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I Abstract

The object space task investigates memory consolidation in rodents. The task in-

volves a series of training sessions during which animals are made to explore an

arena that contains a number of objects placed according to a number of reposi-

tioning rules. Presuming an innate curiosity in the rodents (’novelty bias’), one can

use the exploratory behavior towards the objects as a measure of internalization of

the object repositioning rules.

This paper presents an integrated pipeline for the combined analysis of be-

havioral videos and synchronized Ca2+-imaging footage of animals performing the

object space task. It includes a streamlined version of the CNMF-E Ca2+-signal

source extraction algorithm by Pnevmatikakis et al. (2016), a deep learning-based

behavioral video classifier and a number of supervised and unsupervised statistical

tests to investigate the neural correlates of memory formation.

The basic functioning of the pipeline could be confirmed using a number of

random permutation linear regression fits of the neural and behavioral data points.

Moreover, statistical tests could be used for a first exploratory investigation of

the information content of the neural signal. Cells with correlated activity could

be shown to encode certain types of abstract behavior like roaming, hiding or

object exploration. Also, the neural signal could be shown to carry some intentional

information when comparing the predictory power of the current signal for future

and past behavioral states. Unfortunately, the amount of data analyzed so far is not

sufficient to draw any final conclusions on neural ensemble formation during the

object space task itself. However, large dataset of Ca2+-imaging recordings during

the objects space task is currently available at the group and ready to be analyzed,

with the potential to produce valuable insights on the neural correlate of memory

consolidation.
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Chapter 1

Introduction

Ca2+-imaging is a powerful technique to investigate local neural networks in the

living mammalian brain. Its is now in wide use with established protocols for the

physiological and functional analysis of both single neurons and neural ensembles

(Grienberger, Konnerth, 2012). Technically, Ca2+-imaging is a fluorescence record-

ing technique that uses the photon re-emission of calcium-sensitive molecules to

determine the Ca2+-concentration inside the cell (figure 1.1). As such, it allows

visual tracking of individual neurons over a period of several weeks and can be

used to trace the intracellular Ca2+concentration as a rich indicator for a wide

range of Ca2+-dependent neural processes Grienberger, Konnerth (2012): Most im-

portantly, depolarization at the synaptic terminal induces calcium influx, which, in

excitatory neurons, initiates the release of neurotransmitters into the synaptic cleft.

In the post synapse, an increased Ca2+concentration can induce activity-dependent

synaptic plasticity (Zucker, 1999), which is known to play a role in memory for-

mation. Next to that, Ca2+-ions regulate gene transcription in virtually every cell

type in the body.

Fig. 1.1: Six consecutive frames of Ca2+-imaging footage recorded at 10Hz. The top row shows the raw

footage, the bottom row shows the same frames as derivation from the movie’s median frame.
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This project aims to explore the potential of Ca2+-imaging for a newly de-

veloped memory consolidation experiment for rodents called the object space task

(Genzel et al., 2017). The OST makes use of the rodents’ natural curiosity and ten-

dency to explore novel objects and situations in their environment. During the task,

animals are repeatedly exposed to an arena containing two objects that are repo-

sitioned across trials. The exploration behaviour is used as an indicator for short-

term ’episodic’ memory or long-term ’semantic’ memory formation. One (week-

long) session consisted of 21 five-minute exploration trials during which both the

neural Ca2+signal and the animal behavior were recorded. After each trial, another

5 minutes of Ca2+signal was recorded while the animal was in a resting cage.

Single-photon neural Ca2+-imaging suggest itself as an investigative method for

this task since it allows the tracking of single cells over entire, week-long periods

of time while the animal can behave freely in a given environment. Also, as men-

tioned above, intracellular Ca2+has been linked to activity-dependant plasticity

and memory formation. Accordingly, this project interprets the raw calcium signal

as a simple indicator for momentary cell activity with a potential effect on memory

consolidation.

The OST experiments produced an extensive dataset of Ca2+-imaging footage

and a body of synchronized behavioral videos captured from a camera above the

arena. The main aim of this pilot project was therefore to construct an integrated

automated analysis pipeline (1.2) for the collected neural and behavioral data. Ini-

tially, both datasets were processed in their proper analysis pipelines to retrieve

the relevant information: The Ca2+-imaging footage was motion corrected, aligned

and passed to a factorization algorithm to extract neural activity traces. The be-

havioral video data was processed using a deep learning ensemble to determine the

animal’s position and exploratory behavior.

2
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session-wise week-wise

raw Ca2+footage motion correction session alignment factorization

activity traces

raw behavioral footage

inception

resnet 50
behavioral data

positional data

supervised analysis

unsupervised analysis

Fig. 1.2: A general overview of the project: The main segments are a Ca2+-imaging

pipeline, a behavioral pipeline and a sequence of statistical tests. The Ca2+-imaging

pipeline extracts neural activity traces from raw Ca2+-imaging footage. The behav-

ioral pipeline extracts behavioral variables from raw behavioral videos. The output

of both pipelines is then passed to a number of supervised and unsupervised sta-

tistical tests.

3
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Next to the behavioral and neural analysis, the last major part of the project

was the creation of a range of supervised and unsupervised statistical tests to assess

the quality of the extraction pipelines and to preliminary explore the information

content of the extracted signals.

In the remaining part of the thesis, the different pipelines and their individual

components will be discussed in detail. Chapter 2 will discuss the Ca2+-imaging

pipeline. Chapter 3 will treat the deep learning ensemble of the behavioral pipeline.

Chapter 4 treats the different evaluating and exploratory statistical tests imple-

mented as part of this project. The final chapter 5 will present the results of this

pipeline when actually applied to a subset of the OST dataset.

4



Chapter 2

Ca2+-Imaging Pipeline

1 Introduction

The construction of an extended Ca2+-imaging analysis pipeline was the core ob-

jective of this project. The pipeline was to be used to analyze Ca2+-imaging videos

recorded in mice performing the OST.

There already exists a considerable body of research on computational Ca2+-

imaging analysis. State-of-the-art algorithms typically apply a form of dimension-

ality reduction on the video frames to retrieve sources with high pixel intensity cor-

relations. Often, a combination of principal component analysis and independent

component analysis (PCA/ICA) is used since there exist very efficient and well-

proven implementations that easily scale up to large data sets. However, PCA/ICA

is a very self-contained method that does not incorporate additional, problem-

specific constraints very well, which is why we decided to use the more computa-

tionally intensive method of constrained non-negative matrix factorization (CNMF)

for this project. CNMF is a very versatile method of dimensionality reduction that

can easily be customized by including problem-specific constraints. Also, the out-

put of the CNMF algorithm is easier to interpret in terms of neurophysiological

data since it is naturally sparse and strictly non-negative.

A single execution of the OST protocol produced a total of 42 five-minute videos

captured over five consecutive days. To be able to do an effective neurophysiolog-

ical analysis, it was crucial for the pipeline to integrate all 42 recordings into one

conjoined data vector. Therefore, the first component of the pipeline was a pre-

processing step that reformatted the data and reduced the size of the dataset for

more efficient computation. Since the natural movement of the camera interferes
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trial-wise week-wise

raw Ca2+footage motion correction trial alignment factorization

ROIs

activity traces

Fig. 2.3: The different components of the Ca2+-imaging analysis pipeline: The raw

footage had to be motion corrected trial-wise, the different trials had to be aligned

over a whole week and the aligned material had to be factorized to extract the

relevant neurophysioligical data.

with the pixel-value based factorization algorithm, a motion correction algorithm

was applied to the pre-processed trial videos. The trial videos were then joined to-

gether using a custom alignment algorithm. The aligned, concatenated video data

of all 42 trial recordings was then used as input to the CNMF algorithm. The

output of the pipeline was a matrix of recovered source ROIs and a matrix of cell

activity vectors. In the following, each step of the pipeline will be treated in more

detail.

2 Preprocessing

Main goal of the pre-processing step was to reduce the data size to accelerate fur-

ther computations. This was achieved by down-sampling the recording in all three

spatio-temporal dimensions. The down-sampling algorithm was applied during the

conversion from the raw, proprietary recording format to the uncompressed ’.tif ’

format that was used as pipeline input. The input was reduced by a factor of 2

6
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in each dimension (using linear interpolation as an anti-aliasing method), which

reduced the video frame-rate to 10Hz. Only the frames 200 through 3000 of each

recording were used to exclude detrimental image movements that occur during the

transport of the animals between the resting and trial cages. For spatial cropping,

ideal cropping points were determined manually for each animal and week through

visual inspection of the Ca2+-imaging footage. Goal was to further reduce the size

of the dataset and to enhance the motion correction algorithm by removing the

edges of the camera objective, which were visible as stable structures on the edges

of the frame. The resulting videos had a size of 2800× 600× 420 pixels and a field

of view of ∼ 800µm× 600µm. They were saved as ’.tif ’ files and fed as such to the

further pipeline.

3 Motion Correction

The next step in the pipeline was a refined image alignment/ motion correction

algorithm according to Pnevmatikakis, Giovannucci (2017), which was applied to

each trial video individually. It used a state-of-the-art method for single-photon

Ca2+-image motion correction: A frame-wise rigid transform followed by a patch-

wise correction (see 2.4 for an overview). Both transformation functions are based

on the same image registration algorithm which is applied to the entire frame for

the rigid transform and to sub-parts of the frame in the non-rigid transform. The

algorithm itself is well established and described in e.g. Guizar-Sicairos et al. (2008).

It uses frequency space representations of the two images and tries to isolate the

phase deviation caused by the spatial shift of pixel values. The following example

illustrates the basic functioning of the algorithm in a 1-d example.

The discrete Fourier transform F of an array of data points f is defined as:

F (x) =
N−1∑
n=0

f(n) · e−
i2π
N
xn (3.1)

7
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it is apparent that a second array with a shift in pixel values g(n) = f(n+ n0)

will preserve a frequency spectrum with the same magnitudes but a shift in phases:

G(x) =
N−1∑
n=0

g(n) · e−
i2π
N
xn (3.2)

=
N−1∑
n=0

f(n+ n0) · e−
i2π
N
x(n+n0) (3.3)

The extent of the shift, n0, can be factored out:

F (x) = G(x)e
i2π
N
xn0 (3.4)

and resolved by calculating the normalized cross-correlation of the power spectra

(using the complex conjugate of G, G*):

R(x) =
F ·G∗

|F ·G∗|
= e

i2π
N
xn0 (3.5)

The peak location of this residual term (after re-transformed to pixel space

domain) indicates the extend of the original shift, n0. This approach translates to

the multi-variate space of two-dimensional images without loss of generalization

and is used both in the rigid and non-rigid motion correction steps.

3.1 Rigid Transform

As a first step, the above-described algorithm is applied to the whole frames. The

video’s central frame is used to create an initial reference frame by removing the

noise though a low-pass filter (convolution with a Gaussian of σ = 3px). The adja-

cent frames are iteratively fitted to this reference frame using the above-described

cross-correlation maximization. During each step, the transform is applied and a

new template image is generated taking the median values of all corrected frames

(see 2.4 for a visual display of the pipeline; rigid transformation means that the

patch size is equal to the frame size in this context).

8



CHAPTER 2. CA2+-IMAGING PIPELINE 3. MOTION CORRECTION

Fig. 2.4: The computational graph of the NoRMCorre motion correction algorithm

(Pnevmatikakis, Giovannucci, 2017)

3.2 Non-Rigid Transform

The non-rigid, patch-wise transform has substantially more degrees of freedom and

can correct for organic, non-linear movements of the brain tissue between frames.

It is build on top of the rigid motion correction. It divides the image into smaller

square patches of 80 pixels edge length with a 40 pixel overlap between patches. The

individual patches are then fitted to a reference frame through a rigid transform fit

of their own using the same algorithm as the rigid motion correction. Overlapping

patches are then fused together using the linear interpolation heuristic described

in (Pnevmatikakis, Giovannucci, 2017), 2.3.2.

9
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4 Trial Alignments

The motion correction algorithm above used a frame-wise image transformation to

maximize pixel similarity between frames. This method is suitable to align cells

in a continuous video, as the physical reference structures in frame do not change

significantly. To align frames from different trials over a period of different days, a

dimensionality reduction method based on PCA-ICA was used to extract relevant

structural features from each trial as reference points and determine the individual

rigid transforms that align the different videos. The algorithm was based on a Movie

Analysis pipeline by Benjamin Ehret of ETHZ (Ehret, 2018).

4.1 Preprocessing

For this PCA/ICA alignment, the first step was to do another pre-processing step.

Each frame was divided by a low-pass-filtered version of itself to eliminate wide

field fluctuations and global intensity gradients. A Gaussian filter was optimized by

hand for each animal and week by visually determining the lowest σ2 that equalizes

intensity over the entire frame after application.

For each (x,y)-pixel location in the video, a baseline value was approximated

by taking the intensity mean over time. Every frame in the movie was then divided

by this approximated frame of baseline pixels (a procedure named ∆F
F

in the litera-

ture). This way, any stationary background structures are divided out of the movie,

which leaves the intensity changes of the calcium traces the single most prominent

detectable feature.

4.2 PCA-ICA source extraction

This preprocessed ∆F
F

video was then subjected to a consecutive PCA-ICA analysis

to extract the location of neurons (as sources of Ca2+-gradient) in the image. The

expected number of components needed to be parameterized beforehand and was

set to 500 cells(PCA) and 375 cells(ICA), following a thumb rule advised by the

10
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Fig. 2.5: A depiction of the alignment process: The left shows the extracted land-

marks from four different trials, which are aligned and superimposed on the right.

creators of the algorithm. The factorization step was implemented using the generic

MATLAB functions pca() and rica().

4.3 Alignment Algorithm

2.5 shows the outputs of the PCA/ICA source extraction algorithm for four con-

secutive trials. The relevant independent signal sources are registered individually

and used as landmarks in the subsequent alignment algorithm. All 350 landmarks

(cells) had to be superimposed to create an image like the ones in 2.5. These images

were then aligned using MATLAB’s genuine imregister() function, which rendered

a single affine transform matrix per trial.

The resulting image transformations were then applied to the superimposed

landmark images and the results were inspected visually and,if necessary, adjusted.

The determined transforms were then applied to the trial videos. Afterwards, all 42

videos of one week were concatenated. The entire video was cropped to remove the

blank areas created by the transforms at the edges of the frames. The so created

11
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single video file containing the motion corrected and aligned Ca2+-imaging footage

of all 42 trials in a row was then saved as a memory-mapped file and as such

delivered to the factorization algorithm.

5 Source Extraction:

5.1 The Factorization Model

The constrained non-negative matrix factorization algorithm according to (Pnev-

matikakis et al., 2016, 2014; Zhou et al., 2016; Friedrich, Paninski, 2016) called

CNMF-E is at the center of the analysis pipeline. As described in the introduc-

tion, it uses a classic NMF implementation coupled with a few problem-specific

constraints.

Y A C B

= × +

Fig. 2.6: A graphical representation of the factorization algorithm: The movie

footage Y is modeled as the product of an ROI matrix A and a Calcium trace

matrix C added to a stable background image.

The video is treated as a large three-dimensional matrix (of one temporal and

two spatial dimensions, henceforth called ’Y ’). Y is then used as a ground truth

to be approximated by a model of confined-area, spike-dependant calcium traces

before a background in a constrained non-negative matrix factorization.

The model contains several variables of interest:

– A representation of the image area covered by the single cell bodies (’A’)

– the light intensity of the area over time ( ’C’, ’calcium trace’)

12
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– the respective spiking activity of the individual cells that produce the calcium

trace (’S’ )

– additional background components (’B’ ) and

– and a random gaussian background noise (’E’ ).

These variables are combined to the characteristic equation of the CNMF-E

model:

Y = A · C +B(+E) (5.1)

Discarding the noise term, the objective minimization function of the algorithm

is the residual sum of squares (RSS) of the matrix Y − (AC +B):

argmin
A,C,B

||Y − (AC +B)||2F (5.2)

while subjecting the variables A, C and B to certain constraints:

– The spatial footprint A: Each cell region (’ROI’) should be confined to a small,

spatially consistent region. (Pnevmatikakis et al., 2016)

– The temporal traces C are modeled as a first-order autoregressive system (of

natural Ca2+diffusion) interferred by sparse, non-negative trains of action po-

tentials according to Vogelstein et al. (2010); Pnevmatikakis et al. (2016).

– The activity signal S is the inferred magnitude of the action potentials that per-

turb C. It includes all changes in C that are not explained by the autoregressive

model. S is used as the actual measure of neural activity and the pipeline’s main

output.

– The background components B are split up into a stationary (bc) and a fluctu-

ating (bf ) component such that B = Bf +Bc.

– The stationary background is modeled as a spatial matrix that is constant over

time: Bc = b0 ·T , with T being an array of ones of the length equal to the total

number of frames.

13
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– The fluctuating background is supposed to model local signal noise that typ-

ically occurs when out-of-focus neurons are active. These out-of-focus signals

usually have a much larger diameter than the in-focus neurons of interest. Bf

is modeled using the so-called ’ring model’: Bf = W · Y , where Wi,j = 0 for

all entries except for when (i,j) is the pixel count of two pixels with a fixed eu-

clidean distance ln to each other in the frame. This way, Bf for a certain pixel

is modeled as the weighted activity of the surrounding pixels at a distance of

ln.

– The normal statistical noise E is considered negligible in magnitude.

5.2 Variable Initialization

The matrices A, C, and B needed to be initialized. For this project, an iterative

greedy algorithm was used. A Gaussian filter that approximated the shape of a

signal source was applied spatially. In the filtered footage, the spatial pixel location

with the maximal temporal variance was chosen as the center of the approximated

neuron. A 20 pixel square window around this peak location was isolated and

subjected to a rank-1 NMF, the results of which were appended to the matrices A

and C. The current product A × C was then substracted from Y to produce the

residual that was used as input for the next iteration round (See Pnevmatikakis

et al. (2016) for a more detailed description of the stopping and acceptance criteria).

The frame-wise mean pixel of the eventual residual was used as an estimate of B.

5.3 Factorization

After initialization of the relevant variables, the characteristic equation Y = A ·

C+B+E needed to be solved. Due to the above-mentioned non-linear constraints,

the problem cannot be solved in closed form. It can however be broken down into

a number of convex subproblems that can be solved iteratively in a multiplicative

update algorithm (Zhou et al., 2016):

14
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– Estimating A, bo given Ĉ, B̂f :

argmin
A,b0

||Y − A · Ĉ − b0 · 1T − B̂f ||2F (5.3)

subject to:

A≤ 0

A is sparse and local

– Estimating C, bo given Â, B̂f :

argmin
C,S,b0

||Y − A · Ĉ − b0 · 1T − B̂f ||2F (5.4)

subject to:

ci ≤ 0

si ≤ 0

G(i)ci = si

si is sparse i = 1...K

– Estimating W, bo given Â, Ĉf :

argmin
W,b0

||Y − A · Ĉ − b0 · 1T − B̂f ||2F (5.5)

subject to:

Bf · 1 = 0

Bf = W · (Y − Â) · Ĉ − b0 · 1T )

Wi,j = 0 if dist(xi, xj) 6∈ [lnln + 1]

6 Results

After a protracted phase of parameter tuning and code optimization, the motion

correction and CNMF-pipelines could process most of the data without exceeding

hardware constraints or causing program errors. However, there still exists at least

one week of Ca2+-imaging in our database that did not factorize with the current

parameter settings, revealing a further need for parameter optimization and debug-

ging of the code base. Typically, improving quality of the motion correction and

15
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alignments can elude computational errors in the factorization algorithm (such as

division-by-zero). Due to time constraints, the ultimate cause of these computa-

tional errors need to stay unsolved for now.

The quality of the motion correction algorithm was assessed using visual in-

spection of the results and a peak-to-noise / local pixel correlation indicator. Both

indicators are improved after application of the motion correction algorithm ,and

the quality of the motion correction was deemed sufficient after visual inspection

of the corrected footage (Figure 2.7).

For a large majority of the Ca2+-imaging data the pipeline could produce very

reasonable results, which are described in detail in chapter 5. A typical number of

200-500 cells could be traced reliably over a whole week (table 1). The recovered

cell bodies (regions of interest/ROIs) can be evaluated visually by plotting them

on top of a local correlation map(table 1). Respective plots show that the pipeline

with the current settings can retrieve a reasonable amount of signal sources from

the Ca2+-imaging footage.

The extracted activity traces appear plausible upon visual inspection. Their

shape is similar to Ca2+signals reported in other neural Ca2+-imaging studies

(Friedrich, Paninski, 2016; Pnevmatikakis et al., 2016). A striking feature of many

cell signals is an activity bias towards either resting or testing phases as shown in

figure 2.8.

The quality of the recovered cell ROIs and the shapes of the corresponding traces

were deemed sufficient for to be passed to the remaining pipeline and subjected to

a number of supervised and unsupervised statistical tests described in chapter 4.

The results and findings from these statistical tests that further help estimate the

quality of the factorization are discussed in chapter 5.
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(a)

(b)

Fig. 2.7: Motion correction quality measures for two different animals (a,b). Rows (1,3) show a local

correlation measure, rows (2,4) show the peak-to-noise ratio over 2800 frames. The first column shows the

values before motion correction. The second column shows the change in value after rigid motion correction

(green→improve, red→worsen). The third row shows the change in value after the non-rigid motion

correction. Both measures indicate an effective improvement, where the non-rigid algorithm handles edge

distortions especially well.
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Fig. 2.8: A selection of recovered activity traces of a single animal from video footage

collected over a single week. The top figure shows traces from 29 randomly selected

cells, the bottom left figure shows cells that are preferably active in the resting

phases, the bottom right figure shows cells that are active during test phases. The

preferences can clearly be seen as periodically alternating patterns of 21 active and

passive segments in the activity traces.
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Chapter 3

Automatized Behavioral Analysis

1 Introduction

Next to the Ca2+-imaging footage, the experiment protocol also produced a syn-

chronized behavioral video captured from a camera mounted above the arena (fig-

ure 3.9). A behavioral analysis pipeline was created to track the animals’ behavior

over time and create a number of behavioral variables to correlate to the extracted

Ca2+-imaging traces. As relevant behavioral variables were chosen:

– ’Pose’: The position of the animal in the arena

– ’Exploration’: A Boolean variable that indicates whether the animals explore

an object in the arena at a given time.

Fig. 3.9: The raw input to the behavioral classifiers: A simple image from a camera

mounted above the arena. The position of the animal and its exploratory behavior

towards the two objects need to be extracted.

The two ’pose’ and ’exploration’ variables were extracted using separate deep

learning algorithms. The first algorithm, used purely to extract the pose of the
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animals, was an adaptation of the DeeplLabCut pipeline (Insafutdinov et al., 2016,

2017; Mathis et al., 2018). The second one, which was used to determine exploratory

behavior in the video frames, was an adaptation of the pre-trained inception-3d

model published by (Carreira, Zisserman, 2017).

2 DeepLabCut: Retraining ResNet101 for Pose

Estimation

DeepLabCut is an established pipeline that uses a transfer learning in a fully-

convolutional ResNet model to identify user-defined animal body parts in a given

video frame (Insafutdinov et al., 2016, 2017; Mathis et al., 2018).

Fig. 3.10: The computational graph of ResNet. The output of each convolutional

sub-element is added to its input, which makes elements approximate residuals

rather than absolute values. The different colors denote the convolutional blocks

(He et al., 2016).

Pre-trained ResNet models in tensorflow’s slim format are readily available

online (Silberman, Guadarrama, 2017). This project’s version of DeepLabCut used

a ResNet-101 architecture (He et al. (2016);figure 3.10) that had been pre-trained

on the ImageNet dataset (Deng et al., 2009) until convergence. DeepLabCut slightly

modifies the generic architecture of ResNet101 to be applicable for pose estimation.

Most importantly, the final dense layers are removed to make the model fully

convolutional and preserve the spatial information throughout the entire network.
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The convolutional section of ResNet101 is composed out of four functional blocks,

each of which shrinks the [x, y]-dimensions of the signal by a factor of two through

pooling or stride operations (figure 3.10). This step is necessary to meet hardware

restrictions, but discards a lot of spatial information. To diminish some of the effect,

part of the signal was by-passed around the last block to counteract information loss

during the last down-sampling step. For this purpose, a custom block was added

to the graph that performed a factor-2 up-sampling of the final (’block 4’) output

signal (which had been reduced to 1/16 and is restored to 1/8 network input size

this way). This up-sampled signal is then stacked with the output of the second-to-

last block 3 (which also has 1/8 network input size). On top of this concatenated

layer, a convolutional layer with a sigmoid activation function was added as the

network’s new output layer. The spatial dimension of the convolutional kernel of

this new output layer was [1, 1] and the number of output channels was set to the

number of desired output categories (two in our case - ’nose’ and ’tail base’). Each

of the channels of the output layers was to produce a heat-map for one of the

categories [’nose’, ’tail base’].

A total of 200 random frames were extracted from the entire body of behavioral

videos to retrain the model in a fine-tuning session. The location of the base of the

animal’s tail and its nose within each frame was manually labeled. The dataset

was augmented by mirroring frames randomly across the x- and y-axes and by

randomly resizing the input images by a factor between 0.5-1.5 on-line during

training. The frames were fed to the network in batches of RGB images of the

format [batches,width,height, RGB channels]. The target data was a 3d-array of

the size [batches, width
8
, height

8
, categories]. The target array was filled with zeros

except for the position [x
8
, y
8
, c], which denotes the x and y pixel position for each

label category c in the input image, which was set to 1.

The network was trained on the dataset for a total of 50000 epochs until the

quality of the predictions was considered sufficient for the purpose of this study.
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The location of the animals was then obtained through a prediction session of

videos of the animals behaving in the environment. From the network output, the

(x,y)-coordinates of the peak of each category channel and the p-value of this peak

were extracted for the further analysis. This data was then combined with next

section’s behavioral results in a statistical pipeline described in section 4 of this

chapter.

3 AutoScore: Training Inception as a Behavioral Classifier

The second behavioral analysis algorithm was created to detect so-called ex-

ploratory behavior of the animal in the frame. A single boolean variable was to

indicate whether the animal directed its attention towards any of the two objects

within the frame (figure 3.11). This classification task was tackled using another

deep learning algorithm, albeit with a different basic approach. Other than for the

positional tracking algorithm of the previous chapter, a proper training set was

available for the behavioral classification task, allowing for a higher dimensional

input and an complete training run until convergence.

Fig. 3.11: A number of frames to evaluated as true (top) and false (bottom).
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Inception3d is a neural network architecture based on Google’s Inception

model for image classification (Szegedy et al., 2015). Inception models are readily

available online in tensorflow’s slim format and pre-trained on the ImageNet dataset

(Silberman, Guadarrama, 2017). The characteristic of the Inception3d architec-

ture is an additional temporal dimension obtained in a process called ’inflation’

first described by Carreira, Zisserman (2017). In their method, all convolution fil-

ters are expanded to process 3d [time,x,y] video input instead of only 2d [x, y]

image input. To this end, every 2d convolution filter is copied n times and stacked

along a new ’time’ axis. The value of the weights is divided by the factor n, which

means that a ’boring’ video consisting only of a repeated, stacked ImageNet image

would generate the same activation patterns in the network as the single image

would have in the original 2d Inception. The inflated network was then pre-trained

a second time on the kinetics video dataset (which is smaller than ImageNet and

has an additional time dimension).

Fig. 3.12: The computational graph of Inception V1: Each inception block consists

of a number of parallel convolutional sub-graphs that can represent features of

different sizes (Szegedy et al., 2015).

The final, pre-trained video categorization model was then used for a transfer

learning session on our own behavioral dataset. To this end, the network’s final,

dense layers were removed and replaced by a single dense layer with a sigmoid

activation function and two output nodes denoting the categories exploratory and
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non-exploratory. The binary categorical cross-entropy of the predictions was used

as a loss function (also preparing future uses of the model with multiple behavioral

categories). The optimizer was a general stochastic gradient descent with an initial

learning rate of 0.01 (which decayed by a factor of 10−6 after each epoch) and a

Nesterov momentum of (0.95).

987654321

True
label/prediction

Fig. 3.13: A single data point in the Inception3d training set: The independent

variable consists of nine consecutive frames. The behavioral label of the central

frame is used as the dependent variable.

The in-house dataset contained a a total of 208 behavioral videos of ∼ 5-minutes

and 6000 frames length. The videos had been hand-labeled by the experimenters in

real time by holding down a button whenever an animal showed exploratory behav-

ior towards one of the two objects in the arena. During re-training, 9 consecutive

video frames were used as the independent variable, and the manual label of the

central (fifth) frame was used as the dependent output variable (figure 3.13). The

network was trained for 100 epochs until the quality of the output was considered

sufficient for the purpose of this study.

The network was then used to run predictions on the behavioral videos of our

experimental dataset. Before feeding the prediction frames to the network, the

slight difference in camera perspective of the training and the prediction set was
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corrected for using an affine transformation. The color values of the prediction data

sets were adjusted using histogram matching. A representative training histogram

was created using two frames from every training video. The histogram of each

prediction frame was adjusted to match the histogram of the representative training

histogram (figure 3.14).

(a) (b) (c)

training dataset raw collected data corrected data

Fig. 3.14: Matching the perspective and the color histograms of the training datasets

(a) and the collected behavioral video footage (b) helped to improve model predic-

tions.

This prediction round produced a vector of exploration p-values for each frame

of every video. This vector of behavioral predictions was then passed to a post-

processing algorithm described in the next section.

4 Post-Processing and Data Integration

The two video analysis models presented above produced two synchronized arrays of

behavioral data. One array contained the (x,y) coordinates of the animal alongside

a probability estimate of the prediction, the other array contained a frame-wise

p-value for the animal’s exploratory behavior. Typically, both prediction arrays

contained errors or low-confidence predictions that occurred when the animal was

covered by the object or showing ambiguous behavior that could be interpreted as
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grooming as well as exploring. An augmentation routine was therefore added to

the pipeline that tried to eliminate a number of identifiable errors.

For the pose estimation data, low-confidence or wrong predictions could be

partially detected both from the provided p-value and from the plausibility of the

recovered positions. Both indicators were used to augment the data in a probabilis-

tic model based on a Kalman filter.

A Kalman filter is a data augmentation algorithm that can be used to remove

signal noise from a series of measurements using Bayesean reasoning (Kalman,

Bucy, 1961). The measurement variables - in our case the location and speed of

the animal’s head and tail - are modeled as multivariate Gaussian processes, which

makes it possible to detect (and correct) improbable data points and to infer an

unavailable or ’masked’ value in the dataset from the values of the adjacent time-

points and dimensions. This way, the position of an animal’s nose in a frame can be

estimated using the position and velocity of the nose in the previous and subsequent

frames, but also using the position and velocity of the tail base in the current frame

and the surrounding frames.

For the application of the Kalman filter, all time points with a p-value below 0.2

(which occured e.g. when a body part was covered by an object or the animal was

at an awkward position) were marked as ’masked datapoints’. A matrix containing

the positions and velocities of the different body parts at all time points was then

smoothed using a python-based Kalman filter algorithm (Duckworth, 2012). The

final output of the smoothing algorithm was a plausible array of positional data

for the nose and tail base of the animal throughout the entire experiment. Of the

two, only the spatial coordinates of the nose was used in subsequent steps in the

pipeline.

The behavioral output of the Inception3D network was a single p-value be-

tween 0 and 1 indicating exploratory behavior in the respective frame. As a first

step, the value was transformed to a boolean variable using a threshold of 0.5.

Furthermore, Inception3D cannot not distinguish between exploratory behavior
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towards the two objects in the arena. Therefore, object-specific exploratory behav-

ior had to be restored by combining the behavioral data and spatial positional data

of the animal. In the task, the objects had four possible positions in the four corners

of the frame. Accordingly, an exploratory event was simply assigned to the object

located in the quarter of the frame that also contained the nose of the animal in

the given frame.

5 Results

Given the small training set, the sparse and vague nature of the output and the

cross-validation training scheme, the eventual performance of DeepLabCut is

difficult to describe numerically. The trained network output was simply considered

sufficient after of the visual inspection of a few prediction results rendered on top

of the input videos (see figure 3.15 for an impression of DeepLabChop’s output).

The most powerful version of Inception3D trained for our project reached

an accuracy value of 0.94-0.95 correct predictions different, independent testing

videos. This is a quite satisfactory performance considering the prevalent human

error in the training and validation data and the categorical ambiguity of many

situations (the exemplary predictions for a single session are rendered in figure

3.16).

However, there are also a few systematic disadvantages to an automated scoring

algorithm over human scoring. Deep learning algorithms often do not adapt well

to -seemingly superficial- changes in the prediction task. For instance, the OST

protocol requires ’cues’ on the arena walls for the animals to orientate on. Often,

black cut-out shapes are used and glued onto the walls within the field of view of the

camera. Both networks could learn to distinguish between the shape of the moving

animal and the black orientation cues that are present in the training set video very

well. However, this ability to discriminate did not generalize well to a few newer

videos that were not included in the training set and featured different looking
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orientation cues. For the newer videos, some cues therefore had to be masked and

re-stained in the color of the background wall in an additional pre-processing step

(Fig 3.17).

Fig. 3.15: An example of DeepLabChop predictions during a single, 5-minute

trial. The red dots show the possible object positions in the square arena, where

this particular session only included the two objects on the left side. The trace

shows a clear preference for positions close to the walls and corners of the arena

(’thigmotaxis’). Also, the corners with the objects are frequented more often than

the empty corners

6 Conclusion

In conclusion, the behavioral part of the project could show that animal position

and exploration analysis can potentially be automatized using a customized deep

learning set-up. This automation can possibly save a considerable amount of human

scoring hours and remove human bias and error from the scoring data. Also, the

algorithm can run in real time with a delay of a few hundred milliseconds (in

our case on an Nvidia 1070ti GPU), which allows for an experimental design with
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Fig. 3.16: Frame-wise Inception3D exploration predictions for the positions from

figure 3.15: Blue and red scatter points indicate exploration of object one and two

respectively. Black scatter points indicate no exploration.

Fig. 3.17: DeepLabCut generalization error: The network correctly identifies the

nose and tail of the animal sitting on an object (left). In the next frame, the wall

cues are misinterpreted as the animal tail (middle). The error can be corrected for

using a color correction of stationary black pixels on the wall (right).
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automated animal interaction (e.g. rewards or punishments for a certain observed

behavior).

However, as shown in the result section, an algorithmic prediction can produce

systematic errors if the input images are not optimal. Seemingly trivial changes

in the prediction task can lead to very poor performance and require careful ex-

perimental design or additional image-processing steps. Systematic biases can also

be introduced if the salience of the frame is not even, which might happen if the

camera or the light source are tilted and one object is more visible than the other.

Even though the initial results are promising, further application will need to

show whether the DeepLabCut-Inception3D ensemble is practicable in long-

term use for the behavioral analysis of the object space task. One of the next

major steps would probably be the creation of a more diverse dataset to increase

the generalization capabilities of the networks. Another interesting project would

be the conceptual integration of the two architectures by applying the inflation

technique to DeepLabCut’s deep learning architecture.
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Chapter 4

Statistical Analysis

1 Introduction

The third integral part of this project was the construction of a number of statisti-

cal tests to be able to verify the performance of the behavioral and Ca2+-imaging

analysis pipelines and to be able to interpret the extracted behavioral and neural

signals in the context of the object space task. Both supervised and unsupervised

statistical algorithms were implemented as part of this project. A number of su-

pervised tests were based on simple linear regression fits of the extracted neural

and behavioral data. The goodness-of-fit of the two data streams was used to verify

common information in the two data sets using a random permutation test. Regres-

sion fits on systematically shifted data was used to investigate temporal outreach

of the mutual information (’Granger causality’). An unsupervised statistical test

was implemented to investigate mutual information between individual neurons

(such as the formation of neural ensembles during memory formation). A second

(mostly) unsupervised test was created based on a tensor decomposition of neu-

ral signal snippets of a fixed length around the onsets of exploratory behavior. In

the following sections, I want to give a more detailed description of each of the

statistical tests.

2 Supervised methods

2.1 Regression Analysis

A statistical method is defined as ’supervised’ when it relates the statistical data to

a ground truth value. Such methods were available since our dataset contained both
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independent neural data and dependent behavioural data. Supervised analysis was

used first and foremost as a quality check for both analysis pipelines by determining

the amount of mutual information in the extracted data streams. Supposedly, the

more mutual information to be found in the pipeline outputs, the higher the quality

of the data itself and the more accurate the data processing and signal extraction

pipelines. Next to serving as a quality check, supervised analysis can also be used

to determine certain properties of the neural signal such as the temporal reference.

All supervised statistical tests used a simple linear regression (as the most basic

supervised model), which relates an independent variable X to an independent

variable Y through a vector of linear factors β:

Y = Xβ (2.1)

This simple linear regression problem can be solved in closed form when X and

Y are available:

β = (XTX)−1(XTY ) (2.2)

with, in our case, X the neural activity trace matrix, Y a matrix of behavioral

indicators over time and β the regression coefficients to be inferred. Concretely, Y

was prepared as a boolean matrix with behavioral categories as rows and the frame

count as columns. Two rows of the matrix encoded exploratory behavior towards

the two objects inside the arena. For frames in which the animal explored object 1

or object 2, the respective frame in the respective row was set to 1. The remaining

49 rows represented a grid of square patches in the behavioral camera image. The

rows are set to 1 whenever the animal’s head was captured inside the patch. The

remaining entries of Y were set to 0. The regression was then performed using the

equation displayed above in different configurations.

As a first sanity check, the regression was performed on the data of the first four

days of the week, whereas the last day’s data was used in a cross-validation scheme.
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Behavioral predictions for the last day were created using the trained regression

model and rendered over the behavioral video for a visual evaluation (figure 4.18).

Furthermore, a regression model was trained on each of the first three days of the

week and cross-validated on the following day to estimate the across-day continuity

of information in the neural signal.

Fig. 4.18: For the supervised analysis, the arena was divided into 49 squares (shown

in blue). Furthermore, each of the objects was assigned an exploration probability

value (shown as a red dot). In a cross-validation scheme, a linear model was trained

on the first 4 days and verified on the last day. The cross-validation predictions are

rendered on top of a video of the original behavior for a sanity check.

The overall basic functioning of the analysis pipelines was tested using a simple

random permutation/bootstrapping test. To this end, 1000 alternative data sets

were produced by randomly shifting the behavioral data along the time axis. A

linear regression fit was performed on each of the datasets with the mean squared

error as a goodness-of-fit indicator. The mean-squared error of the least-square

regressions of the original, unaltered datasets was determined and tested against

bootstrapped errors using a simple Student’s-T test.

To test the temporal accuracy of the neural signal, a number of linear regression

fits were performed on the neural data using a shifted version of the behavioral
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target data. The implication is for the neural signal to carry information about

’future’ or ’past’ behavioral states. To this end, for every animal, 300 alternative

behavioral datasets were created by shifting the original dataset in a range from

-150 frames to +150 frames. A linear regression fit was then performed using the

original neural data and each manipulated behavioral dataset. Mean squared error

of the linear regression was used as a goodness-of-fit indicator. A comparison of

the different errors could be used to investigate the amount of intentionality and

representations of future states in the neural signal (’Granger causality’).

The results of the supervised statistical tests applied to the actual Ca2+-imaging

dataset are presented in chapter 5.

3 Unsupervised Ensemble detection using non-negative

matrix factorization:

3.1 Introduction

Unsupervised statistical methods do not rely on an external depend variable but can

instead be used to reveal patterns and structures within a dataset. For this project,

unsupervised methods are needed to recover cellular ensembles in the extracted

activity traces.

Cellular ensembles are groups of cells with synchronized activity patterns. Such

patterns can be extracted from the signal of multiple cells using methods of di-

mensionality reduction. A well established approach is to apply a PCA/ICA to

recombine the activity traces into an equal number of template traces with min-

imum mutual information (Santos Lopes-dos et al., 2011; Peyrache et al., 2010).

Even though this approach is thoroughly worked out statistically and well estab-

lished, is comes with a few disadvantages. Most importantly, an ICA can produce

part-negative components and negative weights, which makes the output difficult

to interpret in a neural signaling context.
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Therefore, given that the implementation of the Ca2+-extraction pipeline re-

quired the respective functionality anyway, I opted for designing a restricted non-

negative matrix factorization algorithm to extract symbolic activity traces from

the neural signal. This technique has been used for neural ensemble detection be-

fore (Mackevicius et al., 2018), even though its application in Ca2+-imaging data

is innovative.

In general, the iterative implementation of the NMF algorithm allows for more

versatile constraints than a closed-form PCA. Therefore, the NMF-algorithm could

be adopted for this project to specifically reveal the dynamics of neural ensembles

in Ca2+-imaging data of the object space task. This added functionality to detect

not only ensemble traces over time but also estimate the evolution of the ensemble

strength over the course of the entire recording week is needed to test the hypothesis

of prefrontal ensemble formation during learning.

3.2 Methods

The restricted non-negative matrix factorization has the same basic approach as

the PCA/ICA: The signal traces are recombined into a new set of representative

traces and a matrix of recombination factors. While PCA minimizes correlation

and ICA minimizes mutual information between the traces, NMF minimizes the

loss between the factorization product and the input matrix. The implementation

of this project is heavily based on python’s sklearn.NMF class, which was slightly

modified.

In general, ensemble dynamics were modeled using a factor matrix W of size

[n cells,n ensembles] that contained a participation factor for each cell and each

ensemble, and a pattern matrix H of size [n ensembles,frames] that contained

template activity traces for each ensemble. In our implementation, W was a square

matrix with equal width and height. As a loss value, the factorization algorithm
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used a the Kullback-Leibler divergence between the dot product of the weight

matrix W and the trace pattern matrix H and the measured activity traces X:

argmin
W,H

(
KL(X,WH)

)
(3.1)

The fact that the number of components in the weight matrix is equal to the

number of traces makes this problem overdetermined: One of many trivial, perfect

solutions would be to set H = X and W = I, with I the identity matrix. In order

to enforce sparsity on the solution, we need to add a number of regularization terms

to the minimization:

argmin
(
KL(X,WH) + L(H,W )

)
, (3.2)

with:

L(H,W ) = λh1|H|11 + λh2|H|22 + λw1|W |11 + λw2|W |22 (3.3)

Specificaly, a weighted sum of the l1 and l2 norms of W and H are added to

the minimization problem to enforce sparsity. This minimization problem can be

solved through an iterative algorithm with two alternating multiplicative update

steps (Lee, Seung, 2001; Cichocki, Phan, 2009; Févotte, Idier, 2011):

|X −HW | is non-increasing under the update rule for H:

H ←− H ◦ (W TX) ◦ (W TWH)−1 (3.4)

as well as for the update rule for W :

W ←− W ◦ (HXT ) ◦ (HHW T )−1 (3.5)
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with ◦ the element-wise Hadamard-product (a proof is given in Lee, Seung

(2001)). The lambda regularization parameters can be integrated into the update

equations as added penalty terms:

H ←− H ◦ (W TX) ◦ (W TWH + λh1 +Hλh2)
−1 (3.6)

W ←− W ◦ (HXT ) ◦ (HHW T + λw1 +Wλw2)
−1 (3.7)

These two update steps are alternated until convergence or for a maximum

number of 200 times.

Up to this point, the factorization algorithm renders a number of representa-

tive week-long neural activity patterns H and a weight matrix W that, for all

recorded cell traces, contains the linear combination factors of H that approximate

the original signal X.

The fact that weight matrix W contains only a single indicator for each cell and

activity pattern makes it difficult to interpret the progress of the linear combina-

tions over time. In order to recover drifts in the ensemble structures - such as cells

entering or leaving the ensembles or entire ensembles emerging or dissolving - one

would need to apply external processing steps, such as determining the changes in

correlation between cell activity and the ensemble trace in H over time.

A different approach would be to perform multiple factorizations across a smaller

time frame - say trial-wise - and compare the cell ensembles that are found through-

out the different trials. Such a model would have additional degrees of freedom

to represent different ensemble combinations over time. However, such trial-wise

factorizations do not contain any continuous, inclusive information to relate the

detected trial-wise ensembles to each other. One might try to relate trial-wise en-

sembles using the proximity of their rows in W (i.e. the similarity of the ensemble
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participants). However, a considerable amount of heuristics would be necessary to

define ensemble identity over time.

The week-wise and the trial-wise factorization in fact constitute two versions of

the same algorithm, but with exclusive flaws and benefits: The week-wise factor-

ization produces week-long ensembles without any dynamic changes and therefore

maximal continuity. The trial-wise factorization, on the other hand, accurately

displays the ensemble structures for individual trials without a clear concept of

continuity between trials.

The general versatility of the NMF algorithm allowed the design of a hybrid

algorithm that integrated the above-described approaches. The intuition is to create

an optimization algorithm with two competing loss functions: One that rewards

global, integrated ensemble structures and one that rewards accurate representation

of firing dynamics during N smaller time frames:

argmin
W,H

(
KL(X,Hweek ·Wweek) +

∑N
n KL(Xn,Wn ·Hn)

N

)
(3.8)

(without regularization parameters)

This algorithm uses a global pattern matrix H and the familiar weight matrix

Wweek that encodes the ensemble activity over a whole week alongside N = 42 ma-

trices Wtrial encoding the ensemble structures and N = 42 matrices Htrial encoding

the representative activity patterns of the 42 individual trial recordings throughout

the week.

During optimization, the week-wise and trial-wise factorizations are computed

iteratively as before. The innovation is to integrate the results after each optimiza-

tion step using a combined matrix Hhybrid. To this end, a concatenated version of

the lined-up Htrials is linearly combined with the matrix Hweek of the same size:

Hhybrid =
Hweek + [Htrials]

2
(3.9)
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This newly created Hhybrid is used in the following update steps for Wweek and,

re-fragmented to 42 pieces of trial length, the update steps for the different instances

of Wtrial. All W -updates use the same formula as described above:

Wtrial[i] ←− Wtrial[i] ◦ (Hhybrid[i]X
T ) ◦ (Hhybrid[i]Hhybrid[i]W

T
trial[i] + λw1 +Wtrial[i]λw2)

−1

(3.10)

Wweek ←− Wweek ◦ (HhybridX
T ) ◦ (HhybridHhybridW

T
week + λw1 +Wweekλw2)

−1 (3.11)

The matrices are initiated randomly and a first update step of Wweek and Hweek

is performed, which renders a rough (but quite accurate) global estimate of ensem-

bles and their activity traces. There follows an update step of all Wtrial using Hweek

that ensures that the different Wtrial matrices have a similar initial structure. The

result is a number of 42 Wtrial that resemble the initial Wweek with slight increases

or decreases depending on local within-trial ensemble strength.

The algorithm is then iterated until convergence, resulting in a global ensemble

indicator Wweek and a number of 42 ensemble indicators that contain refined ver-

sions of Wweek for each trial.

Interpreting the significance of such an unsupervised statistical result is not

trivial. In our case, the outer product matrix of the ensemble participants (row

in W ) and the pattern trace (column in Hweek) represented the part of the entire

signal that was modeled by the given ensemble/factor. The l1-norm of this product

matrix was used as an indicator of the information content of the ensemble. To

create a significance measure, a number of factorizations was performed on copies

of the datasets with randomly shifted activity traces. From these repeated ’boot-

strapping’ factorizations, the above described content indicator was computed for
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each recovered ensemble. The grey bar histograms in figure 4.19 show the distribu-

tion of information content for all generated ensembles. Given the observed shape

of the histograms and general interpretative plausibility, the permuted factoriza-

tion results were modeled as a Gamma process. A Gamma distribution Γ (k, θ) was

fitted to the information content indicators (fig. 4.19, black plot). The right tail of

the distribution that included 0.01 of the area under the curve (fig. 4.19, green line)

was used as the significance threshold. Accordingly, all ensembles detected in the

NMF run of the actual dataset with an information content indicator greater than

the significance threshold were accepted as genuine and suited for further analysis.

Fig. 4.19: Results from the bootstrapping process of two neural datasets. The grey

histograms show the predictory power of all ensembles detected in 100 permuted

datasets, the red histograms show the (scaled) predictory power of the ensembles

from the actual nmf. Both are aproximated using a Gamma distribution. The green

lines show the tail points of the Gamma distribution where
∫
p = 0.01. All (red)

ensembles on the right of the green line are considered in the further analysis.

3.3 Variable NMF: A Simulation

To showcase the principle of the hybrid NMF model, a very basic simulation was

created using the parameters of the Ca2+recordings at hand.
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A dataset of 50 randomly generated neural signals was created. A signal was

produced for 6 consecutive trials of 1000 frames each. The covariance matrix of

50 randomly picked recorded activity traces was used as a multivariate Gaussian

probability distribution to draw random numbers from and create an artificial data

set of 50 activity traces. For two of the traces, the created signal was interpolated

between an independent random signal and the above described correlated signal

to simulate the entry into/exit from a cellular ensemble over the course of the

different trials. Figure 4.20 shows the generated ground truth and the extracted

results of the simulation indicating that the implementation of the algorithm is

generally functional.

4 Tensor Rank Decomposition of Neural Signals around

Exploration Onsets

The Tensor Rank Decomposition algorithms are conceptually related to non-negative

matrix factorization, with the difference that the former can process higher dimen-

sional datasets than 2d matrices. In a tensor decomposition, a target tensor is ap-

proximated as the linear combination of a number of lower-rank tensor products.

Vannieuwenhoven (2015) includes an intuitive (albeit informal) graphical represen-

tation of the problem of approximating a target tensor Y with a linear combination

of rank-one tensor products
∑
a⊗ b⊗ c:

There exist multiple algorithms for this optimization problem. A python imple-

mentation of the PARAFAC tensor rank decomposition (Bro, 1997; Kossaifi et al.,

2016) was used for this project.
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a)

b) c)

Fig. 4.20: Illustration of an NMF extraction from a simulated neural dataset. (a)

shows a cut-out of a simulated Ca2+-imaging dataset using the ground truth (c)

with added noise. The variable NMF could extract the trial-wise activity matrix

(b).
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Fig. 4.21: An example of an variable nmf output on actual Ca2+-imaging data:

Two cells with partially synchronized firing behavior. The signal synchronization is

especially strong during resting recordings (uneven numbers) and at the beginning

of each day (every tenth recording).

The target data was created using snippets of the recorded neural activity traces

’around exploration onset’. An ’exploration onset event’ happens when the animal

starts showing exploratory behavior towards one of the objects. The extracted sig-

nal of neurons from a time frame from 600ms before to 300ms after exploration on-

sets were extracted from the recordings. These extracted signals were then stacked

to form a 3d tensor of the shape [onset events, n cells, n frames]. This tensor was

passed to a PARAFAC decomposition function with an arbitrary factor depth of

10. The results of the decomposition will be discussed more in detail in the fol-

lowing chapter on an actual case study. Figure 4.22 gives a brief intuition of the

nature of the results.
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a) b) c)

Fig. 4.22: The result of a depth-10 tensor rank decomposition: The three subfigures

show the three dimensions: (a) contains the activity traces around exploration

onset, (b) contains the exploration onset events and (c) displays participation of

the different cells. The columns contain the 10 different rank-one tensor outputs.

The result can be read as ’The very salient trace of factor six (i.e. (a), row 6)

shows a clear peak around the onset time at 0 seconds. An activity trace of this

shape appears noisily in exploration onset events throughout all week without a

clear upward or downward trend ((b), row 6). An ensemble of 6-10 neurons mainly

contributes to the activity trace ((c), row 6)’.
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Chapter 5

Ca2+-Imaging for the Object Space Task: A Pilot.

1 Introduction

The Object Space Task (OST, Genzel et al. (2017)) is the behavioral rodent ex-

periment that provides the base for this entire project. The OST was originally

created to explore memory consolidation in rodents without having to rely on ex-

ternal motivation. During the task, the rodents are repeatedly made to explore

an environment with a total of two objects in it. The rodents‘ natural curiosity

typically lets the animals move towards and explore a novel or repositioned object

and ignore other, established properties of the environment. To check whether the

animals transfer episodic knowledge about the most recent experienced trials into

more abstract semantic knowledge, objects are repositioned across trials according

to a rule that the rodents can in principle learn - namely that one object is moved

whereas the other one remains stationary at all times. In a final trial, where no

object is repositioned, animals that have formed a semantic representation of the

repositioning rules are expected to favor the mobile object (that should typically

be repositioned according to the rule). If the animals instead are indifferent to-

wards both objects (neither of which changed position in the last trial), it would

show that animals evaluate their environment on a shorter, trial-to-trial based time

scale and that no semantic representations were formed. Next to this ’overlapping’

condition of a stable and a moving object, the experiment also includes two control

conditions called ’stable’ (two stable objects) and ’random’ (two moving objects).
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Fig. 5.23: A graphical depiction of the Object Space Task taken from (Genzel et al.,

2017) that shows the procedures for each of the categories. Five 5-minute trials

are completed over four consecutive days. The object repositioning patters differ

between categories.

2 Methods

The methodological set-up of the behavioral task is described in detail in Gen-

zel et al. (2017). Here, I will render a shortened version of the preparation and

execution of the experiment from the paper:

The animals used in the study were male C57BI6/J mice. All animals were

habituated to human contact and the experimental environment for a number of

weeks before the actual start of the experiments. The environment itself was a

square arena of 75cm × 75cm. Walls and floor of the environment were white to

facilitate automated video analysis. As described above, the object space task con-

sists of three conditions: stable, overlapping and random. Conditions and locations

were counterbalanced among animals and trials and the experimenter was blinded

to the condition. At the beginning of each trial, cues were placed on the walls inside

the box and at least one 3D cue was placed above one of the other walls. Cue dis-

tribution was intentionally non-symmetric. A camera was placed above the box to

record every trial and to allow for online scoring of exploration time. In each condi-

tion, animals were allowed to explore two objects for five minutes with an inter-trial

interval of 30min. Ca2+-footage was recorded during the entire five minutes of the

testing phases and during a five-minute phase of each resting interval. Mice were

trained interleaved in groups of 4 with two groups per day (morning/afternoon).
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Before the beginning of each sample trial, the box and the objects were thoroughly

cleaned with 70% ethanol. Each sample trial consisted of a different pair of match-

ing objects varying in height, width, texture and material (including metal, glass,

plastic and wood). Object sizes ranged from 4-26cm in height to 5-18cm in width.

Objects were glued onto metal coasters and placed onto the magnets that were

fixed on the floor of the arena. Objects were never repeated during the training

period of one condition (1 trial). This procedure was repeated over the course of 4

consecutive days in which they were presented with 5 sample trials per day, thus

accumulating to 20 total sample trials. The test trial, 24hrs after the last sample

trial, consisted of another trial of two objects that animals were allowed to ex-

plore for 10 minutes, of which only the initial 5 minutes were used in the analysis.

Ca2+-imaging was recorded during five more minutes in a subsequent resting phase.

Fig. 5.24: The set-up of the experiment during a test trial. The animal is allowed to

freely explore the environment containing two objects while Ca2+-imaging footage

is recorded.

In total, 6 recording weeks were used for this pilot analysis, balanced between

the three conditions ’overlapping’, ’random’, and ’stable’. Accordingly, the dataset
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consisted of six data points, each of which contained Ca2+-imaging footage of 20

5-minute testing trials and 20 5-minute resting phases and the same amount of

synchronized behavioral camera footage.

The individual data points were then processed using the pipelines described in

the previous chapters. The Ca2+-imaging footage was aligned and factorized using

a CNMF algorithm (chapter 2), the behavioral footage was analyzed using a deep

learning ensemble (chapter 3) and the results were analyzed using an unsupervised

hybrid-NMF model, a tensor rank decomposition of neural data during exploration

onsets and a simple linear regression model on the neural and behavioral data sets

(chapter 4).

3 Results

3.1 Ca2+-imaging analysis

After a prolonged period of parameter optimization and code adaptation, the

CNMF pipeline could successfully process the footage from six complete recording

weeks, with an execution time of one to two days each. Table [1] shows a sum-

mary of the results for each pipeline execution. The column ’ROIs’ in Table [1]

shows a summary of the detected cells before a local correlation background esti-

mate. It shows that most detected sources are plausible independent cells and that

other correlated signal sources (such as blood vessels) are successfully excluded.

The density of cells in the recorded footage differs from animal to animal, with all

recordings of animal 32365 showing a cell count a few magnitudes higher than the

other animals 32364 and 56165.

The plot ’correlation over distance’ in Table [1], column 4 gives an estimate of

the correlation of the distance between cell pairs on one hand and the correlation of

their activity traces on the other hand. The fact that proximate cells have a higher

activity correlation can indicate a deficit in the segmentation algorithm. This ’up-

wards tail’ on the left side of the clusters is visible for every pipeline execution and
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could not be eliminated. It simply needs to be accepted as a systematic pollution

of the signals in the further statistical analysis.

The last column of Table [1] shows a histogram of all cells based on the activity

differences between active and resting phases. Cells in the center show no activity

preference towards active and passive recording trials. The left tail of the distri-

bution shows cells with a resting phase preference, the right tail shows cells with

a test phase preference. The shape of the resulting distribution can be used as a

first indicator of information content: A broader distribution denotes a low-entropy

signal with many cells carrying information about the current recording state. A

narrow distribution however denotes a signal with low information content, be it

due to the cells being functionally independent or due to noisy and polluted signal

recordings.

3.2 Behavior

The behavioral pipeline could be applied smoothly to all corresponding behavioral

videos. Table [2] gives an overview of the extracted behavioral data.

The column ’� location’ of Table [2] shows a two-dimensional histogram rep-

resentation of the arena as displayed in Figure 5.24. The color brightness denotes

the visiting frequency of a certain location, with exploration time of Object 1 and

2 represented in the red and green color channels respectively. Locations with idle

behavior are displayed in white. Before all, the color markers show that the two

behavioral and location detection networks produce a plausible, well-synchronized

data stream. The exploration data represents the positions of the objects in the

arena for all categories. It is apparent that the animals spend an above-average

amount of time exploring the objects in the arena. Also, the corners of the arena

are frequently visited as a hiding spot that resembles the animal’s dense natural

habitat.

The columns ’exploratory behavior’ of Table [2] display the percentage of to-

tal time spent for exploration of the two objects. The column ’O2−O1

O2+O1
’ shows the
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animal week
cell

count
ROIs correlation/distance rest/test preference

Condition: Overlapping

32364 1 237

32365 3 481

Condition: Stable

32364 2 200

32365 1 847
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Condition: Random

animal week
cell

count
ROIs correlation/distance rest/text preference

32365 2 713

56165 4 207

Table 1: A summary of the CNMF-pipeline outputs. Each row shows the result of

one pipeline execution. Column 1 and 2 show the animal id and week of recording.

Column 3 shows the total count of signal sources found in the footage. Column

4 shows the outline of all detected signal sources laid over a local pixel value

correlation background. Column 5 shows the activity Correlation of each cell pair

over the distance as a measure of source separation quality. Column 6 shows a

histogram of activity preference for the firing behavior of each cell.
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difference of relative object exploration times with a positive number indicating a

preference for object ’2’ and a negative number indicating a preference for object

’1’. The column ’� exploration time/day’ breaks down the exploration percentages

per object for each day throughout the four days of the recording week.

As for the results, for the overlapping condition, the motile object ’2’ is fre-

quented more often than the stable object ’1’ in seven out of eight recording days

(Table 2, ’� exploration time/day’). Also, the two overlapping recording weeks

show the highest preference ratios towards object ’2’ (Table 2, ’O2−O1

O2+O1
’), with a

T-test for independence between the categories ”overlapping” and the two other

categories rendering a p-value of 0.067. All in all, the behavioral results seem plau-

sible and in line with previous publications on the OST, but not significant given

the small sample sizes and the large variance within conditions.

3.3 Supervised Statistics

A random permutation/bootstrapping analysis was performed as a functionality

test for the entire pipeline. To this end, a total of 1000 linear least-squares fits

were performed on the neural data and a generated set of randomly shifted object

exploration data. Figure 5.26 shows the results of these bootstrapping trials as

histograms of the mean-squared errors along with the mse of the un-shifted linear

regression fit. The sigma values for all random permutation tests are below 0.01,

with animal 32365 having a much lower significance values than the other animals.

Next to the permutation test, linear regression models were fitted on neural

data and a number of systematically shifted behavioral datasets as described in

chapter 4, with the mean-squared error as a goodness-of-fit indicator. Figure 5.25

a) shows the relative decrease of the mean-squared error as compared to a baseline

value (acquired from randomly shifted datasets in the bootstrapping process). As

to be expected, linear regression fits are the most accurate around a shift of 0 ms,

when the neural data and the behavioral data are synchronized. Figure 5.25 b)

is a depiction of the same data zoomed around the origin, which shows that the
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animal week
exploratory behavior

object 1 object 2 O2−O1
O2+O1

� Location � exploration time/day

Condition: Overlapping

32364 1 9.89% 10.72% 0.0838

32365 3 11.54% 13.03% 0.1290

Condition: Stable

32364 2 12.12% 12.00% −0.0101

32365 1 15.17% 15.72% 0.0358
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Condition: Random

animal week
exploratory behavior

object 1 object 2 O2−O1
O2+O1

� Location � exploration time/day

32365 2 15.00% 15.71% 0.0475

56165 4 9.26% 8.61% −0.0702

Table 2: A summary of the behavioral pipeline outputs. Each row shows the result

of one pipeline execution. Column 1 and 2 show the animal id and week of recording.

The following three columns show the percentage of time spent on exploring objects

one and two next to an indicator for preference disparity (positive −→ object two).

Column ’� Location’ depicts a visualization of the arena from above with the

visiting frequency for each location indicated by the color brightness. Exploration

periods for objects one and two are rendered in the red and green color channels,

whereas neutral behavior is depicted as white. The last column shows a day-wise

breakdown of the exploratory behavior towards the different objects.

54



CHAPTER 5. THE OBJECT SPACE TASK 3. RESULTS

best linear regression fits typically do not occur at the synchronized frame, but for

regression models that correlate the current neural signal against the behavior one

or two frames (10-20 ms) ahead.

Figure 5.25c) further indicates the intentional, future-oriented nature of the

recorded neural signal: It shows the difference between the right half and the left

half of the graphs in Figure 5.25a), starting from the origin. Intuitively, the plots

in c) show, from the current neural signal, how much easier it is to predict the

behavior of x milliseconds in the future than x milliseconds in the past. The plots

illustrate that the neural signal has a bias towards future behavioral states in most

of the recorded animals, especially in low-noise recordings of animals 32364 and

56165.

In summary, the supervised analysis could show that the neural signal in all

animals contains behavioral information. This information is conserved throughout

the pipeline and can be retrieved using a simple linear regression model. The in-

formation within the neural traces as well as the mutual information between the

traces and the behavior differs between the different recorded data points. Inter-

estingly, the statistical parameters of the recorded data points continuously show

a low within-animal variance and a comparatively high within-behavioral-category

variance. Unfortunately, this characteristic of the dataset impedes small sample

statistical analysis that would be necessary for conclusions specific to the object

space task.

3.4 Unsupervised Statistics

Most unsupervised ensemble clustering methods described in the literature were

developed for the more temporally precise electrophysiology-based recording tech-

niques that arguably produce a much lower entropy signal than the one-photon

Ca2+-recordings recorded during this project.

The NMF-based clustering algorithm described in chapter 4 could produce a

some sensible output when applied to the Ca2+-imaging data at hand without
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a)

b) c)

Fig. 5.25: The results from a linear regression analysis of the shifted neural dataset. a) shows the

decrease of the mean squared error of a linear regression fit compared to a baseline value where the x-axis

indicates the shifts of the neural data. As to be expected, the error is the lowest around a shift of 0 ms,

when the neural data is correlated to the synchronous behavior. Error increases when the regression is

performed on behavioral data from the past/future, just to reach a baseline error value at around +/-

1000ms. b) shows that the peak of the curves in a) do not match current behavior but rather the behavior

of 15-20 ms ahead for most data-points. c) further shows that the bell curves from a) are tilted towards

future behavior: Subtracting the mirrored left half from the right half of the curves in a) renders curves

with a positive slope at the origin.
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Fig. 5.26: Object-wise back-to-back histograms of the mse-values of 1000 bootstrapped linear regression

fits of the neural signal with a randomly shifted exploratory behavior. The yellow lines depict the mse of

the linear fit for non-shifted behavioral data. The sigma value is below 0.01 for each of the data points.

The sigma values for animal 32365 are significantly higher than for the other animals, again indicating

a lower information content in the signal. Color encodes category (�−→ overlapping,�−→ stable ,�−→

random) and patterns encode animals.
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rendering a definitive result on ensemble formation during learning in the object

space task. The binarized spiking data of each recording week was factorized inde-

pendently. As described in chapter 4, the NMF produced a global weight matrix

W , a trial-wise weight matrix Ws and a trace pattern matrix H. A bootstrapping

algorithm was used to determine ensemble significance.

Between 1 and 20 (animal-wise) ensembles could be recovered from the Ca2+-

imaging recordings. For all animals and each extracted ensemble, a spatial activity

histogram was created by dividing the arena into (21 ·21) squares and by determin-

ing the average ensemble activity of all frames during which the animal is located

within the square. Upon inspection, many of the so produced spatial histograms

featured a number of basic activity patterns. Subjecting the recovered spatial his-

tograms to another round of non-negative matrix factorization could nicely repro-

duce these observable patterns as the five largest recovered factors (Table 3, column

’spatial histograms’). The trial-wise activity matrices Ws of all ensembles contribut-

ing to each the template patterns were subjected to a last round of NMF in order

to extract prototypical developments of ensemble strength during the recording

weeks. Expected developments would for example be ’stable, increasing, decreas-

ing, test-biased, rest-biased’, all of which could be observed in the different factors

(Table 3, column ’typical activities/week’).

3.5 Tensor Decomposition

A summary of the tensor decomposition results for each recording week are depicted

in table 4. It is apparent that each of the recording weeks contains neural signals

that can in some way be related to exploration onset behavior. Again, the animals

32364 and 56165 appear to have a more salient signal than animal 32365. Much

like the detected spatial histograms in the ’unsupervised statistics’ pipeline, the

discovered traces from the tensor decomposition (Table 4, column ’activity traces’)

can be subjected to an unsupervised classification using an NMF algorithm. The

extracted activity traces around exploration onset from all animals are depicted in
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figure 5.27. Much like the recovered ensemble activities from the previous section,

the strongest pattern is a stable baseline pattern with a slight decrease of activity

at tonset = 0. Other traces contain a sharp activity burst shortly before, during

of after exploration onset (Figure 5.27, traces 3,5,8) and traces that show stable

activity before exploration onset and fall silent afterwards (traces 2,4) and vice

versa (trace 9).

Fig. 5.27: The output from a second round of unsupervised classification on the

extracted onset activity traces from all animals (as depicted in Table 4, column

’activity traces’). The Figure ’participation’ shows the participation of the different

recording weeks in the depicted template traces.

4 Conclusion

This chapter describes the results of the pipeline applied to a total of six data points

of neural and behavioral data collected during in mice performing the object space

task.
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Tag spatial activity Typical activities / week description

’baseline’

A baseline cell activity that is rel-

atively stable throughout all types

of behavior and through active and

resting phases.

’roaming’
Ensembles encoding active roaming

inside the cage.

’exploring’

Encoding object exploration. In-

terestingly, there exists a type of

’exploratory ensembles’ with clear

resting-phase preference (2nd factor

norm plot).

’hiding’
Encoding hiding in the cage cor-

ners.

’sneaking’
Encoding thigmotaxis/sneaking

along the edges of the arena.

Table 3: A number of typical ensembles to be found in the spike traces of all animals. Neural activity histograms

over spatial location from the detected ensembles from all recordings were subjected to a round of unsupervised

classification. The first five extracted template histograms are shown in the column ’activity map’. The trial-wise

activity factors (obtained through the original NMF) of all ensembles belonging to a certain category are then

reduced to 3 dimensions to create a few template temporal activity sequences, which are depicted in the column

’Typical activities/week’.
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animalweek activity traces activity events cells

32364 1

32365 3

32364 2

32365 1
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animalweek activity traces activity events cells

32365 2

56165 4

Table 4: An overview of the tensor decompositions from the different analyzed

animals. The figures in the column ’activity traces’ show the extracted template

traces around exploration onset (red line). For the interpretation of the figures,

consider Figure 4.22. It is apparent that, throughout all animals and weeks, there

exist neural ensembles that are associated to exploration onset. Figure 5.27 shows

the result of a round of unsupervised classification on the activity traces of all

animals.
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Using supervised statistical analysis it could be shown that the recorded , pre-

frontal neural signal contains a significant amount of information about observable

animal behavior. Moreover, it could be shown that the neural signal correlates

more with future behavioral states than past behavioral ones (’Granger causality’),

which is in line with the involvement of the prefrontal cortex in scheduling and

planning.

Using methods of dimensionality reduction for ensemble detection, it could be

shown that there exist ensembles that encode certain types of typical, semi-abstract

behavior (such as object exploration, roaming or hiding). Interestingly, the analysis

produced a hint of an ensemble class that encodes object exploration and is mainly

active during resting phases, which could be an indicator of neural replay.

A tensor decomposition analysis could show that there exist a number of archety-

pal activity traces that encode exploration onset throughout the different animals

and trials, again without a clear interpretable result concerning the object space

task.
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Conclusion

The goal of this project was to establish a Ca2+-imaging analysis pipeline that

can be used to investigate the neural correlate of memory consolidation in rodents

during the object space task. In the end, a fully-automated pipeline could be created

to process a data set of neural Ca2+-imaging footage and synchronised behavioral

videos.

As a functioning test and for a first exploratory investigation of the dataset,

a number of statistical tests were also created and performed on a total of six

collected data points.

For all data points, a complete, week-long neural signal could be extracted suc-

cessfully. A few measures of information content of the signal differed substantially

between animals, possibly due to flaws in the factorization algorithm in separating

spatially overlapping signal sources in the recordings of animal 32365.

Behavioral data could also be extracted successfully using a deep learning set-

up. The results produced from the behavioral pipeline were conclusive with former

behavioral findings from the object space task.

Supervised statistical analysis could confirm the general functionality of the

pipeline by showing a significant correlation between the outputs from the Ca2+-

imaging signal extraction pipeline and the behavioral analysis pipeline in a statis-

tical random perturbation test.

A new unsupervised statistical method of dimensionality reduction was also

developed and applied to the dataset. The algorithm can model the test/rest period

preference that is characteristic of the neural signal during the object space task.

Moreover, the method can be used to investigate formation of cellular ensembles
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over the course of an entire week, which is a main hypothesis for a neural correlate

of memory formation during the object space task.

The Ca2+signal source is temporally coarse-grained by nature and the extent

of the pipeline produces a relatively abstract and interpretable signal. Therefore,

any insight on neural dynamics to be gained from this pipeline will most likely be

stochastic rather than observational-phenomenological in nature. On the upside,

this exploratory study could show that there exist neural correlates of relevant be-

havior in the recoverable Ca2+signal that, with a suitably large set of data points,

is ready for a between-category statistical analysis. Unsupervised analysis of en-

semble formation could also produce significant and reasonable results. But, in

order to statistically analyse the subtle behavioral dynamics of the object space

task and relate it to a neural correlate, it presumably is necessary to expand the

analysis to a larger dataset beyond only two data points per category, especially

given the large observable between-animal variance of the dataset. Such a dataset

is available at the institute ready to be analyzed to produce further insight on the

neural correlates of memory consolidation during the object space task.
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