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Abstract

In recent years, neural population activity has been analysed by treat-
ing it as a point cloud supported on a manifold whose structure gives
information for the the type of computation that the network can per-
form and the features it can represent. Simultaneously a data focused ap-
proach to topology, which is a fundamental property of manifolds, known
as topological data analysis (TDA), has also emerged. We use a method
from that toolbox called persistent homology, it essentially finds the holes
of different dimensions and sizes in point clouds and helps us understand
the underlying manifold. We study the topology of neural populations by
creating theoretical models capable of recreating a particular manifold’s
topology in their activity and also analysing the topological structure of
neural activity during spontaneous and stimulus induced states in mouse
cortex. We find significant differences between the topological structure
of neural manifolds for different stimulus conditions across the brain.

1 Introduction

One of the fundamental goals of Neuroscience is to explain how our brains
transform sensory inputs into useful and efficient behavior. However, the trans-
formations of these inputs via brain circuits at the single-cell level are not known
in sufficient detail. Furthermore, sensory inputs don’t always influence observ-
able behavior and a truly satisfying theory of cognition has to explain not only
observable behavior but also the internal states that occur independent of said
behavior.

There have been several studies that have looked to explain internal repre-
sentations by showing that the activity in neural populations is constrained to
low-dimensional manifolds, whose structure reflects the relevant variables of the
representation (Gao and Ganguli (2015); Gallego et al. (2017); Chaudhuri et al.
(2019); Saxena and Cunningham (2019); Mastrogiuseppe and Ostojic (2018)).
A natural next step is to ask what it would take to construct a theory of neu-
ral coding purely in terms of manifolds. In the machine learning literature
there similarly is increasing interest in the ”manifold hypothesis”, formalized
in (Fefferman et al. (2016)). The basis of this research is that data itself lies
on a low-dimensional manifold, which is consistent with the low dimensionality
found in neural activity. Another condition for the manifold hypothesis to make
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sense in the context of cognitive science is that slight perturbations of a stimulus
preserve its perceptual identity and that the relationships between stimuli are
preserved in some manner in the relationships between the corresponding neural
responses. This idea is also known as second order isomorphism (Shepard and
Chipman (1970); Kriegeskorte et al. (2008)).

With these assumptions in mind, the remaining question we should ask is
how do the manifolds emerge as a result of the transformations that neural
networks apply to a set of inputs (the stimulus manifold). If we commit to the
idea that networks in the brain extract particular features of a stimulus, then it
is to be expected that the neural manifold representing the given features will
have a different shape than the stimulus manifold, but the same shape as the
one on which the stimulus features themselves lie. These transformations don’t
have to be continuous, which complicates their analysis. Nevertheless, we can
study them by looking at the structure of the manifolds.

There are many ways to classify manifolds by their global structure, how-
ever we find that the most suitable tool for this type of analysis is topological
data analysis (TDA) (Wasserman (2018)). Topology studies the shapes of ob-
jects under continuous transformations (homeomorphisms), a useful intuition
for topology is to think of it as a geometry in which the objects are made from
infinitely stretchable rubber. An example of a topological invariant which can
be used to classify manifolds are the homology groups, which count how many
holes of different dimensions there are in an object. To calculate these groups,
a procedure called persistent homology (Carlsson (2009)) is used (Methods).
While it is briefly described in the methods and appendix sections, for a more
in depth treatment of algebraic topology see (Hatcher (2002); Munkres (2018);
Edelsbrunner and Harer (2010)).

It is important to note that there are some previous works that use topolog-
ical data analysis to explore neural recordings. In (Curto (2017); Curto et al.
(2017)) the authors show how cells with convex receptive fields can be used
to cover feature spaces and how their coding activity can be mathematically
formalized. There are works exploring the topological features in visual cortex
(Singh et al. (2008)), but most of this work has focused on the hippocampus
(Curto and Itskov (2008); Babichev et al. (2016)), where the authors look at
how the overlapping structure of receptive fields in a population of place cells
can be interpreted as a cover of the space which the rat is navigating. A sim-
ilar line of theoretical research comes from (Babichev and Dabaghian (2018))
in which the authors explore how topology can be used to explain memory
spaces in hippocampal neurons. Another more statistical approach is described
in (Sengupta et al. (2018)), where the authors show that neurons in optimal
similarity preserving networks (networks whose optimization function requires
that similar inputs produce similar outputs) lead to the emergence of receptive
fields which cover stimulus manifolds.

We theoretically study the topological properties of neural manifolds by pre-
senting neural field models (Wilson and Cowan (1972); Wilson (1999); Bressloff
(2011)) whose receptive fields cover feature spaces with smooth manifold struc-
ture and by inheriting a metric with which to specify their connectivity matrix,
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they respond in a stable and localized manner to each feature. In this case cov-
ering a feature is equivalent to having a receptive field responsive to particular
external inputs, internal states, task rules or some combination of these (Fusi
et al. (2016)). This is useful as it could allow us to model networks responsive to
an arbitrary feature space, as long as it allows for the construction of a metric.
After that, we tackle the question of how we can implement transformations on
the feature space. We do this in a similar manner, by specifying two networks
connected in a feedforward manner, such that the postsynaptic connections are
determined by inheriting the metric structure of the transformed manifold.

We also analyze the topological structure of the activity manifolds of several
regions in the Visual Coding Neuropixel mouse dataset from the Allen Brain
Institute (Siegle et al. (2019)). We use the data to see how the transforma-
tions on the stimulus manifolds of static gratings and natural scenes change
along the visual stream. Similar work has been done in (Singh et al. (2008))
but for a much smaller number of neurons in macaque visual cortex. We find
that the natural scene and static grating manifolds have significantly different
topological properties for each visual region that was analysed. We also find
that the transformed stimulus manifolds are topologically complex and cannot
be described by a few large topological features. After that we compare the
complexity of topological structure in spontaneous activity across multiple hip-
pocampal, thalamic and visual regions. We find that the hippocampus has a
significantly more complicated topology than the visual cortex. Lastly we run
simulations with which to see how functional connectivity impacts the topology
emerging from a network.

2 Methods

There are two types of manifolds that can be extracted from neural recordings,
we will refer to them as the neural and the activity manifold. In the neural
manifold case we obtain a neurons×neurons distance matrix by calculating the
euclidean distance between all pairs of vectors describing the neural activity of
all pairs of neurons. This approach is taken when analysing the neural field
models and is informative of the coding structure of a network. As our models
cover manifolds with receptive fields, the distance between neurons is propor-
tional to the overlap of their receptive fields. On the other hand, the activity
manifold case is calculated by transposing the neurons×times matrix and cal-
culating the distance between each pair of time points, after which we end up
with a times×times distance matrix. This type of analysis is informative of the
structure of neural activity and we use it when analyzing the data. This choice
is consistent with the manifold representation of neural activity in past works
on neural manifolds and allows us to work with more samples.
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2.1 Simulations

2.1.1 Computational Model

The approach we take is to start with a particular feature manifold and cover
it with receptive fields. This way a feature invokes activity only in the manifold
region covered by the neurons tuned to it and is silent otherwise. Here we use
adaptive neural field models which can exhibit complex patterns of activity, but
any model in which the neurons cover the manifold and similar inputs lead to
similar responses should lead to the correct topology.

In order to keep the activity localized to a particular region of the feature
space, we use Mexican hat connectivity between neurons, which operates on the
distance between features.

w[d(x, y)] = ωEe
−d(x,y)2

σE − ωIe
−d(x,y)2

σI .

In all of our simulations we set ωE = 5, ωI = 3, σE = 0.1 and σI = 0.5 which are
constants that determine the width and amplitude of excitatory and inhibitory
gaussians and d(x, y) denotes the distance between the positions of two features
on the manifold. For the distance function we will use the geodesic distance on
the manifold which is explained in more detail below.
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Network setup strategy

Figure 1: Schematic drawing of our network setup. M denotes a manifold cov-
ered by receptive fields indicated by the circles. Each receptive field is related to
a neuron and the connections between the neurons are determined by applying a
weight function w(x) to the length of the minimal geodesic curve ||γ(t)|| between
the centers of the receptive fields on the manifold.

Once we know the distances between neurons in feature space, we can define
the equations for the neural dynamics. Here we will use the neural field model
with adaptation similar to the one presented in (Coombes et al. (2014)) except
for the fact that the activation function is outside of the integral, which is
equivalent to applying a non-linear integration of the inputs in the dendrites
of the neuron. This makes our model an activity-based adaptive neural field
model.

τ
∂u(x, t)

∂t
= −u(x, t)− βv(x, t) + F [

∫
w[d(x, y)]u(x, t)dy + I(x, t)],

1

α

∂v(x, t)

∂t
= u(x, t)− v(x, t).

Where α = 1 denotes the adaptation rate, β = 1 denotes the adaptation
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strenght, F (x) = 1
1+e−ax+b

is a sigmoidal function with a = 5 and b = 10 and
I(x, t) is the input at particular position and time.

2.1.2 Calculating the geodesic distance

In traditional flat space the shortest paths are straight lines and so the distance
between two points is a straight line. However when a space is curved, the
shortest path between two points also has to be curved, so it is necessary to
find the straightest curves (also called geodesics) between two points and take
the shortest one to be the distance between the points. The geodesic distance
is defined as the infimum of a functional in the following manner:

d(x, y) = inf

∫ b

a

√
gγ(t)[γ̇(t), γ̇(t)]dt.

Where gγ(t) describes the metric tensor and γ(t) describes a curve parametrized
by t ∈ [a, b] which starts at x and ends at y.

The explicit form of the distance can be found by solving the geodesic equa-
tions:

d2xm

dt2
= Γmσρ

dxσ

dt

dxρ

dt
.

Where the Γmσρ is the Christoffel symbol and the superscripted x’s are the
coordinates in which we choose to describe the manifold, the choice doesn’t
matter (for more detail see Kreyszig (1991); Carroll (2019); Tu (2011)).

All of the geodesic equations that were used in our simulations were calcu-
lated analytically before the numerical simulation. For the circular model we
used a circle with radius R = 0.25 and for the spherical model we used R = 0.2.
In each case we sampled the surfaces uniformly.

2.1.3 Stimulation and Numerical methods

For all simulations on manifolds, we defined our inputs so that they uniformly
activate every position on the manifold. If this isn’t done then there is no reason
to expect that the manifold structure will be reproduced. This is because sam-
pling only a subset of the manifold is equivalent to covering a submanifold which
doesn’t necessarily preserve the topological properties of the original manifold.

The simulations were done in Python where we used a fourth order Runge-
Kutta method, with a step size of µ = 0.05. For the circle and the sphere case
we used N = 1000 neurons, for the network implementing a transformation we
used N = 2000 neurons, 1000 for each manifold.

2.1.4 Integrate and fire networks with varying sparsity and weight
strength

The integrate-and-fire network model (Gerstner et al. (2014)) can be written as:

du

dt
= urest − u(t) +W ·∆(t− tf ) + I(t).
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Where W is the weight matrix, ∆(t − tf ) is a vector containing a Dirac delta
function representing the spikes 120δ(t− tf ) of each neuron. The resting poten-
tial was set to urest = −60, the spike threshold - θ = 0 and the reset potential
ureset = −70. I(t) is the varying external input driving the network, we chose to
use Poisson spikes of size 180 with 20% probability. The step size we used was
µ = 0.05. We simulated a number of N = 80 neurons to approximately match
the neurons analysed in the datasets. The excitatory and inhibitory weights
were drawn as max(0, s) where s denotes a sample from a normal distribu-
tion centered at 5(excitatory) or -5(inhibitory) with varying standard deviation
ranging from 0.5 to 6. The inhibitory weights were multiplied by 4 and were
assigned to 25% percent of the neurons. The sparsity was varied between 0
and 0.9. A sparsity value of 0.5 (for example) means that for each entry in the
weight matrix there is a 50% probability of that entry being set to 0, regardless
of whether it is excitatory or inhibitory.

2.2 Data analysis

All data analysis is performed on the Allen Institute Visual Coding - Neuropix-
els dataset (Siegle et al. (2019)). Cells were selected based on their signal to
noise ratio (SNR > 2) and firing rate (> 1Hz). This choice was made so that we
only work with cells which are active and reliable. We compared both the visual
stimulus induced and spontaneous activity in 4 mice. For the stimulated con-
ditions we analysed the neural manifold response to static gratings and natural
scenes. To compare them we used a persistence image representation of their
topology (Adams et al. (2017)). Since our goal is to quantify not only the man-
ifold structure of activity in different regions, but also to use that information
to explore the type of transformations that different regions could be doing, we
define a scalar statistic with which the regions can be compared. We use this
measure when analysing the spontaneous activity.

2.2.1 Data preprocessing

In the stimulated recordings, we use 0.025s bins for all stimuli (120 static grat-
ings and 119 natural scenes) and all 50 trials (each trial has a duration of 0.25s)
per stimulus. Once we have a neurons×times matrix for each stimulus presen-
tation, we average each stimulus across its trials and concatenate the resulting
matrices for all stimuli. We do this separately for the static gratings and the
natural scenes. Since this is done for each region separately, we end up with
two large point clouds per region representing the activity manifold for the two
stimulus types.

In the spontaneous recordings, for every mouse, the spike count during 3
intervals without stimulation with a duration of approximately 300s were binned
into 0.25s windows, which provided us with a stable spike count. Consequently,
we split the long trials into 20 second long subtrials. The point of creating
the 20 second subtrials was to use them as subsamples on which to calculate
statistics.
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The spontaneous activity dataset contains recordings from a vast amount of
regions, however some of them have too few cells to analyze further. To avoid
such problems the analysis was done on regions in which at least 15 cells, which
pass the aforementioned SNR and firing rate constraints, were recorded.

2.2.2 Dimensionality Reduction

Each region contains a different number of neurons (N) passing the selection
criteria. We tried to see whether a 15 dimensional embedding explained more
than 90% of the variance in every case. This turned out to not be true, so
we decided to not use dimensionality reduction in our analysis. However we
still used it in order to visualize the manifolds of our target regions and those
generated from the neural field models.

The 3 dimensional embedding was done with the Uniform Manifold Approx-
imation and Projection (UMAP) algorithm (McInnes et al. (2018)), which is
a relatively recent nonlinear dimensionality reduction algorithm. I takes two
parameters - number of neighbors and minimal distance. We set the number of
neighbors to 40 and the minimal distance to 0. As the goal of the study is to
see if the topology of neural activity varies across regions, for the visualization
it makes the most sense to choose parameters which are sensitive to both local
and global topological features. Embedding with a large number of neighbors
captures the global structure of the manifold, whereas the low minimal distance
allows for the discovery of fine topological details.

2.2.3 Distance matrix computation

The persistent homology algorithm (explained below) which is the essential tool
in our analysis needs to be supplied with a distance matrix. The standard
euclidean metric was used on each trial.

Persistent homology takes a distance matrix and varies a parameter to get
a set of simplicial complexes, such that by increasing the parameter value, the
previous complex is always a subset of the next one. In formal notation, where
⊂ denotes the subset relation, this can be written as: S0 ⊂ S1 ⊂ ... ⊂ SN . This
means that as long as the ordering of inclulsion of two simplicial complexes
is preserved, their topological features, but not necessarily the scale of their
persistence, will be the same. This implies that the ordering is preserved under
nonlinear monotonic transformations (Giusti et al. (2015)).

Sometimes it is also useful to focus on the purely topological features of
a point cloud, ignoring geometric features like scale. A transformation that
fulfills both of these requirements is an ordering function which takes a matrix
and outputs another matrix in which each entry is assigned a number indicating
its rank. After that, all entries are divided by the maximal entry to normalize
the matrix. We use this approach when analysing the stimulated trials.
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2.2.4 Persistent Homology

Persistent homology calculates the homology groups at differing scales and out-
puts a birth-death diagram. The distance matrices indicate a set of points in a
metric space, then the Vietoris-Rips complex (Zomorodian (2010)) is calculated
by choosing a neighborhood radius around each such point and adding a (k-1)-
simplex whenever the distance between k points is less or equal to the radius.
Increasing the radius parameter induces a sequence of simplicial complexes:

S0 ⊂ S1 ⊂ ... ⊂ SN .

Persistent homology then calculates the persistent homology groups for each
such simplicial complex (This is described in more detail in Appendix), so we
end up with a set of topological features for each parameter value:

PD = {H(S0), H(S1), ...,H(SN )}.

Every topological feature appears in one of the simplicial complexes and
disappears in a later one, as a result the persistence of a feature is defined as
the time at which the feature disappears (the death) minus the time at which
it first appears (the birth). For the calculation of the persistent (co)homology
we used the Python package Ripser (Tralie et al. (2018)).

2.2.5 Persistence Complexity and Persistence Images

Even when normalized, persistence diagrams are difficult to compare as they are
sets with differing number of potentially identical elements (multisets), because
of this they are not suited to statistical analysis. To escape this problem it is
necessary to either define a measure which can be extracted from a diagram
and analysed separately, or map the diagrams to a space suited for statistical
analysis.

The former is achieved by defining the persistence complexity, which is just
the sum of persistences of all features in a diagram (A similar strategy is used
for analyzing deep neural nets in Naitzat et al. (2020)). In other words we can
define the persistence of a feature ψji as p(ψji ), where i denotes the dimension
and j - the index of the feature under some ordering j ∈ J . The persistence
complexity can then be written in its general form as:

∞∑
i=0

∑
j

p(ψij).

Here we only calculate the 1 and 2 dimensional features for computational rea-
sons. The persistence of 0 dimensional holes was ignored as it doesn’t provide
information about interesting features. This measure was only used to compare
regions in the spontaneous recordings.

There are several strategies to map diagrams to a statistically meaningful
space (Bubenik (2015); Hofer et al. (2017); Adams et al. (2017)). One of these
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strategies is to map the persistence diagram to a vector space in which the dis-
tance between two vectors can be used as a test statistic. Here, we do this with
persistence images (Adams et al. (2017)) which rotate the persistence diagram
to (birth+death)×(death-birth) coordinates and apply weighted 2D Gaussian
kernel functions to every feature. Once that is done the diagram is transformed
into a 2D image which can be flattened into a vector and used to calculate
statistics.

The persistence diagrams can also have a weighting function, kernel width
and a pixel size. For the stimulated recordings we use a pixel size of 0.01 and
a kernel width of 0.001. For the weighting function we used the persistence
identity function.

2.2.6 Statistical tests

To analyze the persistence complexity across regions, histograms of each region’s
persistence complexity were created. After that a Kolmogorov-Smirnov two
sample test was performed for each pair of regions. Also a bootstrap method
with 10000 resamples was used to determine the confidence intervals of the
means of the distributions.

To analyze the persistence images, a Monte-Carlo based permutation test
with 1000 permutations was used. The test statistic was defined as Stest =∑
ij

∑
|Xi − Yj |, where Xi and Yj are two flattened persistence images (vec-

tors), the inner sum goes over the entries of the resulting vector and the outer
sum goes over all pairs of vectors in the two samples. Each region contained one
point cloud per stimulus type, so in order to get more samples we subsampled
the points before running the permutation tests.

3 Neural Fields on Manifolds

Numerical simulations of neural field models on curved geometries have been
explored in (Martin et al. (2018)) and the solutions on a spherical geometry are
studied in (Bressloff (2019)). There are two main differences in our approach,
first we don’t include the volume element of the manifold in the integral and
second we study the topology preserving properties of such networks instead
of their specific mathematical solutions. As a result, our analysis does not
aim to provide new insights as to the precise dynamical effect of varying the
parameters of the model over different manifolds. With regards to the former,
our end goal is to cover feature spaces and including the volume element means
biasing some neurons simply because of their position in feature space, but every
feature is a priori equally important. Not doing this can result in some bumps
over regions of feature space, where the volume element is high, becoming more
stable than others. This can ruin the topological structure in the network, as
activity concentrates over the highly biased regions. As a result the manifold
structure of feature space is reflected purely in the geodesic distances between
neurons in feature space. With regards to the latter, the neural field equations
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are simply a stepping stone to study the topological structure of neural activity
and that can be done with many different models, our results were also confirmed
for spike counts coming from integrate and fire models. This procedure also gave
worked appropriately for our goals.

3.1 Covering a single feature space

To confirm that our models correctly cover feature manifolds, we ran simula-
tions for both circular and spherical manifolds. The circular neural field model
has been used in the past to model head direction circuits (Redish et al. (1996)).
Here we show that this neural field model reproduces the topology of the circu-
lar feature space. This is expected since due to the choice of our connectivity
function, nearby (in feature space) neurons will have correlated activity and as
a result will also be closer in neural activity space. The result for this network
is shown in figure 2, panel B shows a barcode plot (Ghrist (2008)) of the neural
manifold. The way to interpret barcode plots is to consider each line as a topo-
logical feature of some dimension and the length of the line as the persistence or
the ”importance” of the feature (for an in depth description of persistent homol-
ogy look in Appendix 7.1). Here we will show at most 3 topological features,
denoting the number of connected components (β0 - blue), 1 dimensional holes
which intuitively are like the holes inside a ring (β1 - red) and 2 dimensional
holes intuitively analogous to the cavity inside a football (β2 - green).
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Persistent Homology of the Circular Neural Field Model

Figure 2: Visualization of the topology of neural activity in the circular neural
field manifold model. A) the left panel shows the manifold on which the model
is defined and the right panel shows a UMAP visualization (Methods) of the
position of each neuron. B) shows a barcode plot indicating the topological
features ψ0 and ψ1 characteristic of the network. ε denotes the scale of the
radius parameter used in persistent homology.

In the circular case it is very clear that the neural field model successfully
reproduces the topological structure of the feature space. This is a very simple
example of a neural manifold, but our strategy generalizes to more complex
manifolds as well (Appendix 7.3 contains a more detailed motivation for this
statement). Figure 3 shows that it also works in the case of the sphere where we
have used the great circle distance to compute the geodesics. It is clear that the
green bar denoting the cavity in the sphere is the most persistent component.
The red components denoting one dimensional holes are not very persistent, but
there is still the question of what their meaning is. In this case their presence is
simply due to the fact that we can only use a finite amount of neurons with which
to cover feature space and there is variability in the position of the neurons in
neuron activity space. Hence when the radius parameter is not large enough,
holes will appear in the sphere. This type of 1 dimensional cluster of holes can
be characteristic for randomly sampled points in space (Giusti et al. (2015)),
the only difference in the spherical manifold case is that the randomness occurs
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on the surface of a sphere. While the most persistent features are considered
to be the most important, persistent homology also provides information in the
features that are not as persistent. For example there are mathematical analyses
showing it contains information about the curvature of a surface (Bubenik et al.
(2020)). While this problem is difficult, in the appendix we document what
these other smaller components could be showing us. More importantly it is
interesting to think what exactly they could tell us about neural activity.

Persistent Homology of the Spherical Neural Field Model

Figure 3: Same as figure 2 but in the case of the sphere

These example networks cover incredibly simple feature spaces and the prob-
lem of covering more realistic spaces isn’t as simple, since the neurons have to
be distributed uniformly on the manifold and proper metric tensor has to be
chosen to calculate the geodesics. However, as long as we can compute the dis-
tances between enough features, our strategy should lead to a good covering of
the underlying manifold. This can be useful in several cases, to model the ac-
tivity of networks coding for certain features and to potentially think about the
specific transformations between layers, regions or other biologically interesting
categories which might play a role in neural coding.
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3.2 Networks realizing transformations

To give an idea of how we might be able to study the maps between networks we
first provide a neural field example in which one network covering a feature space
connects to a second network in such a way as to implement a transformation
of the first feature space. We can think of networks in the brain as a set of
transformations on feature spaces and this approach allows us to specify the
connectivity structure necessary to realize an explicit transformation. As a
result every subnetwork implements a transformation on the feature space from
which its inputs come. As we will show in the data analysis section this is harder
said than done, but it still seems worthwhile to outline one way to implement
transformations with neural field models.

The question is how do we connect the first to the second network in such a
way as to achieve a specific transformation. To do this it is helpful to think about
the issue in a slightly more abstract manner. Every transformation between
two manifolds F :M→M′ can be used to define a distance metric using the
geodesic distance on M′ - expressed as dinducedM′(F (x), F (y)) (also known as
the pullback of the metric). This equation provides a clear instruction about
how to connect the networks, namely the weighting function can be applied to
the distances between points in the second manifold. In practice we sample
coordinates for the neurons in the second network and calculate the distances
between them and the projections coming from the first network. In other words
if we denote the sampled coordinates of a neuron in the second network as µ
and the projected neuron coordinates as F (x), we can calculate the distance
matrix by computing dM′(µ, F (x)). The same calculation is done in the case in
which two neurons come from the second network - dM′(µ1, µ2). The example
we have used is a network defined over a sphere connecting to a second network
in such a way as to contract the sphere onto a circle. What this should result in,
is a transformation of the original spherical feature space into a circular feature
space. The explicit form of the transformation can be written as the function
F : (R cos θ sinφ,R sin θ sinφ,R cosφ)→ (R cos θ,R sin θ, 0). In our example we
stick to networks with an equal amount of neurons and the metric on the second
network is the same as the one on the circle. Figure 4 shows the results, both the
UMAP embedding and the barcode plots show that the mapping successfully
preserves the topological structure which we would expect in both networks.
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Persistent Homology of two networks implementing a
transformation on a manifold

Figure 4: The topology of two networks where the first excites the second in such
a way as to map features on a spherical surface to a circle.

4 Topological Structure of Neural Activity Man-
ifolds

To get an idea of how complex the topological structure of neural activity is,
we analysed data from the Visual Coding Neuropixel dataset from the Allen
Brain Institute (Siegle et al. (2019)). This dataset is mainly focused on the
activity in the visual stream during stimulus processing, however it also con-
tains recordings from thalamic and hippocampal subregions during spontaneous
activity. Calcium recordings for the same stimulation protocols have been anal-
ysed in (de Vries et al. (2020)) The topological features in the visual cortex
have previously been explored in (Singh et al. (2008)), however the data that
they analysed had only a limited number of neurons which were located solely
in V1. The Allen Institute dataset contains stimulated recordings from hun-
dreds of neurons spread across several areas, which allowed us to study neural
activity during different stimulation protocols across a larger number of areas.
In their study, the authors find many persistent topological components, but we
see that the topological structure is much more complex and single large persis-
tent features don’t appear as often in the larger populations of neurons that we
analysed. A recurring theme in this analysis is that even when there is no clear
big topological features, there could still be significant differences between two
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activity manifolds. However the difference becomes very difficult to interpret
and for the moment we will use these features only as a marker signifying that
there exists a difference between the transformations which two networks (or
one network for different stimuli) implement on a stimulus manifold and these
differences can be indicative of either complicating or simplifying the structure
of the activity manifold.

We begin by analysing the topology of neural activity during the visual
stimulus processing of static gratings and natural scenes. After that we move
on to study region specific topological structure during spontaneous behavior.

4.1 Topological structure of neural activity during stimu-
lus processing

We analyse the topological features of five regions related to visual stimulus
processing. The only thalamic region included in this analysis is the Lateral
posterior nucleus of the thalamus (LP) which makes up the visual pulvinar and
is implicated as a high order region in a functional hierarchy of visual processing
(Siegle et al. (2019)). The remaining four regions are the primary visual area
(VISp), the rostrolateral visual area (VISrl), the lateral visual area (VISl) and
the anteromedial visual area (VISam). In order to compare the persistence
diagrams (also known as barcode plots), we used a tool known as persistence
images (Methods). The idea behind it is that persistence diagrams can be
represented as a picture by putting a 2 dimensional gaussian at each point in
a persistence diagram, after that the image can be flattened and treated as a
vector, which allows us to use it to compute statistics. Panel B of figure 5
shows the flattened persistence images for the concatenated 0th, 1st and 2nd
Betti numbers.

By inspecting the barcode plots, there seems to be several consistent patterns
in which the barcodes describing neural activity during static grating presenta-
tion differ from those during natural scene presentation. These differences were
confirmed by performing a permutation test on the flattened persistence images.
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Topological Analysis of Visual regions during stimulus processing

Figure 5: A) Barcode plots for all visual regions during processing of static grat-
ings or natural stimuli. B) Flattened persistence images (histogram) which were
used to verify the statistical significance of the difference between the topology
in for the two stimuli types. The three bumps reflect the three different topolog-
ical components that were analyzed. The * symbol indicates that a Bonferonni
correction for 5 tests was used.

For instance, in the static grating case the 0th components disappear earlier
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than those in the natural scenes. Since the set of 0th components describe the
connectivity of a space, we can interpret this result as saying that the activity of
networks participating in visual processing, tend to be more compactly clustered
when presented with the simpler static grating stimuli. A possible explanation
for this could be that static gratings are both more similar to each other and also
explore a smaller subset of the manifold of possible visual stimuli. This could
be reflected in the structure of the responses. A second prominent difference
between the two stimulus types is the later birth of both the one and two
dimensional holes. This difference is harder to interpret, one reason could be
the same as that for the 0th components, the point cloud covers more space so
as the components start to connect later, the holes also start to appear later. It
is also plausible that the activity manifold responding to natural scenes simply
contains larger scale features. Understanding the manifold structure of natural
scenes is a complex problem, so far only the space of 3 by 3 patches is known
to live on a Klein bottle (Carlsson et al. (2008)).

It does seem like persistent homology is a method capable of differentiating
between the responses to a stimulus manifold. However it is generally a difficult
problem to interpret the output, since there are too many features which could
appear for a large number of reasons (in the appendix we provide an intuition
for how to interpret these components, by looking at how they change under
continuous deformations of a point cloud).

4.2 Topological structure of different regions during spon-
taneous behavior

To explore the differences between the topological features across regions we
defined a scalar metric which we call the persistence complexity (Methods), it
is essentially the sum of the persistence of every topological feature in this case
we chose to focus on features of dimension 1 and 2. Another way to think of
this is as a measure of how many and how big the hollow circles and spheres
in a space are. Due to its scalar nature, this measure contains less information
than the persistence image representation, however it is easier to interpret - the
higher it is the more complex components there are in the space.

In figure 6 we show the differences in persistence complexity across regions
for 4 mice. To see if the differences are significant we have applied a Kolmogorov-
Smirnov 2 sample test with a Bonferonni correction to the significance threshold
(Wasserman (2013)).
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Topological Analysis of brain regions during spontaneous activity

Figure 6: The results for 4 mice from the Kolmogorov-Smirnov test. A) matrices
showing the K-S statistic and the associated Bonferonni corrected p values. B)
barplots showing the mean persistence complexity of each region.

There is some inconsistency in the regions being analysed, since not every
region was recorded in each mouse. This is why some bars are missing in panel
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B. The target regions that we analyse are split into three groups:

1. Hippocampal (HIP) - including the CA1, the dentate gyrus (DG) and the
subiculum (SUB)

2. Thalamic (THA) - including the dorsal (LGd) and ventral (LGv) lateral
geniculate complex and the lateral posterior nucleus

3. Visual cortical (VISc) - including the same regions as in the analysis of
the stimulated recordings.

The last three entries of the matrices and the last three bars in the bar plots show
the differences between the three groups of regions we determined. In general
there are many differences between regions and not all of them are consistent,
however one consistent result is that hippocampal neurons seem to form more
topologically complex spaces than visual ones. This is consistent with recent
results showing the presence of strong topological features in the hippocampal
head direction system (Chaudhuri et al. (2019)) and theories as to the function
of hippocampus (Babichev and Dabaghian (2018)). The specific value of the
persistence complexity seems to also be relatively consistent for the CA1 and
hippocampus, which can be used as a characteristic marker for these regions.
However this is just an observation and confirming its consistence across mice
will involve analysing many more subjects.

One cause for the high topological persistence found in Hippocampus, could
be due to functional connectivity patterns similar to those found in Hopfield
networks (Hopfield (1982)). This inspired us to check what is the impact of
functional connectivity on the topological complexity of the activity manifold.
We simulated balanced integrate and fire networks (Brunel (2000)) with vary-
ing sparsity and weight strength. In figure 7, the persistence complexity as a
function of sparsity and weight strength is shown.
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Persistence complexity surface of balanced integrate and fire
networks

Figure 7: Persistence complexity as a function of weight standard deviation and
sparsity.

As sparsity and weight strength increase so does the persistence complexity
up until a certain point at which increasing the variance starts to decrease the
persistence complexity. This result indicates that balanced sparse networks with
strong, but not too variable, connections are more likely to generate complicated
activity manifolds.

5 Discussion

We have presented both theoretical and empirical results, based on topological
data analysis, about the spaces underlying neural activity and their role in un-
derstanding the neural code. Under the proposed view neural populations have
the role of applying transformations of differing complexity to stimulus man-
ifolds. Stacking these transformations can produce representations of varying
complexity. We have also proposed an explicit strategy with which to create
network models that realize a particular manifold and can also be used to define
transformations between manifolds. While interesting, there are several limita-
tions to our approach. For one it involves explicit specification of the metric,
which is not easy to generalize to more complex and realistic scenarios where
there is no way to determine a metric for the manifold of the feature space
which a network is coding for. Another complication comes from the fact that
these transformations are easy to define only when it is possible to separate
connectivity in such a way as to identify two (or more) disjoint networks that
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have feedforward connectivity among themselves.
On the empirical side we have analysed both stimulated and spontaneous

recordings of mouse data. The domains in which topological data analysis has
had the most success are those in which the information being coded for is
simple enough to be mapped to a simple space like the circle in head direction
cells (Chaudhuri et al. (2019)) or the torus for grid cells (Moser et al. (2008);
Guanella et al. (2007)). In this work we have argued that, while easier to in-
terpret, by only looking for components with large persistence values we might
miss important information about the manifold structure at smaller scales. For
this reason we have used persistence images and have defined a global scalar
measure called persistence complexity as a summary of the topology of an ac-
tivity manifold. We have shown that the persistence images of neural activity
differ between the static grating and natural scene stimulus manifolds. With
the natural scene activity manifold showing components with a later birth and
a longer persistence. We speculated that this is due to the fact that natural
scenes are more spread out in possible visual stimulation space, so the compo-
nents start to connect later. The analysis of the spontaneous recordings showed
that there are significant differences between the persistence complexity across
regions. A consistent pattern showing that hippocampus has a larger persistence
complexity value than the visual cortex emerged across all mice. We simulated
integrate and fire networks to check how functional connectivity relates to per-
sistence complexity. We found out that sparse connectivity with synapses with
large (but not too large) variability leads to a high persistence complexity. This
result does not support the assertion that Hopfield-like structure leads to high
persistence complexity. However, this is not the only reason why the persistence
complexity can be high, as there are many more connectivity patterns which
weren’t explored in this work. An interesting further analysis is to explore
whether the functional connectivity of a model approximating the dynamics of
a region’s activity can be varied as to generate different persistence complex-
ity values. Another future approach to study the same question is to simulate
more complex connectivity patterns, like small world and scale free networks
and see what the impact of these architectures is on the persistence complex-
ity. While our analysis finds many significant differences between regions and
provides potential reasons for their different persistence complexity values. It is
still difficult to really understand what the components mean, especially when
we try to focus on the whole set of features, not only on the really big and
obvious ones.

In conclusion the results show that there are interesting features which a
topological approach to neural activity can reveal, but extracting and inter-
preting them comes with many challenges. It is a matter of future theoretical
research to see whether there is a particular computational role of topological
features of a given scale. We hope that our results can be used as an inspiration
for a further, more focused and systematic exploration of manifold structure
underlying neural activity.
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6 Appendix

6.1 Persistent Homology and its prerequisites

Topological data analysis (TDA) is a relatively novel approach to data science
which applies tools from algebraic and differential topology to study the struc-
ture of data. Several clear introductions specifically suited for neuroscientists
are presented in (Sizemore et al. (2019); ), there are also more mathematically
focused resources presenting algebraic topology in more detail (Hatcher (2002);
Munkres (2018)) and more specifically computational topology (Edelsbrunner
and Harer (2010)). Here we will give a short but self-contained introduction to
TDA.

The field of Topology studies the shapes of objects, by only considering those
properties that remain unchanged after the object is deformed continuously (for
example by being locally or globally stretched or shrunken). In other words, it
studies properties which are invariant under continuous transformations. This
way one can draw an equivalence between objects that share such an invariant
but have differing geometric features. The invariant that we will consider in
this text is the number of holes. The notion of a hole will be made more precise
and generalized to higher dimensions later, but from this point of view, a circle
and a cylinder or the plane and a cone are the same object.

To find the holes in a point cloud we need to calculate its Homology groups,
this is done by associating something called a Chain Complex to a given point
cloud. While there are several variants of Homology, we will work with Simplicial
Homology in which we associate a simplicial complex made up of n-simplices to
a given space.

6.1.1 Simplicial and Chain complexes

As already mentioned one of the most basic objects in TDA is the simpli-
cial complex. It is a more general version of the already familiar notion of a
graph/network. First we will need to look at graphs in a more abstract manner,
not as a picture in which vertices/nodes are connected by edges/connections
but as a set of relations. Vertices/nodes describe the relation between only
one object (v1) and edges/connections describe binary relations between two
vertices/nodes (v1v2). Following this line of logic, we can also write higher
order relations as (v1v2...vn−1vn), we will refer to these as (n − 1) simplices.
In this formalism vertices/nodes are called 0-simplices and edges/connections -
1-simplices (from now on we will refer to them as simplices instead of vertices
or edges). There is also a more geometric way to look at things, namely a 2-
simplex can be visualized as a filled in triangle and a 3-simplex - as a filled in
tetrahedron (this is also known as their geometric realization). Sadly, our geo-
metric intuition breaks down for higher order simplices so it is easier to think
of the underlying abstract structure. Having an intuition behind the structure
of simplicial complexes we can start describing them in a formal manner. The
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geometric realization of an n-simplex can be written as a set:

∆n = {(t0, ..., tn) ∈ Rn+1|
∑
i

ti = 1 and ti ≥ 0 for all i}.

This definition puts a simplex in the n+1 dimensional plane, by essentially
identifying its vertices with the unit vectors on each axis of n-dimensional Eu-
clidean space.

The abstract simplicial complex is a collection X of simplices, with the
property that, σ ∈ X and τ ⊂ σ imply that τ ∈ X.

As previously mentioned we can write an n-simplex as: σ = [v0, v1, ..., vn].
Every n-simplex has a set of (n-1)-simplices which are called its faces and can be
written as the set: {τi|τi = [v0, v1, ..., v̂i, ..., vn]} where the hat operator deletes
the element over which it appears.

For a simplicial complex ∆ on a Topological Space X, we can associate a
Chain complex C(X). The chain complex identifies an algebraic structure with
the simplicial complexes of a given dimension. Furthermore it includes a directed
sequence of maps (homomorphisms) between every group (Bhattacharya et al.
(1994) for a reference on groups) of n and n-1 simplices, such that the image of
each map lands in the kernel (null space) of the next map.

The chain complex contains groups (vector spaces can also be used to explain
this) for the simplices present in every dimension, these groups are called the
chain groups and are denoted by Cn(X). The elements in each such group
are called n-chains and are written as a formal sum cn =

∑
i aiσ

n
i , where ai

are coefficients coming from some Abelian group (a group with a commutative
operation). This group (or vector space) structure essentially allows us to do
a type of algebra with the different n-simplices by combining them into chains.
As we already observed simplices of different dimensions are related by their
faces. This fact allows us to define the boundary operators, which map any
n-dimensional chain to an (n-1)-dimensional chain in the following way:

∂n : Cn → Cn−1,

∂n(σn) =

n∑
i=0

(−1)i[v0, v1, ..., v̂i, ..., vn].

One last important property of the boundary operator is that ∂n+1 ◦∂n = 0.
This property implies that the image of ∂n+1 is contained in the kernel of ∂n
or Im(∂n+1) ⊂ Ker(∂n). We will call the chains c ∈ Ker(∂n) cycles and b ∈
Im(∂n+1) boundaries.

6.1.2 Homology

Now that all of the necessary concepts have been laid out, it is time to give an
intuition and precisely define the concept of a hole. The first thing to realize is
that cycles can either surround something or have an empty interior. Imagine
a trampoline, it has an elastic interior and a solid outer frame surrounding the

24



elastic part. There is no hole in this configuration, however if we take out the
elastic part the outer ring now surrounds an empty space or in other words -
a 1-hole. The same concept can be generalized to higher dimensions, the only
difference is that the surface surrounding empty space is higher dimensional
(a higher dimensional example is a football which is a 2 dimensional surface
surrounding an empty interior - a 2-hole).

From this intuitive example it is clear that for there to be a hole we need a
cycle that surrounds an empty space, so the definition we need has to consider
all cycles with an empty interior and exclude those that are filled. This gives
us the definition of the homology groups.

Hn(X,G) = Ker(∂n)/Im(∂n+1).

The terms in the kernel are cycles and we exclude the cycles that are filled in
by quotienting by the elements in the image of the higher dimensional boundary
map. Thus for every dimension we have an Abelian group (or vector space)
and its rank tells us the number of holes present in the Topological Space we
started with. The rank of each homology group is called the n-th Betti number
βn = rank(Hn(X;G)). As a result any space can be specified by the sequence
of its Betti numbers. Figure 8 shows the Betti numbers of some surfaces, it
should be noted that there are surfaces which are not homeomorphic but have
the same sequence of Betti numbers, as in the case of the torus and a sphere
with two circles glued to it (the 3rd and 4th examples in the figure).
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Figure 8: Examples of manifolds and their Betti numbers.

6.1.3 Filtrations

The main question that remains is how to determine the simplicial complex of
the activity of a neural network. The way to do this is to represent the activity
as a point cloud embeded in some metric space. As mentioned previously, we
can either consider every neuron as a point in firing rate/spike space (neural
manifold) or we can consider the activity in every time bin as a point in some N
dimensional space (activity manifold). In either case we will end up with a point
cloud, to which we can attach a Vietoris-Rips complex which is constructed by
attaching n-dimensional balls of a given radius to each point and creates an
k-simplex when the distances between k points are all larger or equal to the
specified radius. An example for a random point cloud in the plane is given in
figure 9. In this case the radius is the filtration parameter, the fact that this
parameter varies across a range of values means persistent homology provides
information about the point cloud at multiple scales.

Whenever we use point clouds there is an assumption that they are com-
ing from an underlying manifold. To say that these points really sample the
manifold in enough detail, the simplicial complexes that we get as a result of
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the filtration need to be topologically equivalent to the underlying manifold. Of
course that is not true for all filtration parameters, but what is required is that
the obvious features in the manifold remain stable throughout the filtration.
In the range of parameter values which preserve the true topological features,
the simplicial complex (constructed from a Čech complex which is well approx-
imated by the Vietoris-Rips complex, see Edelsbrunner and Harer (2010)) is
a truthful representation of the topology of the underlying manifold. This is
guaranteed by the Nerve theorem (see 4G.3 of Hatcher (2002)), which states
that a simplicial complex constructed from the covering of a countable number
of contractible open sets is topologically equivalent (homotopy equivalent to be
more precise) to the manifold on which the covering is defined.

Persistent Homology barcode example

Figure 9: Persistent Homology barcode of a random point cloud in the plane.
The bottom panel shows the Vietoris-Rips complex for increasing values of the
neighborhood radius. Only 0,1 and 2 simplices are shown for better visibility.
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6.1.4 Persistent Homology

Persistent homology is nothing more than a combination of the last two sections,
figure 9 also gives an intuition for what is happening. For any point cloud X
sampled from a manifoldM, we assign a ball of radius ε to each point, using the
Vietoris-Rips construction - this provides us with a simplicial complex V (X, ε).
The radius of the balls is chosen from some interval in the real numbers, in
theory it can go to infinity so ε ∈ [0,∞) and as result this defines a continuous
family of simplicial complexes. This continuity can be seen in the barcode
plots, where the start and end of each line reflects the birth and death of a
topological feature ψ. Since all that we are doing is adding more simplices
as ε increases, the simplicial complexes form a family of inclusions in which
each abstract simplicial complex is a subset of the ones constructed with a
larger radius. In other words, taking the values from the figure as an example,
V (X, ε = 0) ⊂ V (X, ε = 0.0681) ⊂ ... ⊂ V (X, ε = 0.2723).

Once the family of inclusions of simplicial complexes has been calculated, all
that is left to do is calculate the homology for each one. Then for each radius
value there is a set of Betti numbers describing the number of holes in the given
simplicial complex. In practice, the general construction can be summarized in
the following diagram, where the subscripts of the epsilon’s denote an increasing
sequence of ε values:

V (X, ε0) V (X, ε1) ... V (X, εN )

H(V (X, ε0), G) H(V (X, ε1), G) H(V (X, εN ), G)

⊂ ⊂ ⊂

Here each H(V (X, ε), G) denotes the set of all homology groups

{H0(V (X), G), H1(V (X), G), ...,HN (V (X), G)}.

for the given epsilon value. Taking the rank of the homology group of each order
gives a sequence of Betti numbers describing the homological structure at the
current epsilon value.

Let’s say that as the epsilon value grows at some point a new topological
feature (call it ψji , i indexes the dimension of the feature and j - the feature
number under some ordering j ∈ J) appears, we call that epsilon value - the
birth of the feature b(ψji ). On the other hand, if the radius grows too much,
topological features start to disappear as every set of points becomes connected.
The value of epsilon at which a topological feature disappears is called the death
of the feature d(ψji ). Then every feature has a birth and a death, the persistence

is calculated by subtracting the birth from the death p(ψji ) = d(ψji ) − b(ψ
j
i ).

The persistence of each feature is equal to the length of the lines in figure 9, the
birth is where the lines begin and the death where they end.
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6.2 How to interpret persistence.

The biggest difficulty with what the results are telling us is how to interpret
the topological features extracted with persistent homology. There are just
too many components which might be significant but their meaning remains
unintuitive. The most obvious interpretation of a component is that it is a hole
of some size, determined by its birth-death values (an example of this is shown
in the panel A of figure 10). Under this view, we can imagine the one-holes in
a 2 dimensional neural manifold as a punctured flat surface with punctures of
different sizes. This intuitive understanding can be generalized to any surface,
but the holes can come from other sources. One example is curvature, like in
the example of one circle deformed into an ellipse with the middle lines pushed
close to each other (panel B of figure 10). While this surface is topologically
(also homologous) equivalent to a circle, persistent homology finds additional
structure, which makes it identify the surface as two circles. For this reason we
study how we can manipulate the birth-death coordinates of a feature with two
homotopic maps f(x), g(x) parameterized by t ∈ [0, 1]. This gives the general
equation F (x) = tf(x) + (1 − t)g(x) which can be used to smoothly vary the
birth death coordinates of a topological component. The idea is that when t = 0
- g(x) is the only map being calculated and when t = 1 - f(x) is the only map.
In between there are combinations of the two functions. If we start from a circle
given by a map g(x), we can smoothly deform it into the ellipse squeezed in the
middle given by f(x), which lets us inspect the transition between a one hole
surface and a two hole surface.
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Changes in persistent homology under homotopic maps

Figure 10: A) shows an example in which the death of a feature is controlled
by changing the size of one of the holes. B) shows how a new feature is born
during the transition from one circle to a ellipse squeezed in the middle

This approach has the downside that there is an infinite set of maps which
we might want to explore. We only use this to illustrate some non trivial reasons
for the appearance of topological features. Interesting future research would be
to look at how these smaller features develop on top of different surfaces and one
way to do that is to analyse the persistent homology of stochastic processes on
said surfaces. Different stochastic processes could also have a different persistent
homological signature due to the way they sample the space, which could also
be interesting to explore within the context of neural coding.

6.3 Motivation for topology preservation of neural field
models on manifolds

We wish to show that the activity of a neural network which realizes unstable
bump solutions over a well behaved compact manifold preserves the topology
of the manifold. This proof strategy assumes that bumps appear and shrink
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one at a time. Furthermore it is assumed that every bump on the manifold is
sampled with the same frequency.

Theorem: For a compact topological manifoldM with a topology induced
by the geodesic distance and a set of functions Φ = {φµ(x, t) : x, µ ∈M & t ∈
[0, 1]} with a topology induced by the L2 distance

d(φµ(x, t), φµ′(x, t)) = (

∫
M×[0,1]

(φµ(x, t)− φµ′(x, t))2dxdt)
1
2 .

The Vietoris-Rips complexes of M and Φ are homologous.
Motivation: We can take φµ(x, t) to be piecewise defined scalar fields of

the form:

φµ(x, t) =

{
(1− t)e−(x−µ)2 if x ∈ U
0 otherwise

Where U denotes a simply connected neighborhood on which the bump is cen-
tered (a ball of some radius centered on µ). From now on we will writeM×[0, 1]
as M and the phi’s as φµ for clarity. Then the distance between two identical
bumps defined on two non-intersecting neighborhoods U ∩V = ∅ can be written
as the sum of two integrals on the respective domains, since everywhere else the
integral will be 0, the form of the distance is then:

d∅(φµ, φµ′) = (

∫
U

φ2µdxdt+

∫
V

φ2µ′dxdt)
1
2 = (2

∫
M
φ2µdxdt)

1
2 .

When there is overlap in the neighborhoods the distance can be written in a
more general form, by also subtracting the contribution coming from the overlap
of the two bumps in the following way:

d(φµ, φµ′) = (

∫
U/V

φ2µdxdt+

∫
U∩V

(φµ − φµ′)2dxdt+

∫
V/U

φ2µ′dxdt)
1
2 =

= (

∫
U/V

φ2µdxdt+

∫
U∩V

φ2µdxdt−2

∫
U∩V

φµφµ′dxdt+

∫
U∩V

φ2µ′dxdt+

∫
V/U

φ2µ′dxdt)
1
2 =

= (

∫
U

φ2µdxdt− 2

∫
U∩V

φµφµ′dxdt+

∫
V

φ2µ′dxdt)
1
2 =

= (2

∫
M
φ2µdxdt− 2

∫
U∩V

φµφµ′dxdt)
1
2 .

From this definition of distance it is clear that because both terms are strictly
positive - the larger the overlap between two bumps the smaller the distance,
which implies that all local (meaning within the radius of the ball on which
the bump is defined) relationships are the same as those of the points on the
manifold themselves. Then for uniform and dense enough sampling of M, as
long as the radius used to construct the Vietoris-Rips complex of Φ doesn’t
exceed the radius of the domain on which bumps are defined, it will have the
same topology as the Vietoris-Rips complex of the sampled points under the
geodesic distance.
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While there might be scaling issues since the distances don’t have to have
the same scale, a normalized persistent homology should give the same birth
death diagram for point clouds sampled from both the manifold and the set of
bumps.
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