

Prosthetic vision for the blind: Intelligent optimization of limited

vision Testing trained computer agents for phosphene vision in a

realistic environment

Berfu Karaca1

Supervisors:

Marcel van Gerven1, Umut Güçlü1, Burcu Küçükoglu1, Jaap de Ruyter van Steveninck1

Affiliations:

1Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands

Corresponding author:

Berfu Karaca, berfu.karaca@ru.nl

Abstract:

Blindness is a common societal problem that affects day-to-day functioning. Even though there is no

effective treatment yet, there are some alternative ways such as neuroprosthetic visual implants.

Although prosthetic vision does not provide normal vision, it does provide a rudimentary form of the

environment through point-like flashes known as phosphenes which might still help basic activities like

navigation. However, due to biological limitations, the current implants have low resolution. The limited

capacity of resolution increases the need for optimal information extraction from the scene for efficient

understanding of the environment. In line with this, there is a need for better image pre-processing

techniques.

One limitation of the studies testing phosphene vision is the necessary surgical operation for implants.

For this reason, researchers found other techniques to test phosphene vision. One solution is testing

sighted participants with wearable head-mounted displays (e.g., VR) that convert the real scene to

processed phosphene vision. However, studies suggested that different image pre-processing techniques

should be used for different contexts and scenes which requires an optimization adaptive to the scene.

The variability in parameters to be tested and the need for optimization raise other challenges such as

significantly increased number of tests for optimization problems which also means increased cost.

This project will contribute to our knowledge on the potential use of trained Deep Reinforcement

Learning agents to test the performance in particular tests such as navigation rather than human

participants which is likely to minimize the cost and accelerate the process of optimization. Additionally,

as these models will be used in real life, using a realistic virtual environment to test the behaviour of the

trained agent and to optimize the parameters of simulated phosphene vision will provide more applicable

results for future studies on prosthetic implants.

Keywords: Phosphene vision, visual loss, visual prosthesis, deep learning, artificial intelligence,

realistic virtual environment, computer agent

Introduction

1.1 Background

The 2020 reports of the International Agency for the

Prevention of Blindness demonstrates that globally 1.1

billion people are suffering from vision loss and researchers

expect that the number of people with vision loss will rise

to 1.7 billion until 2050. Additionally, more than 500

million people live with mild and severe vision impairments

("Updated vision atlas shows 1.1 billion people have vision

loss," 2021).

Relying on these statistics, we can say vision loss is a

non-negligible societal problem especially when we think
about the fact that we significantly rely on visual cues to

accomplish most of the daily activities like navigation,

object recognition or face recognition. Studies support that,

vision loss might cause several other problems such as

reduced life quality; dependence to another during casual

activities like reading, writing, shopping, driving; fractures

or injuries; cognitive impairments; higher risk for

depression or mental health disorders; mobility and even

mortality (Grover, 2017). There is no successful treatment

for blindness, yet. However, through the development of

technology, acquiring some form of vision is possible for

visually impaired individuals.

 As a result of the loss of daily functionalities

mentioned above such as walking around avoiding

obstacles, there is an increased demand in studies to provide

vision. One of the promising solutions for providing vision

is visual prostheses studies which are implantable electronic

micro-systems. The implants convert the images of the

outside world into a meaningful representation through

point-like flashes known as phosphenes.

1.1.1 Retinal and Cortical Implants

Only in the early 20th century did artificial vision experience

its greatest breakthrough. However, the restoration of vision

has been a well-focused area of research for many more

years. In 1929, Foerster discovered that electrically

stimulating visual cortex induces perception of small points

of lights or in other words phosphenes, which has provided

the scientific basis to develop prosthetic vision for the blind

(Fernández et al., 2020).

 In 1968, researchers at the University of Cambridge

attempted to implant radio receivers connected to the

electrodes under the scalp of the blind people and sent

pulses to these electrodes with the aid of a cap. The pulses

activated the electrons and created phosphenes in the

patients’ visual fields. However, only a few electrodes were

activated and even some have caused pain in patients.

Despite the limitations, the researchers suggested that, with

the improvements made to their prototype, the prosthetic

vision will enable the blind people to walk by avoiding

obstacles, to read and write. Despite the many other studies

conducted, the research area of visual prosthetics showed

significant progress after this first implementation study in

the 1960s (Brindley & Lewin, 1968).

 In 1979, scientists at the University of Utah published

another study relying on findings of Brindley and Lewin.

They started their experiments in 1969, with blind

participants who already needed a surgical operation for the

removal of tumors/lesions to minimize the risk. They have

tested their implant with 37 participants in 4 years. After

these trials, in 1973, they were satisfied with the

experiences of successful implants and started to try

temporary implants with healthy blind volunteers. The

results of their previous experiments showed recognition of

basic patterns such as triangles or some of the letters. The

promising results led the scientists to try chronic

implantation. Before starting the experiments on chronic

implantation, they have developed the methods used in

previous studies to get rid of some limitations such as

eliminating crosstalk between different electrodes and

providing more reliable results. Additionally, they have

restricted the blind volunteers to individuals totally blind

but with the memory of visual sensations. At the end of their

attempts, their results showed that subjects were able to

perceive the image without special training and the speed of

reading the braille was much faster than reading by using

the finger (Dobelle et al., 1979). Even with more promising

results, successful implants are still not available yet to use

in humans. In a recent study, researchers also tried these

implants using trained monkeys with several tests as

participants and demonstrated the stimulation of the

electrodes in V1 provides a successful perception of the

shapes which again demonstrates the promising capacity for

creating phosphene vision (Chen et al., 2020).

 An obvious challenge in this area of research is the

need for surgical operations to test and develop the implants

which has high risk and cost. The technological

developments allowed researchers to test the vision

provided by the implants in an easier and less costly way.

For example, there are many studies that benefit from

wearable head-mounted displays (e.g., VR glasses) to

simulate phosphene vision for sighted subjects to test in

various tasks. This development in the area also facilitates

the research to test and develop the parameters of the

prosthetic vision. This is one of the most significant aspects

in this area of research because the resolution or in other

words the number of phosphenes that can be simulated is

limited. Additionally, as the resolution is limited, there is a

need for better image pre-processing techniques which

allow researchers to extract the meaningful visual cues for

particular tasks.

1.1.2 Resolution

 It is known that there is a compromise between the

resolution and the size of the implant which must be

optimized. In other words, there is a need for optimization

of the visual perception generated with limited resolution.

Researchers tried to find the balance between the size of the

implants and the resolution to get meaningful information.

In one of the studies, Hayes et al. (2003) tried different

resolutions to test the functionality of the simulated vision.

Researchers tested the performance of sighted participants

wearing head-mounted display by using pixelized images

during various tasks such as object

recognition/discrimination, symbol recognition, pouring,

reading etc. The results demonstrated increased

performance with higher resolution in all tests. Some of the

subjects were able to recognize simple objects and symbols

with lower resolution. Relying on that, researchers

suggested that using fewer pixels of light is also enough to

perform tasks. However, one of the limitations of the study

is the simplicity of the images used during these tasks

(Hayes et al., 2003).

 The resolution or the number of phosphenes needed

to understand the environment might depend on other

factors like the complexity of the environment or the

amount of time the participant practiced.

Dagnelia et al. (2007) tested wayfinding with limited visual

resources to find out minimal requirements for visual

resolution. They found out the inexperienced participants

needed higher resolution for adequate performance.

Similarly, Srivastava et al. (2009) focused on the amount of

experience gained by the participant and the adaptation to

the phosphene vision. As a result of their surgical studies,

they suggested the possibility of implanting electrodes up to

650. They have tested the performance in 3 different

conditions with different percentages of dropouts as 0%,

25%, 50%. They claimed that there is an improvement in

the performance with practice and it is possible to adapt to

low-resolution images with 50% dropout or in other words

with only 325 phosphenes.

 Researchers have focused on phosphene vision for

many different capabilities such as object segmentation or

facial recognition (Bollen et al., 2019; Lu et al., 2013;

Sanchez-Garcia, 2018; Thompson et al., 2003) However,

many researchers found mobility/navigation and obstacle

avoidance ability more important for daily functioning.

McCarthy et al. (2014) made a study by using obstacle

avoidance tasks with low to medium resolution and used

different luminances for surface-obstructions segmentation.

They believed that a better representation of the

environment is required. In this study they sought to

improve the segmentation of ground surface and

obstructions by depth-perception. Results demonstrated that

depth-based representations of obstacles provided more

efficient visual navigation performance with low resolution.

As a significant limitation of this study, they have only used

static images (McCarthy et al., 2014).

 In summary, studies demonstrate that different tasks

or environments might require different pre-processing

techniques to provide adequate and meaningful information

with limited resolution. Phosphene vision is not as

informative as normal vision as a result of the lack of spatial

resolution, colours, and contrast. That’s why there is a need

for simplification of the scene. However, the simplification

of the scene requires efficient reduction of information

which leads to the need for better image pre-processing

techniques to extract more precise visual cues that helps the

interpretation of the environment (Sanchez-Garcia et al.,

2020).

1.1.3 Different Image Pre-Processing Techniques

To meet that demand of simplification, many researchers

focused on different image pre-processing techniques for

transmitting an image to phosphene vision. They have

developed different filters for edge detection, texture

detection or to extract the information of depth (Dowling,

2007).

 Boyle et al. (2001) tested the object recognition of

174 sighted participants by using different resolutions with

static images and compared the effect of different image

pre-processing techniques. They found increased

performance when they used 3-level gray images than black

and white images. In line with this, they suggested that 3-

level gray images provided higher spatial resolution, and

this allowed higher object recognition even though this is

highly correlated with other parameters such as the size of

the object. Still, results demonstrated that higher resolution

was more important than increased gray scale. Researchers

also supported the importance of the context of the scene for

the recognition and emphasized the need of adaptive image

pre-processing techniques for efficient processing of the

scenes. Some of the many limitations of this study is the

lack of realistic environment, dynamic stimuli, and lack of

diversity in conditions in terms of resolution and colour as

they didn’t have conditions with high resolution and did not

test with coloured stimuli (Boyle et al., 2001).

 As a next step, Boyle et al. (2002) investigated the

effect of different factors to enhance the visual information

like brightness, resolution, contrast, edges, the distance to

the object/depth and importance mapping. Researchers

showed the significant role of edge detection for meaningful

information especially with high resolution images.

Additionally, they concluded that for the optimization to

transfer the image to artificial visuals as phosphenes,

importance ranking is important. Because with limited

resolution the displayed features like edges must be

extracted depending on the importance of the information

(Boyle et al., 2002).

 With a follow-up study, Boyle et al. (2003) suggested

different parameters to consider according to the types of

the scene by relying on their previous findings. They

matched different descriptors like motion, colour, and edges

with different types of scenes to gain the most efficient

information from the pre-processed scene. For example, as

the working range is about 1 meter in an office, a low visual

range is enough. However, for an outdoor environment, the

required visual range might be significantly higher. By the

same token, a street environment includes moving obstacles

like people or cars; while motion is a highly descriptive for

a street environment, it is lower for an indoor environment

(Boyle et al., 2003). Other researchers also contributed

similar results about the significance of filtering for the task

performance (Hallum et al., 2005).

 Vergnieux et al. (2017) also studied prosthetics and

concentrated on navigational tasks. They hypothesized that

low resolution implants with no special processing cause

overcrowding and provide insufficient visual cues for

navigation tasks. They tested the effect of various

renderings which simplify visual information on the

performance in navigation tasks. As one strategy, they tried

to limit the viewing distance of the participants. This

strategy helped to achieve better performance while

reducing the cognitive load during the task. A key finding

of this study was that having only the edges present in the

environment lessened the cognitive load and led to

improved performance in the navigation task. However,

they have not assessed that under real conditions

(Vergnieux et al., 2017).

 Researchers at the Donders Institute are also working

in this area of research to further understand prosthetic

vision. Researchers are testing sighted participants by

simulating phosphene vision generated via the implants by

using VR glasses in real world experimental settings. In a

previous study, Ruyter van Steveninck et al. (2022) claimed

that scene simplification obtained as a result of image pre-

processing such as the extraction of contours may improve

the performance in navigation tasks. In this study, they

tested the performance with different resolutions of

phosphenes by keeping the light intensity constant. Also, to

test the effect of complexity of the environment, they have

used a real corridor environment with different complexities

by adding background and surface textures. Relying on their

findings, they showed that 26x26 resolution provided

sufficient visual cues for the participants with contour-

based simulation. However, the performance was lowered

in the condition of a complex environmental setting with

textures.

 In addition, researchers supported that an efficient

technique of image pre-processing is required to simplify

the scene which prevents overcrowding in the scene (De

Ruyter van Steveninck et al., 2022). In conclusion, there is

a need for simplification of scenes to extract the meaningful

cues from the scene with limited resolution. Yet, there is a

need for balance to avoid eliminating necessary visual cues

which may differ depending on the context of the scene.

1.1.4 Reinforcement Learning

Sam Danen et al. (2021) tried to use reinforcement learning

to test prosthetic vision and automatically optimize the

parameters of image pre-processing in his thesis project.

They attempted to compare the performances of human

participants and trained computer agents to evaluate

usability of computer agents instead of human participants.

They have used wayfinding task in the experiment. In this

project, they had 2 different experimental settings. In the

first experiment, they tried to monitor the change in

performance in different experimental settings with

different visual complexities and different phosphene

resolutions. In the second experiment, they let the

reinforcement learning agent find the optimum threshold for

canny edge detection model in different conditions. They

found a significant change in model learning as they altered

the light intensity of the environment. When the light

intensity was the lowest, the performance of the agent was

improved. However, they are suspicious about whether the

lowest light intensity of the environment was also better for

human participants’ performances. Still, by relying on the

similar graphs of performances with human participants,

they argue that there are many similarities between the

performance of human participants and computer agents

which makes the use of computer agents as opposed to

human participants a promising method. Even though this

study provided a comparison for the performances of human

participants and computer agents, some of the limitations of

the previous studies were still present. Firstly, the virtual

environment used was an unrealistic basic corridor

environment. Additionally, the task used was a simple

navigation task that the agent only walked forward through

the hallway.

 There have also been more complicated studies

conducted by using indoor visual navigation task (Krantz et

al., 2021; Savva et al., 2019; Zhu et al., 2017). In one of the

studies, Savva et al. (2018) used AI-Habitat which is a

simulation platform to train AI-agents. In their experimental

setting, the agent was using different detectors such as

depth, RGB camera and GPS + Compass sensor. With the

GPS + Compass sensor, the agent had the input of relevant

location and orientation of the goal for its current location.

Rather than only defining three actions to move forward and

10° rotations, they also included a stop action. With this

additional motion, they wanted to ensure that the agent

knows that it reached the target but not randomly came to

that location. They found significant improvements with the

sensory input of depth. Also, they supported that the RGB

images were not performing significantly better than blind

agents that chooses random actions during the training.

They gave GPS input for both RGB agents and blind agents,

and researchers suggested that this sensory input given both

might be the reason for that (Savva et al., 2018).

1.2 Research Aim

To deal with limitations of previous studies’ methods that

included blind or sighted participants in basic, unrealistic

environments that explained above, in this project we are

training computer agents with Deep Reinforcement

Learning in a realistic 3D indoor environment to reach

human-level performance. The main aim of this study is

investigating the usability of RL agents to develop

simulated phosphene vision. By this way, we can provide

an alternative for behavioural experiments with human

participants to optimize phosphene models. Additionally,

realistic virtual environments will allow more significant

comparisons between the performances of RL agents and

humans.

In summary, the aims of this research project with

following provisional implications are: 1) Using a realistic

environment to train and test the RL agent with

phosphene vision. This will clear the way for studies with

more complex environments and tasks such as dynamic

environments. In line with this, using a realistic virtual

environment will widen the choices of experimental

designs. Additionally, the realistic environment developed

in this study will provide a baseline testing environment for

future studies. 2) Comparing different parameters to

train the agent, which contributes to the aim of training

equivalent Deep RL agents to human participants.

Achieving this might decrease the costs significantly and

facilitate studies in this area of research. 3) Comparing

different image pre-processing techniques which might

allow us to see the effect of extracting visual cues and the

contribution of different visual cues in a realistic setting for

a navigation task.

1.2 Technical Background

1.3.1 Reinforcement Learning

To optimize the simulated vision, testing sighed participants

provides a better alternative than testing blind participants

with implants in terms of the risk of the surgical operation

and the cost. However, even when we test simulated vision

with sighted participants, the cost still remains high and

takes significant amount of time. For this reason,

reinforcement learning may serve to find better ways to try

and develop phosphene vision. The use of artificial agents

as participants accelerates testing while decreasing costs.

The use of Reinforcement Learning is encouraged

because of the similarity of the learning process with

humans. The learning process of people includes learning

the environment from the experiences via trial and error.

Rational people seek to find the optimum decision by

maximizing the reward while minimizing the penalty during

life. We start to explore the environment and relying on the

positive or negative feedback, we develop knowledge about

our environment. Similarly, in machine learning,

reinforcement learning (RL) is used as a decision-making

concept that maximizes the long-term cumulative

reward/return even in complex problems. With this

feedback information which decreases the uncertainties in

the environment, the agent can choose the optimal action in

that state and move to the next state.

Figure 1.1. Reinforcement Learning Cycle

In a typical RL problem, there is an interaction

between the agent and the environment. The agent chooses

an action, and the environment provides rewards and the

next state based on the chosen action of the agent. To
formulate this problem, we need to understand the Markov

Decision Process (MDP).

 To describe a Markov Decision Process, there are 5

elements should be captured (Garg et al., 2022).

In this formula, the S stands for the set of states and

A stands for the set of actions. Pa or P(s,a,s’) is the

transition probability or in other words the probability that

the chosen action a at current state will lead to state s’ at the

next state. Ra or R(s,a,s’) is the received reward after the

transition after the action chosen from the current state to

next state. Lastly, is the discount factor to generate a

discounted reward. It determines the significance of the

future reward in different time steps. It changes between 0

and 1.

Fundamentally, the Markov Decision Process

assumes that the environment and the agent interact at

discrete time steps. In other words, at a specific discrete

time-point or state, the agent performs an action and moves

into its next state based on the transition function; this state

and action provides the agent a reward. By this way, the

agent learns the decision-making process based on the

current state which shows the current state is already

enough to choose the optimal action with the information

retained via previous states.

More technically, the MDP aims to find the optimal

policy () to yield the optimal maximized long-term reward.

Policy is basically a method of mapping from states to

actions. Constructing the optimal policy is important to

maximize the rewards corresponding to the actions. To

reach this aim, the information of the value of the action at

a specific state is required. Q-Values serve for this aim.

Q(s, a) or state-action values gives the value or expected

return for taking an action a in a state s in policy .

Briefly, the state-value functions allow the agent to

predict the future rewards. However, it is not preferred to

wait until observing all the future rewards; as an alternative

for that, the value functions can be defined recursively in

terms of a Bellman Equation for the value of selecting the

next action for the next state.

As the main goal is finding the best policy, the optimal

policy * should lead to the optimal value function Q*(s,a)

with the maximum value or maximum reward.

1.3.2 Q-Learning

Q-learning is the process of updating the Q-values for each

state-action pairs with the Bellman Equation with the

reward received after the action until it converges to optimal

value function. During Q-learning, Q-values are stored in

Q-table which has each possible state as rows and each

possible actions as columns. In Q-table, the Q-values are

initialized to zero at the first implementation. However,

when the agent starts to explore the environment, it updates

the Q-table with the new observations. Each cell of this

table contains the reward estimated to be received with that

state-action pair. An optimal Q-table contains the values

that allows the RL agent to choose the best action with the

highest return in any possible state.

 As the agent does not have enough knowledge about

the environment at first, it starts with the exploration

process. During Q-learning, the agent uses the Q-value

estimations to choose the optimal action and uses -greedy

policy to decide. With this policy, agent might explore, or

exploit based on the . The epsilon determines the

probability of whether the agent is going to explore or

exploit. The agent chooses the optimal action with the

probability of 1- and otherwise it chooses a random action

and explores the environment. The is set to 1 at the

beginning and it slowly decreases towards 0 as the agent

gains more knowledge.

 During the exploration, the agent selects a random

action from the possible actions. After a while, the agent

starts to use the experience so the knowledge about the

environment to choose the actions. During this exploitation

process, the agent chooses the optimal action with

maximum Q-values.

1.3.3 Deep Q-Networks

However, even though Q-learning is working well with

basic environments, Q-tables are impractical for complex

problems with higher state space. For complex

environments, tabular Q-learning is infeasible.

Figure 1.2. Deep Q-Learning

Mnih et al. (2015) solved this problem by inventing

the Deep Q-Networks (DQN) algorithm. With DQN, they

provided a solution by applying neural networks to estimate

the optimal Q-function by using function approximators. By

this way, DQN can learn policies also from high-

dimensional sensory inputs directly using end-to-end RL. In
that study, they gave input of stacked 4 frames to the

network and tested the performance of the agent on 2600

Atari games. The performance of the algorithm was better

than the previous algorithms on 43 of the games and it

outperformed a human expert on 49 of the games (Mnih et

al., 2015).

DQN algorithm is the combination of Reinforcement

Learning and Artificial Neural Networks which provides

the RL agent artificial intelligence capabilities. Mnih et al.

(2015) demonstrated using DQN offer promising results by

integrating Convolutional Neural Networks, replay

memory and a target network. At the end, this integration

provides human compatible behavioural results with the

trained agents.

Convolutional Neural Networks takes an input of

stacked frames and generates output of Q-values for each

possible action.

Training with the DQN algorithm benefits from

experience replay technique. With the experience replay,

the agent’s previous experiences for each state, action,

reward, and the next states at a time point is stored in the

replay memory as tuples.

As a significant advantage, using a replay memory allow us

to use a sample that not only use the last consecutive

experiences. This technique called replay buffer or

experience replay is a better way to benefit from previous

experiences because it avoids the high correlation between

consecutive samples by using a batch of random

experiences to update the Q-network.

Lastly, target network is another integrated element

of DQN to make the training more stable. The target

network has the same architecture with the online network.

It is used to calculate the target values. Also, the parameters

of the target network are copied from the online network.

However, the trick is, the parameters of the target network

is updated less frequently. By this way, the target values are

calculated with the same parameters until the next update

which provides stability during training.

A Q-network can be trained by minimizing the loss

function which is the difference between the target values

and the predicted values.

There are different functions to minimize the loss. Huber

Loss function is one of these functions which is related with

this study.

In this formula, a refers to the difference between the

predicted and observed values. Huber loss or SmoothL1 is

a robust function to the outliers. With the formula above, it

is more linear with larger values and quadratic with smaller

values. Additionally, Huber Loss applies error clipping in

range of (-1,1) and avoids the exploding gradients which

might cause large changes in the weights of the neural

network during the training and make the model highly

unstable (Mnih et al., 2015).

Methods

2.1 Navigation Task

For the mobility learning, we have used a navigation task.

In this navigation task, the goal of the agent was reaching

the target. There are different ways of goal identification

such as ObjectGoal, PointGoal or AreaGoal (Anderson et

al., 2018). In our project, we selected the navigation task of

PointGoal. The agent was generated at the same location at

the beginning of each episode and the task of the trained

agent was to freely navigate in the environment towards the

target by avoiding the wall and object collisions and by

using the shortest path. The episodes were successfully

terminated when the agent reached the target. However, for

the unsuccessful episodes, the episodes were terminated

when the agent reached the maximum number of steps. The

maximum number of steps that the agent can use was 500

steps in our experiments. By using this task as a baseline in

all experiments, we have conducted different experiments

by manipulating some parameters like the reward and the

location of the target generated in different training

sessions.

Even though we are working with computer agents to

develop the models to provide optimized and efficient

phosphene vision models, the important thing to remember

is that these models will be used in real world settings.

That’s why it is important to design these experimental

settings as much as realistic to have correlational results

with real life situations.

For that reason, we used the behavioural navigation studies

as a reference. When a rational person walks towards a

location, s/he prefers the closest route and avoids the

obstacles. In a recent study De Ruyter van Steveninck et al.

(2022) conducted a study by using a real hallway setting to

test sighted people with simulated phosphene vision with

VR glasses. Then researchers compared the performances

of the participants with the walking speed, avoidance

strategy and their subjective reports (De Ruyter van

Steveninck et al., 2022).

In our experimental setting, we also implemented the

avoidance strategy. For the avoidance strategy, the aim was

avoiding the obstacles while walking towards the target.

With negative feedback, we aimed to teach the agent to

minimize the collisions. Additionally, as rational people

would prefer to use the shortest path to reach a location, we

counted the number of steps agent used in one episode and

manipulated the rewards to teach the agent to use minimum

number of steps to reach the target location. Briefly, both

the efficiency of the navigation and reaching the goal were

important for the evaluations of the navigation task.

2.2 Realistic Virtual Environment

One of the limitations of the previous studies was the lack

of a realistic environment. In this project, we aimed to use a

realistic indoor environment.

2.2.1 Unity

Unity is one of the most preferred platforms to create

interactive and real-time 3D environments in many

industries such as video games, movies, or architecture. It

has some benefits like providing wide range of assets and a

really good graphics that makes the motions more natural.

A major strength of Unity Platform is that Unity is

also a Physics Engine. We benefit from multiple physics

rules in this study.

For a realistic environment, we have developed and

used ArchVizPro Interior Vol.1 3D Environment suitable

for our project aim. The environment consists of high-

quality furniture/props and HD textures. The environment

includes 3 different furnished rooms that the agent can

freely navigate. The props, player, or components of the

scene or technically the GameObjects are physical entities

in the environment and there are some components assigned

for each physical entity such as Mesh Components,

Renderers, Colliders.

Figure 2.1. Unity realistic virtual environment from

different perspectives.

Collisions

The most important physics component we benefit was the

colliders. In Unity virtual environment, there are colliders

assigned to each object in the environment. Colliders are

used to detect a collision between GameObjects in the

environment. There are different types of colliders and

physic materials of colliders. One type of colliders is the

Box Colliders. The components of the objects allow us to

use the geometrical information of the GameObjects like the

size or bounds of the collider. If the collider has the same

physical entities with the GameObject, then the colliders

provide the geometrical information of the object. However,

Unity allows the user to change the parameters of the

components.

Target Generation

As we adopted the PointGoal navigation task, the agent

navigates towards the target to reach a specific location. At

the beginning of every episode a new target is generated at

a random location. The agent is considered to reach the

target when it gets in range of distance below the threshold

of ‘agent’s body size x 2’ which is used as a default

threshold recommended by reviews (Anderson et al., 2018).

To check if the agent reached the target, we have used the

Physics information we got from Collider properties such as

the collider size of the agent and the physical position of the

agent in the dimensions of -x, -y and -z.

In the current setup, we also implemented the

ObjectGoal navigation task. For that case, we collect the

information of the center of the objects and their sizes to

reach a kind of mapping about the environment. By using

this list, we are also able to use the objects in the

environment as targets. The parameters provided with

colliders such as the size, boundaries, coordinates, or the

center of the objects are used while generating the target at

a location not colliding with any other objects.

There were some critical points to be ensured during

the target generation.

1. No collision with other objects:

- Agent - Object Collision

A significant aspect of generating the target was

ensuring that when the agent reached the target, it is

not going to collide with any other objects. To achieve

that, rather than generating a target location, we have

generated a target object with the collider size of the

agent. In this way, when we assured that the generated

target is not colliding with any other objects, we also

assured the agent is not going to be colliding when it

reached to target location or the center of the target

object. Also, we disabled the physics components of

the object such as the colliders to avoid the negative

feedback caused by collisions with the target object.

- Target Object - Object Collision

As there are many pieces of furniture in the

environment, we ensured that the target location was

not created within the boundaries of any of the

objects. Before generating a target location within the

indoor environment, it is checked with the condition

of “If the agent reaches the target, would it collide

with any objects?” and kept generating another target

location until the conditions are provided.

2. Selecting Floors:

As the target should be inside the environment, we needed

to use the information of floors to draw the boundaries of

the environment. However, the floors were also grouped

with other objects in the environment. For this reason, there

was a need for differentiating the floors from other

GameObjects in the scene. To solve this problem, we have

used the labels to reach the information of the floors

specifically. In other words, we labelled the floors with

’floor’ label to differentiate from other objects.

3. Visibility

Since, we are providing the frames as an input to the agent,

the targets should not be visible in the frames provided to

the agent. For this reason, we disabled the visibility of the

target object by disabling the Mesh Renderer.

Physics Rules

When we used only the physic rules of the Unity Engine,

the agent was able to go through the objects and walls. That

was the case especially when we used a bigger step size. We

wanted to keep it realistic, so changing the step size was not

an optimal solution. That’s why we needed to implement

additional physic rules to the environment. After this

implementation, when the agent was collided with an

object, the agent moved back to the location before the last

step. However, the negative feedback for the collision was

still provided. That was necessary because we aim to teach

the agent minimizing the collisions and also want to keep

the environment with realistic conditions.

2.3 Learning Algorithm

Studies demonstrated that the DQN algorithm has a

limitation of overestimation (Hasselt et al., 2016). DQN

algorithm combines a deep neural network with Q-learning.

For more detailed explanation you can refer to the part

explained Q-learning and DQN. However, in summary,

overestimation problem is mainly the result of Q-Learning

which uses argmax () function which basically always

chooses the maximum value to estimate the values.

Additionally, it uses the same weights to choose the action

and evaluate the action which is a really optimistic

approach. Another algorithm suggested that can be used to

avoid these limitations is the Double DQN algorithm. With

D-DQN, rather than this overoptimistic approach, we can

use a more realistic evaluation by using different networks

to choose and evaluate an action chosen.

Hasselt et al. (2016) analysed the performance and the

estimated values of DQN and D-DQN with various Atari
games and they demonstrated that the value estimations of

DQN was significantly higher than the true values.

Researchers defined the true values as Q*(s,a) = V*(s) in

their evaluation. Their results demonstrated that, the

overestimation problem was also affecting the performance

in a negative way (Hasselt et al., 2016).

Similar to DQN, the D-DQN algorithm chooses the

optimal action for the current state by using the online

network. However, to fairly evaluate this action, it uses

another network with different weights. By this way, it

reduces the overestimation and gives closer results with real

values. In line with this, it results in better performance.

By relying on the recent evaluations of DQN and

Double-DQN, we preferred to use the Double-DQN

algorithm. With the D-DQN algorithm, we chose the actions

for the current state by using the online network. Then, we

have used the target network to fairly evaluate the estimated

values with different set of weights.

2.4 Vision Processing

The size of the frames returned from the Unity environment

was 128x128. These RGB frames converted into gray-scale

images. Then we applied different image pre-processing

techniques in different experiments to compare their effect

on performance of the Deep RL agent.

Phosphene Vision with Canny Edge Detection

Canny edge detection is a commonly used algorithm to

detect edges. By using Canny Edge Detection algorithm on

gray-scaled images, we detected the edges in the image. We

have used cv2 package to implement Canny edge detection.

The algorithm uses 2 threshold parameters to generate clear

edges as an upper and lower threshold. The algorithm

smooths the image and decides to the edges by checking

upper and lower threshold for all pixels. Any pixels with

higher intensity than the maximum threshold is considered

as sure-edge pixels. If there are pixels connected to sure-

edge pixels with intensity between maximum threshold and

minimum threshold, they are also accepted as a part of the

edges. However, the pixels that has lower intensity then the

minimum threshold and pixels that has higher intensity than

the minimum threshold but not connected to a sure-edge

pixel are discarded. By this way, the algorithm specifies the

edges and creates a canny edge mask. In theory, it is

suggested that the canny algorithm satisfies some criteria

such as low error rate, good localization and minimal

response which help to detect only the real edges and only

one detection for per edge.

We have implemented the maximum threshold as 70 and

minimum threshold as 35 in our experimental settings.

Later, we have fed these images into phosphene simulator.

Phosphene simulator converts the image into simulated

phosphene vision. The phosphene resolution applied in our

experimental settings were 30.

Figure 2.2. An example of input image. From left to right

1) Original Image. 2) The Object Contour Segmentation

Image. 3) Canny Edge Detection Image. 4) Phosphene

Simulator Image.

Phosphene Vision with Object Contour Segmentation

and Canny Edge Detection

Even though Canny Edge Detection is a commonly used

and efficient algorithm, this environment was too complex

and realistic. It contained so many objects, textures, realistic

elements like lights or shadows. That’s why we also

implemented another algorithm to test the efficiency of

more complex image pre-processing algorithms for

complex environments.

Rather than using gray-scaled images to create Canny

masks, we have used Unity’s Object Contour segmentation

algorithm. This algorithm uses the Renderer Unity

components to select each object in the scene and segment

them with different colours. This algorithm basically selects

object by drawing a bounding box around them. As a next

step, we have used these images to create Canny edge mask

and then fed into phosphene simulator with the same

procedure mentioned above.

Even though the computational load of this process

was higher, the images generated with only Canny Edge

Detection algorithm were noisier. By this additional pre-

processing step, we created an input with less noise. We

believe this is important because as mentioned before,

because of the biological limitations, we need maximum

information with lower resolution.

Figure 2.3. An example conversion of input image. From

left to right 1) Original Image. 2) The Object Contour

Segmentation Image. 3) Canny Edge Detection Image. 4)

Phosphene Simulator Image.

2.5 Neural Network

The convolutional neural network is composed of 3

convolutional layers followed by ReLU activation function

and batch normalization. Additionally, the model has a fully

connected Linear output layer that provides 3 outputs as

there are 3 possible actions the agent can choose. The

outputs are basically the Q-values for each possible action

which provides a comparison between actions to judge the

values then selection of the action based on this comparison.

2.6 Input to the Neural Network

For the first experiments, we have used frame stacking

technique by stacking last 4 frames. The stacked and pre-

processed frames formed the states as inputs.

However, in some of the experimental settings we

added another frame to the state to give an additional

information of ’distance to target’. Then, we gave this input

to the convolutional neural network.

To add the information of ’distance to target’, we

generated an array with the size of the frames; all pixel

values were filled with the information of ’distance to

target’. As pixels can only have a value between 0-255, we

manipulated the information of distance to target. We

multiplied the distance to target information by 10 then

rounded it to the closest integer. We took this information

via PyClient which provides the communication between

Unity and Python. Then we normalized the distance with

255 which is the maximum value a pixel can get. By this

way, we combined the additional distance knowledge with

states.

2.7 Action Selection

The agent was able to move forward only with forward step.

However, the agent was also able to rotate 90° to the right

and left. During training, agent chose the action with the -

greedy strategy as explained above. However, during the

validation session, agent chose the action with maximum

value.

2.8 Training Procedure

2.8.1 Training Duration

The trainings lasted 1000 episodes in general. However, in

some cases there have been some changes because of

different reasons which will be explained later in detail in

related parts. The maximum number of steps that agent can

act was 500 in all the experiments. Each episode terminated

when the agent reached the target or when the agent reached

the limit of maximum steps.

2.8.2 Update of target network

As mentioned before, Double-DQN algorithm also use a

target network. In the first experiment, the target network

was updated with the parameters of the policy network

every 10 episodes. However, to stabilize the model training,

we have changed it and updated the target network every

100 episodes in later experiments.

2.8.3 Training Parameters

As a part of the D-DQN, we have used replay memory

component to store the experiences of the agent. In all

experimental settings, the memory capacity was 12000. The

batch size we have used to sample was 128.

To update the weights of the network at each iteration,

we have used Adaptive Momentum or Adam optimizer.

Some advantages of using the Adam optimizer are the

minimum memory requirement and its efficiency also with

complex problems (Yi et al., 2020). As mentioned before,

to reach improved performance of RL agents, we want to

minimize the prediction error. Adam optimizer uses an

adaptive learning rate. We used 0.0001 as the initial

learning rate. The maximum optimization step in a training

session was 1e6.

2.8.4 Target

In different experimental settings, we have used different

strategies to generate the targets.

1. Target generated at a random location in the

environment

In some of the environments, the target object was

generated at a random location inside the

environment.

2. Target generated at a further location as

training progresses

During the experimental settings, the results

demonstrated that the capacity of the RL agent to

reach the target differs with the initial distance to

target. As an alternative technique, we manipulated

the area that the target object can be generated in the

environment. In these setups, for the first 500

episodes the area that target can be generated
increased every 100 episodes. At the end of the first

500 episodes, the area that target object generated

reached the same size with the room the agent

generated. After 500 episodes, the area target object

can be generated was like the first strategy, so it was

generated at a random location in one of the 3 rooms.

In these experimental settings, the training lasted

1000 episodes.

2.8.5 Distance Calculations

In different experimental settings, we have used different

types of distance calculations.1

Distance approached to the target

For the purposes of statistical analysis, we have calculated

the distance approached to the target at the beginning of

each episode and at each step.

We explored different approaches to calculate the distance.

1. Euclidean Distance

Euclidean distance is basically the magnitude of the

distance between two location points as a straight

line.

2. Shortest Distance

To calculate the shortest path between two locations,

Unity provides a component of NavMeshPath. To

calculate the distance, it uses the corner properties

and calculates the distance between two corner

points. As an advantage over the other distance

calculation methods, the NavMeshComponent finds

the shortest path between two locations by also

considering the obstacles between two locations. The

path was not an input to the RL agent, we just used it

for statistical evaluation.

3. Manhattan Distance

Even though we did not prefer to use in our

experimental settings, the Manhattan distance type is

also implemented. It is the sum of absolute distance

between two coordinations.

2.8.6 Rewards

In different experimental settings, we have used different

reward sets until the 4th experiment. But in general, the goals

of the rewards were the same. For specific values, please

refer to Table 3.1.

1 1 Unity unit corresponds to 1 meter in
reality.

• Collision Reward

To achieve a better avoidance strategy, we have used

negative reward for object and wall collisions.

• Forward Step Reward

The reward selection was more complicated to satisfy

a successful navigation task. For the forward steps,

we did not keep the reward constantly negative or

positive. We have manipulated the reward with the

distance approached to the target. More specifically,

the agent got negative feedback when it moved

further from the target, and it got a positive reward

when it approached to the target. In the first

experimental setting the reward was scaled by the
distance change between the agent and the target with

the current step. For the second experiment, we didn’t

use a reward for forward step because the rewards in

this experimental setting were normalized and we

only gave feedback when the agent reached the target

or collided with an object. However, for the rest of the

experiments, we kept the forward step reward fixed

and gave +1 for the conditions agent moved towards

the target and -1 for the forward steps getting further

from the target. The aim behind these rewards was

teaching the agent to walk towards the target location

by avoiding steps going further from the target.

• Rotation Reward

We have used a negative reward for the rotations in

all experimental settings other than the Experiment 2.

As we evaluated the navigation task with also the

efficiency of the travel, the agent was expected to

reach the target in shortest time. For this aim, we gave

negative feedback to the agent for losing a timestep.

Only in the 2nd experimental setting, we have used a

basic reward setting by just giving a positive reward

for target reached conditions and a negative reward

for collisions. So, there was no other rewards,

including the rotation.

• Target Reached Reward

In all experimental settings, we gave positive

feedback for the episodes that the agent reached to the

target location. Reaching the target was the main

navigation task, so the positive reward was

significantly higher than the other rewards.

• Maximum Steps Reached Reward

Only in the first experiment, we gave negative

feedback if the episode terminated with the condition

of the agent reached the maximum number of steps

without reaching the target. The goal behind this

reward was again teaching the agent to reach the

target. However, using so many rewards with high

values made the model unstable, so we changed our

strategy.

2.8.7 Agents

We can classify agents in different training sessions

according to the image pre-processing technique we have

used or types of models we implemented.

1. Double-DQN Agent and Random Agent

These agents were mainly different with their action

selection strategies. While the Double-DQN Agent

chose the action with the output of the Q-Network

(Please refer to Algorithm 1 for details.), the random

agent chose the actions randomly. Then we have used

these different model behaviours to see the effect of

training.

2. Sighted-Agent, Canny-Agent, and

Segmentation-Agent

We have used different image pre-processing

techniques in different experimental settings. To

compare the performances of the agents trained with

different inputs, we have tried different image pre-

processing techniques in different training sessions.

The Sighted-Agents were the agents we have trained

by using gray-scaled images as inputs. The Canny-

Agents were the agents we have used only Canny

Edge Detection algorithm to pre-process the input.

Lastly, the Segmentation-Agent was the agent

trained with the input pre-processed with both Object

Contour Segmentation Algorithm and Canny Edge

Detection Algorithm.

2.9 Model Evaluation

2.9.1 Validation Session

After every 50 episodes, we have run a validation session

with specific 5 different seeds. Because of the seeds, for

each validation episode, the target location was the same for

all the validation sessions. By this way, we were able to test

the model with the same validation session every time.

During the training, in validation loops we have saved

the models to test the performance of the agent with the

policy network parameters and create videos to also observe

the session visually. For this aim, we have saved different

models. One model was the best model which was the

model used in validation session with the highest average

return. The second model was the recent model, which is

the final version of the trained model. Lastly, as the best

model was selected with the information of the maximum

reward, we have saved a third model as target-reached

model. target-reached model was selected based on the

number of episodes that the agent reached the target during

a validation session.

Lastly, the mean initial distance was the same for all

the validation sessions because of the seeds. Also, even in

cases we used different strategies for target generation, the

validation session was the same for all the experiments; the

target objects in the validation session always generated at

a random location in the house environment.

Experiments and Results

Table 3.1. A table to summarize all the parameters used in

experimental settings.

3.1 Input to Neural Network

In the first three experiments, the input of the Neural

Network was the frames converted to phosphene. We

stacked 4 pre-processed phosphene frames as states and fed

the network with this input.

3.2 Double-DQN Canny-Agents

3.2.1 Experiment 1

Rewards In this experimental setting, we gave

positive feedback if the agent was moving towards the

target or reaching the target and we gave negative feedback

for the actions not moving towards the target, collisions, and

terminated episodes without reaching the target. For values

of the rewards, please refer to Table 3.1. For a general

explanation for the rewards, please refer to subsection 2.8.6.

Target At the beginning of each episode, a target was

generated at a random location in the environment.

Training Performance We have assessed the

performance by relying on different parameters such as the

cumulative reward, total collisions, distance approached to

the target, the initial distance at the beginning of the episode

and the final distance to the target at the end of the episode

etc.

During the training, the cumulative rewards for

episodes were increasing. However, even though it was

increasing, the reward was highly negative.

Figure 3.1. Episode-Reward Graph for Experiment 1.

Figure 3.2. Episode-Total Collisions Graph for Experiment

1.

The Figure 3.2 demonstrates that, the agent was learning

obstacle avoidance during the training session. This is a

possible reason for increasing rewards.

However, as it can be seen from the Figure 3.3 for the

percentage of actions chosen during the training session and

the percentage of conditions for episode termination, the RL

agent was avoiding the collisions by avoiding forward steps.

As the agent was only able to move forward with the

forward step, it was colliding only when it chose the

forward step. When the agent moved forward, the rewards

for the collisions were remarkably higher than the rotation

reward. We believe, that’s why the agent was more prone to

rotation rather than a forward step. The action selection of

the Canny-Agent almost looks like a Random-Agent that

chooses the actions randomly at each step. Also, during the

training session, the Deep RL agent almost did not reach the

target location. The Figure 3.3 demonstrates that almost all

the episodes terminated unsuccessfully when the agent

reached the maximum number of steps.

Figure 3.3. A) Percentage of actions chosen during the

training for Experiment 1. B) Percentage of termination

conditions in a training session for Experiment 1.

Also, the positive reward scaled with distance approached

was not compensating the negative reward of the collisions.

For this reason, the cumulative rewards were highly

negative, and the agent was not colliding with the objects

because it was learning to rotate around rather than moving

towards the target.

Figure 3.4. Cumulative distance approached to the target

graph for episodes in a training session for Experiment 1.

The Figure 3.4 also supports that the agent did not learn to

reach the target during the training as it was almost the same

in all episodes.

Validation Performance Even though the increase

of the reward was more stable during training, for the

validation sessions it was unstable. The Figure 3.5

demonstrated that there was not a development in the

learning across episodes.

Figure 3.5. Rewards for the validation session for

Experiment 1.

Figure 3.6. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

Also, during the validation sessions, the RL agent

mostly preferred to rotate around itself. As the agent was

not learning to move towards the target, it was not able to

reach the target in any of the validation sessions.

In general, the analysis shows that the RL agent did

not learn to move towards the target, but it preferred to

rotate around itself to avoid collisions and minimize the

negative reward. In addition to the graphs demonstrating the

model was not serving for our aim, the GIFs created with

the models saved during the validation sessions also showed

that the models were not successfully trained.

3.2.2 Experiment 2

To deal with the problems in the first experiment, we

wanted an experimental setup to reach more stable results.

For this reason, in this experiment, we have used

normalized rewards.

Rewards In this experimental setup, we only used

rewards for the conditions of target reached and collisions.

By this way, we aimed to see the behaviour of the agent with

a more simplistic design and normalized reward set. For

values of the rewards, please refer to Table 3.1. For a

general explanation for the rewards, please refer to

subsection 2.8.6.

Target Similar to the first experiment, the target

location generated at a random location in the environment.

Figure 3.7. Episode-Reward Graph for Experiment 2.

Training Performance Figure 3.7 demonstrates that

using normalized rewards also results in normalized

cumulative reward. As the aim of this experiment was

reaching more stable results, we reached the aim in 400

episodes. Similarly, the Figure 3.8 for total collisions

showed that the agent learned to minimize the collisions in

400 episodes.

Figure 3.8. Episode-Total Collisions Graph for Experiment

2.

Interestingly, the percentage of the actions chosen

during the training and the percentage of the conditions for

the episode termination was the same with the first

experiment (Please refer to Figure 3.3). However, in this

experimental setting, only positive feedback agent got was

reaching the target. In other words, there was no reward

implemented for walking towards the target. In line with

this, the increasing cumulative reward can be explained by

avoidance strategy rather than reaching the target location.

As also can be seen from the Figure 3.10, there was no

development for the performance of navigation task, so the

agent did not learn to move towards the target during this

training session. As mentioned before, since there were no

implemented rewards other than reaching to target, it was

expected that the agent was not learning this task.

Figure 3.9. A) Percentage of actions chosen during the

training for Experiment 2. B) Percentage of termination

conditions in a training session for Experiment 2.

Figure 3.10. Cumulative distance approached to the target

graph for episodes in a training session for Experiment 2.

In the first experimental setting, there were no

improvements across episodes in terms of distance

approached to the target location (Please refer to Figure

3.4). In this experimental setting, the agent was even getting

further from the target location. For conclusion, even

though the model was not working with the parameters

specified in the Experiment 1, the reward implementation

for the distance approached to the target had some positive

implications in the results.

Validation Performance To evaluate the model and

the training, we investigated the validation performance.

Like the training session, the cumulative reward reached to

0 after a short training session. In contrast with the first

experiment, in this experimental setting, the increase of the

reward was stable in validation sessions. The reward graphs

3.11 and 3.12 shows that after 150 episodes, the mean

reward was 0 for every seed or 5 different target locations.

This reward setting did not increase the percentage of

forward steps remarkably. Also, there were no episodes that

terminated due to target reached condition.

Figure 3.11. Rewards for the validation session for

Experiment 2.

Figure 3.12. Graph for the rewards during validation

sessions and the standard deviation.

Figure 3.13. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

The Figure 3.14 also proves that the agent did not learn to

move towards the target. The average final distance to the

target in the last validation sessions were even higher than

the average initial distance.

Figure 3.14. Graph for average initial and final distances to

the target in validation sessions.

3.2.3 Experiment 3

The RL agent was able to learn the avoidance strategy with

Experiment 2. However, in this experimental setting we

have added rewards to teach the agent to move towards the

target to reach the target.

During this experiment, there were some limitations

that affected the results. The Unity crashed multiple times

during the training. To deal with this problem, we uploaded

the policy network and optimizer parameters and continued

the training. However, loading the model affected the

visualized graphs and training procedure. For this reason, in

this experimental setting, the training duration is 405

episodes.

Rewards In this experimental setup, we aimed to

implement the rewards to teach the navigation task of

reaching the target. We added the negative step reward

again for the rotations. Additionally, we gave a negative

step reward if the agent was going further from the target.

However, we gave a positive reward for walking towards

the target.

To choose these rewards, we have made some tests

and checked the performance for different reward settings.

For example, in one of the experimental settings we scaled

the positive reward for walking towards the target with the

distance approached to the target. The results of that trial

showed that the positive reward was too low. That’s why

we changed the positive reward fixed to +1 if it is getting

closer. Also, we have tried a setting with +10 reward for the

conditions the agent reached the target. This reward was not

enough so we converted it to +50 in this setting. For values

of the rewards, please refer to Table 3.1. For a general

explanation for the rewards, please refer to subsection 2.8.6.

 Target The target location generated at a random

location in the environment.

Training Performance In this training session, the

Figure 3.15 for the cumulative reward was demonstrating

increase in reward like the reward graph (Figure 3.1) of the

training session in Experiment 1, even though it was still

negative. It was still normal because for every step not

moving towards the target, we gave negative reward.

Figure 3.15. Episode-Reward Graph for Experiment 3.

The Figure 3.16 shows that for the avoidance strategy,

the performance got better during the training session; agent

learned to avoid collisions. Additionally, the Figure 3.17

demonstrates that with this reward setting the agent started

to prefer forward step rather than rotating around. In this

experimental setting, the RL agent was getting equally

negative reward for every step it was not moving towards

the target which made it prefer to move towards the target

location which was the main navigation task. With this

development in the action selection of the RL agent, the

episodes terminated due to target reached condition also

increased.

Figure 3.16. Episode-Total Collisions Graph for

Experiment 3.

Figure 3.17. A) Percentage of actions chosen during the

training for Experiment 3. B) Percentage of termination

conditions in a training session for Experiment 3.

The Figure 3.18 for distance approached to the target also

supports the claim that the agent started to learn to move

towards the target within this experimental setting.

Figure 3.18. Cumulative distance approached to the target

graph for episodes in a training session for Experiment 3.

Validation Performance The mean reward for the

validation sessions was not as good as the mean reward in

the validation session of the Experiment 2 (Please refer to

Figure 3.1.1). Still, as the reward setting was completely

different and more basic in that setting, the difference

between the cumulative graphs of two experiments is

expected.

Figure 3.19. Rewards for the validation session for

Experiment 3.

Figure 3.20. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

This experimental setting was the first experimental

setting we have seen the agent reached the target during the

validation sessions. Similarly, the Figure 3.21 comparing

the initial distance and the final distance showed that, the

agent started to show development in navigation task.

However, when we visualized the models to check the

behaviour of the agent, the model was still not performing

efficiently. For conclusion, this experimental setting

showed that this training method was not enough for this

complex problem and environment.

Figure 3.21. Graph for average initial and final distances to

the target in validation sessions.

3.3 Random Agent

For the next experiments, we kept the reward setting the

same. This provided us with a means to compare

performance of agents with different visual and behavioural

capacities under the same conditions. The random agent

acts as a baseline in this sense.

3.3.1 Experiment 4

 Rewards Rewards kept the same. For values of the

rewards, please refer to Table 3.1. For a general explanation

for the rewards, please refer to subsection 2.8.6.

Target The target object was getting further during

the training. There were some problems with the

ShortestPath, in some of the steps it was not possible to find

the shortest path. As we implemented the distance to target

parameter as an input to the target, we have changed to

distance type Euclidean.

Training Performance As this was the Random-

Agent, the percentage of actions chosen was the same.

However, agent was still able to reach the target while

randomly moving during the training. As the target was

generated in closer areas during the early episodes, it was

easily reachable while exploring the environment randomly.

Figure 3.22. A) Percentage of actions chosen during the

training for Experiment 4. B) Percentage of termination

conditions in a training session for Experiment 4.

Figure 3.23. Cumulative distance approached to the target

graph for episodes in a training session for Experiment 4.

Still, in average, the distance approached to the target

across episodes were almost didn’t change. In other words,

the agent did not show development for the navigation task.

The most obvious difference was in the performance

for avoidance strategy. The Figure 3.24 for total collisions

across episodes was significantly different from the results

of other experiments as expected. This was the only

experimental setting the total collisions across episodes

were increasing.

Figure 3.24. Episode-Total Collisions Graph for

Experiment 4.

Validation Performance During the validation

sessions, the model was not trained. Additionally, during

the validation, agent did not reach to the target in any of the

episodes. As also shown with the Figure 3.26, the initial

distance and the final distance to the target was the same for

all the validation sessions as the agent only chose to rotate.

Figure 3.25. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

Figure 3.26. Graph for average initial and final distances to

the target in validation sessions.

3.4 Input to Neural Network

After Experiment 3, we have changed the input given to the

neural network. In the next experiments, the states given as

input to the neural network had an additional information of

distance to target. For more detailed information, please

refer to the section on Input to the Neural Network (2.6)

3.5 Double-DQN Canny-Agents

3.5.1 Experiment 5

Rewards As we achieved to increase the number of

forward steps and decrease the collisions during the training

and validation sessions, we have kept the rewards the same.

For values of the rewards, please refer to Table 3.1. For a

general explanation for the rewards, please refer to

subsection 2.8.6.

 Target Target generated at a random location in the

environment.

 Training Performance During the training, rewards

increased until some point.

Then, the cumulative reward across episodes were more

stable.

Figure 3.27. Episode-Reward Graph for Experiment 5.

Figure 3.28. Episode-Total Collisions Graph for

Experiment 5.

The Figure 3.28 for total collisions across episodes showed

that, the agent was learning the avoidance strategy. Also,

the Figure 3.28 for total collisions and the Figure 3.27 for

the cumulative reward were almost reversed version of each

other.

Figure 3.29. A) Percentage of actions chosen during the

training for Experiment 5. B) Percentage of termination

conditions in a training session for Experiment 5.

The percentage of the episodes terminated

successfully and the percentage of the forward action in

training session was almost the same with the training

performance in Experiment 3 (Please refer to Figure 3.17).

However, the Experiment 3 lasted in 405 episodes so we

cannot talk about the differences reliably.

Figure 3.30. Cumulative distance approached to the target

graph for episodes in a training session for Experiment 4.

The total approach to the target across episodes was

slightly better in this experimental setting than previous

experiments. This demonstrates that giving another input to

the network for the distance approached to the target was

helping for a more efficient learning.

We also checked the effect of initial distance for the

conditions that agent reached the target. The Figure 3.31

shows that, when the initial distance was higher than 3, the

conditions agent reached the target was less.

Figure 3.31. The graph for initial distances for the

conditions agent reached the target during the training

session in Experiment 4.

Validation Performance The mean reward in

validation sessions increased until about 700 episodes.

However, after that, it was again unstable. This shows that,

the model was not developing efficiently during the training

session for 1000 episodes.

Figure 3.32. Rewards for the validation session for

Experiment 5.

Figure 3.33. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

The percentage of forward actions was remarkably

higher than the validation sessions in previous experiments.

Also, there was an increase in the percentage of episodes

terminated successfully. However, the Figure 3.34 does not

show a stable development across validation sessions when

we compare the average initial distance and the final

distances.

Figure 3.34. Graph for average initial and final distances to

the target in validation sessions.

3.5.2 Experiment 6

Rewards Rewards kept the same. For values of the

rewards, please refer to Table 3.1. For a general explanation

for the rewards, please refer to subsection 2.8.6.

Target In training session, the initial distance to

target location increased across episodes (For more detailed

information, please refer to subsection 2.8.4).

Training Performance As the distance to target was

increasing, the training session was not informative enough

to compare.

Figure 3.35. Graph for the initial distances and the number

of episodes the agent reached the target.

However, as shown in the Figure 3.35 and also shown

in the previous experimental settings (Please refer to Figure

3.31, the agent was able to learn to reach the target when the

target generated at a closer location.

Validation Performance The conditions were the
same for all the validation sessions. In other words, even

though the target location was getting further during the

training, for the validation session the target generated at a

random location.

In this experimental setting, the graph for cumulative

rewards across validation sessions (Figure 3.36) was better

than the experimental settings that target generated at a

random location in the environment in terms of cumulative

reward in the last validation sessions.

Figure 3.36. Rewards for the validation session for

Experiment 6.

Figure 3.37. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

The percentage of episodes terminated when the

agent reached the target was the same with Experiment 5

(Please refer to Figure 3.33).

Figure 3.38. Graph for average initial and final distances to

the target in validation sessions.

However, as we can see from the Figure 3.38, the

average initial distance in our validation sessions was about

6. The Figure 3.35 demonstrates that, the conditions agent

reached the target is remarkably lower for the conditions the

target generated at a location with the initial distance higher

than 3. As the average initial distance to target in validation

sessions higher than 3, this is a possible reason for that the

successful validation episodes are not increasing.

3.6 Double-DQN Segmentation-Agent

3.6.1 Input

The input of the network was states as 4 frames stacked and

an additional frame combined to give the information of

distance approached to the target. The input was converted

to phosphene. However, as the input created by only using

Canny Edge Detector was still noisy, this time before we

fed the input to phosphene simulator, we pre-processed the

images with Object Contour Segmentation and Canny Edge

Detector.

3.6.2 Experiment 7

Rewards Rewards kept the same. For values of the

rewards, please refer to Table 3.1. For a general explanation

for the rewards, please refer to subsection 2.8.6.

Target As the observed performance of the agent and

the graph of reward across validation sessions (Figure 3.36)

was better, we kept generating the target at a further location

during the training.

Figure 3.39. Rewards for the validation session for

Experiment 7.

Validation Performance The reward graph for

validation sessions was similar to the reward graph in

Experiment 6 (Please refer to Figure 3.36). There was no

continuous development in performance in terms of rewards

in validation sessions.

With this image pre-processing technique, the images

were less noisy. For this reason, we expected a better

performance. However, in this experimental setting, the

percentage of episodes terminated successfully was less

than the episodes Canny-Agent reached the target (3.37).

Figure 3.40. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

As explained before during image pre-processing

part, it is important to extract required visual cues during

simplification of the scene. In comparison to Canny-Agent,

the episodes terminated with the condition reaching the

target was decreased. In other words, even though the

simulated phosphene images generated with only Canny

Edge Detection algorithm were looking noisier, the

evaluations demonstrated that the model was still better.

When we used an additional image pre-processing

technique, the visualized images were clearer. However,

results show that we lost some part of the required

information for the agent.

3.7 Double-DQN Sighted-Agent

3.7.1 Input

The input of the network was states as 4 frames stacked and

an additional frame combined to give the information of

distance approached to the target. The input was gray-scaled

images.

3.7.2 Experiment 8

Rewards Rewards kept the same. For values of the

rewards, please refer to Table 3.1. For a general explanation

for the rewards, please refer to subsection 2.8.6.

Target During the training session, the initial

distance between the agent and the target increased.

Training Performance During the training session,

agent was able to reach the target in almost half of the

episodes.

Figure 3.41. A) Percentage of actions chosen during the

training for Experiment 8. B) Percentage of termination

conditions in a training session for Experiment 8.

Validation Performance As the Sighted-Agent was

getting gray-scaled input without a pre-processing step, we

expected a better performance than other experimental

settings. Unfortunately, the reward graph (3.42) for the

reward was not better as expected.

Figure 3.42. Rewards for the validation session for

Experiment 8.

Additionally, the percentage of episodes terminated

successfully in the validation sessions (3.43) was not as high

as the training sessions (3.41). In line with this, also the

Figure 3.44 does not show a stable development for the

navigation task.

Figure 3.43. A) Graph for percentage of actions chosen

during validation sessions. B) Graph for percentage of

episode termination conditions as target reached or

maximum number of steps reached.

Figure 3.44. Graph for average initial and final distances to

the target in validation sessions.

Discussion and Conclusion
We have tried multiple experimental settings to develop a

model to reach successful performances in the navigation

task and avoidance strategy. We have evaluated the

performances of the models with different experimental

settings to reach the best model.

For target generation strategy, when we compare the

performances of two Double-DQN Canny-Agents, the

performance of the RL agent was better in terms of the

cumulative reward in last validation sessions. For this

reason, for the next experiments, we used this target

generation method.

Figure 4.1. Validation Reward-Episode graph of Double-

DQN Agents with different target generation strategies

In Experiments 6,7 and 8, all the conditions other than

the visual input was the same. That’s why we mainly

compared the effect of different visual inputs by comparing

these agents’ performances. The Figure 4.2 of cumulative

reward in validation sessions demonstrated that, for all the

trained RL-Agents the performance was better than the

performance of the Random-Agent. The performance of the

Canny Agent was slightly better than the other agents.

However, for general evaluation with rewards, the

differences between trained models were not remarkably

different.

The environment was highly complex and there were

situations that when the agent walked into narrow areas, it

could not get out of those areas. This caused to increase of

the collisions in some cases.

For the comparison of total collisions of the agents

with different visual inputs, the segmentation agent’s

performance for avoidance strategy seems the best.

However, the difference is really low and in general all the

models in different experimental settings showed

development for obstacle avoidance.

Figure 4.2. Validation Reward-Episode graph for models

trained with different inputs

Figure 4.3. Distribution of the total collisions in final

validation session and the best validation session in terms

of rewards of Canny-Agent, Segmentation-Agent, and the

Sighted Agent.

As mentioned in detail before, the best model saved

in terms of the highest cumulative reward in validation

session. Still, as the agent got positive reward for each step

moving towards the target, the final distance to target and

the cumulative reward are correlated. However, the

negative reward for the collisions was double of the positive

reward for distance moving towards the target. That’s why,

we cannot consider the best model also the best model for

the navigation task. The Figure 4.5 demonstrates that, the

recent model of the Segmentation-Agent was better than

other models.

Figure 4.4. Distribution of the final distance to the target in

final validation session and the best validation session in

terms of rewards.

Still, when we consider the percentage of the episodes

that the agent reached the target during the validation

sessions, Canny-Agent was the best model. The percentage

of episodes that the Segmentation-Agent reached the target

when we evaluate all the validation sessions was less than

the Sighted-Agent and the Canny-Agent.

Figure 4.5. Distribution of the final distance to the target in

final validation session and the best validation session in

terms of rewards.

Even though the models are not working efficiently

for the aim of reaching the target, the evaluations still

demonstrate development in different experimental

settings. Especially, for the avoidance strategy, the

performance of the agents was developed. Additionally, the

comparisons with the performance of the Random-Agent

shows remarkable differences in terms of both the

navigation task and avoidance strategy.

There are also some implications for using different

image pre-processing techniques. As explained in detail in

the image pre-processing section, there is a trade-o between

simplification and the informativity of the scene. Our results

for the Segmentation-Agent demonstrated that, even though

the visualized scenes were better for our observation, it

might not be informative enough for the RL agent. This

should be investigated further in different experimental

settings. A visualization of simulated phosphene visions

with different image pre-processing techniques can be

found in the Figure 4.6.

Figure 4.6. A) Input with Canny Edge Detection fed into

phosphene simulator. B) Input with Object Contour

Segmentation and Canny Edge Detection fed into

phosphene simulator.

Limitations and Future Work

There were some limitations in this project. As mentioned

briefly before, Unity crashed multiple times during some of

the training sessions. Even though we tried to load the

policy network and the optimizer parameters as suggested

in Pytorch Website, we were not able to continue without

causing a difference in the model performance. That’s why

we needed to evaluate the model trained before the loaded

data. That caused limitations of time and comparability of

data.

Another limitation for Unity part was the distance

calculations. Normally, we aimed to use the NavMeshPath

to calculate the distance in the environment. That would be

the best option because it generates the shortest path by

considering the objects in the environment. In other words,

the generated path is the path that the RL agent preferably

used for the shortest path by avoiding collisions. However,

the environment was highly complex and for some locations

it was not possible to generate a path between two locations.

There were also problems caused by the methods we

used. The target location was changing at the beginning of

each episode. For memory replay, the model uses the

experiences stored as (st, at , rt+1, st+1). However, when the

target location changed, the return of the state-action pairs

was also changing.

Additionally, as a limitation for the image pre-

processing part, while generating the input for

Segmentation-Agent, we have used Object-Contour

Segmentation. With the Unity virtual environment, we were

able to use an implemented ML algorithm that gives a

unique colour to each object in the scene. With this

algorithm, it uses the Renderer components of each object

in the scene for segmentation. For this reason, the results for

the Segmentation-Agent are generated under the

assumption of perfect segmentation. There are other

methods for Object Contour Segmentation. However, still

there are still gaps in comparison to human vision (Yang et

al., 2022). This raises the question "Is this really applicable

in real-life scenarios?".

Still, this project provides a baseline for more realistic

and complex future studies. Even though we have tried

multiple experimental settings, we were just able to provide

some developments rather than a working model for the

navigation task. Future studies might benefit from different

sets of parameters related with developments in the models

to generate a working model. As this is a highly complex

task, it is also important to test with more complex

algorithms and network architectures in the future.

Additionally, in future, it is important to test the

simulated vision in realistic settings with different contexts

and tasks. As the optimized models are going to be used in

real life, the models should be optimized by using real life

experiences. To achieve this, there is a need to test real life

contexts such as outdoor environments with dynamic

stimuli. It is a scenario that we might benefit the most from

the realistic virtual environments. Considering the risk and

the ethical issues, we cannot test human participants in

dynamic outdoor stimuli with every task such as crossing a

road open to traffic. However, realistic virtual environments

allow us to optimize the models without considering these

kinds of limitations. In future, we should benefit from

opportunities like that.

Lastly, in this project, we have tested Canny Edge

Detection and Object Contour Segmentation for scene

simplification. However, there are many other parameters

should be tested for different contexts like depth. Future

studies should test various contexts with different image

pre-processing techniques to have more knowledge about

required visual cues in different contexts.

Acknowledgements

Special thanks to Marcel van Gerven, Umut Güçlü, Burcu

Küçükoğlu, Jaap de Ruyter van Steveninck, Richard van

Wezel and Yağmur Güçlütürk for their great help and

guidance. Additionally, I am grateful to Ertunç Erdil for his

guidance and my adorable nephew Ege Luca Erdil for the

energy and motivation he provided with his big smile every

time I call during this process.

References

Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A.,

Gupta, S., Koltun, V., ... & Zamir, A. R. (2018). On

evaluation of embodied navigation agents. arXiv

preprint arXiv:1807.06757.

Bollen, C. J., Van Wezel, R. J., Van Gerven, M. A., &

Güçlütürk, Y. (2019). Emotion recognition with

simulated phosphene vision. Proceedings of the 2nd

Workshop on Multimedia for Accessible Human

Computer Interfaces - MAHCI '19.

https://doi.org/10.1145/3347319.3356836

Boyle, J., Maeder, A., & Boles, W. (2001). Static image

simulation of electronic visual prostheses. The Seventh

Australian and New Zealand Intelligent Information

Systems Conference, 2001.

https://doi.org/10.1109/anziis.2001.974055

Boyle, J., Maeder, A., & Boles, W. (2003). Scene specific

imaging for bionic vision implants. 3rd International

Symposium on Image and Signal Processing and

Analysis, 2003. ISPA 2003. Proceedings of the.

https://doi.org/10.1109/ispa.2003.1296934

Boyle, J. R., Maeder, A. J., & Boles, W. W. (2002). Image

enhancement for electronic visual prostheses.

Australasian Physics & Engineering Sciences in
Medicine, 25(2), 81-86.

https://doi.org/10.1007/bf03178470

Brindley, G. S., & Lewin, W. S. (1968). The sensations

produced by electrical stimulation of the visual cortex.

The Journal of Physiology, 196(2), 479-493.

https://doi.org/10.1113/jphysiol.1968.sp008519

Chen, X., Wang, F., Fernandez, E., & Roelfsema, P. R.

(2020). Shape perception via a high-channel-count

neuroprosthesis in monkey visual cortex. Science,

370(6521), 1191-1196.

https://doi.org/10.1126/science.abd7435

De Ruyter van Steveninck, J., Van Gestel, T., Koenders,

P., Van der Ham, G., Vereecken, F., Güçlü, U., Van

Gerven, M., Güçlütürk, Y., & Van Wezel, R. (2022).

Real-world indoor mobility with simulated prosthetic

vision: The benefits and feasibility of contour-based

scene simplification at different phosphene resolutions.

Journal of Vision, 22(2), 1.

https://doi.org/10.1167/jov.22.2.1

Dobelle, W. H., Quest, D. O., Antunes, J. L., Roberts, T.

S., & Girvin, J. P. (1979). Artificial vision for the blind

by electrical stimulation of the visual cortex.

Neurosurgery, 5(4). https://doi.org/10.1097/00006123-

197910000-00021

Dowling, J. (2007). Mobility enhancement using simulated

artificial human vision.

Fernández, E., Alfaro, A., & González-López, P. (2020).

Toward long-term communication with the brain in the

blind by Intracortical stimulation: Challenges and future

prospects. Frontiers in Neuroscience, 14.

https://doi.org/10.3389/fnins.2020.00681

Garg, D., Jagannathan, S., Gupta, A., Garg, L., & Gupta,

S. (2022). Advanced computing: 11th International

Conference, IACC 2021, Msida, Malta, December 18–
19, 2021, revised selected papers. Springer Nature.

Grover, L. L. (2017). Making eye health a population

imperative: A vision for tomorrow—A report by the

committee on public health approaches to reduce vision

impairment and promote eye health. Optometry and
Vision Science, 94(4), 444-445.

https://doi.org/10.1097/opx.0000000000001073

Hallum, L. E., Suaning, G. J., Taubman, D. S., & Lovell,

N. H. (2005). Simulated prosthetic visual fixation,

saccade, and smooth pursuit. Vision Research, 45(6),

775-788. https://doi.org/10.1016/j.visres.2004.09.032

Van Hasselt, H., Guez, A., & Silver, D. (2016, March).

Deep reinforcement learning with double q-learning. In

Proceedings of the AAAI conference on artificial

intelligence (Vol. 30, No. 1).

Hayes, J. S., Yin, V. T., Piyathaisere, D., Weiland, J. D.,

Humayun, M. S., & Dagnelie, G. (2003). Visually

guided performance of simple tasks using simulated

prosthetic vision. Artificial Organs, 27(11), 1016-1028.

https://doi.org/10.1046/j.1525-1594.2003.07309.x

Jepkoech, J., Mugo, D. M., Kenduiywo, B. K., & Too, E.

C. (2021). The effect of adaptive learning rate on the

accuracy of neural networks. International Journal of

Advanced Computer Science and Applications, 12(8).

https://doi.org/10.14569/ijacsa.2021.0120885

Krantz, J., Gokaslan, A., Batra, D., Lee, S., & Maksymets,

O. (2021). Waypoint models for instruction-guided

navigation in continuous environments. 2021

IEEE/CVF International Conference on Computer

Vision (ICCV).
https://doi.org/10.1109/iccv48922.2021.01488

Kulhanek, J., Derner, E., De Bruin, T., & Babuska, R.

(2019). Vision-based navigation using deep

reinforcement learning. 2019 European Conference on

Mobile Robots (ECMR).
https://doi.org/10.1109/ecmr.2019.8870964

Lu, Y., Wang, J., Wu, H., Li, L., Cao, X., & Chai, X.

(2013). Recognition of objects in simulated irregular

phosphene maps for an Epiretinal prosthesis. Artificial

Organs, 38(2), E10-E20.

https://doi.org/10.1111/aor.12174

McCarthy, C., Walker, J. G., Lieby, P., Scott, A., &

Barnes, N. (2014). Mobility and low contrast trip

https://doi.org/10.1145/3347319.3356836
https://doi.org/10.1109/anziis.2001.974055
https://doi.org/10.1109/ispa.2003.1296934
https://doi.org/10.1007/bf03178470
https://doi.org/10.1113/jphysiol.1968.sp008519
https://doi.org/10.1126/science.abd7435
https://doi.org/10.1167/jov.22.2.1
https://doi.org/10.1097/00006123-197910000-00021
https://doi.org/10.1097/00006123-197910000-00021
https://doi.org/10.3389/fnins.2020.00681
https://doi.org/10.1097/opx.0000000000001073
https://doi.org/10.1016/j.visres.2004.09.032
https://doi.org/10.1046/j.1525-1594.2003.07309.x
https://doi.org/10.14569/ijacsa.2021.0120885
https://doi.org/10.1109/iccv48922.2021.01488
https://doi.org/10.1109/ecmr.2019.8870964
https://doi.org/10.1111/aor.12174

hazard avoidance using augmented depth. Journal of
Neural Engineering, 12(1), 016003.

https://doi.org/10.1088/1741-2560/12/1/016003

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A.

J., Banino, A., ... & Hadsell, R. (2016). Learning to

navigate in complex environments. arXiv preprint
arXiv:1611.03673.

Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level

control through deep reinforcement learning. Nature

518, 529–533 (2015).

https://doi.org/10.1038/nature14236

National Academies of Sciences; Engineering; and

Medicine, Health and Medicine Division, Board on

Population Health and Public Health Practice, &

Committee on Public Health Approaches to Reduce

Vision Impairment and Promote Eye Health. (2017).

Making eye health a population health imperative:

Vision for tomorrow. National Academies Press.

Sanchez-Garcia, M., Martinez-Cantin, R., & Guerrero, J.

(2019). Indoor scenes understanding for visual

prosthesis with fully Convolutional networks.

Proceedings of the 14th International Joint Conference

on Computer Vision, Imaging and Computer Graphics
Theory and Applications.

https://doi.org/10.5220/0007257602180225

Sanchez-Garcia, M., Martinez-Cantin, R., & Guerrero, J. J.

(2020). Semantic and structural image segmentation for

prosthetic vision. PLOS ONE, 15(1), e0227677.

https://doi.org/10.1371/journal.pone.0227677

Sanchez-Garcia, M., Martinez-Cantin, R., & Guerrero, J. J.

(2018). Structural and object detection for phosphene

images. arXiv preprint arXiv:1809.09607.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y.,

Wijmans, E., Jain, B., Straub, J., Liu, J., Koltun, V.,

Malik, J., Parikh, D., & Batra, D. (2019). Habitat: A

platform for embodied AI research. 2019 IEEE/CVF

International Conference on Computer Vision (ICCV).

https://doi.org/10.1109/iccv.2019.00943

Sehic, A., Guo, S., Cho, K., Corraya, R. M., Chen, D. F.,

& Utheim, T. P. (2016). Electrical stimulation as a

means for improving vision. The American Journal of

Pathology, 186(11), 2783-2797.

https://doi.org/10.1016/j.ajpath.2016.07.017

Shang, W., Wang, X., Srinivas, A., Rajeswaran, A., Gao,

Y., Abbeel, P., & Laskin, M. (2021). Reinforcement

learning with latent flow. Advances in Neural

Information Processing Systems, 34, 22171-22183.

Thompson, R. W., Barnett, G. D., Humayun, M. S., &

Dagnelie, G. (2003). Facial recognition using simulated

prosthetic Pixelized vision. Investigative Opthalmology

& Visual Science, 44(11), 5035.

https://doi.org/10.1167/iovs.03-0341

Updated vision atlas shows 1.1 billion people have vision

loss. (2021, April 15). The International Agency for the

Prevention of Blindness.

https://www.iapb.org/news/updated-vision-atlas-shows-

1-1-billion-people-have-vision-loss/

Vergnieux, V., Macé, M. J., & Jouffrais, C. (2017).

Simplification of visual rendering in simulated

prosthetic vision facilitates navigation. Artificial

Organs, 41(9), 852-861.

https://doi.org/10.1111/aor.12868

Yang, D., Peng, B., Al-Huda, Z., Malik, A., & Zhai, D.

(2022). An overview of edge and object contour

detection. Neurocomputing, 488, 470-493.

https://doi.org/10.1016/j.neucom.2022.02.079

Yi, D., Ahn, J., & Ji, S. (2020). An effective optimization

method for machine learning based on ADAM. Applied
Sciences, 10(3), 1073.

https://doi.org/10.3390/app10031073

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-

Fei, L., & Farhadi, A. (2017). Target-driven visual

navigation in indoor scenes using deep reinforcement

learning. 2017 IEEE International Conference on

Robotics and Automation (ICRA).
https://doi.org/10.1109/icra.2017.7989381

https://doi.org/10.1088/1741-2560/12/1/016003
https://doi.org/10.5220/0007257602180225
https://doi.org/10.1371/journal.pone.0227677
https://doi.org/10.1109/iccv.2019.00943
https://doi.org/10.1016/j.ajpath.2016.07.017
https://doi.org/10.1167/iovs.03-0341
https://www.iapb.org/news/updated-vision-atlas-shows-1-1-billion-people-have-vision-loss/
https://www.iapb.org/news/updated-vision-atlas-shows-1-1-billion-people-have-vision-loss/
https://doi.org/10.1111/aor.12868
https://doi.org/10.1016/j.neucom.2022.02.079
https://doi.org/10.3390/app10031073
https://doi.org/10.1109/icra.2017.7989381

	Introduction
	1.1 Background
	The 2020 reports of the International Agency for the Prevention of Blindness demonstrates that globally 1.1 billion people are suffering from vision loss and researchers expect that the number of people with vision loss will rise to 1.7 billion until ...
	Relying on these statistics, we can say vision loss is a non-negligible societal problem especially when we think about the fact that we significantly rely on visual cues to accomplish most of the daily activities like navigation, object recognition o...
	As a result of the loss of daily functionalities mentioned above such as walking around avoiding obstacles, there is an increased demand in studies to provide vision. One of the promising solutions for providing vision is visual prostheses studies w...
	1.1.1 Retinal and Cortical Implants
	Only in the early 20th century did artificial vision experience its greatest breakthrough. However, the restoration of vision has been a well-focused area of research for many more years. In 1929, Foerster discovered that electrically stimulating visu...
	In 1968, researchers at the University of Cambridge attempted to implant radio receivers connected to the electrodes under the scalp of the blind people and sent pulses to these electrodes with the aid of a cap. The pulses activated the electrons an...
	In 1979, scientists at the University of Utah published another study relying on findings of Brindley and Lewin. They started their experiments in 1969, with blind participants who already needed a surgical operation for the removal of tumors/lesion...
	An obvious challenge in this area of research is the need for surgical operations to test and develop the implants which has high risk and cost. The technological developments allowed researchers to test the vision provided by the implants in an eas...
	1.1.2 Resolution
	1.1.3 Different Image Pre-Processing Techniques
	1.1.4 Reinforcement Learning

	Sam Danen et al. (2021) tried to use reinforcement learning to test prosthetic vision and automatically optimize the parameters of image pre-processing in his thesis project. They attempted to compare the performances of human participants and trained...
	There have also been more complicated studies conducted by using indoor visual navigation task (Krantz et al., 2021; Savva et al., 2019; Zhu et al., 2017). In one of the studies, Savva et al. (2018) used AI-Habitat which is a simulation platform to ...
	1.2 Research Aim
	1.2 Technical Background
	1.3.1 Reinforcement Learning
	1.3.2 Q-Learning
	Q-learning is the process of updating the Q-values for each state-action pairs with the Bellman Equation with the reward received after the action until it converges to optimal value function. During Q-learning, Q-values are stored in Q-table which ha...
	As the agent does not have enough knowledge about the environment at first, it starts with the exploration process. During Q-learning, the agent uses the Q-value estimations to choose the optimal action and uses (-greedy policy to decide. With this ...
	During the exploration, the agent selects a random action from the possible actions. After a while, the agent starts to use the experience so the knowledge about the environment to choose the actions. During this exploitation process, the agent choo...
	1.3.3 Deep Q-Networks

	2.1 Navigation Task
	2.2 Realistic Virtual Environment
	2.2.1 Unity
	Collisions
	Target Generation
	Physics Rules

	2.3 Learning Algorithm
	2.4 Vision Processing
	Phosphene Vision with Canny Edge Detection

	2.5 Neural Network
	2.6 Input to the Neural Network
	2.7 Action Selection
	2.8 Training Procedure
	2.8.1 Training Duration
	2.8.2 Update of target network
	2.8.3 Training Parameters
	2.8.4 Target
	1. Target generated at a random location in the environment
	2. Target generated at a further location as training progresses

	2.8.5 Distance Calculations
	Distance approached to the target

	2.8.6 Rewards
	• Collision Reward
	• Forward Step Reward
	• Rotation Reward
	• Target Reached Reward
	• Maximum Steps Reached Reward

	2.8.7 Agents
	1. Double-DQN Agent and Random Agent
	2. Sighted-Agent, Canny-Agent, and Segmentation-Agent

	2.9 Model Evaluation
	2.9.1 Validation Session

	Experiments and Results
	3.1 Input to Neural Network
	3.2 Double-DQN Canny-Agents
	3.2.1 Experiment 1
	3.2.2 Experiment 2
	3.2.3 Experiment 3

	3.3 Random Agent
	3.3.1 Experiment 4

	3.4 Input to Neural Network
	3.5 Double-DQN Canny-Agents
	3.5.1 Experiment 5
	3.5.2 Experiment 6

	3.6 Double-DQN Segmentation-Agent
	3.6.1 Input
	3.6.2 Experiment 7

	3.7 Double-DQN Sighted-Agent
	3.7.1 Input
	3.7.2 Experiment 8

	Discussion and Conclusion
	Limitations and Future Work

