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Towards Cognitive Mirroring

Abstract

Autism Spectrum Disorder (ASD) is characterized not only by problems
with social interaction and stereotyped repetitive behaviours, but studies have
shown that people with ASD also have problems with perception and catego-
rization. Following the hypo-prior account by Pellicano and Burr, I suggest
that problems in ASD are caused by a hypo-prior, and propose an experiment
in which a computational neural network with an adjustable prior-influence
imitates participants in a human-robot interaction to investigate this idea. In
this thesis, I conduct an experiment in which typically developed (TD) par-
ticipants draw trajectories they have observed one step at a time, to explore
how they respond to the task and the different stimuli. The aim is to identify
stimuli and features on which TD participants show generalization behaviour.
Any identified stimuli and features can be used in further experiments, and
the behaviour by TD participants can be used as a baseline to compare with
behaviour by participants with ASD, to investigate the possible presence of a
hypo-prior in ASD. In short, if participants with ASD show less generalization
behaviour and more accurate replication on trajectories that TD participants
do show generalization behaviour on, that would indicate a hypo-prior in ASD.
I discuss the results from the experiment and make several recommendations
for further experiments investigating hypo-prior in ASD.

Laura Tigchelaar 3



CONTENTS

Contents

1 Acknowledgements 2

2 Introduction 5

3 Autism Spectrum Disorder 7
3.1 ASD symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Theories on the cause of ASD symptoms . . . . . . . . . . . . . . . . 9

4 Cognitive Mirroring 12

5 Computational Network 15
5.1 Predictive Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Stochastic Continuous-Time Recurrent Neural Network . . . . . . . . 16

6 Experiment 18
6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion & Recommendations 31

References 34

4 Laura Tigchelaar



Towards Cognitive Mirroring

2 Introduction

There has been a lot of research into the developmental Autism Spectrum Disorder
(ASD), that is characterized by problems with social communication and social in-
teractions, and restricted repetitive patterns of behaviour [2]. Most of the research,
however, focuses only on the social problems. Studies that do investigate perception
seem to focus only on perception by itself, and not on perception in a behavioural
task. In this thesis I design and conduct an experiment that investigates perception
in a behavioral task. For this experiment, I make use of a new idea: using compu-
tational models to imitate human behaviour on a task, providing more insight into
human cognitive mechanisms through a quantitative measurement.

The general idea is to do a ‘Cognitive Mirroring’ experiment. Cognitive Mir-
roring is a concept and a framework suggested by Nagai [29] and in short states
that human cognition can be quantified by imitating it with an artificial neural
network through a human-robot interaction. During such an interaction between
a human and a robot, human behaviour on a task can be observed in a controlled
environment and the artificial neural network can learn to imitate the observed be-
haviour. To realize imitation by the network, parameters should be adjusted. From
the achieved parameters and the internal representation in the network that best
imitates the human on this task, conclusions can be drawn. This framework pro-
vides new opportunities to gain more insight into individual differences in cognition
and differences between typical and abnormal development, such as ASD.

Regarding the experiment, I am interested in a theory by Pellicano and Burr
[32] that suggests individuals with ASD have a so-called hypo-prior. This theory
is based on the idea that our perceptual experience is based on the integration
of sensory information with prior knowledge, or prior in short. Pellicano and Burr
suggest that the difficulties faced by individuals with ASD originate in problems with
this prior, either in its establishment or in the combination with sensory information.
These problems yield reduced usage of internal predictions (hypo-prior), causing
more reliance on sensory input. They state that due to this higher reliance on
sensory input, such a hypo-prior would result in more accurate perception, problems
with resolving ambiguity, and reduced capacity for generalization during learning.
These symptoms have also been reported about individuals with ASD [32].

Making a first approach towards Cognitive Mirroring, I conduct an experiment
to investigate whether typically developed (TD) participants generalize on the pre-
sented stimuli in a trajectory drawing task. A trajectory is a two-dimensional time-
series, in this case a drawing that exists of timesteps representing coordinates on a
two-dimensional drawing plane. The research question is: Which shapes are replica-
ble by participants, and which feature modifications elicit generalization behaviour
in TD participants? The hypotheses are that participants will be good at replication
of the Z and T shapes and worse at the H and X shapes, and that participants will
show generalization on feature modifications that are less salient, and accurate repli-
cation on the salient feature modifications. If generalization behaviour is observed in
the task, we have a baseline to which we can compare ASD in further experiments.
Generalization of a trajectory in the experiment can be defined as simplification of
the trajectory, thereby approximating the statistical average of that stimulus’ class.
In order to compare the behaviour of participants with ASD to the behaviour of TD
participants, it is important that at least (some) TD participants show generaliza-
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tion (due to a normal prior) on at least some of the presented stimuli. In that case,
if there is a difference in generalization between participants with ASD and with
TD, it could be observed. If a difference in behaviour is found between TD indi-
viduals and those with ASD in an experiment including a human-robot interaction,
the possibility that this difference is caused by the interaction instead of differences
in the prior can not be ruled out. This is particularly relevant in research with par-
ticipants with ASD, because they are generally known to have problems with social
interaction and communication. Therefore, there was no human-robot interaction
in the current experiment.

I first elaborate on the perceptual differences in ASD and the current theories,
such as the widely known weak central coherence theory [21] and the more recent
hypo-prior account by Pellicano and Burr [32], and I explain the importance of the
observation of ASD as a continuous disorder for the hypo-prior account. I then
discuss the Cognitive Mirroring Framework, which contains the basic principles for
the study. Additionally, I introduce the neural network that was used, providing
examples of the network behaviour using stimuli that were used in the conducted
experiment. Next, I discuss the experiment I conducted. Based on an integration
of the results from the experiment with results and conclusions from other studies,
I end with recommendations for further experiments.
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Towards Cognitive Mirroring

3 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a developmental disorder that is diagnosed
based on problems with social communication and social interactions, as well as
restricted, repetitive patterns of behaviour [2]. To provide some background, I
summarize the perceptual differences in ASD, giving an illustration of the symptoms,
I zoom in on generalization behaviour in ASD, and I summarize two theories that
make up the foundation of my research.

Although there have been some studies into the perception of sensory modal-
ities other than the auditory and visual senses, Baum and colleagues [7] find the
results are far from conclusive. They present studies suggesting, for example, both
decreased [9, 12] and increased/unchanged [36] tactile detection thresholds, or find-
ing that individuals with ASD respond stronger to odors [24], but ending up unable
to find a correlation between this response and ASD severity [14]. Therefore, most
discussed studies will be focused on the auditory and visual modalities.

Many studies make use of the Autism-Spectrum Quotient (AQ). This instrument
was developed by Baron-Cohen and colleagues [5] and intends to quantitatively
measure the degree to which an adult possesses the traits associated with the autism
spectrum. They validated the instrument by showing that participants diagnosed
with Asperger Syndrome (AS) or high-functioning autism (HFA) scored significantly
higher than controls and always above 32 out of 50. Therefore, whenever is referred
to individuals with ASD, this means in the particular study participants were either
diagnosed with ASD, or they had a high score on the AQ, as these are interpreted
as equivalent.

3.1 ASD symptoms

Research into ASD indicated perceptual deviations from the typically developed
population. People with ASD are shown to be faster and more accurate on tasks
measuring visuo-spatial ability, such as the Embedded Figures Test and the Block
Design Task [38], as well as the visuo-spatial items of the Raven’s Advanced Pro-
gressive Matrices [18], they show superior visual search [13], and they suffer stronger
interference at higher perceptual loads [8, 37]. All these findings indicate enhanced
perceptual functioning.

Related to perceptual functioning is generalization. Training with a dataset
that contains a lot of variation due to complex stimuli, as compared to a set that
contains simple stimuli with little variation, requires less training for generalization
to occur and increases the strength and flexibility of this generalization [10]. A
review study by Baum, Stevenson and Wallace [7] that discusses sensory processing
differences in individuals with ASD, however, states that more complex stimuli seem
to cause more difficulty in ASD, in visual as well as auditory stimuli, suggesting
problems with generalization in ASD. They note that with simple, low-level stimuli,
participants with ASD often outperform their TD counterparts, but they seem to
perform comparably worse when presented with more complex stimuli.

Generalization has an influence on how we categorize, for example into categories
such as cats and dogs. We learn that a Dalmatian and a Beagle are dogs, and that
a Bengal and a Persian are cats, without learning explicit features that define these
categories. Gastgeb and Strauss [20] emphasize the importance of categorization:
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3.1 ASD symptoms

“it reduces demands on memory and allows individuals to focus on important as-
pects of objects while ignoring irrelevant details” (p.1). Perceptual categories, as
explained by Gastgeb and Strauss, are not strictly defined, with more typical ex-
amples at the center and atypical examples at boundaries of the category. They
mention categorization of a new, unfamiliar stimulus is done by comparing it to the
statistically averaged prototype. Therefore, categorizing a stimulus typical for the
class and more similar to the prototype is easier and faster than categorizing an
atypical stimulus.

Categorization provides a way to measure generalization behaviour in ASD. Gast-
geb and Strauss [20] have shown that individuals with ASD have more problems than
TD individuals categorizing atypical members of a class, both for faces and for ob-
jects, suggesting that indeed individuals with ASD have trouble with generalization
when presented with more complex or atypical stimuli, but not as much with typi-
cal class members, at least from adolescence. Froehlich et al. [17] have shown that
people with ASD have intact prototype formation, which indicates they are capable
of generalizing stimuli into classes, but they were significantly worse at classifying
stimuli that were less similar to the prototype compared to controls, which indicates
that top-down generalization is impaired. In a similar trend, Nakano, Kato and Ki-
tazawa [30] have shown intact integration of sensorimotor traces into a global visual
shape in ASD, on a task that comprised feeling the contours of an object, and then
visually identifying that object from a group of similar objects. Surprisingly, the
ASD group performed significantly better on this task, which they then argue can
be explained by an impairment in simplification generalization when identifying ob-
jects through touch, resulting in more accurate identifications compared to controls.
These studies suggest that people with ASD have intact bottom-up generalization
(i.e., they correctly develop an applicable prior or prototype), but they are impaired
in application of this prior to new, more deviant stimuli.

The studies mentioned previously did not examine perception in a behavioural task,
but all simply required participants to recognize the stimuli. With these results
on perception, a next step can be taken: looking at behaviour. I am interested
in generalization behaviour, because a deficiency in generalization behaviour may
explain many if not all symptoms in ASD. Therefore, I conduct an experiment in
which participants perform a drawing task. The task is inspired by the research
by Froehlich et al [17] and Nakano et al [30], but instead of teaching the different
classes, respectively letting participants choose which shape was just presented to
them, a trajectory is provided one step at a time, and participants are instructed to
replicate the trajectory by drawing it themselves.

A trajectory can be defined as a sequence of locations, in this case in two-
dimensional space. Although this is a lot like the stimuli in the study by Nakano et
al [30], replication may require different resources as compared to recognition, and
therefore it may be the case that trajectory replication is more similar to learning to
execute a new movement, even though movements are in three-dimensional space.
Movements consist of a combination of variable and stable points [26], and in order to
learn a new, goal-directed movement, variation in the variable parts is important to
point out which parts of the movement can, and which cannot be changed. Looking
at studies with babies, it becomes clear that this indeed is how humans learn new
movements [19], with mothers including more variation when the baby does not
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seem to replicate the behaviour correctly, but keeping the critical parts stable.
In the experiment, participants are presented with stimuli with different shapes

and different features. For each shape there was one prototype, which represents
the approximate average of the shape as a class. Based on the findings by Nakano et
al [30], one could expect for participants with ASD to generalize less, and therefore
to draw a more accurate representation of the trajectory, specifically regarding the
features of the stimulus. For TD participants, however, it can be expected that
they generalize some of the features, just like they did when they were asked to
identify one of three presented shapes as the one they just touched [30]. Because for
the current experiment the trajectories from one shape class would have different
features in the same position in time, the stable and variable points in the trajectories
were easily identifiable. Therefore, it can be expected from all participants to draw
the stable sections comparably, differing only on the variable parts.

Having formed an idea of the expected behaviour of both TD participants and
those with ASD based on previous behavioural and perceptual findings, we are
left with the question what then causes this behaviour. What is the origin of the
problems people with ASD face regarding generalization? There are several theories
that consider the cognitive mechanisms that may be deviant in ASD, and of these I
will consider first the well-known weak central coherence theory by Frith, and Happé
and Frith [16, 21], and then the hypo-prior account by Pellicano and Burr [32].

3.2 Theories on the cause of ASD symptoms

In 1989, Frith conceptualized a theory to explain the (perceptual) symptoms in
ASD: the weak central coherence theory [16]. Frith suggests that individuals
with ASD do not have the tendency, as shown by TD individuals, to combine infor-
mation into a coherent whole, to form a Gestalt, or to process it for meaning. This
suggests that people with ASD show more focus on the local features as compared
to the whole. This theory was slightly challenged by Plaisted in 1998 [35], when
she suggested that weak central coherence might only be a cluster of effects that
can be explained better by alternative mechanisms, instead of actually causing the
symptoms. She suggests that the weak central coherence effects are due to problems
with generalization. Since the conceptualization of the theory in 1989, the theory
has been revised, taking into account the suggestion by Plaisted, and the major
changes are summarized as follows [21]:

• There is more emphasis on improved to superior local processing, as compared
to the formerly main idea of a deficit in global processing.

• The symptoms may not be caused by a deficit, but by more of a cognitive style
or processing bias that can be overcome when a task requires global processing.

• Weak central coherence may not be the central cause in ASD, but may exist
alongside deficits in social cognition.

After this revision, the theory still does not explain how or why individuals with
ASD show enhanced local processing. The hypo-prior account by Pellicano and
Burr [32], however, attempts to. This account is based on the principles of predictive
coding. The main idea of predictive coding is that our perception, which is called
the posterior, is inferred from combining sensory information (bottom-up) with prior
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3.2 Theories on the cause of ASD symptoms

knowledge (top-down), see Figure 1a (and see Section 4.1 for more details). For
example, when reading the word ‘dove’, we may think either of the bird, or of the
past tense of ‘dive’. When reading the word in a sentence that provides context, we
apply top-down information to derive the meaning of this word, inferring the correct
posterior. The hypo-prior account suggests that the perceptual deviations observed
in ASD are caused by attenuated priors or hypo-priors, emphasizing that this does
not suggest individuals with ASD do not have a prior, but instead that their prior
is more broad. Pellicano and Burr suggest that the prior in individuals with ASD
is too broad, causing them to rely more on sensory information, see Figure 1b. If
the hypo-prior account is correct, we would expect for individuals with ASD not to
profit from the contextual information where TD individuals would, which is exactly
what has been found when people with ASD were asked to read homographs (words
of which the pronunciation depends on the context, e.g. dove) out loud [22].

(a) Typical Prior

(b) Hypo-Prior

Figure 1: Integration of a typical prior with sen-
sory input results in a typical posterior (a), but
integration of a hypo-prior with sensory input re-
sults in a posterior closer to the sensory input
(b).

Prior specificity (or prior broadness)
can be assessed as a continuous variable,
with small changes having small impact
on behaviour and large changes having
large impact on behaviour. This fits the
recent trend of ASD being assessed as
a disorder on a spectrum. Until DSM-
IV-TR, autism was assessed as a cate-
gorical disorder with different categories
under the name Pervasive Developmen-
tal Disorders (PDD) [1]. This changed
when DSM-5 was published in 2013,
in which Autistic Disorder, Asperger’s
Syndrome (AS), Childhood Disintegra-
tive Disorder and Pervasive Develop-
mental Disorder - Not Otherwise Speci-
fied (PDD-NOS) are consolidated into
Autism Spectrum Disorder, acknowl-
edging that individuals with autism fall
on a spectrum. This change in assess-
ment is based on and supported by find-
ings supporting a ‘broad autism pheno-
type’, such as higher deficiency rates in
social interaction, communication and
stereotyped behaviours in families of
people with ASD [34], indications that
relatives of people with ASD are more
likely to express mild autistic traits, re-
gardless of diagnosis [3], and the finding
that people with a more mathematical and scientific background score higher on the
AQ than those with a more social background [5] combined with the findings that
direct family members of people with ASD are employed more often in the field of
engineering [6] and that in families of students in the fields of physics, engineering,
and mathematics, ASD occurred significantly more often [4], suggesting families of
those with ASD possess autistic traits, but not to such an extent that they are
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diagnosed with ASD. These findings can be explained from the perspective of the
hypo-prior account. If indeed a hypo-prior causes the symptoms of ASD, autistic
traits as found in family members and engineers may be caused by a prior specificity
that is somewhere in between a typical prior and a hypo-prior.

Relating the hypo-prior account to generalization and the experimental task, it
can be expected that people with ASD do not generalize as much as people with TD.
In the trajectory drawing task this implies that it can be expected that participants
with TD, who are expected to have a typical prior, show generalization on at least
some of the stimuli, thereby drawing more towards the class average or prototype,
whereas participants with ASD, who are expected to have a hypo-prior, may show
generalization on some stimuli as well, but not as much, relying more on sensory
information, and thereby drawing more local features of the stimuli.

In this thesis, a first attempt is made at the design of an experiment in which
individuals with TD show generalization, drawing a trajectory close to the class
average. When TD participants show generalization, we have a baseline to compare
ASD to in further experiments. By presenting participants with trajectories of
different shapes and with different features, I hope to identify both shapes that are
not too difficult, such that participants are able to replicate the general outline of
the shape, and features that are not too salient, but obviously there. In subsequent
experiments, the trajectories drawn by the participants will be compared to the
outputs by a computational network with a variable prior to decide to which prior
the human drawing matches and to assess whether the hypo-prior theory is suitable
for assessing some of the characteristics of ASD.

Laura Tigchelaar 11



4 Cognitive Mirroring

To investigate cognitive mechanisms, Nagai [29] suggested a framework she called
Cognitive Mirroring. In the Cognitive Mirroring framework, a human interacts with
a robot, and during this interaction the robot will learn to imitate the behaviour
of the human. More specifically, an artificial neural network that is implemented in
the robot learns with which parameters it is able to imitate the behaviour of the
human. An example of such an interaction would be a child with ASD interacting
with a robot in play.

Figure 2: The Cognitive Mirroring Framework by Nagai is part of an interdisciplinary collaboration
initiative. Taken from [29].

The Cognitive Mirroring framework by Nagai (Figure 2) is part of a collaboration
project between multiple labs. The aim of the cognitive mirroring project is to bet-
ter understand ASD and other mental and developmental disorders, and to use the
knowledge from the disorders to get a better understanding of cognitive mechanisms
in TD individuals. Using computational models, Cognitive Mirroring systems are
created that attempt to imitate behaviour typical for (develop-)mental disorders,
making underlying cognitive processes more observable. These systems are then
verified and tested from a first-person perspective, providing feedback to improve
the Cognitive Mirroring system. Nagai, who now has her lab at the University of
Tokyo, collaborates with Kumagaya, who works on Tojisha-Kenkyu: self-support
research. Tojisha-Kenkyu is an initiative unique to Japan, and the main idea is
that people with a mental or developmental disorder actively participate in the re-
search into their own disorder. As Kumagaya states it: “Those experiencing similar
difficulties carefully and compassionately watch over each other as they work to for-
mulate hypotheses about themselves, and then test these hypotheses experientially
in their daily live” [25]. In summary, although it is a relatively new approach, the
Cognitive Mirroring framework is expected to have a large impact on scientific ap-
proaches towards understanding developmental disorders, as well as the psychiatric
population suffering from developmental disorders.

The role of the human-robot interaction in the Cognitive Mirroring system is to
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Figure 3: Results from Philippsen and Nagai [33] displaying two-dimensional PCA of network
activations of one trial (using the same initial network weights) for proactively following the target
trajectories for different values of the parameter external contribution (χtrain), which reflects how
precisely the network tries to replicate the external signal. The figure shows large differences
between the internal network representations for different values of the parameter, but Philippsen
and Nagai found no significant effect of internal representation on network behaviour. Therefore,
they suggest different cognitive mechanisms might not (always) be observable in behaviour.

exert natural behaviours from the human, while keeping a direct way of observing
this behaviour in a controlled environment. A robot is very consistent in its be-
haviour and therefore the results of the interaction are not influenced by differences
in the experimental setting, making the results more reliable. Furthermore, the de-
terministic appearance of the robot may make interaction easier for children and
even adults with ASD [11]. In addition, experiments with children with severe ASD
may be complicated since they may not understand instructions due to language
deficiency. Playing with a robot may not need explicit instructions, creating a more
natural and comfortable environment for the child, while preserving the ability to
analyze their behaviour.

In Cognitive Mirroring experiments, the implemented computational network
aims to provide more insight into cognitive mechanisms. In ASD, for example,
participants only show deviant behaviour in some, but not all cases. Therefore, it is
hard to draw conclusions based on behaviour only. When imitating this behaviour,
that sometimes does and other times does not deviate, with a neural network, it
becomes possible to determine the parameter values necessary for imitation and to
visualize internal representations. This framework thereby provides a new way to
quantitatively measure cognitive mechanisms.

In order to identify a computational model and parameters that can simulate
differences in ASD, Philippsen and Nagai [33] let a recurrent neural network re-
produce a two-dimensional trajectory with different parameters. They found that
the network was able to achieve good performance on the behavioural level, even
with less well structured internal representations. Figure 3 shows the influence of a
parameter on the internal representations of the network, indicating both small and
high parameter values yield unstructured internal representations, whereas medium
values yield the most structured internal representations. However, Philippsen and
Nagai found no differences in behaviour (not shown here), from which they con-
clude that differences in internal representations may not always lead to aberrant
behaviour, but maybe only on one end of the spectrum. The study by Philippsen
and Nagai only included computational modeling, so the next step in the Cognitive
Mirroring framework would be to use such a network to compare to human be-
haviour, and to investigate which parameters can explain deviant behaviour. In this
thesis, I attempt to design an experiment that can be used in a Cognitive Mirroring
experiment to get more insight into cognitive mechanisms in both ASD and typical
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development. Therefore I use a similar approach with a continuous parameter, but
as opposed to the study by Philippsen and Nagai, I use a parameter that directly
changes the behaviour so the subject’s behaviour can be imitated.
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5 Computational Network

As explained in the previous chapter, a Cognitive Mirroring experiment requires a
computational network that can replicate the behaviour of the human participant.
It is important that such a network has an adjustable parameter that affects the be-
haviour of the network on the experimental task. It must be possible to explain this
behavioural change by current hypotheses on the underlying cognitive mechanisms,
such that the network behaviour is representative of how a human is expected to
behave if the hypothesis is correct.

The hypothesis of interest in this study is the hypo-prior account by Pellicano
and Burr [32], which suggests that individuals with ASD have a hypo-prior, or a
weaker prior. This theory is based on the principles of predictive coding, which is
shortly explained next. Afterwards, the computational network that is suggested for
the experiment and that incorporates the principles of predictive coding is discussed.

5.1 Predictive Coding

The predictive coding formulation of perception [15, 27] states that perception is
an integration of bottom-up sensory input with a top-down prediction based on
experience, forming a posterior. As illustrated in Figure 4, if our prediction of the
next sensory input is not in line with the actual sensory input, a prediction error
occurs, and an attempt will be made to minimize this prediction error by updating
the internal model that forms the prediction, so the prediction next time may be
closer to the sensory input.

The result of the integration of sensory input with the prediction from the inter-
nal model depends on the confidence in both signals. More confidence in the sensory
input implies the sensory input has more influence on the posterior. To decide on
the levels of confidence, an estimation of the accuracy of both the sensory input and
the internal prediction is made, which we call the precision. High sensory precision,
thus, indicates more confidence in the sensory input, relative to the internal pre-
diction. By suggesting a broader prior, the hypo-prior account [32] proposes people
with ASD have less confidence in the internal prediction, which increases the relative
confidence in sensory information. This would explain the focus of individuals with
ASD on local features, as compared to the global whole.

Internal model

Sensorimotor
system

Physical world

top-down prediction

bottom-up sensation

Prediction
Error

UPDATE Perceptual
integration

Figure 4: Schematic illustration of predictive coding. Sensory input is integrated with the pre-
diction from the internal model. If they don’t match, a prediction error occurs, causing for the
internal model to be updated. Figure is courtesy of A. Philippsen.
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5.2 Stochastic Continuous-Time Recurrent Neural Network
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Figure 5: The implementation of the computational network, displayed here for a two-dimensional
drawing task, with on the left the input signal (signal x with variance vs) that is given to the
Bayesian inference layer where it is combined with the prediction (signal mprior with variance
vprior) from the S-CTRNN (internal model in the figure). This results in a posterior (xpos) that is
then given to the S-CTRNN, that makes a prediction for the next timestep. Parameter H can be
adjusted to change the influence of the prediction from the internal model on the posterior that
results from Bayesian inference, which mimics the hypo-prior theory. (Figure is courtesy of A.
Philippsen)

Figure 6: When tested with a hypo-prior (orange), the network implementation produces a result
that is closer to the input signal (red), whereas with a hyper-prior (green), the result is closer to
the average of the training data (grey), which can be interpreted as the prior.

5.2 Stochastic Continuous-Time Recurrent Neural Network

The artificial neural network that is suggested for the Cognitive Mirroring experi-
ment this study works towards is a Stochastic Continuous-Time Recurrent Neural
Network (S-CTRNN), as presented by Murata and colleagues [28], combined with a
Bayesian inference layer. Murata and colleagues showed this dynamic network can
learn multidimensional time-series, and to extract stochastic or fluctuating struc-
tures that are hidden in time-series data, that is, it can learn to recognize unpre-
dictability in data by minimizing the prediction error using backpropagation. Figure
5 shows a schematic representation of the implementation of the network with the
Bayesian inference layer. As shown in the figure, the S-CTRNN does not only out-
put a prediction, but it also provides an estimation of the variance of the prediction,
representing the confidence of the network in the prediction. The network predic-
tion is integrated with the input signal in the Bayesian inference layer, resulting in
a posterior with corresponding variance, which is then given to the S-CTRNN as
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input for the next prediction. Please note that the input signal also has a variance
estimation that represents the amount of noise that is present in the trajectory due
to measurement error and trajectory variance, adding up to a value of roughly 0.05
(i.e. vs in Figure 5 is set to a value of 0.05).

To make the network implementation mimic the influence of a hypo-prior as
suggested by Pellicano and Burr [32], the relative confidence in the prediction should
be reduced, thereby increasing the relative confidence in the input signal. To change
the confidence in the prediction made by the network, the variance estimation is
multiplied with value H. A large value for H thus increases the estimated variance,
thereby decreasing the confidence in the prediction and mimicking the influence of
the hypo-prior.

The behaviour that the network will replicate in the experiment is drawing tra-
jectories. Tests with the network have shown that adjusting H indeed mimics the
expected behaviour (Figure 6), drawing a trajectory more like the input signal with
a hypo-prior, and more like the average (or prior) when tested with a hyper-prior.
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6 Experiment

An exploratory experiment was conducted to investigate generalization behaviour of
TD subjects. For this, a new task was designed that makes use of two-dimensional
trajectories. The aim of the experiment was to assess how accurate participants
could replicate these shapes and the influence of features added to these shapes
(modifications) on generalization behaviour in drawing the trajectories. It is ex-
pected that participants generalize towards the prototype of the shape on some
trajectories with less obvious features, such as slope, and not to generalize towards
the prototype of the shape on trajectories with more salient features, such as size.

6.1 Methods

Participants

Eight typically developed individuals participated in the study (4 males, 4 females,
Mage = 26.75, SDage = 3.28). All participants declared they were not diagnosed
with any mental disorder, including ASD, at the moment of testing.

General Display

Stimuli were displayed on a Dell 55 4K Interactive Touch Monitor model C5518QT
with a 55 inch screen diameter. The monitor was placed flat on a table, and the
participant stood in front of it such that the longer side (the bottom) of the screen
was nearest to the participant. The screen responds to both a provided touchscreen
pen and touch. Participants got specific instructions which to use during the ex-
periment. The experiment was programmed in Python and presented using the
Matplotlib package.

Figure 7: Stimuli per modification with different shapes. Prototypes per shape are shown in the
yellow frame. Features are: size (black), slope (purple), double edge displacement (orange), single
edge displacement (green), bump (blue), and rounded corners (grey).

Stimuli

The stimuli in the experiment consisted of 16 hand-drawn trajectories with four
general shapes (called X, Z, T, and H) and modifications that were created by
adding features to the general shapes, illustrated in Figure 7. The X shape is based
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Figure 8: For each shape, the prototype (red) and all modifications of that shape corresponding
to the different features. The prototype is a hand-drawn approximation of the average over all
modifications of a shape. Arrows indicate the direction in which the shape was drawn.

on the handwritten letter X, but rotated 90 degrees. The Z shape is drawn like the
letter Z. The T in the T shape stands for triangle. And the H in H shape stands for
house. Modifications were:

• size, which was applied to the X shape, affecting the curls of the shape,
comprising a shape with smaller curls (X1) and a shape with larger curls
(X2).

• slope, which was applied to the Z shape, affecting the slope of the diagonal,
comprising a shape with a convex slope (Z1) and a shape with a concave slope
(Z2).

• double edge displacement, which was applied to the T shape, affecting the
two upper edges, comprising a shape with the two upper edges displaced to
the right (T1) and a shape with the two upper edges displaced to the left (T2).

• single edge displacement, which was applied to the H shape, affecting two
edges representing ‘the right side of the chimney’ and ‘the left side of the roof’
when assessing the H shape as representing a house, comprising a shape with
a shorter ‘chimney’-edge and displaced left side of the ‘roof’-edge, and a shape
with a longer ‘chimney’-edge and displaced left side of the ‘roof’-edge.

• bump, which was applied to the H and T shapes, affecting one of the diagonal
edges, comprising an H shape with a concave bump at approximately 2/3 of
the right side of the ‘roof’-edge (when assessing the H shape as representing
a house), a T shape with a concave bump at approximately 1/3 of the left
upper edge, and a T shape with a convex bump at approximately 1/3 of the
left upper edge.

• rounded corners, which was applied to the Z shape, affecting both corners,
comprising a shape with rounded instead of sharp corners.

Laura Tigchelaar 19



6.1 Methods

All trajectories of the same general shape are drawn in the same direction, start
at the same location, and end at the same location, for which the first and last
location of the trajectory are not necessarily the same. Each of the four shapes
starts in another corner of the screen to make a clear and balanced distinction
between the different shapes. All stimuli are drawn by hand and interpolated such
that all stimuli consist of 70 timesteps, each timestep defined by a location for that
point in time in the trajectory. Because the general aim of this experiment is to
exert generalizing behaviour from the participants, there was a prototype for each
shape towards which generalization is expected. The prototype is defined as the
approximate average over all trajectories of the same shape. Figure 8 shows for
each shape the prototype of the shape, the modifications for each shape with the
different features, and the direction in which the trajectory was oriented.

Procedure

During the entire experiment, which in total took about 30 minutes, participants
stood in front of the screen and were instructed to use the provided touchscreen pen
for drawing the trajectories. For other interactions with the touchscreen they were
free to use their hands or the provided touchscreen pen as they pleased.

Participants were instructed to thoroughly investigate the trajectories and to
replicate them to their best abilities. They were presented with two rectangle-
shaped windows, one on the left and one on the right side of the screen (Figures 9
and 10), which both contained a light grey dot in each corner to indicate the starting
and ending points of the trajectories. Only one of the windows was active at a time.
When beginning the experiment, the left window was active, in which participants
could investigate the trajectory by pressing the buttons underneath this window.
For investigation, participants could choose to show the next timestep, the previous
timestep, or to automatically show (or stop showing) subsequent timesteps with 0.3
second intervals. Maximally one timestep was visible at a time. Participants were
instructed to press draw whenever they felt ready to replicate the trajectory.

Participants were then instructed to replicate the trajectory in the window on
the right, starting and ending in the same corners as the example trajectory. If the
drawing was ready, they could press ready, but if they made a mistake they could
clear the screen and start over by pressing clear. Participants were requested to
draw the trajectory in one single movement, starting over whenever they relieved
the pen from the monitor before finishing the full trajectory. The trajectory drawn
by the participant would be directly shown on the monitor, represented by dots, as

Group 1 Group 2
Phase 1 All simplified trajectories in

fixed order
4 All simplified trajectories in

fixed order
4

All other trajectories in ran-
dom order

12 3x all simplified trajectories
in random order

3*4=12

Phase 2 All trajectories in random
order

16 All trajectories in random
order

16

Table 1: Procedure per group per phase. The total number of stimuli per phase was constant at
a total of 16 stimuli. Phase 2 was equal for both groups. Instructions were equal for both groups
and both phases.
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Figure 9: Experiment display during investigation of the trajectory on the left (window on the
right is inactive). Only one timestep is visible at a time. Buttons below the screen can be used
to navigate through the trajectory: pressing the arrow to the right to show the next timestep, the
arrow to the left to show the previous timestep, and the play/pause button to automatically show
subsequent timesteps with intervals of 0.3 seconds. Pressing the draw button activates the window
on the right and deactivates the window on the left.

Figure 10: Experiment display during drawing of the trajectory. Here, the subject has made an
attempt to replicate the trajectory as was investigated in the window on the left (now inactive).
The subject can choose to clear the drawing and start over, or to submit the drawing and continue
the experiment. Please note the ready-button is darkened because it is already being pressed.
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shown in Figure 10.

The experiment consisted of two phases: first a familiarization phase, followed
by a testing phase. Participants were divided into two groups. In the familiarization
phase, group 1 saw first for each shape the simplified trajectory, and then all other
trajectories in random order, whereas group 2 saw first for each shape the simplified
trajectory, and then for each shape three times the simplified trajectory in random
order. In the testing phase, all participants were presented with all trajectories in
random order. Thus, per phase participants were presented with 16 stimuli, adding
up to a total of 32 stimuli for the complete experiment, see Table 1. Instructions
were the same for all conditions and phases and were displayed on the monitor. The
familiarization phase was introduced as a practice phase.

Analyses

Since I am interested in generalization behaviour, I analyzed the drawings by the
participants by comparing them to both the target trajectory (the trajectory pre-
sented during investigation in the left window) and to the prototype of the shape
of the target trajectory. Whether a participant showed generalization behaviour
depended on the proximity of the participant’s drawing relative to both the target
trajectory and the prototype, which is explained below. Please note only modified
trajectories were analyzed, because there can be no generalization on the prototypes.
For the trajectories to be mathematically comparable they were preprocessed. The
trajectories drawn by participants were interpolated such that they all consisted of
70 timesteps (the same as the target and prototype). Next, for all trajectories the
distance between the locations (coordinates) of two timesteps was equalized, so tar-
get, prototype and participant’s drawing had comparable stepsizes. Analyses were
performed on the testing phase only.

Hausdorff distance is the maximum of the shortest distances between each
point in A and any point in B

h(A,B) = max
a∈A
{min

b∈B
{d(a, b)}} (1)

where h is the Hausdorff distance, A and B are both sequences of locations, d
is the distance between location a and location b. To make the measurement
symmetrical, the maximum Hausdorff distance was calculated:

H(A,B) = max(h(A,B), h(B,A)) (2)

where H is the maximum Hausdorff distance between sequences A and B.

To obtain a quantitative measure of generalization behaviour a critical area was
identified for each of the modified trajectories. The critical area is the area in which
the feature is visible, and is calculated per trajectory by identifying the region where
target and prototype differ from each other above a threshold that is manually
determined for each feature modification. This difference was calculated using the
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Figure 11: Critical areas (darkened dots) visualized on the prototype (black dots, grey line) and
target (orange dots, light orange line) for each trajectory. Each feature has a fixed threshold, dis-
played above each trajectory. Features are: size (black), slope (purple), double edge displacement
(orange), single edge displacement (green), bump (blue), and rounded corners (grey).

Euclidean distance between corresponding timesteps1 in the target and prototype
trajectories. Identified critical areas were then applied to participants’ drawings
for comparisons. Figure 11 displays the identified critical areas for the different
trajectories per feature.

Based on the identified critical areas a score was calculated (see Algorithm 1)
making use of the maximum Hausdorff distances (see textbox) between the three
(participant’s drawing, target and prototype) trajectories. This score indicates the
behaviour shown by the participant for this specific target. Participants could show
different types of behaviour:

• They could show generalization, which means they drew a trajectory that was
exactly like the prototype (full generalization), or a trajectory that was in
between the target and the prototype (partial generalization).

• They could show accurate replication, which means they drew approximately
the target.

• They could show exaggeration, which means they drew an exaggeration of the
target.

• They could show unexpected behaviour, which could mean they drew a tra-
jectory that was closer to the prototype than to the target but not in between
them, or it could mean they did something unexpected, such as alternating
between aforementioned behaviours.

1All trajectories consist of 70 timesteps, so for example timestep 5 in the target trajectory
corresponds to timestep 5 in the prototype trajectory.
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These different behaviours are shown in Figure 12, with the colour of each be-
haviour representing the corresponding score that results from the calculation in
Algorithm 1. In short, a negative score indicates a drawing closer to the target tra-
jectory than to the prototype, with a negative score that is smaller than -1 indicat-
ing exaggeration behaviour and scores bigger than or around -1 indicating accurate
replication. A positive score indicates a drawing closer to the prototype than to the
target trajectory, with a score bigger than 1 indicating unexpected behaviour and
scores smaller than or around 1 indicating generalization behaviour. A score of 0
indicates a generalization tendency, with a drawing that is exactly in the middle of
the target trajectory and the prototype.

if drawing closer to target than to prototype then
Score = -1 * (H(drawing, prototype) / H(target, prototype))

end
if drawing as close to target as to prototype then

Score = 0
end
if drawing closer to prototype than to target then

Score = 1 * (H(drawing, target) / H(target, prototype))
end
return Score

Algorithm 1: How to calculate the behavioural score. A positive score can be interpreted as
either generalization, or unexpected behaviour. A negative score can be interpreted as accurate
replication behaviour, or exaggeration behaviour.

Figure 12: Visualization of score in terms of shown behaviour. On top of the target (orange) and
prototype (black) trajectories, four example behaviours are displayed in the colour representing
the ascribed score (see colourbar). Next to each example trajectory is the interpretation of the
behaviour.
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Figure 13: Results from the testing phase on each of the target trajectories sorted by feature. For
clarity, the targets are also shown, plotted per shape (in the pink striped border). Each individual
participant is represented by a coloured line. Prototypes for each shape are shown in the yellow
frame. Features are: size (black frame), slope (purple frame), double edge displacement (orange
frame), single edge displacement (green frame), bump (blue frame), and rounded corners (grey
frame).

6.2 Results

The aim of the experiment was first to identify general shapes that are replicable by
participants, and second to identify modifications (i.e. prototype trajectories with
added features) that may elicit generalization behaviour in TD participants. First,
it was expected that participants would be good at drawing the Z and T prototypes,
but worse at the H and X shapes, that have a more difficult construction. Second,
it was expected that participants would show accurate replication behaviour on the
salient features size and rounded corners. The other features (i.e. slope, double
edge displacement, single edge displacement, and bump) are less salient, so some
generalization behaviour is expected for these features.

Since no difference has been found between the two groups, results will be shown
for both groups as a whole. Results for each trajectory are shown in Figure 13
and show that participants were accurate at drawing the Z and T prototypes, less
accurate at the H prototype and least accurate at drawing the X prototype. Accu-
rate, here, indicates that the drawn trajectories correspond to the target trajectory,
and that there was not much variability between participants. The results for the
modified trajectories are assessed quantitatively with the scores from Algorithm 1
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and shown in Figure 14a. In general, this figure shows that on most modified tra-
jectories, most participants showed accurate replication (score around -1), but on
some trajectories participants showed exaggeration behaviour (score smaller than -
1), generalization behaviour (score around 1) or unexpected behaviour (score larger
than 1; as illustrated in Figure 12).

Participants’ behaviour differed between and sometimes within the different fea-
tures (Figures 13 and 14b):

• Size appeared to be a very salient feature. Participants were very accurate
at reproducing trajectories that differed from the prototype by size (X1 and
X2), so no generalization behaviour occurred.

• Slope elicited different types of generalization behaviour. Most participants
reproduced the target trajectories (Z1 and Z2) correctly, but some drew the
prototype or something in between.

• Double edge displacement, for some participants, elicited partial or even
complete generalization, but for most participants it elicited exaggeration be-
haviour. Exaggeration behaviour was especially present in the T2 shape, which
has a smaller displacement than the other trajectory with this feature (T1).
Additionally, participants drew trajectory T2 with less variation than trajec-
tory T1.

• Single edge displacement caused some generalization behaviour, some ex-
aggerations, but mostly correct replications of the modified trajectories (H1
and H2). Interestingly, from Figure 13 it seems that participants were better
at drawing the modified trajectories than the prototype.

• Bump elicited unexpected behaviour from most participants on all three tra-
jectories with this feature (H3, T3 and T4). There was also some, though few,
generalization behaviour, and accurate replication.

• Rounded corners covered trajectory Z3 and showed a lot of variation in how
the trajectory was drawn, but barely any generalization behaviour.

As can be seen in Figure 14b, participants that showed generalization behaviour
in one of the trajectories were not more likely to show generalization behaviour in
another trajectory.

6.3 Discussion

In this study I made an attempt to show the ability of TD individuals to replicate
trajectories in specific shapes, and the influence of adding features (modifications)
to these shapes on drawing behaviour. If the combination of the experimental design
with the selected stimuli yields some generalization behaviour from TD individuals,
this can be used as a baseline to compare to behaviour from individuals with ASD
in a later experiment that tests both groups. The aim of that experiment is to test
the hypo-prior theory by Pellicano and Burr [32] and get more insight into cognitive
mechanisms, both in TD individuals and in those with ASD.

In summary, following expectations, participants were good at accurate replica-
tion of the Z and T prototypes and worse at the H and X prototypes. In terms
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(a) Scores heatmap

(b) Scores per participant

Figure 14: Behaviour-indication scores per trajectory sorted by indicated features. Each circle
represents one trajectory drawn by one participant in the testing phase. a. Scores with the type
of behaviour represented by colour. Gradient on the right indicates type of behaviour indicated
by the score. b. Same scores as in (a.), now with each participant represented by a colour equal
to the colour in Figure 13
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of behaviour, participants showed approximately accurate replication on the size
feature, and at least some generalization behaviour on the slope feature and the
single edge displacement feature. Unexpectedly, participants showed a combination
of accurate replication behaviour with exaggeration behaviour on the double edge
displacement feature, unexpected behaviour on the bump feature, and a mix of
behaviours on the rounded corners feature.

The overall level of generalization behaviour was very low, which may be ex-
plained by the setup of the experiment. Generalization can only occur after a prior
has been formed out of several stimuli with a certain level of variability. In the
familiarization phase participants were expected to form a prior based on the stable
points in the shape, which would be represented by the prototype. The experimental
setup, however, required for participants to directly draw each trajectory after its
first presentation, which may have caused for participants to assess each of the tra-
jectories as a separate shape, blocking generalization tendencies based on common
general shape.

Participants that showed generalization behaviour on one stimulus were not more
likely to show generalization behaviour on another stimulus. Although we would ex-
pect for participants to show a consistent tendency to incorporate priors in terms
of their drawing behaviour, the different shapes may have yielded different prior-
incorporation tendencies. Moreover, the influence of the features may have been
variable, stressing the importance of identification of a feature that yields general-
ization behaviour in most participants.

Participants weren’t very accurate at replicating the H prototype. This is not
surprising, since the general shape is quite complicated with several sharp corners
and may not directly represent something familiar (the shape looks a bit like the
contours of a house with a chimney, but this may not be clear to the participant
who sees only one point at a time). What is surprising, however, is the finding
that participants were good at replicating the H1 and H2 trajectories (the single
edge displacement feature modifications), drawing the corners sharply and the lines
straight, whereas the corners in the prototype and the H3 trajectory were drawn
rounded. One would expect for all trajectories of the same general shape to at least
be drawn similarly, since trajectory presentation was randomized and all partici-
pants had drawn the prototype at least once already in the familiarization phase.
The difference between the H prototype and the H3 modification, and the H1 and
H2 modifications may be caused by participants not assessing these trajectories as
belonging to the same general shape (i.e. the H prototype shape), but as separate
trajectories. In other words, participants may not have placed the H1 and H2 tra-
jectories in the same implicit category as the H prototype, but in their own separate
categories.

There were high levels of unexpected behaviour with the bump feature, that may
have been caused by the characteristics of the feature. Most participants noticed,
for all three trajectories (H3, T3 and T4), that the trajectory was not the prototype.
Nevertheless, they misplaced the bump, changed the size of the bump or its direction,
or they were even unable to correctly replicate the general shape with this feature,
even though in other drawings they showed they were able to do this (participants
were able to correctly replicate the general H shape in the H1 and H2 trajectories,
as mentioned above, but not in the H3 trajectory). The high levels of unexpected
behaviour may be caused by the size of the feature, as the bump is very small and
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not enough points were included.
As the goal of the experiment was to identify stimuli that later on can be used in

a cognitive mirroring experiment, the stimuli should be replicable by the S-CTRNN,
the network that will be used in the cognitive mirroring experiment. To find out
if the network can replicate the designed stimuli, I trained several networks using
backpropagation with the dataset as shown in Figure 7 with added variance of 0.001
for a minimum of 500 epochs and a maximum of 30000 epochs, and a stopping
condition tracking the likelihood that ends training when there is stagnation in
improvement. With this small dataset, the network did not show the expected
behaviour when tested with different values for the influence of the prior relative to
the input signal (see Figure 5, value H). Figure 15a shows that the network is able
to differentiate between different prior levels, but the behaviour when tested with
a hypo-prior only approaches the input signal, and is still closer to the prototype
than the input signal. Therefore the network would not be able to predict accurate
replication of the input signal for these stimuli. Figure 15b shows that the network
differentiates between the different prior levels from halfway through the trajectory,
in the second curl, but it is not able to replicate the input signal correctly, as it
should differentiate starting from the first curl. Also note that the H-value for the
hypo-prior was set to 1000 (H-values for the hyper-prior and the prior were 0.01
and 1.0, respectively), whereas a value of 5 already showed significant differences
when testing the behaviour of the network with other stimuli. This emphasizes the
importance of identification of a suitable dataset, both for the network and for the
participants.

(a) T1 (b) X2

Figure 15: Examples of network behaviour with different prior levels. Hyper-prior (orange) is
expected to closely approximate the prototype, and hypo-prior (red) is expected to closely approx-
imate the input signal (blue). Prior (green) is expected to be somewhere in between the hyper-
and hypo-prior and represents what we believe might be a typical prior. a. Network behaviour on
T1 trajectory shows the hypo-prior approximates the input signal. b. Network behaviour on X2
trajectory shows the network does not respond correctly on the first half of the trajectory, but it
approximates expected behaviour on the second half.

The difficulty the network has with showing expected behaviour is probably due
to an indistinctness of the stable and variable parts of the shapes. This may be
caused by a lack of training stimuli, for there was only one stimulus per trajectory
in the dataset, and only a small level of variance was added each trial. The network
may need multiple stimuli for each of the target trajectories, providing more natural
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variation in space and, more importantly, in time. The time dimension causes differ-
ing dynamics that may obstruct learning for the network. Each of the trajectories
has a certain length (the sum of the distances between all consecutive points), but
adding a feature may increase or reduce this length. A point in the modified trajec-
tory may now be slightly moved relative to the point representing the same location
in the prototype. The network can only learn the differences and commonalities
between the target trajectories when there is variation in these dynamics within
each trajectory (so over multiple stimuli that all represent one trajectory). Differing
dynamics in the time dimension may be the cause of the differentiation between
the X shape trajectories only starting from the second (right) curl, instead of the
first (left). Finally, another cause for the indistinctness of the stable and variable
parts of the shapes may be that all trajectories were drawn by hand. It might have
been better if they would have been created computationally. If a computationally
created prototype would be the base for each of the modified trajectories, then the
features could be added systematically, ruling out factors such as the size of the
feature within a feature category, for example the difference in edge displacement
between the T1 and T2 trajectories. All stimuli would then have straight lines and
equal lengths between timesteps, ruling out the influence of irregularities in the tar-
get trajectories and creating high stability in and extra emphasis on the recurring
parts of the general shape. However, when testing with trajectories drawn by hu-
mans, a network trained with suggested computationally created stimuli may still
not be able to accurately replicate them due to differences in dynamics between the
human drawings and the computationally created trajectories. Therefore, simply
creating more hand-drawn stimuli per trajectory may be a better solution.
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7 Conclusion & Recommendations

The goal of the targeted Cognitive Mirroring experiment is to measure the influence
of the prior relative to the sensory information in human participants by comparing
their behaviour to that of a computational neural network. Because the aim is to
investigate whether individuals with ASD have a hypo-prior, it is important that
at least TD individuals show generalization behaviour on the stimuli in the exper-
imental task, so it can be used as a baseline to compare behaviour by individuals
with ASD to. In this study, the aim was to explore human behaviour in response
to different shapes and features, and if possible to identify shapes and features that
(may) elicit generalization behaviour from TD individuals.

The research question of the conducted experiment is: Which shapes are replica-
ble by participants, and which feature modifications elicit generalization behaviour
in TD participants? The hypotheses are that participants will be good at replication
of the Z and T shapes and worse at the H and X shapes, and that participants will
show generalization on feature modifications that are less salient (i.e. slope, double
edge displacement, single edge displacement, and bump), and accurate replication
on the salient feature modifications (i.e. size and rounded corners). The first hy-
pothesis, that participants were better at replicating the Z and T shapes than the H
and X shapes, was confirmed. The second hypothesis could be partially confirmed,
as participants indeed showed less generalization behaviour on the size feature mod-
ification, and some generalization behaviour on the slope, double edge displacement
and single edge displacement feature modifications. However, since there was barely
any generalization and a lot of unexpected behaviour overall, this hypothesis could
not be confirmed in full.

In summary, results indicated that participants showed different types of be-
haviour that differed widely between the shapes and features, but overall a low
level of generalization behaviour was shown, which may be due to the fact that
participants had to draw directly after the first stimulus presentation. Moreover,
generalization behaviour on one stimulus did not guarantee generalization behaviour
on other stimuli, which may improve when the experimental design and stimuli yield
a higher level of shown generalization behaviour. Also, participants seem to be worse
at drawing the H and H3 shapes than the H1 and H2 shapes, which may be caused
by participants assessing the trajectories as belonging to separate categories, instead
of placing them in one category. Furthermore, the bump feature yielded very incon-
sistent results and often unexpected behaviours, which the network won’t be able to
replicate. And, finally, the network was not able to replicate all the different trajec-
tories, even when tested with an extremely high H-value. This is probably caused
by an indistinctness of the variable and stable parts of each of the shapes, which
may be caused by a lack of training stimuli, especially with differences in the time
dimension, or by having hand-drawn instead of computationally created stimuli.

I would like to conclude by making some recommendations for further experiments
based on the results of the experiment.

To start, I recommend making use of the Z and T shapes, and not the X
and H shapes. Participants clearly showed difficulty with the H and X shapes, as
there was high variability between participants and participants drew the prototypes
inaccurately. Therefore, it would be impossible to tell whether finding differences,
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or not being able to find any differences, would be caused by the difficulty of the
shape, or by the influence of the prior (a possible hypo-prior) relative to the sensory
input. This is particularly important because motor capabilities in ASD might not
be fully intact [23].

Second, I recommend not using the bump feature or the rounded corners
feature. Participants often showed unexpected behaviours on these features, which
cannot be replicated by the network.

As discussed in Section 6.3, the low level of generalization behaviour shown by
participants may be due to directly drawing after the first presentation of a stimulus.
In order to stimulate categorization tendencies, I highly recommend adding a short
practice phase and adjusting the familiarization phase. The aim of the
practice phase would be to make sure participants understand the task and can
practice drawing on the screen. The practice phase would be the same as the
testing phase, except for a lower number of presented stimuli, and that it would have
different target stimuli than the testing phase to ensure practice does not influence
experimental results. Thus, the participant would first investigate the trajectory in
the left window, and then draw the trajectory in the right window, equal to the
testing phase. This should be repeated until it is made sure that the participant
understands the task and knows how to draw on the touchscreen monitor, which
can be assessed for example by testing similarity between the target trajectory and
the drawing by the participant, continuing to the next phase when the similarity
is above a certain threshold. Since practice with drawing on the monitor was the
main aim of the drawing step in the familiarization phase, and this is also the aim
of the practice phase, no drawing is necessary in the familiarization phase when a
practice phase is included. This creates the possibility to show more stimuli and
thus more variation per target stimulus in the same time span in the familiarization
phase, thereby creating more opportunity for participants to implicitly form a prior.
Also, not drawing directly after the first presentation of a stimulus may increase
generalization behaviour, because there will be less emphasis on individual stimuli.

Moreover, participants were given the opportunity to investigate the trajectories
themselves based on a consideration mentioned by Nakano et al [30]: in their study
wherein participants saw a visual stimulus behind a slit at predefined speed [31],
they did not find better performance for participants with ASD as compared to
those with TD, but in the study in which participants could investigate the stimulus
at their own pace [30] they did find better performance for participants with ASD
as compared to those with TD, even though there was no significant difference
between the total time spent on investigation per stimulus for the two groups. It
was argued that this difference may be caused by the difference in the participants’
own influence on investigation of the stimulus. In the current experiment, however,
participants always chose the option to ‘play’ the sequence at a predefined speed,
instead of investigating the trajectories step by step by themselves. This may be
caused by the length of the trajectories, which could be shortened, but I would
suggest to rather adjust or remove the ‘play’-function instead. Adjustment of
the function could mean adjusting the set speed of the sequence presentation, or
it could mean letting participants change the speed themselves while watching the
sequences, so they can investigate specific parts more thoroughly if necessary. It
would then also be interesting to compare TD individuals to those with ASD on
whether and, if so, on which parts of the trajectories they increase or decrease the
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presentation speed. Removing the ‘play’-function would force participants to decide
on the presentation speed by hand, because they have to press a button for every
next time step in the sequence. However, when removing the ‘play’-function, I highly
suggest shortening the trajectories to at least half the length, because otherwise the
task becomes tedious (pressing a button 70 times to investigate one trajectory once
can be tiring) and participants may just try to get through the trajectories as fast
as possible, paying attention to getting through the experiment faster more than to
the trajectories.

Additionally, I would like to give a suggestion for stimulus creation. As men-
tioned in Section 6.3, there was not enough variability in the dataset for the net-
work to learn to replicate the modified trajectories, but there may also not have
been enough stability in the dataset to learn the stable parts for each of the general
shapes, which both may have been caused by a shortage in stimuli. Therefore, I
suggest increasing the number of stimuli for each target trajectory in the
dataset by letting several people draw the trajectories, both the prototypes and the
target trajectories, by hand on the monitor. This would increase variability in the
dataset, emphasize the stable parts of the general shapes, and reduce the influence
of the time dimension by increasing variability in terms of dynamics. A contrasting
suggestion would be to create this variability computationally, keeping the stable
parts perfectly stable and systematically varying the intensity of the features and
dynamics related to the time-dimension. Hand-created stimuli may be preferable,
however, since they are more likely to have comparable dynamics to the drawings
by the participants.

Next, I suggest adding a recognition phase at the end of the experiment to
confirm that potentially found effects in behaviour are also present in recognition,
and that they are not due to problems with motor skills. This phase would be similar
to the experiment by Nakano et al [30], but instead of haptic information, only visual
information is used, namely by letting participants visually investigate trajectories
in the left window, equal to the testing phase, but instead of drawing the trajectory
themselves, participants are instructed to choose the investigated trajectory from
three slightly different trajectories. This way, influence of drawing skills can be
ruled out, by comparing results from the testing phase for a specific stimulus to the
results of the recognition phase for this same stimulus. For example, a participant
may have shown exaggeration behaviour in the testing phase, but correct target
recognition in the recognition phase, which suggests the exaggeration behaviour is
caused by poor drawing skills. The recognition phase would be used to assess the
validity of the drawing experiment: if the drawings by participants are in line with
the trajectories chosen in the recognition phase, it can be assumed the drawings
represent how participants perceive the stimuli.

Finally, to increase generalization tendencies, I recommend considering including
a simple but time-consuming distraction in between the investigation of the trajec-
tory and the drawing, including a task with high cognitive load during or after the
investigation of the trajectory, or during drawing, or masking discrete features by
more salient features.
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