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Abstract

In this study we explored two distinct methods to identify seman-
tic content differences using differences in observed brain activity mea-
sured by fMRI. The first approach is by analysing functional connectivity
and the second approach is based on spatio-temporal activation patterns.
The results are not conclusive and more data needs to be gathered to
make statements about the neural correlates of semantics in the human
brain. However, our results suggest that subtle differences in semantic
content can be detected with both functional connectivity methods and
by analysing spatio-temporal activation patterns.
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1 Introduction

The human brain has powerful computational capabilities that cannot be recre-
ated by artificial intelligence yet. However, the last decade, research has shown
improvement in understanding the brain by using better equipment to record
brain activity (Yacoub, Harel, & Uǧurbil, 2008) and new methods to analyse
this brain data (De Martino, De Borst, Valente, Goebel, & Formisano, 2011).
By looking at patterns within the brain and the connectivity between brain
regions, more can be learned about how the brain processes information and
stores it. People are always collecting information when conscious. Surround-
ings, conversations, but also self-reflective thought elicits semantic knowledge
retrieval in the human brain. Semantic knowledge retrieval is an example of
something that even happens during resting states (Binder et al., 1999). Se-
mantics is associated with the relationship between signs and symbols and the
meaning of these signs and symbols. Semantics can be interpreted as how words
or a collection of words map to concepts. How are signs and symbols associ-
ated with meaning in the mind? Words can be semantically closer than other
words, these words could be grouped in a semantic category. For example a car
and a train are both used for transportation and are more alike than a train
and a plant. A question that is addressed often is how semantic knowledge is
organized in the human brain.

To answer this question, studies explored how the brain represents contrast-
ing categories, for example showing pictures of houses and pictures of faces
(Kanwisher, McDermott, & Chun, 1997; Hardoon, Mouro-Miranda, Brammer,
& Shawe-Taylor, 2008; Kay, Naselaris, Prenger, & Gallant, 2008). These studies
identified brain regions that are sensitive to certain categories. But are these
areas only sensitive to these categories? Are there more brain regions that are
involved in the representation of a category? Individual differences in brain
activity are present when reading or listening to stories (Buchweitz, Mason,
Tomitch, & Just, 2009), but of course there are also a lot of resemblances.

Functional magnetic resonance imaging (fMRI) studies, have changed over
time. More recent studies use natural stimuli, instead of static stimuli. This
is how humans perceive the world in daily life (Zacks, Kurby, Eisenberg, &
Haroutunian, 2011). Mitchell and colleagues tried to answer the question how
the human brain represents conceptual knowledge, by creating a computational
model that predicts the blood oxygenation level dependent (BOLD) response
of fMRI (Mitchell et al., 2008). For every noun that is presented visually, the
BOLD contrast is predicted by intermediate semantic features of the presented
noun. The level of activation of every voxel for every intermediate semantic
feature, with respect to the presented noun, creates the BOLD prediction of
the presented noun. Mitchell and colleagues used the statistics of word co-
occurrence in text associated with these nouns as intermediate semantic features,
to predict the neural activation associated with thinking about word meanings.
The focus on encoding of more abstract semantic concepts, instead of visual
features, is an effective new way of predicting human brain activity.

1



In the next two paragraphs two state-of-the-art methods of analysing fMRI
data will be addressed. The first method is analysing the functional connectivity
of the brain during a task and the second method is analysing spatio-temporal
activation patterns throughout the brain.

Functional Connectivity Not only the anatomical connections between brain
areas group areas together, but brain areas can also be grouped on the basis of
their so called functional connectivity (Friston, 1995; Buckner, 2010). Between
brain regions that are anatomically distinct, synchronized activity can occur,
which means that the regions are functionally connected (Richiardi, Eryilmaz,
Schwartz, Vuilleumier, & Van De Ville, 2011). Functional connectivity is about
how brain regions interact during a task, instead of analysing single voxels or
brain regions in the brain independently. Brain areas can interact in a specific
way during a task and this interaction, or functional connectivity, can be signifi-
cantly different between tasks (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius,
2012). Functional connectivity can be measured by estimating covariance ma-
trices of the acquired BOLD response during a specific task. Shirer et al. (2012)
presented a model, based on such estimated covariance matrices, that could
predict which task a participant was executing. This could be a resting-task,
an episodic memory recall task, a silently singing of music lyrics task or a sub-
traction task. In this study an accuracy of 84% was achieved. Even with only
one minute of data per task, the model achieved an accuracy of 80%.

Spatio-Temporal Activation Patterns Another method that has been
used extensively in the last couple of years is analysing spatio-temporal acti-
vation patterns throughout the cortex. Recent brain imaging studies are more
focussed on using natural stimuli, for example natural movies instead of static
images (Huth, Nishimoto, Vu, & Gallant, 2012) or spoken stories instead of iso-
lated words (Brennan et al., 2012). The classic fixed experiments are easier to
conduct and seem to be easy to interpret, but what does a fixed way of present-
ing pictures or words tell us about the way the human brain works in real-life
experiences? This motivated researchers to use natural stimuli in experiments.
Brennan et al. (2012) examined the neural basis of language processing with
long spoken stories. This study focussed on the syntactic structure and lexi-
cal effects. They found brain regions that are involved in syntactic structure
building, which are different from studies with isolated words (Caplan, Chen, &
Waters, 2008; Rogalsky & Hickok, 2009). A recent study by Huth et al. (2012)
used hours of natural movies. By labelling objects in the movie and their time
of occurrence, they created a category design matrix. Words were grouped into
categories using WordNET (Feinerer & Hornik, 2011; Wallace, 2007; Fellbaum,
1998). Training a category model with hours of BOLD response and regular-
ized linear regression, resulted in a cortical map of a continuous semantic space
across the human brain.
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In the next chapter we introduce the problem statement by introducing a
research question. In Chapter 3 we describe the methods and consider two ap-
proaches to identify semantic content differences using brain activity measured
by fMRI. Chapter 4 encompasses the results of the different approaches. We
conclude this thesis with a discussion, including specific issues of the approaches
and improvements of the pipeline for future research.

2 Research question

When listening to short stories, with the same characters and spoken by the
same speaker, the stories can still be different from each other. The semantic
content is guiding the story. The question is whether it is possible to classify
subtle difference in semantic content using differences in observed brain activity.
By using two approaches, based on functional connectivity and spatio-temporal
activation patterns, we investigate our research question:

• Can we classify perceived short stories with subtle differences in semantic
content using differences in observed brain activity?

The current study will explore state-of-the-art methods. The first aim is to
zoom in on functional connectivity: will subtle differences in semantic content,
lead to notable differences in functional connectivity? Shirer et al. (2012) showed
that this method works with different tasks, even with one minute of data,
but how about subtle differences within a listening task? We hypothesize that
this is possible with short stories that are semantically different, with a proper
amount of data. One minute of data is probably not enough, but with twice
as much data it could work. The second is to extend findings by Huth et
al. (2012) into the auditory domain and see if it is possible to classify short
stories presented aurally, that are semantically different using spatio-temporal
activation patterns. We hypothesize that this classification methods could also
be successful, using stories with enough examples of words or categories to train
our model.
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3 Methods

Figure 1: A graph describing the methods pipeline. A choice can be made to
use route 1, based on function connectivity, or route 2, based on spatio-temporal
activation patterns.

3.1 Preprocessing

3.1.1 MRI data collection

MRI data were collected on a 3T Siemens Tim-Trio MRI scanner at the Donders
Center for Cognitive Neuroimaging Nijmegen using a 32-channel Siemens surface
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coil. Functional scans were collected using a parallel-acquired inhomogeneity-
desensitized (PAID) sequence (Poser, Versluis, Hoogduin, & Norris, 2006) with
repetition time (TR) = 1.650 s, echo times (TE) = 6.9 ms, 16.2 ms, 26 ms
and 35 ms, flip angle = 70◦, voxel size = 3.0 x 3.0 x 3.0 mm. 39 axial slices
covered the entire cortex. A water excitation pulse was used for fat suppression.
Anatomical data was collected on the same scanner in the same session using a
T1-weighted MP-RAGE sequence with parameters TR = 2300 ms, TE = 3.03
ms, 192 slices with a voxel size of 1 mm3.

3.1.2 Participants

Two native Dutch speakers (2 females, 24 and 28 years of age, both right-
handed) participated in the study. Both participants reported that they did
not suffer from any neurological disorders and gave written informed consent
prior to the experiment in accordance with the guidelines of the local research
ethics committee.

3.1.3 Stimuli

Data was collected with a 4×4 design, using four repetitions of four different ‘Jip
and Janneke’ audio-stories in a pseudo-random order. All stories were spoken
in Dutch by the same speaker to avoid leaking discriminative story information
by speaker identity, which is not relevant for the semantic content (Charest,
Pernet, Latinus, Crabbe, & Belin, 2013). The length of the stories were on
average 114.5 seconds (shortest 100 seconds, longest 138 seconds). See Table 1
for more information about the stimuli.

MRI compatible headphones were used to reduce environmental noise. Be-
fore the data collection started a test-scan was executed to check the volume
level of the stories.

After each story a multiple choice question was shown to encourage the
participants to pay attention to the context of the stories. There was no time
limit for answering the questions. For every question, four answers were shown.
The participants chose the answer by using a button-box. The questions can be
found in Appendix B.

Throughout this thesis, a repetition of a story (one of the sixteen) will be
referred to as ‘an instance’.

Type Story 1 Story 2 Story 3 Story 4

Time (s) 138 107 100 113

Words 325 288 258 262

Table 1: The length of every story, expressed by time (seconds) and in number
of words.
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3.1.4 Stimulus annotation

Four stories were selected from the short audio-book stories ‘Jip en Janneke’
originally written by Annie M.G. Schmidt and read by Flip van Duijn. The
four stories were annotated using PRAAT (Boersma & Weenink, 2010). Every
word was indexed with the start time and the end time. The number of words
per story varied between 258 words and 325 words per story, with an average of
288 words per story. Speaker identity was identical between stories. The audio
volume between the stories is assumed to be similar, as the stories come from
a published, and assumed to be mastered, compact disc. This rules out the
possibility to detect differences between stories that are not due to the semantic
content.

A dictionary was created with all the unique words of the stories. This
resulted in a dictionary of 337 words. The dictionary can be found in Appendix
C. The transcription of the four stories can be found in Appendix A.

3.1.5 Design matrix construction

For each story a design matrix X was created, in which each TR (1.65 seconds)
occupies a row and each entry of the dictionary occupies a column. Resulting
in a M ×N matrix, where M are the words and N are the time-points. A value
of one was assigned to each entry where that word appeared between this point
in time and the previous point in time (one TR back in time), else a zero was
assigned to the entry. This resulted in four different design matrices.

Categorization When using all words as regressors, there are not a lot of
examples for every word. Instead of words, it could be useful to create design
matrices with various categories. Words are grouped together as categories and
these can be used as regressors. From previous research it is known that the
contrast of inanimate and animate words is clearly represented in the brain
(Wiggett, Pritchard, & Downing, 2009). Speer et al. (2009) showed that differ-
ent brain regions track different aspects of a story, such as the physical location
of a character. Categorization can also be done by using a lexical database like
WordNET (Huth et al., 2012). A recent study by Çukur et al. (2013) showed
that attention can warp the semantic space in the brain. The authors com-
bined words related to people, animals and communication into one category
and words related to structure, vehicles and movement into another category.

We created our own four categories based on a mixture of these studies and
our own story dictionary: inanimate nouns, animate nouns, action verbs and
emotion. Because WordNET is a lexical database for the English language and
our stories are in Dutch, we decided to do the categorization manually.

3.1.6 fMRI data preprocessing

Preprocessing of acquired data is very important to draw conclusions about
your data and especially for functional connectivity (Gavrilescu et al., 2007).
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The multi-echo functional data were first combined using a home-made Matlab
script, resulting in a combination of the four echo times. Dummy scans were
removed and data were preprocessed using SPM8 (Ashburner et al., 2010). First
functional data were motion corrected using SPM8 Realign. Successively, SPM8
Slice Timing Correction was applied and a grey matter mask was created by
using SPM8 Segment. A general linear model was applied to filter out scan-
ner drifts and motion of the participant. The Anatomical Automatic Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) template was co-registered with the func-
tional mean to use as a template to group voxels together in route 1. The slow
hemodynamic response was taken into account by shifting the data three TR’s
(4.95 s) forward in time, with respect to the story information.

3.1.7 Classification approach

To investigate if it is possible to classify stories with subtle differences in se-
mantic content by using observed brain activity, we will look for similarities
and differences between brain activity by using two distinct methods. The first
method is based on functional connectivity. Covariance matrices will be es-
timated and a distance measure will be applied between covariance matrices.
The second method is based on spatio-temporal activation patterns and a model
that predicts the BOLD response of a story. In this second method a distance
measure will be applied to compare timeseries. In the pipeline, two different
routes corresponding to the aforementioned approaches can be followed. These
will be explained in detail in the upcoming sections.

3.2 Route 1: Functional connectivity

In this thesis there will be two different main classification pipelines that will
be explained and reviewed. The first route in the pipeline is based on the
correlation structure between various parts in the brain during a story. This is
taken to reflect functional connectivity (Buckner, 2010).

3.2.1 Prototype segment: Concatenated timeseries

A prototype segment will be computed in both routes, to compare the actual
segment or instance with the prototype segments. In this route the prototype
segments will be created by concatenating timeseries of a story type. The con-
catenated timeseries for every story type is composed for every repetition inde-
pendently, by leaving this repetition out, to avoid double dipping (Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009). The BOLD response of the instances from
the other repetitions of the same story type are concatenated into story-specific
prototype segment. This results in four prototype segments per repetition, that
represents prototype BOLD response of a story type.
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3.2.2 Grey matter parcellation

To make the acquired data computationally tractable and interpretable, voxels
were grouped together by coregegistering the AAL template with the anatom-
ical data of the participant. The AAL template is a broadly used template in
neuroimaging to map different brains to the same space. Moreover, it can be
used to generalize over multiple participants. All the voxels that are selected
for a region are normalized and averaged for an instance, to get an estimate
of the region-specific BOLD activation for every instance. The cerebellum and
vermis are removed from the template (region 91 up to region 116), because
these regions are predominantly related to movement coordination and balance
(Rapoport, van Reekum, & Mayberg, 2000).

Y i is the data matrix of an instance i, with dimensions N × V , where N are
the timepoints and V are the voxels. For every instance the mean activation for
every AAL region is calculated as follows.

M i = (µi
1, . . . , µ

i
90)
′

(1)

where

µi
k =

1

V k

∑
v∈V (k)

yi:,v(k) (2)

where V k is the number of voxels in region k and v(k) is the index set
of voxels beloning to region k. The average activation of these voxels during
instance i are summarized in µi

k

3.2.3 Covariance matrix estimation

An empirical covariance matrix was estimated for every repetition of every story
(16 covariance matrices). Every matrix contains 90 x 90 cells and represents
the covariance between the brain regions defined by by the AAL template, for
the particular instance. Covariance reflects how two regions vary together.

The covariance matrix Σ of instance i will be denoted as:

Σi =


Cov(µi

1, µ
i
1) · · · Cov(µi

1, µ
i
90)

...
...

Cov(µi
90, µ

i
1) · · · Cov(µi

90, µ
i
90)

 . (3)

where the covariance is calculated using the following general covariance
formula:

Cov(p, q) =

∑N
n=1(pn − p̄)(qn − q̄)

N − 1
(4)
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where N is the number of observations, p and q are, in our case, datapoints of
two regions, p̄ and q̄ are the sample means of these regions.

The structure in the covariance matrix can teach us about the functional
connectivity between brain areas during the story. How the brain areas interact
during a story could be different between the different stories or repetitions. If
this is the case, this can serve as model to predict which story was presented,
by comparing the test-data with a ‘prototype’ covariance matrix of the differ-
ent stories by using a similarity measure, like the Euclidean distance (Deza &
Deza, 2009), the Kullback-Leibler divergence (Kullback & Leibler, 1951) or the
Bhattacharyya measure (Bhattacharyya, 1943).

3.2.4 Similarity measure: Functional connectivity comparison

To measure the similarity between the covariance matrices of the stories, dif-
ferent methods can be used as outlined before. In this case the Bhattacharyya
distance will be applied, which is known to operate correctly on multivariate
normal distributions, which we assume we are dealing with (Bhattacharyya,
1943).

The Bhattacharyya distance between two stories is computed by the follow-
ing formula, in which Σi and Σj are covariance matrices.

Sij =

(
1
8 (µi − µj)

T

P

)
(µi − µj) +

1

2
log

(
det(P )

det(Σi) det(Σj)

)
(5)

with P = (Σi + Σj)/2. Sij will be the matrix with corresponding distances
between Σi and Σj .

3.2.5 Classification

Sij is the distance matrix which represents which instances are most similar.
The stories will be compared by using a minimal distance approach. If the
instance with the closest distance to the evaluated instance has the same story
type as the evaluated instance, the classification is correct and a one is assigned.
Else the classification is false and a zero is assigned. This will result in 16
binary decisions, which will be averaged to get the accuracy of this classification
pipeline.

3.2.6 Story Difference Measure

The stories that are presented in the experiment are quite similar. Same char-
acters, similar words and all have a childish feel to it, with a happy ending.
To reflect how different the stories are represented in a brain, a story difference
measure can be calculated with the following formula.

δ = S̄i − S̄j (6)
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where S̄i is the mean Bhattacharyya distance between all instances with a dif-
ferent story type and S̄j is the mean Bhattacharyya distance between instances
with the same story type. This results in a story difference measure. The bigger
the number, the bigger the semantic difference between the stories. It could be
the case that the stories are too similar for a good classification performance for
this method.

3.3 Route 2: Spatio-temporal activation patterns

In this second approach a model is trained to predict the BOLD response of a
new story. The model is trained by mapping words to BOLD responses from the
training set, this mapping is used to predict a BOLD response of a new story.
To validate this model, real BOLD response for a new story can be compared
to the predicted BOLD response of the model for the same story.

3.3.1 Prototype segment: template voxel timeseries

To train the model, a leave one repetition out method is applied. Three of the
four repetitions (12 instances) are used to train the model. First, for each story
a mean average of the BOLD response is computed by averaging the BOLD
response of the three instances of the story used for training. The formula used
to train the model is based on kernel ridge regression (Hoerl & Kennard, 1970;
J. H. Friedman, Hastie, & Tibshirani, 2010):

B = (Y Y ′ + λIN )−1X ′Y (7)

Here, Y represents the mean BOLD activation of the stories with dimensions
(N × V ), where V are the voxels and N are the timepoints. X represents the
concatenated design matrices of the stories (N ×M), IN the identity matrix of
size N ×N , B (M × V ) the trained weights between the words and the voxels
and λ the regularization parameter.

With the estimated B values predictions can be made for new stories, by
multiplying it with a (new) designmatrix.

Ŷ = X∗ ×B, (8)

where X∗ is the design matrix of the new story and B are the trained weights
from Equation 7.

3.3.2 Voxel selection

By using the AAL template in combination with a grey matter mask, a lot of
voxels are discarded from the analysis. This still results in a large amount of
voxels (¿15.000). Voxel selection could be done more thoroughly. For example
areas could be discarded based on the literature, or voxels can be selected on the
basis of their explained variance. In this analysis we only use the grey matter
mask and the AAL template to select voxels.
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3.3.3 Similarity measure: Timeseries comparison

One repetition, consisting of one instance of every story, is left out to use as test
data while training the model, this is later cross validated. With the model,
BOLD responses are predicted for every story type. This is done for every
repetition. The predictions are compared with the actual BOLD response to
validate and test the model. The comparison is done by using a distance measure
between the predicted BOLD response and the actual BOLD response of each
instance. Because the story types do not have the same length, the first 50
timepoints are used for comparison to prevent correct classification based on
the length of the story. The distance between the actual and predicted BOLD
response is calculated with the following formula:

Di,t =

√√√√ V∑
v=1

N∑
n=1

(ŷtv,n − yiv,n)2, (9)

where yik,n is the actual BOLD response of instance i, where v are the voxels

that are selected for validation and n are the first 50 timepoints. ŷtv,n is the
predicted BOLD response of story t.

3.3.4 Classification

This results in a comparison of predicted BOLD response of a story type with
actual BOLD responses of all four story types. If distance d is smallest for
the comparison where the story types of the predicted BOLD response and the
actual BOLD response are coherent, the predicted BOLD response of that story
type is most similar to the actual BOLD response of the similar story type. In
this case a one will be assigned to binary decision value gi, else gi will be zero.
This will result in 16 binary decisions and can be averaged to get an accuracy
value a.

a =
1

I

I∑
i=1

gi (10)

where I is the number of instances, gi the decision value and a the accuracy.
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4 Results

4.1 Route 1

The classification accuracies obtained in route 1 of the pipeline are shown in
table 2, including the story difference measure.

Accuracy Story Difference Measure

Participant 1 0.25 (4/16) 0.03

Participant 2 0.31 (5/16) 0.21

Table 2: The results of route 1. Accuracy is based on the correct number
of classifications. The Story Difference Measure is the mean Bhattacharyya
distance between instances that have different story types subtracted by the
mean Bhattacharyya distance between instances that have the same story type.

According to the binomial test (Howell, 2007), an accuracy of 0.5 is enough
to achieve significance in this case (p = 0.05).

The greater part of the instances are classified incorrectly. The congruent
colour patterns across the prototype covariance matrices in the design matrices,
could be an artefact of time. This does not influence the outcome of the classifier,
because the classifier operates on the rows, not the columns. This is exactly the
reason why we used the leave-one-out and cross validation method.

Because this method can not predict the right story type from the BOLD re-
sponse, data will be simulated in the next section, to get a better understanding
why this method does not provide a better classification performance.
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(a) (b)

(c) (d)

Figure 2: Distance matrices route 1 for Participant 1, expressed in terms of
the Bhattacharyya distance. The story covariance matrices are compared with
the prototype covariance matrices. If the prototype covariance matrix with the
minimal distance to the story covariance matrix correspond to the story type of
the story covariance matrix, classification is successful, else it failed. Repetition
1 is represented in subfigure (a), repetition 2 in subfigure (b), repetition 3 in
subfigure (c) and repetition 4 in subfigure (d).
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(a) (b)

(c) (d)

Figure 3: Distance matrices route 1 for Participant 2, expressed in terms of
the Bhattacharyya distance. The story covariance matrices are compared with
the prototype covariance matrices. If the prototype covariance matrix with the
minimal distance to the story covariance matrix correspond to the story type of
the story covariance matrix, classification is successful, else it failed. Repetition
1 is represented in subfigure (a), repetition 2 in subfigure (b), repetition 3 in
subfigure (c) and repetition 4 in subfigure (d).
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4.1.1 Simulated data results

To validate the pipeline and see if the obtained results from our participants
can be reproduced, additional simulations were executed. Data was sampled
out of randomly generated positive definite covariance matrices. Every story
type for every sample iteration had its own covariance matrix, which represents
the underlying population correlation matrix. The sampled data is used as if it
was real data, hence route 1 of the pipeline was followed again. If the stories are
close together, more timepoints will be needed to achieve a good performance.
The empirical data only contains 50 timepoints, but if the stories are different
enough, the amount of samples can be enough.

In comparison to the empirical data results, the simulated data results are
coherent. With only 50 samples and a story difference measure of 0.0314 for
Participant 1 and 0.2091 for Participant 2 will not lead to a performance that
is accurate.

More timepoints will lead to a better estimation of the underlying population
correlation matrix, as can be seen in Figure 4(b), Figure 4(c) and Figure 4(d).
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Figure 4: Results of the simulated data. Different number of timepoints are
used: 50 (a), 100 (b), 250 (c) and 500 (d) timepoints per instance and different
story difference measures are used throughout the samples. Y-axis represents
the accuracy and X-axis the story difference measure. A total of 5000 samples
in each graph, averaged in bins of 0.02.

16



4.2 Route 2

For this route, different methods were used to examine the classification perfor-
mance. As stated in the methods section, all words could be used as regressors,
but words could also be grouped together to have more examples per regressor
and less regressors. A combination of two categories can be chosen from the
manually composed categories: animate, inanimate, action verbs and emotion.
The categories could also be reviewed on their own. The classification accuracies
obtained with a single category as regressor, with two categories as regressors
and with three and four categories as regressors are shown in Figure 5.

Figure 5: Classification performance, based on the combination category re-
gressors. ‘A’ is animate, ‘I’ is inanimate, ‘V’ is the action verbs category and
‘E’ is emotion. The category ‘All Words’ is the initial condition: all words are
regressors.
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For Participant 1, the best classification accuracy (0.5625) was obtained in
the All Words condition. This means that all words from the dictionary were
used as regressors, no additional categorization was done. The p-value of this
classification accuracy calculated with the binomial test is 0.0075. Note that
after applying the conservative Bonferonni correction, to correct for multiple
comparisons (p < 0.003125), the outcome of this test is statistically not signifi-
cant (Bland & Altman, 1995).

For Participant 2, the best classification accuracy (0.5) was obtained in the
Inanimate single category condition. One regressor was used to create the de-
sign matrices. This regressor reflected when a inanimate word was presented
in the stories. The p-value of this classification accuracy calculated with the
binomial test is 0.0271. Note that this performance value is not corrected for
multiple comparisons. Correcting for multiple comparisons using the Bonfer-
onni correction (P < 0.003125 level), means that this test is statistically not
significant.

The mean of Participant 1 and Participant 2 over all conditions, resulted in
the best classification accuracy (0.4375) in the Four Category condition. Groups
of inanimate, animate, emotion and action verbs were created and used as re-
gressors. The p-value of this classification accuracy calculated with the binomial
test is 0.0796 for participant one and 0.1897 for participant two. Note that this
performance value is not significant when corrected for multiple comparisons,
using the conservative Bonferonni correction.

Explained Variance Additionally to statistical p-value, the mean explained
variance of the estimated timeseries on the real timeseries is plotted for the best
conditions for each participant. This analysis can shed light on the brain regions
that are responsible for the obtained performances. Only voxels with positive
explained variance values are plotted to spot blobs of voxels that are responsible
for a high explained variance. The plot for Participant 1 in the best condition
All Words is shown in Figure 6. The plot for Participant 2 in the best condition
Inanimate is shown in Figure 9. Plots for both participants in the mean best
condition Four Categories are shown in Figure 11(a) and Figure 11(b).

By averaging and standardizing the explained variance per region (negative
and positive values) for each participant in the best condition, the best explain-
ing brain areas can be selected. Figure 7 shows the mean explained variance
for Participant 1 in condition All Words. Figure 10 shows the mean explained
variance for Participant 2 in condition Inanimate. Figure 12 shows the cumu-
lative mean explained variance for Participant 1 and Participant 2 in condition
Four Categories. A complete overview of the brain regions covered by the AAL
template can be found in Appendix D.
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Figure 6: Brain plot of voxels with positive mean explained variance values,
plotted on the corresponding points in the AAL atlas for Participant one in
the All Words condition. Blobs of voxels can be detected were the explained
variance is high. Brain regions that contain these blobs are the inferior frontal
gyrus, the superior temporal gyrus, the middle temporal gyrus and the calcarine
sulcus.
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Figure 7: This graph shows the standardized mean explained variance per brain
region. The bars represent the standardized mean explained variance of Partici-
pant 1 in the All Words condition per AAL brain region. The Y-axis represents
brain regions according to the AAL template, the X-axis is the mean stan-
dardized explained variance of the corresponding region. The overall best five
explaining brain areas for Participant 1 in these conditions are AAL region 43
(left calcarine sulcus), 51 (left middle occipital gyrus), 45 (left cuneus), 81 (left
superior temporal gyrus) and 54 (right inferior occipital gyrus). The five worst
explaining brain areas are AAL region 5, 69, 10, 26 and 73.
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Word nVox freq St1 St2 St3 St4

Aanhollen 1 1 1

Allebei 2 2 2

Als 2 6 1 4 1

Angstig 1 1 1

Best 1 1 1

Bij 3 9 9

Blaast 1 1 1

Eigenlijk 1 1 1

Elk 42 1 1

Etensbak 4 2 2

Fijne 1 1 1

Grove 1 1 1

Heb 1 5 3 2

Hebben 1 3 1 1

Helemaal 1 1 1

Hij is 1 1 1

Koel 1 2 2

Kwaad 1 1 1

Lange 6 1 1

Meenemen 1 1 1

Morgen 4 1 1

Nare 2 1 1

Pakje 2 1 1

Pijn 1 1 1

Scherp 2 2 2

Stuiver 1 2 2

Tis 2 1 1

Verder 1 1 1

Voortaan 2 1 1

Wonen 7 1 1

Zeurt 3 1 1

+ 100 55 22 (11) 13 (8) 9 (7) 11 (9)

Table 3: Words with the largest regressor coefficients of the 100 voxels with
the highest explained variance. First column are the words, second column
the number of voxels that have this word as highest regressor coefficient, third
column the number of occurrences of the word in all stories and the last four
columns the distribution of these occurrences over the story types.

Because these results of Participant 1 in the condition All Words has voxels
with high explained variance, it is interesting to see how these good voxels map
to the words that are presented, by examining the regressor coefficients of these
voxels. The results of the best 100 voxels can be found in Table 3.
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A further analysis of the best regressor shows that the BOLD response of
the corresponding voxel shows a big increase in activity at the timepoint the
word is presented. A graph of this BOLD response is shown in Figure 8.
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Figure 8: These plots represent the predicted BOLD response of a repetition
of story 2, reflected by the real BOLD response of that repetition in the voxel
with the highest explained variance. The largest regressor coefficient of this
voxel mapped to the word ‘elk’ and was presented at timepoint 63. Repetition
1 is represented in subfigure (a), repetition 2 in subfigure (b), repetition 3 in
subfigure (c) and repetition 4 in subfigure (d).
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Figure 9: Brain plot of voxels with positive mean explained variance values,
plotted on the corresponding points in the AAL atlas for Participant two in
the Inanimate condition. The voxels that have a high explained variance are
widespread throughout the cortex. No big blobs can be detected in the plots
and the mean explained variance values of the voxels are not very high.
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Figure 10: This graph shows the mean standardized explained variance per
brain region. The bars represent the standardized mean explained variance of
Participant 2 in the Inanimate condition per AAL brain region. The Y-axis
represents brain regions according to the AAL template, the X-axis is the mean
standardized explained variance of the corresponding region. The overall best
five explaining brain areas for Participant 1 in these conditions are AAL region
15 (left inferior frontal gyrus, orbital part), 87 (left middle temporal gyrus,
temporal pole), 6 (right superior frontal gyrus, orbital part), 26 (right middle
frontal gyrus) and 83 (left superior temporal gyrus, temporal pole). The five
worst explaining brain areas are AAL region 70, 33, 73, 49 and 78.
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(a)

(b)

Figure 11: Brain plots of voxels with positive mean explained variance values,
plotted on the corresponding points in the AAL atlas for Participant 1 in the
four category condition (a) and Participant 2 in the four category condition (b).
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Figure 12: Graph showing the mean standardized explained variance per brain
region. The bars are cumulative values of Participant 1 and Participant 2 for
condition (4 Categories). The Y-axis represents brain regions according to the
AAL template, the X-axis is the mean standardized explained variance of the
corresponding region. The overall best five explaining brain areas for this con-
dition and these participants are AAL region 43 (left calcarine sulcus), 76 (right
pallidum), 49 (left superior occipital gyrus), 45 (left cuneus) and 15 (left infe-
rior frontal gyrus, orbital part). The five worst explaining brain areas are AAL
region 10, 70, 74, 33 and 78.

26



5 Discussion

This study explored the possibilities to identify semantic content differences
using differences in observed brain activity by using natural auditory stimuli.
The two main approaches were focussed on functional connectivity and spatio-
temporal activation patterns. Both routes suggest that it is possible to classify
semantic content differences, but more data is needed to prove this conjecture.

Because fMRI can contain a lot of noise, coming from artefacts like respiration
or movement, it is difficult to interpret the results of fMRI studies. There are
methods that can regress noise out of the signal, like ANATICOR (2010) and
CompCor (2007). An fMRI experiment will always benefit from a better signal-
to-noise ratio, so this could be a useful improvement for this pipeline. The
slow hemodynamic response of fMRI could be modelled more precisely and
the data could be shifted by different intervals to find the optimal setting for
this shift. Moreover, with only two participants the sample size is very small.
More participants would improve the results. More training examples could
make a huge difference, this makes the estimation of both models better, in
this study we were limited to 12 instances per participant that could be used
for training. fMRI technology is improving quickly and it is possible to have
a shorter repetition time and still scan the whole brain, which means more
observation per minute and therefore again, a better estimation of a model.

In the next sections we will discuss the results and implications of both routes
of the introduced pipeline.

5.1 Route 1

The empirical data results are close to chance level. The simulations show that
this problem is two-folded: 1. there are not enough timepoints/observations to
estimate the underlying population correlation matrix correctly. 2. The pre-
sented stories are too similar to estimate the underlying population correlation
matrix correctly.

From our empirical data of two participants, we see a deviation of the ‘story
difference measure’. The smaller this measure is, the less accurate the pipeline
is. To obtain better results with small story differences, more timepoints are
needed. For Participant 1 (story difference measure: 0.0314), almost 10 times
the amount of timepoints are needed to achieve a statistically significant cor-
rect performance of the classifier. For Participant 2 (story difference measure:
0.2091) a significant correct performance could already be achieved with twice
the amount of timepoints. Scanning twice as fast and scanning the whole brain
is already possible (Feinberg et al., 2010). Scanning ten times faster is possible
with the current technology within fMRI, but still very experimental (Boyacioglu
& Barth, 2012). An easier solution is to have longer stories, which consequently
means more timepoints and a better estimation of functional connectivity. Pre-
senting stories with the same length, that are semantically more different than
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the ‘Jip and Janneke’ stories is another way to boost the performance. For
instance a fairytale, a comedy story, a horror story and a western story. These
stories could all be semantically more distant than the stories chosen is this
study. The answer to our research question: Can we classify perceived short
stories with subtle differences in semantic content using differences in observed
brain activity?, is that this is not possible in route 1 of the pipeline, although
the simulations hint that it is possible with more timepoints/observations.

There are points in this route that can be improved with the right tools, to im-
prove overall performance. As already stated in the previous paragraph, more
timepoints will make a big difference, this can be achieved by changing the fMRI
protocol to a protocol with a shorter TR or choose longer stories. Moreover, a
bigger training set can improve the prototype-story estimate, which could result
in better predictions.

In this study we used the AAL throughout route 1. This is a very gen-
eral template, which roughly divides the brain in 116 distinct areas. Other
templates or methods could be used to improve the estimation of brain areas.
For instance Diffusion Tensor Imaging could be used to define regions (Hinne,
Heskes, Beckmann, & van Gerven, 2013), the brain could be parcellated based
on functional localisers (Shirer et al., 2012) or independent component analysis
could be used to group voxels in regions (Lahnakoski et al., 2012). These pro-
posed methods are all based on the brain of the participant and not a general
template, which could increase the performance dramatically. Alternatively dif-
ferent generic atlasses could be applied to the data instead of the AAL template.
For example, the Harvard Oxford atlas (Desikan et al., 2006), the sulci atlas
(Varoquaux, Gramfort, Poline, & Thirion, 2010) or the Ncuts atlas (Craddock,
James, Holtzheimer 3rd, Hu, & Mayberg, 2011).

To get a better and more informative estimate in comparison to the empirical
covariance matrix, a sparse inverse covariance matrix, or precision matrix, can
be computed. If an element in this matrix is zero, the brain areas are assumed
to be conditionally independent (Whittaker, 2009). This is a great advantage in
interpretability of data over a normal covariance matrix. To estimate this sparse
inverse covariance matrix, a graphical lasso algorithm (J. Friedman, Hastie, &
Tibshirani, 2008), which uses a lasso penalty (L1-regularization) to control the
number of zeros in precision matrix, could be used.

5.2 Route 2

The empirical data results of route 2, based on spatio-temporal activation pat-
tern analysis, suggest that it is possible to classify subtle differences in semantic
content, using differences in observed brain activity.

How the words are categorized in the design matrix is very important for a
good performance, but the best categorization seems to be participant specific.
The best mean categorization condition is using all four chosen categories as
regressors. Although the accuracy of this mean condition is statistically not
significant, it hints that more than three categories provide more stable results.
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With more data and more different categorization conditions, this could be
explored. The categories that are used in this study are very broad and could
be more specific. An automatic categorization algorithm would be very useful,
in which a degree of categorization could be selected and used for analysis. This
algorithm could be based on WordNET, to automate the (sub)categorization of
words.

The in-depth results of Participant one in the best condition All Words show
that the brain regions that are responsible for the distinction between the story
types, are also brain regions that are often reported in literature as regions of
interest during processing of spoken word. For example the superior temporal
gyrus is reported in the results of this study as an important area, by looking
at blobs of voxels with a positive explained variance. The superior temporal
gyrus has been reported as an important area for general processing of auditory
stimuli (Jobard, Crivello, & Tzourio-Mazoyer, 2003), but this region is also asso-
ciated with spoken-word recognition tasks (Cabeza & Nyberg, 2000). Moreover,
the superior temporal gyrus is reported as a modality specific area for the pro-
cessing of language and more specifically, phoneme processing of spoken words
(Buchweitz et al., 2009). Both left and right superior temporal gyrus showed a
relative high mean explained variance as a region.

A blob of voxels with a positive explained variance was also detected in
the calcarine sulcus. The left calcarine sulcus was the region with the highest
mean explained variance as a region for this participant in this condition. The
calcarine sulcus is often associated with vision, the primary visual cortex is
concentrated in the calcarine sulcus. A study by Lambert et al. (2002) found
activation of the calcarine sulcus by mental imagery, driven by purely verbal
cues. It could be due to influences of mental imagery, that this region has a
high explained variance for the discrimination between the stories. A different
interpretation could be that eye movements evoked by particular words are the
basis of the high explained variance in the calcarine sulcus.

A small but interesting blob can be detected in the left frontal inferior gyrus
(opercular part). This region is part of ‘Broca’s area’ and is important for
language production and verb comprehension (Rogalsky, Matchin, & Hickok,
2008).

The brain regions that are responsible for the discrimination between the
different stories for this participant and this condition, do not seem to be random
and are often associated to language comprehension.

The words that are important for the discrimination between the stories are
often present in one of the four stories and usually only occur one time in the
whole story. This is not what we expected, because for a word that occurs in
one story and only one time, the model is trained on three examples of this
word. Still the model is able to predict when this specific word was presented.
We expected that words that occur a lot of times in all stories could improve
the model, because the model has a lot of examples in the training set. This
does not seem to be the case, looking at the results to which words the best 100
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voxels map. The word that shows the biggest explained variance was present
in timepoints 63 of story two. Our classifier only takes the first 50 timepoints
into account, else it can classify on basis of the length of the story. This implies
that the word that produces the largest explained variance was neglected in this
approach and the pipeline could be more accurate.

For Participant two, the best categorization condition Inanimate showed that
voxels with positive explained variance are widespread throughout the cortex.
The amount of voxels with a positive explained variance is larger in comparison
to the best condition of Participant one, but the values per voxel are a lot
lower. That the positive explained variance voxels are widespread, could be due
to the fact that there is only one regressor in this model: inanimate words. This
category is spreaded out over the cortex. This widespread images of categories
has also been reported by Huth et al. (2012).

The brain region that has clearly the highest mean explained variance for
this participant in this condition is the left inferior frontal gyrus (orbital part).
This region is located next to Broca’s area. It could be the case that we are
looking at Broca’s area here, because these small regions tend to vary in size
and shape between participants (Keller et al., 2007).

The best mean condition for Participant one and Participant two was the
four category condition. In the plots of the voxels with positive explained vari-
ance, no blobs could be detected and the voxels are distributed throughout the
cortex. The best mean explanatory regions differed per participant, but a sim-
ilar distribution of important regions in the other conditions can be detected.
For Participant one the left inferior frontal gyrus (orbital part) was again the
most important area for the discrimination between the stories and for Partici-
pant two the left calcarine sulcus showed the highest mean explained variance.
These results show that the areas that are important for the classification are
stable for different conditions, but not between participants. Maybe the way
these participants listen to the stories are different. Participant one could be
visualizing the auditory stimuli vividly and Participant two is more focussed on
the comprehension of verbs that are presented. More research is needed to see
if these differences between participants occur more often and which areas are
important for semantic processing of auditory stimuli. It has been shown that
gender has an effect on the processing of higher order semantic in the brain
(Wirth et al., 2007), in our study both participants were women, but the study
shows that there can be individual differences between semantic processing.

Also for this route, more data has to be acquired to acknowledge the findings
in this study. As stated before, different categorization protocols can be used,
to explore how semantics are organized in the human brain. Moreover, different
voxel selection could increase the results in this pipeline. In this study we
selected voxels by using a grey matter parcellation and the AAL template.
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Within this selection, voxels can be discarded on basis of their explained variance
or a different criterion.

5.3 Conclusion

In this study we explored two distinct methods to identify subtle semantic con-
tent differences using differences in observed brain activity. The results are not
conclusive and more data needs to be gathered to make statements about the
neural correlates of semantics in the human brain. However, our results suggest
that subtle differences in semantic content can be detected with both functional
connectivity methods and by analysing spatio-temporal activation patterns.

Our results tend to advocate a inter-subject variability of the processing of
semantic content, but this could be simply contradicted by the amount of data
that has been gathered. Moreover, fMRI is an indirect measure of neuronal
response, which makes the acquired data sensible to noise.

Improvements can be made by parcellating the brain in subject-specific ar-
eas, by using DTI data, functional localizers or ICA. More training data per
subject would increase the estimation of the models. This could be achieved by
more repetitions of the same story, but also more observations per story should
increase the accuracy of the model. Especially for the functional connectivity
method, more observations are crucial to identify subtle differences in semantic
content.
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Appendix A Stories

These are the transcriptions of the four stories that were used in the experimen.
All stories in Dutch.

Ze komen thuis met een hondje (story 1) ‘Janneke,’ zegt moeder, ‘weet je
de winkel van Smit? De winkel van lapjes en van wol?’ ‘Ja,’ zegt Janneke. ‘Ga daar
eens een pakje naalden halen,’ zegt moeder. ‘Fijne naalden, geen grove.’ ‘Goed,’ zegt
Janneke. En ze roept Jip. ‘Ga je mee naalden kopen?’ Daar gaan ze samen. Het is
mooi weer. En er is veel te zien op straat. Er is een vrouw met bloemen. En een kar
met pruimen. Jip en Janneke krijgen ieder een pruim van de pruimenman. ‘Kijk, dat
hondje loopt met ons mee,’ zegt Jip. ‘Ja,’ zegt Janneke, wat een gek hondje. Wat een
gek lang hondje. Zijn achterpootjes zitten zo ver van zijn voorpootjes. ‘Hij is vies,’
zegt jip. ‘Maar hij is lief.’ ‘Ga maar naar ja baas,’ zegt Janneke, ‘ga maar terug.’
Maar het hondje wil niet terug. Hij wil mee. ‘Arm hondje,’ zegt Janneke, ‘heb je
geen baas?’ Het hondje kijkt haar verdrietig aan. ‘Heb je geen huis?’ Het hondje kan
nit praten, maar zijn oogjes zeggen: ‘Nee, ik heb geen huis.’ ‘Ga dan maar met ons
mee,’ zegt Janneke. ‘Ja hoor,’ zegt Jip. ‘Bij mij thuis mag je wonen.’ ‘Nee, bij mij
thuis,’ zegt Janneke. ‘Nee, bij mij thuis,’ schreeuwt Jip. Ze krijgen echt ruzie. En ze
vergeten de naalden. En ze komen kwaad bij Jannekes moeder, het hondje achter hen
aan. ‘Wat is dat?’ vraagt moeder. ‘Waar zijn de naalden? En wat is dat voor een
vies beest.’ ‘’t Is geen vies beest,’ zegt Jip. ‘’t Is mijn hond!’ ‘Nee, mijn hodn,’ gilt
Janneke. Dan komt Jips moeder er ook bij. En eindelijk mag het hondje bij Jip thuis
in de tobbe. En als het schoon is, mag het bij Janneke in een mandje slapen. En het
krijgt een etensbak bij Jip. En ook een etensbak bij Janneke. Nu is het hondje van
hen samen. En hoe het heet? Het heet Takkie. En de moeders zeggen: ‘Die kinderen
toch. Je stuurt ze om naalden en ze komen met een hond thuis.’

Jip zingt op straat (Story 2) ‘Moeder,’ roept Jip. ‘Er staat een man op straat.
Hij zingt.’ ‘Ik hoor het,’ zegt moeder. ‘Hier, je mag hem wat geld brengen. Hij heeft
het verdiend.’ Jip geeft de man het geld en dan gaat hij naar Janneke. ‘Ga je mee
geld verdienen?’ vraagt hij. ‘Op straat met zingen?’ ‘Kan dat dan,’ zegt Janneke.
‘Ja, dat kan. Ik zal wel zingen, dan moet jij die grote hoed van je vader meenemen.’
Daar staan ze in het straatje. Jip zingt zo hard als hij kan. hij wordt er schor van. En
Janneke staat daar met de hoed. Maar ze krijgen niets. Niemand let erop. ‘Je moet
het echt vragen,’ zegt Jip. ‘Daar komt een mevrouw aan. Vraag maar wat geld voor
de zanger.’ Janneke is erg verlegen. Maar ze doet het toch. ‘Wel, wel,’ zegt mevrouw.
‘Halen jullie geld op? Daar dan,’ en ze geeft Janneke twee muntjes. Maar verder komt
er niemand meer. ‘Ik schei uit,’ zegt Jip, ‘ik kan niet meer. Er komt geen geluid meer
uit.’ ‘Kijk eens, moeder, we hebben geld verdiend,’ zegt Jip als ze weer thuis zijn.
‘Hoe dan?’ vraagt moeder. ‘Met zingen,’ zegt Jip. ‘Net als die man van straks.’ ‘O,’
zegt moeder, ‘maar dat moet je niet doen. Je mag best zingen, maar niet voor geld.’
‘Maar we hebben toch lekker wat verdiend,’ zegt Jip. ‘Dat geld geven we morgen aan
die man,’ zegt moeder. ‘En jullie krijgen een sprits van me, als jullie nog een keer ook
voor mijn zingen.’ Dat doen ze. En ze krijgen elk een grote sprits.

Het is zo warm (Story 3) Het is zooooo warm! Janneke wil niet meer spelen.
Ze ligt op het gras. En ze heeft alleen haar badpakje aan. ‘Wacht,’ zegt Jip. ‘Ik ga je
natspuiten.’ ‘Nee,’ zegt Janneke. ‘Ja,’ zegt Jip. ‘Ja, ja, ik ga je helemaal natspuiten.’
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En Jip neemt de tuinspuit. Hij zet het kraantje aan. Janneke rent heel hard weg.
Maar het helpt niet. Ze krijgt een heel straaltje water over zich heen. ‘Oe! Oe!!’
brult Janneke. ‘Niet doen!’ Maar Jip gaat door en Janneke wordt klets-klets-nat. En
eigenlijk is het wel fijn. Ze is ineens zo lekker koel. ‘Nou jij,’ zegt ze. En ze pakt Jip
de tuinspuit af. ‘Nee! Ik wil niet!’ huilt Jip. Hij is zelf heus bang. Maar Janneke heeft
echt geen medelijden met hem. En Jip krijgt zo’n grote straal dat het water uit zijn
haren druipt. Er staat een heel plasje om hem heen. Nu zijn ze allebei nat. En ze zijn
allebei lekker koel. ‘En nou de poes,’ zegt Jip. ‘Poezen mogen niet nat worden,’ zegt
Janneke. ‘Dat is zielig. Poes kan er niet tegen.’ ‘H toe, een klein beetje,’ zeurt Jip.
En hij loopt achter poes aan. Die arme poes krijgt een heel straaltje water. Ze zegt
heel hard mauw en is ineens weg. Daar zit poes. In de boom. Erg nat. ‘Nare jongen,’
zegt Janneke. ‘Ze wordt wel weer droog,’ zegt Jip. ‘In de zon.’ En poes wordt wel
weer droog. Maar ze blijft wel drie dagen boos op Jip. En blaast tegen hem. En dat
heeft hij echt verdiend.

Jip snijdt zich (Story 4) ‘Ga je mee? Ik ga in de tuin spelen,’ zegt Jip. ‘Nee,’
zegt Janneke. ‘Ik moet appels schillen. Een hele emmer vol appels. Voor de appel-
moes.’ ‘Ik ga ook appels schillen,’ zegt Jip. ‘Ik heb maar n mes,’ zegt Janneke. ‘Dan
ga ik eerst een mes halen.’ Jip gaat naar huis en haalt een mes. Uit de keuken. En hij
holt met het mes naar Janneke. Nu gaat hij apples schillen. ‘Kijk,’ zegt Janneke. ‘Ik
maak heel lange kronkelschillen. Dat is erg moeilijk. Maar ik kan het al.’ Jip probeert
het ook. Hij krijgt er een kleur van. Maar de schil breekt af. ‘Zo moet je doen,’ zegt
Janneke. ‘Kijk, zo.’ Jip doet het zo. Maar O! Jee! Au! Daar snijdt hij in zijn duim!
Er komt bloed uit. Wat een schrik! Jip staat met zijn duim naar boven en kijkt zo
angstig. ‘Moeder!’ roept Janneke. Daar komt haar moeder aanhollen. ‘Wat is er?’
roept ze, roept ze, maar ze ziet het al. ‘Wacht,’ zegt ze. ‘Ik zal de duim verbinden.
Ik heb er een mooi lapje voor. Kom maar mee. Doet het pijn?’ ‘Ja,’ zegt Jip. ‘Maar
ik huil niet.’ Nee, Jip is heel dapper en hij huilt niet. Hij krijgt een lap om de duim
en Janneke staat erbij te kijken. ‘Hij wou appels schillen,’ zegt ze tegen moeder. ‘En
toen is hij thuis een mes gaan halen.’ ‘Ja, dat zie ik,’ zegt Jannekes moeder. ‘Maar
dat mes is ook zo scherp. Veel te scherp. Voortaan moet je het eerst vragen hoor Jip,
als je een mes wil hebben. En nu, weet je wat, Janneke mag schillen. En Jip mag
eten. Omdat Jip gewond is mag hij appeltjes eten.’ Dat is natuurlijk fijn. Want eten
is niet moedlijk. Schillen wel.

Appendix B Questions

These are the questions that were used in the experiments in between the in-
stances. All questions and answers were visually presented and are in Dutch.

• Wat gingen Jip en Janneke kopen?

1. Naalden

2. Pennen

3. Een hondje

4. Vis

• Hoeveel cent gaf Jip aan de straatmuzikant?

1. 2 cent

2. 5 cent

3. 10 cent

37



4. 25 cent

• Hoeveel dagen bleef poes boos op Jip?

1. En dag

2. Twee dagen

3. Drie dagen

4. Vier dagen

• Wie verbindt Jip? 1. De moeder van Jip

1. De moeder van Jip

2. De vader van Jip

3. De moeder van Janneke

4. De vader van Janneke

• Wat krijgen Jip en Janneke op de markt?

1. Een appel

2. Een banaan

3. Een peer

4. Een pruim

• Hoeveel verdiende Jip en Janneke als straatmuzikanten?

1. 2 cent

2. 5 cent

3. 10 cent

4. 25 cent

• Waar speelden Jip en Janneke?

1. Op het terras

2. In huis

3. Op het gras

4. Op straat

• Waar haalde Jip het mes vandaan

1. Bij Janneke thuis

2. Bij Jip thuis

3. Het mes lag er al

4. Van Janneke

• Hoe heet de winkel waar Janneke naalden moet kopen?

1. De lapjes winkel

2. De winkel van Smit

3. De Textielwinkel

4. De winkel van Naalden

• Wat moet Janneke meenemen?

1. Teksten van liedjes

2. Centen

3. Een grote hoed

4. Een trommel

• Waarom mag de poes niet nat worden volgens Janneke?

1. Omdat het slecht voor de haren is

2. Omdat het dan gaat stinken

3. Omdat het zielig is

4. Omdat poes het dan koud krijgt

• Waarom schilt Janneke appels?

1. Om ze daarna op te eten
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2. Voor in de salade

3. Om het te leren

4. Voor in de appelmoes

• Waar mag Takkie uiteindelijk slapen?

1. Bij Jip

2. Bij Janneke

3. Buiten

4. Bij de baas

• Wat moeten Jip en Janneke doen voor een grote sprits?

1. Zingen voor de moeder van Jip

2. Zingen voor de moeder van Janneke

3. Het geld aan de straatmuzikant geven

4. Afwassen

• Waar speelden Jip en Janneke?

1. Op het terras

2. In huis

3. Op het gras

4. Op straat

• Hoeveel appels moet Janneke schillen?

1. Vijf stuks

2. Een emmer vol

3. Voor iedereen en

4. Twaalf stuks
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Word Frequency Animate Inanimate (Action) Verbs Emotion

'jip' 41 1

'en' 40

'zegt' 40 1

'janneke' 33 1

'ze' 30 1

'maar' 27

'is' 26

'een' 23

'de' 22

'het' 20

'ik' 19 1

'je' 19 1

'hij' 17 1

'moeder' 15 1

'dat' 14 1

'niet' 14

'er' 13

'''t' 12

'ga' 12 1

'met' 11

'zo' 11

'hondje' 10 1

'bij' 9

'van' 9

'daar' 8

'dan' 8

'mag' 8 1

'nee' 8

'op' 8

'thuis' 8 1

'zijn' 8

'aan' 7

'geen' 7

'in' 7

'ja' 7

'kan' 7

'mee' 7 1

'mes' 7 1

'voor' 7

'wel' 7

'als' 6

'die' 6 1

'heel' 6

'komt' 6

'krijgt' 6

'moet' 6 1

'naalden' 6 1

'nat' 6

'ook' 6

Appendix C Dictionary
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'poes' 6 1

'wat' 6

'zingen' 6 1

'appels' 5 1

'heb' 5

'krijgen' 5

'man' 5 1

'naar' 5

'roept' 5 1

'schillen' 5 1

'staat' 5

'uit' 5

'wil' 5 1

'''ie' 4

'doen' 4

'duim' 4 1

'echt' 4

'gaat' 4 1

'halen' 4 1

'heeft' 4 1

'hem' 4 1

'jullie' 4

'kijk' 4 1

'meer' 4

'mij' 4 1

'nu' 4

'om' 4

'straat' 4 1

'te' 4

'weer' 4

'wordt' 4 1

'centen' 3 1

'doet' 3 1

'erg' 3

'grote' 3

'haar' 3

'hard' 3

'hebben' 3

'hond' 3 1

'huis' 3 1

'komen' 3 1

'lekker' 3 1

'n' 3

'tegen' 3

'toch' 3

'twee' 3

'verdiend' 3 1

'vies' 3 1

'vraagt' 3 1

'water' 3
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'we' 3 1

'zingt' 3

'''n' 2

'achter' 2

'af' 2

'al' 2

'allebei' 2 1

'baas' 2 1

'beest' 2 1

'cent' 2 1

'droog' 2

'eerst' 2

'eten' 2 1

'etensbak' 2 1

'fijn' 2

'gaan' 2 1

'geeft' 2 1

'gek' 2

'geld' 2 1

'gilt' 2 1

'heen' 2

'heet' 2

'hele' 2

'hen' 2

'hoe' 2

'hoed' 2 1

'hoor' 2

'huilt' 2 1 1

'ineens' 2

'jannekes' 2 1

'jij' 2 1

'kijkt' 2

'klets' 2

'koel' 2

'loopt' 2

'mevrouw' 2 1

'mijn' 2

'mooi' 2

'niemand' 2

'nou' 2

'samen' 2 1

'scherp' 2

'snijdt' 2 1 1

'spelen' 2

'sprits' 2 1

'spuiten' 2 1

'straaltje' 2 1

'stuiver' 2 1

'terug' 2

'tuinspuit' 2 1
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'vak' 2 1

'veel' 2

'vragen' 2 1

'wacht' 2 1

'warm' 2

'wat een' 2

'weg' 2

'winkel' 2 1

'z''n' 2

'zal' 2

'zeggen' 2 1

'zich' 2 1

'''m' 1

'aanhollen' 1 1

'achterpootjes' 1 1

'ahh' 1

'alleen' 1

'angstig' 1 1

'appelmoes' 1 1

'appeltjes' 1 1

'arm' 1

'arme' 1

'auw' 1 1

'badpakje' 1 1

'bang' 1

'beetje' 1

'best' 1

'blaast' 1 1

'blijft' 1

'bloed' 1 1 1

'bloemen' 1 1

'boom' 1 1

'boos' 1

'boven' 1

'breekt' 1

'brengen' 1 1

'brult' 1 1

'centje' 1 1

'd''r' 1

'dagen' 1

'dapper' 1 1

'deze' 1

'door' 1

'drie' 1

'druipt' 1 1

'eigenlijk' 1

'eindelijk' 1

'elk' 1

'emmer' 1 1

'en een' 1
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'erbij' 1

'eriseen' 1

'fijne' 1

'geef' 1

'geluid' 1 1

'geven' 1

'gewond' 1 1

'goed' 1

'gras' 1 1

'grove' 1

'haalt' 1

'haren' 1 1

'he' 1

'helemaal' 1

'helpt' 1

'het hondje' 1 1

'het is' 1

'heus' 1

'hier' 1

'hij is' 1 1

'holt' 1

'huil' 1 1 1

'huuuoooohoooh' 1 1

'ieder' 1 1

'jaa' 1

'jahoor' 1

'jeej' 1 1

'jips' 1 1

'jongen' 1 1

'kar' 1 1

'keer' 1

'keuken' 1 1

'kijken' 1

'kinderen' 1 1

'klein' 1

'kleur' 1 1

'kom' 1 1

'kopen' 1 1

'kraantje' 1 1

'kronkelschillen' 1 1

'kwaad' 1

'lang' 1

'lange' 1

'lap' 1 1

'lapje' 1 1

'lapjes' 1 1

'let' 1

'lief' 1 1

'ligt' 1 1

'maak' 1 1
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'mandje' 1 1

'mauw' 1 1

'me' 1

'medelijden' 1 1

'meenemen' 1 1

'met ons' 1 1

'moeders' 1 1

'moeilijk' 1

'mogen' 1

'morgen' 1

'nare' 1 1

'natuurlijk' 1

'neemt' 1

'net' 1

'niets' 1

'nog' 1

'omdat' 1

'ons' 1

'oogjes' 1 1

'ooooh' 1

'over' 1

'pakje' 1 1

'pakt' 1

'pijn' 1 1

'plasje' 1 1

'poezen' 1 1

'praten' 1 1

'probeert' 1 1

'pruim' 1 1

'pruimen' 1 1

'pruimen-man' 1 1

'rent' 1

'ruzie' 1 1

'schei' 1

'schil' 1 1

'schoon' 1

'schor' 1

'schreeuwt' 1 1

'schrik' 1

'slapen' 1 1

'smit' 1 1

'staan' 1 1

'straal' 1 1

'straatje' 1 1

'straks' 1

'stuurt' 1

't' 1

'takkie' 1 1

'tis' 1

'tob' 1 1
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'toe' 1

'toen' 1

'tuin' 1 1

'vader' 1 1

'van de' 1

'van zijn' 1

'ver' 1

'verbinden' 1 1

'verder' 1

'verdienen' 1 1

'verdrietig' 1 1

'vergeten' 1 1

'verlegen' 1 1

'vol' 1

'voorpootjes' 1 1

'voortaan' 1

'vraag' 1 1

'vrouw' 1

'waar' 1

'weet' 1 1

'weet je' 1 1

'wol' 1 1

'wonen' 1 1

'worden' 1 1

'wou' 1 1

'zanger' 1 1

'zelf' 1

'zet' 1

'zeurt' 1 1

'zie' 1 1

'zielig' 1 1

'zien' 1 1

'ziet' 1 1

'zit' 1 1

'zitten' 1 1

'zon' 1 1

'één' 1 1

40 54 56 21

#Words 1158 246 116 169 27
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    AAL region Brain Area                              AAL region  Area

1  Precentral gyrus (L)             46 Cuneus (R)

2  Precentral gyrus (R)             47 Lingual gyrus (L)

3  Superior frontal gyrus (L)       48 Lingual gyrus (R)

4  Superior frontal gyrus (R)       49 Superior occipital gyrus (L)

5  Superior frontal gyrus, orb. (L) 50 Superior occipital gyrus (R)

6  Superior frontal gyrus, orb. (R) 51 Middle occipital gyrus (R)

7  Middle frontal gyrus (L)         52 Middle occipital gyrus (L)

8  Middle frontal gyrus (R)         53 Inferior occipital gyrus (L)

9  Middle frontal gyrus, orb. (L)   54 Inferior occipital gyrus (R)

10  Middle frontal gyrus, orb. (R)   55 Fusiform gyrus (L)

11  Frontal inferior gyrus, orb. (L) 56 Fusiform gyrus (R)

12  Frontal inferior gyrus, orb. (R) 57 Postcentral gyrus (L)

13  Inferior frontal gyrus, tri. (L) 58 Postcentral gyrus (R)

14  Inferior frontal gyrus, tri. (R) 59 Superior parietal cortex (L)

15  Inferior frontal gyrus, orb. (L) 60 Superior parietal cortex (R)

16  Inferior frontal gyrus, orb. (R) 61 Inferior parietal cortex (L)

17  Rolandic operculum (L)           62 Inferior parietal cortex (R)

18  Rolandic operculum (R)           63 Supramarginal gyrus (L)

19  Supplementary motor area (L)     64 Supramarginal gyrus (R)

20  Supplementary motor area (R)     65 Angular gyrus (L)

21  Olfactory cortex (L)             66 Angular gyrus (R)

22  Olfactory cortex (R)             67 Precuneus (L)

23  Superior frontal gyrus, med. (L) 68 Precuneus (R)

24  Superior frontal gyrus, med. (R) 69 Paracentral lobule (L)

25  Middle frontal gyrus, orb. (L)   70 Paracentral lobule (R)

26  Middle frontal gyrus, orb. (R)   71 Caudate nucleus (L)

27  Gyrus rectus (L)                 72 Caudate nucleus (R)

28  Gyrus rectus (R)                 73 Putamen (L)

29  Insula (L)                       74 Putamen (R)

30  Insula (R)                       75 Pallidum (L)

31  Anterior cingulum (L)            76 Pallidum (R)

32  Anterior cingulum R)             77 Thalamus (L)

33  Median cingulum (L)              78 Thalamus (R)

34  Median cingulum (R)              79 Heschl gyrus (L)

35  Posterior cingulate gyrus (L)    80 Heschl gyrus (R)

36  Posterior cingulate gyrus (R)    81 Superior temporal gyrus (L)

37  Hippocampus (L)                  82 Superior temporal gyrus (R)

38  Hippocampus (R)                  83 Temporal pole, sup. temp. (L)

39  Parahippocampal gyrus (L)        84 Temporal pole, sup. temp. (R)

40  Parahippocampal gyrus (R)        85 Middle temporal gyrus (L)

41  Amygdala (L)                     86 Middle temporal gyrus (R)

42  Amygdala (R)                     87 Temporal pole, mid. temp. (L)

43  Calcarine sulcus (L)             88 Temporal pole, mid. temp. (R)

44  Calcarine sulcus (R)             89 Inferior temporal gyrus (L)

45  Cuneus (L)                       90 Inferior temporal gyrus (R)
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