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Abstract: 

Blindness is a common societal problem that affects day-to-day functioning. Even though there is no 

effective treatment yet, there are some alternative ways such as neuroprosthetic visual implants. 

Although prosthetic vision does not provide normal vision, it does provide a rudimentary form of the 

environment through point-like flashes known as phosphenes which might still help basic activities like 

navigation. However, due to biological limitations, the current implants have low resolution. The limited 

capacity of resolution increases the need for optimal information extraction from the scene for efficient 

understanding of the environment. In line with this, there is a need for better image pre-processing 

techniques.  

One limitation of the studies testing phosphene vision is the necessary surgical operation for implants. 

For this reason, researchers found other techniques to test phosphene vision. One solution is testing 

sighted participants with wearable head-mounted displays (e.g., VR) that convert the real scene to 

processed phosphene vision. However, studies suggested that different image pre-processing techniques 

should be used for different contexts and scenes which requires an optimization adaptive to the scene. 

The variability in parameters to be tested and the need for optimization raise other challenges such as 

significantly increased number of tests for optimization problems which also means increased cost.  

This project will contribute to our knowledge on the potential use of trained Deep Reinforcement 

Learning agents to test the performance in particular tests such as navigation rather than human 

participants which is likely to minimize the cost and accelerate the process of optimization. Additionally, 

as these models will be used in real life, using a realistic virtual environment to test the behaviour of the 

trained agent and to optimize the parameters of simulated phosphene vision will provide more applicable 

results for future studies on prosthetic implants. 

Keywords: Phosphene vision, visual loss, visual prosthesis, deep learning, artificial intelligence, 

realistic virtual environment, computer agent



 

 

Introduction 

1.1 Background 

The 2020 reports of the International Agency for the 

Prevention of Blindness demonstrates that globally 1.1 

billion people are suffering from vision loss and researchers 

expect that the number of people with vision loss will rise 

to 1.7 billion until 2050. Additionally, more than 500 

million people live with mild and severe vision impairments 

("Updated vision atlas shows 1.1 billion people have vision 

loss," 2021). 

Relying on these statistics, we can say vision loss is a 

non-negligible societal problem especially when we think 
about the fact that we significantly rely on visual cues to 

accomplish most of the daily activities like navigation, 

object recognition or face recognition. Studies support that, 

vision loss might cause several other problems such as 

reduced life quality; dependence to another during casual 

activities like reading, writing, shopping, driving; fractures 

or injuries; cognitive impairments; higher risk for 

depression or mental health disorders; mobility and even 

mortality (Grover, 2017). There is no successful treatment 

for blindness, yet. However, through the development of 

technology, acquiring some form of vision is possible for 

visually impaired individuals. 

  As a result of the loss of daily functionalities 

mentioned above such as walking around avoiding 

obstacles, there is an increased demand in studies to provide 

vision. One of the promising solutions for providing vision 

is visual prostheses studies which are implantable electronic 

micro-systems. The implants convert the images of the 

outside world into a meaningful representation through 

point-like flashes known as phosphenes. 

 
1.1.1 Retinal and Cortical Implants 

Only in the early 20th century did artificial vision experience 

its greatest breakthrough. However, the restoration of vision 

has been a well-focused area of research for many more 

years. In 1929, Foerster discovered that electrically 

stimulating visual cortex induces perception of small points 

of lights or in other words phosphenes, which has provided 

the scientific basis to develop prosthetic vision for the blind 

(Fernández et al., 2020). 

  In 1968, researchers at the University of Cambridge 

attempted to implant radio receivers connected to the 

electrodes under the scalp of the blind people and sent 

pulses to these electrodes with the aid of a cap. The pulses 

activated the electrons and created phosphenes in the 

patients’ visual fields. However, only a few electrodes were 

activated and even some have caused pain in patients. 

Despite the limitations, the researchers suggested that, with 

the improvements made to their prototype, the prosthetic 

vision will enable the blind people to walk by avoiding 

obstacles, to read and write. Despite the many other studies 

conducted, the research area of visual prosthetics showed 

significant progress after this first implementation study in 

the 1960s (Brindley & Lewin, 1968). 

  In 1979, scientists at the University of Utah published 

another study relying on findings of Brindley and Lewin. 

They started their experiments in 1969, with blind 

participants who already needed a surgical operation for the 

removal of tumors/lesions to minimize the risk. They have 

tested their implant with 37 participants in 4 years. After 

these trials, in 1973, they were satisfied with the 

experiences of successful implants and started to try 

temporary implants with healthy blind volunteers. The 

results of their previous experiments showed recognition of 

basic patterns such as triangles or some of the letters. The 

promising results led the scientists to try chronic 

implantation. Before starting the experiments on chronic 

implantation, they have developed the methods used in 

previous studies to get rid of some limitations such as 

eliminating crosstalk between different electrodes and 

providing more reliable results. Additionally, they have 

restricted the blind volunteers to individuals totally blind 

but with the memory of visual sensations. At the end of their 

attempts, their results showed that subjects were able to 

perceive the image without special training and the speed of 

reading the braille was much faster than reading by using 

the finger (Dobelle et al., 1979). Even with more promising 

results, successful implants are still not available yet to use 

in humans. In a recent study, researchers also tried these 

implants using trained monkeys with several tests as 

participants and demonstrated the stimulation of the 

electrodes in V1 provides a successful perception of the 

shapes which again demonstrates the promising capacity for 

creating phosphene vision (Chen et al., 2020). 

  An obvious challenge in this area of research is the 

need for surgical operations to test and develop the implants 

which has high risk and cost. The technological 

developments allowed researchers to test the vision 

provided by the implants in an easier and less costly way. 

For example, there are many studies that benefit from 

wearable head-mounted displays (e.g., VR glasses) to 

simulate phosphene vision for sighted subjects to test in 

various tasks. This development in the area also facilitates 

the research to test and develop the parameters of the 

prosthetic vision. This is one of the most significant aspects 

in this area of research because the resolution or in other 

words the number of phosphenes that can be simulated is 



 

 

limited. Additionally, as the resolution is limited, there is a 

need for better image pre-processing techniques which 

allow researchers to extract the meaningful visual cues for 

particular tasks. 

1.1.2 Resolution 

 It is known that there is a compromise between the 

resolution and the size of the implant which must be 

optimized. In other words, there is a need for optimization 

of the visual perception generated with limited resolution. 

Researchers tried to find the balance between the size of the 

implants and the resolution to get meaningful information. 

In one of the studies, Hayes et al. (2003) tried different 

resolutions to test the functionality of the simulated vision. 

Researchers tested the performance of sighted participants 

wearing head-mounted display by using pixelized images 

during various tasks such as object 

recognition/discrimination, symbol recognition, pouring, 

reading etc. The results demonstrated increased 

performance with higher resolution in all tests. Some of the 

subjects were able to recognize simple objects and symbols 

with lower resolution. Relying on that, researchers 

suggested that using fewer pixels of light is also enough to 

perform tasks. However, one of the limitations of the study 

is the simplicity of the images used during these tasks 

(Hayes et al., 2003). 

  The resolution or the number of phosphenes needed 

to understand the environment might depend on other 

factors like the complexity of the environment or the 

amount of time the participant practiced. 

Dagnelia et al. (2007) tested wayfinding with limited visual 

resources to find out minimal requirements for visual 

resolution. They found out the inexperienced participants 

needed higher resolution for adequate performance. 

Similarly, Srivastava et al. (2009) focused on the amount of 

experience gained by the participant and the adaptation to 

the phosphene vision. As a result of their surgical studies, 

they suggested the possibility of implanting electrodes up to 

650. They have tested the performance in 3 different 

conditions with different percentages of dropouts as 0%, 

25%, 50%. They claimed that there is an improvement in 

the performance with practice and it is possible to adapt to 

low-resolution images with 50% dropout or in other words 

with only 325 phosphenes. 

  Researchers have focused on phosphene vision for 

many different capabilities such as object segmentation or 

facial recognition (Bollen et al., 2019; Lu et al., 2013; 

Sanchez-Garcia, 2018; Thompson et al., 2003) However, 

many researchers found mobility/navigation and obstacle 

avoidance ability more important for daily functioning. 

McCarthy et al. (2014) made a study by using obstacle 

avoidance tasks with low to medium resolution and used 

different luminances for surface-obstructions segmentation. 

They believed that a better representation of the 

environment is required. In this study they sought to 

improve the segmentation of ground surface and 

obstructions by depth-perception. Results demonstrated that 

depth-based representations of obstacles provided more 

efficient visual navigation performance with low resolution. 

As a significant limitation of this study, they have only used 

static images (McCarthy et al., 2014). 

  In summary, studies demonstrate that different tasks 

or environments might require different pre-processing 

techniques to provide adequate and meaningful information 

with limited resolution. Phosphene vision is not as 

informative as normal vision as a result of the lack of spatial 

resolution, colours, and contrast. That’s why there is a need 

for simplification of the scene. However, the simplification 

of the scene requires efficient reduction of information 

which leads to the need for better image pre-processing 

techniques to extract more precise visual cues that helps the 

interpretation of the environment (Sanchez-Garcia et al., 

2020). 

1.1.3 Different Image Pre-Processing Techniques 

To meet that demand of simplification, many researchers 

focused on different image pre-processing techniques for 

transmitting an image to phosphene vision. They have 

developed different filters for edge detection, texture 

detection or to extract the information of depth (Dowling, 

2007). 

 Boyle et al. (2001) tested the object recognition of 

174 sighted participants by using different resolutions with 

static images and compared the effect of different image 

pre-processing techniques. They found increased 

performance when they used 3-level gray images than black 

and white images. In line with this, they suggested that 3-

level gray images provided higher spatial resolution, and 

this allowed higher object recognition even though this is 

highly correlated with other parameters such as the size of 

the object. Still, results demonstrated that higher resolution 

was more important than increased gray scale. Researchers 

also supported the importance of the context of the scene for 

the recognition and emphasized the need of adaptive image 

pre-processing techniques for efficient processing of the 

scenes. Some of the many limitations of this study is the 

lack of realistic environment, dynamic stimuli, and lack of 

diversity in conditions in terms of resolution and colour as 

they didn’t have conditions with high resolution and did not 

test with coloured stimuli (Boyle et al., 2001). 



 

 

  As a next step, Boyle et al. (2002) investigated the 

effect of different factors to enhance the visual information 

like brightness, resolution, contrast, edges, the distance to 

the object/depth and importance mapping. Researchers 

showed the significant role of edge detection for meaningful 

information especially with high resolution images. 

Additionally, they concluded that for the optimization to 

transfer the image to artificial visuals as phosphenes, 

importance ranking is important. Because with limited 

resolution the displayed features like edges must be 

extracted depending on the importance of the information 

(Boyle et al., 2002). 

  With a follow-up study, Boyle et al. (2003) suggested 

different parameters to consider according to the types of 

the scene by relying on their previous findings. They 

matched different descriptors like motion, colour, and edges 

with different types of scenes to gain the most efficient 

information from the pre-processed scene. For example, as 

the working range is about 1 meter in an office, a low visual 

range is enough. However, for an outdoor environment, the 

required visual range might be significantly higher. By the 

same token, a street environment includes moving obstacles 

like people or cars; while motion is a highly descriptive for 

a street environment, it is lower for an indoor environment 

(Boyle et al., 2003). Other researchers also contributed 

similar results about the significance of filtering for the task 

performance (Hallum et al., 2005). 

  Vergnieux et al. (2017) also studied prosthetics and 

concentrated on navigational tasks. They hypothesized that 

low resolution implants with no special processing cause 

overcrowding and provide insufficient visual cues for 

navigation tasks. They tested the effect of various 

renderings which simplify visual information on the 

performance in navigation tasks. As one strategy, they tried 

to limit the viewing distance of the participants. This 

strategy helped to achieve better performance while 

reducing the cognitive load during the task. A key finding 

of this study was that having only the edges present in the 

environment lessened the cognitive load and led to 

improved performance in the navigation task. However, 

they have not assessed that under real conditions 

(Vergnieux et al., 2017). 

  Researchers at the Donders Institute are also working 

in this area of research to further understand prosthetic 

vision. Researchers are testing sighted participants by 

simulating phosphene vision generated via the implants by 

using VR glasses in real world experimental settings. In a 

previous study, Ruyter van Steveninck et al. (2022) claimed 

that scene simplification obtained as a result of image pre-

processing such as the extraction of contours may improve 

the performance in navigation tasks. In this study, they 

tested the performance with different resolutions of 

phosphenes by keeping the light intensity constant. Also, to 

test the effect of complexity of the environment, they have 

used a real corridor environment with different complexities 

by adding background and surface textures. Relying on their 

findings, they showed that 26x26 resolution provided 

sufficient visual cues for the participants with contour-

based simulation. However, the performance was lowered 

in the condition of a complex environmental setting with 

textures. 

  In addition, researchers supported that an efficient 

technique of image pre-processing is required to simplify 

the scene which prevents overcrowding in the scene (De 

Ruyter van Steveninck et al., 2022). In conclusion, there is 

a need for simplification of scenes to extract the meaningful 

cues from the scene with limited resolution. Yet, there is a 

need for balance to avoid eliminating necessary visual cues 

which may differ depending on the context of the scene. 

1.1.4 Reinforcement Learning 

Sam Danen et al. (2021) tried to use reinforcement learning 

to test prosthetic vision and automatically optimize the 

parameters of image pre-processing in his thesis project. 

They attempted to compare the performances of human 

participants and trained computer agents to evaluate 

usability of computer agents instead of human participants. 

They have used wayfinding task in the experiment. In this 

project, they had 2 different experimental settings. In the 

first experiment, they tried to monitor the change in 

performance in different experimental settings with 

different visual complexities and different phosphene 

resolutions. In the second experiment, they let the 

reinforcement learning agent find the optimum threshold for 

canny edge detection model in different conditions. They 

found a significant change in model learning as they altered 

the light intensity of the environment. When the light 

intensity was the lowest, the performance of the agent was 

improved. However, they are suspicious about whether the 

lowest light intensity of the environment was also better for 

human participants’ performances. Still, by relying on the 

similar graphs of performances with human participants, 

they argue that there are many similarities between the 

performance of human participants and computer agents 

which makes the use of computer agents as opposed to 

human participants a promising method. Even though this 

study provided a comparison for the performances of human 

participants and computer agents, some of the limitations of 

the previous studies were still present. Firstly, the virtual 

environment used was an unrealistic basic corridor 

environment. Additionally, the task used was a simple 



 

 

navigation task that the agent only walked forward through 

the hallway. 

  There have also been more complicated studies 

conducted by using indoor visual navigation task (Krantz et 

al., 2021; Savva et al., 2019; Zhu et al., 2017). In one of the 

studies, Savva et al. (2018) used AI-Habitat which is a 

simulation platform to train AI-agents. In their experimental 

setting, the agent was using different detectors such as 

depth, RGB camera and GPS + Compass sensor. With the 

GPS + Compass sensor, the agent had the input of relevant 

location and orientation of the goal for its current location. 

Rather than only defining three actions to move forward and 

10° rotations, they also included a stop action. With this 

additional motion, they wanted to ensure that the agent 

knows that it reached the target but not randomly came to 

that location. They found significant improvements with the 

sensory input of depth. Also, they supported that the RGB 

images were not performing significantly better than blind 

agents that chooses random actions during the training. 

They gave GPS input for both RGB agents and blind agents, 

and researchers suggested that this sensory input given both 

might be the reason for that (Savva et al., 2018). 

 
1.2 Research Aim 

To deal with limitations of previous studies’ methods that 

included blind or sighted participants in basic, unrealistic 

environments that explained above, in this project we are 

training computer agents with Deep Reinforcement 

Learning in a realistic 3D indoor environment to reach 

human-level performance. The main aim of this study is 

investigating the usability of RL agents to develop 

simulated phosphene vision. By this way, we can provide 

an alternative for behavioural experiments with human 

participants to optimize phosphene models. Additionally, 

realistic virtual environments will allow more significant 

comparisons between the performances of RL agents and 

humans. 

In summary, the aims of this research project with 

following provisional implications are: 1) Using a realistic 

environment to train and test the RL agent with 

phosphene vision. This will clear the way for studies with 

more complex environments and tasks such as dynamic 

environments. In line with this, using a realistic virtual 

environment will widen the choices of experimental 

designs. Additionally, the realistic environment developed 

in this study will provide a baseline testing environment for 

future studies. 2) Comparing different parameters to 

train the agent, which contributes to the aim of training 

equivalent Deep RL agents to human participants. 

Achieving this might decrease the costs significantly and 

facilitate studies in this area of research. 3) Comparing 

different image pre-processing techniques which might 

allow us to see the effect of extracting visual cues and the 

contribution of different visual cues in a realistic setting for 

a navigation task. 

 

1.2 Technical Background 

 
1.3.1 Reinforcement Learning 

To optimize the simulated vision, testing sighed participants 

provides a better alternative than testing blind participants 

with implants in terms of the risk of the surgical operation 

and the cost. However, even when we test simulated vision 

with sighted participants, the cost still remains high and 

takes significant amount of time. For this reason, 

reinforcement learning may serve to find better ways to try 

and develop phosphene vision. The use of artificial agents 

as participants accelerates testing while decreasing costs. 

The use of Reinforcement Learning is encouraged 

because of the similarity of the learning process with 

humans. The learning process of people includes learning 

the environment from the experiences via trial and error. 

Rational people seek to find the optimum decision by 

maximizing the reward while minimizing the penalty during 

life. We start to explore the environment and relying on the 

positive or negative feedback, we develop knowledge about 

our environment. Similarly, in machine learning, 

reinforcement learning (RL) is used as a decision-making 

concept that maximizes the long-term cumulative 

reward/return even in complex problems. With this 

feedback information which decreases the uncertainties in 

the environment, the agent can choose the optimal action in 

that state and move to the next state. 

 

 
Figure 1.1. Reinforcement Learning Cycle 

 

In a typical RL problem, there is an interaction 

between the agent and the environment. The agent chooses 

an action, and the environment provides rewards and the 

next state based on the chosen action of the agent. To 
formulate this problem, we need to understand the Markov 

Decision Process (MDP). 

 



 

 

 

  To describe a Markov Decision Process, there are 5 

elements should be captured (Garg et al., 2022). 

 

In this formula, the S stands for the set of states and 

A stands for the set of actions. Pa or P(s,a,s’) is the 

transition probability or in other words the probability that 

the chosen action a at current state will lead to state s’ at the 

next state. Ra or R(s,a,s’) is the received reward after the 

transition after the action chosen from the current state to 

next state. Lastly,   is the discount factor to generate a 

discounted reward. It determines the significance of the 

future reward in different time steps. It changes between 0 

and 1. 

Fundamentally, the Markov Decision Process 

assumes that the environment and the agent interact at 

discrete time steps. In other words, at a specific discrete 

time-point or state, the agent performs an action and moves 

into its next state based on the transition function; this state 

and action provides the agent a reward. By this way, the 

agent learns the decision-making process based on the 

current state which shows the current state is already 

enough to choose the optimal action with the information 

retained via previous states. 

More technically, the MDP aims to find the optimal 

policy () to yield the optimal maximized long-term reward. 

Policy is basically a method of mapping from states to 

actions. Constructing the optimal policy is important to 

maximize the rewards corresponding to the actions. To 

reach this aim, the information of the value of the action at 

a specific state is required. Q-Values serve for this aim. 

Q(s, a) or state-action values gives the value or expected 

return for taking an action a in a state s in policy . 

 

 

Briefly, the state-value functions allow the agent to 

predict the future rewards. However, it is not preferred to 

wait until observing all the future rewards; as an alternative 

for that, the value functions can be defined recursively in 

terms of a Bellman Equation for the value of selecting the 

next action for the next state. 

 

 

As the main goal is finding the best policy, the optimal 

policy * should lead to the optimal value function Q*(s,a) 

with the maximum value or maximum reward. 

1.3.2 Q-Learning 

Q-learning is the process of updating the Q-values for each 

state-action pairs with the Bellman Equation with the 

reward received after the action until it converges to optimal 

value function. During Q-learning, Q-values are stored in 

Q-table which has each possible state as rows and each 

possible actions as columns. In Q-table, the Q-values are 

initialized to zero at the first implementation. However, 

when the agent starts to explore the environment, it updates 

the Q-table with the new observations. Each cell of this 

table contains the reward estimated to be received with that 

state-action pair. An optimal Q-table contains the values 

that allows the RL agent to choose the best action with the 

highest return in any possible state. 

  As the agent does not have enough knowledge about 

the environment at first, it starts with the exploration 

process. During Q-learning, the agent uses the Q-value 

estimations to choose the optimal action and uses -greedy 

policy to decide. With this policy, agent might explore, or 

exploit based on the . The epsilon determines the 

probability of whether the agent is going to explore or 

exploit. The agent chooses the optimal action with the 

probability of 1- and otherwise it chooses a random action 

and explores the environment. The  is set to 1 at the 

beginning and it slowly decreases towards 0 as the agent 

gains more knowledge. 

  During the exploration, the agent selects a random 

action from the possible actions. After a while, the agent 

starts to use the experience so the knowledge about the 

environment to choose the actions. During this exploitation 

process, the agent chooses the optimal action with 

maximum Q-values. 

1.3.3 Deep Q-Networks 

However, even though Q-learning is working well with 

basic environments, Q-tables are impractical for complex 

problems with higher state space. For complex 

environments, tabular Q-learning is infeasible. 



 

 

 
Figure 1.2. Deep Q-Learning 

 

Mnih et al. (2015) solved this problem by inventing 

the Deep Q-Networks (DQN) algorithm. With DQN, they 

provided a solution by applying neural networks to estimate 

the optimal Q-function by using function approximators. By 

this way, DQN can learn policies also from high-

dimensional sensory inputs directly using end-to-end RL. In 
that study, they gave input of stacked 4 frames to the 

network and tested the performance of the agent on 2600 

Atari games. The performance of the algorithm was better 

than the previous algorithms on 43 of the games and it 

outperformed a human expert on 49 of the games (Mnih et 

al., 2015). 

DQN algorithm is the combination of Reinforcement 

Learning and Artificial Neural Networks which provides 

the RL agent artificial intelligence capabilities. Mnih et al. 

(2015) demonstrated using DQN offer promising results by 

integrating Convolutional Neural Networks, replay 

memory and a target network. At the end, this integration 

provides human compatible behavioural results with the 

trained agents. 

Convolutional Neural Networks takes an input of 

stacked frames and generates output of Q-values for each 

possible action. 

Training with the DQN algorithm benefits from 

experience replay technique. With the experience replay, 

the agent’s previous experiences for each state, action, 

reward, and the next states at a time point is stored in the 

replay memory as tuples. 

    

As a significant advantage, using a replay memory allow us 

to use a sample that not only use the last consecutive 

experiences. This technique called replay buffer or 

experience replay is a better way to benefit from previous 

experiences because it avoids the high correlation between 

consecutive samples by using a batch of random 

experiences to update the Q-network. 

Lastly, target network is another integrated element 

of DQN to make the training more stable. The target 

network has the same architecture with the online network. 

It is used to calculate the target values. Also, the parameters 

of the target network are copied from the online network. 

However, the trick is, the parameters of the target network 

is updated less frequently. By this way, the target values are 

calculated with the same parameters until the next update 

which provides stability during training. 

    

A Q-network can be trained by minimizing the loss 

function which is the difference between the target values 

and the predicted values. 

There are different functions to minimize the loss. Huber 

Loss function is one of these functions which is related with 

this study. 

  

In this formula, a refers to the difference between the 

predicted and observed values. Huber loss or SmoothL1 is 

a robust function to the outliers. With the formula above, it 

is more linear with larger values and quadratic with smaller 

values. Additionally, Huber Loss applies error clipping in 

range of (-1,1) and avoids the exploding gradients which 

might cause large changes in the weights of the neural 

network during the training and make the model highly 

unstable (Mnih et al., 2015). 

Methods 

2.1 Navigation Task 

For the mobility learning, we have used a navigation task. 

In this navigation task, the goal of the agent was reaching 

the target. There are different ways of goal identification 

such as ObjectGoal, PointGoal or AreaGoal (Anderson et 

al., 2018). In our project, we selected the navigation task of 

PointGoal. The agent was generated at the same location at 

the beginning of each episode and the task of the trained 

agent was to freely navigate in the environment towards the 

target by avoiding the wall and object collisions and by 

using the shortest path. The episodes were successfully 

terminated when the agent reached the target. However, for 

the unsuccessful episodes, the episodes were terminated 

when the agent reached the maximum number of steps. The 



 

 

maximum number of steps that the agent can use was 500 

steps in our experiments. By using this task as a baseline in 

all experiments, we have conducted different experiments 

by manipulating some parameters like the reward and the 

location of the target generated in different training 

sessions. 

Even though we are working with computer agents to 

develop the models to provide optimized and efficient 

phosphene vision models, the important thing to remember 

is that these models will be used in real world settings. 

That’s why it is important to design these experimental 

settings as much as realistic to have correlational results 

with real life situations. 

For that reason, we used the behavioural navigation studies 

as a reference. When a rational person walks towards a 

location, s/he prefers the closest route and avoids the 

obstacles. In a recent study De Ruyter van Steveninck et al. 

(2022) conducted a study by using a real hallway setting to 

test sighted people with simulated phosphene vision with 

VR glasses. Then researchers compared the performances 

of the participants with the walking speed, avoidance 

strategy and their subjective reports (De Ruyter van 

Steveninck et al., 2022). 

In our experimental setting, we also implemented the 

avoidance strategy. For the avoidance strategy, the aim was 

avoiding the obstacles while walking towards the target. 

With negative feedback, we aimed to teach the agent to 

minimize the collisions. Additionally, as rational people 

would prefer to use the shortest path to reach a location, we 

counted the number of steps agent used in one episode and 

manipulated the rewards to teach the agent to use minimum 

number of steps to reach the target location. Briefly, both 

the efficiency of the navigation and reaching the goal were 

important for the evaluations of the navigation task. 

2.2 Realistic Virtual Environment 

One of the limitations of the previous studies was the lack 

of a realistic environment. In this project, we aimed to use a 

realistic indoor environment. 

2.2.1  Unity 

Unity is one of the most preferred platforms to create 

interactive and real-time 3D environments in many 

industries such as video games, movies, or architecture. It 

has some benefits like providing wide range of assets and a 

really good graphics that makes the motions more natural. 

A major strength of Unity Platform is that Unity is 

also a Physics Engine. We benefit from multiple physics 

rules in this study. 

For a realistic environment, we have developed and 

used ArchVizPro Interior Vol.1 3D Environment suitable 

for our project aim. The environment consists of high-

quality furniture/props and HD textures. The environment 

includes 3 different furnished rooms that the agent can 

freely navigate. The props, player, or components of the 

scene or technically the GameObjects are physical entities 

in the environment and there are some components assigned 

for each physical entity such as Mesh Components, 

Renderers, Colliders. 

 

 

 

Figure 2.1. Unity realistic virtual environment from 

different perspectives. 

 

Collisions 

The most important physics component we benefit was the 

colliders. In Unity virtual environment, there are colliders 

assigned to each object in the environment. Colliders are 

used to detect a collision between GameObjects in the 

environment. There are different types of colliders and 

physic materials of colliders. One type of colliders is the 

Box Colliders. The components of the objects allow us to 

use the geometrical information of the GameObjects like the 

size or bounds of the collider. If the collider has the same 

physical entities with the GameObject, then the colliders 

provide the geometrical information of the object. However, 

Unity allows the user to change the parameters of the 

components. 

Target Generation 

As we adopted the PointGoal navigation task, the agent 

navigates towards the target to reach a specific location. At 

the beginning of every episode a new target is generated at 

a random location. The agent is considered to reach the 

target when it gets in range of distance below the threshold 

of ‘agent’s body size x 2’ which is used as a default 

threshold recommended by reviews (Anderson et al., 2018). 

To check if the agent reached the target, we have used the 

Physics information we got from Collider properties such as 



 

 

the collider size of the agent and the physical position of the 

agent in the dimensions of -x, -y and -z. 

In the current setup, we also implemented the 

ObjectGoal navigation task. For that case, we collect the 

information of the center of the objects and their sizes to 

reach a kind of mapping about the environment. By using 

this list, we are also able to use the objects in the 

environment as targets. The parameters provided with 

colliders such as the size, boundaries, coordinates, or the 

center of the objects are used while generating the target at 

a location not colliding with any other objects. 

There were some critical points to be ensured during 

the target generation. 

1. No collision with other objects: 

- Agent - Object Collision 

A significant aspect of generating the target was 

ensuring that when the agent reached the target, it is 

not going to collide with any other objects. To achieve 

that, rather than generating a target location, we have 

generated a target object with the collider size of the 

agent. In this way, when we assured that the generated 

target is not colliding with any other objects, we also 

assured the agent is not going to be colliding when it 

reached to target location or the center of the target 

object. Also, we disabled the physics components of 

the object such as the colliders to avoid the negative 

feedback caused by collisions with the target object. 

- Target Object - Object Collision 

As there are many pieces of furniture in the 

environment, we ensured that the target location was 

not created within the boundaries of any of the 

objects. Before generating a target location within the 

indoor environment, it is checked with the condition 

of “If the agent reaches the target, would it collide 

with any objects?” and kept generating another target 

location until the conditions are provided. 

2. Selecting Floors: 

As the target should be inside the environment, we needed 

to use the information of floors to draw the boundaries of 

the environment. However, the floors were also grouped 

with other objects in the environment. For this reason, there 

was a need for differentiating the floors from other 

GameObjects in the scene. To solve this problem, we have 

used the labels to reach the information of the floors 

specifically. In other words, we labelled the floors with 

’floor’ label to differentiate from other objects. 

3. Visibility 

Since, we are providing the frames as an input to the agent, 

the targets should not be visible in the frames provided to 

the agent. For this reason, we disabled the visibility of the 

target object by disabling the Mesh Renderer. 

Physics Rules 

When we used only the physic rules of the Unity Engine, 

the agent was able to go through the objects and walls. That 

was the case especially when we used a bigger step size. We 

wanted to keep it realistic, so changing the step size was not 

an optimal solution. That’s why we needed to implement 

additional physic rules to the environment. After this 

implementation, when the agent was collided with an 

object, the agent moved back to the location before the last 

step. However, the negative feedback for the collision was 

still provided. That was necessary because we aim to teach 

the agent minimizing the collisions and also want to keep 

the environment with realistic conditions. 

 

 



 

 

2.3 Learning Algorithm 

Studies demonstrated that the DQN algorithm has a 

limitation of overestimation (Hasselt et al., 2016). DQN  

algorithm combines a deep neural network with Q-learning. 

For more detailed explanation you can refer to the part 

explained Q-learning and DQN. However, in summary, 

overestimation problem is mainly the result of Q-Learning 

which uses argmax () function which basically always 

chooses the maximum value to estimate the values. 

Additionally, it uses the same weights to choose the action 

and evaluate the action which is a really optimistic 

approach. Another algorithm suggested that can be used to 

avoid these limitations is the Double DQN algorithm. With 

D-DQN, rather than this overoptimistic approach, we can 

use a more realistic evaluation by using different networks 

to choose and evaluate an action chosen. 

Hasselt et al. (2016) analysed the performance and the 

estimated values of DQN and D-DQN with various Atari 
games and they demonstrated that the value estimations of 

DQN was significantly higher than the true values. 

Researchers defined the true values as Q*(s,a) = V*(s) in 

their evaluation. Their results demonstrated that, the 

overestimation problem was also affecting the performance 

in a negative way (Hasselt et al., 2016). 

 

Similar to DQN, the D-DQN algorithm chooses the 

optimal action for the current state by using the online 

network. However, to fairly evaluate this action, it uses 

another network with different weights. By this way, it 

reduces the overestimation and gives closer results with real 

values. In line with this, it results in better performance. 

By relying on the recent evaluations of DQN and 

Double-DQN, we preferred to use the Double-DQN 

algorithm. With the D-DQN algorithm, we chose the actions 

for the current state by using the online network. Then, we 

have used the target network to fairly evaluate the estimated 

values with different set of weights.

 

 

 

 

 

 



 

 

 

 

2.4 Vision Processing 

The size of the frames returned from the Unity environment 

was 128x128. These RGB frames converted into gray-scale 

images. Then we applied different image pre-processing 

techniques in different experiments to compare their effect 

on performance of the Deep RL agent. 

Phosphene Vision with Canny Edge Detection 

Canny edge detection is a commonly used algorithm to 

detect edges. By using Canny Edge Detection algorithm on 

gray-scaled images, we detected the edges in the image. We 

have used cv2 package to implement Canny edge detection. 

The algorithm uses 2 threshold parameters to generate clear 

edges as an upper and lower threshold. The algorithm 

smooths the image and decides to the edges by checking 

upper and lower threshold for all pixels. Any pixels with 

higher intensity than the maximum threshold is considered 

as sure-edge pixels. If there are pixels connected to sure-

edge pixels with intensity between maximum threshold and 

minimum threshold, they are also accepted as a part of the 

edges. However, the pixels that has lower intensity then the 

minimum threshold and pixels that has higher intensity than 

the minimum threshold but not connected to a sure-edge 

pixel are discarded. By this way, the algorithm specifies the 

edges and creates a canny edge mask. In theory, it is 

suggested that the canny algorithm satisfies some criteria 

such as low error rate, good localization and minimal 

response which help to detect only the real edges and only 

one detection for per edge. 

We have implemented the maximum threshold as 70 and 

minimum threshold as 35 in our experimental settings. 

Later, we have fed these images into phosphene simulator. 

Phosphene simulator converts the image into simulated 

phosphene vision. The phosphene resolution applied in our 

experimental settings were 30. 

 

Figure 2.2. An example of input image. From left to right 

1) Original Image. 2) The Object Contour Segmentation 

Image. 3) Canny Edge Detection Image. 4) Phosphene 

Simulator Image. 

 

Phosphene Vision with Object Contour Segmentation 

and Canny Edge Detection 

  

Even though Canny Edge Detection is a commonly used 

and efficient algorithm, this environment was too complex 

and realistic. It contained so many objects, textures, realistic 

elements like lights or shadows. That’s why we also 

implemented another algorithm to test the efficiency of 

more complex image pre-processing algorithms for 

complex environments. 

Rather than using gray-scaled images to create Canny 

masks, we have used Unity’s Object Contour segmentation 

algorithm. This algorithm uses the Renderer Unity 

components to select each object in the scene and segment 

them with different colours. This algorithm basically selects 

object by drawing a bounding box around them. As a next 

step, we have used these images to create Canny edge mask 

and then fed into phosphene simulator with the same 

procedure mentioned above. 

Even though the computational load of this process 

was higher, the images generated with only Canny Edge 

Detection algorithm were noisier. By this additional pre-

processing step, we created an input with less noise. We 

believe this is important because as mentioned before, 

because of the biological limitations, we need maximum 

information with lower resolution. 

 

 

Figure 2.3. An example conversion of input image. From 

left to right 1) Original Image. 2) The Object Contour 

Segmentation Image. 3) Canny Edge Detection Image. 4) 

Phosphene Simulator Image. 

2.5 Neural Network 

The convolutional neural network is composed of 3 

convolutional layers followed by ReLU activation function 

and batch normalization. Additionally, the model has a fully 

connected Linear output layer that provides 3 outputs as 

there are 3 possible actions the agent can choose. The 

outputs are basically the Q-values for each possible action 



 

 

which provides a comparison between actions to judge the 

values then selection of the action based on this comparison. 

2.6 Input to the Neural Network 

For the first experiments, we have used frame stacking 

technique by stacking last 4 frames. The stacked and pre-

processed frames formed the states as inputs. 

However, in some of the experimental settings we 

added another frame to the state to give an additional 

information of ’distance to target’. Then, we gave this input 

to the convolutional neural network. 

To add the information of ’distance to target’, we 

generated an array with the size of the frames; all pixel 

values were filled with the information of ’distance to 

target’. As pixels can only have a value between 0-255, we 

manipulated the information of distance to target. We 

multiplied the distance to target information by 10 then 

rounded it to the closest integer. We took this information 

via PyClient which provides the communication between 

Unity and Python. Then we normalized the distance with 

255 which is the maximum value a pixel can get. By this 

way, we combined the additional distance knowledge with 

states. 

2.7 Action Selection 

The agent was able to move forward only with forward step. 

However, the agent was also able to rotate 90° to the right 

and left. During training, agent chose the action with the -

greedy strategy as explained above. However, during the 

validation session, agent chose the action with maximum 

value. 

2.8 Training Procedure 

2.8.1   Training Duration 

The trainings lasted 1000 episodes in general. However, in 

some cases there have been some changes because of 

different reasons which will be explained later in detail in 

related parts. The maximum number of steps that agent can 

act was 500 in all the experiments. Each episode terminated 

when the agent reached the target or when the agent reached 

the limit of maximum steps. 

2.8.2 Update of target network 

As mentioned before, Double-DQN algorithm also use a 

target network. In the first experiment, the target network 

was updated with the parameters of the policy network 

every 10 episodes. However, to stabilize the model training, 

we have changed it and updated the target network every 

100 episodes in later experiments. 

2.8.3 Training Parameters 

As a part of the D-DQN, we have used replay memory 

component to store the experiences of the agent. In all 

experimental settings, the memory capacity was 12000. The 

batch size we have used to sample was 128. 

To update the weights of the network at each iteration, 

we have used Adaptive Momentum or Adam optimizer. 

Some advantages of using the Adam optimizer are the 

minimum memory requirement and its efficiency also with 

complex problems (Yi et al., 2020). As mentioned before, 

to reach improved performance of RL agents, we want to 

minimize the prediction error. Adam optimizer uses an 

adaptive learning rate. We used 0.0001 as the initial 

learning rate. The maximum optimization step in a training 

session was 1e6. 

2.8.4 Target 

In different experimental settings, we have used different 

strategies to generate the targets. 

1. Target generated at a random location in the 

environment 

In some of the environments, the target object was 

generated at a random location inside the 

environment. 

2. Target generated at a further location as 

training progresses 

During the experimental settings, the results 

demonstrated that the capacity of the RL agent to 

reach the target differs with the initial distance to 

target. As an alternative technique, we manipulated 

the area that the target object can be generated in the 

environment. In these setups, for the first 500 

episodes the area that target can be generated 
increased every 100 episodes. At the end of the first 

500 episodes, the area that target object generated 

reached the same size with the room the agent 

generated. After 500 episodes, the area target object 

can be generated was like the first strategy, so it was 

generated at a random location in one of the 3 rooms. 

In these experimental settings, the training lasted 

1000 episodes. 

 



 

 

2.8.5     Distance Calculations 

In different experimental settings, we have used different 

types of distance calculations.1
 

Distance approached to the target 

For the purposes of statistical analysis, we have calculated 

the distance approached to the target at the beginning of 

each episode and at each step. 

 

We explored different approaches to calculate the distance. 

1. Euclidean Distance 

Euclidean distance is basically the magnitude of the 

distance between two location points as a straight 

line. 

2. Shortest Distance 

To calculate the shortest path between two locations, 

Unity provides a component of NavMeshPath. To 

calculate the distance, it uses the corner properties 

and calculates the distance between two corner 

points. As an advantage over the other distance 

calculation methods, the NavMeshComponent finds 

the shortest path between two locations by also 

considering the obstacles between two locations. The 

path was not an input to the RL agent, we just used it 

for statistical evaluation. 

3. Manhattan Distance 

Even though we did not prefer to use in our 

experimental settings, the Manhattan distance type is 

also implemented. It is the sum of absolute distance 

between two coordinations. 

2.8.6 Rewards 

In different experimental settings, we have used different 

reward sets until the 4th experiment. But in general, the goals 

of the rewards were the same. For specific values, please 

refer to Table 3.1. 

 

 
1 1 Unity unit corresponds to 1 meter in 
reality. 

• Collision Reward 

To achieve a better avoidance strategy, we have used 

negative reward for object and wall collisions. 

• Forward Step Reward 

The reward selection was more complicated to satisfy 

a successful navigation task. For the forward steps, 

we did not keep the reward constantly negative or 

positive. We have manipulated the reward with the 

distance approached to the target. More specifically, 

the agent got negative feedback when it moved 

further from the target, and it got a positive reward 

when it approached to the target. In the first 

experimental setting the reward was scaled by the 
distance change between the agent and the target with 

the current step. For the second experiment, we didn’t 

use a reward for forward step because the rewards in 

this experimental setting were normalized and we 

only gave feedback when the agent reached the target 

or collided with an object. However, for the rest of the 

experiments, we kept the forward step reward fixed 

and gave +1 for the conditions agent moved towards 

the target and -1 for the forward steps getting further 

from the target. The aim behind these rewards was 

teaching the agent to walk towards the target location 

by avoiding steps going further from the target. 

• Rotation Reward 

We have used a negative reward for the rotations in 

all experimental settings other than the Experiment 2. 

As we evaluated the navigation task with also the 

efficiency of the travel, the agent was expected to 

reach the target in shortest time. For this aim, we gave 

negative feedback to the agent for losing a timestep. 

Only in the 2nd experimental setting, we have used a 

basic reward setting by just giving a positive reward 

for target reached conditions and a negative reward 

for collisions. So, there was no other rewards, 

including the rotation. 

• Target Reached Reward 

In all experimental settings, we gave positive 

feedback for the episodes that the agent reached to the 

target location. Reaching the target was the main 

navigation task, so the positive reward was 

significantly higher than the other rewards. 

 



 

 

• Maximum Steps Reached Reward 

Only in the first experiment, we gave negative 

feedback if the episode terminated with the condition 

of the agent reached the maximum number of steps 

without reaching the target. The goal behind this 

reward was again teaching the agent to reach the 

target. However, using so many rewards with high 

values made the model unstable, so we changed our 

strategy. 

2.8.7  Agents 

We can classify agents in different training sessions 

according to the image pre-processing technique we have 

used or types of models we implemented. 

1. Double-DQN Agent and Random Agent 

These agents were mainly different with their action 

selection strategies. While the Double-DQN Agent 

chose the action with the output of the Q-Network 

(Please refer to Algorithm 1 for details.), the random 

agent chose the actions randomly. Then we have used 

these different model behaviours to see the effect of 

training. 

2. Sighted-Agent, Canny-Agent, and 

Segmentation-Agent 

We have used different image pre-processing 

techniques in different experimental settings. To 

compare the performances of the agents trained with 

different inputs, we have tried different image pre-

processing techniques in different training sessions. 

The Sighted-Agents were the agents we have trained 

by using gray-scaled images as inputs. The Canny-

Agents were the agents we have used only Canny 

Edge Detection algorithm to pre-process the input. 

Lastly, the Segmentation-Agent was the agent 

trained with the input pre-processed with both Object 

Contour Segmentation Algorithm and Canny Edge 

Detection Algorithm. 

2.9 Model Evaluation 

2.9.1   Validation Session 

After every 50 episodes, we have run a validation session 

with specific 5 different seeds. Because of the seeds, for 

each validation episode, the target location was the same for 

all the validation sessions. By this way, we were able to test 

the model with the same validation session every time. 

During the training, in validation loops we have saved 

the models to test the performance of the agent with the 

policy network parameters and create videos to also observe 

the session visually. For this aim, we have saved different 

models. One model was the best model which was the 

model used in validation session with the highest average 

return. The second model was the recent model, which is 

the final version of the trained model. Lastly, as the best 

model was selected with the information of the maximum 

reward, we have saved a third model as target-reached 

model. target-reached model was selected based on the 

number of episodes that the agent reached the target during 

a validation session. 

Lastly, the mean initial distance was the same for all 

the validation sessions because of the seeds. Also, even in 

cases we used different strategies for target generation, the 

validation session was the same for all the experiments; the 

target objects in the validation session always generated at 

a random location in the house environment. 

Experiments and Results 

 

Table 3.1. A table to summarize all the parameters used in 

experimental settings. 

3.1 Input to Neural Network 

In the first three experiments, the input of the Neural 

Network was the frames converted to phosphene. We 

stacked 4 pre-processed phosphene frames as states and fed 

the network with this input. 

3.2 Double-DQN Canny-Agents 

3.2.1 Experiment 1 

Rewards In this experimental setting, we gave 

positive feedback if the agent was moving towards the 

target or reaching the target and we gave negative feedback 

for the actions not moving towards the target, collisions, and 



 

 

terminated episodes without reaching the target. For values 

of the rewards, please refer to Table 3.1. For a general 

explanation for the rewards, please refer to subsection 2.8.6. 

Target At the beginning of each episode, a target was 

generated at a random location in the environment. 

Training Performance We have assessed the 

performance by relying on different parameters such as the 

cumulative reward, total collisions, distance approached to 

the target, the initial distance at the beginning of the episode 

and the final distance to the target at the end of the episode 

etc. 

During the training, the cumulative rewards for 

episodes were increasing. However, even though it was 

increasing, the reward was highly negative. 

 

Figure 3.1. Episode-Reward Graph for Experiment 1. 

 

Figure 3.2. Episode-Total Collisions Graph for Experiment 

1. 

The Figure 3.2 demonstrates that, the agent was learning 

obstacle avoidance during the training session. This is a 

possible reason for increasing rewards. 

However, as it can be seen from the Figure 3.3 for the 

percentage of actions chosen during the training session and 

the percentage of conditions for episode termination, the RL 

agent was avoiding the collisions by avoiding forward steps. 

As the agent was only able to move forward with the 

forward step, it was colliding only when it chose the 

forward step. When the agent moved forward, the rewards 

for the collisions were remarkably higher than the rotation 

reward. We believe, that’s why the agent was more prone to 

rotation rather than a forward step. The action selection of 

the Canny-Agent almost looks like a Random-Agent that 

chooses the actions randomly at each step. Also, during the 

training session, the Deep RL agent almost did not reach the 

target location. The Figure 3.3 demonstrates that almost all 

the episodes terminated unsuccessfully when the agent 

reached the maximum number of steps. 

 

  

Figure 3.3. A) Percentage of actions chosen during the 

training for Experiment 1. B) Percentage of termination 

conditions in a training session for Experiment 1. 

Also, the positive reward scaled with distance approached 

was not compensating the negative reward of the collisions. 

For this reason, the cumulative rewards were highly 

negative, and the agent was not colliding with the objects 

because it was learning to rotate around rather than moving 

towards the target. 

 

Figure 3.4. Cumulative distance approached to the target 

graph for episodes in a training session for Experiment 1. 

The Figure 3.4 also supports that the agent did not learn to 

reach the target during the training as it was almost the same 

in all episodes. 

Validation Performance Even though the increase 

of the reward was more stable during training, for the 

validation sessions it was unstable. The Figure 3.5 

demonstrated that there was not a development in the 

learning across episodes. 

 



 

 

 

Figure 3.5. Rewards for the validation session for 

Experiment 1. 

Figure 3.6. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

Also, during the validation sessions, the RL agent 

mostly preferred to rotate around itself. As the agent was 

not learning to move towards the target, it was not able to 

reach the target in any of the validation sessions. 

In general, the analysis shows that the RL agent did 

not learn to move towards the target, but it preferred to 

rotate around itself to avoid collisions and minimize the 

negative reward. In addition to the graphs demonstrating the 

model was not serving for our aim, the GIFs created with 

the models saved during the validation sessions also showed 

that the models were not successfully trained. 

3.2.2   Experiment 2 

To deal with the problems in the first experiment, we 

wanted an experimental setup to reach more stable results. 

For this reason, in this experiment, we have used 

normalized rewards. 

Rewards In this experimental setup, we only used 

rewards for the conditions of target reached and collisions. 

By this way, we aimed to see the behaviour of the agent with 

a more simplistic design and normalized reward set. For 

values of the rewards, please refer to Table 3.1. For a 

general explanation for the rewards, please refer to 

subsection 2.8.6. 

 

Target Similar to the first experiment, the target 

location generated at a random location in the environment. 

Figure 3.7. Episode-Reward Graph for Experiment 2. 

Training Performance Figure 3.7 demonstrates that 

using normalized rewards also results in normalized 

cumulative reward. As the aim of this experiment was 

reaching more stable results, we reached the aim in 400 

episodes. Similarly, the Figure 3.8 for total collisions 

showed that the agent learned to minimize the collisions in 

400 episodes. 

 

Figure 3.8. Episode-Total Collisions Graph for Experiment 

2. 

Interestingly, the percentage of the actions chosen 

during the training and the percentage of the conditions for 

the episode termination was the same with the first 

experiment (Please refer to Figure 3.3). However, in this 

experimental setting, only positive feedback agent got was 

reaching the target. In other words, there was no reward 

implemented for walking towards the target. In line with 

this, the increasing cumulative reward can be explained by 

avoidance strategy rather than reaching the target location. 

As also can be seen from the Figure 3.10, there was no 

development for the performance of navigation task, so the 

agent did not learn to move towards the target during this 

training session. As mentioned before, since there were no 



 

 

implemented rewards other than reaching to target, it was 

expected that the agent was not learning this task. 

Figure 3.9. A) Percentage of actions chosen during the 

training for Experiment 2. B) Percentage of termination 

conditions in a training session for Experiment 2. 

Figure 3.10. Cumulative distance approached to the target 

graph for episodes in a training session for Experiment 2. 

In the first experimental setting, there were no 

improvements across episodes in terms of distance 

approached to the target location (Please refer to Figure 

3.4). In this experimental setting, the agent was even getting 

further from the target location. For conclusion, even 

though the model was not working with the parameters 

specified in the Experiment 1, the reward implementation 

for the distance approached to the target had some positive 

implications in the results. 

Validation Performance To evaluate the model and 

the training, we investigated the validation performance. 

Like the training session, the cumulative reward reached to 

0 after a short training session. In contrast with the first 

experiment, in this experimental setting, the increase of the 

reward was stable in validation sessions. The reward graphs 

3.11 and 3.12 shows that after 150 episodes, the mean 

reward was 0 for every seed or 5 different target locations. 

This reward setting did not increase the percentage of 

forward steps remarkably. Also, there were no episodes that 

terminated due to target reached condition. 
 

 
Figure 3.11. Rewards for the validation session for 

Experiment 2. 

Figure 3.12.   Graph for the rewards during validation 

sessions and the standard deviation. 

 

Figure 3.13. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

The Figure 3.14 also proves that the agent did not learn to 

move towards the target. The average final distance to the 

target in the last validation sessions were even higher than 

the average initial distance. 

 

 
Figure 3.14. Graph for average initial and final distances to 

the target in validation sessions. 



 

 

3.2.3   Experiment 3 

The RL agent was able to learn the avoidance strategy with 

Experiment 2. However, in this experimental setting we 

have added rewards to teach the agent to move towards the 

target to reach the target. 

During this experiment, there were some limitations 

that affected the results. The Unity crashed multiple times 

during the training. To deal with this problem, we uploaded 

the policy network and optimizer parameters and continued 

the training. However, loading the model affected the 

visualized graphs and training procedure. For this reason, in 

this experimental setting, the training duration is 405 

episodes. 

Rewards In this experimental setup, we aimed to 

implement the rewards to teach the navigation task of 

reaching the target. We added the negative step reward 

again for the rotations. Additionally, we gave a negative 

step reward if the agent was going further from the target. 

However, we gave a positive reward for walking towards 

the target. 

To choose these rewards, we have made some tests 

and checked the performance for different reward settings. 

For example, in one of the experimental settings we scaled 

the positive reward for walking towards the target with the 

distance approached to the target. The results of that trial 

showed that the positive reward was too low. That’s why 

we changed the positive reward fixed to +1 if it is getting 

closer. Also, we have tried a setting with +10 reward for the 

conditions the agent reached the target. This reward was not 

enough so we converted it to +50 in this setting. For values 

of the rewards, please refer to Table 3.1. For a general 

explanation for the rewards, please refer to subsection 2.8.6. 

  Target The target location generated at a random 

location in the environment. 

Training Performance In this training session, the 

Figure 3.15 for the cumulative reward was demonstrating 

increase in reward like the reward graph (Figure 3.1) of the 

training session in Experiment 1, even though it was still 

negative. It was still normal because for every step not 

moving towards the target, we gave negative reward. 

Figure 3.15. Episode-Reward Graph for Experiment 3. 

The Figure 3.16 shows that for the avoidance strategy, 

the performance got better during the training session; agent 

learned to avoid collisions. Additionally, the Figure 3.17 

demonstrates that with this reward setting the agent started 

to prefer forward step rather than rotating around. In this 

experimental setting, the RL agent was getting equally 

negative reward for every step it was not moving towards 

the target which made it prefer to move towards the target 

location which was the main navigation task. With this 

development in the action selection of the RL agent, the 

episodes terminated due to target reached condition also 

increased. 

Figure 3.16. Episode-Total Collisions Graph for 

Experiment 3. 

         

Figure 3.17. A) Percentage of actions chosen during the 

training for Experiment 3. B) Percentage of termination 

conditions in a training session for Experiment 3. 



 

 

The Figure 3.18 for distance approached to the target also 

supports the claim that the agent started to learn to move 

towards the target within this experimental setting. 

 

 
Figure 3.18. Cumulative distance approached to the target 

graph for episodes in a training session for Experiment 3. 

Validation Performance The mean reward for the 

validation sessions was not as good as the mean reward in 

the validation session of the Experiment 2 (Please refer to 

Figure 3.1.1). Still, as the reward setting was completely 

different and more basic in that setting, the difference 

between the cumulative graphs of two experiments is 

expected. 

 

Figure 3.19. Rewards for the validation session for 

Experiment 3. 

 

Figure 3.20. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

This experimental setting was the first experimental 

setting we have seen the agent reached the target during the 

validation sessions. Similarly, the Figure 3.21 comparing 

the initial distance and the final distance showed that, the 

agent started to show development in navigation task. 

However, when we visualized the models to check the 

behaviour of the agent, the model was still not performing 

efficiently. For conclusion, this experimental setting 

showed that this training method was not enough for this 

complex problem and environment. 

 

 
 

Figure 3.21. Graph for average initial and final distances to 

the target in validation sessions. 

3.3 Random Agent 

For the next experiments, we kept the reward setting the 

same. This provided us with a means to compare 

performance of agents with different visual and behavioural 

capacities under the same conditions. The random agent 

acts as a baseline in this sense. 

3.3.1   Experiment 4 

  Rewards Rewards kept the same. For values of the 

rewards, please refer to Table 3.1. For a general explanation 

for the rewards, please refer to subsection 2.8.6. 

Target The target object was getting further during 

the training. There were some problems with the 

ShortestPath, in some of the steps it was not possible to find 

the shortest path. As we implemented the distance to target 

parameter as an input to the target, we have changed to 

distance type Euclidean. 

Training Performance As this was the Random-

Agent, the percentage of actions chosen was the same. 

However, agent was still able to reach the target while 

randomly moving during the training. As the target was 

generated in closer areas during the early episodes, it was 

easily reachable while exploring the environment randomly. 



 

 

 

Figure 3.22. A) Percentage of actions chosen during the 

training for Experiment 4. B) Percentage of termination 

conditions in a training session for Experiment 4. 

Figure 3.23. Cumulative distance approached to the target 

graph for episodes in a training session for Experiment 4. 

Still, in average, the distance approached to the target 

across episodes were almost didn’t change. In other words, 

the agent did not show development for the navigation task. 

The most obvious difference was in the performance 

for avoidance strategy. The Figure 3.24 for total collisions 

across episodes was significantly different from the results 

of other experiments as expected. This was the only 

experimental setting the total collisions across episodes 

were increasing. 

 

 

Figure 3.24. Episode-Total Collisions Graph for 

Experiment 4. 

Validation Performance During the validation 

sessions, the model was not trained. Additionally, during 

the validation, agent did not reach to the target in any of the 

episodes. As also shown with the Figure 3.26, the initial 

distance and the final distance to the target was the same for 

all the validation sessions as the agent only chose to rotate. 

 

 
Figure 3.25. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

Figure 3.26. Graph for average initial and final distances to 

the target in validation sessions. 

3.4 Input to Neural Network 

After Experiment 3, we have changed the input given to the 

neural network. In the next experiments, the states given as 

input to the neural network had an additional information of 

distance to target. For more detailed information, please 

refer to the section on Input to the Neural Network (2.6) 

3.5 Double-DQN Canny-Agents 

3.5.1   Experiment 5 

Rewards As we achieved to increase the number of 

forward steps and decrease the collisions during the training 

and validation sessions, we have kept the rewards the same. 

For values of the rewards, please refer to Table 3.1. For a 

general explanation for the rewards, please refer to 

subsection 2.8.6. 

  Target Target generated at a random location in the 

environment. 

  Training Performance During the training, rewards 

increased until some point. 



 

 

Then, the cumulative reward across episodes were more 

stable. 

 

 

Figure 3.27. Episode-Reward Graph for Experiment 5. 

  
Figure 3.28. Episode-Total Collisions Graph for 

Experiment 5. 

The Figure 3.28 for total collisions across episodes showed 

that, the agent was learning the avoidance strategy. Also, 

the Figure 3.28 for total collisions and the Figure 3.27 for 

the cumulative reward were almost reversed version of each 

other. 

 

Figure 3.29. A) Percentage of actions chosen during the 

training for Experiment 5. B) Percentage of termination 

conditions in a training session for Experiment 5. 

 

The percentage of the episodes terminated 

successfully and the percentage of the forward action in 

training session was almost the same with the training 

performance in Experiment 3 (Please refer to Figure 3.17). 

However, the Experiment 3 lasted in 405 episodes so we 

cannot talk about the differences reliably. 

Figure 3.30. Cumulative distance approached to the target 

graph for episodes in a training session for Experiment 4. 

The total approach to the target across episodes was 

slightly better in this experimental setting than previous 

experiments. This demonstrates that giving another input to 

the network for the distance approached to the target was 

helping for a more efficient learning. 

We also checked the effect of initial distance for the 

conditions that agent reached the target. The Figure 3.31 

shows that, when the initial distance was higher than 3, the 

conditions agent reached the target was less. 

 

Figure 3.31. The graph for initial distances for the 

conditions agent reached the target during the training 

session in Experiment 4. 

 

Validation Performance The mean reward in 

validation sessions increased until about 700 episodes. 

However, after that, it was again unstable. This shows that, 

the model was not developing efficiently during the training 

session for 1000 episodes. 

Figure 3.32. Rewards for the validation session for 

Experiment 5. 



 

 

 

Figure 3.33. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

The percentage of forward actions was remarkably 

higher than the validation sessions in previous experiments. 

Also, there was an increase in the percentage of episodes 

terminated successfully. However, the Figure 3.34 does not 

show a stable development across validation sessions when 

we compare the average initial distance and the final 

distances. 

 

Figure 3.34. Graph for average initial and final distances to 

the target in validation sessions. 

3.5.2   Experiment 6 

Rewards Rewards kept the same. For values of the 

rewards, please refer to Table 3.1. For a general explanation 

for the rewards, please refer to subsection 2.8.6. 

Target In training session, the initial distance to 

target location increased across episodes (For more detailed 

information, please refer to subsection 2.8.4). 

Training Performance As the distance to target was 

increasing, the training session was not informative enough 

to compare. 

 

 
Figure 3.35. Graph for the initial distances and the number 

of episodes the agent reached the target. 

However, as shown in the Figure 3.35 and also shown 

in the previous experimental settings (Please refer to Figure 

3.31, the agent was able to learn to reach the target when the 

target generated at a closer location. 

 

Validation Performance The conditions were the 
same for all the validation sessions. In other words, even 

though the target location was getting further during the 

training, for the validation session the target generated at a 

random location. 

In this experimental setting, the graph for cumulative 

rewards across validation sessions (Figure 3.36) was better 

than the experimental settings that target generated at a 

random location in the environment in terms of cumulative 

reward in the last validation sessions. 

 

 
Figure 3.36. Rewards for the validation session for 

Experiment 6. 

  
Figure 3.37. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

 

The percentage of episodes terminated when the 

agent reached the target was the same with Experiment 5 

(Please refer to Figure 3.33). 



 

 

 

 

Figure 3.38. Graph for average initial and final distances to 

the target in validation sessions. 

However, as we can see from the Figure 3.38, the 

average initial distance in our validation sessions was about 

6. The Figure 3.35 demonstrates that, the conditions agent 

reached the target is remarkably lower for the conditions the 

target generated at a location with the initial distance higher 

than 3. As the average initial distance to target in validation 

sessions higher than 3, this is a possible reason for that the 

successful validation episodes are not increasing. 

3.6 Double-DQN Segmentation-Agent 

3.6.1 Input 

The input of the network was states as 4 frames stacked and 

an additional frame combined to give the information of 

distance approached to the target. The input was converted 

to phosphene. However, as the input created by only using 

Canny Edge Detector was still noisy, this time before we 

fed the input to phosphene simulator, we pre-processed the 

images with Object Contour Segmentation and Canny Edge 

Detector. 

3.6.2 Experiment 7 

Rewards Rewards kept the same. For values of the 

rewards, please refer to Table 3.1. For a general explanation 

for the rewards, please refer to subsection 2.8.6. 

Target As the observed performance of the agent and 

the graph of reward across validation sessions (Figure 3.36) 

was better, we kept generating the target at a further location 

during the training. 

Figure 3.39.  Rewards for the validation session for 

Experiment 7. 

Validation Performance The reward graph for 

validation sessions was similar to the reward graph in 

Experiment 6 (Please refer to Figure 3.36). There was no 

continuous development in performance in terms of rewards 

in validation sessions. 

With this image pre-processing technique, the images 

were less noisy. For this reason, we expected a better 

performance. However, in this experimental setting, the 

percentage of episodes terminated successfully was less 

than the episodes Canny-Agent reached the target (3.37). 

 

 
Figure 3.40. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

 

As explained before during image pre-processing 

part, it is important to extract required visual cues during 

simplification of the scene. In comparison to Canny-Agent, 

the episodes terminated with the condition reaching the 

target was decreased. In other words, even though the 

simulated phosphene images generated with only Canny 

Edge Detection algorithm were looking noisier, the 

evaluations demonstrated that the model was still better. 

When we used an additional image pre-processing 

technique, the visualized images were clearer. However, 

results show that we lost some part of the required 

information for the agent. 

 

 

 
 



 

 

3.7 Double-DQN Sighted-Agent 

3.7.1 Input 

The input of the network was states as 4 frames stacked and 

an additional frame combined to give the information of 

distance approached to the target. The input was gray-scaled 

images. 

3.7.2 Experiment 8 

Rewards Rewards kept the same. For values of the 

rewards, please refer to Table 3.1. For a general explanation 

for the rewards, please refer to subsection 2.8.6. 

Target During the training session, the initial 

distance between the agent and the target increased. 

Training Performance During the training session, 

agent was able to reach the target in almost half of the 

episodes. 

 

 
Figure 3.41. A) Percentage of actions chosen during the 

training for Experiment 8. B) Percentage of termination 

conditions in a training session for Experiment 8. 

Validation Performance As the Sighted-Agent was 

getting gray-scaled input without a pre-processing step, we 

expected a better performance than other experimental 

settings. Unfortunately, the reward graph (3.42) for the 

reward was not better as expected. 

 

 
Figure 3.42. Rewards for the validation session for 

Experiment 8. 

 

Additionally, the percentage of episodes terminated 

successfully in the validation sessions (3.43) was not as high 

as the training sessions (3.41). In line with this, also the 

Figure 3.44 does not show a stable development for the 

navigation task. 

 
Figure 3.43. A) Graph for percentage of actions chosen 

during validation sessions. B) Graph for percentage of 

episode termination conditions as target reached or 

maximum number of steps reached. 

 

Figure 3.44. Graph for average initial and final distances to 

the target in validation sessions. 

Discussion and Conclusion 
We have tried multiple experimental settings to develop a 

model to reach successful performances in the navigation 

task and avoidance strategy. We have evaluated the 

performances of the models with different experimental 

settings to reach the best model. 

For target generation strategy, when we compare the 

performances of two Double-DQN Canny-Agents, the 

performance of the RL agent was better in terms of the 

cumulative reward in last validation sessions. For this 

reason, for the next experiments, we used this target 

generation method. 

 

 

Figure 4.1. Validation Reward-Episode graph of Double-

DQN Agents with different target generation strategies 



 

 

In Experiments 6,7 and 8, all the conditions other than 

the visual input was the same. That’s why we mainly 

compared the effect of different visual inputs by comparing 

these agents’ performances. The Figure 4.2 of cumulative 

reward in validation sessions demonstrated that, for all the 

trained RL-Agents the performance was better than the 

performance of the Random-Agent. The performance of the 

Canny Agent was slightly better than the other agents. 

However, for general evaluation with rewards, the 

differences between trained models were not remarkably 

different. 

The environment was highly complex and there were 

situations that when the agent walked into narrow areas, it 

could not get out of those areas. This caused to increase of 

the collisions in some cases. 

For the comparison of total collisions of the agents 

with different visual inputs, the segmentation agent’s 

performance for avoidance strategy seems the best. 

However, the difference is really low and in general all the 

models in different experimental settings showed 

development for obstacle avoidance. 

 
 

Figure 4.2. Validation Reward-Episode graph for models 

trained with different inputs

Figure 4.3. Distribution of the total collisions in final 

validation session and the best validation session in terms 

of rewards of Canny-Agent, Segmentation-Agent, and the 

Sighted Agent. 

As mentioned in detail before, the best model saved 

in terms of the highest cumulative reward in validation 

session. Still, as the agent got positive reward for each step 

moving towards the target, the final distance to target and 

the cumulative reward are correlated. However, the 

negative reward for the collisions was double of the positive 

reward for distance moving towards the target. That’s why, 

we cannot consider the best model also the best model for 

the navigation task. The Figure 4.5 demonstrates that, the 

recent model of the Segmentation-Agent was better than 

other models. 

 

Figure 4.4. Distribution of the final distance to the target in 

final validation session and the best validation session in 

terms of rewards. 

Still, when we consider the percentage of the episodes 

that the agent reached the target during the validation 

sessions, Canny-Agent was the best model. The percentage 

of episodes that the Segmentation-Agent reached the target 

when we evaluate all the validation sessions was less than 

the Sighted-Agent and the Canny-Agent. 

 

 
Figure 4.5. Distribution of the final distance to the target in 

final validation session and the best validation session in 

terms of rewards. 

Even though the models are not working efficiently 

for the aim of reaching the target, the evaluations still 

demonstrate development in different experimental 

settings. Especially, for the avoidance strategy, the 

performance of the agents was developed. Additionally, the 

comparisons with the performance of the Random-Agent 

shows remarkable differences in terms of both the 

navigation task and avoidance strategy. 

There are also some implications for using different 

image pre-processing techniques. As explained in detail in 

the image pre-processing section, there is a trade-o between 

simplification and the informativity of the scene. Our results 

for the Segmentation-Agent demonstrated that, even though 

the visualized scenes were better for our observation, it 

might not be informative enough for the RL agent. This 

should be investigated further in different experimental 



 

 

settings. A visualization of simulated phosphene visions 

with different image pre-processing techniques can be 

found in the Figure 4.6. 

 
  

Figure 4.6.    A) Input with Canny Edge Detection fed into 

phosphene simulator. B) Input with Object Contour 

Segmentation and Canny Edge Detection fed into 

phosphene simulator. 

Limitations and Future Work 

There were some limitations in this project. As mentioned 

briefly before, Unity crashed multiple times during some of 

the training sessions. Even though we tried to load the 

policy network and the optimizer parameters as suggested 

in Pytorch Website, we were not able to continue without 

causing a difference in the model performance. That’s why 

we needed to evaluate the model trained before the loaded 

data. That caused limitations of time and comparability of 

data. 

Another limitation for Unity part was the distance 

calculations. Normally, we aimed to use the NavMeshPath 

to calculate the distance in the environment. That would be 

the best option because it generates the shortest path by 

considering the objects in the environment. In other words, 

the generated path is the path that the RL agent preferably 

used for the shortest path by avoiding collisions. However, 

the environment was highly complex and for some locations 

it was not possible to generate a path between two locations. 

There were also problems caused by the methods we 

used. The target location was changing at the beginning of 

each episode. For memory replay, the model uses the 

experiences stored as (st, at , rt+1, st+1). However, when the 

target location changed, the return of the state-action pairs 

was also changing. 

Additionally, as a limitation for the image pre-

processing part, while generating the input for 

Segmentation-Agent, we have used Object-Contour 

Segmentation. With the Unity virtual environment, we were 

able to use an implemented ML algorithm that gives a 

unique colour to each object in the scene. With this 

algorithm, it uses the Renderer components of each object 

in the scene for segmentation. For this reason, the results for 

the Segmentation-Agent are generated under the 

assumption of perfect segmentation. There are other 

methods for Object Contour Segmentation. However, still 

there are still gaps in comparison to human vision (Yang et 

al., 2022). This raises the question "Is this really applicable 

in real-life scenarios?". 

Still, this project provides a baseline for more realistic 

and complex future studies. Even though we have tried 

multiple experimental settings, we were just able to provide 

some developments rather than a working model for the 

navigation task. Future studies might benefit from different 

sets of parameters related with developments in the models 

to generate a working model. As this is a highly complex 

task, it is also important to test with more complex 

algorithms and network architectures in the future. 

Additionally, in future, it is important to test the 

simulated vision in realistic settings with different contexts 

and tasks. As the optimized models are going to be used in 

real life, the models should be optimized by using real life 

experiences. To achieve this, there is a need to test real life 

contexts such as outdoor environments with dynamic 

stimuli. It is a scenario that we might benefit the most from 

the realistic virtual environments. Considering the risk and 

the ethical issues, we cannot test human participants in 

dynamic outdoor stimuli with every task such as crossing a 

road open to traffic. However, realistic virtual environments 

allow us to optimize the models without considering these 

kinds of limitations. In future, we should benefit from 

opportunities like that. 

Lastly, in this project, we have tested Canny Edge 

Detection and Object Contour Segmentation for scene 

simplification. However, there are many other parameters 

should be tested for different contexts like depth. Future 

studies should test various contexts with different image 

pre-processing techniques to have more knowledge about 

required visual cues in different contexts. 
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