratings on a 1-5 scale 

for Dutch and English tokens taken from Brysbaert et al. (2014), 𝑋̅English = 4.21, and 𝑋̅Dutch = 

4.04. 

 

5.2.2.3 Phonemic Onset Type 

An important determinant of word-naming latency is the type of phoneme a word 

begins with. This is true even within visual word-naming experiments, which lack 

enunciated\acoustic input for the participant, because the mental lexicon maps visual 

wordforms to acoustic signals via Grapheme-Phoneme Correspondence (GPC) rules 

(Bassetti, 2013; Tham et al., 2005). Onsets specifically are the most pertinent segment of 

the word form in naming tasks because they occupy the first slot of initial syllable of the 

word; Gow et al. (1996) proposed that onsets have singularly salient perceptual properties 

that drive lexical segmentation, recognition, and access. In addition, the triggering of a voice 

key depends on phoneme onset type, such as voiced vs. unvoiced, or fricative vs. plosive 

consonant. Rastle et al. (2005) and Palo et al. (2015) noted significant delays for some types 

of consonants, particularly voiceless fricatives, showing a divide between acoustic naming 

latency and articulatory naming latency5. This effect was even present when measuring with 

ultrasound imaging, and allowing participants to "mentally-prepare" by pre-exposure to 

stimuli (thus bypassing the word/utterance planning stage of production). 

When visually presented words are named, another issue is how the phonological 

representation is derived from the orthographic input. In other words, we must understand 

how in word naming orthographic input representations are mapped onto phonological 

output representations. Davelaar et al. (1978) ran several experiments targeting 

homophones to find out how grapheme-phoneme encoding operates. The authors propose a 

dual-route "race" model, in which graphemic and phonemic forms are activated on the basis 

of a visual input letter-string, and then race to activate the correct response. Scheerer (1986) 

proposes a more cooperative dual-route approach, with direct and indirect routes into the 

                                                           
5
 The difference between "articulatory" and "acoustic" naming latency is the time between the placement of 

articulators (labia, uvula, etc.) in order to commence phonation, and the time required for air to be pushed up 
from the lungs, pass through the vocal folds and the articulators, and exit the mouth\nose as phonation. 
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mental lexicon via orthography. Frost (1995) proposes that the phonological representations 

associated with orthographic input units might be impoverished relative to the phonological 

representations used in spoken word recognition. Following a series of naming tasks using 

unpointed Hebrew script, he developed an interactive dual-route for generating phonological 

representations from orthography. The results support a strong phonological hypothesis: 

phonological units for a word form are computed from orthography individually or in clusters, 

and assembled as a final product, rather than retrieving complete phonological structures 

based on whole orthographic word forms. An fMRI study by Fiebach et al. (2002) used a 

lexical decision task, contrasting neural activity elicited by pseudowords and low & high 

frequency words, to corroborate the hypotheses of dual-route access. Finally, as discussed 

and further modelled by Feustel et al. (1983), the visual word recognition process leaves a 

trace in episodic memory, creating a repetition effect, a confound that lowers the processing 

time required for repeated lexical segments and features. 

In the end, a trinary division for onsets was made for the current study, coding for 

either voiced or voiceless consonants, or vowels: 49% of tokens have voiced consonantal 

onsets, 44% have voiceless consonantal onsets, and the remaining 6% have vocalic onsets. 

Although this is not a perfect remedy to the articulation or measurement issue, nor does it 

fully negate the repetition effect, it was reasoned to be the most viable and expedient 

solution. Because of the delay in detecting certain initial phonemes — with a phoneme-

induced bias being as large as 100 ms (Kessler et al., 2002) — onset categorization was 

also useful to diminish the bias introduced by these known technical difficulties with voice-

key latency measurements. 

 

  5.2.3 Uncontrolled Variables 

 The following three dimensions — conceptual-association (i.e., spreading activation), 

morphological families, and orthographic neighbourhoods — have not been statistically-

controlled by the current study, but were deemed significant enough within the literature to 

discuss. These shall be considered "nuisance" variables. 

 

5.2.3.1 Conceptual Association 

Effects of conceptual association, also known as "spreading activation", are 

omnipresent in natural language and general human cognition. Spreading activation involves 

two words that are semantically-related, the so-called "prime" and "target"; take the following 

pairs as examples: "Nurse-Hospital", "Soldier-Tank", or "Kitchen-Oven". The first word 

interacts with the second, activating it through a cognitive link that can be considered 

frequency-modulated (the two words might frequently co-occur): nurses often work in 
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hospitals, soldiers are accompanied by tanks, and kitchens usually contain at least one 

oven. One way that activation spreads within the mental lexicon is through these categorical 

associations, and their connected word forms. Compare to semantically unrelated (or, at the 

very least, much more distantly related) pairs: "Eagle-House", "Car-Ocean", or "Countryside-

Milkshake". When experimentally-tested, a semantic priming task is often used. The study of 

Meyer and Schvaneveldt (1971) is considered one of the early significant studies concerning 

conceptual association. It involves two lexical decision experiments, the results of which 

support a theory of facilitatory activation between meaning-related words. For an overview of 

studies that have investigated this phenomenon, see Neely (1991). 

Conceptual association is not directly accounted for in the stimuli, as this was 

postulated to diminish the number of available tokens by a large factor. An associative effect 

in the latency measurements was avoided by breaking up meaning-related pairs in the 

pseudo-randomized lists before presentation. Conceptual association between separately, 

but closely-presented, input and output word forms was also not addressed, but this is 

considered a minimal noise factor. Multilink itself contains a structure to handle semantic 

relations, a file that indexes related pairs with a strength-rating6. This association list is only 

available for tokens native to Multilink's lexicon, however, and stimulus materials are not 

represented. The current study does not address this aspect, and does not consider it to be 

a major confounding variable. 

 

5.2.3.2 Morphological Families 

The morphological productivity of a word form can affect lexical access in significant 

ways, with active individual tokens initiating related word forms within the lexicon. Mulder 

(2013), citing Schreuder and Baayen (1997), defines "morphological family" as: "[. . .] the 

number of complex words that are morphologically related to a given word and in which this 

word occurs as a constituent." (Mulder, 2013: 16). Using the examples of "home" and "villa", 

Mulder observes that some words have greater potential for compounding than others. A 

study by Schreuder and Baayen (1997) paints a much more complex picture of the 

frequency effect within morphological families, particularly for monomorphemic word forms: 

the monomorphemic word form frequency alone ("home") combines with the frequency of 

morphologically-related complex word forms ("home-s", "home-ward", "home-base", "home-

ly", etc), creating a peculiar effect within the mental lexicon; the result causes especially 

frequent complex word forms to split off from their root monomorpheme, gaining their own 

lexicosemantic representations. As the studies of Mulder (2013) establish, this morphological 

                                                           
6
 For instance, one of the first listed relations is between the English tokens "aardvark", and "dictionary", with 

a strength of .013 
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family effect extends across languages. For bilingual speakers, not only the input word and 

its target translation equivalent can be activated, but also all members of the morphological 

family — in both input and target languages — when form-similarity is close enough. This is 

due to the fact that the root morpheme is party to all members of the family. When 

processing interlingual homographs (such as "normal" in Dutch and English), family 

activation is expected. Dijkstra et al. (2005) investigated the effect of morphological family 

size on bilingual word recognition in 3 experiments, finding that both L1 and L2 family sizes 

affect lexical processing, presenting task-dependent facilitatory and inhibitory effects, even 

when performing in their native language. Although this effect aligns overall with the word 

frequency effect, even after accounting for it, the morphological family effect remains 

significant. Still, it is worth noting that both effects may have a similar origin. Lehtonen and 

Laine (2003) attribute this to representation vs composition: highly frequent complex word 

forms gain their own full representation in the lexicon, in the interest of efficiency, whereas 

less frequent complex word forms must be decomposed. This is especially evident when 

comparing low and high frequency affixed or compound words: "bakelite" and "hydrocarbon", 

low-frequency, must be decomposed, but "skydiving" and "cheesecake" are specialized, 

represented lexemes, thanks to their high frequency-of-usage. But their findings are 

somewhat contrary, showing that bilinguals more often take the decomposition route, which 

might be attributed to the fact that bilinguals receive less lexical input for either language. 

While there is at least one measurement available for morphological family size, 

called the "Information Residual" (Del Prado Martin, Kostic, & Baayen, 2004), it has not been 

employed in this study, and does not appear widely utilized at this time. 

 

  5.2.3.3 Orthographic & Phonological Neighbours 

Orthographic neighbours, as defined by Mulder (2013: 20), "[. . .] are words that differ 

from each other in only one letter position [. . .]. The English word wool only differs in one 

letter position from other English words such as fool, wood, and tool. A similar orthographic 

neighbourhood relationship can exist across languages." Neighbourhoods — i.e. word form 

fields — are either orthographic, phonological, or both. The two are intimately related (Frost, 

1998), and direct links between orthographic neighbourhood density and phonological 

neighbourhood density have been observed (Grainger et al., 2007). The general finding is 

that words with denser neighbourhoods are processed faster than words with sparse 

neighbourhoods, given that lexical activation can spread faster through denser 

neighbourhoods. 

Measurement methods for estimating neighourhood size exist. Coltheart's N 

(Coltheart et al., 1977) — now considered somewhat defunct — and the OLD20 
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(Orthographic Levenshtein Distance 20 [closest orthographic neighbours] of Yarkoni, Balota, 

& Yap, 2008) sample orthographic neighbourhood size. Data using both of these 

measurements is available in both CELEX (Baayen, Piepenbrock, & Van Rijn, 1993), and 

SUBTLEX (Brysbaert & New, 2009; Keuleers, Brysbaert, & New, 2010) databases, but have 

not been employed for the current study. As we shall see, Multilink uses an activation-

spreading design that begins by transmitting activation throughout the input token's 

neighbours (see section 5.1.4); this strategy is reasoned to make balancing for 

neighbourhood size redundant. 

 

 

5.3 Bilingual Proficiency & Translation Asymmetry 

Many multilingual speakers will exhibit an asymmetry in the strength of their acquired 

languages. Even very fluent mutlilinguals may be unbalanced. Despite being able to quickly 

and efficiently select and switch between languages, a processing asymmetry is often 

observable in experimental tasks. Models like the RHM and Multilink are constructed with 

the intention of understanding the myriad of factors that correlate with and determine the 

degree of language asymmetry. Many factors co-determine the degree of this asymmetry. 

Global factors — in the sense that they are non-applicable to any single item or sets within 

the lexicon — include: age & manner of acquisition (Sabourin et al., 2014), proficiency 

(Christoffels et al., 2006), and language dominance (Heredia, 1995, 1997); local factors 

would include, but are not limited to, the lexical dimensions outlined in Section 5.2, some of 

which will covary with the global factors. And much like the interactions between various 

lexical dimensions, combinations of global and local factors can interact in significant, and 

partly predictable, ways. For instance, an interaction between proficiency and language 

dominance was discovered by Costa and Santesteban (2004): there was a language switch 

cost in a picture naming experiment when participants were asked to switch between L1 and 

L2, but this same cost — an observed increase in naming latency — was not seen in highly-

proficient bilinguals. This explains why specific lexical categories like (non-)cognates and 

low/high frequency word forms have detectable effects in the bilingual lexical processing 

system: the dominant language is experienced (encountered and used) more often by the 

speaker, and as a consequence, each word in this language has a higher subjective 

frequency. It becomes more easily accessed, whereas the opposite case is noted for the 

non-dominant language(s). Kroll and Stewart (1994) explain this language-based access 

dissimilarity through the hypotheses of "conceptual association" and "word association", the 

core of the RHM; Sholl et al. (1995) corroborates these hypotheses through  picture-naming 

and translation tasks, finding that the translation task can be primed by the picture-naming 
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experiment, in forward direction. A similar study by Meuter and Allport (1999) found 

comparable, corroborating results. They explain the switch cost as the consequence of an 

active suppression of the dominant language. Because the dominant language is so strong, 

avoiding it requires a stronger inhibition when an item of the non-dominant language is 

recognized, and as a consequence it must be re-activated from "further down" by an input 

word from the dominant language (the "inertia hypothesis"). These findings are in line with 

Language Non-Selective Access Models (NSAM), which regard languages in the mental 

lexicon as integrated, rather than separate. 

Logically, connections between languages have at least two directions7, asymmetric 

or otherwise: the forward translation direction (L1→L2), and the backward translation 

direction (L2→L1). For over 25 years now, psycholinguistic studies have slowly uncovered 

and pieced together the basic mechanisms and interactions of global and local factors at 

work in the mental lexicon. Nevertheless, the nature of language asymmetry has thus far 

remained elusive and somewhat contentious, centering on the directional effect of language 

asymmetry: is there a facilitatory effect for forward, or backward translation, and to what 

extent does it operate? How is it changed by higher or lower levels of language proficiency 

and dominance? Pruijn (2015) highlights 3 studies — Kroll & Stewart (1994), Christoffels et 

al. (2006), and De Groot et al. (1994) — that have offered major contributions to this debate 

(see Table 1, below). 

 

 

 

 5.4 Recent Empirical Studies 

A number of studies from the past 15 years, all concerning translation production 

experiments, are reviewed in this section. All of these studies manipulated the same 

variables as discussed in section 5.2. In particular, the studies of Christoffels et al. (2006), 

                                                           
7
 Assuming a purely bilingual system 

Table 1. Latency (in milliseconds) from three previous studies. Percentage of correct responses in parentheses (Pruijn, 2015: 13) 
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and Pruijn (2015) are elaborated. For a larger in-depth review of multilingual lexical access 

and processing literature, the reader is referred to Szubko-Sitarek (2015), Multilingual 

Lexical Recognition In The Mental Lexicon Of Third Language Users. 

 

  5.4.1 Kroll, Michael, Tokowicz, & Dufour (2002) 

The study by Kroll et al. (2002) consists of two experiments, each comparing two 

samples of adult native English-speaking participants, investigating L2 lexical acquisition and 

the transition from word association to conceptual association inside the mental lexicon as 

L2 fluency increases. The stated goal of the study was "[. . .] to examine the process of 

lexical access for both L1 and L2 during second language acquisition." (Kroll et al., 2002: 

141). 

The first experiment involved two English-French sample groups — a low-proficiency 

group, and a high-proficiency group — performing two tasks: first, a visual word-naming task 

(a word is presented to the participant on a screen, and enunciates the word aloud); and 

second, a visual word translation task (an LN word is presented to the participant on a 

screen, and enunciates the translation equivalent in the target language), measuring latency 

& accuracy. These tasks are associated with lexeme-level processing, the performance of 

each participant indicating the route of access to lexical information. Results of this 

experiment supported the views of the RHM (Kroll et al., 2002: 153), asymmetry being 

greater for the less fluent, accuracy and latency measurements supporting backwards 

facilitation, and the observation that the low-proficiency group relies more on form-relation 

between languages than the high-proficiency group. 

The second experiment, very similarly designed to the first, tested a new set of 

participants in two sample groups: a low-proficiency condition, and a high-proficiency 

condition. Unlike the previous experiment, the fluency difference was greater between 

conditions, with the low-proficiency condition being described as "[. . .] nonfluent learners at 

the very early stages of L2 learning [. . .]" (Kroll et al., 2002: 153). Furthermore, the groups 

were not learners of a single language, but were divided between Spanish (the majority for 

both groups) and French. These groups performed the same word-naming and translation 

tasks as the first experiment, with two additions: a reading-span task8, and a lexical decision 

task9. The results showed an effect of proficiency for both word-naming and translation tasks 

in both groups, but the highly-proficient bilinguals only showed evidence for language 

                                                           
8
 This is a task in the "memory span" paradigm. Participants read sentences, and are asked to recall the final 

words; the measurement is based on how many final words can be recalled. Span tasks are often used to 
assess short-term memory, and cognitive ability or intelligence. 
9
 In a lexical decision task, a participant is shown a letter string, and presses one button if it is a word in the 

target language, and another button if it is not. Results can be used as a metric for language fluency. 
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asymmetry in word-naming. Language asymmetry, favouring the L1, in the translation task, 

was observed in both proficiency groups. Comparing the forward and backward translation 

conditions, L2-learners had a 111 ms difference, while the bilinguals had only a 48 ms 

difference. 

The results of Kroll et al. (2002) demonstrate a clear backwards facilitation effect, 

substantiating claims made by the RHM that both high & low-proficiency L2 processing is 

accomplished through lexical association with the L1, rather than directly attaching lexemes 

to concepts; nevertheless, the experiments also show that, as fluency increases, L2-

conceptual connections will form. This is corroboration of the conclusion of Lehtonen & Laine 

(2003): increasing frequency (and thus, proficiency) causes L2 lexemes to gain their own 

representation, rather than requiring these inputs to be processed through existing L1-

structured cognitive pathways. 

 

5.4.2 Christoffels, De Groot, & Kroll (2006) 

Centering on the role of 

simultaneous interpreters, such as those 

present at international conferences and 

symposia, Christoffels et al. (2006) 

presents two experiments in this paper, 

aiming to explain the cognitive skills 

necessary for this group to comprehend 

and produce in two languages at the same 

time. The concurrent input of one language 

and output in another implies incredibly 

rapid planning and action, including the 

following steps: recognition of an input as a 

member of one language, proceeding to 

conceptual activation, the L2 equivalent 

word-form becomes active, the L2 word-

form is produced, positioned into an L2 

phrase\clause (that is, itself, approximate 

to the original phrase in the meaning 

conveyed), and finally, is physically 

articulated. This requires concentrated, coordinated effort, inevitably requisitioning resources 

from various areas of the brain. "The goal of the present study is to begin to understand how 

basic components of language processing may be different when an individual is a skilled 

Table 2. Results Of Experiment 1 & 2, mean RT (in milliseconds 

(Christoffels et al., 2006: 333) 
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interpreter and how simultaneous interpreting is related to individual differences in memory 

capacity." (Christoffels et al., 2006: 326). 

The first experiment tested two groups of native Dutch speakers, all of whom had 

high-proficiency in English: a 1st group of simultaneous interpreters, and a 2nd group of 

university students, using picture-naming10, and single-word translation production tasks as 

the primary measures of language performance. Since there are also questions about 

whether simultaneous interpreters have larger-than-average memory capacities — either 

through a selection bias, or simply from accumulated experience as a bilingual — a series of 

memory assessments were also used: a word span task, reading span task, and a speaking 

span task. Lastly, two control tasks were included: vocabulary test, and an arrow reaction 

time test11. All of these tasks were completed in both languages, as functional capacity can 

differ between languages (Chincotta & Underwood, 1998). The following lexical dimensions 

were manipulated: word-form frequency, and cognate status. The authors predict: "If the 

subskills examined here are indeed important to simultaneous interpreting, we predicted that 

the interpreters would outperform the students on both measures of language processing 

and memory capacity. On the control measures, we expected that the interpreters would 

have better vocabulary knowledge than the students, but that performance on the basic 

reaction time test should be unrelated to interpreting skill." (Christoffels et al., 2006: 327). 

The results of experiment 1 strongly favour the interpreter group — who performed notably 

well on the memory assessment tasks — over the student group. Moreover, the interpreter 

group did not show a facilitation effect for language direction in the translation task, unlike 

the student group, which translated L1→L2 faster than L2→L1, a forwards facilitation effect 

(see Table 2, previous page). 

The second experiment, similar in design to the first experiment, tested two high-

proficiency English groups of native Dutch speakers: simultaneous interpreters, again, and 

trained English teachers, all tested using the same set of tasks. Teachers were selected for 

their supposed similarities to the interpreter group, both groups hypothesized as being 

approximately equal in their global interindividual factors: proficiency, language dominance, 

age, bilingual working experience, education, and general interest in languages. Although 

students, as a group, are known to be proficient — but unbalanced — bilingual speakers 

they do not share these same characteristics which make trained bilingual teachers a 

particularly good match for a comparative study with the interpreter group. The results 

support these conjectures: the teacher group performed similarly to the interpreter groups on 

                                                           
10

 A participant looks at a picture of an object, and produces the word that the picture represents in the target 
language. 
11

 A participant views left or right-facing arrows on a screen, and presses a button corresponding to the 
direction of the arrows. 
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the picture-naming and translation tasks, however, the interpreter group still outperformed 

the teacher group on the memory capacity tasks, establishing the suspected working 

memory bias thought to operate within simultaneous interpreters (however the cause is still 

inconclusive). 

 

 

Figure 6 (above) provides visualization to the general summary: notably obvious is 

the fact that the students performed worse in both tasks — except for L1 picture-naming — 

and the teacher and interpreter groups seem to pattern closely. We can be confident that 

proficiency, dominance, and frequency are important variables in these tasks, as prior 

research has proven time and again. However, aside from the memory capacity advantage, 

employment as a simultaneous interpreter does not enhance one's basic lexical processing 

operations any more than other professions which require multilingual proficiency. 

Additionally, cognate status and frequency were shown to have separate effects. A cognate 

effect was even observed in the picture-naming tasks, lending greater support to Language 

Non-selective Access Models (NSAM), but also to the concept of an orthographic-

phonological → visual activation route via semantic activation. 

This study, in opposition to Kroll & Stewart (1994), and Kroll et al. (2002) presents 

evidence for forward facilitation. However, the study is not without some problems, as noted 

in Pruijn (2015). The stimuli employed by Christoffels, et al (2006) are not as well-balanced 

as the study might have them seem, with some interlingual homographs, semantically-

related pairs, and no accounting for onset type. This is problematic, and a confound of 

concerning proportions, particularly given the small sample sizes of the teacher and 

Figure 6. Average RT (in milliseconds) for each group, in picture-naming and word translation tasks (Christoffels et al., 2006: 

340) 
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interpreter groups. The results only add to the contentious nature of the debate concerning 

language facilitation. 

 

  5.4.4 Pruijn (2015) 

Another study in a long line to investigate bilingual lexical access with hopes to 

proffer solution, Pruijn (2015, in collaboration with Peacock) details a single experiment 

designed to test language asymmetry, the outcomes of the RHM, and lexical facilitation. 

Data from 42 native Dutch-speaking participants were collected (24 females and 18 males) 

for a visual single-word translation production task, taking place in two conditions: the 

forward translation condition (Dutch → English), and the backwards translation condition 

(English → Dutch). Participants had their response latencies measured from the 

presentation of stimulus until the detection threshold12 is triggered  by enunciation. Stimuli — 

256 in total — varied in the same 3 conditions as previous studies: frequency (low or high), 

cognate status (cognate or noncognate), and translation direction (forwards or backwards), 

and were additionally balanced for other known lexical dimensions, to avoid the same 

confounds that plagued the stimulus set of Christoffels et al. (2006) (see Table 3, above). 

This information was gathered from the SUBTLEX (Brysbaert & New, 2009; Keuleers, 

Brysbaert, & New 2010) database. Stimulus, with few exceptions, was the same for both 

forward and backward translation conditions; e.g. a participant received reversed translation-

equivalent pairs (Forward would be "koffie", to "coffee", whereas backward would be 

"coffee", to "koffie"). Each block of the task presented 128 tokens, and upon completion, the 

participant filled out a language history questionnaire, obtaining standard demographic 

information, and subjective ordinal ratings about profiency and general foreign language 

experience. 

                                                           
12

 set at .07 in Presentation 

Table 3. Stimuli characteristics; mean ratings for frequency, naming latency, concreteness, and length shown for all 8 
stimulus categories (Pruijn, 2015: 21) 
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Final analysis retained the same data-cleaning procedures as Christoffels et al., 

disregarding inaccurate responses. Outlier data points were removed: latencies below 350 

ms were classed as technical or participant errors, and latencies above 2000 ms were 

classed as null responses. 5 participants were omitted for exceeding the inaccuracy 

threshold of 10%, and 3 specific tokens were removed due to low total accuracy ratings13. 

Ultimately, 1,856 (17.26%) data points were eliminated, leaving 8,896 total data points for 

repeated-measures and univariate ANOVA testing. Included participants were separated into 

low and high proficiency bilingual groups based on questionnaire responses, with 

approximately half in each group. 

 

 

From the results (see Table 4, above), a significant interaction between cognate 

status and translation direction was found: cognates were more resistant to language 

asymmetry than noncognates, the latter of which were observed to have a forward 

facilitation effect. Word form frequency, however, was not found to interact with translation 

direction; low and high frequency tokens were observed to have similar levels of measured 

language asymmetry. Likewise, a combined interaction between the 3 conditions was not 

observed. Cognate status and frequency, however, did have a significant interaction: the 

frequency effect was observed to have higher correlation with noncognates than with 

cognates. As with previous studies, L2 proficiency modulated the overall latency observed, 

but the respective facilitation effects were observed to function independently of proficiency, 

no significant interaction being observed. 

Across all categories, the results point towards forward translation facilitation, 

rejecting the predictions of backward translation facilitation from the RHM, and also 

contesting the results of previous studies that have confirmed it as a valid model of the 

bilingual lexicon. While the RHM equally predicts cognate status as a factor in language 

asymmetry, it does not predict why L1→L2 noncognates are translated faster than L2→L1 

                                                           
13

 These same 3 tokens are excluded from the current analysis as well, see section 6.4 

Table 4. Mean latency and accuracy percentages, with overall language effect (Pruijn, 2015: 24) 
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noncognates. One possible, culturally-bound explanation is proposed by Pruijn, remarking 

on the power of the internet and other instantaneous communication infrastructures since 

both the studies of Kroll & Stewart (1994), and Christoffels et al. (2006): "Another possible 

reason [. . .] is that they [the studies of Pruijn, and Christoffels et al.] are conducted within a 

smaller time range [. . .] Twelve years might not seem much, but the rise of the internet has 

certainly had a great impact on bilingual development in Dutch children and students, and 

this might have very well influenced the way they process English words. In other words, 

general Dutch-English bilingual proficiency might have accelerated the past years, which 

brings along a difference in participant proficiency and, arguably, this affects translation 

mechanisms. "(Pruijn, 2015: 28). At the same time that these results disregard the RHM, 

they do form a pattern of predictions much closer to the BIA+, and, correspondingly, with 

Multilink as well (as shown by simulations conducted by Dijkstra & Rekké (2010)). 

 

 

5.5 Conclusions Based On The Literature 

The previous section has assessed the fundamental topics necessary to comprehend 

the current state of research in the domain of bilingual lexical access and processing. To 

reiterate, the RHM, IC, BIA+, and Multilink models were appraised and detailed, with specific 

reference to the architectures utilized by each; pertinent facilitation effects, stemming from 

lexically-interactive dimensions such as frequency, orthographic neighbourhoods, and 

conceptual-meaning, were explained; the general phenomenon of translation asymmetry 

was described; and, lastly, recent studies, such as Christoffels et al. (2006) were checked, 

which will ground the results presented in the following sections. 

Making predictions from the results of previous studies, projections about the working 

of the bilingual lexicon are formed: dependent variables, such as latency or gaze duration 

are modulated by lexical dimensions; when a word is recognized as grammatical input, 

activation distributes throughout the associated lexical networks, regardless of the input or 

target languages, and facilitates or inhibits potential candidates until the correct word form is 

selected and produced; highly-proficient bilinguals are less susceptible to language 

directional asymmetry — frequency of language practice is one of the more important 

dimensions for individual speakers; lexical-associative effects are major and omnipresent 

noise factors, found at all levels of word processing; dimensional interactions within the 

cognitive system, such as those between cognate status and frequency, are potentially 

significant; and, above all, the need to control for nuisance variables (other lexical 

dimensions that are only contributing noise to the results) and balance all global and local 

factors within an experiment — cannot be understated. Ultimately, the evidence reviewed 



31 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

has given us a window into the process of visual single-word translation production, and 

multilingual lexical cognitive processing. Application and attention to this knowledge is 

imperative to the creation of empirically-matching computational models. 
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6. Simulation Methodology 

As we have seen in the previous sections, certain theoretical and methodological 

considerations must be attended to when designing a simulation. The methods chosen and 

outlined below follow the development of this approach. Section 6.1 discusses the specific 

research questions being answered, section 6.2 defines the stimulus according to the 

independent and dependent variables, section 6.3 declares a number of limitations of the 

methods employed, and section 6.4 clarifies the manner in which errors & inaccuracies are 

treated. 

 

6.1 Research Questions 

This study controls stimuli in a similar fashion as Christoffels et al. (2006), dividing 

them by translation direction, frequency, and cognate status in order to simulate the results 

of Pruijn (2015) and correlate the empirical data with the simulation data from the current 

study. The primary research question asks if Multilink can sufficiently simulate: 

i. The translation direction facilitation effect — the difference between 

forward and backward translation, and is forward, or backward translation facilitated? 

ii. The frequency facilitation effect? 

iii. The cognate facilitation effect? 

 

In essence, the model simulations should approximate the results of the real 

experiment; this is the model-to-data distance, related to the concept of "goodness-of-fit". 

With this in mind, the expected distributional difference between the two datasets — the 

latency results of Pruijn (2015) and the Multilink cycle-times — should be relatively small. Of 

course, in order to make a real comparison between the empirical and model data, it is 

necessary to bring the model data into more-direct correspondence. With this intention, two 

statistical models have been implemented: a linear model, and a z-score model. These 

models translate the Multilink cycle-times into predicted-latency outputs by scaling them 

according to the factor necessary to reach the empirical latency data. Statistical analysis of 

the simulations will examine results calculated via 4 tests: a Spearman's rank correlation 

coefficient test, F2 ANOVA, generalized regression modelling, and divergence statistics. 

These tests will assess the model-to-data fit.  

This simulation should demonstrate that the Multilink computational model can 

simulate the translation production process, by mirroring the results observed in the 

experimental translation task. Demonstrable observations and correlations should include: 

the cognate, frequency, and translation direction facilitation effects, all comparable in 

strength to the empirical effects; the latencies for the respective conditions should be highly 
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predictive of cycle-time and the two will be strongly correlated. For instance, cognate 

conditions should show strong correlations with LD; high-frequency conditions should show 

a strong correlation with frequency; and interactional effects should be observable and 

similar in simulations and empirical data. 

 

6.2 Stimulus Materials 

The stimulus list used in the reported simulation comprises 256 tokens14 in total. This 

list represents the most recent and thoroughly-prepared set of dimensionally-balanced 

materiel currently available, exemplifying the adjustments and attention necessary to 

generate accurate data to be used in computational modelling (see section 5.4.4, Table 3 for 

mean per-category ratings of 10-log word form frequency, concreteness, naming latency, 

and length). The independent and dependent variables measured are outlined below, each 

signifying one of the manipulated lexical dimensions, and their subsequent facilitation effects 

(as outlined in section 5.2).  

 

6.2.1 Independent Variables 

i. Translation direction — defined as: Forward translation (Dutch→English), or 

Backward translation (English→Dutch). 128 tokens are Dutch→English pairs, and the other 

128 are English→Dutch pairs. Both translation directions use largely the same stimuli, with 

a few exceptions. 

ii. Frequency — defined, somewhat arbitrarily, as: high-frequency (SUBTLEX word-

form 10-Log frequency above 1.60), or low-frequency (SUBTLEX word-form 10-Log 

frequency below 1.50). It should be noted, SUBTLEX (Brysbaert & New, 2009; Keuleers, 

Brysbaert, & New 2010) was employed to generate this definition by Pruijn (2015), as it was 

considered to be a better measure of frequency than previous collections, such as CELEX 

or Kucera & Francis (n.d.); the current simulation, nevertheless, must keep in line with the 

frequencies already in the lexicon of Multilink, which employs the word form frequency 

measurements from the 1993 CELEX (Baayen, Piepenbrock, & Van Rijn, 1993) database. 

Thus, while the stimulus retains the same frequency division as the original experiment — 

using SUBTLEX — the actual frequencies come from CELEX. 

iii. Cognate status, i.e. form-similarity — defined as: cognate, or non-cognate. This 

definition is based on the LD of individual tokens (see section 5.2.1.2). Tokens requiring 1-3 

edits (using a length-normalized score) are considered cognates; tokens requiring 4-8 edits 

(no stimuli are above 8 letters in length) are considered non-cognates. Tokens with an LD 

of 0, interlingual homographs, such as "hand" or "film" — found in the stimulus selection of 

                                                           
14

 It is important to note that each token is actually a pair of prime & target translation equivalents. 



34 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

Christoffels et al. (2006) — have been excluded and replaced. Multilink employs the 

standard 3 edit-operations within the length-normalized LD algorithm. 

This results in 8 combinations of manipulated independent variables, with 32 tokens 

per category, as shown in the table below: 

 

Forward Backward 

High-Frequency Low-Frequency High-Frequency Low-Frequency 

Cognate Noncognate Cognate Noncognate Cognate Noncognate Cognate Noncognate 

 

 

 

 

 

 

 

 

 

 

  6.2.2 Dependent Variables 

There are two dependent variables to this study: latency, and cycle-time 

 

i. Latency is the mean response time after visual presentation of stimulus, in 

milliseconds. It is taken from the appendix of results, found in Pruijn (2015: 37-42). 

ii. Cycle time and its derivations are the model's equivalent of latency. When 

Multilink runs a simulated translation production task, it outputs the most faithful translation-

equivalent candidate, and states the processing time — defined as "time cycles" — required 

to calculate this candidate. This data has been collected for each token in the list. To make 

predicted-latency, cycle-time has been calibrated to a millisecond scale, using cycle-time 

and empirical latency as paired input for two statistical models: a linear model, and a Z-score 

model. 

 

As a generalization, it is expected that the "high-frequency cognate" categories will 

show the lowest mean latency and cycle-times, reflecting faster processing; on the other 

hand, "low-frequency noncognate" categories are expected to show the highest mean 

Forward 

High-

frequency 

Cognate 

Forward 

High-

frequency 

Noncognate 

Forward 

Low-

frequency 

Cognate 

Forward 

Low-

frequency 

Noncognate 

Backward 

High-

frequency 

Cognate 

Backward 

High-

frequency 

Noncognate 

Backward 

Low-

frequency 

Cognate 

Backward 

High-

frequency 

Cognate 

Table 5. Manipulated independent variable combinations. 
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latency and cycle-times. Consequently, it is inferred that the brain processes tokens of these 

latter categories in a different fashion than the former categories. 

 

6.3 Design Limitations 

There are some limitations to the current simulation that needs to be declared before 

viewing the test results: 

i. Latency data is a mean aggregation per token from each of the 37 participants, 

taken from the appendix of Pruijn (2015). This was done to simplify the calculations and to 

better match the latency data with Multilink's output. Analogous data sets should have 

comparable properties; where latency data has large variance between participants, 

Multilink's output, if run 37 times, would have little-to-no observable variance. This reduction-

to-the-mean will affect the following analyses, reducing the statistical power, but the general 

trends exhibited by the data should remain the same. 

ii. In general, frequency measurements have a corpus-dependency problem: words 

with an occurrence of 17 times in corpora of 1 million words and 20 million words are  not 

directly comparable. It is therefore convenient to use the size of the corpus to weight the 

frequency and present it as Occurrences Per Million tokens (OPM): a token with 1 OPM in a 

1 million word corpus will have an OPM of 0.1 in a 10 million corpus.As an alternative, Van 

Heuven et al. (2014) has introduced the Zipf scale, a logarithmic scale measurement of word 

form frequency, that categorizes tokens on a scale from 1 Zipf (very low) to 6/7 Zipfs15 (very 

high). 1 Zipf is equal to a word form frequency of 1-per-100 million. The Zipf scale has not 

been employed by Pruijn (2015), nor the current study. Future analyses will need to consider 

the advantages of using the Zipf scale over the more common 10-log OPM measurements. 

iii. Tokens are largely restricted to the nominal class, with a few adjectives. Bultena 

(2013) has examined cognate facilitation in verbs, obtaining varying results, ultimately 

pointing to a much weaker cognate facilitation effect in verbs than are currently observed for 

nouns. The syntactic class of the word forms is restricted for experimental control. 

iv. Word-naming experiments, while statistically reliable and experimentally valid 

when properly designed, are concerned with isolated orthographic and phonological words; 

this is not necessarily a true reflection of neither lexical access, nor bilingual speech, and the 

reality of lexical effects — both facilitatory and inhibitory — is much more complex when 

viewed in-use (Swinney, 1979; Simpson et al., 1989; Duyck et al., 2007). Context plays a 

critical role. Speech requires a lexicon, but the two should not be conflated. In order to 

                                                           
15

 Only function words like definite articles are stated as having 7 Zipfs. Common nominals might have a ceiling 
of 6 Zipfs. 
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investigate natural language lexical access properly, an approach with greater scope will be 

required, utilizing linguistic units larger than single words. 

 

6.4 Errors & Removal Procedure 

Out of 256 tokens, 7 (2.73% of total data points) were removed from the analysis, for 

two reasons: 3 items (1.17%) had been excluded from the empirical analysis (Pruijn, 2015: 

37-42); and 4 (1.56%) produced inaccurate translations from Multilink, translating "bot" as 

"boat" instead of "bone", for example (see Table 6 below). 

The inaccurate translations all arise from the lack of active semantic representation 

for the input stimulus, and the position of LD in the output ranking. The inaccurate outputs 

are all misconstrued as cognate with other tokens used in the simulation, not randomly with 

other tokens within the lexicon, which do contain semantic associations listed in a separate 

file (see section 5.1.4 for a summary of Multilink and its architecture). These semantic links 

have varying numbers and strengths of semantic connections to other lexicon items, and 

appear to be the final measure for selecting the correct output. 

All 4 inaccuracies are confined to the L1→L2 condition, while the 3 excluded tokens 

are confined to the L2→L1 condition. 

 

Table 6. Inaccurate Multilink translations, and removed stimulus. 

Inaccurate 

Stimuli Translation Latency 
Cycle-
time Frequency Direction 

Cognate 
status 

Frequency 
Category 

Accuracy 
(1 = 
correct) 

Multilink 
output 

arend eagle 991 33.35 4 
 

Forward Noncognate 
Low 
Frequency 0 friend 

beker cup 1081 25.94 15 
 

Forward Noncognate 
Low 
Frequency 0 baker 

boer farmer 968 25.54 45 
 

Forward Noncognate 
Low 
Frequency 0 beer 

bot bone 1105 37.94 6 
 

Forward Cognate 
Low 
Frequency 0 boat 

 
 
Removed 

          
curl krul 0 27.49 1 

 
Backward Cognate 

Low 
Frequency 1 

 
eagle arend 0 27.45 7 

 
Backward Noncognate 

Low 
Frequency 1 

 
lack gebrek 0 26.74 110 

 
Backward Noncognate 

Low 
Frequency 1 
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7 Analysis & Results 

Tests explored in this section have a single purpose: to examine the goodness-of-fit 

by comparing the model data to the empirical data. Cycle-times were transformed into 2 sets 

of predicted-latency measures, each using a different type of statistical model. Due to the 

high total accuracy score, and the facts that it is limited to the forward translation direction 

condition and potentially a confound caused by the lack of semantic representation, 

accuracy data is not included in the analyses. First, section 7.1 briefly describes the 

statistical models used to extrapolate predicted-latencies from Multilink's cycle-time output; 

section 7.2 inspects the results through a simple visual comparison-of-means; section 7.2 

discusses the correlational analyses; section 7.3 discusses the results of ANOVA analyses; 

next, section 7.4 shows the results of a generalized regression model; and, finally, section 

7.5 states the results of a battery of model-to-empirical statistical-distance and divergence 

metrics. 

 

7.1 Cycle-time Scaling Method 

To facilitate the model-to-empirical data comparison, it was deemed necessary to 

scale the cycle-time outputs into predicted-latency measurements. Two statistical models 

were chosen to accomplish this task:a linear model, and a Z-score model. Section 7.1.1 

discusses the relationship between cycle-time and latency; section 7.1.2 discusses linear 

model scaling; and section 7.1.2 discusses the Z-score model scaling. In later sections, the 

output of the latter two will be further compared to assess the better scaling method. 

 

7.1.1 The Relationship Of Cycle-time To Latency 

 When cycle-time and latency are entered into a statistical model, scaling data points 

linearly, their relationship is more easily discerned. Using latency as the independent 

variable, and cycle-time as the dependent variable, a significant16 correlation is observed 

(F(1, 247) = 50.05, p = < 0.0001), with an adjusted R2 = 0.17. Cycle-time increases by 1 for 

every 24 ms (SE = 3.38, p = < 0.0001) of latency, from a base estimate of 218 ms (SE = 

86.62, p = 0.013). Therefore, a latency of 1000 ms ≈ 27 cycles; conversely, 25 cycles ≈ 750 

ms. 

 

 

 

 

                                                           
16

 Using α = 0.05 
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7.1.2 Linear Model 

The first model is a simple general17 linear model, represented visually in Figure 7 

(below). This is, essentially, the most basic and convenient scaling method available to 

equivocate one data group with another. In this thesis, the linear model predicted-latency 

measurements will collectively be referred to as "L-scaled [latency]". According to the graph, 

the linear model does not seem to be the most faithful reproduction of the latency 

measurements: 700 ms latency ≈ 800 ms L-scaled; 800 ms latency ≈ 850 ms L-scaled; 1000 

ms latency ≈ 860 ms L-scaled, and 1200 ms latency ≈ 880 ms L-scaled. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Displayed as a pair of cumulative distribution function (CDF) lines, latency and the L-

scaled latency are seen in Figure 8 (next page). It is clear that these two do not match, with 

a high degree of visible divergence between the two CDFs. The minimum L-scaled latency 

begins at ~720 ms, almost ~100 ms after the minimum of latency, at a point where ~20% of 

latency data is already measured. After a ≤ 60 ms width of divergence, the two lines 

                                                           
17

 Not generalized, which typically refers to a type of regression model. 

Figure 7. Scatterplot of the linear model scaling, x-axis = latency, y-axis = L-scaled Latency, linear regression 
line in red. The shaded area around the regression line represents the standard error. 
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intersect at the ~60% mark, denoting ~850 ms. A second, larger divergent section is 

observed, at which point the L-scaled latency hits the maximum of its range at ~900 ms, 

where ~80% of latency datapoints are measured, ~300 ms before the latency CDF hits its 

respective maximum. 

For the scaled simulation data, it appears that the tails of the latency CDF have been 

trimmed, shrinking the total range of the L-scaled latency by nearly 400 ms, effectively 

decreasing the measurements by 40% (20% eliminated from both bottom, and top) 

compared to the empirical data.  

 

 

 

It is, admittedly, difficult to be confident about the potential performance of a scaling 

method that is observed to reduce the measured range by such a large margin, while 

simultaneously overestimating the lower quartiles and underestimating the higher quartiles. 

 

  7.1.3 Z-score Model 

The Z-score model is a reasonably more complicated scaling method, requiring 

multiple steps, versus the two steps required for the linear model. It is called a "Z-score 

model" because it relies on calculating the Z-values of the distribution formed by the latency 

Figure 8. Cumulative distribution function of latency (black dots), and linear model predicted latency 
(red dashed-line). Each dot/dash segment represents a single datapoint. 
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measurements: first, the Z-values and 10-log values are calculated for each individual 

latency measurement; second, similar Z-values are obtained for the 10-log values of latency, 

and (non-logarithmic) Cycle-time. Predicted-10-log latency measurements are attained by 

multiplying the cycle-time Z-values by the standard deviation of the 10-log latency, then 

adding the mean of the 10-log latency to each new predicted-10-log latency measurement. 

Finally, the scaled predicted-latency measurements are obtained by performing an antilog 

operation on the predicted-10-log latency data. For the duration of this article, the Z-score 

model predicted-latency measurements will collectively be called "Z-scaled [latency]". 

 

When depicted in a grain, the relationship between latency and Z-scaled latency can 

be more easily viewed (Figure 9, below). Estimating visually: 700 ms latency ≈ 780 ms Z-

scaled; 800 ms latency ≈ 820 ms Z-scaled; 1000 ms latency ≈ 900 ms Z-scaled, and 1200 

ms latency ≈ 950 ms Z-scaled. 

Figure 9. Scatterplot of the Z-score model scaling, x-axis = latency, y-axis = Z-scaled Latency, 
linear regression line in red. The shaded area around the regression line represents the 
standard error. 

When viewed 

as a pair of graphed 

CDF lines (Figure 10, 

next page), the Z-

scaled latency 

observably matches 

the empirical CDF 

better than the L-

scaled latency. Rather 

than two large 

divergent sections, it 

has three smaller 

divergent sections. 

The minimum Z-

scaled latency begins 

at ~600 ms, ~20 ms 

before the minimum of latency, marking the first divergent section, running above latency 

from the minimum to ~30%, where the two lines intersect at ~750 ms. The second divergent 

section follows, running below the latency CDF, reintersecting with the latency CDF at the 

~80% mark, denoting ~920 ms. The third and final divergent section follows, above the 

latency CDF, after which the Z-score model hits the maximum of its range at ~1050 ms, 
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where ~98% of latency datapoints are measured, ~150 ms before the latency CDF hits its 

respective maximum. 

 

Figure 10. Cumulative distribution function of latency (black dots), and Z-score model predicted latency 
(red dashed-line). Each dot/dash represents a single datapoint. 

 

While this scaling method certainly is an improvement over the linear model, it does not 

utilize an ideally suited function either. Still, it is adequate for the current analyses. In the 

future, better scaling functions will need to be tested to generate closer correspondences 

between model and empirical data distributions. 

 

 

7.2 Visual Comparison 

N = 249 mean SD median min max range SE 
Latency 828.36 118.45 810 621 1203 582 7.51 
Cycle-time 25.61 2.04 26.25 21.13 30.77 9.63 0.13 
Frequency 110.29 138.94 56 1 816 815 8.81 
Levenshtein 
Distance 3.51 1.87 3 1 9 8 0.12 
L-scaled Latency 828.36 48.62 843.79 721.67 951.42 229.74 3.08 
Z-scaled Latency 828.05 111.77 857.28 604.65 1166.17 561.52 7.08 
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Table 7. Global condition. 

 

N = 124 mean SD median min max range SE 
Latency 809.05 111.59 777.50 621.00 1093.00 472.00 10.02 
Cycle-time 25.67 2.01 26.30 21.13 30.37 9.23 0.18 
Frequency 107.02 138.25 50.00 1.00 597.00 596.00 12.42 
Levenshtein 
Distance 3.45 1.81 3.00 1.00 8.00 7.00 0.16 
L-scaled Latency 829.85 47.95 844.86 721.67 941.92 220.24 4.31 
Z-scaled Latency 831.33 110.06 859.92 604.65 1134.92 530.27 9.88 

Table 8. Forward condition 

 

N = 125 mean SD median min max range SE 
Latency 847.51 122.33 828.00 631.00 1203.00 572.00 10.94 
Cycle-time 25.54 2.07 26.25 21.18 30.77 9.59 0.19 
Frequency 113.52 140.11 59.00 2.00 816.00 814.00 12.53 
Levenshtein 
Distance 3.56 1.94 3.00 1.00 9.00 8.00 0.17 
L-scaled Latency 826.87 49.42 843.79 722.66 951.42 228.76 4.42 
Z-scaled Latency 824.80 113.80 857.28 606.35 1166.17 559.82 10.18 

Table 9. Backward Condition. 

 

When cycle-time & latency (descriptive data above, tables 7-9; further tables of 

descriptive statistics are found in the appendix, section 11.4) are represented as a histogram 

displaying the mean and standard deviation, the forward and backward conditions (Figure 

11, next page) show a disparity: the model would appear to predict scarcely-faster 

translation in the backward condition than in the forward condition, whereas the latency data 

shows that the forward condition is faster than the backward condition by approximately 50 

ms. The cycle-time bars should approximate the latency bars, but they do not, and opposite 

conclusions would be drawn from this comparison. But this is a comparison between cycle-

time and latency. Perhaps the L-scaled and Z-scaled latency (Figure 12, next page), in 

category-view, show different results? 
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The two graph-pairs show similar results. Figure 11 shows that cycle-time and 

latency give deviating results, with figure 12 corroborating this result for each category. 

Visually, neither predicted-latency measure seems to perform adequately with respect to the 

empirical data: L-scaled latency still suffers from a noticeably decreased range, which 

shrinks the means and the standard deviations, and produces a difference of ~100 ms 

between the cognate low-frequency and non-cognate high-frequency conditions which is not 

seen in latency. Z-scaled latency does not bear quite the same reduction in range, means, 

and standard deviations, but it calculates an even greater distance between the cognate low-

frequency and non-cognate high-frequency conditions. 

 

Figure 11. Histogram comparing mean cycle-time and latency for the backward and forward conditions. Barred-lines 
represent the standard deviation. 

Figure 12. Histogram comparing mean latency, and the predicted-latencies, per category. Barred-lines represent 
standard deviation. Numerals: 1 = Backward high-frequency cognates, 2 = Backward low-frequency cognates, 3 = 
Backward high-frequency noncognates, 4 = Backward low-frequency noncognates, 5 = Forward high-frequency 
cognates, 6 = Forward low-frequency cognates, 7 = Forward high-frequency noncognates, 8 = Forward low-frequency 
noncognates. 
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Based on the histogram comparison, Multilink does not perform well with respect to a 

number of translation aspects: there is no discernable translation direction effect, 

fundamental measures like mean and standard deviation are reduced, and the predicted-

latencies do not all correspond to their empirical counterparts. However, these results also 

need to be situated in greater context, as shown in Figure 13 (above). Compared to the 

results of Christoffels et al. (2006), the difference between the results of Multilink and Pruijn 

(2015) are quite small. Both empirical studies tested the same variables (translation 

direction, cognate status, frequency, and proficiency). In fact, Pruijn (2015) is trying to 

replicate the results of Christoffels et al. (2006), even using many of the same stimulus, and 

both found a forward translation direction facilitation effect. Visually, this makes the results of 

Multilink appear quite satisfactory; a strong correlation between the empirical and model 

results can currently be expected. 

But visual estimation is only the first step for determining the goodness-of-fit. For a 

more complicated view of the data, other analytical techniques must be used; their results 

are given in the following sections. 

 

 

 

Figure 13. Performance Of Multilink On Cognate Translation. Data from Christoffels et al. (2006), Pruijn (2015), and 
Multilink (current thesis) 
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7.3 Correlations18 

Empirical latency and predicted-latencies were tested for their correlation coefficients 

using the Spearman's Rank Correlation Coefficient test with the other manipulated numeric 

variables: cycle-time, frequency, and LD. The correlations can be computed for overlapping 

subsets of the stimulus. First, they can be computed across the entire 249-item stimulus set 

(global); second, they can be computed for each translation direction, cognate, and 

frequency condition groups separately, ~125 items per group; fourth, they can be computed 

across the 8 test conditions (cognate and non-cognate, High-frequency and Low-frequency, 

in both forward and backward translation directions), ~31 items per condition; and fifth, the 8 

test conditions can be regressed to the mean, and correlations can be computed in this 

fashion. The following stimulus subsets have been correlated: global, forward & backward 

directions, 8 test conditions, and mean-regressed. 

In all these cases, some correlations are more informative than others. In particular, 

we are interested in the correlations between latency, cycle time, and frequency (interactions 

with frequency are important, because this variable has been fundamental to the 

development of all available word recognition models). Based on the results of previous 

studies, some predictions can be made for these correlations: latency by frequency, and 

predicted-latencies by frequency should express significant negative correlations, while 

latency by predicted-latencies should express significant positive — nearly perfect, in fact 

— correlations. Cycle-time by predicted-latencies should be perfectly-correlated. LD by 

frequency should result in zero, or very small, correlations, but LD should result significant 

positive correlations for latency, predicted-latencies, and cycle-time (since cognates, with 

lower LD scores, are generally processed faster than non-cognates). The more specific 

conditions are predicted to show some other noteworthy correlations: for the non-cognates, 

frequency is predicted to show a higher degree of correlation than for the cognates; 

frequency is predicted to show a higher degree of correlation for high frequency groups than 

for low frequency groups. LD is predicted to show higher correlations with the cognate than 

the non-cognate conditions. 

Correlations are presented as corregrams (Figures 14-18, following pages), visual 

matrix-representations of conditionally-related correlation coefficients, which have been 

colour-coded to indicate the strength of the correlation: blue for negative, and red for 

positive, with the colours becoming more saturated as ±1 is approached; colours at or near 0 

are white. Rounded p-values are indicated underneath the test coefficient. Examination of 

the correlation test results, en masse, is found at the end of this section. For a complete 

                                                           
18

 α = 0.05 
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tabled numeric index of the test coefficients and related output, refer to the appendix, section 

11.5. 

 

7.3.1 Global Condition 

 

When stimuli are 

globally correlated, the 

results are all highly 

significant (except LD * 

frequency), per the prior 

predictions. 

 

 

 

 

 

 

 

 

 

 

 

7.3.2 Forward & Backward Conditions 

 

Figure 14. Corregram, global condition. "NS" = non-significant p-value. 

Figure 15. Corregram, forward & backward condition, combined for viewing convenience. "NS" = non-significant p-
value. 
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Again, LD * Frequency is non-significant, but the other correlations meet 

expectations. 

 

7.3.3 Forward Conditions 

 

 

 

 

 

 

 

 

 

Due to the method of computation, cycle-time and the predicted-latencies have a 

perfect correlation, and exhibit the same correlations throughout the matrix. Therefore, they 

are deemed redundant, and removed from further analyses; cycle-time has been kept in 

their stead. The simplified corregrams facilitate the empirical (latency), model (cycle-time), 

and item (Frequency & LD) correlational analysis. 

 As observed in Figure 16 (above), many correlations are either totally non-significant, 

or above the alpha, Latency, and LD in particular. 

 

Figure 16. 
Corregram, 
forward 
conditions, 
combining 
frequency and 
cognate status 
categories. 
"NS" = non-
significant p-
value. 
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  7.3.4 Backward Conditions 

  

 Again, many p-values are observed to be non-significant, with Latency, and LD being 

almost totally above the alpha. 

 

 

 

 

 

 

 

 

 

 

Figure 17. Corregram, backward conditions, combining frequency and cognate status categories. "NS" = non-
significant p-value. 



49 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

  7.3.5 Per-category Mean-regressed Condition 

 Mean-regressed 

correlations appear to suffer 

from the same non-

significance issue. However, 

Latency * Cycle-time and 

Cycle-time * LD are noted to 

be strongly-correlated. 

 

 

 

 

 

 

 

 

 

 

7.3.5 Interpretations 

The correlational analyses exhibit interesting results.  Globally and directionally, the 

correlations align per stated projections: LD shows significant positive correlations with the 

latency-group data, albeit an imbalance is observable between the LD coefficients of latency, 

predicted-latencies, and cycle-time. This imbalance could be considered indicative of the 

approach to candidate rating that Multilink takes, weighting LD to a greater degree than 

latency measurements actually exhibit. This imbalance is greater in the forward condition 

than in the backward condition. Frequency seems to be receiving similar correlative-

coefficient scores for latency, cycle-time, and predicted-latencies. Unsurprisingly, the 

predicted-latencies, Z-scaled latency & L-scaled latency, are stated to be consistently 

perfectly correlated, both with each other, and with cycle-time, and show the same 

correlative-strength for every other tested variable combinations. Correlation testing does not 

demonstrate a performance difference between the two scaling models. 

The test conditions, with smaller sample sizes, show a tendency for weaker 

correlations and non-significant p-values for latency, LD, and frequency. Comparing each set 

of correlations, two patterns become clear: first, frequency correlates with cycle-

time\predicted-latencies to a greater degree in the non-cognate than the cognate conditions; 

second, LD only significantly correlates with the cognate conditions, and to a greater degree 

Figure 18. Corregram, mean-regressed condition. "NS" = non-significant p-
value. 
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with the low-frequency cognates than the high-frequency cognates. P-values above alpha 

make other patterns more difficult to discern. Two results are intriguing: the weak 

significance and generally-low correlations seen with frequency, and the low correlations 

between latency & cycle-time, and, by extension also, latency & predicted-latencies in 

almost all of the experimental conditions. This can be attributed to the small sample sizes. 

When the individual test conditions are mean-regressed, and correlations computed, 

the output results are slightly more positive. Latency by Cycle-time and Cycle-time by LD are 

seen to have a significant strong positive correlation. However, the other output correlations 

remain above alpha. 

In total, most of the correlations were observed to either be weaker-than-expected, or 

non-significant. Conditional interactions are noted: backward translation direction 

correlations are stronger than forward translation direction correlations; latency and cycle-

time are both strongly correlated with frequency for high-frequency conditions, and LD for 

cognate conditions, and the cycle-time particularly seems to correlate high-frequency or 

cognate with frequency or LD, respectively, whereas latency shows greater variability; the 

low-frequency noncognate conditions show that cycle-time correlates strongly with 

frequency, rather than LD, whereas latency shows medium correlations with both; 

conversely, the high-frequency cognate conditions show cycle-time correlates more with LD 

in the forward direction, but the backward condition shows near-equal cycle-time correlations 

for frequency & LD; latency, for the high-frequency cognate conditions, shows only a 

significant correlation with frequency in the backward condition. Theoretically, some 

implications can be drawn from these results: frequency possibly has greater empirical 

variability than previously expected; LD plays a larger role than previously considered, 

especially in the backward condition(s) and low-frequency noncognate conditions; Multilink, 

when cycle-time is mean-correlated, correlates with latency and LD quite well. Ultimately, 

however, it seems that correlational testing is not the best statistical method for discerning 

the relationship of these variables and conditions. Further testing was deemed necessary, 

requiring more advanced methods. 

 

 

7.4 Analysis Of Variance19 

ANOVA testing is employed to resolve a difference in effects. Which variables, when 

added to the statistical model, create a significant difference in the mean? The dependent 

variables being tested are: latency, cycle-time, and predicted-latencies. They are being 

                                                           
19

 α = 0.05 



51 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

tested against the independent variables: translation direction, frequency-category, cognate 

status, and all 2- and 3-way interactions. 

The output F-values are beneficial to constructing a portrait of the comparative 

strength of tested variables, but these alone do not quantify effects in a standardized 

fashion. An effect size metric has been paired with these tests to help resolve the strength of 

each interaction. The Eta-squared (η2) or Partial Eta-squared (η2
p) effect size metric is 

commonly used to measure the strength of ANOVA outputs. The current study uses neither 

of these, selecting instead the bias-corrected partial omega-squared (ω2
p) for effect size 

measurement, based on the conclusions of a recent study of effect size measurements 

(Okada, 2013). 

Section 7.3.1 begins by comparing interactions with latency; section 7.3.2 compares 

interactions with cycle-time; section 7.3.3 compares interactions with L-scaled latency; and 

section 7.3.4 compares interactions with Z-scaled latency; section 7.3.5 discusses the 

results in total. 

 

7.4.1 Latency 

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial 
Omega-
squared 

Direction 1 92094.25 92094.25 11.50 0.00081 0.04045 

Cognate status 1 729728.00 729728.00 91.09 0.00000 0.26568 

Frequency Category 1 668639.04 668639.04 83.46 0.00000 0.24879 

Direction*Cognate status 1 24553.24 24553.24 3.06 0.08127 0.00822 

Direction*Frequency Category 1 8479.03 8479.03 1.06 0.30461 0.00023 
Cognate status*Frequency 
Category 1 24044.33 24044.33 3.00 0.08447 0.00797 
Direction*Cognate 
status*Frequency Category 1 1070.71 1070.71 0.13 0.71499 0.00349 

Residuals 241 1930670.60 8011.08 
   Table 10. ANOVA results for Latency * IV. Interactions above alpha are bolded. 

 

Latency displays significant effects with translation direction (F (1, 241) = 11.50, p = 

0.0008, ω2
p = 0.04), cognate status (F (1, 241) = 91.10,  p = < 0.0001, ω2

p = 0.27), and 

frequency-category (F (1, 241) = 83.50,  p = < 0.0001, ω2
p = 0.25); marginal20 interactional 

effects are observed with translation direction * cognate status (F (1, 241) = 3.11,  p = 

0.08, ω2
p = 0.01), and cognate status * frequency-category (F (1, 241) = 3.00, p = 0.08, 

ω2
p = 0.01). Insignificant effects include: translation direction * frequency-category (F (1, 

241) = 1.06, p = 0.30, ω2
p = 0.0002), and the 3-way interaction of translation direction * 

                                                           
20

 As stated in section 6.3.i, regressing latency measurements to the mean-per-token has reduced statistical 
power; these effects were found to be significant by Pruijn (2015: 23-25) in F1 ANOVA testing: "[. . .] a 
significant interaction between cognate status and translation direction was found (F1(1,36) = 233.46, p = .002, 
η²p = .240; F2(1,245) = 3.37, p = .068, η²p = .014) [. . .] an interaction between cognate status and frequency 
was found (F1(1,36) = 26.58, p = .000, η²p = .43; F2(1,245) = 2.586, p = .109, η²p = .010) [. . .]". 
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cognate status * frequency-category (F (1, 241) = 0.13, p = 0.71, ω2
p = 0.004). Significant 

and marginal effects are graphed on the next page (Figure 19, below). 

 

 

 

7.4.2 Cycle-time 

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial 
Omega-
squared 

Direction 1 0.97 0.97 0.41 0.52432 0.00239 

Cognate status 1 416.51 416.51 174.10 0.00000 0.41009 

Frequency Category 1 31.69 31.69 13.25 0.00033 0.04688 

Direction*Cognate status 1 0.39 0.39 0.16 0.68778 0.00338 

Direction*Frequency Category 1 0.12 0.12 0.05 0.82523 0.00383 
Cognate status*Frequency 
Category 1 3.00 3.00 1.25 0.26387 0.00102 
Direction*Cognate 
status*Frequency Category 1 0.99 0.99 0.41 0.52063 0.00236 

Residuals 241 576.57 2.39 
   Table 11. ANOVA results for Cycle-time * IV. Interactions above alpha are bolded. 

Figure 19. Significant and marginal interactions with latency; x-axis = respective independent variable 
categories, y-axis = mean latency, measured in milliseconds. 
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Cycle-time displays significant effects with cognate status (F (1, 241) = 174.10, p = 

< 0.0001, ω2
p = 0.41), and frequency-category (F (1, 241) = 13.25, p = 0.0003, ω2

p = 0.05). 

Insignificant effects include: translation direction (F (1, 241) = 0.41, p = 0.52, ω2
p = 0.002), 

translation direction * cognate status (F (1, 241) = 0.16, p = 0.69, ω2
p = 0.003), translation 

direction * frequency-category (F (1, 241) = 0.05, p = 0.86, ω2
p = 0.004), cognate status * 

frequency-category (F (1, 241) = 1.25, p = 0.26, ω2
p = 0.001), and the 3-way interaction of 

translation direction * cognate status * frequency-category (F (1, 241) = 0.41, p = 0.52, ω2
p = 

0.002). 

 

7.4.3 L-scaled Latency 

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial 
Omega-
squared 

Direction 1 553.46 553.46 0.41 0.52432 0.00239 

Cognate status 1 236992.50 236992.50 174.10 0.00000 0.41009 

Frequency Category 1 18033.37 18033.37 13.25 0.00033 0.04688 

Direction*Cognate status 1 220.37 220.37 0.16 0.68778 0.00338 

Direction*Frequency Category 1 66.53 66.53 0.05 0.82523 0.00383 

Cognate status*Frequency 
Category 1 1707.31 1707.31 1.25 0.26387 0.00102 

Direction*Cognate 
status*Frequency Category 1 563.37 563.37 0.41 0.52063 0.00236 

Residuals 241 328067.41 1361.28 
   Table 12. ANOVA results for L-scaled latency * IV. Interactions above alpha are bolded. 

 

L-scaled latency, like cycle-time, displays significant effects for: cognate status (F 

(1, 241) = 174.10, p = < 0.0001, ω2
p = 0.41), and frequency-category (F (1, 241) = 13.25, p 

= 0.0003, ω2
p = 0.047). Insignificant effects include: translation direction (F (1, 241) = 0.41, p 

= 0.52, ω2
p = 0.002), translation direction * cognate status (F (1, 241) = 0.16, p = 0.69, ω2

p = 

0.003), translation direction * frequency-category (F (1, 241) = 00.05, p = 0.83, ω2
p = 0.003), 

cognate status * frequency-category (F (1, 241) = 1.25, p = 0.26, ω2
p = 0.001), and the 3-

way interaction of translation direction * cognate status * frequency-category (F (1, 241) = 

0.41, p = 0.52, ω2
p = 0.002). 
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7.4.4 Z-scaled Latency 

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial 
Omega-
squared 

Direction 1 2655.96 2655.96 0.37 0.54473 0.00255 

Cognate status 1 1231477.09 1231477.09 170.58 0.00000 0.40513 

Frequency Category 1 103091.19 103091.19 14.28 0.00020 0.05063 

Direction*Cognate status 1 1046.64 1046.64 0.14 0.70372 0.00345 

Direction*Frequency Category 1 108.25 108.25 0.01 0.90264 0.00397 

Cognate status*Frequency 
Category 1 16197.92 16197.92 2.24 0.13547 0.00497 

Direction*Cognate 
status*Frequency Category 1 3783.46 3783.46 0.52 0.46981 0.00192 

Residuals 241 1739870.90 7219.38 
   Table 13. ANOVA results for Z-scaled latency * IV. Interactions above alpha are bolded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z-scaled latency displays significant effects for: cognate status (F (1, 241) = 

170.58, p = < 0.0001, ω2
p = 0.41), and frequency-category (F (1, 241) = 14.28, p = 0.0002, 

Figure 20. Significant interactions with Z-scaled latency; x-axis = respective independent variable categories, 
y-axis = mean Z-scaled latency. 
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ω2
p = 0.05). Insignificant effects include: translation direction (F (1, 241) = 0.37, p = 0.54, ω2

p 

= 0.003), translation direction * cognate status (F (1, 241) = 0.14, p = 0.70, ω2
p = 0.003), 

translation direction * frequency-category (F (1, 241) = 00.01, p = 0.90, ω2
p = 0.004), 

cognate status * frequency-category (F (1, 241) = 2.24, p = 0.14, ω2
p = 0.005), and the 3-

way interaction of translation direction * cognate status * frequency-category (F (1, 241) = 

0.52, p = 0.47, ω2
p = 0.002). Significant interactions are graphed in Figure 20 (previous 

page) 

 

 

  7.4.5 Interpretations 

By examining the partial omega-squared effect sizes (including those without 

statistical significance, just for a full portrait), a depiction of the model's comparative 

performance can be established. Under this method of assessment, Multilink is found to be 

somewhat deficient in its replication of lexical effects.  

Empirically, direction is rated as being a small, but determinable effect, but 

predicted-latencies underperform with respect to this variable by a factor of ~16x. Predicted-

latencies overrate cognate status, on the other hand, by a factor 1.5x, although this variable 

does represent a very strong effect. Frequency-category is also empirically rated as a 

strong effect, but the model underestimates this by a factor of 5x. Direction by cognate 

status, and cognate status by frequency-category, while marginal under the current 

analysis, are known to be stronger when non-regressed (see footnote 14, page 60); still, 

neither are being well-replicated, and are currently underestimated by the predicted-

latencies by a factor of 2.3x, and 1.6x, respectively. Direction by frequency-category is 

being overrated by the model by a factor of 17x. Finally, direction by cognate status by 

frequency category is underrated by the model by a factor of 1.7x. Generally, the Z-scaled 

latency has an effect size that is closer to the empirical effect size, except for the interactions 

of direction * frequency-category, and direction * cognate status * frequency-category, where 

L-scaled latency shows a closer-to-empirical effect size. 

It is clear that the empirical data has a significant difference-of-means for 5 of the 

interactions (direction, cognate status, frequency category, direction * cognate status, and 

cognate status * frequency-category), and Multilink is not properly modelling these effects. 

Adjustments to the output mechanisms would seem to be necessary. But, significant noise 

factors could still be hidden within the data, affecting the test results. Predominantly, these 

could be bound in the controlled variables: phonetic onset, stimulus length, concreteness. 

 

 



56 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

7.5 Generalized Regression21 

Following from the ANOVA main effect tests, a regression model was constructed to 

check for interactions between main variables, plus their two-way interactions, and the 

controlled variables and their two-way interactions. Regression modelling is a method for 

estimating the relationships between a single dependent variable, and one or more 

independent variables, and their possible interactions. Latency and predicted-latencies were 

entered as the response variables, with direction, cognate status, frequency-category, 

phonetic onset, concreteness, and stimulus length functioning as the predictor variables. For 

the current data, the regression model will predict how latency or cycle-time is affected by 

the presence of independent and controlled variables, and their interactions. This will output 

a readily-interpretable estimation of the increase or decrease in milliseconds from the "grand 

mean", determine the amount of variance that is accounted for by the data collected, 

highlight latent effects stemming from controlled variables, and model non-parametric 

functions for the predictor variables. Each predictor variable plus its interactions is entered 

as a parameter into the regression model. Two-way interactions in particular were singled 

out in order to raise the true positive detection rate. Testing too many interactions would both 

reduce the true positive and increase the false negative detection rates by overfitting the 

model with more parameters than are actually necessary to fit the data. The output 

estimations for the empirical and model data should be comparable, and significant hidden 

empirical parameters — potentially not yet part of the model — should be observable.  

A simple generalized additive model (GAM) was chosen over a linear model, linear 

mixed effects model, and a generalized additive mixed effects model, by selecting the model 

with the lowest amount of information gain\loss, measured by the Aikake Information Criteria 

(AIC). Regression-output and χ2 Analysis Of Deviance tables are included with the results, 

however, due to the atypical number of tested interactions (62 = 36 possible model 

parameters), only statistically significant — including marginally-significant — results will be 

shown. Further tables are included in the appendix, section 11.XX. The intercept\regressed-

mean for the model is defined as: backward, high-frequency, cognate, voiced consonant, 

non-concrete, short length. Significant and unexpected results will be visualized in 

accompanying graphs. 

Section 7.4.1 details the latency results, section 7.4.2 discusses the L-scaled latency 

results, section 7.4.3 discusses the Z-scaled latency results, and section 7.4.4 combines and 

resolves these results into a full portrait of interaction. 

 

 

                                                           
21

 α = 0.05 
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7.5.1 Latency 

 Estimate SE Z Value Pr(>|z|) 

(Intercept) 700.7251 170.2812 4.115105 3.87E-05 

Frequency-category: Low-frequency 176.3932 102.7258 1.717126 0.085956 

Phonetic Onset: voiceless 244.4195 104.1739 2.346263 0.018963 

Direction: Forward * Cognate status: 

Noncognate 

-52.8048 24.79956 -2.12926 0.033232 

Phonetic Onset: voiceless * 

Concreteness 

-30.0559 16.2034 -1.85491 0.063608 

N = 249 Model parameters = 
28 

Deviance explained = 
0.521 

R2-adj = 0.46 UBRE\AIC = 
111.36 

Table 14. GAM significant and marginal interactions of Latency, and model information 

 

Latency is predicted to have two statistically-significant group interactions outside of 

the regressed-mean: forward noncognates are estimated to be -53 ms below the 

regressed-mean (SE = 24.80, p = 0.03); and voiceless consonantal onsets are estimated 

to be 244 ms above the regressed-mean (SE =104.17, p = 0.02). 

Marginally significant predicted effects: low-frequency, estimated to be 176 ms 

above the regressed-mean (SE = 102.73, p = 0.09); and voiceless consonant onsets and 

high concreteness scores are estimated to change mean latency by -30 ms (SE = 16.20, p 

= 0.06). 

28 parameters have been selected to generate this model, accounting for 52.1% of 

the deviance in the dataset (R2 = 0.46). Furthermore, according to the χ2 test (table 22, 

below), deviance is significantly reduced by including phonetic onset (χ2 (2) = 6.38, p = 

0.04), and direction * cognate status (χ2 (1) = 4.53, p = 0.03). Deviance is marginally 

reduced by including frequency-category (χ2 (1) = 2.95, p = 0.09),  and phonetic onset * 

stimulus length (χ2 (2) = 4.86, p = 0.09). In particular, phonetic onset has the highest χ2 

score. 

 

 DF χ2 score p-value 

Frequency-category 1 2.948521 0.085956 

Phonetic Onset 2 6.37513 0.041272 

Direction*Cognate status 1 4.533768 0.033232 

Phonetic Onset*Stimulus Length 2 4.863675 0.087875 

Table 15. Analysis of Deviance latency test results. Larger coefficients attribute greater amounts 
of deviance to the respective predictor. 
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7.5.2 L-scaled Latency 

 Estimate SE Z Value Pr(>|z|) 

(Intercept) 859.9264 69.10688 12.44343 1.52E-35 

Cognate status: 

Noncognate*Stimulus Length 

15.04643 4.763543 3.158664 0.00158494 

N = 249 Model 

parameters = 28 

Deviance explained = 

0.536 

R2-adj = 

0.48 

UBRE\AIC = 

6.7668 

Table 16. GAM significant and marginal interactions of L-scaled latency, and model information. 

 

L-scaled latency is predicted to have only a single significant interaction above the 

regressed mean: non-cognate, when factored for length, is estimated to be 15 ms (SE= 

4.76, p = 002) above the regressed-mean. There are no marginally-significant interactions 

between L-scaled and the stated predictor variables. 

 In addition, cognate status * stimulus length was found as the only significant 

predictor of deviance in Multilink's output (χ2 (1) = 9.98, p = 0.002) (table 24, below). 

 28 parameters have been selected to generate this model, accounting for 53.6% of 

the deviance within the data set (R2 = 0.48), when using L-scaled latency as the predictor 

variable. 

 

 DF χ2 p-value 

Cognate status*Stimulus Length 1 9.977159 0.001585 

Table 17. Analysis of Deviance L-scaled test results. Larger coefficients attribute greater amounts 
of deviance to the respective predictor. 

 

7.5.3 Z-scaled Latency 

 Estimate SE Z Value Pr(>|z|) 

(Intercept) 891.7014 159.9514 5.574829 2.48E-08 

Cognate status: 

Noncognate*Stimulus Length 

33.44751 11.02546 3.033661 0.002416058 

N = 249 Model 

parameters 

= 28 

Deviance 

explained = 

0.531 

R2-adj = 

0.47 

UBRE\AIC = 

23.92 

Table 18. GAM significant and marginal interactions of Z-scaled latency, and model information. 
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Z-scaled latency predicts the same interaction as L-scaled latency: noncognate, 

when stimulus length is factored, is estimated to lie 33 ms above the regressed-mean 

(SE=11.03, p = 0.002). There are no marginally significant interactions. 

The χ2 test (table 26, below) shows only one significant predictor of deviance: 

cognate status * stimulus length (χ2 (1) = 9.20, p = 0.002) 

28 parameters have been used to generate this model, which explains 53.1% of the 

total deviance in the data set (R2 = 0.47). 

 

 DF χ2 p-value 

Cognate status*Stimulus Length 1 9.203099 0.002416 

Table 19. Analysis of Deviance Z-scaled latency test results. Larger coefficients attribute greater 
amounts of deviance to the respective predictor. 

 

 

7.5.4 Interpretations 

 The results of the model-to-data comparison so far can be summarized as follows: 

latency has 4 significant and marginal predictors deviating from the regressed grand-mean: 

low-frequency, voiceless consonant onset, forward direction noncognate, and voiceless 

consonant onsets and concreteness. Conversely, the predicted-latencies only predict a 

single significant interaction, between cognate status and stimulus length. For both the 

empirical and model data, a 28 parameter model, consisting of the 1-way and 2-way 

interactions for the independent and controlled variables, is adequate to explain 51-53% of 

the deviance within the data (R2 = 0.46 - 0.48). And whereas empirical data divides the 

explainable deviance between frequency-category, phonetic onset, direction * cognate 

status, and phonetic onset * stimulus length (with phonetic onset being the strongest 

predictor), the predicted-latencies assign similar amounts of explainable deviance to cognate 

status * stimulus length alone. Also note the rise in the intercept estimate: latency predicts 

approximately 700 ms, rising to 859 ms L-scaled, and 891 ms Z-scaled. 

 Focusing on latency, three results can be immediately eschewed: it is known that 

low-frequency words have higher latencies (see section 5.2.1.1, page 17), and the 

relationship between the forward direction and noncognate has already been established 

(see section 5.4.4, page 28); the significance of concreteness * voiceless consonant onset 

would seem to be a statistical confound, as there is no (current) proposition that correlates 

first-syllable onset phonemes with concreteness scores. The last interaction, between 

latency and voiceless onset (figure 21, next page) is, however, noteworthy. 
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Figure 21. 
Interaction of 
phonetic onset 
with latency, x-axis 
= onset (voiced 
consonantal onsets 
in orange, 
voiceless 
consonantal 
oncsets in green, 
and vocalic onsets 
in blue), y-axis = 
mean latency, 
measured in 
milliseconds. Error 
bars represent 
standard error 
from the mean. 

 

 

 

 

 

 

 

One likely explanation: the onset timing differences arise partly from differences in 

human articulation and phonation mechanisms, and also partly from the voice-key detection. 

This method of measuring participant production latency is not perfect, and, as noted in 

section 5.2.2.4 (pages 17-18), suffers from delays in recording sibilant, voiceless, and 

fricative consonants22. Nevertheless, if the voiceless onsets are discounted due to known 

articulation and phonetic factors, then the vocalic onsets are still unaccounted for; their 

standard error does not intersect at all with that of the voiced consonant onsets. Because the 

population of vocalic onsets in the stimulus is comparatively small, it is difficult to state 

definitively if there is a genuine effect present, and where it originates. This effect could vary 

systematically depending on the place and manner of articulation. Could direction be 

component to this, or perhaps cognate status and frequency (Figure 22, next page)? 

                                                           
22

 Theoretically, regression model output — like that found in this section — could be used to bias-correct 
stimuli with the particular onset properties. This method has advantages and disadvantages that will not be 
explored within this paper. 
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Estimating visually, cognate status and frequency-category do not appear to interact 

with the phonetic onset. Direction, however, interacts in a peculiar fashion: in the forward 

direction, a linear rise is seen from the voiced onsets to the vocalic onsets; the backward 

direction has the opposite trend, showing vowels to have a lower latency than voiceless 

consonants (however, the standard errors here overlap significantly). Possible causes of this 

interaction will be explored in section 8.3. Multilink does not account for onsets, thus this 

data peculiarity is not seen in the model data. 

One observation can be clearly stated: phonetic onset is a significant predictor of 

deviance, and combined articulatory and phonetic/phonological factors such as sibilance 

represent a very strong effect (stronger even than the cognate effect). But, it is not so strong 

that it obscures the main independent variable effects when balanced stimuli are utilized, 

and when onset type is not included in a statistical model. 

 

Figure 22. Potential interactions with phonetic onset, and the independent variables: direction, cognate status, 
and frequency-category. X-axis = voiced consonant, voiceless consonant, or vocalic onsets; y-axis = mean latency, 
measured in milliseconds. 
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The predicted-latencies show only one significant interaction: noncognates have significantly 

higher latencies when stimulus length is factored. This relationship is graphed below (Figure 

23). 

 

 

 

 

 

 

 

 

 

This interaction would appear to be partly misleading: it is no surprise that both the 

empirical and model data show a difference for cognates and non-cognates, both short and 

long. However, it is singularly conspicuous that the model and empirical graphs do not show 

any correspondence (if they did, then latency would also show that stimulus length * cognate 

status is a significant predictor of deviance in the χ2 test). Empirically, 3-letter cognates and 

non-cognates have ~40 ms difference in means (with significant SE overlap) in the 800-850 

ms range; as cognates become longer, latency measurements vacillate between 750-800 

ms. As noncognates become longer, latency rises, peaking at ~900 ms for 6-letter tokens, 

and then begins to descend. Multilink, Z-scaled, handles stimulus length somewhat 

differently: cognates have an approximately linear descent from ~830 ms (3-letter tokens) to 

~720 ms (6-letter tokens), after which the measurements flatten. Noncognates 3-7 letters in 

length hover in the 880-920 ms range, before sharply descending at 8 letters to ~840 ms. 

There is no indication why the model differs in the treatment of cognate-groups, but it is 

Figure 23. 
Latency & Z-
scaled latency. 
X-axis = 
stimulus 
length, y-axis = 
mean latency, 
measured in 
milliseconds. 
Lines show the 
cognate 
groups. Bars 
represent 
standard error 
from the 
mean. 
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clearly not a proper replication of empirical data. However, no tokens within the stimuli are 

above 8-9 letters in length. A second experiment using tokens 3-16 (or more) letters in 

length, compared to empirical measurements of the same tokens could be necessary to 

determine the adequacy of Multilink's cognate status * length output23. However, Multilink is 

currently also limited to an input maximum of 8-letters. This restriction would first need to be 

lifted. 

Altogether, the regression model, combining the independent and controlled 

variables, revealed two important facets of the data that were previously hidden: phonetic 

onset is an important dimension that must be balanced due to phonetic and phonological 

elements that change the measured timing, but it has a potential interaction with translation 

direction (but likely not with frequency or cognate status); and Multilink processes cognates 

and non-cognates of increasing letter-length in a fashion that is not in accordance with 

current empirical measurements. In the empirical data, phonetic onset alone accounts for a 

large amount of deviance. Future modelling attempts will need to describe data for onset, 

and other potential phonetic factors. In order to rectify the current understanding, at least 2 

new experiments to answer these questions might be necessary. The present data is not 

suited to generating a resolution, because the existing data is insufficiently described for 

phonetic and phonological components, which are already present and creating an onset 

measurement delay; and the input stimuli are length-restricted to 8 letters maximum.  

 

 

 7.6 Divergence Testing24 

In order to make a final assessment concerning the "goodness-of-fit" that Multilink 

provides for the empirical data, a quantified comparison between the empirical and the 

model result distributions is necessary. This is accomplished via divergence (sometimes 

known as "statistical distance") tests, which measure the difference between two data 

groups. Different tests utilize varied base-measurements and manipulations, and many are 

based on theorems or proofs stemming from the field of information theory. "Total Variation 

Distance" and "Jensen-Shannon divergence" are two examples that are related to the 

"Kullback-Leibler divergence". Both scaling methods will be tested against the empirical 

data. 

This section is divided into 3 subsections: 7.4.1 explains the use of the divergence 

tests, and particular idiosyncracies for the tests employed; section 7.4.2 shows the output for 

                                                           
23

 This could perhaps be accomplished using data from New et al. (2006), and tokens from the British Lexicon 
Project. 
24

 α = 0.05 
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each in a table, and 7.4.3 interprets these outputs in the global context of the data, and in 

the context of the other 2 tests.  

 

 7.6.1 Test Details 

Dijkstra (1990: 163-165) provides specifications for a model-approximate χ2 test 

(listed in the appendix, see section 11.2) that measures the distance of two data sets 

according to a χ2 distribution, only requiring that the model data be transformed into 

analogous empirical data, already accomplished by the scaling methods described in section 

7.1. 

As part of a more general class of χ2 tests, it is unbounded, built upon sample 

variance testing, and requires independent, Gaussian-distributed observations that can be 

linked to a χ2 distribution function. The null hypothesis assumes that the model distribution 

can approximate the empirical distribution; however, this type of test requires large sample 

sizes, and does not work well with small samples (sample size must at least satisfy the 

central limit theorem). Essentially, as with a Pearson χ2 test, it determines whether there is a 

significant difference between the sample variance of observations in the empirical 

distribution, and the model distribution. Given this knowledge, a high p-value is expected, 

showing that the null hypothesis — that the two distributions match to a significant degree — 

is true. The degrees of freedom, which determines statistical significance, is generated by 

subtracting the number of model parameters (the number of dimensions that fit the data) 

from the number of observations (ie sample size). P-values have been estimated using a 

critical value distribution table. 

Because the model-approximate test is relatively unknown and seems infrequently-

applied, the results will be supported and compared to 2 commonly-accepted and 

established divergence tests: the Kolmogorov-Smirnov statistic, and the Kullback-Leibler 

Divergence test, both of which can assess the model-fit to the empirical data by "matching" 

the distributions formed by both samples. Furthermore, these additional tests were chosen 

due to issues with data-pooling in the model-approximate test, which reduce the statistical 

power and can potentially lead to excess rejections. 

The Kullback-Leibler Divergence (DKL) (Kullback & Leibler, 1951) test is not a true 

metric, but rather a "premetric" based on the space of probability distribution functions for the 

input data. It is asymmetric [𝐷𝐾𝐿(𝑃||𝑄) ≠  𝐷𝐾𝐿(𝑄||𝑃)]25, therefore the test must be run twice, 

and input data must be averaged from both sides (P||Q and Q||P give different results) in 

order to obtain the "symmetric" result. The output statistic is unbounded, having a theoretical 

                                                           
25

 For the non-mathematically-inclined, this is read as: "The KL-divergence of P on the condition of Q does not 
equal the KL-divergence of Q on the condition of P." 
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limit of ∞, always non-negative, and represents a measurement of the information gain when 

making the first input distribution function approximate the second. Numbers closer to 0 

show less gain between distributions. This output is typically in Shannons/bits, but can be 

output as "nats" (natural-log base), or "hartleys" (decimal base). It is also known as "relative 

entropy", being related to other information measurements such as self-information and 

Shannon entropy. The null hypothesis assumes that both distributions share approximately 

the same probability distribution space. Outputs above alpha show that the distributions are 

significantly different from each other. It is often used in the field of machine learning and 

artificial intelligence as a criterion for feature extraction and model selection. 

The Kolmogorov-Smirnov test26 (KS) (Kolmogorov, 1933; Smirnov, 1948) is a 

nonparametric test that quantifies a sampled distance between two cumulative distribution 

functions (as seen in figures 10 & 12). Originally designed for comparison with reference 

distributions (gaussian, gamma, or poisson distributions, for example), a one-sample KS-

test, a two-sample variant for goodness-of-fit testing has been in use for quite some time, 

finding a place in the analytic techniques of astronomy (Peacock, 1983), and physics (Lopes, 

Reid, & Hobson, 2007). The null hypothesis for the two-sample KS-test assumes that both 

samples have equal cumulative distributions, and therefore are derived from the same 

population or distribution. It is sensitive to divergences of both location and shape, thanks to 

an inherently high sample-rate. This high sample-rate is also its weakness, as it works best 

with large datasets, otherwise generating possible false positives. The null hypothesis is 

rejected if the output statistic — a measure of the absolute maximum distance between the 

two samples — is larger than the chosen α; the closer the statistic is to 0, the more probable 

that both inputs have the same distribution. The output is bounded, KS ≤ 1, and symmetric. 

Both supporting tests are accepted as suitable statistics for determining "reality vs 

model". Accordingly, true experimental measurements within the input are a theoretical 

requirement of both tests. Opposite this, the requirement for experimental data is directly 

built-into the model-approximate χ2 test. 

 

 

 

 

 

 

 

                                                           
26

 Some potential issues with the KS test are outlined here: https://asaip.psu.edu/Articles/beware-the-
kolmogorov-smirnov-test  

https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test
https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test
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7.6.2 Output Statistics 

          

            Test 

 

Model 

Model-

approximate 

χ2 Test 

Kullback-

Leibler 

Divergence 

(symmetric) 

Kolmogorov-

Smirnov 

Statistic 

Linear Model 3.56 (0.99) 0.012 0.28 

(< 0.0001) 

Z-score 

Model 

2.73 (0.99) 0.016 0.18 

(0.0008) 

 DF = 247 Parameters 

= 2 

N = 249 

Table 20. Divergence test values. p-values in parentheses. KL-divergence does not 
output a p-value. 

 

For the linear model, χ2-approximate (247) = 3.56 (p = 0.99), requiring us to accept 

the linear model as being adequately-fitted towards the empirical data. KS = 0.28 (p = < 

0.0001) bits, rejecting the null hypothesis that both distributions come from the same 

population; the observed information gain is very small, however, showing that although 

these distributions are not derived from the same population, they are close approximations. 

DKL = 0.012 bits, showing a small amount of information gain. 

The Z-score model shows slightly better results: χ2-approximate (247) = 2.73 (p = 

0.99), requiring us to accept the Z-score model as being adequately-fitted towards the 

empirical data. KS = 0.18 (p = 0.0008) bits, rejecting the null hypothesis that both 

distributions come from the same population; but this is a very small amount of information 

gain, showing that the two distributions are nearly approximate. DKL = 0.016 bits, a slight 

gain in information. 

For reference, the divergence of cycle-time & L-scaled latency is DKL = 0.0003 bits. 

Similarly, the divergence of cycle-time & Z-scaled latency is DKL = 0.002 bits 

 

7.6.3 Interpretations 

The previous tests have measured the empirical-to-model statistical divergence, 

based on information-theoretic probabilities, approximating CDFs, or sample and model 

variance. Results are positive, showing a low degree of empirical\model divergence, 

indicative of why Multilink performs so well: though its replication is not perfect, it does 

manage to fit the empirical curve in an apparently satisfactory way. There is little information 

gain between the empirical CDF, and the model CDF. By converting the χ2-approximate 
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scores into Shannons\bits, like the others, the 3 values can be directly compared: L-scaled 

diverges by 0.024 bits from the empirical data, and Z-scaled diverges by 0.032 bits from the 

empirical data. As a result, the model has a final divergence rate of maximum 0.032 bits, and 

minimum 0.012 (range: 0.020), less than a single bit, even at the worst. Curiously, the linear 

model is predicted as having fewer gained bits than the Z-score model by the KL-divergence 

test and the χ2-Shannon score (although the critical-value is rated lower for the Z-scaled 

latency). The reason for this might be due to the fact that the linear model is constructed 

around the central tendency of latency and cycle-time, and predicting the L-scaled latency 

data based on the distance from this central tendency. The Z-score model, conversely, is 

constructed upon a Z-value and logarithmic transformation of individual data-points, which 

are then used to predict the Z-scaled latency. If this is the case, then it would appear that the 

KL-divergence test and χ2-Shannon are picking up on this difference. 

It is worth noting that this model has been applied to Dutch and English words, two 

very similar West-Germanic languages within the Indo-European family. Multilink has been 

indirectly optimized for use with these two languages, the language family, and also with the 

latin script, in the same way that other signal transmission and processing systems can be 

optimized for use with a specific alphabet27. It is an inherent, if unconscious, part of the 

design. Inevitably, it will need to have a language of distant typological classification (which 

should show a higher cycle-time for the translation production task, because increasingly 

distant languages become harder to adapt into the mental lexicon (Schepens, 2015)) added 

into the lexicon to test this assumption. Nonetheless, Multilink has an accuracy rate of just 

over 98% despite any current shortcomings. The present architecture allows it to sufficiently 

replicate the word-translation process.  

 

 

7.7 Test Outcomes 

At last, the results of this study are generally positive. The scaling methods (section 

7.1) used — linear model scaling, and Z-score model scaling — were employed to transform 

cycle-time data into approximate-millisecond measurements, and then later tested against 

each other in subsequent sections to find which fits the empirical data better. Z-score model 

scaling was typically found to be superior throughout testing, as the linear model suffers from 

a greatly reduced approximate-millisecond range, although the performance differences did 

not show a major preference for one over the other. 

A visual comparison of the model and empirical results (section 7.2) using 

histograms shows a forward translation direction effect (forward translation is ~40 ms faster 

                                                           
27

 Morse code is one example of this (Çiçek & Yilmaz, 2013) 
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than backward translation, the opposite prediction of the RHM) in the latency data that is not 

replicated by the model (Figure 13). Per-category, combining the binary independent 

variable groups of cognate status, frequency-category, and direction, (Figure 14) shows that 

Multilink fares better in some categories than others; in particular, it produces a gap between 

the low-frequency cognates and the high-frequency non-cognates that is not seen in the 

empirical data. This was seen as a first indication that Multilink is not properly simulating, 

possibly overrating, cognate status & frequency in the output. 

Correlational analysis (section 7.3) using Spearman's Rank Correlation was rather 

unsuccessful at divulging particularly noteworthy information. 12 conditions were tested, 

starting from N = 249 (all stimuli), to N = 128 (direction categories), to N = 32 (the 

independent variable categories), and N = 8 (mean-regressed), with latency, cycle-time, 

frequency, L-scaled, Z-scaled, and LD being tested for correlations (L-scaled & Z-scaled, the 

predicted-latencies, were removed for the category correlations because they displayed the 

exact same correlation coefficients as cycle-time, making them redundant). While predictions 

were successful for the conditions with larger sample sizes (the global, forward, and 

backward conditions), the specific categories suffered from problems of statistical 

significance. Surprisingly, many correlations, even those with statistical significance, were 

found to result in weak coefficients, and little interpretable information was uncovered. The 

mean-regressed correlations did at least demonstrate that, when averaged, Multilink 

maintains a strong positive correlation with latency, and LD. 

Where correlational analysis failed to reveal much, ANOVA testing (section 7.4) was 

conducted to determine statistically significant interactions between the input response 

variables (latency, cycle-time, and the predicted-latencies), and the predictor variables 

(translation-direction, cognate status, and frequency-category), and all 2-way and 3-way 

interactions. Latency was found to have 3 significant predictors and 2 marginally-significant 

predictors ("marginal" at α = 0.1 rather than the afore set α = 0.05, the general significance 

threshold). Predicted-latencies were found to have only 2 significant predictors. Effect size 

metrics were then used to determine that Multilink is overrating the strength of the cognate 

effect compared to empirical data, and is underrating the effects of direction and frequency. 

The need for parameter-refinement was established based on this test. 

In order to tease out any hidden effects deriving from the controlled variables 

(phonetic onset, concreteness, and stimulus length), and determine the total amount of 

explainable deviance within the collected data, a generalized additive regression model 

(GAM) (section 7.5) was selected from other comparable models, including a generalized 

linear model, decided based on a lower Aikake Information Criterion score. The 

aforementioned controlled variables were tested, along with the main independent variables, 
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plus all 2-way interactions (but not 3-way interactions) were tested as the predictor variables. 

Latency, cycle-time, and predicted-latencies were used as the response variables. Collected 

data accounts for approximately 52% of explainable deviance. Empirically, latency assigns 

the largest amount of deviance to phonetic onset, an issue arising from unaccounted 

phonetic and phonological factors that affects the word-naming measurements. It is not so 

strong that it obscures other effects, but future studies will need to consider these additional 

factors. A curiosity was noted for direction * phonetic onset interaction, currently unresolved. 

Multilink's only significant predictor of deviance was an interaction of cognate status * 

stimulus length, possibly arising from the output ranking scheme, which length-normalizes 

LD. 

 Lastly, divergence testing (section 7.6) was done, using 3 different divergence 

statistics: a model-approximate χ2 test, the (symmetrized) Kullback-Leibler Divergence test, 

and the Kolmogorov-Smirnov statistic. These tests showed somewhat mixed results 

between the two scaling models, but did indicate that the model performs overall very well 

with respect to the empirical data. 

This indicates why Multilink is able to have such a high accuracy, despite any 

deficiencies: it replicates the empirical data curve to a satisfactory degree. Highly-salient 

lexical dimensions and their facilitatory or inhibitory effects — which subsequently precipitate 

greater alternations in the results distribution — are represented by the model. So, it can be 

stated that, although Multilink is not a perfect simulator of the human cognitive process of 

lexical access, for a first-generation computational model of bilingual recognition & 

production, it has stellar performance. It is in need of some minor corrections, particularly in 

light of the findings of Pruijn (2015), but despite this, it sets a high bar for competing bilingual 

models in the future. 
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8 Discussion 

The following sections discuss the results of this thesis in light of the literature 

already reviewed, integrating them into our current understanding of bilingual lexical access 

and processing, and advancing possible loci for future research. Section 8.1 discusses the 

overall performance of Multilink in its current state, compared to the expectations of the RHM 

and the BIA+; section 8.2 reexamines the facilitation effects, and how the most important 

dimensions can be adjusted within the model; section 8.3 discusses the latent interactions. 

 

8.1. Performance Of Multilink 

As found throughout the results section (section 7) and the previous studies (Dijkstra 

& Rekké 2010; Dijkstra et al., in prep.), Multilink version 1.02 is thus-far an imperfect, but 

promising, psychometric task simulator. 

With respect to the simulated experimental data, word-naming latency has 6 

detectable effects of varying strengths, listed in order of descending strength: phonetic onset 

effect, cognate facilitation effect, frequency facilitation effect, forward translation-direction 

facilitation effect, forward translation-direction facilitation effect & cognate facilitation effect 

interaction, and the cognate facilitation effect & frequency facilitation effect interaction. 

Multilink replicates only two of these adequately, and an additional interaction: the cognate 

facilitation effect, the frequency facilitation effect, and a cognate & word-length effect 

interaction. Building upon previous models, particularly the RHM and BIA+, Multilink has 

inherited their strengths and weaknesses. The nested BIA+ architecture focused on cognate 

& noncognate detection, forming the core of the model. This design makes for fast and 

sufficient detection of bilingual words, an empirical reflection of cognate effect activity, but 

leaves the model prone to errors when tokens lack semantic representation, which seems to 

be used as a final "pinpoint" measure for selecting the translation equivalent when 

candidates are being ranked equally by their LD. As stated in section 7.4.5, following 

ANOVA testing, Multilink overrates the power of the cognate effect compared to empirical 

data. The frequency effect is not adequately replicated either, being underrated as an effect 

by the model. Empirically, the frequency effect is almost as influential as the cognate effect 

in altering production latency; highly-frequent noncognate tokens have nearly the same 

latency as low-frequency cognate tokens. The lack of a translation direction effect can be 

pardoned: empirical evidence has been disputative and inconclusive until the results of 

Pruijn (2015). If anything, a potential backward translation direction effect is observed28, but 

the effect is not statistically significant in the current simulations. This would be in line with 

                                                           
28

 Noted in Dijkstra, et al. (forthcoming: 45) for "low-proficiency" modulations (ie, word form frequency OPM 
divided by 4 to reflect lower subjective frequency) within Multilink. 
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the estimates of RHM, which has hypothesized backward translation direction facilitation due 

to reliance on L1-associative links from the L2, rather than direct linking to the 

concept/semantic representation both connections interdependent upon L2 proficiency. 

While the RHM has remained the dominant model in bilingual lexical access (section 5), 

recent empirical studies (Kroll et al., 2002; Christoffels et al., 2006; Pruijn, 2015) have shown 

differing outcomes, so it is no surprise that Multilink precludes this effect without first altering 

the input frequency. The remaining interactional effect, cognate status & frequency 

(translation-direction by frequency can be discounted due to the lack of directional 

facilitation), should be significant in the output of the model, but is not rated as being 

particularly active. The lack of interaction between the cognate effect and frequency effect, 

both present and statistically-significant, is likely because these effects are determined at 

different stages of the model and their connections are not set to have a large amount of 

interaction. Empirically, this interaction is approximately 1,000x less powerful than either 

effect alone, yet still determinable. When all variables are included into a statistical model, 

approximately 46% of the effects (adjusted-R2 = 0.46, see section 7.5) are accounted for by 

the current data. 

Jacobs and Grainger (1994) sets forth a guide for model evaluation, and applies 

these to 15 early (pre-) computational (or "algorithmic") models of visual word recognition. 

Models are classified according to sets of properties, separated by: fundamental recognition 

process (family); design expliciteness (format); featured test paradigms (task); output 

dependent variable; "simplicity", comprising 8 binary absent or present subfeatures, 

deterministic\probabilistic output, localist\distributed representation, 

macroscopic\microscopic performance prediction; modular\interactive feedback for 

representation-levels, ordinal\interval scale predictions, performance\learning algorithm, 

serial\parallel search & verification mechanism, static\dynamic accumulative processing 

functions; and testable effects. Following this, a proposal for "standards of model 

evaluation": descriptive adequacy, corresponding to format, dependent variable, 

static\dynamic, and ordinal\interval features; generality, corresponding to the features of 

task, dependent variable, and effects; simplicity\falsifiability, which approximately 

corresponds to the number of hypotheses, representation levels, or diagrammatic 

interconnections employed by the model, weighted by the amount of explainable 

phenomenon that each additional parameter accounts for; explanatory adequacy, referring 

to the "assumptions" built into the model, ad-hoc29 or empirical; and lastly, modifiability, 

research generativity, equivalence class, model-completeness, and (neurobiological) 

                                                           
29

 "[. . .] ad hoc assumption are used here as synonyms for a hypothesis or algorithm that serves to explain no 
more effects than the one it was introduced to explain. It should be useful to note that the fact that a model 
includes an ad hoc assumption does not imply that the model is useless." (Jacobs & Grainger, 1994: 1319) 
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plausibility are added, but left unspecified due to space considerations (Jacobs & Grainger, 

1994: 1312-1320). These same criteria are applied to Multilink, RHM, the BIA+ in table 21 

(below): 

  RHM BIA+ Multilink 

Family Dual-route Interactive activation Interactive activation 

Format Descriptive Computational Computational 

Task 

Word-naming, 
lexical decision, 
translation 

Cognate Recognition, 
Lexical Decision 

Cognate Recognition, 
Language Decision, 
Lexical Decision, 
Translation 

DV RT RT, accuracy RT, accuracy 
deterministic\pr
obabilistic Deterministic Deterministic Deterministic 
localist\distribut
ed Localist Localist Localist 
macroscopic\mi
croscopic Macroscopic Microscopic Microscopic 
modular\interact
ive Modular Interactive activation Interactive activation 

ordinal\interval Ordinal Interval Interval 
performance\lea
rning Performance Performance Performance 

serial\parallel Serial Parallel Parallel 

static\dynamic Static Dynamic Dynamic 

testable effects 

Bilingual 
asymmetry, 
language 
proficiency 

Cognate, frequency, 
length 

Bilingual asymmetry, 
language proficiency, 
cognate, frequency, length 

Table 21. Property Overview of the RHM, BIA+, and Multilink models, á la Jacobs & Grainger (1994: 1313, Table 1). 
References and details for each model found in section 5.1 

Figure 24. Architecture Comparison Of the RHM & BIA+/Multilink models. Note that 
Multilink does not hypothesize word association. 
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It is difficult to compare the three models, although they have several commonalities. 

First, the RHM is pre-computational. Second, the RHM and BIA+ both have limited task 

specifications and testable effects. Matched to Multilink, a computational model with a 

greater number of task specifications and testable effects, comparing the three models 

hardly seems apt. Third, the temporal-informational factor: RHM and BIA+ models debuted 

20 and 12 years ago, respectively. Although both have continued to inform and find use in 

recent literature, the landscape of psycholinguistic literature has changed in the intervening 

years. What was theoretically-informative for model-building at that time is not necessarily as 

informative as it was then, and factors that were not considered relevant or strong at that 

time might now be considered important. In terms of model ranking, Multilink wins the race 

by a landslide: a computational model outputting interval-scale data offers greater 

descriptive adequacy than any verbal model can compete with, though Multilink is equal with 

the BIA+ in this case. Multilink has greater generality than both BIA+ and RHM, having a 

greater number of testable effects, and task simulations. Multilink is absolutely a more 

complex model than the BIA+ and the RHM, but its complexity is a trade-off for greater 

theoretical coverage. Rating each model in terms of explanatory-adequacy, the number of 

ad-hoc vs empirical assumptions, is more difficult: each seems approximately equal in this 

instance. Multilink wins this race purely because it has greater specification and theoretical 

coverage. It is currently not clear how Multilink would fare in a similar evaluation against 

other, equally-advanced monolingual & bilingual computational or mathematical models of 

visual word recognition, such as WEAVER++ (Roelofs, 1997; Roelofs et al., 2013), SOLAR 

(Davis, 2001), CDP+ (Perry, Ziegler, & Zorzi, 2007), Bayesian Reader (Norris, 2006), or the 

DRC (Coltheart, et al. 2001). 

 Referring back to section 6.1.i-iii, the research questions, we observe that Multilink 

does not induce a translation direction effect, but it does induce a cognate effect, and a 

frequency effect, fulfilling 2 of the 3 research questions. 

 

8.2 Facilitation Effects 

What does Multilink need to improve? Considering only the main effects — direction, 

cognate, and frequency — and their interactions, two actions could greatly improve the 

output of the model: parameter adjustment, and effect inclusion. 

Forward translation direction is experimentally-observed to have a facilitatory effect 

on word-naming latency. At this time, Multilink does not replicate this effect, and might 

actually trend towards a backwards translation direction facilitation effect. Its disclusion is 

understandable, as the nature of translation direction facilitation has been under debate for 

several years, but the debate has been weighted towards the forward facilitation effect by 
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the results of this study, and Pruijn (2015). This could be included by adjusting the weight of 

the language nodes, to reflect a higher resting activation level for the L2 production node, 

when activated by the L1 language node. 

The cognate effect is already present, a recognizably-strong effect. However, it is 

more powerful in the model than experimental data suggests that it needs to be. The 

candidate-ranking algorithm would seem to bear much of the blame here, given that it ranks 

outputs primarily on their status as cognates or noncognates. Multilink's cognate effect size 

should be reduced. This could perhaps be done by reducing the input of LD ranking into the 

candidate selection, or by reducing the activation spread of the orthographic-phonological or 

orthographic-lexical representation connections, which should demote the role of 

orthography in determining phonology and the final output. 

The influence of the frequency facilitation effect within the ranking algorithm needs to 

be embiggened. Frequency facilitation is an experimentally-strong effect, nearly equal to the 

cognate effect, but is not being replicated as such in the output. To affect this, the candidate-

ranking algorithm should be changed to increase the input from frequency data already 

included in the lexicon, or the activation-input of frequency into the phonology representation 

should be boosted. 

It is possible that when the main effects are adjusted that the significant interactional 

effects — forward translation direction effect & cognate effect interaction, and the cognate 

effect & frequency effect interaction — will be observed. However, if this is not the case 

(which seems likely, since parameters in a computational model generally need to be hard-

set), the orthographic-language activation input multiplier should be adjusted to reflect a 

strength-level associated with the empirical data. Current results recommend that this 

connection should be increased by a factor of 2.3x. For the interaction of cognate effect & 

frequency effect, the LD candidate-ranking or orthographic-phonological input and its 

connection to the phonology representation should be augmented by a factor of 1.6x to 

adequately replicate the interaction between cognates and frequency. 

 

 

 8.3 Latent Phenomena 

 The recommended improvements only cover the first action: parameter adjustment, 

and only include the effects that have received wide experimental interest. What about the 

latent effects observed in regression modelling (section 7.5)? Empirically, phonetic onset 

was found to have a significant effect; and Multilink was found to process cognates of 

varying length in a significant, and non-empirically-observed, fashion. 
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 Summing up the interaction of the cognate effect and word-length, it is currently 

unknown why the model outputs with regards to word-length in this fashion, steadily lowering 

the mean cycle-time as word length increases. However, it could be a confound: when a 

word form is input, it activates all orthographic neighbours, shorter or longer words receiving 

reduced activation. However, the lexicon varies word-length between 3-8 letters; selection is 

faster for lengthier words because the orthographic neighbourhood is less dense after 6-

letter words (the mean of Multilink's lexicon (Dijkstra, 2010: 409), leading to less competition 

between word forms to rank as output, and thus causing faster activation. Whatever the 

cause of this model-facilitatory effect of stimulus length on cognates in the model, it does not 

have an empirical reflection. Experiment data thus far submits that cognate status does not 

interact significantly with word-length. Referring back to section 7.5.4 and figure 23 (page 

59), cognates of 4-8 letters in length hover between 750-800 ms. 3-letter cognates are the 

exception, with a latency at ~820 ms. Noncognates show a "hill" type curve, with shorter 

lengths being processed faster, and slowly rising before declining again. Multilink can take 

one of two positions to rectify this: the conservative position of "length effect", as 

demonstrated by New, et al. (2006) and O'Regan & Jacobs (1992), finding that longer word 

length is inhibitory (Multilink should show an incline for the output curve with respect to 

length). Nonetheless, the notion of the "word length effect" is debated, and evidence has 

also shown a null effect: another position would be to disregard word length from output 

ranking, so that it has no effect on ultimate output cycle-time, if that is possible. 

 Phonetic onset (referring back to sections 5.2.2.4, and 7.5.4) is a trickier notion to 

discuss for the model, due to phonetic/phonological/technical variables. Voiced and 

voiceless consonants should exhibit equal latency, but the latency of voiceless onsets is 

nearly 250 ms higher than that of voiced onsets. This issue was explored by Rastle & Davis 

(2002), ultimately concluding that matching for onset phoneme (as was partially done by 

Pruijn (2015) and the current study) is an inadequate control method. But this effect can be 

controlled by matching the conditions of the syllabic onset (for instance, if the onset is 

complex, ie [spl] in the word "splinter"). Their results predominantly recommend a switch to 

more accurate measures, such as hand-coding or algorithmic-coding of acoustic waveform 

data, or more precise phonation collection methods30. Technical issues aside, this still does 

not explain why there would be a directional interaction with phonetic onset. Recalling Figure 

22 (page 58), tokens with a vocalic onset are produced slower in the forward condition than 

vocalic onsets in the backward condition. Due to the extremely small vocalic onset sample 

size, 15 total (approximately 7 in each direction), discerning a cause or correlation is 

statistically-improbable; there is simply not enough power. Three possible correlating factors 

                                                           
30

 This would have to target a different, or multiple, articulatory mechanism(s); the voice-key, aptly, 
distinguishes primarily on the phonological feature of voicing. 
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stand out: first, a syllable frequency factor, articulation time, and the phonological rule of 

"maximal onset"31. 

Syllable frequency is, simply, the frequency that each syllable occurs in the lexicon. 

Cholin, Levelt, & Schiller (2006) conducted a series of experiments demonstrating that 

speakers use and access a mental syllabary, and that this syllabary is especially sensitive to 

first-syllable frequency manipulations, and Carreiras, Alvarez, & De Vega (1993) found 

evidence suggesting that the "syllable frequency effect" is not simply due to the frequency of 

phoneme co-occurence (which lends additional credence to the concept of an online mental 

syllabary, contradicting Seidenberg's (1987, 1989) Orthographic Redundance hypothesis). 

Furthermore, Perea & Carreiras (1998) show that syllables have their own neighbourhood 

effect, with high-frequency syllables engendering an inhibitory effect. Barber, Vergara, & 

Carreiras (2004), and Carreiras, Mechelli, & Price (2006) demonstrate with 

electrophysiological and hemodynamic experiments, respectively, that the brain reacts 

inversely towards high lexical frequency, and high initial syllable frequency: the former is 

facilitative, and the latter is inhibitive. Reicker, et al. (2008) found that complex onsets create 

a significant effect on speech motor control and planning using hemodynamic 

measurements in a lexical decision task. Lastly, Conrad & Jacobs (2004) demonstrate, using 

the Functional Units Model (Rey, 1998; Richter, 1999) to illustrate their argument, that future 

computational models of visual word recognition cannot ignore and disclude the stand-alone 

syllable frequency effect. 

 Articulation time is the amount of time that a human being requires to place speech 

organs, articulators, into position, commence phonation, and for the sound to exit the lips. 

Palo et al. (2015), Rastle et al. (2005), and Kawamoto et al. (2008) provide evidence that 

there is a significant delay for some types of consonants due to articulatory properties, and 

that there is a difference between articulation time, when phonation commences, and 

acoustic latency, when phonation is experimentally-measured. Thus far, it is not a huge 

confound for word-naming studies, but the increasing need for accuracy will force future 

studies to consider options for increasing experimental control and statistical power. 

 Maximal onset, first described by Kahn (1976), is a general cross-linguistic 

phonological principle stating that, for languages that allow onsets (ie, English and Dutch),  

"[. . .] given a choice between affiliating a consonant to a coda or to an onset, affiliating with 

the onset is preferable [. . .]" (Hulden, 2006: 90). That is, if a language allows onsets, it will 

almost always prefer to place a consonant into the onset position within the syllable. Initial 

syllables, as evidenced above, occupy a privileged place in the word; it might then be 

                                                           
31

 Acknowledgements to Dr. Carlos Gussenhoven, and Dr. Francisco Torreira for sharing references and 
information concerning the maximal onset principal, and syllable frequency effects. 
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rationally assumed that the initial onset occupies a privileged position within the word as 

well. For words that do not have a consonant in the onset position, this would be considered 

a syllable constraint violation (in Optimality Theory terms) if the onset was vocalic. 

Hypothetically, constraint violation could lead to higher naming latencies, particularly for the 

initial syllable. Constraint violation might also interact with syllable frequency. 

 Whatever the cause(s) or ultimate correlating factor(s), previous research clearly 

demonstrates that Multilink must include a level of syllabic representation, and also a lexicon 

of syllable frequencies, similar to the syllabary built into WEAVER++. Perhaps, a second 

experiment can be conducted to determine the strength of a translation direction and syllabic 

feature interaction32.  

 

 

 8.4 Directions For Future Research 

 9 important potential future directions for Multilink have been noted per the results of 

the current study, presented in no particular order. 

i. Increasing typological distance — as stated in section 7.6.3, Multilink, as a lexical 

information-processing system, is implicitly optimized towards Dutch & English, (West) 

Germanic languages, and the Indo-European language family more broadly. Slowly 

broadening the geographic distance between languages and language families is one 

starting method. A future study could test Multilink first with a North-Germanic language, 

such as Swedish, then with a Romance or Slavic Indo-European language, such as French 

or Czech, and could end with any unrelated language (an isolate, perhaps, such as Basque) 

that has reliable and recent lexical frequency data tables available (Japanese, with the 

BCCWJ33 (Maekawa et al., 2014), courtesy of NINJAL, is a good first candidate for the 

"maximum-distance" comparison). This would also help test assumptions about how 

typologically-distant cognate-loans might be recognized and produced. As typological 

distance expands, the potential for script expansion also presents itself: Multilink is capable 

of modelling only languages with the Latin script. A first candidate would need to have 

comparable properties to the latin script: left-to-right reading direction, phonetic 

representation (as opposed to an abjad or alphasyllabary), vowels represented, etc. The 

Cyrillic script, used in Russia and several states of Eastern Europe,  is a potential first test 

option. 

                                                           
32

 For an overview concerning variation in syllable structure and phonotactic properties of syllables, the reader 
is referred to Duanmu (2008), Syllable Structure: The Limits Of Variation, and Cairns & Raimy (2011), Handbook 
Of The Syllable. 
33

 http://www.ninjal.ac.jp/english/products/bccwj/  

http://www.ninjal.ac.jp/english/products/bccwj/
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ii. Deprecate the length restriction — Multilink is currently limited to 8-9 letters for its 

maximum length. While double that of the BIA+, this is still a very limiting restriction. If the 

restriction were deprecated, then the addition of a variable inhibitory and facilitatory word 

length effect, such as seen in New, et al. (2006), could be introduced to Multilink. This could 

be supported with a second bilingual word-naming experiment using stimuli that specifically 

manipulate length and control for the other factors. Either way, it is clear that Multilink needs 

correction in its length-parameter. 

iii. Inclusion Of Syllabic Properties — as stated above in section 8.3, the initial 

syllable is known to generate special effects that affect the entire word form. Accounting for 

only the phonetic onset type or the onset complexity in the final dataset is not enough. A 

supplemental model "mental" syllabary would appear to be required. In addendum to this, a 

new experiment employing a more precise word onset collection mechanism might be 

required as well, in order to counteract the voice-key onset delay, noted to be the single 

largest effect of this study. Per the suggestions of Rastle & Davis (2002), an acoustic 

waveform algorithmic onset detector is the most convenient solution. 

iv. Parameter Adjustment — the 5 main independent variable effects observed in the 

experimental data need to be adjusted within the model to better represent their empirical 

task counterparts. 

v. Integrated Scaling Models — per the recommendation of Jacobs & Grainger 

(1994), outputting model data in purely cycle-time is unnecessarily opaque. The goal of any 

predictive scientific model, computational or pre-computational, should be to clarify the 

processi and consequences of the hypotheses being tested. In the interest of expedited 

interpretation, Multilink should have an integrated statistical model that uses acknowledged 

and valid empirical measurements to predict latency data from output cycle-time (cycle-time 

would still be an output component). This would first require the aforementioned alterations 

to be accomplished, and second, for a set varied of statistical models to be tested against 

new experimental data to determine which scaling algorithm results in the best empirical fit. 

This would not be a trivial task, but would potentially help Multilink be a useful tool to a larger 

audience of researchers who do not have the skills to create or interpret complex statistical 

models.  

vi. Increased Linguistic Scope — Multilink is a model of word-naming, concerned 

with recognizing and producing isolated words in the lexicon in one of (presently) two 

languages. As remarked in section 6.3.iv, this is an adequate starting point, but speech, 

bilingual or monolingual, does not use single words; it is, in fact, much more complex. 

Muysken (2005: 47) produces a hierarchical table (reproduced on the next page, Figure 24) 

showing how each "layer" of language multiplies the number of units in speech, and thus 

multiplies the complexity as well. 
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 At present, according to this analysis, Multilink's representations range from the 

individual feature-level, to the word-level, but not beyond34. Van Assche et al. (2012) reviews 

studies of bilingual lexical access in a sentence context, situating findings according to the 

BIA+ model. The cognate effect was present in reviewed studies. In light of this evidence, it 

is inevitable that Multilink will need to increase the scope of its use, first to the phrase level, 

then clause, and finally up to sentence level. Turn and text levels could theoretically be 

reached once model sentences can be accurately output. In line with increasing the scope of 

complexity, Multilink will also need to be able to model bilingual lexical processing for other 

lexical categories, such as verbs, or adjectives. In particular, it would be noteworthy to 

experimentally check for differences in cognitive patterns of speakers from languages which 

do not distinguish adjectives from verbs, such as Okinawan Ryukyuan (Japonic family 

language spoken in Okinawa, Japan), or Montagnais (Algic-Algonquian family language of 

Northeastern Canada) (Hammarström, et al. 2015). 

vii. Built-in Lexicon Adjustment — This would be a marginal improvement, but still 

useful. Multilink needs to be accessible in order to reach a wide audience. There needs to be 

built-in programming for users to easily add, remove, and modify the lexicon, and word 

association files. One example: if a future study wishes to model L2 acquisition, frequency 

data in Multilink's lexicon needs to be hand-altered. This is impractical, and inconvenient. 

Programming frequency alteration into Multilink's user-interface would expedite this process. 

It should be possible to add completely new tokens into the lexicon just as easily. Perhaps, 

                                                           
34

 Technically, Multilink skips the "morpheme" level, since there are no decomposable words in Multilink's 
lexicon 

Figure 25. "The different levels of analysis assumed by linguists" (Muysken, 2005: 47). 
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in the future, the representation activation levels themselves could be input-adjusted by a 

numerical factor too. 

viii. Learning Algorithm —   Currently, Multilink uses a "performance" algorithm (as 

seen in Table 21, section 8.1, page 70). Jacquet & French (2002) suggested, for the BIA+ 

model, adopting a statistical-learning algorithm. This would allow Multilink to require less 

hand-coding of information, and be able "experience" the language by having the information 

input as training data. Most importantly, this would potentially allow the model to develop an 

association-index and a lexicon on its own, thus negating the potential for the type of errors 

seen in Table 6, section 6.4 (page 35) (Jacquet & French, 2002: 204-205). Of all the 

potential upgrades listed so far, this would by far be the most beneficial. 

ix. Concreteness Scores — The addition of concreteness scores into the model 

architecture is empirically-required. Kroll & Merves (1986), Barber et al. (2013), and Jessen 

et al. (2000) have shown that there is a cognitive disparity for the processing of concrete and 

abstract words, resulting in concrete words being accessed and produced at a faster rate. 

Van Hell & De Groot (1998a, b) show evidence of bilingual concreteness facilitation effect in 

both nominals and verbals. Concreteness even appears to interact with cognate status, and 

lexical category, but this could also be confound with "context availability", from the 

hypothesis of the same name, claiming that concreteness effects arise from variations in 

contextual information — prior knowledge — that makes concrete words faster to retrieve 

than abstract words (objects conceptually-associated with concrete words are encountered 

more often than objects conceptually-associated with abstract words). At this time, there are 

no lexical cognitive processing models that acquire and employ concreteness scores within 

the architecture. Multilink is in a prime position to fill this deficiency. 

x. Up-to-date frequency data — A computational model is only as good as the data 

that informs it. The CELEX (Baayen, Piepenbrock, & Van Rijn, 1993) corpus is used by 

Multilink for its English & Dutch frequency data. In the interest of accurate replication, this 

frequency data is considered subpar, and recent replacements are available. SUBTLEX-US 

(Brysbaert & New, 2009) and SUBTLEX-NL (Keuleers, Brysbaert, & New 2010) are 

recommended for this (these were additionally used by Pruijn (2015)), and future work on 

Multilink should first look to replace the current frequency data with a newer equivalent, as 

long as the corpus is considered accurate and ecologically-valid. 
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9 Conclusion 

This study has examined the performance of the Multilink model of bilingual word 

recognition and production of Dijkstra and Rekké (2010), and compared the performance of 

the model to the recent empirical study (Pruijn, 2015, in collaboration with Peacock); this 

study used a precisely-balanced stimulus set in a translation production task to clarify the 

ongoing debate between the various models of bilingual lexical processing and access, such 

as the RHM of Kroll & Stewart (1994, 2010), concerning the language direction facilitation 

effect: is L1→L2 (forward) production processed faster than L2→L1 (backward) production? 

By dividing the stimulus into 8 distinct categories, each manipulating the 3 binary variables of 

translation direction, cognate status, and frequency, orthogonally, significant effects and 

interactional effects can be observed. The results of Pruijn (2015) clearly show an overall 

forward facilitation effect — rejecting the access routes proposed by the RHM — and a 

cognate facilitation effect, a frequency facilitation effect, and two significant interactional 

facilitation effects: direction & cognate status, and cognate status & frequency. 

Utilizing exactly the same stimulus set, with its orthogonal manipulations, as input to 

Multilink, this model's output, measured in "cycle-times", has been compared to the empirical 

findings of Pruijn (2015), and analyzed via four statistical tests: Spearman's rank correlation, 

analysis of variance, generalized regression modelling, and statistical divergence testing. 

Given the high accuracy of the output (98.44%), accuracy data was not included in the 

testing. It was inferred that the model performed well, not only in terms of accurate output, 

but also as a computational replication of bilingual lexical access (as divined from latency 

measurements in naming tasks). However a comparison of plotted means (Figure 13 & 14, 

page 42) showed that Multilink is not replicating some empirically-observed effects. 

Correlational results at the item level were, unexpectedly, largely non-significant for 

each of the 8 categories, even between latency and frequency; cycle-time & latency did 

show correlations within the larger forward, backward, and global conditions. Correlations 

did show a pattern of larger correlation coefficients between cycle-time & frequency for non-

cognates, Levenshtein Distance (LD) has a stronger pattern of correlations with cognate 

conditions, and frequency strongly correlates with cycle-time in noncognate conditions. Few 

other correlational patterns were perceived. A final mean-regressed correlation shows that 

cycle-time, on average, strongly correlates with latency and LD. 

ANOVA testing of the empirical and model data shows several levels of effects 

present: latency predicts significant effects with translation direction, cognate status, 

frequency, and marginal interactions between translation direction & cognate status, and 

cognate status & frequency (these were measured as significant by Pruijn (2015), see 

section 7.4.1 footnote 13, page 49). Cycle-time, conversely, only predicts significant effects 
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with cognate status and frequency. Effect size measurements were compared, deducing that 

Multilink is overrating the cognate effect, underscoring the frequency effect, and is largely 

missing the translation direction effect and interactional effects. 

Regression analysis follows, using a generalized additive model (GAM) to test for 

interactions between the dependent variables, independent variables, and the controlled 

variables, and their two-way interactions. This helped assess whether controlled variables 

were adding noise into the data, and the total amount of deviance explained by the current 

data. Of the controlled variables, phonetic onset was predicted to interact significantly with 

latency and assigned the largest amount of deviance within the empirical data. Model data 

predicts sole interaction between cognate status and word-length, which revealed that 

Multilink deviates from the empirical results with respect to word-length (Figure 23, page 60). 

However, none of these effects contributed so much noise to the data that the experimental 

effects were unobservable. Possible reasons for these interactions were discussed in 

section 8.3 (page 72-74). 

Finally, the distributional divergence was measured, using a model-approximate χ2 

test, Kolmogorov-Smirnov test, and a Kullback-Leibler Divergence test. These tests measure 

how close the datapoint distributions (as probability distributions or cumulative distributions), 

match each other, and the output statistic measures the degree of this divergence in 

Shannons/bits. Results of these tests showed that Multilink, as a model, actually fits the data 

quite well. Despite deficiencies such as the overpowered cognate facilitation and the 

underpowered frequency facilitation effect, totalled over all datapoints, the distributions 

match closely, with a measured maximum divergence of less than a single bit. 

These results were then discussed in the context of other models of the bilingual 

lexicon, and possibilites for future studies and improvements to Multilink were planned in 

section 8.4. Some of these suggestions include: changing to a statistical-learning algorithm, 

addition of syllabic representation into the model, and using more typologically-distant 

languages for further modelling (once the necessary adjustments are made). 

Given the literature previously reviewed, it is clear that this computational model does 

not include all the factors that are necessary to explain multilingual lexical access. But with 

the factors that it does account for Multilink performs admirably, and holds great promise for 

the future of lexical access studies, and psycholinguistics as a whole. Based on the recent 

empirical results, several changes should be made: the ranking formula, which determines 

the output candidates, needs to be updated, reflecting an observable forward translation 

direction facilitation effect, LD must be balanced with respect to the output, the frequency 

facilitation effect must be strengthened, and the smaller interactional effects between 

cognate status & frequency and translation direction & cognate status should become part of 



83 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

the ranking algorithm. Once this is accomplished, Multilink can be extended and enhanced 

even further, upgrading it into a versatile and valuable tool for future linguistic and cognitive 

studies. 
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11 Appendix 

Appendix information is found here: section 11.1 shows Multilink's resting-level 

activation and Normalized Levenshtein Distance formulas; section 11.2 shows the Model-

Approximate χ2 formula; section 11.3 exhibits the full dataset used for this study. Section 

11.4 shows tables of descriptive statistics for each of the 11 test conditions used in the 

correlational tests (except the mean-regressed correlations); section 11.5 contains tables of 

numeric correlation output; section 11.6 contains tables of ANOVA output; section 11.7 

contains tables of generalized regression output; finally, section 11.8 shows the entire R 

statistics script used for the results, figures, and tables.  

 

 11.1 Multilink's Activation Functions 

i. Resting Level Activation 

𝑅𝑒𝑠𝑡𝑀𝐼𝑁 + 𝑅𝐴𝑁𝐾 ∗ (
|𝑅𝐸𝑆𝑇𝑀𝐼𝑁 − 𝑅𝐸𝑆𝑇𝑀𝐴𝑋|

𝑅𝑎𝑛𝑘𝑀𝐴𝑋
) 

  

"Resting level activation = MINREST + RANK * (Abs(MINREST ‐ MAXREST ) / MAX 

RANK). Here MINREST is the parameter that determines the minimal resting level 

activation (set at ‐.05). RANK is the ranking of the word in the frequency ordered item 

list for the language in question. Abs() computes the absolute value. MAXREST is 

the parameter that determines the maximal resting level activation (set at .0). Finally, 

MAXRANK is the highest rank that occurs in the frequency ordered item list for the 

language. Words in the same language and of the same frequency have the same 

RANK; as a consequence, they also have the same resting level activation." 

(Dijkstra et al., in prep.: 27) 

  

ii. Normalized Levenshtein Distance 

1 − (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 / 𝐿𝑒𝑛𝑔𝑡ℎ) 

 

Where Distance is defined as: 

    ⋀ 𝐿𝐷 

And where Length is defined as:  

    ⋁ 𝐿𝐸𝑁𝐺𝑇𝐻 
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"When a word (of any length) is presented to Multilink for simulation, it leads to the 

activation of lexical‐orthographic representations from several languages depending 

on their (1) orthographic similarity with the input, and (2) subjective frequency of 

usage. The orthographic similarity of the input word to stored lexical representations 

is computed by determining the Levenshtein distance between the involved letter 

strings (see Schepens, Dijkstra, & Grootjen, 2011). This metric involves the 

computation of the minimal number of deletions, substitutions, and insertions needed 

to edit one expression into the other. The Levenshtein distance is in use by 

researchers with different backgrounds to explore the relation between orthographic, 

phonetic, and cross‐linguistic similarity (e.g., Heeringa, 2004; Kessler, 2005; 

Levenshtein, 1966). By normalizing the Levenshtein distance for word length, the 

activation of word candidates of different lengths is possible. The formula to compute 

the normalized Levenshtein score for two expressions is the following: score = 1 ‐ 

(distance / length), where length = max(length of source expression, length of 

destination expression) and distance = min(number of insertions, deletions, and 

substitutions)." 

(Djikstra et al., in prep.: 30) 

 

 

11.2 Model-Approximate χ2 Test Formula 

 

𝜒2 =  ∑
(𝑅𝑇𝐷𝐴𝑇𝐴𝑖

− 𝑅𝑇𝑀𝑂𝐷𝐸𝐿𝑖
)2

(
𝑆𝐷𝐴𝑇𝐴𝑖

2

𝑛𝑖
) + (

𝑆𝑀𝑂𝐷𝐸𝐿𝑖

2

𝑚𝑖
)

𝑁

𝑖

 

  

"A second common stress-measure is the sum of the squared differences between 

the predicted and obtained RTs. This measure can be turned into an approximated 

x2 statistic by taking into account the sample variance s2 in the obtained and 

predicted RTs as follows [. . .] [Formula here] [. . .] When the model values are based 

on the use of p free parameters, YM
i j

 are no longer independent for all i,j. The number 

of degrees of freedom for the x2-distribution then becomes N-p, instead of N (where 

N indicates the number of data points involved). Both small and large simulations 

were run. For the small simulations, sample size m; was set equal to n; (leading to a 

simplification of the formula); for the large simulations sample size m; was set at 
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35,000. For the computation of means and variances, data of all subjects were 

pooled. This has some consequences. As can be observed on the basis of Equation 

(3), considering subjects as replications on the one hand leads to an over-estimation 

of the population variance (due to subject effects), and thus results in a denominator 

that is too large. In fact, the variance in the pooled data was much larger than in the 

model. On the other hand, pooling leads to a much larger n;, which results in a 

smaller denominator. The first consideration alone would lead to a x2 that is smaller 

than it should be and to too few rejections of the model; the second leads to too 

many rejections. A better, but more time consuming, approach would be to fit the 

model to each individual subject, compute the x2 for each subject, and sum the x2s 

over subjects, while adapting the degrees of freedom." 

(Dijkstra, 1990: 163-165) 

 

  

  



  

11.3 Data Set 

This section displays the final dataset, as written at the end of statistical testing (see section 11.9 to view the statistical script). Bolded 

column titles were computed in R for each item, and were not part of the original data file, derived from Pruijn (2015). Incorrect and inaccurate 

stimulus are not included. 

 

 

Stimul
i 

Transla
tion 

Late
ncy cycles 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq Levdist 

concret
eness 

Mean.
N.RT category 

Direc
tion 

cognac
y 

freq.c
at 

Ph.O
nset 

1 angry boos 772 27.01 862 903 5 65 5 2.53 
495.8

2 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

2 ant mier 
109

9 30.77 951 1166 3 4 4 4.86 
538.2

7 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

3 art kunst 935 26.25 844 857 3 211 4 4.17 
507.7

6 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

4 
autum
n herfst 

106
1 27.25 867 917 6 34 6 3.27 

558.7
6 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

5 axe bijl 968 27.44 872 929 3 7 4 5 
519.0

5 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

6 baker bakker 900 22.60 757 668 5 36 1 4.71 
568.4

2 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

7 bible bijbel 774 27.12 864 909 5 61 3 4.61 
599.8

8 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

8 black zwart 787 26.24 843 856 5 224 4 3.76 
536.5

8 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

9 boat boot 737 22.89 764 681 4 56 1 4.93 
545.1

8 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

10 body 
lichaa
m 872 25.43 824 810 4 283 7 4.79 

580.5
8 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

11 book boek 660 21.76 737 631 4 269 1 4.9 
521.3

6 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

12 boss baas 781 27.11 864 909 4 22 2 3.83 525.6 Backward Back Cognat High- voice
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8 HFCog ward e FREQ d 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

Stim
uli 

13 boy jongen 828 25.84 834 833 3 207 5 4.76 
549.6

3 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

14 bride bruid 910 24.15 794 743 5 34 2 4.63 
583.1

8 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

15 brown bruin 739 23.63 781 717 5 183 2 4.48 
570.5

3 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

16 
buildi
ng 

gebou
w 809 26.56 851 875 8 170 8 4.64 

597.1
1 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

17 bull stier 
110

0 27.37 870 925 4 19 5 4.85 
533.0

3 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

18 car auto 765 25.62 829 821 3 276 4 4.89 
507.5

6 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

vowe
l 

19 clean schoon 821 26.96 861 900 5 72 4 3.07 
489.3

3 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

20 cloud wolk 874 27.30 869 921 5 30 4 4.54 
559.1

5 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

21 coffee koffie 710 23.11 769 692 6 80 2 4.81 
534.5

9 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

22 coral koraal 934 23.78 785 724 5 2 2 4.4 
532.7

4 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

23 
cowar
d lafaard 

113
8 27.47 873 931 6 5 4 2.93 

567.3
5 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

24 
cultur
e cultuur 737 22.94 765 684 7 59 2 2.04 

526.1
8 

Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

25 curse vloek 
102

4 23.95 789 733 5 11 5 2.39 
515.3

6 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

26 dark donker 787 27.06 863 906 4 37 4 4.29 
551.2

1 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

28 dirty vies 919 27.27 868 919 5 37 4 4.23 
515.0

5 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

29 dog hond 744 26.70 854 884 3 77 3 4.85 
525.1

8 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

30 
domai
n 

domei
n 901 22.66 758 671 6 9 1 3.4 

560.5
4 

Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

31 ear oor 732 27.18 866 913 3 30 2 5 520.9 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

vowe
l 

32 eye oog 669 26.15 841 851 3 143 3 4.9 
476.0

3 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

vowe
l 

33 face gezicht 770 24.97 813 785 4 386 6 4.87 
516.9

5 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

34 
farme
r boer 965 30.45 944 1141 6 31 4 4.54 

584.4
9 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

35 father vader 764 25.28 821 802 6 188 3 4.52 
538.1

3 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

36 feeling gevoel 846 27.79 880 952 7 61 6 1.68 
542.3

7 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

37 fever koorts 
106

1 27.29 868 920 5 26 6 3.27 553.3 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

38 field veld 877 23.70 783 720 5 127 2 4.26 
529.3

9 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

39 figure figuur 807 23.00 766 687 6 210 2 3.63 
530.5

8 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

40 flame vlam 849 24.19 794 745 5 19 2 4.67 
544.8

4 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

41 foot voet 767 26.60 852 878 4 113 2 4.9 
492.0

3 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

42 fox vos 889 27.42 872 928 3 16 2 4.97 553.3 Backward Back Cognat Low- voice
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LFCog ward e FREQ d 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

44 
garde
n tuin 830 26.30 845 860 6 164 5 4.73 

519.3
3 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

45 garlic 
knoflo
ok 

102
7 27.44 872 929 6 4 7 4.89 

577.3
7 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

46 girl meisje 794 25.65 829 823 4 225 5 4.85 
542.0

3 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

47 glove 
handsc
hoen 

110
2 27.47 873 931 5 5 9 4.97 

551.2
2 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

48 
groun
d grond 737 21.32 726 612 6 193 1 4.77 

481.5
1 

Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

49 hair haar 670 22.61 757 668 4 191 1 4.97 
510.7

9 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

50 
health
y gezond 908 27.16 865 912 7 33 6 3.31 532 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

51 honey honing 974 27.35 870 924 5 21 3 4.88 
538.4

1 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

52 horse paard 907 26.71 855 884 5 85 5 5 
510.5

5 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

53 house huis 701 24.78 809 775 5 479 3 5 
510.2

8 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

54 hunter jager 976 27.41 871 928 6 11 4 4.41 
543.7

5 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

55 juice sap 997 27.37 870 925 5 20 5 4.89 
546.7

9 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

56 key sleutel 818 26.94 860 898 3 92 6 4.89 
483.2

2 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

57 kidney nier 925 27.47 873 931 6 5 4 4.96 
523.0

8 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

59 
metho
d 

metho
de 712 22.12 745 647 6 77 1 2.41 

571.9
3 

Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

60 
middl
e 

midde
n 871 22.76 760 676 6 171 2 3.69 

507.3
4 

Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

61 
minut
e 

Minuu
t 668 23.47 777 709 6 74 3 3.04 

508.4
1 

Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

62 mirror spiegel 931 27.11 864 909 6 41 6 4.97 
531.1

1 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

63 
mone
y geld 810 25.21 819 798 5 403 5 4.54 

520.9
5 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

64 
morni
ng 

ochten
d 971 26.36 846 864 7 214 6 3.44 

563.1
5 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

vowe
l 

65 
mothe
r 

moede
r 654 21.92 740 638 6 221 2 4.6 

506.7
2 

Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

66 
motiv
e motief 886 23.69 783 720 6 14 2 1.5 

575.7
9 

Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

67 mouse muis 730 27.42 872 928 5 10 3 4.83 
560.7

2 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

68 mouth mond 726 25.99 837 842 5 134 3 4.74 
499.8

9 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

69 
muscl
e spier 946 27.28 868 919 6 44 5 4.5 

587.3
2 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

70 music Muziek 681 26.09 840 848 5 221 4 4.31 
534.3

7 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

71 name naam 631 25.32 822 805 4 306 2 3.5 
530.9

5 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

72 night nacht 709 22.47 753 662 5 428 2 4.52 
508.8

4 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

73 office kantoo 103 26.28 844 859 6 249 7 4.93 537.9 Backward Back Nonco High- voice
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r 9 5 HFNcog ward gnate FREQ less 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

75 panic paniek 724 23.61 781 716 5 26 2 3.04 
518.8

7 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

76 peach perzik 937 27.49 873 933 5 3 4 4.9 
552.2

5 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

77 pearl parel 869 24.26 796 748 5 12 2 4.87 
559.3

5 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

78 pencil 
potloo
d 973 27.39 871 926 6 15 6 4.88 

509.5
5 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

79 
peppe
r peper 776 22.66 758 671 6 7 1 4.59 617.3 

Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

80 pipe pijp 796 27.32 869 922 4 20 2 4.88 
552.7

5 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

81 pirate piraat 711 23.78 785 724 6 3 2 4.64 554.7 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

82 plate bord 
120

3 27.21 867 915 5 24 5 4.77 
526.7

8 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

83 police politie 729 22.59 756 668 6 206 2 4.79 
510.7

3 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

84 
questi
on vraag 812 25.15 817 795 8 259 8 3.36 

545.5
5 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

85 rabbit konijn 873 27.41 871 928 6 11 6 4.93 
540.2

4 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

86 raw rauw 891 23.03 767 688 3 43 1 3.35 
546.5

8 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

87 rice rijst 856 27.35 870 924 4 27 3 4.86 
523.2

9 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

88 rich rijk 722 26.76 856 887 4 79 2 2.79 557.5 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

90 scar 
litteke
n 

103
0 27.44 872 929 4 7 8 4.74 560.5 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

91 
scienc
e 

wetens
chap 

100
3 26.67 854 882 7 91 7 2.79 

604.6
6 

Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

92 shark haai 916 27.44 872 929 5 14 3 4.93 
563.9

1 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

93 
showe
r 

douch
e 842 28.41 895 993 6 15 6 4.89 538 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

94 silver zilver 787 22.61 757 669 6 31 1 4.52 
527.6

1 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

95 slave slaaf 839 24.18 794 744 5 16 2 4.38 
496.8

2 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

96 sleeve mouw 
114

0 27.39 871 927 6 11 6 4.84 
591.5

4 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

97 soft zacht 838 26.70 854 884 4 69 4 3.88 
515.7

1 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

98 song liedje 965 28.31 893 986 4 33 6 4.46 
496.1

8 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

99 space ruimte 921 26.12 841 849 5 185 5 3.54 
521.6

3 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

100 spicy pittig 
107

2 27.48 873 932 5 2 5 3.31 
562.4

8 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

101 spoon lepel 838 28.45 896 996 5 11 5 4.96 
535.1

8 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
d 

102 story 
verhaa
l 886 26.09 840 848 5 167 7 3.3 

557.0
3 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

103 street straat 752 22.60 757 668 6 253 2 4.75 
541.7

8 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

104 sun zon 714 26.78 856 889 3 123 2 4.83 509.4 Backward Back Cognat High- voice
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2 HFCog ward e FREQ d 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

106 table tafel 707 25.89 835 836 5 204 3 4.9 
573.2

9 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

107 task taak 860 22.60 757 668 4 65 1 2.84 
539.8

2 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

108 tea thee 735 27.11 864 909 3 32 2 4.69 
490.2

8 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
less 

109 thief dief 789 24.25 796 748 5 8 2 4.37 544.7 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

110 tiger tijger 723 22.70 759 673 5 4 1 5 
543.4

9 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

111 tired moe 814 27.00 862 902 5 48 4 3 
579.2

1 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

112 trophy trofee 
103

4 27.49 873 933 6 2 3 4.89 
579.8

3 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
less 

113 uncle oom 819 26.77 856 888 5 59 5 4.24 
558.2

4 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

vowe
l 

114 vague vaag 894 27.19 866 914 5 24 3 1.55 
580.5

5 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

115 vision visie 987 23.46 777 709 6 58 2 3.39 
537.5

8 
Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

116 voice stem 962 25.56 827 818 5 232 5 4.13 
510.3

2 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
less 

117 wall mum 808 26.39 847 866 4 173 4 4.86 
532.6

1 
Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 

118 
warmt
h 

warmt
e 788 22.48 754 663 6 28 1 3.39 

602.6
5 

Backward
LFCog 

Back
ward 

Cognat
e 

Low-
FREQ 

voice
d 

119 
windo
w raam 992 26.45 848 869 6 132 6 4.86 

514.6
2 

Backward
HFNcog 

Back
ward 

Nonco
gnate 

High-
FREQ 

voice
d 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

121 word woord 815 21.42 728 617 4 279 1 3.56 
531.4

1 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

122 work werk 695 21.18 723 606 4 772 1 3.48 
512.2

1 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

123 world wereld 730 21.67 734 627 5 816 2 4.36 
530.0

5 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

124 year jaar 675 24.69 807 771 4 508 2 3.25 560 
Backward
HFCog 

Back
ward 

Cognat
e 

High-
FREQ 

voice
d 

125 yellow geel 769 27.10 864 908 6 65 4 4.3 
486.1

6 
Backward
LFNcog 

Back
ward 

Nonco
gnate 

Low-
FREQ 

voice
less 

126 auto car 734 25.61 828 820 4 208 4 5 
517.9

7 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

127 avond 
evenin
g 854 26.11 840 849 5 194 5 3 

521.2
7 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

vowe
l 

128 
bakke
r baker 928 22.56 756 666 6 11 1 4.6 

564.0
3 

ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

129 balkon 
balcon
y 832 23.42 776 706 6 13 2 4.6 

545.1
3 

ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

130 bedrijf 
compa
ny 

100
3 26.22 843 855 7 119 7 3.27 

542.1
6 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

131 bier beer 791 22.93 765 684 4 56 1 4.73 
535.7

8 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

132 bijbel bible 768 27.10 864 908 6 24 3 3.87 
598.7

3 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

133 bijl axe 
107

6 28.48 897 998 4 8 4 4.87 
542.3

9 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

vowe
l 

134 boek book 779 21.74 736 630 4 250 1 4.93 
524.1

4 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

135 boos angry 772 27.00 862 902 4 41 5 2.73 544.5 ForwardH Forw Nonco High- vowe
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3 FNcog ard gnate FREQ l 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

137 bruin brown 712 23.39 775 705 5 40 2 3.8 
531.5

4 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

138 
burea
u desk 

101
0 26.86 858 893 6 82 5 4.67 

550.9
7 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

139 dak roof 894 27.01 862 903 3 43 4 4.8 
545.3

8 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

140 dief thief 811 24.25 796 748 4 7 2 4 
535.2

1 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

141 
docht
er 

daught
er 696 23.43 776 707 7 93 3 3.6 

552.2
4 

ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

142 
domei
n 

domai
n 874 22.67 758 671 6 12 1 3 

632.2
5 

ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

143 
donke
r dark 714 30.37 942 1135 6 57 4 4 

580.9
7 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

144 dorp village 886 26.76 856 888 4 98 7 4.33 
558.7

6 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

145 droog dry 745 26.96 861 899 5 45 3 3.8 
524.4

7 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

146 duif pigeon 988 27.46 873 931 4 8 6 4.93 
523.6

8 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

147 einde end 773 22.61 757 669 5 155 2 2.53 
509.7

2 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

vowe
l 

148 
gebou
w 

buildin
g 732 26.51 850 873 6 55 8 4.53 

572.1
6 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

149 geel yellow 663 27.08 864 907 4 23 4 3.8 
527.3

3 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

150 geit goat 802 27.43 872 929 4 5 2 4.87 
584.3

5 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
d 

152 gevaar danger 768 26.77 856 888 6 98 5 2.73 
533.5

6 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

153 gevoel feeling 834 26.23 843 856 6 255 6 2.33 
540.0

8 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

154 
gezich
t face 773 29.91 931 1100 7 447 6 4.2 

541.5
7 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

155 
gezon
d 

health
y 743 27.16 865 912 6 41 6 2.13 

547.3
6 

ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

156 goud gold 744 22.78 761 677 4 36 1 4.73 
574.2

9 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

157 grond ground 688 21.43 729 617 5 321 1 4.6 
520.7

9 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

158 haai shark 822 27.43 872 929 4 1 3 4.87 561 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

159 herfst 
autum
n 

103
7 27.24 867 917 6 22 6 2.73 

565.0
3 

ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

vowe
l 

160 hond dog 737 26.71 855 884 4 107 3 5 
531.1

9 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

161 
honin
g honey 718 27.35 870 924 6 12 3 4.67 578.1 

ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

162 hoofd head 766 24.86 810 779 5 515 3 4.8 
536.2

6 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

163 huis house 714 24.79 809 776 4 541 3 4.93 
536.4

2 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

164 ijzer iron 930 27.09 864 908 5 17 4 4.53 
568.5

3 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

vowe
l 

165 jager hunter 892 27.41 871 928 5 9 4 4.07 
600.2

4 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

166 jonge boy 755 25.84 834 833 6 202 5 4.67 526.3 ForwardH Forw Nonco High- voice
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n 9 FNcog ard gnate FREQ d 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

vowe
l 

168 kat cat 696 23.50 778 711 3 49 1 4.87 548.9 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

169 
klimaa
t climate 820 24.33 798 752 7 28 3 2.27 

524.7
4 

ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

170 knop button 
103

8 27.36 870 924 4 17 5 4.53 
532.8

7 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

171 koffie coffee 684 23.17 770 695 6 110 2 4.53 
555.2

6 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

172 koorts fever 897 27.29 868 920 6 21 6 3.87 
586.8

1 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

173 lawaai noise 980 27.18 866 913 6 31 6 3.87 
569.2

1 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

174 lepel spoon 834 27.40 871 927 5 11 5 4.93 
548.1

9 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

175 
lichaa
m body 752 25.42 824 810 7 263 7 4.47 

550.8
2 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

176 lied song 869 27.26 868 918 4 20 4 4.47 
574.9

5 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

177 maag 
stomac
h 

102
5 27.15 865 911 4 38 5 4.53 

514.7
6 

ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

178 maan moon 667 26.92 860 897 4 62 2 4.93 
564.2

1 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

179 meisje girl 720 25.65 829 823 6 236 5 4.47 
540.8

2 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

180 mes knife 738 26.97 861 900 3 32 5 4.73 
548.3

2 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

181 mier ant 
103

3 27.48 873 932 4 1 4 4.87 
549.7

6 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

vowe
l 



111 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

183 
moed
er 

mothe
r 702 22.08 744 645 6 554 2 3 

502.4
4 

ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

184 mond mouth 676 26.01 838 843 4 220 3 4.73 564.5 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

185 mouw sleeve 
101

2 27.40 871 927 4 13 6 4.8 
593.7

4 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

186 muis mouse 688 27.42 872 928 4 9 3 5 
563.8

7 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

187 muur wall 816 26.37 847 864 4 90 4 4.8 
531.1

8 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

188 
muzie
k music 642 26.06 839 846 6 115 3 4 

530.9
7 

ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

189 naam name 621 25.32 822 804 4 293 2 2.6 
549.7

9 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

190 nacht night 666 22.38 751 658 5 266 2 3.8 
537.5

4 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

191 natuur nature 636 22.78 761 676 6 91 2 2.93 
525.8

2 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

192 nier kidney 891 29.62 924 1078 4 3 4 4.4 
567.3

7 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

193 oor ear 738 27.18 866 913 3 40 2 4.8 
494.4

2 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

vowe
l 

194 oorlog war 726 25.35 822 806 6 184 5 2.87 
522.4

5 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

195 paard horse 776 26.71 855 884 5 99 5 4.93 
519.4

5 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

196 parel pearl 863 26.05 839 846 5 2 2 4.33 
599.8

2 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

197 peper pepper 775 22.67 758 671 5 13 1 4.47 584.7 ForwardLF Forw Cognat Low- voice
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8 Cog ard e FREQ less 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

199 pijn pain 726 26.48 849 871 4 148 2 3.29 
505.5

9 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

200 pijp pipe 848 27.32 869 922 4 19 2 4.53 
564.4

7 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

201 piraat pirate 710 23.78 785 724 6 2 2 4.2 
596.0

5 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

202 pittig spicy 
104

8 27.48 873 932 6 3 5 2.73 
573.1

3 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

203 prijs price 833 23.66 782 718 5 76 2 3.21 
523.7

7 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

204 rauw raw 742 22.99 766 686 4 21 1 3.8 
560.1

9 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

205 regen rain 681 26.93 860 898 5 53 3 4.6 575.1 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

206 rijk rich 699 26.77 856 888 4 92 2 2.13 
528.9

2 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

207 rivier river 657 22.13 745 647 6 69 1 4.73 
527.9

7 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

208 ruimte space 814 26.10 840 848 6 138 5 2.93 
573.0

8 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

209 saus sauce 757 24.14 793 742 4 19 2 4.4 
545.1

8 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

210 
schoo
n clean 789 26.95 860 899 6 47 4 2.53 

563.3
3 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

211 slager 
butche
r 943 27.45 872 930 6 7 5 4.13 

544.8
7 

ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

212 sleutel key 745 26.92 860 897 7 34 6 4.87 
547.0

3 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

214 som sum 
102

4 23.57 780 714 3 11 1 3.53 
562.6

6 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

215 spier muscle 888 27.26 868 918 5 6 5 4.67 
546.2

1 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

216 stad city 823 25.74 831 828 4 249 4 3.73 
562.7

4 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

217 stier bull 
109

3 27.37 870 925 5 10 5 4.93 
589.6

8 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
d 

218 straat street 728 22.47 754 662 6 147 2 2.78 
605.5

4 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

219 tafel table 825 25.88 835 836 5 189 3 4.93 
509.5

5 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

220 tante aunt 810 26.97 861 900 5 96 3 3.13 
551.2

6 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

vowe
l 

221 thee tea 741 27.12 864 909 4 51 2 4.86 
524.2

8 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

222 trofee trophy 835 27.49 873 933 6 1 3 4.13 
589.2

1 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

223 vader father 755 25.34 822 805 5 546 3 3.13 
544.7

2 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

224 veld field 891 23.58 780 714 4 56 2 4.53 
516.5

1 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

225 verf paint 880 27.27 868 919 4 26 5 4.8 
537.9

2 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

226 
verha
al story 769 26.09 840 848 7 161 7 2.87 

547.0
3 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

227 
verkee
r traffic 947 28.11 888 973 7 38 7 3.47 

543.2
3 

ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

228 vies dirty 809 27.26 868 918 4 15 4 3 572.5 ForwardLF Forw Nonco Low- voice
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4 Ncog ard gnate FREQ d 

Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

230 vloek curse 837 27.42 872 928 5 8 5 2.13 
550.5

6 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

231 voet foot 872 26.60 852 878 4 96 2 4.87 
522.3

8 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

232 vos fox 867 27.41 871 928 3 4 2 4.87 
535.7

4 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

233 vraag 
questi
on 754 25.17 818 796 5 456 8 2.47 

564.0
8 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

234 vriend friend 724 21.77 737 631 6 143 1 2.4 
508.2

7 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

235 vrouw 
woma
n 798 25.17 818 796 5 597 5 4.2 

578.4
2 

ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

236 
warmt
e 

warmt
h 753 22.51 754 664 6 47 1 3.6 

533.3
3 

ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

237 
werel
d world 707 21.60 733 624 6 443 2 3.33 

555.6
7 

ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

238 werk work 683 21.13 722 605 4 495 1 3.2 
546.8

5 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

239 wezel weasel 985 23.79 785 725 5 2 2 4.67 
649.2

8 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
d 

240 wijn wine 680 26.59 852 877 4 140 2 4.8 548.9 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

241 wolk cloud 871 27.29 869 920 4 15 4 4.4 
562.8

7 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 

242 woord word 683 21.42 729 617 5 281 1 2.67 
541.3

6 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
d 

243 zacht soft 747 26.72 855 885 5 113 4 3.73 
530.0

8 
ForwardLF
Ncog 

Forw
ard 

Nonco
gnate 

Low-
FREQ 

voice
less 
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Sti
mul
i 

Transl
ation 

Latenc
y 

cycl
es 

P.Laten
cy.lm 

P.Laten
cy.zm 

Stim.le
ngth freq 

Lev
dist 

concret
eness 

Mean.N
.RT 

catego
ry Direction 

cogn
acy 

freq.ca
t 

Ph.On
set 

voice
less 

245 zilver silver 745 22.58 756 667 6 12 1 4.67 
567.5

5 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

246 zoon son 975 26.10 840 848 4 151 2 3.07 
589.4

3 
ForwardH
FCog 

Forw
ard 

Cognat
e 

High-
FREQ 

voice
less 

247 zorg care 
109

2 26.74 855 886 4 82 3 2.8 
528.3

1 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
less 

248 zwart black 693 26.20 842 854 5 81 4 4.27 
552.7

4 
ForwardH
FNcog 

Forw
ard 

Nonco
gnate 

High-
FREQ 

voice
d 

249 zweet sweat 825 24.94 812 784 5 37 2 4.67 
523.3

6 
ForwardLF
Cog 

Forw
ard 

Cognat
e 

Low-
FREQ 

voice
less 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 11.4 Descriptive Statistics 

 The descriptive statistic tables below show the means, standard deviations, median, 

minimum, maximum, range, and standard error for latency, cycle-time, Z-scaled & L-scaled 

latency, frequency, and Levenshtein Distance, in each of the 11 conditions used for the 

correlational tests.  

 

Global 

N = 249 mean SD median min max range SE 

Latency 828.36 118.45 810 621 1203 582 7.51 

Cycle-time 25.61 2.04 26.25 21.13 30.77 9.63 0.13 

Frequency 110.29 138.94 56 1 816 815 8.81 

Levenshtein 
Distance 3.51 1.87 3 1 9 8 0.12 

L-scaled Latency 828.36 48.62 843.79 721.67 951.42 229.74 3.08 

Z-scaled Latency 828.05 111.77 857.28 604.65 1166.17 561.52 7.08 

        

 

 Forward Translation-direction 

N = 124 mean SD median min max range SE 

Latency 809.05 111.59 777.50 621.00 1093.00 472.00 10.02 

Cycle-time 25.67 2.01 26.30 21.13 30.37 9.23 0.18 

Frequency 107.02 138.25 50.00 1.00 597.00 596.00 12.42 

Levenshtein 
Distance 3.45 1.81 3.00 1.00 8.00 7.00 0.16 

L-scaled Latency 829.85 47.95 844.86 721.67 941.92 220.24 4.31 

Z-scaled Latency 831.33 110.06 859.92 604.65 1134.92 530.27 9.88 

 

 Backward Translation-direction 

N = 125 mean SD median min max range SE 

Latency 847.51 122.33 828.00 631.00 1203.00 572.00 10.94 

Cycle-time 25.54 2.07 26.25 21.18 30.77 9.59 0.19 

Frequency 113.52 140.11 59.00 2.00 816.00 814.00 12.53 

Levenshtein 
Distance 3.56 1.94 3.00 1.00 9.00 8.00 0.17 

L-scaled Latency 826.87 49.42 843.79 722.66 951.42 228.76 4.42 

Z-scaled Latency 824.80 113.80 857.28 606.35 1166.17 559.82 10.18 

 

Forward high-frequency cognates 

N = 32 mean SD median min max range SE 

Latency 728.09 72.32 706.5 621 975 354 12.78 

Cycle-time 24.11 2.03 23.58 21.13 27.12 5.99 0.36 

Frequency 213.75 165.78 147.5 36 554 518 29.31 

Levenshtein Distance 1.94 0.72 2 1 3 2 0.13 

L-scaled Latency 792.65 48.41 780.02 721.67 864.45 142.77 8.56 

Z-scaled Latency 747.58 103.49 714.42 604.65 909.45 304.8 18.3 
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Forward Low-frequency Cognate Condition 

N = 31 mean SD median min max range SE 

Latency 804.74 89.51 804 636 1024 388 16.08 

Cycle-time 24.78 1.89 24.14 22.51 27.49 4.99 0.34 

Frequency 21.29 20.77 12 1 91 90 3.73 

Levenshtein Distance 1.97 0.71 2 1 3 2 0.13 

L-scaled Latency 808.53 45.14 793.46 754.4 873.33 118.94 8.11 

Z-scaled Latency 781.44 102.95 742.4 663.95 932.85 268.9 18.49 

 

Forward High-frequency Noncognate Condition 

N = 32 mean SD median min max range SE 

Latency 802.53 93.13 773 673 1092 419 16.46 

Cycle-time 26.54 1.12 26.44 25.17 30.37 5.2 0.2 

Frequency 156.53 135.34 98.5 32 597 565 23.93 

Levenshtein Distance 5.16 1.39 5 3 8 5 0.25 

L-scaled Latency 850.55 26.72 848.25 817.93 941.92 123.99 4.72 

Z-scaled Latency 876.62 72.25 868.3 796.19 1134.92 338.73 12.77 

 

Forward Low-frequency Noncognate Condition 

N = 29 mean SD median min max Range SE 

Latency 910.17 112.13 892 663 1093 430 20.82 

Cycle-time 27.39 0.62 27.36 25.65 29.62 3.97 0.11 

Frequency 26.28 45.63 15 1 236 235 8.47 

Levenshtein Distance 4.83 0.93 5 3 7 4 0.17 

L-scaled Latency 870.87 14.71 870.12 829.49 924.08 94.59 2.73 

Z-scaled Latency 927.09 40.01 924.31 822.95 1078.49 255.54 7.43 

 

Backward High-frequency Cognate Condition 

N = 32 mean SD median min max Range SE 

Latency 738.69 71.55 727.5 631 974 343 12.65 

Cycle-time 24.06 2.05 23.45 21.18 27.35 6.18 0.36 

Frequency 223.09 192.18 189.5 21 816 795 33.97 

Levenshtein Distance 2.09 0.82 2 1 4 3 0.14 

L-scaled Latency 791.45 48.84 776.98 722.66 870.04 147.38 8.63 

Z-scaled Latency 745.21 105.3 708.23 606.35 924.11 317.76 18.61 

 

Backward High-frequency Cognate Condition 

N = 32 mean SD median min max Range SE 

Latency 738.69 71.55 727.5 631 974 343 12.65 

Cycle-time 24.06 2.05 23.45 21.18 27.35 6.18 0.36 

Frequency 223.09 192.18 189.5 21 816 795 33.97 

Levenshtein Distance 2.09 0.82 2 1 4 3 0.14 

L-scaled Latency 791.45 48.84 776.98 722.66 870.04 147.38 8.63 

Z-scaled Latency 745.21 105.3 708.23 606.35 924.11 317.76 18.61 

 

Backward High-frequency Cognate Condition 
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N = 32 mean SD median min max Range SE 

Latency 738.69 71.55 727.5 631 974 343 12.65 

Cycle-time 24.06 2.05 23.45 21.18 27.35 6.18 0.36 

Frequency 223.09 192.18 189.5 21 816 795 33.97 

Levenshtein Distance 2.09 0.82 2 1 4 3 0.14 

L-scaled Latency 791.45 48.84 776.98 722.66 870.04 147.38 8.63 

Z-scaled Latency 745.21 105.3 708.23 606.35 924.11 317.76 18.61 

 

Backward Low-frequency Cognate Condition 

N = 31 mean SD median min max range SE 

Latency 830.32 84.42 844 711 1034 323 15.16 

Cycle-time 24.39 1.85 23.78 22.12 27.49 5.37 0.33 

Frequency 31.32 34.54 24 2 183 181 6.2 

Levenshtein Distance 1.87 0.67 2 1 3 2 0.12 

L-scaled Latency 799.27 44.24 784.86 745.15 873.34 128.19 7.95 

Z-scaled Latency 760.88 100.55 724.36 646.62 932.87 286.25 18.06 

 

Backward High-frequency Noncognate Condition 

N = 32 mean SD median min max range SE 

Latency 844.91 83.15 818.5 669 1039 370 14.7 

Cycle-time 26.4 0.85 26.34 24.97 28.41 3.45 0.15 

Frequency 164.47 101.68 171.5 15 403 388 17.97 

Levenshtein Distance 5.13 1.41 5 2 8 6 0.25 

L-scaled Latency 847.2 20.36 845.94 813.05 895.29 82.25 3.6 

Z-scaled Latency 867.12 51.16 862.58 785.16 993.3 208.14 9.04 

 

Backward Low Frequency Noncognate Condition 

N = 30 mean SD median min max range SE 

Latency 984.13 105.12 974.5 769 1203 434 19.19 

Cycle-time 27.42 1.12 27.39 23.95 30.77 6.81 0.2 

Frequency 27.23 33.68 14.5 2 164 162 6.15 

Levenshtein Distance 5.2 1.35 5 3 9 6 0.25 

L-scaled Latency 871.49 26.66 870.95 788.86 951.42 162.56 4.87 

Z-scaled Latency 930.61 73.11 926.53 732.69 1166.17 433.48 13.35 

 

 

 

 11.5 Spearman's Correlation Output 

 P-values of "0" are, in reality, simply lower than the 2-decimal limit. 

 

Latency * Frequency 
 

 
estimate statistic p.value 

Global -0.49 3845228 0 

Forward -0.51 479212.3 0 

Backward -0.51 490508.3 0 
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ForwardHFCog -0.05 5725.05 0.79 

ForwardLFCog -0.43 7079.06 0.02 

ForwardHFNcog -0.04 5699.07 0.81 

ForwardLFNcog -0.27 5160.63 0.15 

BackwardHFCog -0.38 7535.38 0.03 

BackwardLFCog -0.09 5431.19 0.61 

BackwardHFNcog -0.14 6201.71 0.46 

BackwardLFNcog -0.42 6385.9 0.02 

    Cycles * Latency 
  

 
estimate statistic p.value 

Global 0.47 1354395 0 

Forward 0.43 182042.5 0 

Backward 0.54 149705.1 0 

ForwardHFCog 0.1 4897.9 0.58 

ForwardLFCog -0.11 5491.11 0.57 

ForwardHFNcog 0.17 4521.91 0.35 

ForwardLFNcog 0.42 2354 0.02 

BackwardHFCog 0.09 4950.95 0.61 

BackwardLFCog 0.16 4180 0.4 

BackwardHFNcog 0.2 4339.8 0.26 

BackwardLFNcog 0.21 3568.59 0.27 

    Cycles * frequency 
  

 
estimate statistic p.value 

Global -0.48 3795609 0 

Forward -0.46 463053 0 

Backward -0.5 486933.9 0 

ForwardHFCog -0.38 7506 0.03 

ForwardLFCog -0.21 5989.49 0.26 

ForwardHFNcog -0.7 9298.7 0 

ForwardLFNcog -0.76 7127.54 0 

BackwardHFCog -0.6 8716.3 0 

BackwardLFCog -0.35 6704.7 0.05 

BackwardHFNcog -0.92 10481.46 0 

BackwardLFNcog -0.77 7964.82 0 

    Latency * LD 
  

 
estimate statistic p.value 

Global 0.43 1469309 0 

Forward 0.33 212466.2 0 

Backward 0.54 151167 0 

ForwardHFCog 0.04 5213.09 0.81 

ForwardLFCog -0.35 6703.44 0.05 
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ForwardHFNcog -0.01 5487.48 0.97 

ForwardLFNcog 0.31 2785.27 0.1 

BackwardHFCog 0.02 5335.51 0.9 

BackwardLFCog 0.1 4474.73 0.6 

BackwardHFNcog 0.46 2960.97 0.01 

BackwardLFNcog 0.33 3025.79 0.08 

    Cycles * LD 
  

 
estimate statistic p.value 

Global 0.63 962546.6 0 

Forward 0.61 124146.3 0 

Backward 0.64 115903.1 0 

ForwardHFCog 0.53 2545.99 0 

ForwardLFCog 0.78 1088.53 0 

ForwardHFNcog -0.29 7014.3 0.11 

ForwardLFNcog -0.06 4314.52 0.75 

BackwardHFCog 0.58 2268.72 0 

BackwardLFCog 0.86 679.42 0 

BackwardHFNcog -0.12 6134.75 0.5 

BackwardLFNcog -0.25 5639.9 0.17 

    Frequency * LD 
  

 
estimate statistic p.value 

Global 0 2578018 0.98 

Forward 0.03 306931.6 0.71 

Backward -0.04 338213.9 0.67 

ForwardHFCog 0.27 3983.57 0.14 

ForwardLFCog 0.1 4461.31 0.59 

ForwardHFNcog 0.23 4203.97 0.21 

ForwardLFNcog 0.38 2505.74 0.04 

BackwardHFCog -0.18 6448.97 0.32 

BackwardLFCog -0.17 5792.86 0.37 

BackwardHFNcog 0.17 4510.58 0.34 

BackwardLFNcog 0.06 4203.59 0.73 

    Cycles * L-scaled 
  

 
estimate statistic p.value 

Global 1 0 0 

Forward 1 0 0 

Backward 1 0 0 

ForwardHFCog 1 0 0 

ForwardLFCog 1 0 0 

ForwardHFNcog 1 0 0 

ForwardLFNcog 1 9.02E-13 0 
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BackwardHFCog 1 0 0 

BackwardLFCog 1 0 0 

BackwardHFNcog 1 0 0 

BackwardLFNcog 1 0 0 

    Frequency * L-scaled 
 

 
estimate statistic p.value 

Global -0.48 3795609 0 

Forward -0.46 463053 0 

Backward -0.5 486933.9 0 

ForwardHFCog -0.38 7506 0.034813 

ForwardLFCog -0.21 5989.49 0.262541 

ForwardHFNcog -0.7 9298.7 0.000007 

ForwardLFNcog -0.76 7127.54 0.000002 

BackwardHFCog -0.6 8716.3 0.000305 

BackwardLFCog -0.35 6704.7 0.052315 

BackwardHFNcog -0.92 10481.46 0 

BackwardLFNcog -0.77 7964.82 0.000001 

    Latency * L-scaled 
  

 
estimate statistic p.value 

Global 0.47 1354395 0 

Forward 0.43 182042.5 0.000001 

Backward 0.54 149705.1 0 

ForwardHFCog 0.1 4897.9 0.577465 

ForwardLFCog -0.11 5491.11 0.566416 

ForwardHFNcog 0.17 4521.91 0.348819 

ForwardLFNcog 0.42 2354 0.024108 

BackwardHFCog 0.09 4950.95 0.614339 

BackwardLFCog 0.16 4180 0.396596 

BackwardHFNcog 0.2 4339.8 0.26136 

BackwardLFNcog 0.21 3568.59 0.274541 

    LD * L-scaled 
  

 
estimate statistic p.value 

Global 0.63 962546.6 0 

Forward 0.61 124146.3 0 

Backward 0.64 115903.1 0 

ForwardHFCog 0.53 2545.99 0.00167 

ForwardLFCog 0.78 1088.53 0 

ForwardHFNcog -0.29 7014.3 0.113057 

ForwardLFNcog -0.06 4314.52 0.746644 

BackwardHFCog 0.58 2268.72 0.000447 

BackwardLFCog 0.86 679.42 0 
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BackwardHFNcog -0.12 6134.75 0.497528 

BackwardLFNcog -0.25 5639.9 0.174359 

    Cycles * Z-scaled 
  

 
estimate statistic p.value 

Global 1 0 0 

Forward 1 0 0 

Backward 1 0 0 

ForwardHFCog 1 0 0 

ForwardLFCog 1 0 0 

ForwardHFNcog 1 0 0 

ForwardLFNcog 1 0 0 

BackwardHFCog 1 0 0 

BackwardLFCog 1 0 0 

BackwardHFNcog 1 0 0 

BackwardLFNcog 1 0 0 

    Frequency * Z-scaled 
 

 
estimate statistic p.value 

Global -0.48 3795609 0 

Forward -0.46 463053 0 

Backward -0.5 486933.9 0 

ForwardHFCog -0.38 7506 0.034813 

ForwardLFCog -0.21 5989.49 0.262541 

ForwardHFNcog -0.7 9298.7 0.000007 

ForwardLFNcog -0.76 7127.54 0.000002 

BackwardHFCog -0.6 8716.3 0.000305 

BackwardLFCog -0.35 6704.7 0.052315 

BackwardHFNcog -0.92 10481.46 0 

BackwardLFNcog -0.77 7964.82 0.000001 

    Latency * Z-scaled 
  

 
estimate statistic p.value 

Global 0.47 1354395 0 

Forward 0.43 182042.5 0.000001 

Backward 0.54 149705.1 0 

ForwardHFCog 0.1 4897.9 0.577465 

ForwardLFCog -0.11 5491.11 0.566416 

ForwardHFNcog 0.17 4521.91 0.348819 

ForwardLFNcog 0.42 2354 0.024108 

BackwardHFCog 0.09 4950.95 0.614339 

BackwardLFCog 0.16 4180 0.396596 

BackwardHFNcog 0.2 4339.8 0.26136 

BackwardLFNcog 0.21 3568.59 0.274541 
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    Z-scaled * LD 
  

 
estimate statistic p.value 

Global 0.63 962546.6 0 

Forward 0.61 124146.3 0 

Backward 0.64 115903.1 0 

ForwardHFCog 0.53 2545.99 0.00167 

ForwardLFCog 0.78 1088.53 0 

ForwardHFNcog -0.29 7014.3 0.113057 

ForwardLFNcog -0.06 4314.52 0.746644 

BackwardHFCog 0.58 2268.72 0.000447 

BackwardLFCog 0.86 679.42 0 

BackwardHFNcog -0.12 6134.75 0.497528 

BackwardLFNcog -0.25 5639.9 0.174359 

    Mean-regressed 
  

 
estimate statistic p.value 

Latency * Cycle-time 0.809524 16 0.021776 

Latency * Frequency -0.61905 136 0.11498 

Frequency * Cycle-
time -0.61905 136 0.11498 

LD * Cycle-time 0.761905 20 0.036756 

Frequency * LD -0.09524 92 0.840129 

Latency * LD 0.5 42 0.216171 

 

 

 11.6 Analysis Of Variance (ANOVA) Output 

 

Latency 
      

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial Omega-
squared 

Direction 1 92094.25 92094.25 11.49586 0.000815 0.040447 

Cognacy 1 729728 729728 91.08983 1.62E-18 0.265681 

Frequency Category 1 668639 668639 83.46427 2.74E-17 0.248788 

Direction*Cognacy 1 24553.24 24553.24 3.064909 0.081272 0.008225 

Direction*Frequency Category 1 8479.026 8479.026 1.058412 0.304609 0.000235 

Cognacy*Frequency Category 1 24044.33 24044.33 3.001384 0.084473 0.007974 

Direction*Cognacy*Frequency 
Category 1 1070.708 1070.708 0.133653 0.714994 0.003491 

Residuals 241 1930671 8011.081 
   

       Cycle-time 
     

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial Omega-
squared 
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Direction 1 0.97269 0.97269 0.406576 0.524318 0.002389 

Cognacy 1 416.5057 416.5057 174.0959 2.77E-30 0.410087 

Frequency Category 1 31.69298 31.69298 13.2474 0.000334 0.04688 

Direction*Cognacy 1 0.3873 0.3873 0.161888 0.687781 0.003377 

Direction*Frequency Category 1 0.116917 0.116917 0.048871 0.825228 0.003834 

Cognacy*Frequency Category 1 3.000527 3.000527 1.254195 0.263868 0.00102 

Direction*Cognacy*Frequency 
Category 1 0.990109 0.990109 0.413857 0.52063 0.00236 

Residuals 241 576.5666 2.392392 
   

       L-scaled Latency 
     

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial Omega-
squared 

Direction 1 553.4622 553.4622 0.406576 0.524318 0.002389 

Cognacy 1 236992.5 236992.5 174.0959 2.77E-30 0.410087 

Frequency Category 1 18033.37 18033.37 13.2474 0.000334 0.04688 

Direction*Cognacy 1 220.3744 220.3744 0.161888 0.687781 0.003377 

Direction*Frequency Category 1 66.52624 66.52624 0.048871 0.825228 0.003834 

Cognacy*Frequency Category 1 1707.305 1707.305 1.254195 0.263868 0.00102 

Direction*Cognacy*Frequency 
Category 1 563.3737 563.3737 0.413857 0.52063 0.00236 

Residuals 241 328067.4 1361.276 
   

       Z-scaled Latency 
     

Interaction DF 
Sum Of 
Squares 

Mean 
Square F value 

P-value 
(>F) 

Partial Omega-
squared 

Direction 1 2655.965 2655.965 0.367894 0.544726 0.002545 

Cognacy 1 1231477 1231477 170.5793 7.77E-30 0.405131 

Frequency Category 1 103091.2 103091.2 14.27978 0.000199 0.050632 

Direction*Cognacy 1 1046.638 1046.638 0.144976 0.703719 0.003446 

Direction*Frequency Category 1 108.2496 108.2496 0.014994 0.902644 0.003972 

Cognacy*Frequency Category 1 16197.92 16197.92 2.243671 0.135471 0.00497 

Direction*Cognacy*Frequency 
Category 1 3783.462 3783.462 0.52407 0.469813 0.001915 

Residuals 241 1739871 7219.381 
    

 

 

 

 

 

 



  

11.7 Generalized Additive Regression Model Output 

 

Latency 

                

GAM output 
    

X2 analysis of 
deviance 

  

GAM ANOVA 
test 

    

 
Estimate SE 

Z 
Value 

Pr(>|z
|) 

  
DF X2 

p-
value 

 
term DF 

Sum Of 
Squares 

Mean 
Square 

F 
Valu
e 

p 
valu
e 

(Intercept) 700.73 
170.2

8 4.12 0.00 
 

Directi
on 1.00 0.13 0.72 

 
Direction 1.00 92094.25 92094.25 

12.2
0 0.00 

Direction: 
Forward -36.02 

100.6
3 -0.36 0.72 

 

Cognac
y 1.00 0.16 0.69 

 
Cognacy 1.00 729728.00 729728.00 

96.6
7 0.00 

Cognacy: 
Noncognate 40.75 

101.6
0 0.40 0.69 

 

Freque
ncy-
categor
y 1.00 2.95 0.09 

 

Frequenc
y-
category 1.00 668639.04 668639.04 

88.5
8 0.00 

Frequency-
category: Low-
frequency 176.39 

102.7
3 1.72 0.09 

 

Phonet
ic 
Onset 2.00 6.38 0.04 

 

Phonetic 
Onset 2.00 21288.98 10644.49 1.41 0.25 

Phonetic Onset: 
voiceless 244.42 

104.1
7 2.35 0.02 

 

Stimulu
s 
Length 1.00 0.02 0.90 

 

Stimulus 
Length 1.00 181.45 181.45 0.02 0.88 

Phonetic Onset: 
vowel -65.10 

234.9
6 -0.28 0.78 

 

Concre
teness 1.00 0.04 0.84 

 

Concrete
ness 1.00 7.83 7.83 0.00 0.97 

Stimulus Length 4.02 30.69 0.13 0.90 
 

Directi
on*Cog
nacy 1.00 4.53 0.03 

 

Direction
*Cognacy 1.00 24175.03 24175.03 3.20 0.07 

Concreteness -7.34 37.23 -0.20 0.84 
 

Directi
on*Fre
quency
- 1.00 1.17 0.28 

 

Direction
*Frequen
cy-
category 1.00 9505.61 9505.61 1.26 0.26 
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categor
y 

Direction: 
Forward*Cognac
y: Noncognate -52.80 24.80 -2.13 0.03 

 

Directi
on*Ph
onetic 
Onset 2.00 2.46 0.29 

 

Direction
*Phoneti
c Onset 2.00 83363.22 41681.61 5.52 0.00 

Direction: 
Forward*Freque
ncy-category: 
Low-frequency -27.02 24.99 -1.08 0.28 

 

Directi
on*Sti
mulus 
Length 1.00 0.42 0.52 

 

Direction
*Stimulu
s Length 1.00 14372.87 14372.87 1.90 0.17 

Direction: 
Forward*Phoneti
c Onset: voiceless 34.87 25.54 1.37 0.17 

 

Directi
on*Co
ncrete
ness 1.00 0.43 0.51 

 

Direction
*Concret
eness 1.00 1079.75 1079.75 0.14 0.71 

Direction: 
Forward*Phoneti
c Onset: vowel 67.34 68.07 0.99 0.32 

 

Cognac
y*Freq
uency-
categor
y 1.00 1.83 0.18 

 

Cognacy*
Frequenc
y-
category 1.00 13823.05 13823.05 1.83 0.18 

Direction: 
Forward*Stimulu
s Length -7.52 11.60 -0.65 0.52 

 

Cognac
y*Phon
etic 
Onset 2.00 1.74 0.42 

 

Cognacy*
Phonetic 
Onset 2.00 18765.23 9382.62 1.24 0.29 

Direction: 
Forward*Concret
eness 10.50 16.01 0.66 0.51 

 

Cognac
y*Stim
ulus 
Length 1.00 0.23 0.63 

 

Cognacy*
Stimulus 
Length 1.00 5601.55 5601.55 0.74 0.39 

Cognacy: 
Noncognate*Fre
quency-category: 
Low-frequency 33.59 24.81 1.35 0.18 

 

Cognac
y*Conc
retenes
s 1.00 0.66 0.42 

 

Cognacy*
Concrete
ness 1.00 428.68 428.68 0.06 0.81 

Cognacy: 
Noncognate*Pho -14.95 25.13 -0.60 0.55 

 

Freque
ncy- 2.00 3.84 0.15 

 

Frequenc
y- 2.00 26981.36 13490.68 1.79 0.17 
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netic Onset: 
voiceless 

categor
y*Phon
etic 
Onset 

category
*Phoneti
c Onset 

Cognacy: 
Noncognate*Pho
netic Onset: 
vowel 76.72 72.53 1.06 0.29 

 

Freque
ncy-
categor
y*Stim
ulus 
Length 1.00 1.74 0.19 

 

Frequenc
y-
category
*Stimulu
s Length 1.00 23335.27 23335.27 3.09 0.08 

Cognacy: 
Noncognate*Sti
mulus Length 5.58 11.74 0.48 0.63 

 

Freque
ncy-
categor
y*Conc
retenes
s 1.00 0.05 0.83 

 

Frequenc
y-
category
*Concret
eness 1.00 4.23 4.23 0.00 0.98 

Cognacy: 
Noncognate*Con
creteness 12.67 15.56 0.81 0.42 

 

Phonet
ic 
Onset*
Stimulu
s 
Length 2.00 4.86 0.09 

 

Phonetic 
Onset*St
imulus 
Length 2.00 46060.40 23030.20 3.05 0.05 

Frequency-
category: Low-
frequency*Phone
tic Onset: 
voiceless -34.46 25.00 -1.38 0.17 

 

Phonet
ic 
Onset*
Concre
teness 2.00 3.72 0.16 

 

Phonetic 
Onset*C
oncreten
ess 2.00 30853.79 15426.90 2.04 0.13 

Frequency-
category: Low-
frequency*Phone
tic Onset: vowel 77.44 69.94 1.11 0.27 

 

Stimulu
s 
Length
*Concr
etenes
s 1.00 0.09 0.76 

 

Stimulus 
Length*C
oncreten
ess 1.00 761.22 761.22 0.10 0.75 
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Frequency-
category: Low-
frequency*Stimul
us Length -15.86 12.01 -1.32 0.19 

      
Residuals 

221.
00 

1668228.3
7 7548.54 

  Frequency-
category: Low-
frequency*Concr
eteness 3.34 15.43 0.22 0.83 

            Phonetic Onset: 
voiceless*Stimulu
s Length -18.58 11.86 -1.57 0.12 

            Phonetic Onset: 
vowel*Stimulus 
Length 28.54 25.21 1.13 0.26 

            Phonetic Onset: 
voiceless*Concre
teness -30.06 16.20 -1.85 0.06 

            Phonetic Onset: 
vowel*Concreten
ess -41.72 41.31 -1.01 0.31 

            Stimulus 
Length*Concrete
ness 2.03 6.78 0.30 0.76 

            

N = 249 

Model 
paramete
rs = 28 

Devia
nce 
explai
ned = 
0.521 

R2-adj 
= 0.46 

UBRE\AI
C = 
111.36 
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Cycle-time 
               

GAM output 
    

X2 analysis of 
deviance 

  

GAM ANOVA 
test 

    

 
Estimate SE 

Z 
Value 

Pr(>|z
|) 

  
DF X2 

p-
value 

 
term DF 

Sum Of 
Squares 

Mean 
Square 

F 
Valu
e 

p 
valu
e 

(Intercept) 26.93 2.61 10.31 0.00 
 

Directi
on 1.00 0.66 0.42 

 
Direction 1.00 0.97 0.97 0.45 0.50 

Direction: 
Forward -1.25 1.54 -0.81 0.42 

 

Cognac
y 1.00 0.03 0.85 

 
Cognacy 1.00 416.51 416.51 

192.
64 0.00 

Cognacy: 
Noncognate 0.29 1.56 0.19 0.85 

 

Freque
ncy-
categor
y 1.00 0.49 0.48 

 

Frequenc
y-
category 1.00 31.69 31.69 

14.6
6 0.00 

Frequency-
category: Low-
frequency -1.11 1.58 -0.70 0.48 

 

Phonet
ic 
Onset 2.00 0.54 0.76 

 

Phonetic 
Onset 2.00 2.05 1.02 0.47 0.62 

Phonetic Onset: 
voiceless -1.07 1.60 -0.67 0.50 

 

Stimulu
s 
Length 1.00 2.20 0.14 

 

Stimulus 
Length 1.00 29.85 29.85 

13.8
1 0.00 

Phonetic Onset: 
vowel 0.44 3.60 0.12 0.90 

 

Concre
teness 1.00 0.12 0.73 

 

Concrete
ness 1.00 9.08 9.08 4.20 0.04 

Stimulus Length -0.70 0.47 -1.48 0.14 
 

Directi
on*Cog
nacy 1.00 0.00 0.96 

 

Direction
*Cognacy 1.00 0.04 0.04 0.02 0.89 

Concreteness 0.20 0.57 0.34 0.73 
 

Directi
on*Fre
quency
-
categor
y 1.00 0.01 0.93 

 

Direction
*Frequen
cy-
category 1.00 0.19 0.19 0.09 0.77 

Direction: -0.02 0.38 -0.05 0.96 
 

Directi 2.00 2.23 0.33 
 

Direction 2.00 7.44 3.72 1.72 0.18 
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Forward*Cognac
y: Noncognate 

on*Ph
onetic 
Onset 

*Phoneti
c Onset 

Direction: 
Forward*Freque
ncy-category: 
Low-frequency 0.03 0.38 0.09 0.93 

 

Directi
on*Sti
mulus 
Length 1.00 0.40 0.53 

 

Direction
*Stimulu
s Length 1.00 0.51 0.51 0.23 0.63 

Direction: 
Forward*Phoneti
c Onset: voiceless 0.58 0.39 1.49 0.14 

 

Directi
on*Co
ncrete
ness 1.00 0.27 0.61 

 

Direction
*Concret
eness 1.00 0.16 0.16 0.08 0.78 

Direction: 
Forward*Phoneti
c Onset: vowel 0.12 1.04 0.11 0.91 

 

Cognac
y*Freq
uency-
categor
y 1.00 1.19 0.27 

 

Cognacy*
Frequenc
y-
category 1.00 2.45 2.45 1.13 0.29 

Direction: 
Forward*Stimulu
s Length 0.11 0.18 0.63 0.53 

 

Cognac
y*Phon
etic 
Onset 2.00 1.16 0.56 

 

Cognacy*
Phonetic 
Onset 2.00 3.42 1.71 0.79 0.45 

Direction: 
Forward*Concret
eness 0.13 0.25 0.51 0.61 

 

Cognac
y*Stim
ulus 
Length 1.00 12.27 0.00 

 

Cognacy*
Stimulus 
Length 1.00 33.42 33.42 

15.4
6 0.00 

Cognacy: 
Noncognate*Fre
quency-category: 
Low-frequency 0.42 0.38 1.09 0.27 

 

Cognac
y*Conc
retenes
s 1.00 0.64 0.42 

 

Cognacy*
Concrete
ness 1.00 1.80 1.80 0.83 0.36 

Cognacy: 
Noncognate*Pho
netic Onset: 
voiceless -0.41 0.39 -1.07 0.28 

 

Freque
ncy-
categor
y*Phon
etic 2.00 3.25 0.20 

 

Frequenc
y-
category
*Phoneti
c Onset 2.00 5.61 2.81 1.30 0.28 
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Onset 

Cognacy: 
Noncognate*Pho
netic Onset: 
vowel -0.32 1.11 -0.29 0.77 

 

Freque
ncy-
categor
y*Stim
ulus 
Length 1.00 0.37 0.54 

 

Frequenc
y-
category
*Stimulu
s Length 1.00 0.27 0.27 0.12 0.73 

Cognacy: 
Noncognate*Sti
mulus Length 0.63 0.18 3.50 0.00 

 

Freque
ncy-
categor
y*Conc
retenes
s 1.00 1.83 0.18 

 

Frequenc
y-
category
*Concret
eness 1.00 3.99 3.99 1.85 0.18 

Cognacy: 
Noncognate*Con
creteness -0.19 0.24 -0.80 0.42 

 

Phonet
ic 
Onset*
Stimulu
s 
Length 2.00 1.42 0.49 

 

Phonetic 
Onset*St
imulus 
Length 2.00 2.62 1.31 0.61 0.55 

Frequency-
category: Low-
frequency*Phone
tic Onset: 
voiceless -0.64 0.38 -1.67 0.10 

 

Phonet
ic 
Onset*
Concre
teness 2.00 0.15 0.93 

 

Phonetic 
Onset*C
oncreten
ess 2.00 0.26 0.13 0.06 0.94 

Frequency-
category: Low-
frequency*Phone
tic Onset: vowel 0.38 1.07 0.36 0.72 

 

Stimulu
s 
Length
*Concr
etenes
s 1.00 0.04 0.84 

 

Stimulus 
Length*C
oncreten
ess 1.00 0.08 0.08 0.04 0.85 

Frequency-
category: Low-
frequency*Stimul 0.11 0.18 0.61 0.54 

      
Residuals 

221.
00 477.83 2.16 
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us Length 

Frequency-
category: Low-
frequency*Concr
eteness 0.32 0.24 1.35 0.18 

            Phonetic Onset: 
voiceless*Stimulu
s Length 0.21 0.18 1.16 0.25 

            Phonetic Onset: 
vowel*Stimulus 
Length 0.00 0.39 -0.01 0.99 

            Phonetic Onset: 
voiceless*Concre
teness 0.08 0.25 0.32 0.75 

            Phonetic Onset: 
vowel*Concreten
ess -0.08 0.63 -0.12 0.91 

            Stimulus 
Length*Concrete
ness -0.02 0.10 -0.20 0.84 

            

N = 249 

Model 
paramete
rs = 28 

Devia
nce 
explai
ned = 
0.536 

R2-adj 
= 0.48 

UBRE\AI
C = 
0.36879 

           

                 

                 

                 L-scaled latency 
               

GAM output 
    

X2 analysis of 
deviance 

  

GAM ANOVA 
test 
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Estimate SE 

Z 
Value 

Pr(>|z
|) 

  
DF X2 

p-
value 

 
term DF 

Sum Of 
Squares 

Mean 
Square 

F 
Valu
e 

p 
valu
e 

(Intercept) 859.93 69.11 12.44 0.00 
 

Directi
on 1.00 0.53 0.46 

 
Direction 1.00 553.46 553.46 0.45 0.50 

Direction: 
Forward -29.84 40.84 -0.73 0.46 

 

Cognac
y 1.00 0.03 0.87 

 
Cognacy 1.00 236992.50 236992.50 

192.
64 0.00 

Cognacy: 
Noncognate 6.90 41.23 0.17 0.87 

 

Freque
ncy-
categor
y 1.00 0.40 0.53 

 

Frequenc
y-
category 1.00 18033.37 18033.37 

14.6
6 0.00 

Frequency-
category: Low-
frequency -26.36 41.69 -0.63 0.53 

 

Phonet
ic 
Onset 2.00 0.44 0.80 

 

Phonetic 
Onset 2.00 1163.72 581.86 0.47 0.62 

Phonetic Onset: 
voiceless -25.41 42.28 -0.60 0.55 

 

Stimulu
s 
Length 1.00 1.79 0.18 

 

Stimulus 
Length 1.00 16987.48 16987.48 

13.8
1 0.00 

Phonetic Onset: 
vowel 10.40 95.36 0.11 0.91 

 

Concre
teness 1.00 0.10 0.76 

 

Concrete
ness 1.00 5166.67 5166.67 4.20 0.04 

Stimulus Length -16.64 12.45 -1.34 0.18 
 

Directi
on*Cog
nacy 1.00 0.00 0.96 

 

Direction
*Cognacy 1.00 24.44 24.44 0.02 0.89 

Concreteness 4.67 15.11 0.31 0.76 
 

Directi
on*Fre
quency
-
categor
y 1.00 0.01 0.93 

 

Direction
*Frequen
cy-
category 1.00 105.42 105.42 0.09 0.77 

Direction: 
Forward*Cognac
y: Noncognate -0.48 10.06 -0.05 0.96 

 

Directi
on*Ph
onetic 
Onset 2.00 1.82 0.40 

 

Direction
*Phoneti
c Onset 2.00 4230.86 2115.43 1.72 0.18 

Direction: 0.83 10.14 0.08 0.93 
 

Directi 1.00 0.32 0.57 
 

Direction 1.00 288.13 288.13 0.23 0.63 
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Forward*Freque
ncy-category: 
Low-frequency 

on*Sti
mulus 
Length 

*Stimulu
s Length 

Direction: 
Forward*Phoneti
c Onset: voiceless 13.91 10.37 1.34 0.18 

 

Directi
on*Co
ncrete
ness 1.00 0.22 0.64 

 

Direction
*Concret
eness 1.00 93.50 93.50 0.08 0.78 

Direction: 
Forward*Phoneti
c Onset: vowel 2.76 27.62 0.10 0.92 

 

Cognac
y*Freq
uency-
categor
y 1.00 0.97 0.32 

 

Cognacy*
Frequenc
y-
category 1.00 1391.52 1391.52 1.13 0.29 

Direction: 
Forward*Stimulu
s Length 2.68 4.71 0.57 0.57 

 

Cognac
y*Phon
etic 
Onset 2.00 0.94 0.62 

 

Cognacy*
Phonetic 
Onset 2.00 1945.70 972.85 0.79 0.45 

Direction: 
Forward*Concret
eness 3.02 6.50 0.46 0.64 

 

Cognac
y*Stim
ulus 
Length 1.00 9.98 0.00 

 

Cognacy*
Stimulus 
Length 1.00 19014.92 19014.92 

15.4
6 0.00 

Cognacy: 
Noncognate*Fre
quency-category: 
Low-frequency 9.91 10.07 0.98 0.32 

 

Cognac
y*Conc
retenes
s 1.00 0.52 0.47 

 

Cognacy*
Concrete
ness 1.00 1024.75 1024.75 0.83 0.36 

Cognacy: 
Noncognate*Pho
netic Onset: 
voiceless -9.85 10.20 -0.97 0.33 

 

Freque
ncy-
categor
y*Phon
etic 
Onset 2.00 2.64 0.27 

 

Frequenc
y-
category
*Phoneti
c Onset 2.00 3193.89 1596.95 1.30 0.28 

Cognacy: 
Noncognate*Pho
netic Onset: -7.70 29.44 -0.26 0.79 

 

Freque
ncy-
categor 1.00 0.30 0.58 

 

Frequenc
y-
category 1.00 151.10 151.10 0.12 0.73 
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vowel y*Stim
ulus 
Length 

*Stimulu
s Length 

Cognacy: 
Noncognate*Sti
mulus Length 15.05 4.76 3.16 0.00 

 

Freque
ncy-
categor
y*Conc
retenes
s 1.00 1.49 0.22 

 

Frequenc
y-
category
*Concret
eness 1.00 2273.03 2273.03 1.85 0.18 

Cognacy: 
Noncognate*Con
creteness -4.55 6.32 -0.72 0.47 

 

Phonet
ic 
Onset*
Stimulu
s 
Length 2.00 1.15 0.56 

 

Phonetic 
Onset*St
imulus 
Length 2.00 1490.36 745.18 0.61 0.55 

Frequency-
category: Low-
frequency*Phone
tic Onset: 
voiceless -15.26 10.15 -1.50 0.13 

 

Phonet
ic 
Onset*
Concre
teness 2.00 0.12 0.94 

 

Phonetic 
Onset*C
oncreten
ess 2.00 148.59 74.30 0.06 0.94 

Frequency-
category: Low-
frequency*Phone
tic Onset: vowel 9.14 28.38 0.32 0.75 

 

Stimulu
s 
Length
*Concr
etenes
s 1.00 0.03 0.86 

 

Stimulus 
Length*C
oncreten
ess 1.00 45.95 45.95 0.04 0.85 

Frequency-
category: Low-
frequency*Stimul
us Length 2.68 4.87 0.55 0.58 

      
Residuals 

221.
00 271884.94 1230.25 

  Frequency-
category: Low-
frequency*Concr 7.64 6.26 1.22 0.22 
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eteness 

Phonetic Onset: 
voiceless*Stimulu
s Length 5.02 4.82 1.04 0.30 

            Phonetic Onset: 
vowel*Stimulus 
Length -0.06 10.23 -0.01 1.00 

            Phonetic Onset: 
voiceless*Concre
teness 1.90 6.58 0.29 0.77 

            Phonetic Onset: 
vowel*Concreten
ess -1.79 16.77 -0.11 0.91 

            Stimulus 
Length*Concrete
ness -0.50 2.75 -0.18 0.86 

            

N = 249 

Model 
paramete
rs = 28 

Devia
nce 
explai
ned = 
0.536 

R2-adj 
= 0.48 

UBRE\AI
C = 
6.7668 

           

                 

                 

                 Z-scaled latency 
               

GAM output 
    

X2 analysis of 
deviance 

  

GAM ANOVA 
test 

    

 
Estimate SE 

Z 
Value 

Pr(>|z
|) 

  
DF X2 

p-
value 

 
term DF 

Sum Of 
Squares 

Mean 
Square 

F 
Valu
e 

p 
valu
e 

(Intercept) 891.70 159.9 5.57 0.00 
 

Directi 1.00 0.59 0.44 
 

Direction 1.00 2655.96 2655.96 0.40 0.53 
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5 on 

Direction: 
Forward -72.78 94.53 -0.77 0.44 

 

Cognac
y 1.00 0.01 0.93 

 
Cognacy 1.00 

1231477.0
9 

1231477.0
9 

187.
25 0.00 

Cognacy: 
Noncognate 8.81 95.44 0.09 0.93 

 

Freque
ncy-
categor
y 1.00 0.30 0.58 

 

Frequenc
y-
category 1.00 103091.19 103091.19 

15.6
8 0.00 

Frequency-
category: Low-
frequency -53.05 96.49 -0.55 0.58 

 

Phonet
ic 
Onset 2.00 0.57 0.75 

 

Phonetic 
Onset 2.00 3675.96 1837.98 0.28 0.76 

Phonetic Onset: 
voiceless -66.49 97.85 -0.68 0.50 

 

Stimulu
s 
Length 1.00 1.48 0.22 

 

Stimulus 
Length 1.00 84166.66 84166.66 

12.8
0 0.00 

Phonetic Onset: 
vowel 30.86 

220.7
1 0.14 0.89 

 

Concre
teness 1.00 0.12 0.73 

 

Concrete
ness 1.00 28058.13 28058.13 4.27 0.04 

Stimulus Length -35.05 28.83 -1.22 0.22 
 

Directi
on*Cog
nacy 1.00 0.00 0.95 

 

Direction
*Cognacy 1.00 103.12 103.12 0.02 0.90 

Concreteness 12.06 34.97 0.34 0.73 
 

Directi
on*Fre
quency
-
categor
y 1.00 0.00 0.99 

 

Direction
*Frequen
cy-
category 1.00 948.82 948.82 0.14 0.70 

Direction: 
Forward*Cognac
y: Noncognate -1.51 23.30 -0.06 0.95 

 

Directi
on*Ph
onetic 
Onset 2.00 1.86 0.39 

 

Direction
*Phoneti
c Onset 2.00 23851.80 11925.90 1.81 0.17 

Direction: 
Forward*Freque
ncy-category: 
Low-frequency -0.18 23.48 -0.01 0.99 

 

Directi
on*Sti
mulus 
Length 1.00 0.44 0.51 

 

Direction
*Stimulu
s Length 1.00 2207.33 2207.33 0.34 0.56 
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Direction: 
Forward*Phoneti
c Onset: voiceless 32.64 23.99 1.36 0.17 

 

Directi
on*Co
ncrete
ness 1.00 0.21 0.65 

 

Direction
*Concret
eness 1.00 305.70 305.70 0.05 0.83 

Direction: 
Forward*Phoneti
c Onset: vowel 8.06 63.94 0.13 0.90 

 

Cognac
y*Freq
uency-
categor
y 1.00 1.83 0.18 

 

Cognacy*
Frequenc
y-
category 1.00 14072.57 14072.57 2.14 0.14 

Direction: 
Forward*Stimulu
s Length 7.21 10.90 0.66 0.51 

 

Cognac
y*Phon
etic 
Onset 2.00 0.88 0.64 

 

Cognacy*
Phonetic 
Onset 2.00 10546.24 5273.12 0.80 0.45 

Direction: 
Forward*Concret
eness 6.86 15.04 0.46 0.65 

 

Cognac
y*Stim
ulus 
Length 1.00 9.20 0.00 

 

Cognacy*
Stimulus 
Length 1.00 94298.29 94298.29 

14.3
4 0.00 

Cognacy: 
Noncognate*Fre
quency-category: 
Low-frequency 31.51 23.30 1.35 0.18 

 

Cognac
y*Conc
retenes
s 1.00 0.35 0.55 

 

Cognacy*
Concrete
ness 1.00 4182.01 4182.01 0.64 0.43 

Cognacy: 
Noncognate*Pho
netic Onset: 
voiceless -22.04 23.60 -0.93 0.35 

 

Freque
ncy-
categor
y*Phon
etic 
Onset 2.00 2.62 0.27 

 

Frequenc
y-
category
*Phoneti
c Onset 2.00 17050.59 8525.29 1.30 0.28 

Cognacy: 
Noncognate*Pho
netic Onset: 
vowel -15.79 68.13 -0.23 0.82 

 

Freque
ncy-
categor
y*Stim
ulus 
Length 1.00 0.10 0.75 

 

Frequenc
y-
category
*Stimulu
s Length 1.00 59.99 59.99 0.01 0.92 
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Cognacy: 
Noncognate*Sti
mulus Length 33.45 11.03 3.03 0.00 

 

Freque
ncy-
categor
y*Conc
retenes
s 1.00 1.61 0.20 

 

Frequenc
y-
category
*Concret
eness 1.00 13021.48 13021.48 1.98 0.16 

Cognacy: 
Noncognate*Con
creteness -8.70 14.62 -0.60 0.55 

 

Phonet
ic 
Onset*
Stimulu
s 
Length 2.00 1.37 0.50 

 

Phonetic 
Onset*St
imulus 
Length 2.00 9618.31 4809.16 0.73 0.48 

Frequency-
category: Low-
frequency*Phone
tic Onset: 
voiceless -34.90 23.48 -1.49 0.14 

 

Phonet
ic 
Onset*
Concre
teness 2.00 0.14 0.93 

 

Phonetic 
Onset*C
oncreten
ess 2.00 903.88 451.94 0.07 0.93 

Frequency-
category: Low-
frequency*Phone
tic Onset: vowel 22.71 65.69 0.35 0.73 

 

Stimulu
s 
Length
*Concr
etenes
s 1.00 0.06 0.80 

 

Stimulus 
Length*C
oncreten
ess 1.00 480.19 480.19 0.07 0.79 

Frequency-
category: Low-
frequency*Stimul
us Length 3.61 11.28 0.32 0.75 

      
Residuals 

221.
00 

1453456.1
0 6576.72 

  Frequency-
category: Low-
frequency*Concr
eteness 18.40 14.49 1.27 0.20 

            Phonetic Onset: 
voiceless*Stimulu 12.55 11.14 1.13 0.26 

            



140 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

s Length 

Phonetic Onset: 
vowel*Stimulus 
Length -1.11 23.68 -0.05 0.96 

            Phonetic Onset: 
voiceless*Concre
teness 4.32 15.22 0.28 0.78 

            Phonetic Onset: 
vowel*Concreten
ess -6.14 38.80 -0.16 0.87 

            Stimulus 
Length*Concrete
ness -1.61 6.37 -0.25 0.80 

            

N = 249 

Model 
paramete
rs = 28 

Devia
nce 
explai
ned = 
0.531 

R2-adj 
= 0.47 

UBRE\AI
C = 23.92 

            

 

 

 



  

11.8 Statistical Script 

 This statistical script was used to generate the results of this thesis in the program R 

(R Core Team, 2015). Acknowledgements for its creation and length must be given to Dr. 

Sean Roberts most of all, and also to Dr. Francisco Torreira, Merel Maslowski, and Jeremy 

Collins. All 4 helped troubleshoot issues. 

 

 

 

library(lme4) 

library(seewave) 

library(arm) 

library(HH) 

library(Hmisc) 

library(plyr) 

library(psych) 

library(gplots) 

library(ggplot2) 

library(lsr) 

library(distr) 

library(dbEmpLikeGOF) 

library(entropy) 

library(reshape2) 

library(distrEx) 

library(corrgram) 

library(GoFKernel) 

library(broom) 

library(stringdist) 

library(data.table) 

library(gridExtra) 

library(mgcv) 

library(gamlss) 

library(gamm4) 

 

 

#################################################################################

########### 

###### Script created with R 3.2.2 14-08-2015 "Fire Safety" and Rstudio 0.99.473 ########### 

##### if you don't have these packages, use the install.packages(PackageName) command ###### 
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#################################################################################

########### 

# files will appear wherever current "source" is located 

# import 'Multilink.csv' first, then run all. 

 

Multilink <- read.table(file='Multilink.csv', header=TRUE, sep=',', dec='.') 

 

############ Partial Omega Squared Function ################ 

# just highlight and source this. 

 

# Partial omega-squared 

partialOmegas <- function(mod){ 

  aovMod <- mod 

  if(!any(class(aovMod) %in% 'aov')) aovMod <- aov(mod) 

  sumAov     <- summary(aovMod)[[1]] 

  residRow   <- nrow(sumAov) 

  dfError    <- sumAov[residRow,1] 

  msError    <- sumAov[residRow,3] 

  nTotal     <- nrow(model.frame(aovMod)) 

  dfEffects  <- sumAov[1:{residRow-1},1] 

  ssEffects  <- sumAov[1:{residRow-1},2] 

  msEffects  <- sumAov[1:{residRow-1},3] 

  partOmegas <- abs((dfEffects*(msEffects-msError)) / 

                      (ssEffects + (nTotal -dfEffects)*msError)) 

  names(partOmegas) <- rownames(sumAov)[1:{residRow-1}] 

  partOmegas 

} 

 

############################################################# 

############################################################# 

 

############# Levenshtein Distance calculation ################ 

 

# uses package "stringdistr" 

Multilink$Levdist = stringdist(Multilink$Stimuli, Multilink$Translation, method= "lv") 

 

# uses package "plyr" 

# cognate vs noncog ; all numbers should match 
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count(Multilink$cognacy) 

count(Multilink$Levdist) 

count(Multilink$Levdist <= 3) 

 

 

############################################################ 

############################################################ 

 

############### Linear Model, And Cycle->Latency Scaling ################## 

########################################################################### 

# generates 2 new data column that extrapolate possible latencies from models of cycle-time 

# 2 models present: a simple linear model (good fit), and a Z-score model (better-than-good fit) 

# used for the principal tests of the results. 

 

## Linear Models ## 

# just a check 

#"intercept" seems to be the backward high-frequency cognate condition 

summary(lm(Latency ~ cycles, data= Multilink)) 

summary(lm(cycles ~ Direction*cognacy*freq.cat, data= Multilink)) 

summary(lm(Latency ~ Direction*cognacy*freq.cat, data= Multilink)) 

summary(lm(Latency ~ freq.cat, data= Multilink)) 

 

 

## Linear model ## 

# highlight the whole thing to run. 

 

linmodlatency = lm(Latency ~ cycles, data= Multilink) 

summary(linmodlatency) 

Multilink$P.Latency.lm = predict(linmodlatency) 

 

 

## Z-score model ## 

#this has a better fit than the linear model. 

 

Multilink$Latency.z = (Multilink$Latency - mean(Multilink$Latency)) / sd(Multilink$Latency) 

Multilink$Latency.log = log10(Multilink$Latency) 

Multilink$Latency.log.z = (Multilink$Latency.log - mean(Multilink$Latency.log)) / 

sd(Multilink$Latency.log) 
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Multilink$cycles.z = (Multilink$cycles - mean(Multilink$cycles))  /sd(Multilink$cycles) 

Multilink$Latency.approx.log = (Multilink$cycles.z * sd(Multilink$Latency.log)) + 

mean(Multilink$Latency.log) 

Multilink$P.Latency.zm = 10^(Multilink$Latency.approx.log) 

 

 

##################################################################### 

##################################################################### 

 

######## Descriptive Statistics ######## 

######################################## 

 

## global ## 

descstats1 = describe(Multilink) 

descstats1 = as.data.frame(descstats1) 

 

write.table(descstats1, file="descriptives.csv", append = FALSE, sep=",") 

 

## direction ## 

descstats2 = rbindlist(describeBy(Multilink$Latency, group=(Multilink$Direction)), use.names=TRUE, 

fill=FALSE, idcol=TRUE) 

descstats2 = rbind(descstats2,  

  rbindlist(describeBy(Multilink$cycles, group=(Multilink$Direction)), use.names=TRUE, fill=FALSE, 

idcol=TRUE), 

  rbindlist(describeBy(Multilink$Stim.length, group=(Multilink$Direction)), use.names=TRUE, 

fill=FALSE, idcol=TRUE), 

  rbindlist(describeBy(Multilink$freq, group=(Multilink$Direction)), use.names=TRUE, fill=FALSE, 

idcol=TRUE), 

  rbindlist(describeBy(Multilink$Mean.N.RT, group=(Multilink$Direction)), use.names=TRUE, 

fill=FALSE, idcol=TRUE), 

  rbindlist(describeBy(Multilink$concreteness, group=(Multilink$Direction)), use.names=TRUE, 

fill=FALSE, idcol=TRUE), 

  rbindlist(describeBy(Multilink$Levdist, group=(Multilink$Direction)), use.names=TRUE, fill=FALSE, 

idcol=TRUE), 

  rbindlist(describeBy(Multilink$P.Latency.lm, group=(Multilink$Direction)), use.names=TRUE, 

fill=FALSE, idcol=TRUE), 

  rbindlist(describeBy(Multilink$P.Latency.zm, group=(Multilink$Direction)), use.names=TRUE, 

fill=FALSE, idcol=TRUE) ) 
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write.table(descstats2, file="descriptives.csv", append = TRUE, sep=",") 

 

 

## the 8 conditions ## 

descstats3 = rbindlist(describeBy(Multilink$Latency, group=(Multilink$category))) 

descstats3 = rbind(descstats3,  

  rbindlist(describeBy(Multilink$cycles, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$Stim.length, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$freq, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$Mean.N.RT, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$concreteness, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$Levdist, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$P.Latency.lm, group=(Multilink$category))), 

  rbindlist(describeBy(Multilink$P.Latency.zm, group=(Multilink$category))) ) 

 

 

write.table(descstats3, file="descriptives.csv", append = TRUE, sep=",") 

 

################################################################# 

################################################################# 

 

 

########## Correlational Analyses ############## 

################################################ 

 

## data slices ## 

# doesn't do correlations without defined slices, for some reason 

Forward = Multilink$Direction=='Forward' 

Backward = Multilink$Direction=='Backward' 

ForwardHFCog = Multilink$category=='ForwardHFCog' 

ForwardLFCog = Multilink$category=='ForwardLFCog' 

ForwardHFNcog = Multilink$category=='ForwardHFNcog' 

ForwardLFNcog = Multilink$category=='ForwardLFNcog' 

BackwardHFCog = Multilink$category=='BackwardHFCog' 

BackwardLFCog = Multilink$category=='BackwardLFCog' 

BackwardHFNcog = Multilink$category=='BackwardHFNcog' 

BackwardLFNcog = Multilink$category=='BackwardLFNcog' 
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## General correlations ## 

 

## Latency & frequency ## 

cor.latfreq = rbind.data.frame( 

    tidy(cor.test(Multilink$Latency, Multilink$freq, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[Forward], Multilink$freq[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[Backward], Multilink$freq[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[ForwardHFCog], Multilink$freq[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[ForwardLFCog], Multilink$freq[ForwardLFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[ForwardHFNcog], Multilink$freq[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[ForwardLFNcog], Multilink$freq[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[BackwardHFCog], Multilink$freq[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[BackwardLFCog], Multilink$freq[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[BackwardHFNcog], Multilink$freq[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

    tidy(cor.test(Multilink$Latency[BackwardLFNcog], Multilink$freq[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.latfreq) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.latfreq, file="correlations.csv", append = FALSE, sep=",") 

 

## Cycles & Latency ## 

cor.cyclat = rbind.data.frame( 

  tidy(cor.test(Multilink$cycles, Multilink$Latency, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[Forward], Multilink$Latency[Forward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 
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  tidy(cor.test(Multilink$cycles[Backward], Multilink$Latency[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFCog], Multilink$Latency[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFCog], Multilink$Latency[ForwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFNcog], Multilink$Latency[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFNcog], Multilink$Latency[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFCog], Multilink$Latency[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFCog], Multilink$Latency[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFNcog], Multilink$Latency[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFNcog], Multilink$Latency[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.cyclat) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", "ForwardLFCog", 

"ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", "BackwardHFNcog", 

"BackwardLFNcog"), sep="") 

write.table(cor.cyclat, file="correlations.csv", append = TRUE, sep=",") 

 

## Cycles & frequency ## 

cor.cycfreq = rbind.data.frame( 

  tidy(cor.test(Multilink$cycles, Multilink$freq, use="complete.obs", method="spearman", alternative= 

'two.sided')), 

  tidy(cor.test(Multilink$cycles[Forward], Multilink$freq[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[Backward], Multilink$freq[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFCog], Multilink$freq[ForwardHFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFCog], Multilink$freq[ForwardLFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFNcog], Multilink$freq[ForwardHFNcog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 
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  tidy(cor.test(Multilink$cycles[ForwardLFNcog], Multilink$freq[ForwardLFNcog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFCog], Multilink$freq[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFCog], Multilink$freq[BackwardLFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFNcog], Multilink$freq[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFNcog], Multilink$freq[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.cycfreq) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.cycfreq, file="correlations.csv", append = TRUE, sep=",") 

 

## Latency & Levenshtein Distance ## 

cor.latlevd = rbind.data.frame( 

  tidy(cor.test(Multilink$Latency, Multilink$Levdist, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[Forward], Multilink$Levdist[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[Backward], Multilink$Levdist[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardHFCog], Multilink$Levdist[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardLFCog], Multilink$Levdist[ForwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardHFNcog], Multilink$Levdist[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardLFNcog], Multilink$Levdist[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[BackwardHFCog], Multilink$Levdist[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[BackwardLFCog], Multilink$Levdist[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[BackwardHFNcog], Multilink$Levdist[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 
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  tidy(cor.test(Multilink$Latency[BackwardLFNcog], Multilink$Levdist[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.latlevd) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.latlevd, file="correlations.csv", append = TRUE, sep=",") 

 

## Cycles & Levenshtein Distance ## 

cor.cyclevd = rbind.data.frame( 

  tidy(cor.test(Multilink$cycles, Multilink$Levdist, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[Forward], Multilink$Levdist[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[Backward], Multilink$Levdist[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFCog], Multilink$Levdist[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFCog], Multilink$Levdist[ForwardLFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFNcog], Multilink$Levdist[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFNcog], Multilink$Levdist[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFCog], Multilink$Levdist[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFCog], Multilink$Levdist[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFNcog], Multilink$Levdist[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFNcog], Multilink$Levdist[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.cyclevd) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.cyclevd, file="correlations.csv", append = TRUE, sep=",") 

 

## Frequency & Levenshtein Distance ## 
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cor.freqlevd = rbind.data.frame( 

  tidy(cor.test(Multilink$freq, Multilink$Levdist, use="complete.obs", method="spearman", alternative= 

'two.sided')), 

  tidy(cor.test(Multilink$freq[Forward], Multilink$Levdist[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[Backward], Multilink$Levdist[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardHFCog], Multilink$Levdist[ForwardHFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardLFCog], Multilink$Levdist[ForwardLFCog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardHFNcog], Multilink$Levdist[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardLFNcog], Multilink$Levdist[ForwardLFNcog], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardHFCog], Multilink$Levdist[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardLFCog], Multilink$Levdist[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardHFNcog], Multilink$Levdist[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardLFNcog], Multilink$Levdist[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.freqlevd) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.freqlevd, file="correlations.csv", append = TRUE, sep=",") 

 

 

## Linear model correlations ## 

 

## Cycles & P.Latency.lm ## 

cor.cycLM = rbind.data.frame( 

  tidy(cor.test(Multilink$cycles, Multilink$P.Latency.lm, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[Forward], Multilink$P.Latency.lm[Forward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 
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  tidy(cor.test(Multilink$cycles[Backward], Multilink$P.Latency.lm[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFCog], Multilink$P.Latency.lm[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFCog], Multilink$P.Latency.lm[ForwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardHFNcog], Multilink$P.Latency.lm[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[ForwardLFNcog], Multilink$P.Latency.lm[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFCog], Multilink$P.Latency.lm[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFCog], Multilink$P.Latency.lm[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardHFNcog], Multilink$P.Latency.lm[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$cycles[BackwardLFNcog], Multilink$P.Latency.lm[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.cycLM) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.cycLM, file="correlations.csv", append = TRUE, sep=",") 

 

## Frequency & P.Latency.lm ## 

cor.freqLM = rbind.data.frame( 

  tidy(cor.test(Multilink$freq, Multilink$P.Latency.lm, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[Forward], Multilink$P.Latency.lm[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[Backward], Multilink$P.Latency.lm[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardHFCog], Multilink$P.Latency.lm[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardLFCog], Multilink$P.Latency.lm[ForwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[ForwardHFNcog], Multilink$P.Latency.lm[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 
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  tidy(cor.test(Multilink$freq[ForwardLFNcog], Multilink$P.Latency.lm[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardHFCog], Multilink$P.Latency.lm[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardLFCog], Multilink$P.Latency.lm[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardHFNcog], Multilink$P.Latency.lm[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$freq[BackwardLFNcog], Multilink$P.Latency.lm[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.freqLM) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.freqLM, file="correlations.csv", append = TRUE, sep=",") 

 

## Latency & P.Latency.lm ## 

cor.latLM = rbind.data.frame( 

  tidy(cor.test(Multilink$Latency, Multilink$P.Latency.lm, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[Forward], Multilink$P.Latency.lm[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[Backward], Multilink$P.Latency.lm[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardHFCog], Multilink$P.Latency.lm[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardLFCog], Multilink$P.Latency.lm[ForwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardHFNcog], Multilink$P.Latency.lm[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[ForwardLFNcog], Multilink$P.Latency.lm[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[BackwardHFCog], Multilink$P.Latency.lm[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[BackwardLFCog], Multilink$P.Latency.lm[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Latency[BackwardHFNcog], Multilink$P.Latency.lm[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 
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  tidy(cor.test(Multilink$Latency[BackwardLFNcog], Multilink$P.Latency.lm[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.latLM) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", "ForwardLFCog", 

"ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", "BackwardHFNcog", 

"BackwardLFNcog"), sep="") 

write.table(cor.latLM, file="correlations.csv", append = TRUE, sep=",") 

 

## Levenshtein Distance & P.Latency.lm ## 

cor.levdLM = rbind.data.frame( 

  tidy(cor.test(Multilink$Levdist, Multilink$P.Latency.lm, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[Forward], Multilink$P.Latency.lm[Forward], use='complete.obs', 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[Backward], Multilink$P.Latency.lm[Backward], use="complete.obs", 

method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[ForwardHFCog], Multilink$P.Latency.lm[ForwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[ForwardLFCog], Multilink$P.Latency.lm[ForwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[ForwardHFNcog], Multilink$P.Latency.lm[ForwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[ForwardLFNcog], Multilink$P.Latency.lm[ForwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[BackwardHFCog], Multilink$P.Latency.lm[BackwardHFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[BackwardLFCog], Multilink$P.Latency.lm[BackwardLFCog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[BackwardHFNcog], Multilink$P.Latency.lm[BackwardHFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')), 

  tidy(cor.test(Multilink$Levdist[BackwardLFNcog], Multilink$P.Latency.lm[BackwardLFNcog], 

use="complete.obs", method="spearman", alternative= 'two.sided')) ) 

 

rownames(cor.levdLM) <- paste(c("Global", "Forward", "Backward", "ForwardHFCog", 

"ForwardLFCog", "ForwardHFNcog", "ForwardLFNcog", "BackwardHFCog", "BackwardLFCog", 

"BackwardHFNcog", "BackwardLFNcog"), sep="") 

write.table(cor.levdLM, file="correlations.csv", append = TRUE, sep=",") 
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###################################################################### 

###################################################################### 

 

####################### Correlation Graphs ############################# 

######################################################################## 

# AKA Corrgrams (but not correlograms, thats actually different) 

# uses the 'corrgram' package 

 

 

## handy-dandy script below ## 

# makes the corrgrams look nicer 

# found on : http://stackoverflow.com/questions/19012529/correlation-corrplot-configuration 

 

########################################## 

 

panel.shadeNtext <- function (x, y, corr = NULL, col.regions, ...)  

{ 

  results <- cor.test(x, y, use="complete.obs", alternative = "two.sided", method='spearman') 

  est <- results$p.value 

  stat <- results$estimate 

  stars <- ifelse(est < 1e-4, "p = < 0.0001",  

                  ifelse(est < 1e-3, "p = 0.001",  

                         ifelse(est < 1e-2, "p = 0.01", 

                                ifelse(est < 5e-2, "p = 0.05", 

                                       ifelse(est < 1e-1, "p = 0.1", "NS"))))) 

  ncol <- 14 

  pal <- col.regions(ncol) 

  col.ind <- as.numeric(cut(stat, breaks = seq(from = -1, to = 1,  

                                               length = ncol + 1), include.lowest = TRUE)) 

  usr <- par("usr") 

  rect(usr[1], usr[3], usr[2], usr[4], col = pal[col.ind],  

       border = NA) 

  box(col = "lightgray") 

  on.exit(par(usr)) 

  par(usr = c(0, 1, 0, 1)) 

  r <- formatC(stat, digits= 2, format= 'f') 

  cex.cor <- .8/strwidth("-X.xx") 

  cex.star <- .5/strwidth("p = x.xxx") 
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  fonts <- ifelse(stars != "", 2,1) 

  # option 1: stars: 

  text(0.5, 0.7, paste0(r), cex = cex.cor) 

  text(0.5, 0.2, paste0(stars), cex = cex.star) 

  # option 2: bolding: 

  #text(0.5, 0.5, r, cex = cex.cor, font=fonts) 

} 

 

############################################################ 

 

# Call the corrgram function with the new panel functions 

# NB: call on the data, not the correlation matrix 

 

## new data frame ## 

# main variables of numeric-type only, so placed into a new data frame. 

 

numdframe = cbind.data.frame(Multilink$Latency, Multilink$cycles, Multilink$freq, 

Multilink$P.Latency.lm, Multilink$P.Latency.zm, Multilink$Levdist, Multilink$Direction, 

Multilink$category) 

colnames(numdframe) <- paste(c("Latency", "Cycle-time", "Frequency", "L-scaled", "Z-scaled", "LD", 

"Direction", "Category"), sep="") 

 

# best colour choices as determined by Jakob, Thomas, Sean, & myself: 

# col.regions=colorRampPalette(c('blue', 'white', 'red'))   (visually-informative) 

# col.regions=colorRampPalette(c('blue', 'red'))            (looks cool?) 

# col.regions=colorRampPalette(c('blue', 'green'))          (my favourite) 

 

 

## global ## 

png(filename= 'Figure xx Corregram Global.png', width= 1200, height= 1066) 

corrgram(numdframe, type='data', lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 5.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Global Condition', cex.main=4.5) 

dev.off() 

 

## Forward ## 

png(filename= 'Figure xx Corregram Forward.png', width= 1200, height= 1066) 
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corrgram(numdframe[numdframe$Direction=='Forward',], type='data', lower.panel=panel.shadeNtext,  

        upper.panel=NULL, cex.labels= 5.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Forward Condition', cex.main=4.5) 

dev.off() 

 

## Backward ## 

png(filename= 'Figure xx Corregram Backward.png', width= 1200, height= 1066) 

corrgram(numdframe[numdframe$Direction=='Backward',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 5.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Backward Condition', cex.main=4.5) 

dev.off() 

 

 

# without the predicted-latencies (since correlations are the same) 

numdframe2 = cbind.data.frame(Multilink$Latency, Multilink$cycles, Multilink$freq, Multilink$Levdist, 

Multilink$Direction, Multilink$category) 

colnames(numdframe2) <- paste(c("Latency", "Cycle-time", "Frequency", "LD", "Direction", 

"Category"), sep="") 

 

## Forward HF Cognate ## 

png(filename= 'Figure xx Corregram ForwardHFCog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='ForwardHFCog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Forward High-Frequency Cognate Condition', cex.main=4.0) 

dev.off() 

 

## Forward LF Cognate ## 

png(filename= 'Figure xx Corregram ForwardLFCog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='ForwardLFCog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Forward Low-Frequency Cognate Condition', cex.main=4.0) 

dev.off() 
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## Forward HF Noncognate ## 

png(filename= 'Figure xx Corregram ForwardHFNcog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='ForwardHFNcog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Forward High-Frequency Noncognate Condition', cex.main=4.0) 

dev.off() 

 

## Forward LF Noncognate ## 

png(filename= 'Figure xx Corregram ForwardLFNcog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='ForwardLFNcog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Forward Low-Frequency Noncognate Condition', cex.main=4.0) 

dev.off() 

 

 

## Backward HF Cognate ## 

png(filename= 'Figure xx Corregram BackwardHFCog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='BackwardHFCog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Backward High-Frequency Cognate Condition', cex.main=4.0) 

dev.off() 

 

## Backward LF Cognate ## 

png(filename= 'Figure xx Corregram BackwardLFCog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='BackwardLFCog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Backward Low-Frequency Cognate Condition', cex.main=4.0) 

dev.off() 

 

## Backward HF Noncognate ## 
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png(filename= 'Figure xx Corregram BackwardHFNcog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='BackwardHFNcog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Backward High-Frequency Noncognate Condition', cex.main=4.0) 

dev.off() 

 

## Backward LF Noncognate ## 

png(filename= 'Figure xx Corregram BackwardLFNcog.png', width= 1200, height= 1066) 

corrgram(numdframe2[numdframe2$Category=='BackwardLFNcog',], type='data', 

lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Backward Low-Frequency Noncognate Condition', cex.main=4.0) 

dev.off() 

 

 

 

## Means correlations ## 

# intermediate condition examining between-group correlations 

# standard way of doing things, I guess. 

 

newdf <- ddply(Multilink, c('Direction', 'cognacy', 'freq.cat', 'category'), summarize, 

Latmean=mean(Latency), cycmean=mean(cycles), freqmean=mean(freq), ldmean=mean(Levdist)) 

 

cor.mean <- rbind.data.frame( 

  tidy(cor.test(newdf$Latmean, newdf$cycmean, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(newdf$Latmean, newdf$freqmean, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(newdf$freqmean, newdf$cycmean, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(newdf$ldmean, newdf$cycmean, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(newdf$freqmean, newdf$ldmean, use="complete.obs", method="spearman", 

alternative= 'two.sided')), 

  tidy(cor.test(newdf$Latmean, newdf$ldmean, use="complete.obs", method="spearman", alternative= 

'two.sided'))) 
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rownames(cor.mean) <- c('Latency * Cycle-time', 'Latency * Frequency', 'Frequency * Cycle-time', 'LD 

* Cycle-time', 'Frequency * LD', 'Latency * LD') 

write.table(cor.mean, file="correlations.csv", append = TRUE, sep=",") 

   

 

colnames(newdf)[5:8] <- c('Latency', 'Cycle-time', 'Frequency', 'LD') 

 

png(filename= 'Figure xx corregram mean-regressed.png', width= 1200, height= 1066) 

corrgram(newdf, type='data', lower.panel=panel.shadeNtext,  

         upper.panel=NULL, cex.labels= 7.0, col.regions=colorRampPalette(c('blue', 'white', 'red')), 

cor.method='spearman') 

title('Mean-regressed Correlations', cex.main=4.0) 

dev.off() 

 

 

###################################################### 

 

############### Analysis Of Variance ################# 

###################################################### 

# Partial Omega Squared obtained from script: 

# http://pastebin.com/raw.php?i=iA6CqQF9 

# included up top, just highlight & source\run 

# 'lsr' is included as a library if one wishes to calculate eta ES 

# other possible ES measurements available in 'EffectSizeStats.R' 

 

## Latency ## 

Latencyanova <- aov(Latency ~ Direction*cognacy*freq.cat, data= Multilink) 

summary(Latencyanova) 

Omega1 <- partialOmegas(Latencyanova) 

 

## Cycle-time ## 

Cycleanova <- aov(cycles ~ Direction*cognacy*freq.cat, data= Multilink) 

summary(Cycleanova) 

Omega2 <-partialOmegas(Cycleanova) 

 

## P.Latency.lm ## 

LManova <- aov(P.Latency.lm ~ Direction*cognacy*freq.cat, data= Multilink) 
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summary(LManova) 

Omega3 <-partialOmegas(LManova) 

 

## P.Latency.zm ## 

ZManova <- aov(P.Latency.zm ~ Direction*cognacy*freq.cat, data= Multilink) 

summary(ZManova) 

Omega4 <- partialOmegas(ZManova) 

 

Allomegas <- data.table(Omega1, Omega2, Omega3, Omega4) 

rownames(Allomegas) <-  paste(c('direction', 'cognacy', 'freq.cat', 'direction*cognacy', 

'direction*freq.cat', 'cognacy*freq.cat', 'direction*cognacy*freq.cat')) 

colnames(Allomegas) <-  paste(c('Latency', 'Cycle-time', 'L-scaled', 'Z-scaled')) 

 

anovadf <- rbind.data.frame( 

  tidy(Latencyanova), 

  tidy(Cycleanova), 

  tidy(LManova), 

  tidy(ZManova)) 

 

write.table(anovadf, file='ANOVA.csv', append=FALSE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(Allomegas, file='PartialOmegas.csv', append=FALSE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

 

 

######################################################## 

 

############### Generalized Linear Regression (analyzing categorical effects) ############### 

#################################################################################

############ 

#"intercepts" for primary tests are the Forward\Cognate\High-frequency combinations# 

 

# unused 

Lowfunction1 <- cbind.data.frame(Multilink$Latency, Multilink$Direction, Multilink$cognacy, 

Multilink$freq.cat, Multilink$Ph.Onset, Multilink$Stim.length, Multilink$concreteness) 

Lowfunction1 <- data.matrix(Lowfunction1) 

colnames(Lowfunction1) <-  paste(c('Latency', 'Direction', 'cognacy', 'freq.cat', 'Ph.Onset', 

'Stim.length', 'concreteness')) 
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Lowfunction1 <- as.data.frame(Lowfunction1) 

## 

# 

 

# model selection & comparison 

# GAM model, #3, has the lowest AIC. 

model1 <- glm(Latency ~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink) 

model2 <- lmer(Latency~ 

(Direction+cognacy+freq.cat+(1|Ph.Onset)+(1|Stim.length)+(1|concreteness))^2, REML=TRUE, data= 

Multilink) 

model3 <- gam(Latency~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink, family= gaussian, method='REML', select=TRUE, fit=TRUE, scale=8000) 

model4 <- gamlss(Latency~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink, family= NO(), method=RS()) 

model5 <- gamm4(Latency~ (Direction+cognacy+freq.cat)^2, random=~ 

(1|Ph.Onset)+(1|Stim.length)+(1|concreteness), REML=TRUE, data= Multilink, family= gaussian()) 

 

summary(model1) 

summary(model2) 

summary(model3) 

summary(model4) 

summary(model5$mer) 

 

 

## Latency ## 

Latencygam <- gam(Latency~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink, family= gaussian, method='GCV.Cp', select=TRUE, fit=TRUE, scale=8500) 

summary.latgam0 <- summary.gam(Latencygam) 

print(summary.latgam0) 

Latencygam.coef <- as.data.frame(summary.latgam0$p.table) 

Latencygam.chisq <- as.data.frame(summary.latgam0$pTerms.table) 

Latencygam.aov <- as.data.frame(tidy(aov(Latencygam)), row.names=NULL) 

 

write.table(Latencygam.coef, file='GAM.csv', append=FALSE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(Latencygam.chisq, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 
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write.table(Latencygam.aov, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

 

 

## Cycle-time ## 

Cyclegam <- gam(cycles~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink, family= gaussian, method='GCV.Cp', select=TRUE, fit=TRUE, scale=2) 

summary.cycgam0 <- summary.gam(Cyclegam) 

print(summary.cycgam0) 

cyclegam.coef <- as.data.frame(summary.cycgam0$p.table) 

cyclegam.chisq <- as.data.frame(summary.cycgam0$pTerms.table) 

cyclegam.aov <- as.data.frame(tidy(aov(Cyclegam)), row.names=NULL) 

 

write.table(cyclegam.coef, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(cyclegam.chisq, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(cyclegam.aov, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

 

 

## P.Latency.lm ## 

LMgam <- gam(P.Latency.lm~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink, family= gaussian, method='GCV.Cp', select=TRUE, fit=TRUE, scale=1400) 

summary.LMgam0 <- summary.gam(LMgam) 

print(summary.LMgam0) 

LMgam.coef <- as.data.frame(summary.LMgam0$p.table) 

LMgam.chisq <- as.data.frame(summary.LMgam0$pTerms.table) 

LMgam.aov <- as.data.frame(tidy(aov(LMgam)), row.names=NULL) 

 

write.table(LMgam.coef, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(LMgam.chisq, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(LMgam.aov, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

 

 

## P.Latency.zm ## 
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ZMgam <- gam(P.Latency.zm~ (Direction+cognacy+freq.cat+Ph.Onset+Stim.length+concreteness)^2, 

data= Multilink, family= gaussian, method='GCV.Cp', select=TRUE, fit=TRUE, scale=7500) 

summary.ZMgam0 <- summary.gam(ZMgam) 

print(summary.ZMgam0) 

ZMgam.coef <- as.data.frame(summary.ZMgam0$p.table) 

ZMgam.chisq <- as.data.frame(summary.ZMgam0$pTerms.table) 

ZMgam.aov <- as.data.frame(tidy(aov(ZMgam)), row.names=NULL) 

 

write.table(ZMgam.coef, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(ZMgam.chisq, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

write.table(ZMgam.aov, file='GAM.csv', append=TRUE, sep=',', na='', row.names=TRUE, 

col.names=TRUE) 

 

 

####################################################### 

 

########### Model-Approximate X2 Analysis ############ 

#################################################################################

#### 

# assesses the fitness of model-data to empirical-data 

# primary test is the Model-approximate X2, essentially a statistical-distance metric 

 

## Linear Model assessment ## 

 

#stored variables: Data & Linear Model Latency and sample variance 

Latencydata = Multilink$Latency 

LatencymodelLM = Multilink$P.Latency.lm 

samplevardata = var(Multilink$Latency) 

samplevarmodelLM = var(Multilink$P.Latency.lm) 

 

#Model-Approximate X2, Linear Model 

X2sumLM = (sum((Latencydata - LatencymodelLM)^2) / (((samplevardata^2) / nrow(Multilink)) + 

((samplevarmodelLM^2) / nrow(Multilink)))) 

print(X2sumLM) 

# Degrees of Freedom = 247 (N [sample size] - p [free parameters in the model]) 

# 249 paired datapoints, - 2 parameters [latency, cycle-time] = DF 247 
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# get the P-value from an online X2 calculator, should be around 0.9 

# but that's good, showing that the divergence  

# Highlight + Ctrl-Enter Lines XXX-XXX (Linear Model Assessment to above line) to run properly 

# go here for a chi-square p-value calculator: http://stattrek.com/online-calculator/chi-square.aspx 

 

## Kolmogorov-Smirnov test ## 

#by running both 'less', and 'greater', you can better gain a sense of where the estimate is 

#x is the prediction, y is the match 

ks.test(Multilink$P.Latency.lm, Multilink$Latency, alternative = 'two.sided') 

ks.test(Multilink$P.Latency.lm, Multilink$Latency, alternative = 'less') 

ks.test(Multilink$P.Latency.lm, Multilink$Latency, alternative = 'greater') 

 

## Kullback-Leibler Divergence ## 

# measures goodness-of-fit through information loss 

# asymmetric test, must be run in both directions then averaged 

#'log2' produces the measurement in Shannons\bits 

# Uses the 'seewave' package 

kl.dist(Multilink$Latency, Multilink$P.Latency.lm, base =2) 

kl.dist(Multilink$cycles, Multilink$P.Latency.lm, base =2) 

 

## Empirical X2 ## 

# goes with model-approximate X2 test, backs up the results 

# compares sample distributions on a X2 distribution 

# output in information-theoretic relevant quantities 

# allows comparison to the other 2 statistics. 

chi2.empirical(Multilink$Latency, Multilink$P.Latency.lm, unit = 'log2') 

chi2.empirical(Multilink$Latency, Multilink$cycles, unit = 'log2') 

chi2.empirical(Multilink$cycles, Multilink$P.Latency.lm, unit = 'log2') 

 

## Two-sample Density-based Empirical Likelihood ## 

# unused in paper, but interesting 

# uses the 'dbEMPLikeGOF' package 

# basically measures uniformity and distribution equality, forming a distance measure 

dbEmpLikeGOF(Multilink$Latency, Multilink$P.Latency.lm) 

dbEmpLikeGOF(Multilink$Latency, Multilink$cycles) 

dbEmpLikeGOF(Multilink$cycles, Multilink$P.Latency.lm) 

 

## Fan Test & Geometric test ## 
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# another measure of statistical distance 

# first value is the model distribution (null hypothesis) 

# second value is the empirical distribution 

# output estimates the total distance through density-estimations 

# Null-h = CDF 1 does have the same density\distance as CDF 2 

# doesn't seem to be too useful, unused, whatever. 

fan.test(Multilink$P.Latency.lm, ecdf(Multilink$Latency)) 

fan.test(Multilink$cycles, ecdf(Multilink$Latency)) 

fan.test(Multilink$cycles, ecdf(Multilink$P.Latency.lm)) 

 

dgeometric.test(Multilink$P.Latency.lm, ecdf(Multilink$Latency)) 

dgeometric.test(Multilink$cycles, ecdf(Multilink$Latency)) 

dgeometric.test(Multilink$cycles, ecdf(Multilink$P.Latency.lm)) 

 

 

## Z-score Model assessment ## 

 

#stored variables: Data & Linear Model Latency and sample variance 

Latencydata = Multilink$Latency 

LatencymodelZM = Multilink$P.Latency.zm 

samplevardata = var(Multilink$Latency) 

samplevarmodelZM = var(Multilink$P.Latency.zm) 

 

#Model-Approximate X2, Z-score Model 

X2sumZM = (sum((Latencydata - LatencymodelZM)^2) / (((samplevardata^2) / nrow(Multilink)) + 

((samplevarmodelZM^2) / nrow(Multilink)))) 

print(X2sumZM) 

# Degrees of Freedom = 247 (N [sample size] - p [free parameters in the model]) 

# 249 paired datapoints, - 2 parameters [latency, cycle-time] = DF 247 

# get the P-value from an online X2 calculator, should be around 0.9 

# but that's good, showing that the divergence  

# Highlight + Ctrl-Enter Lines XXX-XXX (Linear Model Assessment to above line) to run properly 

 

## Kolmogorov-Smirnov test ## 

#by running both 'less', and 'greater', you can better gain a sense of where the estimate is 

#x is the prediction, y is the match 

ks.test(Multilink$P.Latency.zm, Multilink$Latency, alternative = 'two.sided') 

ks.test(Multilink$P.Latency.zm, Multilink$Latency, alternative = 'less') 
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ks.test(Multilink$P.Latency.zm, Multilink$Latency, alternative = 'greater') 

 

## Kullback-Leibler Divergence ## 

# measures goodness-of-fit through information loss 

#'log2' produces the measurement in Shannons\'bits' 

# Uses the 'seewave' package 

kl.dist(Multilink$Latency, Multilink$P.Latency.zm, base=2) 

kl.dist(Multilink$Latency, Multilink$cycles, base=2) 

kl.dist(Multilink$cycles, Multilink$P.Latency.zm, base=2) 

 

## Empirical X2 ## 

# unused in paper. goes with KL-D test, backs up the results 

# compares sample distributions on a X2 distribution, and measures the divergence from both 

samples 

# pretty much comparable to the Model-approximate X2, but measures in Shannons 

chi2.empirical(Multilink$Latency, Multilink$P.Latency.zm, unit = 'log2') 

chi2.empirical(Multilink$Latency, Multilink$cycles, unit = 'log2') 

chi2.empirical(Multilink$cycles, Multilink$P.Latency.zm, unit = 'log2') 

 

## Two-sample Density-based Empirical Likelihood ## 

# unused in paper, but interesting 

# uses the {dbEMPLikeGOF} package 

# basically measures uniformity and distribution equality, forming a distance measure 

dbEmpLikeGOF(Multilink$Latency, Multilink$P.Latency.zm) 

dbEmpLikeGOF(Multilink$Latency, Multilink$cycles) 

dbEmpLikeGOF(Multilink$cycles, Multilink$P.Latency.zm) 

 

## Fan Test & Geometric test ## 

# another measure of statistical distance 

# first value is the model distribution (null hypothesis) 

# second value is the empirical distribution 

# output estimates the total distance through density-estimations 

# Null-h = CDF 1 does have the same density\distance as CDF 2 

# unused, doesn't seem to be too useful, whatever. 

fan.test(Multilink$P.Latency.zm, ecdf(Multilink$Latency)) 

fan.test(Multilink$cycles, ecdf(Multilink$Latency)) 

fan.test(Multilink$cycles, ecdf(Multilink$P.Latency.zm)) 
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dgeometric.test(Multilink$P.Latency.zm, ecdf(Multilink$Latency)) 

dgeometric.test(Multilink$cycles, ecdf(Multilink$Latency)) 

dgeometric.test(Multilink$cycles, ecdf(Multilink$P.Latency.zm)) 

 

 

##################################################### 

 

########### Shaprio-Wilks Normality ############ 

################################################ 

 

## High frequency ## 

shapiro.test(Multilink$freq[Multilink$freq.cat=="High-freq"]) 

 

## Low frequency ## 

shapiro.test(Multilink$freq[Multilink$freq.cat=="Low-freq"]) 

 

## All frequency ## 

shapiro.test(Multilink$freq) 

 

## Latency ## 

shapiro.test(Multilink$Latency) 

 

## Cycle-time ## 

shapiro.test(Multilink$cycles) 

 

## P.Latency.lm ## 

shapiro.test(Multilink$P.Latency.lm) 

 

## P.Latency.zm ## 

shapiro.test(Multilink$P.Latency.zm) 

 

 

################################################### 

 

########      Graphs        ######## 

#################################### 

#par(mfrow = c(2,1)) 
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## cumulative distribution function graph ## 

# compares model and empirical CDFs 

# highlight each section to run 

 

# Latency & LM  

ecdf.l.lmapprox = ecdf(Multilink$P.Latency.lm) 

ecdf.l = ecdf(Multilink$Latency) 

plot(ecdf.l, ylab='Datapoint Cumulative Distribution', xlab='Milliseconds', main='Latency * Linear Model 

CDF') 

xx = knots(ecdf.l.lmapprox) 

xx = 600:1200 

lines(xx,ecdf.l.lmapprox(xx), col=2, lty=2) 

 

 

# Latency & ZM 

ecdf.l.zmapprox = ecdf(Multilink$P.Latency.zm) 

ecdf.l = ecdf(Multilink$Latency) 

plot(ecdf.l, ylab='Datapoint Cumulative Distribution', xlab='Milliseconds', main='Latency * Z-score 

Model CDF') 

xx = knots(ecdf.l.zmapprox) 

xx = 600:1200 

lines(xx,ecdf.l.zmapprox(xx), col=2, lty=2) 

 

 

## Linear model scatterplot ## 

# uses package 'ggplot2' 

# basically the same thing as the regression plots below 

# highlight each section to run 

 

ggplot(Multilink, aes(x = Latency, y = cycles)) +  

  labs(y= 'cycle-time', title= 'Linear Relationship') + 

  geom_point() + 

  stat_smooth(method = "lm", se=TRUE, col = "red") 

 

png(filename='Figure xx Linear model scaling.png', width=1200, height=1066) 

ggplot(Multilink, aes(x = Latency, y = P.Latency.lm)) +  

  labs(y= 'L-scaled Latency', title= 'Linear Model Scaling') + 

  geom_point() + 
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  stat_smooth(method = "lm", se=TRUE, col = "red")+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

dev.off() 

 

png(filename='Figure xx Z-score model scaling.png', width=1200, height=1066) 

ggplot(Multilink, aes(x = Latency, y = P.Latency.zm)) +  

  labs(y= 'Z-scaled Latency', title= 'Z-score Model Scaling') + 

  geom_point() + 

  stat_smooth(method = "lm", se=TRUE, col = "red")+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

dev.off() 

 

## Regression model graphs ## 

# basically the same as the ANOVA graphs 

 

lateffect.cogstim <- ddply(Multilink, c('cognacy', 'Stim.length'), summarize, 

AVERAGE=mean(Latency), SE=sqrt(var(Latency)/length(Latency))) 

lateffect.cogstim$cognacy <- reorder(lateffect.cogstim$cognacy, lateffect.cogstim$AVERAGE) 

cogstim.graph1 <- ggplot(data= lateffect.cogstim, aes(x= Stim.length, y= AVERAGE, group= cognacy, 

colour= cognacy)) + 

  geom_line(size= 1.5)+ 

  #stat_smooth(se=TRUE, method=loess)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.26), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Latency')+ 

  theme(plot.title = element_text(face="bold", size=28), 
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        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

 

zeffect.cogstim <- ddply(Multilink, c('cognacy', 'Stim.length'), summarize, 

AVERAGE=mean(P.Latency.zm), SE=sqrt(var(P.Latency.zm)/length(P.Latency.zm))) 

zeffect.cogstim$Cognacy <- reorder(zeffect.cogstim$cognacy, zeffect.cogstim$AVERAGE) 

cogstim.graph2 <- ggplot(data= zeffect.cogstim, aes(x= Stim.length, y= AVERAGE, group= cognacy, 

colour= cognacy)) + 

  geom_line(size= 1.5)+ 

  #stat_smooth(se=TRUE, method=loess)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.26), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Z-scaled')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

 

png(filename='Figure 23 Latency & Z-scaled, cognacy & stimulus length effect combined.png', 

width=1200, height=1066) 

grid.arrange(cogstim.graph1, cogstim.graph2, nrow=2, top= textGrob('Cognacy * Stimulus Length', 

gp=gpar(fontsize=34))) 

dev.off() 

 

 

png(filename='Figure 21 Latency, phonetic onset effect.png', width=1200, height=1066) 

lateffect.on <- ddply(Multilink, c('Ph.Onset'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

ggplot(data= lateffect.on, aes(x= Ph.Onset, y= AVERAGE, colour= Ph.Onset)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 6.4)+ 
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  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.26), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=30), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

dev.off() 

 

lateffect.diron <- ddply(Multilink, c('Direction', 'Ph.Onset'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

lateffect.diron$Direction <- reorder(lateffect.diron$Direction, lateffect.diron$AVERAGE) 

onset.graph1 <- ggplot(data= lateffect.diron, aes(x= Ph.Onset, y= AVERAGE, group= Direction, 

colour= Direction)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.26), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Direction * Phonetic Onset')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

 

 

lateffect.cogon <- ddply(Multilink, c('cognacy', 'Ph.Onset'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

lateffect.cogon$cognacy <- reorder(lateffect.cogon$cognacy, lateffect.cogon$AVERAGE) 

onset.graph2 <- ggplot(data= lateffect.cogon, aes(x= Ph.Onset, y= AVERAGE, group= cognacy, 

colour= cognacy)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.26), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Cognacy * Phonetic Onset')+ 
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  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

 

lateffect.freqon <- ddply(Multilink, c('freq.cat', 'Ph.Onset'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

lateffect.freqon$freq.cat <- reorder(lateffect.freqon$freq.cat, lateffect.freqon$AVERAGE) 

onset.graph3 <- ggplot(data= lateffect.freqon, aes(x= Ph.Onset, y= AVERAGE, group= freq.cat, 

colour= freq.cat)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.26), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Frequency-category * Phonetic Onset')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=20), 

        axis.text.y= element_text(size=20), 

        legend.title= element_text(size=22), 

        legend.text= element_text(size=18), 

        axis.title.x = element_text(size=26), 

        axis.title.y = element_text(size=26)) 

 

png(filename='Figure 22 Latency, phonetic onset & direction,frequency,cognacy effect combined.png', 

width=1200, height=1066) 

grid.arrange(onset.graph1, onset.graph2, onset.graph3, layout_matrix = rbind(c(1,1), c(2,3)), top= 

textGrob('Phonetic Onset Interactions', gp=gpar(fontsize=34))) 

dev.off() 

 

 

zeffect.on <- ddply(Multilink, c('Ph.Onset'), summarize, AVERAGE=mean(P.Latency.zm), 

SE=sqrt(var(P.Latency.zm)/length(P.Latency.zm))) 

ggplot(data= zeffect.on, aes(x= Ph.Onset, y= AVERAGE)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 
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  labs(y= 'Mean Z-scaled Latency', title= 'Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

zeffect.diron <- ddply(Multilink, c('Direction', 'Ph.Onset'), summarize, 

AVERAGE=mean(P.Latency.zm), SE=sqrt(var(P.Latency.zm)/length(P.Latency.zm))) 

zeffect.diron$Direction <- reorder(zeffect.diron$Direction, zeffect.diron$AVERAGE) 

ggplot(data= zeffect.diron, aes(x= Ph.Onset, y= AVERAGE, group= Direction, colour= Direction)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Z-scaled Latency', title= 'Direction * Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

lateffect.concon <- ddply(Multilink, c('concreteness', 'Ph.Onset'), summarize, 

AVERAGE=mean(Latency), SE=sqrt(var(Latency)/length(Latency))) 

lateffect.concon$concretness <- reorder(lateffect.concon$Direction, lateffect.concon$AVERAGE) 

ggplot(data= lateffect.concon, aes(x= concreteness, y= AVERAGE, group= Ph.Onset, colour= 

Ph.Onset)) + 

  #geom_line(size= 1.5)+ 

  stat_smooth(se=TRUE, method=loess)+ 

  geom_point(size= 2.0)+ 

  #geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Latency', title= 'concreteness * Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

 

lateffect.dirconc <- ddply(Multilink, c('Direction', 'concreteness'), summarize, 

AVERAGE=mean(Latency), SE=sqrt(var(Latency)/length(Latency))) 

lateffect.dirconc$Direction <- reorder(lateffect.dirconc$Direction, lateffect.dirconc$AVERAGE) 

ggplot(data= lateffect.dirconc, aes(x= concreteness, y= AVERAGE, group= Direction, colour= 

Direction)) + 

  #geom_line(size= 1.5)+ 
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  stat_smooth(se=TRUE, method=loess)+ 

  geom_point(size= 2.0)+ 

  #geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Latency', title= 'concreteness * Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

 

lateffect.stimons <- ddply(Multilink, c('Stim.length', 'Ph.Onset'), summarize, 

AVERAGE=mean(Latency), SE=sqrt(var(Latency)/length(Latency))) 

ggplot(data= lateffect.stimons, aes(x= Stim.length, y= AVERAGE, group= Ph.Onset, colour= 

Ph.Onset)) + 

  #geom_line(size= 1.5)+ 

  stat_smooth(se=TRUE, method=glm)+ 

  geom_point(size= 2.0)+ 

  #geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Latency', title= 'Stimulus Length * Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

cyceffect.freqons <- ddply(Multilink, c('freq.cat', 'Ph.Onset'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

ggplot(data= cyceffect.freqons, aes(x= Ph.Onset, y= AVERAGE, group= freq.cat, colour= freq.cat)) + 

  geom_line(size= 1.5)+ 

  #stat_smooth(se=TRUE, method=glm)+ 

  geom_point(size= 2.0)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Latency', title= 'Stimulus Length * Phonetic Onset Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

 

 

## ANOVA 2-way interaction graphs ## 

# uses package 'gridExtra' and 'GGplot2' 
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aovinteract <-  cbind.data.frame(Multilink$Latency, Multilink$cycles,Multilink$P.Latency.lm, 

Multilink$P.Latency.zm, Multilink$Direction, Multilink$cognacy, Multilink$freq.cat) 

colnames(aovinteract) <- paste(c("Latency", "Cycle-time", "L-scaled", "Z-scaled", "Direction", 

"Cognacy", "Frequency"), sep="") 

 

 

## Latency significant effects ## 

sigeffect1 <- ddply(aovinteract, c('Cognacy'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

sigeffect1$Cognacy <- reorder(sigeffect1$Cognacy, sigeffect1$AVERAGE) 

siggraph1 = ggplot(data= sigeffect1, aes(x= Cognacy, y= AVERAGE, group= Cognacy, colour= 

Cognacy)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Cognacy')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 

        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 

        axis.title.y = element_text(size=25)) 

 

 

sigeffect2 <- ddply(aovinteract, c('Direction'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

sigeffect2$Direction <- reorder(sigeffect2$Direction, sigeffect2$AVERAGE) 

siggraph2 = ggplot(data= sigeffect2, aes(x= Direction, y= AVERAGE, group= Direction, colour= 

Direction)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Direction')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 
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        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 

        axis.title.y = element_text(size=25)) 

 

sigeffect3 <- ddply(aovinteract, c('Frequency'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

sigeffect3$Frequency <- reorder(sigeffect3$Frequency, sigeffect3$AVERAGE) 

siggraph3 = ggplot(data= sigeffect3, aes(x= Frequency, y= AVERAGE, group= Frequency, colour= 

Frequency)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Frequency-category')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 

        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 

        axis.title.y = element_text(size=25)) 

 

# marginal effects, p = 0.1 

margeffect1 <- ddply(aovinteract, c('Cognacy', 'Direction'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

margeffect1$Cognacy <- reorder(margeffect1$Cognacy, margeffect1$AVERAGE) 

marggraph1 = ggplot(data= margeffect1, aes(x= Direction, y= AVERAGE, group= Cognacy, colour= 

Cognacy)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Cognacy * Direction')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 

        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 
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        axis.title.y = element_text(size=25)) 

 

margeffect2 <- ddply(aovinteract, c('Cognacy', 'Frequency'), summarize, AVERAGE=mean(Latency), 

SE=sqrt(var(Latency)/length(Latency))) 

margeffect2$Cognacy <- reorder(margeffect2$Cognacy, margeffect2$AVERAGE) 

marggraph2 = ggplot(data= margeffect2, aes(x= Frequency, y= AVERAGE, group= Cognacy, colour= 

Cognacy)) + 

  #geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Milliseconds', title= 'Cognacy * Frequency-category')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 

        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 

        axis.title.y = element_text(size=25)) 

 

png(filename= 'Figure xx Latency significant & marginal ANOVA interactions combined.png', width= 

1200, height= 1066) 

grid.arrange(siggraph1, siggraph2, siggraph3, marggraph1, marggraph2, ncol=2, top= 

textGrob('Latency: Significant & Marginal Interactions', gp=gpar(fontsize=34))) 

dev.off() 

#layout_matrix = rbind(c(1,1,2,2,3,3), c(4,4,5)) 

## Cycle-time Significant interactions 

 

cyclesig1 <- ddply(aovinteract, c('Cognacy'), summarize, AVERAGE=mean(`Cycle-time`), 

SE=sqrt(var(`Cycle-time`)/length(`Cycle-time`))) 

cyclesig1$Cognacy <- reorder(cyclesig1$Cognacy, cyclesig1$AVERAGE) 

cyclegraph1 = ggplot(data= cyclesig1, aes(x= Cognacy, y= AVERAGE, group= Cognacy, colour= 

Cognacy)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Cycle-time', title= 'Cognacy Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 
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        axis.title.y = element_text(size=16)) 

 

cyclesig2 <- ddply(aovinteract, c('Frequency'), summarize, AVERAGE=mean(`Cycle-time`), 

SE=sqrt(var(`Cycle-time`)/length(`Cycle-time`))) 

cyclesig2$Frequency <- reorder(cyclesig2$Frequency, cyclesig2$AVERAGE) 

cyclegraph2 = ggplot(data= cyclesig2, aes(x= Frequency, y= AVERAGE, group= Frequency, colour= 

Frequency)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Cycle-time', title= 'Frequency-category Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

grid.arrange(cyclegraph1, cyclegraph2, ncol=1, top= 'Cycle-time: Significant Interactions') 

 

 

## L-scaled significant interactions ## 

 

Lscalesig1 <- ddply(aovinteract, c('Cognacy'), summarize, AVERAGE=mean(`L-scaled`), 

SE=sqrt(var(`L-scaled`)/length(`L-scaled`))) 

Lscalesig1$Cognacy <- reorder(Lscalesig1$Cognacy, Lscalesig1$AVERAGE) 

Lscalegraph1 = ggplot(data= Lscalesig1, aes(x= Cognacy, y= AVERAGE, group= Cognacy, colour= 

Cognacy)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean L-scaled Latency', title= 'Cognacy Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

Lscalesig2 <- ddply(aovinteract, c('Frequency'), summarize, AVERAGE=mean(`L-scaled`), 

SE=sqrt(var(`L-scaled`)/length(`L-scaled`))) 

Lscalesig2$Frequency <- reorder(Lscalesig2$Frequency, Lscalesig2$AVERAGE) 

Lscalegraph2 = ggplot(data= Lscalesig2, aes(x= Frequency, y= AVERAGE, group= Frequency, 

colour= Frequency)) + 



179 
 

Master's Thesis Modelling Lexical Effects With Multilink Jesse Peacock 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean L-scaled Latency', title= 'Frequency-category Interaction')+ 

  theme(plot.title = element_text(face="bold", size=22), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16)) 

 

grid.arrange(Lscalegraph1, Lscalegraph2, ncol=1, top= 'L-scaled Latency: Significant Interactions') 

 

 

## Z-scaled significant interactions ## 

 

Zscalesig1 <- ddply(aovinteract, c('Cognacy'), summarize, AVERAGE=mean(`Z-scaled`), 

SE=sqrt(var(`Z-scaled`)/length(`Z-scaled`))) 

Zscalesig1$Cognacy <- reorder(Zscalesig1$Cognacy, Zscalesig1$AVERAGE) 

Zscalegraph1 = ggplot(data= Zscalesig1, aes(x= Cognacy, y= AVERAGE, group= Cognacy, colour= 

Cognacy)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 

  labs(y= 'Mean Z-scaled Latency', title= 'Cognacy')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 

        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 

        axis.title.y = element_text(size=25)) 

 

Zscalesig2 <- ddply(aovinteract, c('Frequency'), summarize, AVERAGE=mean(`Z-scaled`), 

SE=sqrt(var(`Z-scaled`)/length(`Z-scaled`))) 

Zscalesig2$Frequency <- reorder(Zscalesig2$Frequency, Zscalesig2$AVERAGE) 

Zscalegraph2 = ggplot(data= Zscalesig2, aes(x= Frequency, y= AVERAGE, group= Frequency, 

colour= Frequency)) + 

  geom_line(size= 1.5)+ 

  geom_point(size= 5.2)+ 

  geom_errorbar(aes(ymax=AVERAGE+SE, ymin=AVERAGE-SE, width=0.22), size=2.4)+ 
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  labs(y= 'Mean Z-scaled Latency', title= 'Frequency-category')+ 

  theme(plot.title = element_text(face="bold", size=28), 

        axis.text.x= element_text(size=17), 

        axis.text.y= element_text(size=17), 

        legend.title= element_text(size=18), 

        legend.text= element_text(size=15), 

        axis.title.x = element_text(size=25), 

        axis.title.y = element_text(size=25)) 

 

png(filename= 'Figure xx Z-scaled significant ANOVA interactions combined.png', width= 1200, 

height= 1066) 

grid.arrange(Zscalegraph1, Zscalegraph2, ncol=1, top= textGrob('Z-scaled: Significant Interactions', 

gp=gpar(fontsize=34))) 

dev.off() 

 

 

## Density plot ##  

# uses Gplot 

#largely unused in paper, but good for comparison 

 

# 10-log frequency vs frequency categories 

densityplot(~log(freq)|freq.cat, Multilink, layout=c(2,1)) 

 

# LD vs Cognacy 

densityplot(~Levdist|cognacy, Multilink, layout=c(1,2)) 

 

# P.Latency.lm 

densityplot(Multilink$Multilink$P.Latency.lm) 

 

# P.Latency.zm 

densityplot(Multilink$Multilink$P.Latency.zm) 

 

# Latency 

densityplot(Multilink$Latency) 

 

# Cycles 

densityplot(Multilink$cycles) 
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# Levenshtein Distance 

densityplot(Multilink$Levdist) 

 

 

## datapoint scatterplot + regression line ## 

#uses package 'lattice' 

 

# Cycle-time & Latency 

print(xyplot(cycles ~ Latency, type=c("p","r"), data= Multilink)) 

print(xyplot(cycles ~ Latency | Direction, type=c("p","r"), data= Multilink)) 

print(xyplot(cycles ~ Latency | Direction:cognacy:freq.cat, type=c("p","r"), data= Multilink)) 

 

# Latency & P.Latency.lm 

print(xyplot(P.Latency.lm ~ Latency, type=c("p","r"), data= Multilink)) 

print(xyplot(Latency ~ P.Latency.lm | Direction, type=c("p","r"), data= Multilink)) 

print(xyplot(Latency ~ P.Latency.lm | category, type=c("p","r"), data= Multilink)) 

 

# Latency & P.Latency.zm 

print(xyplot(Latency ~ P.Latency.zm, type=c("p","r"), data= Multilink)) 

print(xyplot(Latency ~ P.Latency.zm | Direction, type=c("p","r"), data= Multilink)) 

print(xyplot(Latency ~ P.Latency.zm | category, type=c("p","r"), data= Multilink)) 

 

 

## Means Line-plot ## 

# highlight each section to run properly 

# uses Gplots 

# largely unused in final paper, replaced by bar graphs below 

 

# Latency * Cycles, Forward & Backward 

par(mfrow=c(1,2), mar=c(15,5,5,5)) 

plotmeans(cycles~ paste(Direction), data= Multilink, las=2, xlab='') 

plotmeans(Latency~ paste(Direction), data= Multilink, las=2, xlab='') 

 

# Latency * Cycles, per condition 

par(mfrow=c(1,2), mar=c(15,5,5,5)) 

plotmeans(cycles~ paste(Direction,cognacy,freq.cat), data= Multilink, las=2, xlab='') 

plotmeans(Latency~ paste(Direction,cognacy,freq.cat), data= Multilink, las=2, xlab='') 
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# P.Latency.lm * Latency, Forward & Backward 

par(mfrow=c(1,2), mar=c(15,5,5,5)) 

plotmeans(P.Latency.lm~ paste(Direction), data= Multilink, las=2, xlab='') 

plotmeans(Latency~ paste(Direction), data= Multilink, las=2, xlab='') 

 

# P.Latency.lm * Latency, per condition, highlight this section to run properly, uses Gplots 

par(mfrow=c(1,2), mar=c(15,5,5,5)) 

plotmeans(P.Latency.lm~ paste(Direction,cognacy,freq.cat), data= Multilink, las=2, xlab='') 

plotmeans(Latency~ paste(Direction,cognacy,freq.cat), data= Multilink, las=2, xlab='') 

 

# P.Latency.zm * Latency, Forward & Backward 

par(mfrow=c(1,2), mar=c(15,5,5,5)) 

plotmeans(P.Latency.zm~ paste(Direction), data= Multilink, las=2, xlab='') 

plotmeans(Latency~ paste(Direction), data= Multilink, las=2, xlab='') 

 

# P.Latency.zm * Latency, per condition, highlight this section to run properly, uses Gplots 

par(mfrow=c(1,2), mar=c(15,5,5,5)) 

plotmeans(P.Latency.zm~ paste(Direction,cognacy,freq.cat), data= Multilink, las=2, xlab='') 

plotmeans(Latency~ paste(Direction,cognacy,freq.cat), data= Multilink, las=2, xlab='') 

 

 

## Bar graphs ## 

# highlight each section to run 

 

# Categories, Latency & P.Latency.lm 

png(filename= 'Figure 14 Barchart mean latency & predicted-latency categories.png', width= 1200, 

height= 1066) 

par(mfrow = c(2,2)) 

mean.actual = tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), 

mean) 

mean.approximate = 

tapply(Multilink$P.Latency.lm,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), mean) 

means = cbind(mean.actual,mean.approximate) 

rownames(means) <-  paste(c('1', '2', '3', '4', '5', '6', '7', '8')) 

sds = cbind(tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), 

sd), tapply(Multilink$P.Latency.lm,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), sd)  

) 
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barplot(means,beside=T, xlab='', ylab= 'Milliseconds', names.arg=c("Latency","L-scaled Latency"), 

col=c("white",'gray'), ylim=c(600,1200), xpd=F, cex.axis=2.3, cex.lab=2.0, cex.names=2.7) 

title('Empirical Vs Model Comparison', cex.main=3.0, line=50) 

arrows(0.5+(1:8),mean.actual,0.5+(1:8), mean.actual+sds[,1], angle=90, length=0.15) 

arrows(0.5+(10:17),mean.approximate,0.5+(10:17), mean.approximate+sds[,2], 

angle=90,length=0.15) 

text(0.5+(1:8),670,rownames(means),srt=0, cex=2.8) 

text(0.5+(10:17),670,rownames(means),srt=0, cex=2.8) 

 

# Categories, Latency & P.Latency.zm 

mean.actual = tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), 

mean) 

mean.approximate = 

tapply(Multilink$P.Latency.zm,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), mean) 

means = cbind(mean.actual,mean.approximate) 

rownames(means) <-  paste(c('1', '2', '3', '4', '5', '6', '7', '8')) 

sds = cbind(tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), 

sd), tapply(Multilink$P.Latency.zm,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), sd)  

) 

barplot(means,beside=T, xlab='', ylab= 'Milliseconds', names.arg=c("Latency","Z-scaled Latency"), 

col=c("white",'gray'), ylim=c(600,1200), xpd=F, cex.axis=2.3, cex.lab=2.0, cex.names=3.0) 

arrows(0.5+(1:8),mean.actual,0.5+(1:8), mean.actual+sds[,1], angle=90, length=0.15) 

arrows(0.5+(10:17),mean.approximate,0.5+(10:17), mean.approximate+sds[,2], 

angle=90,length=0.15) 

text(0.5+(1:8),670,rownames(means),srt=0, cex=2.8) 

text(0.5+(10:17),670,rownames(means),srt=0, cex=2.8) 

 

dev.off() 

 

#Direction, P.Latency.lm 

mean.actual = tapply(Multilink$Latency,paste(Multilink$Direction), mean) 

mean.approximate = tapply(Multilink$P.Latency.lm,paste(Multilink$Direction), mean) 

means = cbind(mean.actual,mean.approximate) 

sds = cbind(tapply(Multilink$Latency,paste(Multilink$Direction), sd), 

tapply(Multilink$P.Latency.lm,paste(Multilink$Direction), sd)  ) 

barplot(means,beside=T, xlab='', names.arg=c("Latency","L-scaled Latency"), col=c("white",'gray'), 

ylim=c(600,1000), xpd=F) 

arrows(0.5+(1:2),mean.actual,0.5+(1:2), mean.actual+sds[,1], angle=90, length=0.1) 

arrows(1.5+(3:4),mean.approximate,1.5+(3:4), mean.approximate+sds[,2], angle=90,length=0.1) 
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text(0.5+(1:2),400,rownames(means),srt=90) 

text(1.5+(3:4),400,rownames(means),srt=90) 

 

 

 

#Direction, Latency & P.Latency.zm 

mean.actual = tapply(Multilink$Latency,paste(Multilink$Direction), mean) 

mean.approximate = tapply(Multilink$P.Latency.zm,paste(Multilink$Direction), mean) 

means = cbind(mean.actual,mean.approximate) 

sds = cbind(tapply(Multilink$Latency,paste(Multilink$Direction), sd), 

tapply(Multilink$P.Latency.lm,paste(Multilink$Direction), sd)  ) 

barplot(means,beside=T, xlab='', names.arg=c("Latency","Z-scaled Latency"), col=c("white",'gray'), 

ylim=c(600,1000), xpd=F) 

arrows(0.5+(1:2),mean.actual,0.5+(1:2), mean.actual+sds[,1], angle=90, length=0.1) 

arrows(1.5+(3:4),mean.approximate,1.5+(3:4), mean.approximate+sds[,2], angle=90,length=0.1) 

text(0.5+(1:2),400,rownames(means),srt=90) 

text(1.5+(3:4),400,rownames(means),srt=90) 

 

 

# Direction, Cycles 

png(filename= 'Figure 13 Barchart mean latency & cycle-time, direction.png', width= 1200, height= 

1066) 

par(mfrow = c(2,2)) 

mean.cycles = tapply(Multilink$cycles,paste(Multilink$Direction), mean) 

means = cbind(mean.cycles) 

sds = cbind(tapply(Multilink$cycles,paste(Multilink$Direction), sd) ) 

barplot(means,beside=T, xlab='', ylab='Cycles', names.arg=c('Cycle-time'), col=c("white",'gray'), 

ylim=c(15,30), xpd=F, cex.axis=2.3, cex.lab=2.0, cex.names=3.0) 

arrows(0.5+(1:2),mean.cycles,0.5+(1:2), mean.cycles+sds[,1], angle=90, length=0.15) 

text(0.5+(1:2),19,rownames(means),srt=0, cex=4.4) 

 

#Direction, Latency 

mean.Latency = tapply(Multilink$Latency,paste(Multilink$Direction), mean) 

means = cbind(mean.Latency) 

sds = cbind(tapply(Multilink$Latency,paste(Multilink$Direction), sd), 

tapply(Multilink$Latency,paste(Multilink$Direction), sd)  ) 

barplot(means,beside=T, xlab='', ylab='Milliseconds', names.arg=c('Latency'), col=c("white",'gray'), 

ylim=c(600,1000), xpd=F, cex.axis=2.3, cex.lab=2.0, cex.names=3.0) 
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arrows(0.5+(1:2),mean.Latency,0.5+(1:2), mean.Latency+sds[,1], angle=90, length=0.15) 

text(0.5+(1:2),700,rownames(means),srt=0, cex=4.4) 

 

dev.off() 

 

 

# Categories, Cycles 

mean.cycles = tapply(Multilink$cycles,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), 

mean) 

means = cbind(mean.cycles) 

sds = cbind(tapply(Multilink$cycles,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), sd) 

) 

barplot(means,beside=T, xlab='', names.arg=c('Cycle-time'), col=c("white",'gray'), ylim=c(15,30), 

xpd=F) 

arrows(0.5+(1:8),mean.cycles,0.5+(1:8), mean.cycles+sds[,1], angle=90, length=0.1) 

text(0.5+(1:8),10,rownames(means),srt=90) 

 

#Categories, Latency 

mean.Latency = 

tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), mean) 

means = cbind(mean.Latency) 

sds = cbind(tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), 

sd), tapply(Multilink$Latency,paste(Multilink$Direction,Multilink$cognacy,Multilink$freq.cat), sd)  ) 

barplot(means,beside=T, xlab='', names.arg=c('Latency'), col=c("white",'gray'), ylim=c(600,1200), 

xpd=F) 

arrows(0.5+(1:8),mean.Latency,0.5+(1:8), mean.Latency+sds[,1], angle=90, length=0.1) 

text(0.5+(1:8),350,rownames(means),srt=90) 

 

 

####################################################################### 

# thank you to my favourite bands for providing music to code this: 

# Matt Pond PA, Lights, Forgive Durden, Land Of Talk, The Academy Is..., and Coeur De Pirate 

# life is empty without your art, and I couldn't have done this without you. 

####################################################################### 

 

write.table(Multilink, file= 'Multilink2.csv', quote=FALSE, sep=',', dec= '.', row.names=FALSE, 

col.names=TRUE) 
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Thank you for reading, 

Bedankt voor het lezen, 

Merci d'avoir lu, 

Danke für lesen, 

 

 

 

 

Sincerely, 

Jesse Peacock 

 


