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Abstract

One of the most fundamental human activities consists of communication through
human language. The most important aspect of human language is face-to-face
interaction, suggesting human language is a multimodal phenomenon. There is
an enormous variation in the face’s articulators and the potential signals they
can produce. This research will investigate whether any regularities regarding
those facial signals occur when comparing questions to responses. Data from
dyadic conversations were used where participants talked freely for 60 minutes,
in an attempt to take a more naturalistic approach compared to most existing
literature that uses conversational data from highly controlled environments.
Facial signals are recognized with the help of OpenFace, a tool for the au-
tomatic detection of facial signals from video data. General (co-)occurrence
counts of facial signals, as well as sequences of facial signals, and their timing
were analyzed while comparing questions to responses. Significant differences
between questions and responses were found both agreeing, as well contradicting
existing literature. Therefore this research could provide more insight to what
facial signals occur systematically during questions and responses and possibly
help to addressee to predict the content or ending of the incoming turn.

Furthermore, SPeeding Up the Detection of Non-iconic and Iconic Gestures
(SPUDNIG): a toolkit for the automatic detection of hand movements and ges-
tures in video data was presented. This toolkit was developed since there was
no existing toolkit for the automatic detection of hand movements, in contrast
to toolkits for the automatic detection of facial signals such as OpenFace. It
was demonstrated that SPUDNIG accelerates the process of annotating hand
gestures. Therefore SPUDNIG could be used in order to facilitate the time-
consuming and labour-intensive task of manually annotating hand gestures.



Chapter 1

Introduction

1.1 Multimodal communication

Nowadays communication comes in all forms and can be found everywhere.
Human communication, through spoken language, allows us to share and com-
municate our knowledge, and sets us apart from all other species on this planet.
The underlying cognitive processes of communication and language process-
ing have been researched extensively over the years, yet we are still far away
from understanding the full process and all components that are involved. The
most important aspect of human language is face-to-face interaction, suggest-
ing human language is a multimodal phenomenon. This means different kinds
of cues from different kinds of articulators are involved in the interaction pro-
cess, which vary in modality (e.g. auditory, visual, haptic, olfactory). Whereas
traditionally articulators only represent the organs that produce the sound
of language (i.e., the glottis, velum, hard palate, lips, teeth, tongue), in this
study articulators also include the forehead, eyebrows, both eyelids, the muscles
around the mouth, nose and cheeks. Considering the face contains 43 mus-
cles, there is a huge amount of potential signals produced during speech. As
[Holler and Levinson, 2019] describe, this raises two computational challenges.
First, not all visual cues are intended to be part of the signal as some are
incidental and irrelevant to the content or signal of the speaker (segregation
problem). Second, the visual cues that appear to be relevant to the content
of the speaker have to be matched with their counterparts, where simply tak-
ing into account simultaneity turns out unreliable (binding problem). All of
these visual signals are layered onto the vocal signal, resulting in an abundance
of signal onsets and offsets. One would think unifying those layers would be
quite a complex and demanding task, yet [Holler et al., 2018] showed that ques-
tions paired with gestures get faster responses. Such findings suggest that the
body plays a significant role in the psycholinguistic processes regarding human
communication. This study aims to find whether this is the case for facial sig-
nals as well, by testing for regularities in facial signals during speech in order
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to provide more insight to the psycholinguistic processes of human language
processing. While there exists ample literature on spoken language processing,
most merely focuses on the auditory linguistic signal. The remainder of this
chapter will give an overview of studies that have been done regarding multi-
modal processing of visual signals during speech. [Benitez-Quiroz et al., 2016]
suggested that facial expressions have grammatical function and that some com-
ponents of human language have evolved from facial expressions of emotion.
This study however, like many studies in this field, forced participants to pro-
duce the facial expression of negation, and the events did not occur during
free speech. [Ekman, 2009] showed that the facial shrug, consisting of an eye-
brow flash and one mouth corner being retracted, often is paired with signals
being ’I don’t know’ or ’OK’. These results could serve as evidence of this
specific sequence of facial signals occurring more in responses than in ques-
tions. Raised eyebrows turned out to serve as question markers, supporting
the hypothesis that different visual cues occur in questions relative to responses
[Ekman, 2004, Borras-Comes et al., 2014, Sendra et al., 2013, Chovil, 1991]. In
[Cavé et al., 2002] they show that, in French, eyebrow raises appeared closer to
the start of a turn rather than to the end, and [Cassell et al., 2001] showed that
posture shifts happened more towards boundaries of turns rather than within
turns. These findings suggest at least some form of regularities between visual
signals and speech acts exist, and the aim of this study is to test whether more
of those patterns occur during multimodal conversation. In contrast to previous
research this study consists of free speech, i.e., participants are not instructed
to produce any type of speech or signals. Furthermore this study will not focus
on one specific facial signal but will investigate a broader range of facial signals.
A subset of the Facial Action Coding System (FACS), which will be described
later this chapter, will be investigated. This way a more naturalistic approach
whether taken to investigating if facial signals contribute to the understanding
processes during communication.

Recent research has demonstrated that prediction plays a fundamental role
during the processing of verbal language [Pickering and Garrod, 2013, Van Berkum et al., 2005,
DeLong et al., 2005, Federmeier and Kutas, 1999]. This study assumes that fa-
cial signals accompanying the conversational turns in human communication
also contribute to the addressee’s prediction of the content of the incoming turn
and its ending. To investigate this assumption, this study aims to find statisti-
cal regularities in the production of multimodal turns. The goal is to associate
certain speech acts, i.e., questions and responses, with visual signals systemati-
cally produced by the speaker, focusing on facial signals since they can be easily
recognized by OpenFace [Baltrusaitis et al., 2018], which will be described later.
Since regarding this topic almost no research has been done, this study could
contribute towards a unified model of communication in speech by providing
more insight in which facial signals, if any, are systematically used during ques-
tions or responses. This study focuses on question-response sequences since this
phenomenon is independent of language and cultures, since it is a universal unit
of conversational organization [Stivers et al., 2009].

For most facial signals it is unknown how, if at all, they contribute to
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the process of understanding. Previous research has shown that certain eye-
brow movements serve as emphasizers and question markers [Chovil, 1991]. In
[Flecha-Garćıa, 2002] it was shown that queries contained more eyebrow raises
then replies. Furthermore, similar to [Chovil, 1991] and [Cassell et al., 2001],
[Flecha-Garćıa, 2010] also found that eyebrow raises occurred most frequently
at the start of transactions (i.e. sets of utterances at a dialogue level). At a
lower level, it was found that in French eyebrow raises occurred more close to
the start of a turn rather than to the end [Cavé et al., 2002]. Although most
research focuses on eyebrow movements, the face contains many more muscles
that are able to form various facial signals. The goal of this study is to in-
vestigate whether more of such regularities occur within the question-response
sequences. The following questions are at the center of this research:

”Are there any regularities between speech acts, i.e., questions and
responses, and facial signals (e.g. eyebrow raises might occur more
in questions whereas eyebrow lowerers might occur more in responses)?”

If so:

”Are there any particular sequences of facial signals within ques-
tions/responses that occur systematically?”

And:

”What is the timing of the occurrences/sequences of facial signals
with regards to questions and responses?”

Furthermore:

Will certain facial signals lead to shorter gap durations between ques-
tions and its corresponding responses?

The hypothesis is that there are certain regularities between speech acts and fa-
cial signals (e.g. eye brow raises tend to occur more during questions). Since an
exploratory approach is taken there are no specifically expected regularities re-
garding facial signals. Another hypothesis is that questions tend to contain more
eyebrow raises than responses, based on the findings in [Flecha-Garćıa, 2002].
The final hypothesis is that (sequences of) facial signals, occur more at the
start of each question or response, like it appeared to be for eyebrow raises
[Flecha-Garćıa, 2010]. This would support the idea that signals appear early
in a question or response, such that the addressee has more time to predict
information about the content and expected ending of the speaker’s turn.

Another phenomenon that suggests that there indeed should be some sort
of regularities is one of the most fascinating properties of human communi-
cation, namely the turn-taking system. The turn-taking system represents
the rapid exchange of short turns at talking in conversations[Levinson, 2016,
Holler et al., 2016]. The turn-taking system depends on rules to minimize the
number of turns [Sacks et al., 1978]. The first person to respond obtains the
rights to the turn, and releases them on upon turn-completion. Turns do not
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Figure 1.1: Upper panels: one face camera for each participant. Lower panels:
one body camera for each participant.

have a fixed size, and they tend to be very short, about 2 seconds on average
[Levinson and Torreira, 2015]. The turn-taking systems minimizes overlap be-
tween turns and does so highly efficiently. Even in conversations with more than
2 people, speech streams only tend to involve more than 1 speaker (i.e. over-
lap between different speakers) in less than 5%. The modal gap between turns
tends to be only 200 ms [Stivers et al., 2009], which is of equal length as a single
syllable. In theory it seems impossible to produce meaningful responses dur-
ing conversation, taking into account the short response times above, together
with the fact the production of single word already takes 600 ms to produce
[Indefrey and Levelt, 2004]. Yet people manage to succeed in doing so. This
implies that responses must be planned during the incoming turns in order to
produce a response in time. Therefore prediction of turn-ending and anticipa-
tion of incoming turn content is required. In this thesis it is assumed that facial
signals help to constitute these predictions. Certain facial signals could for ex-
ample indicate that the current turn represents a question and that an answer
is soon expected from the addressee.

1.2 Data

To investigate the research questions this thesis addresses, data from a mul-
timodal communication corpus (CoAct corpus, ERC project #773079) will be
used. The data was collected during an experiment conducted by researchers at
and from the Max Planck Institute for Psycholinguistics (MPI) in Nijmegen. It
consists of 18 pairs of Dutch native speakers that engaged in dyadic, casual con-
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versation. The conversation was one hour in total and divided into three parts
of twenty minutes each: free speech, discussion about a given topic, and plan-
ning a vacation respectively. Participants were both audio- and video-recorded
and for each participant a face and a body camera was used (see Figure 1.1).

To find any regularities both counts of question and responses together with
the occurring facial signals are investigated as well as the co-occurrences of those
facial signals. The annotations of the questions and responses is done by trained
researchers from the MPI and is done in ELAN [Wittenburg et al., 2006], a
professional tool for the creation of complex annotations on video and audio
resources. The annotations of the facial signals are later added with the help of
OpenFace [Baltrusaitis et al., 2018], a facial behavioural analysis toolkit that is
capable of recognizing facial signals from video data.

Furthermore this study will not focus on one specific facial signal but will
investigate a broader range of facial signals. Due to the performance op Open-
Face, only a subset of the Facial Action Coding System (FACS), which will be
described in the next chapter, will be investigated.

1.3 FACS & OpenFace

This study aims to find systematic facial signals, if any, within the question-
response sequences, and focuses on the Facial Action Coding System (FACS)
[Ekman and Friesen, 1978]. The FACS refers to a set of facial muscle movements
that often correspond to a displayed emotion. Researchers have for a long time
manually annotated such facial signals, which is a very labour-intensive and
time-consuming process. Therefore, automating the recognition process of facial
signals is an important area of machine learning and computer vision research
because of its relevance for behavioral analysis and for the further development
of human-computer interaction (HCI). The FACS was able to decompose facial
expressions in such a way that it lends itself to automatic recognition of those
signals. Since manual facial behaviour analysis is such a labour-intensive task,
there has been an increasing interest in an automatic version of this. OpenFace
2.0 [Baltrusaitis et al., 2018] is a tool that aims to solve that problem and will
be used during this study to recognize facial signals. This tool is developed
for machine learning, computer vision and facial behaviour analysis researchers.
It can be used to obtain the facial landmark detection, head pose estimation,
facial action unit recognition and eye gaze estimation from video data. Figure
1.2 shows an image of OpenFace’s output from a video from the corpus used in
this study. Next the pipeline of OpenFace will be discussed briefly.

1.3.1 Facial landmark detection and tracking

Facial landmarking and tracking is represented by the process of detecting
and tracking points of interest in the face (see Figure 1.2). To solve this
problem, OpenFace uses a Convolutional Experts Constrained Local Model
(CE-CLM) proposed by [Zadeh et al., 2017]. To initialize to CE-CLM model
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Figure 1.2: OpenFace applied to a video from the corpus used in this study.
Blue box represents head pose estimation; red dots represent facial landmark
detection; green beams represent eye-gaze estimation.

a Multi-task Convolutional Neural Network (MTCNN) face detector is used
[Zhang et al., 2016]. To prevent tracking drift a four layer CNN is used to re-
port tracking failure. If the validation CNN fails the model is reinitialized by
the MTCNN face detector.

1.3.2 Head pose and eye gaze estimation

As the CE-CLM uses a 3D representation of the facial landmarks, OpenFace
additionally is able to estimate head pose through solving the Perspective-n-
Point problem [Hesch and Roumeliotis, 2011]. This is represented by the blue
box in Figure 1.2.

To estimate the eye gaze, OpenFace uses a Constrained Local Neural Field
(CLNF) landmark detector [Baltrusaitis et al., 2013] that was trained on the
SynthesEyes dataset [Wood et al., 2015]. This dataset contains around 11000
close-up images of eyes, each annotated with landmark and gaze information.
Eye gaze is represented by the green beams in Figure 1.2. This study however
will not use head pose and eye gaze information because the focus of this study
lies on facial signals.

1.3.3 Facial signal recognition

For recognizing facial signals OpenFace detects facial action unit (AU) pres-
ence and intensity from the FACS discussed in chapter 1.3. A method similar
to [Baltrusaitis et al., 2015], that uses linear kernel Support Vector Machines
(SVM), to recognize the AUs. Although deep learning models often outperform
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SVMs, [Baltrusaitis et al., 2018] have demonstrated its competitiveness com-
pared to recent deep learning models. The AUs that OpenFace is able to detect
are shown in Table 1.1. Those are also the AUs this research will focus on. Some
AUs might be dropped during analysis based on how well OpenFace performs
in recognizing them.

1.4 N-grams

Finding regularities between facial signals and the questions and responses, also
entails finding whether certain sequences of facial signals occur systematically
(e.g. brow lowerer followed by the upper lip being raised during a response). In
order to find such sequences n-gram models are used.

In computational linguistics, n-grams are contiguous sequences of n items
from a given sample of speech or text. Items vary from words, letters, syl-
lables and phonemes. In this study the items represent occurrences of facial
signals (also called action units) at a certain time point. The benefits of n-
gram models are its simplicity and scalability. N-gram models are widely used
in various fields. In natural language processing (NLP) n-grams have been
used as machine learning features [Sidorov et al., 2014, Pagliardini et al., 2017].
[Pak and Paroubek, 2010] and [Kouloumpis et al., 2011] used n-grams among
other in sentiment analysis in tweets. Furthermore n-grams form the basis of
many speech recognition systems [Katz, 1987, Hirsimaki et al., 2009, Young, 1996,
Bellegarda, 2000].

However, n-grams are not limited to natural language. [Santos et al., 2009]
and [Wang et al., 2007] showed that n-grams can be used to detect unknown
malware, solving the problem that not merely registered viruses can be detected.
In the field of computational biology n-grams are used for protein- and DNA-
sequencing, which is explained as determining the order of nucleotides in DNA
or the amino acid sequence of a protein.

This study will use n-grams to find whether specific sequences of facial signals
occur systematically in the scope of question-response sequences. N-grams are
well-suited for this problem because they find the most occurring sequences
of facial signals that exist in the data. N-grams are preferred over sequential
pattern mining, because they are better at handling data sparsity (i.e. some
signals might occur more than others), since it searches for existing patterns
rather than examining a combinatorially explosive number of possible sequence
patterns.

The remainder of this thesis is organized as follows. The next chapter will
discuss the methods, results, and discussion of the results of the analysis for find-
ing regularities regarding facial signals in question-response sequences. Chapter
3 will discuss the development of SPeeding Up the Detection of Non-iconic
and Iconic Gestures (SPUDNIG): a toolkit for the automatic detection of hand
movements and gestures in video data [Ripperda et al., 2019]. This toolkit was
developed during this thesis since there was no existing toolkit for the automatic
detection of hand gestures, in contrast to OpenFace which is able to solve this
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Table 1.1: List of AUs that OpenFace is able to detect. Copyright c© 2018,
IEEE
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problem for facial signals. This chapter contains its own introduction, methods
and results since this can be seen as a side project of this thesis. Chapter 4
provides a general discussion followed by a conclusion including suggestions for
future work.
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Chapter 2

Finding regularities
between facial signals and
questions and responses

2.1 Methods

This chapter provides an overview of the methods and tools used in this thesis in
order to find any regularities between speech acts, i.e., questions and responses,
and facial signals.

2.1.1 Data

The data that was used is described in chapter 1 and Figure 1.1. The data
includes 18 pairs of Dutch native speakers who engaged in dyadic casual con-
versation. The conversation was one hour in total and divided into three parts
of twenty minutes each: free speech, discussion about a given topic, and plan-
ning a vacation, respectively. This resulted in 60 minutes of data for 36 speakers
(2160 hours).

The exact timing of the questions and responses were annotated in ELAN
[Wittenburg et al., 2006] by trained researchers from the Max Planck Institute
(MPI) Nijmegen. In total 3191 questions and 2209 responses were found.

2.1.2 Annotations

Instead of manually annotating each facial signal/action unit made by the par-
ticipants during the questions and responses, this research uses OpenFace, de-
scribed in chapter 1.3, for the automatic recognition of these facial signals. Each
video was analyzed using OpenFace. Since this needed to be performed for each
video individually, and OpenFace does not provide any tools to process multiple
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files at the same time, or even sequentially, I created a user-friendly command-
line interface in Python (https://github.com/jorrip/OpenFaceAnalyzer).
Here users can specify a root folder, an output folder, and an optional pa-
rameter -suffix (i.e. if suffix is specified as ’face.mpg’ it will only analyze all files
in the root folder that end with ’face.mpg’). An example command to run the
program would look as follows:

python C:\Downloads\run open face.py -root C:\workspaces\videos
-open C:\OpenFace\OpenFace 2.0.5 win x64\FeatureExtraction.exe
-out C:\OpenFace\Output -suf face.mpg

The OpenFace output was then imported into ELAN using Exploface (https:
//github.com/emrecdem/exploface), and merged with the question and re-
sponse annotations. Figure 2.1 demonstrates an example file in ELAN with
the question and response annotation together with OpenFace’s output. Each
facial signal (see Table 1.1 for which signals OpenFace is able to recognize) has
its own tier (i.e. row of annotations), as well do the questions and responses.
As can be seen in Figure 2.1, lots of facial signals occur according to OpenFace.

Figure 2.1: ELAN file with question and response annotation together with
OpenFace’s annotations. Top left presents a still of the video at a certain point
in time, which is indicated by the vertical red line. In the bottom half, each
action unit contains its own row of annotations generated by OpenFace, and the
bottom two rows indicate the occurrence of a question or response recognized
by human coders. The current time point is located during a response of the
participant in the video.

11
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Unfortunately OpenFace’s output contains lots of false positives, resulting in
an overabundance of annotations. Possible explanations for this are that par-
ticipants facing their head away from the camera, or even looking down which
often results in incorrectly recognized eye blinks.

However, since the main goal of this thesis is to provide a pipeline for inves-
tigating whether there are regularities between the questions and responses and
the facial signals, OpenFace’s output will not be cleaned during this research.
Although this might highly affect the results, cleaning the OpenFace output
lays beyond the scope of this thesis.

2.1.3 Analysis

All analysis steps are done in Python 3.7.0 with Jupyter Notebook [Kluyver et al., 2016].
For each video, the tiers for the facials signals and the questions and responses
are exported from ELAN, which results in a tab-separated file with on each line
the begin and end time (hh:mm:ss.ms) of the annotation, followed by a token
indicating which facial signal or question/response occurred during that anno-
tation (e.g. AU25 or Question). After the hh:mm:ss.ms format was converted to
the corresponding frame number, these tab-delimited files were converted into a
Pandas DataFrame1, a two-dimensional tabular data structure often used for an-
alyzing large structured data sets [McKinney, 2011]. The DataFrame served as
a timeline of the corresponding video, where each row represented a frame, and
each column represented the facial signal/action unit or question or response
happening in that frame. The DataFrame contained binary values where ’1’
would indicate the occurrence, and ’0’ the absence of the corresponding facial
signal or question/response happening in the corresponding frame.

Next, from this timeline the on- and off-sets of the questions and responses
were determined, and extracted from 500 ms before onset til 500 ms after offset
of the corresponding question or response. This was done to capture signals
that would occur before onset of the speech signal. If taking into account 500
ms before onset would result in overlap with a preceding question or response
from the same speaker, this step was omitted to eliminate within-speaker effects
from overlap between questions and responses. This resulted in 3191 questions
and 2209 responses of unequal lengths, produced by 36 different speakers that
talked for 1 hour. Of those, 143 questions and 30 responses contained overlap
from preceding questions and responses hence the 500 ms before onset was
omitted. Each question or response is stored as a list, where each element in
the list is represented by a string containing the action units occurring in the
corresponding frame (e.g. [’AU1AU2’, ’AU3AU4’, ’AU5AU6’] where AU1 and
AU2 occur in the first frame, AU3 and AU4 in the second frame etc.).

From here, descriptive statistics can be easily calculated, such as general oc-
currence, and co-occurrence counts for example, where questions were compared
to responses. Furthermore it was investigated how many facial signals occurred

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.

html
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per question or response instance (henceforth: QRI), to exclude effects from
the fact that there are more questions than responses. In more detail, simply
counting the occurrences would create a bias towards questions since there are
more questions in the data than responses. However, this would still not be a
fair comparison, since overall questions might be have a longer duration than
responses (or vice versa), which would cause increased occurrence counts for the
questions. Therefore it was also investigated how many facial signals occurred
per QRI, when only taking into account the interval between 500 ms before on-
set and a fixed amount of time after onset, to ensure the durations of the QRIs
are equal. This was also performed for intervals subsequently to the previous
interval. The following intervals were investigated: 500 ms before onset - onset,
onset - 500 ms after onset, and 500 ms before offset - offset. This way it was
investigated which facial signals occur more towards the start, or towards the
end of a QRI. In each interval, the occurrences of each facial signal were counted
during questions and responses. Whenever the second interval would overlap
with the third interval, i.e., in QRIs with a duration shorter than 1000 ms, the
corresponding QRI would be excluded from the analysis. For each facial signal,
and in each interval, a Welch two-sample t-test [Welch, 1947] was used to test
for a statistical difference in occurrence of the facial signals in questions versus
responses. This test is used since it does not assume the data to be normally
distributed, and is capable of handling large, unequal sample sizes, which is
necessary since the number of question is not equal to the number of responses.

Next the co-occurrence of facial signals was investigated by creating a co-
occurrence matrix, where again was differentiated between questions and re-
sponses. Two types of co-occurrences were investigated: one where the facial
signals occurred in the same frame (so completely simultaneously), and one
where facial signals simply occurred in the same question or response.

Next, to investigate whether certain sequences of facial signals occurred fre-
quently, n-grams were used, where a unit of the n-gram sequence is represented
by the signals occurring in a frame. Note that a QRIs are represented as lists
where each element indicates which action units occur in the corresponding
frame. Here follows an example of a question to illustrate this:
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[’AU15AU06AU05AU10AU17AU14AU12’,
’AU15AU06AU05AU10AU17AU14AU12’,
’AU15AU06AU05AU10AU17AU14AU12’,
’AU06AU05AU10AU17AU14AU12’,
’AU06AU05AU10AU17AU14AU12’,
’AU06AU05AU10AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU17AU14AU12’,
’AU06AU05AU17AU14AU12’,
’AU04AU06AU05AU17AU14AU12’,
’AU04AU06AU05AU17AU14AU12’]

In this example, the first line indicates which action units occur in the first
frame (AU15AU06AU05AU10AU17AU14AU12), and the second line which ac-
tion units occur in the second frame etc. As already mentioned, OpenFace’s
output is still messy which results in an overabundance of action units. When
searching for n-grams that occur frequently, the ideal case would be to check
all possible combinations where from each frame one action unit is picked. An
attempt to produce all possible combinations was made by calculating the Carte-
sian product, however, with an average QRI duration of 30 frames (= 1.2 sec)
and an average of 5 action units per frame, this would result in 305 = 24300000
possible combinations per question or response, which would take too long to
analyze.

To overcome this problem, instead of generating all combinations, the en-
tire frames were used as units for the n-grams. So in the example above
’AU15AU06AU05AU10AU17AU14AU12’ (first frame) would count as one unit.
This would mean that when checking for n-grams of size 3, a sequence of facial
signals would be checked of 3 frames. As can be seen in the example question,
subsequent frames are often identical, since one frame only represent 0.04 sec
when using 25 fps. This would mean that to find meaningful n-grams, which
cover more than 0.5 seconds, n-grams with a least a size of 12 would need to
be checked. Therefore the questions and responses are post-processed, mean-
ing that consecutive identical frames are removed. For the example displayed
above, the post-processed result would look as follows:
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[’AU15AU06AU05AU10AU17AU14AU12’,
’AU06AU05AU10AU17AU14AU12’,
’AU06AU05AU10AU14AU12’,
’AU06AU05AU10AU25AU14AU12’,
’AU06AU05AU10AU25AU17AU14AU12’,
’AU06AU05AU17AU14AU12’,
’AU04AU06AU05AU17AU14AU12’]

This way information about the duration of the facial signals is lost, but
information about the order in which the signals occur is preserved. The
advantage is that the size of the n-grams that need to be checked is much
smaller. Therefore, when representing the data like this, n-grams are a well-
suited method in order to find sequences of facial signals that occur most fre-
quently.

Finally, it was investigated whether certain facial signals lead to shorter gap
duration between the question and its corresponding answer. If this is the case,
this would support the idea that certain facial signals help the addressee to
predict the content and expected ending of the turn, allowing them to reply
faster. For each question, its corresponding response was found by checking for
a response within 250 ms from before the end of the question until 250 ms sub-
sequent to the end of the question. This time window is used since gaps between
turns tend to be around 200 ms [Stivers et al., 2009], and because turn transi-
tions sometimes have some overlap [Levinson and Torreira, 2015], meaning that
responses would start before the question has ended.

Together with the duration of the gap, it was listed how often each facial
signal occurred during the corresponding question. Based on other findings
from the analysis, the Spearman’s correlation coefficient between the occurrence
count of some facial signals and the gap duration was computed.
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2.2 Results

2.2.1 General counts

From the data a total of 3191 questions and 2209 responses were extracted.
Table 2.1 presents the total occurrence counts of the action units for questions
and responses.

AU01 AU25 AU20 AU09 AU06 AU02 AU15 AU14 AU28

Question count 2317 6474 2336 1091 3076 2212 3055 4243 209
Response count 2038 4550 1754 653 2114 1854 2312 3106 163

Total 4355 11024 4090 1744 5190 4066 5367 7349 372

AU04 AU23 AU07 AU10 AU12 AU17 AU26 AU45 AU05

Question count 3184 4202 3560 4993 3227 4116 4869 3888 1153
Response count 2343 3018 2447 3322 2069 2824 3644 2999 938

Total 5527 7220 6007 8315 5296 6940 8513 6887 2091

Table 2.1: Counts of the action units recognized by OpenFace during questions
and responses.

As can be seen the numbers are quite excessive, especially the actions units
regarding mouth movements (23, 25, 20, 15, 14, 12, 17, 26, 10, 45). These
high occurrence counts are explained by the fact that participants are moving
their mouths while talking, causing OpenFace to recognize an overabundance
of facial signals regarding mouth movements. Therefore these action units were
discarded from further analysis.

Table 2.2 presents the mean occurrence counts of the corresponding action
units per QRI. A distinction is made between the interval from 500 ms before
onset until onset, the interval from onset until 500 ms after onset, and the
interval from 500 ms before offset until offset. The first represents the facial
signals preceding the question or response, the second the facial signals at the
start of the question or response, and the last the facial signals towards the end
of the question or response. The mean and standard deviation for the occurrence
count of each facial signal and each interval are presented during questions and
responses. Furthermore for each facial signal, the outcomes of the statistical test
(Welch’s two-sample t-test) are given that tested the difference in occurrence of
the corresponding facial signal between the questions and responses, including
p-values and effect sizes displayed as Cohen’s D. Since three different intervals
are tested, a Bonferroni correction was performed and a significance level of
0.05/3 = 0.0167 was used.
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(a) Before: 500 ms before onset until onset (b) Start: onset until 500 ms after onset (c) End: 500 ms before offset until offset

Figure 2.2: Bootstrapping results. The x-axis presents the percentage of the
sample that is used (10% of the sample - 100% of the sample). The y-axis
presents the average p-value for the corresponding sample size. The horizontal
line represents the Bonferroni corrected significance level.

Bootstrapping

Since in large samples, p-values quickly become (close to) zero [Lin et al., 2013],
a bootstrapping method is performed provide more insight about the robustness
of the found effects. For every tenfold (10%, 20% etc.) a random subsample is
drawn from the complete sample and the p-value is computed for that subsam-
ple. This is repeated 1000 times for every subsample and the average p-value is
used. This is done so that more insight into whether the found effects are true
effects or due to the large sample size. The results are shown in Figure 2.2.

2.2.2 Co-occurrence

Figure 2.3 presents the co-occurrence of different action units found within the
questions and responses. Two facial signals co-occur when they occur within
the same QRI, not necessarily at the same time or in the same frame. For each
combination the co-occurrence ratio is computed, where a ratio of 1 would mean
that the combination of facial signals occurs in every question or response.

2.2.3 N-grams

Table 2.3 presents the most occurring n-grams that are found in questions and
responses. The units in the n-grams consist of the facial signals occurring in the
corresponding frame. For each n-gram the size of the n-gram, the frequency of
the n-gram in either the questions or responses, are presented along with the
n-gram itself. Only n-grams with n = 2 and n = 3 are presented since larger
n-grams would occur too little.
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(a)

(b)

Figure 2.3: Co-occurrence counts of the actions units per questions/response
instance (QRI). Two facial signals co-occur when they occur in the same QRI.
Figure 2.3a represents the co-occurrence counts of the facial signals during ques-
tions, and Figure 2.3b the co-occurrence counts during responses. The individ-
ual values represent the co-occurrence rates.
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Questions Responses

N Sequence Freq N Sequence Freq

2 (’AU04’, ’AU04AU07’) 380 2 (’AU04AU06AU07’, ’AU06AU07’) 251

2 (’AU04AU07’, ’AU04AU06AU07’) 372 2 (’AU06AU07’, ’AU04AU06AU07’) 246

2 (’AU04AU06AU07’, ’AU06AU07’) 361 2 (’AU07’, ’AU06AU07’) 198

2 (’AU06AU07’, ’AU04AU06AU07’) 353 2 (’AU04’, ’AU04AU07’) 186

2 (’AU04AU06AU07’, ’AU04AU07’) 349 2 (’AU04AU07’, ’AU04AU06AU07’) 177

3 (’AU04AU07’, ’AU04’, ’AU04AU07’) 141 3 (’AU04’, ’Z’, ’AU04’) 98

3 (’AU04AU06AU07’, ’AU06AU07’, ’AU04AU06AU07’) 127 3 (’AU06AU07’, ’AU04AU06AU07’, ’AU06AU07’) 91

3 (’AU04AU06AU07’, ’AU04AU07’, ’AU04AU06AU07’) 123 3 (’AU02AU01’, ’AU02’, ’Z’) 91

3 (’AU04’, ’AU04AU07’, ’AU04’) 122 3 (’AU04AU06AU07’, ’AU06AU07’, ’AU04AU06AU07’) 74

3 (’AU04’, ’Z’, ’AU04’) 106 3 (’AU07’, ’Z’, ’AU07’) 74

3 (’AU07’, ’Z’, ’AU07’) 98 3 (’AU04AU07’, ’AU04’, ’AU04AU07’) 60

3 (’AU04AU06AU07’, ’AU04AU07’, ’AU04’) 73 3 (’AU02’, ’Z’, ’AU02’) 60

Table 2.3: The most frequent n-grams found in questions and responses.

2.2.4 Questions-Response gap

Figure 2.4 shows the gap duration versus the total number of facial signals in the
corresponding question. The relation between the gap duration and the total
number of facial signals was evaluated by calculating the Spearman’s correlation
coefficient. A very weak negative correlation of rs = −.1171 with p = .0003 was
found.

A more specific analysis followed by investigating the correlations between
specific facial signals and the gap duration. From Table 2.2 it followed that,
although very small effect sizes, AU04, AU06, AU07, and AU09 occurred more
frequently during questions than during responses. Thus for those facial signals
as well, the Spearman’s correlation coefficient was calculated between the oc-
currence count of the corresponding facial signal and the duration of the gap
between the questions and responses. Since these facial signals occurred more
during questions, they could help the addressee to predict information about
the information of the turn content, or when the turn is going to end. Hence
it could affect the duration of the gap. For none of the facial signals a correla-
tion was found between the occurrence count and the duration of the gap. For
AU04: rs = −.0081, p = .8055; for AU06: rs = .0031, p = .9246; for AU07:
rs = −.0627, p = .0.0551; for AU09: rs = .0225, p = .4914.
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Figure 2.4: Scatter plot of the gap duration versus the total number of facial
signals. The gap duration is represented in frames. The frames range from -6
till 6 which represents the interval from 250 before onset of the question until
250 after onset of the questions since the videos were 25 frames per second.

2.3 Discussion

This section servers as an interim discussion, for a more in depth discussion see
the general discussion in chapter 4.

The goal of this research was to develop an analysis toolkit to provide more
insight in facial signals during human conversation and to contribute towards
unified model of communication in speech. The difference in behaviour as re-
gards facial signals was investigated when comparing questions and responses
that were collected from natural conversation in a face-to-face context. General
occurrence counts and co-occurrences of various facial signals were presented
and furthermore it was investigated whether certain patterns of facial signals
occurred systematically. However, it should be noted that the results are not
completely reliable as a result of the OpenFace output not yet being cleaned.

The general occurrence counts of facial signals were investigated when com-
paring questions and responses (Table 2.2). It was found that even before onset
of the question, more nose wrinklers (AU09) occurred with questions than with
responses. This could indicate that nose wrinklers serve as question markers.
It was found that inner (AU01) and outer (AU02) parts of the eyebrows were
being raised more in responses than in questions. This could reveal new insights
suggesting that eyebrow movements can also be linked to responses and not only
to questions. Brow lowerers (AU04) occurred more often during questions than
during responses, agreeing with existing literature that eyebrow movements oc-
cur more during questions. Furthermore it was found that lid tighteners (AU07)
and cheek raisers (AU06) also occurred more frequently during questions com-
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pared to responses. However, after further research (Figure 2.2), it was found
that these found effects might be explained by the large sample size, rather than
them being true effects.

In order to investigate whether certain sequences of facial signals occurred
frequently either in questions or responses, the most frequent n-grams present
in the data were extracted (Table 2.3). It was concluded that no meaningful se-
quences could be extracted before the data is cleaned. This consists of removing
the false positives from the OpenFace output.

Finally it was investigated whether the occurrence of certain facial signals
affected the gap duration between the questions and its corresponding responses.
None of the tested facial signals showed a correlation with the gap duration.
However, a very weak correlation was found between the total number of facial
signals and the duration of the gap. Although the data contains a lot of false
positives, this supports the idea that facial signals contribute to the addressee’s
prediction about the content and expected ending of the speaker’s turn, allowing
them to respond faster.
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Chapter 3

SPUDNIG

This chapter will discuss the development of SPeeding Up the Detection of Non-
iconic and Iconic Gestures (SPUDNIG): a toolkit for the automatic detection
of hand movements and gestures in video data [Ripperda et al., 2019]. The
prior chapters of this thesis focused on facial signals, which were recognized by
OpenFace. However, since no such annotation toolkit exists for the detection of
hand movements and gestures, a first attempt was made to create such toolkit.
SPUDNIG was developed during this thesis project as a side project but did
not contribute to answering the questions this thesis addresses. Therefore this
chapter contains its own introduction, methods and results.

3.1 Introduction

An aspect of multimodal communication which until now has not been taken
into account, in this thesis, are communicative hand gestures. Due to them
being closely related to speech, manual gestures often have been the focus of
multimodal research in domains of linguistics, neuroscience, anthropology and
psychology [Goldin-Meadow, 2005, Kendon, 2004, McNeill, 1992]. Gestures can
for example refer to objects, locations, events or ideas, but they can also be
used to convey semantic information integral to the content of the speaker
[Holler and Beattie, 2003, Holler and Wilkin, 2009, Hostetter, 2011, McNeill, 1992].
Previous studies have shown that this multimodal information is processed by
the addressee, and that language comprehension is facilitated by it [Drijvers and Özyürek, 2017,
Holler and Beattie, 2003, Kelly et al., 2004, Kelly et al., 1999, Özyürek, 2014,
Kelly et al., 2010].

One of the main challenges in studies on multimodal communication is an-
notating the on- and offsets of those manual gestures, which is a time-consuming
and labour-intensive task. Often annotation tools such as ELAN [Wittenburg et al., 2006]
or ANVIL [Kipp, 2001] are used. Although such annotation tools make the an-
notating process considerably easier, they do not automatize or speed up the
process in any way. This process consists of frame-by-frame analysis by trained
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researchers in order to determine the on- and offset of the gestures, and it
involves multiple researchers to be able to establish inter-rater reliability. Espe-
cially for large corpora this can be extremely time-consuming. Therefore tech-
niques that could automate this process would significantly advance research on
multimodal communication.

Recently motion tracking systems such as Microsoft Kinect [Zhang, 2012]
and Leap Motion (San Francisco, USA; http://leapmotion.com) have opened
up possibilities for automatic analysis of movements. However, these techniques
require you to purchase the corresponding hardware.

Examples of alternative video-based tracking systems that are able to auto-
matically track movements or body keypoints, without being required to pos-
sess corresponding hardware, are OpenPose [Cao et al., 2018, Cao et al., 2017,
Simon et al., 2017, Wei et al., 2016] and AlphaPose [Fang et al., 2017, Xiu et al., 2018].
Both systems solve the problem of pose estimation, which refers to a computer
vision technique that detects human figures from video data, so that one could
determine where certain body keypoints (e.g. wrist) are located. Although Al-
phaPose has demonstrated in their paper to outperform OpenPose at the task
of pose estimation, SPUDNIG will use OpenPose for this task because Open-
Pose contains additional models to detect keypoints from the hands specifically,
whereas AlphaPose only contains models for the body. It is required to track
such movements from keypoints within the hand to be able to recognize more
fine-grained finger movements, whereas when only body keypoints would be used
such small movements for example could be missed because the body keypoint
closest to the hand from AlphaPose (i.e. the wrist) would not move during
such small movements. Such tools however only offer coordinates for certain
keypoints from the body, rather than recognizing on- and offsets of gestures or
movements.

To overcome these limitations, SPUDNIG (SPeeding Up the Detection of
Non-iconic and Iconic Gestures) was developed: a new open-source toolkit pro-
vided with an easy-to-use graphical user interface (GUI) for automatic detection
of hand gestures and movements. Note ’detection’ is used rather than ’recog-
nition’ because recognition would involve distinguishing which movements are
gestures and which movements do not contribute to the message of the speaker.
Similar to [De Beugher et al., 2018], detection is defined as distinguishing move-
ment sequences from non-movement sequences. SPUDNIG uses OpenPose as
input for continuous, video-based motion tracking of movements and gestures,
and subsequently observes x/y coordinate changes of keypoints in the body and
hands to automatically detect movement on- and offsets. Therefore SPUDNIG
does not require motion capture hardware. The remainder of this chapter will
discuss OpenPose, the development of SPUDNIG (i.e. how it detects movement
vs. no movement), and a proof-of-principle and validation of SPUDNIG. Note
that SPUDNIG is not created to eliminate the need of a human annotator en-
tirely. The aim is to evaluate its overlap with annotations made by a human
annotator, and to reduce the work of a human coder, limiting it to the removal
of false positives (i.e. non-gestural movements).
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3.2 Methods

SPUDNIG is completely developed in Python 3.7.0. It supports Windows and
both GPU and CPU.

3.2.1 OpenPose

SPUDNIG uses the output created by OpenPose [Cao et al., 2018, Cao et al., 2017,
Simon et al., 2017, Wei et al., 2016] to detect hand gestures and movements.
OpenPose is capable of real-time multi-person 2D pose estimation from video
data. Specifically, it uses deep learning convolutional neural networks (CNN)
to recognize the location of specific keypoints (i.e. body parts) in video data.
Figure 3.1 presents the keypoints that are recognized for both the points in the
hand (Figure 3.1a) and in the body (Figure 3.1b). Great advantages of Open-
Pose are that it runs on different platforms (Windows, Mac OSX), supports
both GPUs and CPUs, and that it offers a pretrained model, which means that
no data needs to be annotated.

(a) 21 keypoints within the hand
are recognized

(b) 25 keypoints within the body
are recognized according to the
Body 25 model

Figure 3.1: Keypoints OpenPose is able to recognize.
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3.2.2 Movement/no-movement detection

Per frame a JSON file is generated by OpenPose containing the x- and y-
coordinates for the 21 keypoints in the hand and 25 keypoints in the body.
Note that OpenPose performs best when .avi files are used. Those JSON files
are converted to three .csv files for the keypoints of the body, left-, and right-
hand respectively. From theses files, a default set of 8 keypoints are selected to
estimate the on- and off-sets of hand movements. The keypoints that are taken
into account from the body (Figure 3.1b) are both wrists (i.e. 4 and 7) and the
elbows (i.e. 3 and 6). Coordinate changes in those points mainly reflect large
hand movements. From the hand, the keypoints that are taken into account
are the tip of the thumb and the tip of the index finger (i.e. 4 and 8). These
keypoints should be able to capture more fine-grained movements. Both the se-
lection and the number of keypoints were the result of a careful piloting phase in
which the trade-off between false positives and false negatives was optimized. It
was found that adding more keypoints resulted in more false positives, whereas
removing keypoints resulted in more false negatives.

SPUDNIG calculates whether movement is happening in the current frame
for each keypoint separately. First SPUDNIG checks whether the reliability of
OpenPose is above a certain threshold (default = 0.3, can be altered by the
user). If the reliability is below the threshold, SPUDNIG assumes no move-
ment is occurring in the respective frame and continues to the next frame. If
the reliability threshold is met, SPUDNIG continues to determine whether the
respective keypoint is part of a movement or part of a rest position.

Rest positions are established by checking the x- and y-coordinates of the
corresponding keypoint over a span of 15 frames with the current frame being
the midpoint (i.e. frame i -7 until frame i+7 are checked). If the x- and y-
coordinates of these frames all differ less than 10 pixels with an overall certainty
threshold of 0.7 (i.e. if 70% of the frames differ less than 10 pixels), SPUDNIG
assumes that the keypoint in the current frame is part of a rest position, updates
the current/last known rest position, and continues to the next frame. If the
certainty threshold is not met, SPUDNIG continues to check if whether the
current frame is part of a movement. It does so by checking whether the current
frame differs more than 5 pixels from the last known rest position. If this is the
case, SPUDNIG evaluates the next 5 pixels and checks if these also differ more
than 5 pixels from the last known rest position, with a certainty threshold of
60% (i.e. 3 out of 5 pixel should differ 5 pixels). This extra check is performed
to establish that the 5 pixel difference represents actual movement instead of
falsely recognized keypoints or just slight shifting of such keypoints.

If the threshold is met (i.e. a movement has been initialized), SPUDNIG
continues with searching for a rest position in the upcoming 300 frames ( 12
seconds with 25 fps). At this point SPUDNIG determines a movement has
occurs from frame i (i.e. the current frame) until the frame where the keypoint
has returned to a rest position, and continues to search for new movements from
this point forward.

During testing different ranges and numbers of parameters were tested (pixel
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difference, certainty thresholds). It was found that incrementing or decrement-
ing those parameters would either cause more false positives or false negatives.

The above described process is repeated for each keypoint and results in
a list indicating for each frame whether movement was detected or not. The
resulting lists are then merged, which has the advantage that if a movement
was not detected by one keypoint (e.g. because the reliability was too low), it
could still be detected through another keypoint, minimizing false negatives.

3.2.3 Post-processing

During the post-processing phase movements smaller than 4 frames are removed
in order to clean the data and minimize the number of false positives. Addi-
tionally, close consecutive movements (i.e. with 4 or less frames between them)
are merged to account for small hold or pauses in movements. Based on the
fps, the timing of the movements is calculated by converting the frame num-
ber to hh:mm:ss.ms format. This information is then used to generate a .csv
file containing the start and end times of each movement, which is compati-
ble with annotation tools such as ELAN [Wittenburg et al., 2006] and ANVIL
[Kipp, 2001].

3.2.4 Graphical user interface

SPUDNIG comes with an easy-to-use GUI, which makes it accessible for people
without technological knowledge or programming experience. The GUI is devel-
oped with Python’s GUI toolkit Tkinter1. Figure 3.2 presents two screenshots
of SPUDNIG in action.

As a first step the user should load a video through ’File → Open...’ after
which the analyze button will change colour from red to green, indicating the
application is ready for analysis. Note that only OpenPose only works optimal
with .avi files. Other, more complex video formats (e.g. MPEG) cause Open-
Pose to skip a non-fixed number of frames especially at the start of the video.
Therefore, to prevent this disturbing the on- and off-sets of the hand move-
ments, SPUDNIG will also only accept .avi files. Once the ’Analyze’ button is
clicked (Figure 3.2a), a settings screen will appear in which the user can alter
the fps and the reliability threshold, and whether the left, right or both hands
will be analyzed. If ’OK’ is clicked in the settings screen the analysis will start
and its progress will be communicated to the user through a progress bar. After
the analysis is finished, the resulting .csv file can be saved by clicking the blue
’Export’ button (Figure 3.2b) or through ’File → Save as...’, which will prompt
a window to select a desired location for saving the file.

The GUI is made fail-safe with the help of multi-threading. Multiple threads
are used that monitor the user’s activity as well as the state of the GUI. This
way the GUI will not freeze or crash no matter which buttons are clicked.

1https://docs.python.org/2/library/tkinter.html
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(a) (b)

Figure 3.2: Screenshots of SPUDNIG GUI

3.2.5 Validation analyses

A validation analysis was performed by comparing the annotations of hand
movements made by SPUDNIG to manual annotations by a trained researcher.
Furthermore it was investigated how accurately SPUDNIG could detect iconic
and non-iconic gestures. During the analyses data from the same corpus de-
scribed in 1 and Figure 1.1. For the validation analyses, 20 samples of 2 minutes
were used each from a different speaker.

A trained human researcher, blind to the purpose of the coding exercise,
was asked to manually annotate the occurrence of all gestural movements that
carried some form of meaning. This included iconic and metaphoric gestures (de-
picting aspects of abstract concepts, people, or actions), pragmatic gestures (in-
cluding beats), deictic gestures, and interactive gestures (refer to the interlocu-
tor rather than to the topic of conversation) [Bavelas et al., 1995, Bavelas et al., 1992,
McNeill, 1992]. The annotations made by the human coder did not distinguish
between those types of gestures. The annotator was asked to define the starting
point of a gesture as the first frame where the hand had left its rest position
and the end point as the final frame before the hand had returned to its rest
position, or the last frame of the gesture stroke in case of successive gestures
[Kita et al., 1997].

Gestures were annotated both in form-based coding and in meaning-based
coding. In the form-based coding every stroke of a gesture was annotated as
a separate movement, regardless of them depicting the same semantic meaning
(e.g. a hammer gesture with successive strokes are annotated separately). In
the meaning-based coding, individual (successive) strokes are annotated as one
movement if they depict the same semantic concept. Researcher seem to use
both approaches, hence the different coding schemes.

Furthermore, in the meaning-based coding, for all gestures a distinction was
made between iconic and non-iconic gestures. This way it was tested whether
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iconic gestures might be more easily detected by SPUDNIG. Iconic gestures
might for example be larger in size, or might contain less holds, which could
result in easier detection, since SPUDNIG is not able to distinguish holds within
a gesture from the hands being in an actual rest position.

To establish how the annotations made by SPUDNIG compare to human
coding, the overlap between the them was calculated, for both form-based and
meaning-based coding. A modified Cohen’s kappa was calculated using Easy-
DIAg [Holle and Rein, 2015], a measure commonly used to establish agreement
between two raters. EasyDIAg takes into account the categorization of the val-
ues, the temporal overlap of the annotations, and the segmentation of behaviour
(e.g. on- and off-sets of annotations). An overlap criterion of 60% was used,
meaning there should be a 60% temporal overlap between the annotations made
by SPUDNIG and the human annotator.

Furthermore, to identify how many gestures identified by the human would
also be captured by SPUDNIG, it was investigated how much movement de-
tected by SPUDNIG was not gestural. All the output of SPUDNIG was com-
pared to the output of the human annotator to investigate how many anno-
tations by SPUDNIG did not overlap with a gesture annotation. This should
indicate how much false positives SPUDNIG produces, meaning how much of
SPUDNIG’s output should be filtered out, and also how many gestures SPUD-
NIG would miss (false negatives).

3.2.6 Does SPUDNIG accelerate the annotation process?

Four additional human coders were asked to compare the time it takes to manu-
ally annotate the data compared to validating SPUDNIG’s output by removing
non-gestural movements, and by checking the on- and offsets of the annotations.
The human coders were presented 20 2-minute snippets of videos where they
were instructed to annotate hand gestures manually, and 20 different 2-minute
snippets of videos where they were instructed to annotate gestural movements
by validating SPUDNIG’s output. In the first test phase human coders were not
informed about how well SPUDNIG is able to capture hand movements. This
meant that the human coders would look for both false negatives and positives,
and misaligned on- and offsets. In the second phase the human coders were
informed that SPUDNIG manages to capture all hand movements and they did
not have to check for false negatives. The conditions and order of the videos
were randomized.
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3.3 Results

3.3.1 Form-based annotations

First the overlap between the annotations from SPUDNIG and the human an-
notator’s form-based coding was compared. A raw agreement of 87% and a
modified Cohen’s Kappa maximum value of .86 were found, indicating a very
high agreement [Cohen, 1960, Landis and Koch, 1977].

The manual analysis showed that out of the 207 gestures identified by the
human annotator, SPUDNIG identified 206. Note that this method ignores
the amount of overlap between the annotation from SPUDNIG and the human
annotator, in contrast to the modified Cohen’s Kappa value.

3.3.2 Meaning-based annotations

Next the overlap between the annotations from SPUDNIG and the human an-
notator’s meaning-based coding was compared. Here a raw agreement of 86%
was observed, together with a modified Cohen’s Kappa maximum value of .77,
indicating high agreement.

The manual analysis showed that from the 185 gestures identified by the
human annotator, SPUDNIG identified 184.

3.3.3 Iconic gestures

Next the focus was on the iconic gestures. It was investigated how many
meaning-based annotations were actually iconic gestures. 45 out of the 185
in total were iconic. The overlap between SPUDNIG and the human anno-
tator was calculated and a raw agreement of 93%, and a modified Cohen’s
Kappa of 1 was observed, which indicates near perfect agreement [Cohen, 1960,
Landis and Koch, 1977].

3.3.4 Non-iconic gestures

From the 185 meaning-based annotations, 140 of them were non-iconic. Again
the overlap was compared between SPUDNIG and the human annotator and a
raw agreement of 84%, and a modified Cohen’s Kappa maximum value of .74 was
found, indicating high level of agreement [Cohen, 1960, Landis and Koch, 1977].

3.3.5 Movement/gesture detection

Finally, it was investigated how many of SPUDNIG’s annotation were actually
not part of a gesture. Although SPUDNIG seems to detect gestural movements
highly accurately, it is not capable of distinguishing gestural from non-gestural
movements. The result is that SPUDNIG produces considerably more annota-
tions than a human annotator would produce: SPUDNIG produces 311 anno-
tations, of which 217 were non-gestural movements.
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3.3.6 Acceleration

In the first phase the human coders were not informed about how well SPUD-
NIG is able to capture movements. This means the human coder looked for
both false positives as well as false negatives. Per coder it was calculated how
many milliseconds it took to annotate a millisecond of data. Descriptives of
the outcomes of the test are presented, since the low number of annotators and
the low number of videos per condition would not result in reliable statistical
results. Human coders were quicker on average when using SPUDNIG (M =
76.8, SD = 83.4) than when manually annotating the videos (M = 81.2, SD =
77.06).

In the second phase the human coders were informed about how well SPUD-
NIG is able to capture movements, and asked to analyse another set of videos.
During this phase human coders were almost twice as quick when using SPUD-
NIG (M = 19.25, SD = 12.63) as compared to manually annotating the data
(M = 35.4, SD = 25.9).

3.4 Discussion

This chapter presented SPUDNIG: SPeeding Up the Detection of Non-iconic
and Iconic Gestures, a toolkit for automatic detection of hand movements and
gestures in video data. An easy-to-use graphical user interface is presented,
and a proof-of-principle is provided, where the annotations of SPUDNIG are
compared to form-based and meaning-based annotations of a trained human
researcher.

The results showed that SPUDNIG can very accurately, over 99%, anno-
tate the occurrence of hand gestures, for both form- and meaning-based coding,
and for both iconic and non-iconic gestures. Although SPUDNIG manages to
capture almost all gestures, it is noted that SPUDNIG produces an overabun-
dance of annotations, based on non-gestural movements. However, SPUDNIG
advances the most labour-intensive part of many multimodal communication
research, the annotation process of manual gestures. Removing the false posi-
tives from SPUDNIG’s output is comparatively a much faster and easier process
compared to manually going through the video and detecting all gestures from
scratch.

3.4.1 Performance

SPUDNIG achieved overall high to very high Cohen’s Kappa scores [Cohen, 1960,
Holle and Rein, 2015, Landis and Koch, 1977]. However, it should be noted
that SPUDNIG does not differentiate between gestures and non-gestural move-
ments, comparable to other semi-automatic annotation tools [De Beugher et al., 2018].
In the 20 times 2 minutes from different videos that were used, SPUDNIG pro-
duced 311 annotations, of which 217 included non-gestural movements, such
as head scratches and fidgeting for example. Although the need of a human
researcher is not eliminated, since a substantial part of the annotations made
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by SPUDNIG are false positives, it is demonstrated that SPUDNIG achieved
very high gesture annotation overlap, thus speeding up the gesture annotation
process significantly.

Overall, SPUDNIG managed to detect 184 gestures out of the 185 detected
by the human researcher.

3.4.2 Limitations

One of SPUDNIG’s limitations is its dependency on OpenPose. If OpenPose
for some reason fails to recognize (some of) the keypoints, SPUDNIG will be
unable to detect movements. Examples of why OpenPose would fail to detect
certain keypoints are occlusion of certain body parts (e.g. the speaker puts his
hands between his legs), or the video quality being too poor. For example, if
the speaker would move his hands too fast, the frames would become blurry
which lead to reliability drops for the corresponding keypoints.

A second limitation is that SPUDNIG is unable to differentiate between dif-
ferent types of gestures. Future work could for example use SPUDNIG’s open
source code to detect certain patterns in x- and y-coordinate changes and recog-
nize recurrent gestures [Bressem and Müller, 2014, Bressem and Müller, 2017,
Ladewig, 2011].

Third, SPUDNIG uses 2D data, but does not provide information about
movements in three-dimensional space. Therefore it is less suited for studying
more complex movement dynamics related to space or directionality [Trujillo et al., 2019].

A final limitation is that SPUDNIG uses pixel differences for detecting move-
ments. An alternative option to analyze OpenPose’s output would be to use
millimeters as threshold, which can be achieved by using multiple cameras and
the camera calibration procedure that is already integrated in OpenPose. This
could result in a more robust threshold, independent of camera dimensions.
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Chapter 4

General Discussion

This chapter first will discuss the main questions of this thesis, which try to
identify regularities in facial signals during questions and responses in face-to-
face communication. This is followed by a brief discussion of the development
and validation of SPUDNIG, which was developed as a side project during this
thesis, to facilitate and accelerate the annotation process of hand movements
and gestures in video data. During the discussion of the results regarding the
facial signals, it should however be noted that those results are not completely
reliable as a result of the OpenFace output not being cleaned yet.

4.1 Regularities and their timing

The first two research questions were ”Are there any regularities between speech
acts (i.e. questions and responses) and facial signals (e.g. eyebrow raises might
occur more in questions whereas lip tighteners might occur more in responses)?”
and ”What is the timing of the occurrences/sequences of facial signals with re-
gards to questions and responses?”. It was hypothesized that there would be
regularities between questions and responses and certain facial signals. More
specifically, based on [Chovil, 1991, Flecha-Garćıa, 2002], it was hypothesized
that eyebrow movements occurred more during questions. Furthermore this the-
sis served as an exploratory study to provide more insights about more potential
regularities as regards facial expressions during questions and responses.

First the general occurrence of facial signals was investigated where a distinc-
tion was made between questions and responses, and three different intervals,
of which the results are shown in Table 2.2. It follows that, even before onset
of the question, nose wrinklers (AU09) occur more frequently with questions
than with responses. Nose wrinklers are often paired with emotions of disgust
or anger [Jack et al., 2014]. This could indicate that nose wrinklers serve as an
indicator for upcoming questions.

For AU01 and AU02, which represent raising the inner and outer parts of
the eyebrows, are found to occur more frequently during responses, contradict-
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ing previous results from [Chovil, 1991, Flecha-Garćıa, 2002], who found that
eyebrow movements occur more during questions than in responses. For outer
brow raises there was only a statistical difference found towards the start of the
response, whereas for inner brow raises it was more shifted towards the end of
the response. Since outer brow raises are paired with emotions of surprise, this
could indicate that a response to a possible unexpected question would start
with an outer brow raiser. The fact that inner brow raises occurred more to-
wards the end of responses, indicates that responses could be completed by inner
brow raises, serving as an indicator that the turn is going to end for example.

These findings could indicate, although the effect sizes are really small, that
brow movements could also be linked to responses, and not only to questions,
hence extending existing literature.

Corresponding to existing literature that states eyebrow movements are
paired with questions, it was found that eyebrow lowerers occurred more fre-
quently in questions than in responses, independent of the timing in the question
or response. Brow lowerers are found to be paired with emotions of confu-
sion and frustration [Grafsgaard et al., 2011, Bosch et al., 2014]. These kind of
emotions can also be followed by questions, in order to relieve the confusion or
frustration, thus explaining why they occurred more in questions.

For AU07, which represents the eyelid tightener, it was found to occur more
during questions, independent of the timing in the questions. However, when
looking at Figure 2.2, it follows that this found effect might be a cause of the
large sample size rather than it being a true effect. The effect only starts to
reach the significance level when approximately 60% of the data is used, whereas
when less is used the difference remains not significant.

A similar effect is observed for AU06, which represent the cheek raiser. Ta-
ble 2.2 suggests that cheek raises occur more frequently in questions than in
responses, when focusing on the end of the questions and responses. However,
when looking at Figure 2.2c, it is observed that this effect is not significant until
approximately 90% of the complete sample is used, indicating this effect might
not be a robust effect but due too the large sample size.

Besides investigating general occurrence counts, it was also investigated
which facial signals co-occurred during questions and responses. Figure 2.3
presents the results from the co-occurring facial signals. When comparing ques-
tions, Figure 2.3a, to the responses, Figure 2.3b, it is observed that both Figures
have a similar distribution of intensities. It concludes that there’s no difference
in co-occurrence pairs of facial signals between questions and responses.

4.2 N-grams

The next question was ”Are there any particular sequences of facial signals
within questions/responses that occur systematically?”. To investigate this, the
most frequent n-grams were extracted from the data. Each unit of the n-grams
consists of the facial signals occurring in the corresponding frame. Table 2.3
presents the most frequent n-grams with n = 2 and n = 3. Because of the
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messy output of OpenFace, most n-grams sometimes even contain 3 facial sig-
nals per unit, meaning that 3 facial signals would occur simultaneously. There-
fore it is hard to interpret these results without cleaning the OpenFace data
first. The most frequent sequence during questions is (’AU04’, ’AU04AU07’),
meaning that first the brows are being lowered (AU04), and somewhere during
this process the eyelids are being tightened (AU07). Some more interpretable n-
grams that are found are (’AU04’, ’Z’, ’AU04’) during questions, and (’AU07’,
’Z’, ’AU07’) during responses. Note that ’Z’ indicates that no facial signals
are occurring. The first n-gram represents the brows being lowered, followed
by nothing, followed by the brows again being lowered. Note that due to the
post-processing there is no information about how long the duration of the brow
lowerer or the pause in-between. The second n-gram represents the eyelids being
tightened, followed by nothing, followed by the eyelids being tightened again.
These results indicate that consecutively lowering the eye brows occurs more
during questions, agreeing with existing literature [Chovil, 1991], and with the
results presented in Table 2.2. They also indicate that consecutively tightening
the eyelids could be linked to responses.

In order to conclude more meaningful conclusions from these results, the
OpenFace data will first need to be cleaned. It is believed that once the data,
more clear and interesting patterns will emerge.

4.3 Gap duration

The final research question investigated the gap duration between corresponding
questions and responses, and if the occurrence of certain facial signals during
the question affected the gap duration between the question and its correspond-
ing response. For none of the checked facial signals, a (significant) correlation
was found between the occurrence count of the particular facial signal and the
duration of the gap. This would indicate that the occurrence of none of the
facial signals would lead to shorter gaps, hence no specific facial signals would
contribute to the addressee’s prediction about the content and expected ending
of the incoming turn. However, a significant, very weak negative correlation was
found between the total number of facial signals, indicating that more facial sig-
nals lead to a shorter gap duration between questions and responses. This yet
indicates that the occurrence of facial signals in general does contribute to the
aforementioned prediction. Further research could reveal which specific facial
signals, if any, cause this effect, by cleaning OpenFace’s data or investigating
other specific facial signals.

4.4 SPUDNIG

SPUDNIG was developed in order to facilitate and accelerate the annotation
process of hand movements and gestures, since this is such an important as-
pect of research on multimodal communication, and the process of manually
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annotating such movements and gestures is a very time-consuming task.
It was shown SPUDNIG is able to accurately annotate the occurrence of

hand gestures, since SPUDNIG detected 184 hand gestures from the 185 ges-
tures annotated by a trained human researcher. Although SPUDNIG manages
to capture almost all gestures, it should be noted that it does not eliminate the
use of a human researcher, since it also produces an overabundance of annota-
tions. SPUDNIG is developed in such a manner that it focuses on capturing
all movements. This way users do not have to inspect the complete video and
look for gestures from scratch, but can go through the annotations created by
SPUDNIG and adjust or remove them. It was shown that this is an easier and
faster process.

Another great strength of SPUDNIG is that no knowledge of programming,
no motion capture systems, not even GPU hardware (although this speeds up
the process) is required, and it comes with an easy-to-use graphical user inter-
face. All of this makes it accessible to a large community of users. Furthermore,
since the code is open source it has potential for being developed further, with
the ultimate goal of being a tool able to distinguish gestural from non-gestural
movement. Although this distinction is far from SPUDNIG’s current state, it
does currently provide a possibility to the non-programming user to significantly
facilitate the gesture annotation process.
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Chapter 5

Conclusion

5.1 Facial signals

The aim of this thesis was to provide more insight in the facial signals accom-
panying questions and responses in face-to-face communication, and whether
they contribute to the addressee’s prediction on information about the content
and expected ending of the speaker’s turn. This eventually can be used to com-
pose a unified model of communication in speech. Unlike most studies in this
domain, this study used data of participants that engaged in dyadic conversa-
tions of free speech in an effort to take a more naturalistic approach, rather
than having conversations in highly controlled environments. The questions
and responses were annotated by trained human researcher of the Max Planck
Institute (MPI) for Psycholinguistics in Nijmegen. The facial signals were rec-
ognized by OpenFace, an automatic facial signal detecting toolkit. Although
the output of OpenFace contains quite some false positives, the goal of this the-
sis was to create an analysis tool for analyzing the facial signals together with
questions and responses, rather than cleaning up the output of OpenFace. It
is believed this caused the small effect sizes for some of the results, and also
sometimes uninterpretable results. Statistical differences between the questions
and responses were found, agreeing as well as contradicting existing literature.
However, the results that were found could change completely once the output
is cleaned, or agree and even magnify the found effects. The main conclusion
of this thesis is that the data first needs to be cleaned in order to produce
meaningful results, but that this thesis has succeeded in developing an analysis
toolkit that is able to investigate different properties of the data regarding facial
signals within question-response sequences. The cleaning of OpenFace’s output
is currently in progress by researchers at the MPI, and the analyses performed
during this thesis can and will be re-used once the data is cleaned. Although
the most important recommendation for future work has already been made,
i.e., cleaning OpenFace’s output, more recommendations will follow.

First, this research does not distinguish between different types of questions.
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In [Couper-Kuhlen, 2012] it was shown that different intonation patterns are
found when differentiating between polar, Wh-, declarative, tag and repeat
questions. It is possible that different patterns or regularities of facial signals are
found when distinguishing those different types of questions, or even that these
different layers neutralize each other. Next, OpenFace also is able to extract
information about the head pose and eye gaze direction, which in this research
has been ignored. This information however does contain valuable information
during communication [Hanna and Brennan, 2007, Staudte et al., 2014], so it
could also be interesting to investigate how this differs in questions compared
to responses. Furthermore, if cleaned data is used and more meaningful co-
occurrences or even sequences of facial signals are found, these could be used in
the gap duration research. Instead of testing whether the occurrence of a single
facial signal affects the duration of the gap between questions and responses, one
could check if the occurrence of multiple, or even sequences of facial signals affect
the gap duration. Finally it is recommended that when investigating question-
response sequences with large sample sizes, one should be cautious of small
p-values, and always validate them by performing some kind of bootstrapping
method.

This research has provided new opportunities with regards to investigating
facial signals in question-response sequences. A possible implication would be
to apply the results regarding which facial signals occur during questions and
responses from this or future research to the field of robotics and virtual agents,
in order to let them communicate in a more human-like manner.

5.2 SPUDNIG

The prior discussed research was possible due to OpenFace, which is able to
recognize facial signals from video data, increasing the research possibilities
regarding facial signals. On the other hand, this kind of toolkit is lacking for
the automatic detection of hand gestures. This thesis has presented SPUDNIG:
SPeeding Up the Detection of Non-iconic and Iconic Gestures, a first attempt
to create such toolkit. It is demonstrated that SPUDNIG detects both iconic
and non-iconic gestures highly accurately from video data. SPUDNIG comes
with an easy-to-use graphical user interface and aims to speed up the process
of annotating hand movements and gestures, rather than eliminating the need
of a human researcher. It is presented that removing the false positives from
SPUDNIG is an easier process compared to manually going through the full
video and annotating all gestures from scratch. The source code is open source
and it is encouraged to try and improve the toolkit.
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