
Link Prediction Applied to Tract-tracing Data

Jules Kruijswijk1

s4140230

Artificial Intelligence

Radboud University Nijmegen

Morten Mørup2

Department of Informatics and Mathematical Modelling, Kgs. Lyngby

Technical University of Denmark

Rembrandt Bakker3

Donders Institute for Brain, Cognition and Behaviour, Nijmegen

Radboud University Nijmegen

Marcel van Gerven4

Donders Institute for Brain, Cognition and Behaviour, Nijmegen

Radboud University Nijmegen

Bachelor’s Thesis in Artificial Intelligence

August 26, 2014

1jma.kruijswijk@student.ru.nl
2External supervisor
3Affiliated supervisor
4Internal supervisor

Contents

1 Introduction 1
1.1 Tract-tracing . 1
1.2 Link prediction . 1
1.3 Present study . 2

2 Methods 2
2.1 Procedure . 2

2.1.1 Algorithm . 3
2.2 Simulation . 3

2.2.1 Construction of a network . 4
2.2.2 Analysis of simulated data . 5

2.3 Markov data . 7
2.3.1 Analysis of Markov data . 8

3 Results 8
3.1 Simulation . 8
3.2 Markov data . 10

4 Discussion 12

Appendices 15

A Construction of Weighted Simulation Data 15
A.1 Create a weighted network . 16
A.2 Use of MCMC algorithm on weighted data . 17

B Source Code 19
B.1 Create a network . 19
B.2 Use of MCMC algorithm . 20
B.3 Calculate accuracy . 22
B.4 Make a boxplot . 23

1

Abstract

Tract-tracing studies are invasive and costly, but are still applied since they are more accurate

than other techniques that expose the brain’s structural connectivity. To reduce the costs of

future tract-tracing studies, the present study investigates whether link prediction algorithms,

that are normally used for exposing new information in social networks, can be used to

maximize the information gained by future tract-tracing studies. Before using a link prediction

algorithm on tract-tracing data, the performance is tested using simulated networks that

mimic the topological features of human brain networks. The results show that the algorithm

performs well on the simulated data and also when applied to tract-tracing data. Various

ways to improve the empirical results are discussed.

1 Introduction

Neuroscience has come a long way from a paradigm where specific brain areas were thought to

contribute to characteristics such as arrogance, affection and sense of witchcraft [1], to modern

neuroscience where new paradigms such as computational models for neuronal activity are

dominant [2]. In modern day neuroscience, there are two main theories that describe the

cognitive functions of the brain. In the first place, there is the theory of modularity, which

supports specialization of brain areas to specific functions [3]. The other theory is called

distributive processing, which proposes that the functions of the brain are distributed over all

regions [4]. A collaboration between the two theories could be a more probable explanation

of the brain’s structure [3]. This view is also adhered to in more recent studies [5]. Functional

segregation and integration are mediated by the structural connectivity which links together

different brain regions.

1.1 Tract-tracing

One path to expose the complete structural connectivity of the brain is to use tract-tracing

techniques. The technique traces the axoplasmic transport of a neuron using tracers that

can be labelled with a fluorescence microscope [6]. Several tracers, either anterograde or

retrograde, are injected in the animal that is being observed to highlight the downstream

or upstream neurons. The anterograde tracers highlight the transport that goes from the

neuron’s soma (the source) to its axon terminals, whereas retrograde tracers work the other

way around [7]. This means that when retrograde tracers are used the injected area is the

target area and the area that contains the labelled neurons is the source area. The tracing

results in detailed data, exposing structural connectivity at a neuronal level. It tells us how

regions are interconnected and which have stronger connections [6].

Not only is the technique invasive on the level of the injection that is needed, it leads

to the eventual death of the animal that is used as study object. In each study, the animal

will first be anesthetized, after which the tracers will be injected. Before the neurons can be

counted under the microscope it is required that the brain is removed from the animal after

several days of survival [6, 8]. Despite these downsides, the main reason that tract-tracing is

still being used is that it has better sensitivity and specificity compared to other techniques

[9]. To minimize the costs and to spare the maximum amount of lives, but maintaining the

goal of exposing the connectivity in the brain on such a detailed level, it would be useful to

know which study should be applied next.

1.2 Link prediction

A lot of time has been devoted to the research of complex, social networks, where the prop-

erties of these networks are analyzed [10, 11]. In social networks, people or other agents

1

are represented as nodes and their edges represent the interaction or influence between these

agents. In reality, these networks transform a lot, because the relations between agents

change. For example, when you have a group of scientists where the edges represent their

collaboration, it can happen that two scientists decide to stop their collaboration for various

reasons, in which case the social network structure will shift. The link prediction problem

asks to what extent we can predict these changes based on the features and information that

the network contains [10]. One feature could be transitivity, which means that if agent A

knows agent B and agent B knows agent C, then there is a high possibility that agent A

also knows agent C. Another would be clustering, in which the agents tend to cluster into

groups so that ties within a group are more dense than between groups. Such predictions

based on network features could be useful for various applications. One example would be to

expose new or “missing” collaborations in a terrorist network, so that future attacks can be

prevented [12].

1.3 Present study

The brain to a certain degree resembles a social network, where the neurons would be the

agents and the connections between neurons the interaction between those agents. It is also

divided in regions similar to groups in a social network and such as interactions between

agents change new interactions between neurons are constructed through learning. Since link

prediction has been proven to work in the context of social network analysis and reveal new

information [10, 11], perhaps the network of the brain hides the same type of information.

If new links could be discovered using existing data, then that would mean tract-tracing

researchers could make studies more specific and still gain the same amount of information.

This would result in more lives could be spared and money could be saved. I therefore would

like to propose the following research question:

Can link prediction algorithms be used to maximize the information gained by

future tract-tracing studies?

Based on studies of link prediction, the expectation is that a link prediction algorithm can

be utilized to reveal new information in a brain’s network.

2 Methods

2.1 Procedure

Hoff et al. proposed a link prediction algorithm where the probability of a relation between

two nodes depends on the Euclidean distance of those nodes in an unobserved ”social space”

[13]. The distance between the nodes is determined by the characteristics that they share in

2

relation to the network. Several improvements have been made by Handcock et al. [14] and

Krivitsky et al. [15] The latest edition of the algorithm will be used, which includes several

improvements to the older versions [15, 16]. The input of the algorithm can be either binary

or weighted count data. Weighted data can lead to better performance because the data

contains more information. This thesis will focus on binary data, since the Markov data does

not readily allow the use of weighted counts and can be easily transformed into binary data

using a cut-off, as shown in Figure 4. Before the algorithm is applied, it is useful to see how

the algorithm performs on artificial data which can be controlled. Therefore, a simulation

will be done first.

2.1.1 Algorithm

The model assumes that each node i has an unobserved position in a two-dimensional Eu-

clidean latent space Z. The algorithm also allows extensions into other dimensions, but in

this case we restrict ourselves to the two-dimensional case. The probability of a link between

a pair of nodes i and j in the actual network is determined by the positions of the nodes zi

and zj in the latent space and an offset term β:

p(yij |β, zi, zj) =
1

1 + exp(−(β − ||zi − zj ||2))
. (1)

The latent space is estimated with a Bayesian approach and inference is done using a Markov

chain Monte Carlo (MCMC) algorithm. There are a few hyper-parameters that have to be

specified by the user and in this case it is chosen to use the default values [15]. At each

MCMC iteration, the algorithm makes two updates using Metropolis-Hastings algorithms.

Firstly, the actor-specific latent space positions are updated for each actor in a random order

using a multivariate normal distribution - in this case a bivariate normal distribution because

we restrict ourselves to a two-dimensional space. In the second update the new β and Z

are proposed using a correlated multivariate normal distribution and accepted as a block.

Eventually all samples are returned. The use of the Metropolis-Hastings algorithm requires

a burn-in period, where a number of initial samples are thrown away. This burn-in period

is required because the initial samples will be arbitrary and do not reflect samples from the

posterior.

2.2 Simulation

Several networks are constructed to check the performance. As research suggest, brain con-

nectivity can be described in terms of two different kinds of networks [5]. The performance

will be checked on both types. In the first type the ties within a region are stronger than

between regions (network type one). The second type is more distributed, based on similar

connectivity profiles (network type two). Each created network will have a dense structure

3

based on its type.

2.2.1 Construction of a network

Z

A

η

p
α β

Figure 1: Creation of a binary network. p, α and β are the hyperparameters that eventually determine
the structure of network A. Z is a categorical distribution and η is a Beta distribution. A is created
by combining Z and η.

The network starts with two components, Z and η, which will form a binary network A as

shown in Figure 11. The assignment matrix Z is Nk by K, where Nk is the number of nodes

per cluster and K the total number of clusters. Z is defined as a Categorical distribution:

zij ∼ Cat

(
1

K

)
. (2)

This means that every row in the matrix, and thus every node, gets a cluster assigned between

1 to K with a chance p = 1
K . When the number of clusters K is 5, every node has the

probability of 1
5 to get into a cluster between 1 and 5.

The second component is a K ×K link probability matrix η. Each value ηij represents

the chance that a link between clusters i and j exists. It is defined as a Beta distribution,

having α and β as parameters:

ηij ∼ Beta(α, β). (3)

Using α and β, the probability density can be manipulated, such that a desired density is

obtained. The probability density function of the Beta distribution is defined as:

f(x;α, β) =
Γ(α+ β)

Γ(α) · Γ(β)
· xα−1 · (1− x)β−1. (4)

Where Γ(n) = (n− 1)! for integers n.

Figure 2 shows what happens when α and β are varied. When both parameters are equal,

for example α = β = 1, you can see that the density is equally distributed over x. A parabolic

distribution will be found when α = β = 2, with the distribution more centered around 0.5.

The higher the values of α and β with α = β, the more the probabilities are distributed

around 0.5. For the simulation, a variable c where c = α = β < 1 is picked. With c < 1,

the probability density will be will be more distributed around 0 and 1, as you can see with

4

α = β = 0.5 in Figure 2. Because of this, the link probability between a pair of clusters will

either be very low or very high, such that most of the connections between these clusters will

be the same, thus resulting in a more consistent structure. This will create a network of type

two. To create a network of type one, the within-cluster link chances are drawn from a Beta

distribution with parameters α = 5 and β = 0.5 and the between-cluster link chances are

drawn with parameters α = 0.5 and β = 5. For examples see Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

p
(x
 |
 α
,
β
)

α=β=0.5

α=5,β=1

α=β=1

α=1,β=3

α=2,β=2

α=2,β=5

Figure 2: Different probability densities of the Beta distribution where the parameters α and β are
varied.

For each pair of nodes (i, j) in Z we draw a link with probability θij where

θij ∼ Bernoulli(zTi ηzj) (5)

where zi is the i-th column of Z. This will result in a network A as seen in Figure 11.

2.2.2 Analysis of simulated data

When the networks are generated, they will be used as input for the algorithm to test its

accuracy. From each network, a set of random edges is assumed unobserved. This is done

multiple times, where the number of unobserved edges increases each time, to test the perfor-

mance when having different amounts of information. The number of edges that is assumed

unobserved for each network is 1, 10, 100, 1000, 2500, 5000, 7500, 8500, 9500 and 10000, so

that the results will show what happens when the amount of information declines in relatively

small steps.

The burn-in for the MCMC algorithm will be set to 20000, to ensure proper sampling

from the posterior. When the algorithm is used on the network with unobserved edges, 4000

5

A

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Node

N
o
d
e

B

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

N
o
d
e

Node

Figure 3: Visualization of simulated networks. Present connections are represented as white and the
absent as black. Panel A shows mostly connections on the diagonal, which represents the structure
of a network that has strong within and weak between links (network type one). Panel B shows a
randomly structured network that has a strong density within the clusters (network type two).

samples of latent space matrices Z and the corresponding slopes β are used as a representation

of the posterior. The probability that an edge in the original network is existent, is given

by Equation (1). When the probability is calculated for each pair of nodes that has been

unobserved, the probabilities are compared to their true value to determine the accuracy.

When the true value in the network is 1, the accuracy is equal to (1) and when the true value

is 0, the accuracy is equal to flip of (1), namely (1 − p). The accuracy uses this flip and is

defined as:

accuracy(yij) = pq · (1− p)1−q (6)

where q is the true probability. If the accuracy is calculated over more than one link, the

average accuracy is:

average accuracy =
1

N

N∑
i=1

pqii · (1− pi)
1−qi . (7)

The accuracy of the simulations is then compared using a boxplot for each network and each

number of unobserved edges. The algorithm should perform better than chance. In the case

of these networks, chance level performance is defined in terms of the majority class of the

density of the network. The majority class is defined as the maximal density relative to the

number of present or absent edges. If for example, the density of zeros in a network is 0.7,

zero would be the majority class, i.e. we set the algorithm to guess everything as zero, the

6

algorithm would get an accuracy of 0.7. Since the algorithm should not perform on chance

level, it should perform better than that and thus the density of the majority class is set as

the baseline.

2.3 Markov data

To find out whether or not new links can be predicted in tract-tracing data, the research data

from Markov et al. will be used [6]. The data consists of multiple tract-tracing experiment

results, where retrograde tracing was applied to several macaques. Since retrograde tracing

was used, the injection area is called the target area, because it is the point of termination,

and the labeled area is called the source area. Before the tracers were injected, the monkeys

were anesthetized. After injection, the monkeys were held alive and monitored for a certain

survival time, so that the tracers had enough time to travel through the brain. Later the

brains were removed and processed such that the tracers could be labeled in the soma of each

neuron for each different region using a fluorescence microscope [6].

To answer the question for this thesis, only a specific part of the available data will be

used. Markov et al. have put all the counted labels in a weighted connectivity matrix, as seen

in Figure 4. This matrix represents the extrinsic fraction of labeled neurons (FLNe) for every

region, which is estimated from the number of labeled neurons relative to the total number of

labeled neurons, excluding the labeled neurons in the injected area itself. This connectivity

matrix will be used in the link prediction algorithm to predict new links between two regions.

A

5 10 15 20 25

5

10

15

20

25

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

 Node

N
o

d
e

S
tr

e
n

g
th

B

5 10 15 20 25

5

10

15

20

25

N
o
d
e

Node

Figure 4: The FLNe values of 29 areas. Panel A shows the log10(FLNe). In Panel B the data is
binarized. Because during the process of labeling of neurons mistakes can be made, Markov et al.
suggest three different levels of reliability, where the lowest values can be discarded to reduce the
number of false positives at the expense of false negatives [6].

7

2.3.1 Analysis of Markov data

The analysis on the Markov data will be nearly the same as that of the simulated data.

The original FLNe values will be binarized. Markov et al. suggest a cut-off value for the

data, which will increase the reliability of the data in terms of false positive connections.

Connections are strong when log10(FLNe) > −2, moderate when −4 < log10(FLNe) ≤ −2

and sparse when log10(FLNe) < −4. For this analysis, all sparse connections will be discarded.

This results in the input as seen in Figure 5. Another difference with the simulated data, is

that the Markov data is smaller in size. The network consists of 29 areas, which results in a

total of 841 connections. The number of edges that is assumed unobserved is 1, 5, 10, 25, 50,

75, 100, 250, 500, 750 and 841.

5 10 15 20 25

5

10

15

20

25

Node

N
o
d
e

Figure 5: The used Markov data, where all the sparse connections log10(FLNe) < −4 are discarded
and then binarized. Discarding the sparse connections results in more reliable data in terms of false
positive connections. Present connections are represented as white and the absent connections as
black.

3 Results

3.1 Simulation

Figure 6 shows the performance on both types of networks. The algorithm performs best, in

absolute numbers, on network type one. However, relative to the density of the networks, the

algorithm performs best on the second type. For both network types, the algorithm improves

greatly when compared with random guessing, which would be around the baseline.

8

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 2500 5000 7500 8500 9500 10000
Number of unobserved links

A
cc

u
ra

cy

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 2500 5000 7500 8500 9500 10000
Number of unobserved links

A
cc

u
ra

cy

Figure 6: Accuracy of simulated networks. The red line is the density of the majority class of the
network, which is a baseline for the performance. Panel A shows the results for the network type one
and Panel B shows the results for network type two. The larger distribution in the boxplots in Panel
B is caused by only a few edges. This means that the performance is only caused to deteriorate by
noise on a small amount of edges and that the algorithm still performs good apart from those edges.

The results on the second network type show a broad distribution before the second quartile,

especially at 10 deleted items. This is caused by the performance on just a few of the selected

edges which happen to be hard to predict by the model. Figure 7 shows an example of this

phenomenon, where only a few edges cause the model’s prediction to deteriorate.

A

Node

N
o
d
e

B

Accuracy

D
en

si
ty

0 0.5 1
0

1
(85,90)

0 0.5 1
0

0.2
(34,19)

0 0.5 1
0

0.1
(55,98)

0 0.5 1
0

1
(68,67)

0 0.5 1
0

0.04
(8,61)

0 0.5 1
0

0.04
(62,13)

0 0.5 1
0

1
(49,43)

0 0.5 1
0

0.1
(38,20)

0 0.5 1
0

0.04
(10,66)

0 0.5 1
0

0.1
(6,84)

Figure 7: Positions of unobserved links and their probability density. The red dots in Panel A are the
unobserved links. Panel B shows that only a few edges cause the noise in the accuracy. Especially
matrix elements (8, 61), (10, 66) and (62, 13) are very inconsistent. The performance on edge (68, 67)
is consistent, but wrong.

9

Figure 8 shows the latent space of network type one when there are 1000 unobserved links.

The plot is based on a minimization of a Kullback-Leibler (MKL) divergence in the posterior

of the output [15]. The figure shows that there are 5 clusters, just as in the original data (see

Figure 3 Panel A), which means that the algorithm has made a good estimation of what the

original data looks like.

−15 −10 −5 0 5 10 15

−
5

0
5

1
0

Z1

Z
2

+

Figure 8: Latent space of network type one with 1000 unobserved links. The plot is based on a MKL
using the posterior and is the most representative distribution.

3.2 Markov data

Figure 9 shows the performance of the algorithm on the Markov data. The algorithm seems

to perform significantly better than chance as Panel A suggests, which is what the simulated

data also shows. However, when only one item was set unobserved, the algorithm performed

much worse than chance level. Note that the result of this may depend on the identity of

the chosen edge, whereas an other chosen edge may perform better. The performance of the

separate edges, as shown in Figure 9 Panel B, is much less specific when it is compared with

the performance of the separate edges of the simulated data (see Figure 7). Even with this

less specific separate edge performance, the algorithm still performs better than chance level.

10

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 10 25 50 75 100 250 500 750 841
Number of unobserved links

A
cc

u
ra

cy

B

Accuracy

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.5
(22,22)

0 0.2 0.4 0.6 0.8 1
0

0.1
(22,21)

0 0.2 0.4 0.6 0.8 1
0

0.04
(20,25)

0 0.2 0.4 0.6 0.8 1
0

0.04
(7,7)

0 0.2 0.4 0.6 0.8 1
0

0.04
(6,6)

Figure 9: Panel A shows the accuracy of Markov data. The red line is the density of the majority class
of the network, which is a baseline for the performance. Panel B shows the probability distribution
over different edges. It shows that the algorithm is not specific within the samples of one edge. The
title of each distribution refers to the position of each edge in the data of Figure 5.

Figure 10 shows the latent space of the Markov data when there are 100 unobserved links.

The plot shows a slightly more random distribution when compared with the latent space of

the simulation (Figure 8). Albeit being a bit more random, the plot still suggests a division

of clusters in the Markov data.

−6 −4 −2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

Z1

Z
2 +

Figure 10: Latent space of Markov data with 100 unobserved links. The plot is based on a MKL using
the posterior and is the most representative distribution.

11

4 Discussion

After taking a closer look at the results an answer can be formulated to the question whether

link prediction can be used to maximize the information gained by future tract-tracing studies.

The results show that the latent space approach allows for link predictions above chance level

on the simulated data whose structure is based on the structure of the brain. Also there

are predictions that are significantly above chance level for the tract-tracing data, where the

results showed that the algorithm performs better than randomly guessing the probability of

the links.

Although the results are promising, there still are several options to improve the current

results, that are not tested due to time constraints. Firstly, the method that is used here

mainly focuses on one link, whereas the MCMC could make better predictions on other links.

An extension of the model into weighted counts could help the algorithm to make better

estimates, which is also supported by the implemented algorithm. Next to that, the model

can also be extended using sender and receiver node connection probabilities, other latent

space dimensions and the assignment of nodes in particular groups [15]. These extensions

would give the model more information about the network to work with and could result in

better predictions.

Neuroscientists can use this research or future improved research to optimize their current

experimental design. The algorithm should not be run on random links, but instead used on

the links in the data that show no or nearly no connection. The missing information should

be viewed as unobserved, in the same way we treated the unobserved links in this research,

and then used as input into the algorithm. Eventually, the output can be used in an optimal

experimental design study to plan the future tract-tracing experiments [17].

Acknowledgments

I would like to offer my special thanks to Morten Mørup for his advice given in the field

of link prediction and Rembrandt Bakker for his advice given in the field of tract-tracing.

Their willingness to give their time has been very much appreciated. Last but not least I am

particularly grateful for the professional supervision given by Marcel van Gerven.

12

References

[1] F. Gall and W. Lewis, On the Functions of the Brain and of Each of Its Parts: On the

Organ of the Moral Qualities and Intellectual Faculties, and the Plurality of the Cerebral

Organs. Marsh, Capen & Lyon, 1835.

[2] P. S. Churchland, C. Koch, and T. J. Sejnowski, Computational Neuroscience. MIT

Press, 1993.

[3] J. Fodor, The Modularity of Mind: An Essay on Faculty Psychology. A Bradford book,

The MIT Press, 1983.

[4] A. R. Mcintosh, “Mapping cognition to the brain through neural interactions,” Memory,

vol. 7, no. 5-6, pp. 523–548, 1999.

[5] M. Hinne. Personal communication, May 2014.

[6] N. T. Markov, M. M. Ercsey-Ravasz, A. R. Ribeiro Gomes, C. Lamy, L. Magrou, J. Ve-

zoli, P. Misery, A. Falchier, R. Quilodran, M. A. Gariel, J. Sallet, R. Gamanut, C. Huis-

soud, S. Clavagnier, P. Giroud, D. Sappey-Marinier, P. Barone, C. Dehay, Z. Toroczkai,

K. Knoblauch, D. C. Van Essen, and H. Kennedy, “A weighted and directed interareal

connectivity matrix for macaque cerebral cortex,” Cerebral Cortex, vol. 24, pp. 17–36,

Jan. 2014.

[7] D. Purves, Neuroscience. Sinauer Associates, Incorporated, 2012.

[8] N. T. Markov, P. Misery, A. Falchier, C. Lamy, J. Vezoli, R. Quilodran, M. A. Gariel,

P. Giroud, M. M. Ercsey-Ravasz, L. J. Pilaz, C. Huissoud, P. Barone, C. Dehay,

Z. Toroczkai, D. C. Van Essen, H. Kennedy, and K. Knoblauch, “Weight consistency

specifies regularities of macaque cortical networks,” Cerebral Cortex, vol. 21, pp. 1254–

72, June 2011.

[9] R. Bakker, T. Wachtler, and M. Diesmann, “Cocomac 2.0 and the future of tract-tracing

databases,” Frontiers in Neuroinformatics, vol. 6, p. 30, Jan. 2012.

[10] D. Liben Nowell and J. Kleinberg, “The link prediction problem for social networks,”

Journal of the American Society for Information Science and Technology, vol. 54,

pp. 556–559, 2003.

[11] L. Linyuan, “Link prediction in complex networks: A survey,” Physica A, vol. 390, no. 6,

2011.

[12] V. E. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24, no. 3, pp. 43–52,

2002.

13

[13] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches to social

network analysis,” Journal of the American Statistical Association, vol. 97, pp. 1090–

1098, Dec. 2002.

[14] M. S. Handcock, A. E. Raftery, and J. M. Tantrum, “Model-based clustering for social

networks,” Journal of the Royal Statistical Society: Series A (Statistics in Society),

vol. 170, pp. 301–354, Mar. 2007.

[15] P. N. Krivitsky, M. S. Handcock, A. E. Raftery, and P. D. Hoff, “Representing degree

distributions, clustering, and homophily in social networks with latent cluster random

effects models,” Social Networks, vol. 31, pp. 204–213, July 2009.

[16] P. N. Krivitsky and M. S. Handcock, “Fitting latent cluster models for networks with

latentnet,” Journal of Statistical Software, vol. 24, pp. 1–23, May 2008.

[17] F. Pukelsheim, Optimal Design of Experiments. Classics in Applied Mathematics, Society

for Industrial and Applied Mathematics, 2006.

14

Appendices

A Construction of Weighted Simulation Data

Although the final version of my thesis only considered binary Markov data, also time has

been invested in working with weighted simulated data. In the beginning it was not certain

if any weighted data or only binary data was available and thus there has been time invested

on both types so that the thesis could be shaped using either of the two. Below you will find

a piece of text and which would be added if any weighted Markov data had been available.

Together with this text also code for weighted data has been created. After the text, you will

firstly find Matlab code which creates simulation data and secondly R code which evaluates

the weighted simulated data using the model.

After a binary network has been created, the network is extended to a weighted

network M (see Figure 11) using a Poisson distribution. The probability mass

function of the Poisson distribution is defined as:

f(k;λ) = P (X = k) =
λk · exp(−λ)

k!
. (8)

In the generation of a network, the values of A are used as input together with

a parameter λ. λ is defined differently for the two different types of values in A,

which are 0 and 1. Since λ is the expected value of the Poisson distribution, the

structure of M is controlled using that parameter. For the entries that are 0, a

low value of λ is picked, such as 10−100, and the opposite is done for the entries

that are 1 (e.g. 10). This results in a bigger difference between absent and present

links in the generated network.

Z

A

η

M

p
α β

Figure 11: Creation of a binary network. p, α and β are the hyperparameters that eventually determine
the structure of network M . Z is a categorical distribution and η is a Beta distribution. A is created
by combining Z and η and M is created from A by using a Poisson distribution.

15

A.1 Create a weighted network

clear a l l ;

close a l l ;

%% hyperparameters

K = 5 ; % Number o f c l u s t e r s

Nk = 20 ; % Nodes per c l u s t e r

%Alpha and be ta parameter f o r the be ta d i s t r i b u t i o n

%I f you use t h i s , you need ’ e ta = betarnd (a , b ,K,K) ; in the for−l oop
%a = b = 0.01 i s f o r network type two

%a = 0 .01 ; b = 0 . 01 ;

%I f you use t h i s se tup f o r a lpha and beta , use e ta=betarnd (a , b) ; in the for−
l oop

%This i s f o r network type one

a = [5 0 .5 0 .5 0 .5 0 . 5 ;

0 . 5 5 0 .5 0 .5 0 . 5 ;

0 . 5 0 . 5 5 0 .5 0 . 5 ;

0 . 5 0 . 5 0 .5 5 0 . 5 ;

0 . 5 0 . 5 0 .5 0 .5 5] ;

b = [0 . 5 5 5 5 5 ;

5 0 . 5 5 5 5 ;

5 5 0 .5 5 5 ;

5 5 5 0 .5 5 ;

5 5 5 5 0 . 5] ;

%% Sta r t g ene ra t i v e proces s

N = Nk∗K;

%Make c l u s t e r assignment matrix

Z = zeros (N,K) ;

for k=1:K

Z((k−1)∗Nk + (1 :Nk) , k) = 1 ;

end

%Make c l u s t e r l i n k p r o b a b i l i t i e s

%Use t h i s f o r the network type two con f i g u r a t i on

%eta = betarnd (a , b ,K,K) ;

%Use t h i s f o r the network type one con f i g u r a t i on

eta = betarnd (a , b) ;

eta = triu (eta) ;

eta = eta + eta ’ ;

e ta (1 : (K+1) : end) = eta (1 : (K+1) : end) /2 ;

16

%Create the f i n a l b inary network

A = zeros (N,N) ;

for i =1:N

for j =1:N

c i = find (Z(i , :)) ;

c j = find (Z(j , :)) ;

A(i , j) = (eta (c i , c j) > rand) ;

end

end

%Save the network

save ([’ A 1 5a 0 . 5 b i n t r a e x t r a ’ ’ . mat ’] , ’A ’)

%Create weigh ted network based on the b inary network

W = zeros (N,N) ;

for i =1:N

for j =1:N

W(i , j) = po i s s rnd (lambda(1+A(i , j))) ;

end

end

%Save the network

save ([’W ’ num2str(l) ’ 5a 0 . 5 b in t ra ex t ra 10E −100lambda 10lambda .mat ’] , ’W’)

A.2 Use of MCMC algorithm on weighted data

#The purpose o f t h i s s c r i p t i s to read d i f f e r e n t networks t ha t were genera ted

wi th Matlab

#With t h e s e networks I want to perform an ergmm ca l c u l a t i o n and expor t the Z

and be ta .

#The s c r i p t a l s o d e l e t e s a g i ven number o f random nodes in the network A

l ibrary (s t a tn e t)

l ibrary (R. matlab)

#Determine how many i tems you want to have d e l e t e d .

#We’ re going f o r : 1 10 100 1000 2500 5000 7500 10000

de l <− c (1 ,10 ,100 ,1000 ,2500 ,5000 ,7500 ,10000)

#Set the number o f nodes o f the network

#100 i s the number o f nodes f o r the s imu la ted data

ncol <− 100

#Loop over the d i f f e r e n t d e l e t e−va l u e s
for (d in de l) {

#Save the o ld va l u e s to check accuracy l a t e r in matlab

17

oldValue <− matrix (0 , d , 1)

#Save the o ld row numbers

sampleRow <− matrix (0 , d , 1)

#Save the o ld co l numbers

sampleCol <− matrix (0 , d , 1)

#Read in f i l e , i t saves as v a r i a b l e W

#The s t r i n g s w i l l be used l a t e r on

s t r <− paste0 (’ s imulated weighted ’)

f i l e t y p e <− ’ . mat ’

#Read the matrix , g i v e s a l i s t

W<− readMat (paste0 (s t r , f i l e t y p e))

#Convert the l i s t to a matrix

A <− matrix (unlist (W, use .names=FALSE) , ncol = 100)

#Ca l cu l a t e the d en s i t y to save i t l a t e r on

dens <− network . density (A)

#Using the random genera ted data , make those r e s p e c t i v e nodes Not

Ava i l a b l e (NA)

#A whi le−l oop i s used here in s t ead o f a for−l oop because i f we s k i p a for−
l oop wi th the ’ next ’ func t ion , i t w i l l e v e n t u a l l y d e l e t e l e s s edges than

you would l i k e

#The loop might seem redundant or i n e f f i c i e n t , but R does not e a s i l y and

r e a d i l y suppor t a sample o f f o r example 10000 d i f f e r e n t coord ina t e s in

random order

while (i <= de l) {
sampleColumn <− sample (100 ,1)

sampleRoww <− sample (100 ,1)

#I f t h i s edge i s a l r eady s e t to NA, t r y another one

i f (i s .na(A[sampleRoww , sampleColumn])) {
next

}
#Save the o ld va l u e s so we can use t ha t l a t e r to c a l c u l a t e the

accuracy

sampleRow [i] <− sampleRoww

sampleCol [i] <− sampleColumn

i f (A[sampleRoww , sampleColumn] > 1) {
oldValue [i , 1] <− 1

} else {
oldValue [i , 1] <− 0

}
#Set to NA

A[sampleRoww , sampleColumn] <− NA

#Increase i f o r the whi le−l oop
i <− i + 1

}

18

#Set the we i gh t s when con s t ru c t i n g new network

W<− as . network .matrix (A, l oops=FALSE, i gnore . eval=FALSE, names . eval=’

weight ’ , control=control . ergmm(burnin=40000))

#Ca l cu l a t e the d en s i t y f o r the accuracy

dens <− network . density (W)

#Now c a l c u l a t e the f i t o f t h i s network

W. f i t <− ergmm(W ˜ euc l i d ean (d=2) , response=’ weight ’ , family=”Poisson .

l og ”)

#Save the s e two to a .mat f i l e

#The .mat f i l e shou ld be named ra the r equa l to the opened f i l e

writeMat (paste0 (s t r , ’ R d e l t e s t ’ ,d , f i l e t y p e) , Z=W. f i t $sample$Z , b=W. f i t

$sample$beta , sampleRow=sampleRow , sampleCol=sampleCol , oldValue=

oldValue , dens=dens)

}

B Source Code

This is the source code that was used for the thesis and the results.

B.1 Create a network

clear a l l ;

close a l l ;

%% hyperparameters

K = 5 ; % Number o f c l u s t e r s

Nk = 20 ; % Nodes per c l u s t e r

%Alpha and be ta parameter f o r the be ta d i s t r i b u t i o n

%I f you use t h i s , you need ’ e ta = betarnd (a , b ,K,K) ; in the for−l oop
%a = b = 0.01 i s f o r network type two

%a = 0 .01 ; b = 0 . 01 ;

%I f you use t h i s se tup f o r a lpha and beta , use e ta=betarnd (a , b) ; in the for−
l oop

%This i s f o r network type one

a = [5 0 .5 0 .5 0 .5 0 . 5 ;

0 . 5 5 0 .5 0 .5 0 . 5 ;

0 . 5 0 . 5 5 0 .5 0 . 5 ;

0 . 5 0 . 5 0 .5 5 0 . 5 ;

0 . 5 0 . 5 0 .5 0 .5 5] ;

b = [0 . 5 5 5 5 5 ;

19

5 0 .5 5 5 5 ;

5 5 0 .5 5 5 ;

5 5 5 0 .5 5 ;

5 5 5 5 0 . 5] ;

%% Sta r t g ene ra t i v e proces s

N = Nk∗K;

%Make c l u s t e r assignment matrix

Z = zeros (N,K) ;

for k=1:K

Z((k−1)∗Nk + (1 :Nk) , k) = 1 ;

end

%Make c l u s t e r l i n k p r o b a b i l i t i e s

%Use t h i s f o r the network type two con f i g u r a t i on

%eta = betarnd (a , b ,K,K) ;

%Use t h i s f o r the network type one con f i g u r a t i on

eta = betarnd (a , b) ;

eta = triu (eta) ;

eta = eta + eta ’ ;

e ta (1 : (K+1) : end) = eta (1 : (K+1) : end) /2 ;

%Create the f i n a l b inary network

A = zeros (N,N) ;

for i =1:N

for j =1:N

c i = find (Z(i , :)) ;

c j = find (Z(j , :)) ;

A(i , j) = (eta (c i , c j) > rand) ;

end

end

%Save the network

save ([’ A 1 5a 0 . 5 b i n t r a e x t r a ’ ’ . mat ’] , ’A ’)

B.2 Use of MCMC algorithm

#The purpose o f t h i s s c r i p t i s to read a network , d e l e t e a s p e c i f i e d number (or

numbers) o f l i n k s and perform an ergmm ca l c u l a t i o n .

#This ergmm ca l c u l a t i o n i s a MCMC algor i thm tha t w i l l ou tput 4000 samples .

#Load the used l i b r a r i e s (s t a t n e t i s used because i t l oad s both network and

l a t e n t n e t packages)

#R. matlab i s f o r opening and sav ing matlab f i l e s

20

l ibrary (s t a tn e t)

l ibrary (R. matlab)

#Determine how many i tems you want to have unobserved .

de l <− c (1 ,5 , 10 ,25 ,50 ,75 ,100 ,250 ,500 ,750 ,841)

#Set the number o f nodes o f the network

#29 i s the number o f nodes f o r the markov data

ncol <− 29

#Loop over the d i f f e r e n t d e l e t e−va l u e s
for (d in de l) {

#Save the o ld va l u e s to check accuracy l a t e r in matlab

oldValue <− matrix (0 , d , 1)

#Save the o ld row numbers

sampleRow <− matrix (0 , d , 1)

#Save the o ld co l numbers

sampleCol <− matrix (0 , d , 1)

#Read in f i l e , i t saves as v a r i a b l e A

#The sepe ra t e s t r i n g s w i l l be used to save the output l a t e r on

s t r <− paste0 (’markov binary ’)

f i l e t y p e <− ’ . mat ’

#Read the matrix , g i v e s a l i s t

A <− readMat (paste0 (s t r , f i l e t y p e))

#Convert the l i s t to a matrix

A <− matrix (unlist (A, use .names=FALSE) , ncol)

#Convert the matrix to a network

i f (d < (ncol∗ncol)) {
A <− as . network .matrix (A, l oops=TRUE)

} else {
#For some reason , i f we d e l e t e a l l nodes , the ergmm func t i on doesn ’ t

accep t l oops .

#Since l oops are not a v a i l a b l e when the network i s comp l e t e l y c l eared ,

when can l e a v e those out and s t i l l run the func t i on

A <− as . network .matrix (A, l oops=FALSE)

}

#Ca l cu l a t e the d en s i t y to save i t l a t e r on

dens <− network . density (A)

#I n i t i a t e i f o r the wh i l e loop over d number

i <− 1

#Using the random genera ted data , make those r e s p e c t i v e nodes Not Ava i l a b l e

(NA)

21

#A whi le−l oop i s used here in s t ead o f a for−l oop because i f we s k i p a for−
l oop wi th the ’ next ’ func t ion , i t w i l l e v e n t u a l l y d e l e t e l e s s edges than

you would l i k e

#The loop might seem redundant or i n e f f i c i e n t , but R does not e a s i l y and

r e a d i l y suppor t a sample o f f o r example 841 d i f f e r e n t coord ina t e s in

random order

while (i <= d) {
sampleColumn <− sample (29 ,1)

sampleRoww <− sample (29 ,1)

#I f t h i s edge i s a l r eady s e t to NA, t r y another one

i f (i s .na(A[sampleRoww , sampleColumn])) {
next

}
#Save the o ld va l u e s so we can use t ha t l a t e r to c a l c u l a t e the accuracy

sampleRow [i] <− sampleRoww

sampleCol [i] <− sampleColumn

oldValue [i , 1] <− A[sampleRoww , sampleColumn]

#Set to NA

A[sampleRoww , sampleColumn] <− NA

#Increase i f o r the whi le−l oop
i <− i + 1

}

#Now c a l c u l a t e the f i t o f t h i s network

A. f i t <− ergmm(A ˜ euc l i d ean (d=2) , control=control . ergmm(burnin=20000))

#Save the s e two to a .mat f i l e

#The .mat f i l e shou ld be named ra the r equa l to the opened f i l e

writeMat (paste0 (s t r , ’ R d e l t e s t ’ ,d , f i l e t y p e) , Z=A. f i t $sample$Z , b=A. f i t $

sample$beta , sampleRow=sampleRow , sampleCol=sampleCol , oldValue=oldValue

, dens=dens)

}

B.3 Calculate accuracy

clear a l l ;

close a l l ;

%% Ca l cu l a t i n g accuracy

%The d i f f e r e n t numbers o f d e l e t i o n s

types = [1 5 10 25 50 75 100 250 500 750 8 4 1] ;

%A counter f o r the p r o b a b i l i t y c e l l s

l = 1 ;

%Make a c e l l f o r a l l t he p r o b a b i l i t i e s

a l lP robs = c e l l (1 , s ize (types , 2)) ;

22

%Loop over a l l the t ype s o f f i l e s

for elm = types

%Load the f i l e

load ([’ markov b inary R de l te s t ’ num2str(elm) ’ . mat ’]) ;

%Al l the p r o b a b i l i t i e s w i l l be saved in t h i s

prob = zeros (elm ,4000) ;

%Loop over the samples

for k=1: s ize (Z , 1) ;

z sample = Z(k , : , :) ;

z sample = squeeze (z sample) ;

for j =1: s ize (sampleRow , 1)

%eta = be ta − | | z i − z j | | 2

eta = b(k , :) − norm(z sample (sampleRow(j) , :)−z sample (sampleCol (j)

, :)) ;

%ca l c u l a t e the p r o b a b i l i t y

p = 1/(1+exp(−eta)) ;

%save the p r o b a b i l i t y

prob (j , k) = (pˆ(oldValue (j , 1)) ∗ (1−p)ˆ(1−oldValue (j , 1))) ;

end

end

%Put the l i s t o f probs in a c e l l and inc rea se the counter

a l lP robs { l } = prob ;

l = l + 1 ;

end

save (’ markov b inary R de l te s t output .mat ’ , ’ a l lP robs ’ , ’ dens ’)

B.4 Make a boxplot

clear a l l ;

close a l l ;

%Spec i f y the f i l e you want to load the output from

load (’ output markov or ig ina l2 . mat ’) ;

%Reshape the c e l l s from a l lP ro b s

M = al lProbs {1} ;
vec tor1 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {2} ;
vec tor2 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {3} ;
vec tor3 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {4} ;
vec tor4 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {5} ;
vec tor5 = reshape (M. ’ , [] , 1) ;

23

M = al lProbs {6} ;
vec tor6 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {7} ;
vec tor7 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {8} ;
vec tor8 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {9} ;
vec tor9 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {10} ;
vector10 = reshape (M. ’ , [] , 1) ;

M = a l lProbs {11} ;
vector11 = reshape (M. ’ , [] , 1) ;

%Put v e c t o r s t o g e t h e r and make groups f o r the b o xp l o t

vec t o r s = [vector1 ; vec tor2 ; vec tor3 ; vec tor4 ; vec tor5 ; vec tor6 ; vec tor7 ; vec tor8 ;

vec tor9 ; vector10 ; vector11] ;

%Clear in between in the case the v e c t o r s are very l a r g e and might take up

%too much RAM

clear vector1 vector2 vector3 vector4 vector5 vector6 vector7 vector8 vector9

vector10 vector11 M a l lProbs ;

group = [repmat ({ ’ 1 ’ } , 4000 , 1) ; repmat ({ ’ 5 ’ } , 20000 ,1) ; repmat ({ ’ 10 ’ } ,
40000 ,1) ; repmat ({ ’ 25 ’ } , 100000 , 1) ; repmat ({ ’ 50 ’ } , 200000 ,1) ; repmat ({ ’ 75 ’

} , 300000 , 1) ; repmat ({ ’ 100 ’ } , 400000 , 1) ; repmat ({ ’ 250 ’ } , 1000000 , 1) ;

repmat ({ ’ 500 ’ } , 2000000 , 1) ;

repmat ({ ’ 750 ’ } , 3000000 , 1) ; repmat ({ ’ 841 ’ } , 3364000 , 1)] ;

h = boxplot (vector s , group) ;

%I f you want the o u t l i e r s to be de l e t ed , s e t t h i s on

%s e t (h (7 , :) , ’ V i s i b l e ’ , ’ Off ’) ;

xlabel (’Number o f unobserved l i n k s ’) ;

ylabel (’ Accuracy ’) ;

hold on ;

%Plot the d en s i t y l i n e

f = plot (repmat (dens , 1 1 , 1)) ;

24

