
Master’s Thesis
Faster Convolutional Neural Networks

Master of Science in Artificial Intelligence

Faculty of Social Sciences, Radboud University, Nijmegen

Erdi Çallı
s4600673

Supervised by

Luc Hendriks, Marcel van Gerven

Date of Graduation: 31 August, 2017

Abstract

There exists a gap between the computational cost of state of the art image
processing models and the processing power of publicly available devices.
This gap is reducing the applicability of these promising models. Trying to
bridge this gap, first we investigate pruning and factorization to reduce the
computational cost of a model. Secondly, we look for alternative convolution
operations to design state of the art models. Thirdly, using these alternative
convolution operations, we train a model for the CIFAR-10 classification task.
Our proposed model achieves comparable results (91.1% top-1 accuracy) to
ResNet-20 (91.25% top-1 accuracy) with half the model size and one-third
floating point operations. Finally, we apply pruning and factorization and
observe that these methods are ineffective in reducing the computational
complexity and preserving the accuracy of our proposed model.

1

Contents

1 Introduction 4
1.1 Notations . 5
1.2 Neural Networks . 6

1.2.1 Fully Connected Layers 7
1.2.2 Activation Function and Nonlinearity 8
1.2.3 Loss . 10
1.2.4 Minimizing Loss . 11
1.2.5 Convolutional Layer 11
1.2.6 Pooling . 13
1.2.7 Deconvolution . 15
1.2.8 Batch Normalization 15
1.2.9 Regularization . 16

1.3 Datasets . 17
1.3.1 MNIST . 17
1.3.2 CIFAR10 . 17
1.3.3 ImageNet . 17

2 Methods 18
2.1 Pruning . 18

2.1.1 Pruning Connections 19
2.1.2 Pruning Nodes . 20
2.1.3 Experiments . 21

2.2 Approximation Methods . 24
2.2.1 Factorization . 25
2.2.2 Quantization . 27

2.3 Convolution Operation Alternatives 28
2.3.1 Kernel Composing Convolutions 28
2.3.2 Separable Convolutions 29

2

2.3.3 Experiments . 32
2.4 Small Models . 32

2.4.1 Models . 33
2.4.2 Pruning Small Models 39
2.4.3 Approximating Small Models 41

2.5 Experiments . 43

3 Results 44
3.1 Pruning . 44

3.1.1 Fully Connected Networks 44
3.1.2 Convolutional Neural Networks 45

3.2 Convolution Operation Alternatives 46
3.2.1 MNIST . 46
3.2.2 CIFAR-10 . 46

3.3 Small Models . 47
3.3.1 Models . 47
3.3.2 Pruning Small Models 48
3.3.3 Approximating Small Models 48
3.3.4 Quantization . 48

4 Discussion 49

5 Conclusion 53

3

Chapter 1

Introduction

The state of the art in image processing has changed when graphics process-
ing units (GPU) were used to train neural networks. GPUs contain many
cores, they have very large data bandwidth and they are optimized for effi-
cient matrix operations. In 2012, [KSH12] used two GPUs to train an 8 layer
convolutional neural network (CNN). With this model, they won the Ima-
geNet Large Scale Visual Recognition Competition (ILSVRC) classification
task ([DBS+12]). Their model has improved the previous (top-5) classifica-
tion accuracy record from ∼ 74% to ∼ 84%. This caused a big trend shift in
computer vision.

As the years passed, GPUs got more and more powerful. In 2012, [KSH12]
used GPUs that had 3 GB memory each. Today there are GPUs with up
to 16 GB memory. The number of floating point operations per second
(FLOPs) has also increased from 2.5 tera FLOPs (TFLOPs) to 12 TFLOPs.
This gradual but steep change has allowed the use of more layers and more
parameters. For example, [SZ14] introduced a model called VGGNet. Their
model used up to 19 layers and showed that deeper models achieve better
accuracy. [HZRS15] introduced a new method called residual connections,
that allowed the use of up to 200 layers. Building up on such models, in 2016
ILSVRC winning (top-5) classification accuracy has increased to ∼ 97%.

In contrast, [SLJ+14] have shown that incorporating layers to compose
blocks (i.e. inception blocks) works better than stacking layers. Their pro-
posal has also been supported by [CPC16]. [CPC16] has shown the relation-
ship between the number of parameters and the top-1 classification accu-
racy of state of the art models trained on ILSVRC dataset. They compare
Inception-v3 ([SVI+16]) and ResNet-152 ([HZRS15]) in terms of accuracy

4

and number of parameters, and show that Inception-v3, while having fewer
layers, fewer parameters and requiring a smaller number of floating point
operations, performs better than ResNet-152. Their results reveal that, pro-
viding more layers and parameters does not necessarily yield better results.

ILSVRC is one of the most famous competitions in image processing.
Every year, the winners of this competition are driving the research in the
field. However, this competition is not considering the computational cost of
solutions. The computational cost is an important factor to express the cost
of real life applications of a model. For example, the 2016 winner of ILSVRC,
used an ensemble of large models1. Such an ensemble is very expensive to
use in real life because of its high computational cost. But because the cost
is hidden, these results are creating an unreal expectation in public. It looks
like these methods are applicable without a cost. In this thesis, we try to
come up with some methods that can be used to create state of the art
solutions that could easily be applicable in real life.

How can we reduce the computational cost of inference in convo-
lutional neural networks without compromising on accuracy?

First, we will briefly describe neural networks and some underlying con-
cepts. We will mention the computational cost of necessary operations. In
chapter two we will explain some methods to reduce the computational cost
and run experiments on these methods. We also design and train some convo-
lutional neural networks designed to have less computational cost. In chapter
three, we will present the results of our experiments. In chapter four, we will
retrospect to our decisions, experiment design, results. In chapter five, we
will conclude our research and answer the research question.

1.1 Notations

We will be dealing with tensors of various shapes. Therefore we will be
defining a notation that will help us through the process. We will define
ordered sets to group semantically similar elements and to represent the kth
element of such a set we will use superscript variables, such as w(k). Since
these sets represent a semantic group of variables that may have different
properties, such as shape, dimensions or type, it would be misleading to

1http://image-net.org/challenges/LSVRC/2016/results#team

5

http://image-net.org/challenges/LSVRC/2016/results#team

represent them using a global tensor. We will not be separating scalars,
vectors, matrices or tensors using capitals or bolds. However, we will be
reminding the definition of these variables whenever we find necessary. We
will use the w(k) ∈ R5×5 notation to state that w(k) is a 5 × 5 matrix with
real numbers as values. To describe the coordinates of a variable, we will use
subscript variables. We use w

(k)
i,j to represent the ith column and jth row of

the matrix w(k). We use commas or parentheses to group these variables or
dimensions semantically.

1.2 Neural Networks

In this section, we will describe neural networks briefly, provide some termi-
nology and give some examples.

Neural networks are weighted graphs. They consist of an ordered set of
layers, where every layer is a set of nodes. The first layer of the neural
network is called the input layer, and the last one is called the output layer.
The layers in between are called hidden layers. Layers are a semantic group
of nodes. Nodes belonging to one layer are connected to the nodes in the
following and/or the previous layers. These connections are weighted edges,
and they are referred to as weights.

Given an input, neural network nodes have outputs, which are real num-
bers. The output of a node is calculated by applying a function (ψ) to the
outputs of the nodes belonging to previous layers. Preceding that, the output
of the input layer (o(0)) is equal to the input (see Eq. 1.1). By calculating
the layer outputs consecutively we calculate the output of the output layer.
This process is called inference. We use the following notations to denote

6

the concepts that we just explained.

L: the number of layers in a neural network

l(k): layer k

m(k): the number of nodes in l(k)

l
(k)
i : node i in l(k)

o(k): the output vector representing the outputs of nodes in l(k)

o
(k)
i : the output of l

(k)
i

w(k): weight matrix connecting nodes in l(k−1) to nodes in l(k)

w
(k)
i,j : the weight connecting nodes l

(k−1)
i and l

(k)
j

b(k): the bias vector for l(k)

ψ(k): function to determine o(k) given o(k−1)

σ: activation function

X: all inputs of the dataset as

Y : all provided outputs of the dataset

Ŷ : approximations of all outputs given all inputs

xn: nth input data

yn: nth output data

ŷn: approximation of yn given xn

Therefore, the structure of a neural network is determined by the number
of layers and the functions that determine the outputs of layers.

o(k) =

{
ψ(k)(o

(k−1)), if k ≥ 1

xn, k = 0
(1.1)

1.2.1 Fully Connected Layers

As the name suggests, for two consecutive layers to be fully connected, all
nodes in the previous layer must be connected to all nodes in the following
layer.

Let us assume two consecutive layers, l(k−1) ∈ Rm(k−1)×1 and l(k) ∈ Rm(k)×1.
For these layers to be fully connected, the weight matrix connecting them

7

would be defined as w(k) ∈ Rm(k−1)×m(k)
. This structure is represented in

Figure 1.1.
Most fully connected layers also include a bias term (b(k) ∈ Rm(k)

) to
account for the constants in the system. Using the weight and the bias, the
output of a fully connected layer, o(k), would simply be calculated using layer
function ψ(FC) as

o(k) = ψ
(FC)
(k) (o(k−1)) = (o(k−1))Tw(k) + b(k)

The computational complexity of ψ
(FC)
(k) is

O(ψ
(FC)
(k)) = O(m(k−1)m(k))

}1.3.1 Factorization

Factorization is approximating a weight matrix using smaller matrices. As
explained by [ZZHS16], [DZB+14], [CS16], factorization has interesting uses
with neural networks. Let us assume that we have a fully connected layer
k. Using factorization, we can approximate w(k) 2 Rm(k�1)⇥m(k)

using two
smaller matrices, Uw(k) 2 Rm(k�1)⇥n and Vw(k) 2 Rn⇥m(k)

. If we can find

matrices such that Uw(k)Vw(k) ⇡ w(k), we can rewrite
(FC)
(k) as

(FC)
(k) (o) ⇡

0(FC)
(k) (o) = �(oT Uw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a su�ciently
small n. As we have mentioned before, O(

(FC)
(k)) = O(m(k�1)m(k)). When

we approximate this operation, the complexity becomes

O(
0(FC)
(k)) = O(n(m(k�1) + m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate
results. The only di↵erence is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(
0(Conv)
(k)) = O(WkHkK

2n(m(k�1) + m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without a↵ecting the results.

n <
m(k�1)m(k)

m(k�1) + m(k)
(1.3)

The quality of the approximation will influence how this operation a↵ects
the accuracy.

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) 2 Rm(k�1)⇥m(k)

into 3 parts as

w(k) = USV T

14

would be defined as w(k) 2 Rm(k�1)⇥m(k)
. This structure is represented in

Figure 1.1.
Most fully connected layers also include a bias term (b(k) 2 Rm(k)

). The
output of a fully connected layer, o(k), would simply be calculated using layer
function (FC) as

o(k) =
(FC)
(k) (o(k�1)) = (o(k�1))T w(k) + b(k)

The computational complexity of
(FC)
(k) is

O(
(FC)
(k)) = O(m(k�1)m(k))

}1.3.1 Factorization

Factorization is approximating a weight matrix using smaller matrices. As
explained by [ZZHS16], [DZB+14], [CS16], factorization has interesting uses
with neural networks. Let us assume that we have a fully connected layer
k. Using factorization, we can approximate w(k) 2 Rm(k�1)⇥m(k)

using two
smaller matrices, Uw(k) 2 Rm(k�1)⇥n and Vw(k) 2 Rn⇥m(k)

. If we can find

matrices such that Uw(k)Vw(k) ⇡ w(k), we can rewrite
(FC)
(k) as

(FC)
(k) (o) ⇡

0(FC)
(k) (o) = �(oT Uw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a su�ciently
small n. As we have mentioned before, O(

(FC)
(k)) = O(m(k�1)m(k)). When

we approximate this operation, the complexity becomes

O(
0(FC)
(k)) = O(n(m(k�1) + m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate
results. The only di↵erence is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(
0(Conv)
(k)) = O(WkHkK

2n(m(k�1) + m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without a↵ecting the results.

n <
m(k�1)m(k)

m(k�1) + m(k)
(1.3)

The quality of the approximation will influence how this operation a↵ects
the accuracy.

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) 2 Rm(k�1)⇥m(k)

into 3 parts as

w(k) = USV T

14

Figure 1.1: Graph representation of two fully connected layers, l(k�1) and
l(k), connected by the weight matrix w(k).

1.2.2 Activation Function and Nonlinearity

By stacking fully connected layers, we can increase the depth of a neural
network. By doing so we may be able to increase approximation quality of

8

would be defined as w(k) 2 Rm(k�1)⇥m(k)
. This structure is represented in

Figure 1.1.
Most fully connected layers also include a bias term (b(k) 2 Rm(k)

). The
output of a fully connected layer, o(k), would simply be calculated using layer
function (FC) as

o(k) =
(FC)
(k) (o(k�1)) = (o(k�1))T w(k) + b(k)

The computational complexity of
(FC)
(k) is

O(
(FC)
(k)) = O(m(k�1)m(k))

}1.3.1 Factorization

Factorization is approximating a weight matrix using smaller matrices. As
explained by [ZZHS16], [DZB+14], [CS16], factorization has interesting uses
with neural networks. Let us assume that we have a fully connected layer
k. Using factorization, we can approximate w(k) 2 Rm(k�1)⇥m(k)

using two
smaller matrices, Uw(k) 2 Rm(k�1)⇥n and Vw(k) 2 Rn⇥m(k)

. If we can find

matrices such that Uw(k)Vw(k) ⇡ w(k), we can rewrite
(FC)
(k) as

(FC)
(k) (o) ⇡

0(FC)
(k) (o) = �(oT Uw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a su�ciently
small n. As we have mentioned before, O(

(FC)
(k)) = O(m(k�1)m(k)). When

we approximate this operation, the complexity becomes

O(
0(FC)
(k)) = O(n(m(k�1) + m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate
results. The only di↵erence is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(
0(Conv)
(k)) = O(WkHkK

2n(m(k�1) + m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without a↵ecting the results.

n <
m(k�1)m(k)

m(k�1) + m(k)
(1.3)

The quality of the approximation will influence how this operation a↵ects
the accuracy.

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) 2 Rm(k�1)⇥m(k)

into 3 parts as

w(k) = USV T

14

Figure 1.1: Graph representation of two fully connected layers, l(k�1) and
l(k), connected by the weight matrix w(k).

1.2.2 Activation Function and Nonlinearity

By stacking fully connected layers, we can increase the depth of a neural
network. By doing so we may be able to increase approximation quality of

8

Figure 1.1: Graph representation of two fully connected layers, l(k−1) and
l(k), connected by the weight matrix w(k).

1.2.2 Activation Function and Nonlinearity

By stacking fully connected layers, we can increase the depth of a neural
network. By doing so we may be able to increase approximation quality of

8

the neural network. However, the ψ(FC) we have defined is a linear function.
Therefore, no matter how many linear fully connected layers we stack, we
would end up with a linear model.

To achieve non-linearity, we apply activation functions to the results of ψ.
There are many activation functions (such as tanh or sigmoid) but one very
commonly used activation function is ReLU [NH10]. As shown in Figure 1.2,
ReLU is defined as

ReLU(x) =

{
x, if x ≥ 0

0 otherwise
(1.2)

the neural network. However, the (FC) we have defined is a linear function.
Therefore if we stack multiple fully connected layers using the current (FC),
we would end up with a linear model.

To achieve non-linearity, we apply activation functions to the results of
 . There are many activation functions (such as tanh or sigmoid) but one
very commonly used activation function is ReLU [NH10]. ReLU is defined
as

ReLU(x) =

(
x, if x � 0

0 otherwise
(1.2)

As [GBB11] explained, ReLU leads to sparsity. As a result, given an input,
only a subset of nodes are non-zero (active) and every possible subset results
with a linear function. This linearity allows a better flow of gradients, leading
to faster training. Also, the ReLU is not relying on any computation, so it
is easier to compute compared to hyperbolic or exponential alternatives.

We will redefine the fully connected (FC) with activation function (�) as

(FC)
(k) (o(k)) = �((o(k))T w(k) + b(k))

The activation function does not strictly belong to the definition of fully
connected layers. But for simplicity, we are going to include them in the
layer functions ().

 (FC) is one of the most basic building blocks of neural networks. By
stacking building blocks in di↵erent types and configurations, we come up
with di↵erent neural network structures. The outputs of every layer, starting
from the input are calculated as

O = { (k)(o
(k�1)) | k 2 [1, . . . , L]}

1.2.3 Loss

To represent the quality of an approximation, we are going to use a loss (or
cost) function. A good example to understanding loss would be the loss of
a salesman. Assuming a customer who would pay at most $10 for a given
product, if the salesman sells this product for $4, the salesman would face
a loss of $6 from his potential profit. Or if the salesman tries to sell this
product for $14, the customer will not purchase it and he will face a loss of
$10. In this example, the salesman would want to minimize the loss to earn
as much as possible. There are two common properties of loss functions.

9

the neural network. However, the (FC) we have defined is a linear function.
Therefore if we stack multiple fully connected layers using the current (FC),
we would end up with a linear model.

To achieve non-linearity, we apply activation functions to the results of
 . There are many activation functions (such as tanh or sigmoid) but one
very commonly used activation function is ReLU [NH10]. ReLU is defined
as

ReLU(x) =

(
x, if x � 0

0 otherwise
(1.2)

As [GBB11] explained, ReLU leads to sparsity. As a result, given an input,
only a subset of nodes are non-zero (active) and every possible subset results
with a linear function. This linearity allows a better flow of gradients, leading
to faster training. Also, the ReLU is not relying on any computation, so it
is easier to compute compared to hyperbolic or exponential alternatives.

We will redefine the fully connected (FC) with activation function (�) as

(FC)
(k) (o(k)) = �((o(k))T w(k) + b(k))

The activation function does not strictly belong to the definition of fully
connected layers. But for simplicity, we are going to include them in the
layer functions ().

 (FC) is one of the most basic building blocks of neural networks. By
stacking building blocks in di↵erent types and configurations, we come up
with di↵erent neural network structures. The outputs of every layer, starting
from the input are calculated as

O = { (k)(o
(k�1)) | k 2 [1, . . . , L]}

1.2.3 Loss

To represent the quality of an approximation, we are going to use a loss (or
cost) function. A good example to understanding loss would be the loss of
a salesman. Assuming a customer who would pay at most $10 for a given
product, if the salesman sells this product for $4, the salesman would face
a loss of $6 from his potential profit. Or if the salesman tries to sell this
product for $14, the customer will not purchase it and he will face a loss of
$10. In this example, the salesman would want to minimize the loss to earn
as much as possible. There are two common properties of loss functions.

9

the neural network. However, the (FC) we have defined is a linear function.
Therefore if we stack multiple fully connected layers using the current (FC),
we would end up with a linear model.

To achieve non-linearity, we apply activation functions to the results of
 . There are many activation functions (such as tanh or sigmoid) but one
very commonly used activation function is ReLU [NH10]. ReLU is defined
as

ReLU(x) =

(
x, if x � 0

0 otherwise
(1.2)

As [GBB11] explained, ReLU leads to sparsity. As a result, given an input,
only a subset of nodes are non-zero (active) and every possible subset results
with a linear function. This linearity allows a better flow of gradients, leading
to faster training. Also, the ReLU is not relying on any computation, so it
is easier to compute compared to hyperbolic or exponential alternatives.

We will redefine the fully connected (FC) with activation function (�) as

(FC)
(k) (o(k)) = �((o(k))T w(k) + b(k))

The activation function does not strictly belong to the definition of fully
connected layers. But for simplicity, we are going to include them in the
layer functions ().

 (FC) is one of the most basic building blocks of neural networks. By
stacking building blocks in di↵erent types and configurations, we come up
with di↵erent neural network structures. The outputs of every layer, starting
from the input are calculated as

O = { (k)(o
(k�1)) | k 2 [1, . . . , L]}

1.2.3 Loss

To represent the quality of an approximation, we are going to use a loss (or
cost) function. A good example to understanding loss would be the loss of
a salesman. Assuming a customer who would pay at most $10 for a given
product, if the salesman sells this product for $4, the salesman would face
a loss of $6 from his potential profit. Or if the salesman tries to sell this
product for $14, the customer will not purchase it and he will face a loss of
$10. In this example, the salesman would want to minimize the loss to earn
as much as possible. There are two common properties of loss functions.

9

Using this relationship between dimensions of outputs, we can define a con-
volutional layer as

(Conv)
(k) : RHk�1⇥Wk�1⇥m(k�1) ! RHk⇥Wk⇥m(k)

To perform this operation, we need to define and create the patch at location
(I, J) as

p
(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

p
(k�1)
(I,J) ✓ o(k�1)

The subindices (i, j) of patch (p
(k�1)
(I,J)) are a direct reference to the features

at subindex (a, b) of the output. Using these indices, elements of this patch
are defined as

p
(k�1)
(I,J),(i,j) 2 Rm(k�1)

, 0 < i  K, 0 < j  K

o
(k�1)
a,b 2 Rm(k�1)

, 0 < a  Hk�1, 0 < b  Wk�1

This direct reference is
p

(k�1)
(I,J),(i,j) = o

(k�1)
a,b

where the relationship between subindices of the output layer (a, b) and the
patch ((I, J), (i, j)) are defined dependent on the strides and the kernel size
as

a = Isk + (i � bK/2c)
b = Jsk + (j � bK/2c)

Having the definition for a patch p
(k�1)
(I,J) and the indices related to it, we can

define the output of next layer as

(Conv)
(k) (o(k�1)) = o(k) = {o

(k)
(I,J) | 8(I, J)(9p

(k�1)
(I,J))[o

(k)
(I,J) = �(p

(k�1)
(I,J) w(k) + b(k)) }

where the weight and the bias are defined as

w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

b(k) 2 Rm(k)

In other words, the output of layer is a set of vectors (o(k) = {o
(k)
(I,J)}). For

every pair of indices (I, J), there exists a patch p
(k�1)
(I,J) defined by the outputs

of the previous layer. We apply the weight, the bias and the activation
function to these patches to calculate the set o(k). Given this description, we
can define the complexity of this operation as

O(
(Conv)
(k)) = O(WkHkK

2m(k�1)m(k))

12

Using this relationship between dimensions of outputs, we can define a con-
volutional layer as

(Conv)
(k) : RHk�1⇥Wk�1⇥m(k�1) ! RHk⇥Wk⇥m(k)

To perform this operation, we need to define and create the patch at location
(I, J) as

p
(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

p
(k�1)
(I,J) ✓ o(k�1)

The subindices (i, j) of patch (p
(k�1)
(I,J)) are a direct reference to the features

at subindex (a, b) of the output. Using these indices, elements of this patch
are defined as

p
(k�1)
(I,J),(i,j) 2 Rm(k�1)

, 0 < i  K, 0 < j  K

o
(k�1)
a,b 2 Rm(k�1)

, 0 < a  Hk�1, 0 < b  Wk�1

This direct reference is
p

(k�1)
(I,J),(i,j) = o

(k�1)
a,b

where the relationship between subindices of the output layer (a, b) and the
patch ((I, J), (i, j)) are defined dependent on the strides and the kernel size
as

a = Isk + (i � bK/2c)
b = Jsk + (j � bK/2c)

Having the definition for a patch p
(k�1)
(I,J) and the indices related to it, we can

define the output of next layer as

(Conv)
(k) (o(k�1)) = o(k) = {o

(k)
(I,J) | 8(I, J)(9p

(k�1)
(I,J))[o

(k)
(I,J) = �(p

(k�1)
(I,J) w(k) + b(k)) }

where the weight and the bias are defined as

w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

b(k) 2 Rm(k)

In other words, the output of layer is a set of vectors (o(k) = {o
(k)
(I,J)}). For

every pair of indices (I, J), there exists a patch p
(k�1)
(I,J) defined by the outputs

of the previous layer. We apply the weight, the bias and the activation
function to these patches to calculate the set o(k). Given this description, we
can define the complexity of this operation as

O(
(Conv)
(k)) = O(WkHkK

2m(k�1)m(k))

12

Figure 1.2: ReLU non linearity visualized.

As [GBB11] explained, ReLU leads to sparsity. As a result, given an
input, only a subset of nodes are non-zero (active) and every possible subset
results with a linear function. This linearity allows a better flow of gradients,
leading to faster training. Also, the ReLU is easier to compute compared to
hyperbolic or exponential alternatives.

We will redefine the fully connected ψ(FC) with activation function (σ) as

ψ
(FC)
(k) (o(k)) = σ((o(k))Tw(k) + b(k))

The activation function does not strictly belong to the definition of fully
connected layers. But for simplicity, we are going to include them in the
layer functions (ψ).

ψ(FC) is one of the most basic building blocks of neural networks. By
stacking building blocks in different types and configurations, we come up

9

with different neural network structures. The outputs of every layer, starting
from the input are calculated as

O = {ψ(k)(o
(k−1)) | k ∈ [1, . . . , L]}

1.2.3 Loss

To represent the quality of an approximation, we are going to use a loss (or
cost) function. A good example to understanding loss would be the loss of
a salesman. Assuming a customer who would pay at most $10 for a given
product, if the salesman sells this product for $4, the salesman would face
a loss of $6 from his potential profit. Or if the salesman tries to sell this
product for $14, the customer will not purchase it and he will face a loss of
$10. In this example, the salesman would want to minimize the loss to earn
as much as possible. There are two common properties of loss functions.
First, loss is never negative. Second, if we compare two approximations, the
one with smaller loss is better at approximating the data.

Root Mean Square Error

A commonly used loss function is root mean square error (RMSE). Given an
approximation (ŷn ∈ RN) and the expected output (yn ∈ RN), RMSE can
be calculated as

L = RMSE(ŷn, yn) =

√∑N
i=1(ŷn,i − yn,i)2

N

Softmax Cross Entropy

Another commonly used loss function is softmax cross entropy (SCE). Soft-
max cross entropy is used for classification tasks where we are trying to find
the class that our input belongs to. Softmax cross entropy first calculates the
class probabilities given the input using the softmax function. It is defined
as

p(i|ŷn) =
eŷn,i

∑N
j=1 e

ŷn,j

10

Then comparing it with the the expected output (yn ∈ RN), SCE loss can
be calculated as

L = CE(ŷn, yn) = −
N∑

i=1

yn,ilog(p(i|ŷn))

SCE depends on the softmax to turn the node outputs into probabilities.
Therefore, it makes sense to use it for classification tasks where the output
data is representing a probability distribution. However, RMSE punishes the
difference in outputs. Therefore, we can say that it is better for tasks like
regression which represent exact values in output nodes. [GDN13] provides
a comprehensive comparison of both methods.

1.2.4 Minimizing Loss

To provide better approximations, we will try to optimize the neural net-
work parameters. One common way to optimize these parameters is to use
stochastic gradient descent (SGD). SGD is an iterative learning method that
starts with some initial (random) parameters. Given θ ∈ (W ∪ B) to be a
parameter that we want to optimize. The learning rule assigning the new
value of θ for a simple example would be

θ := θ − η∇θL(f(x), y)

where η is the learning rate, and ∇θL(f(x), y) is the partial derivative of the
loss in terms of the given parameter (θ) and := is the assignment operator.
One iteration is completed when we update every parameter for given exam-
ple(s). By performing many iterations, SGD aims to find a global minimum
for the loss function, given data and initial parameters.

There are several other optimizers that work in different ways. We will
be using Momentum Optimizer ([Qia99]) and SGD.

1.2.5 Convolutional Layer

So far we have seen the key elements we can use to create and train fully
connected neural networks. To be able to apply neural networks to image
inputs, we can define convolutional layers using convolution operations.

Let us assume a 3 dimensional layer output o(k−1) ∈ RHk−1×Wk−1×m(k−1)

where the dimensions Hk−1 representing the length of the height dimension,

11

Wk−1 representing the length of the width dimension and m(k−1) representing
number of nodes in that layer. We will refer to the totality of these nodes
repeated in width and height dimensions as features or channels. Convolution
operation first creates a sliding window of size K × K × m(k−1) that goes
through height and width dimensions. The contents of this sliding window
are patches (p

(k−1)
(I,J) ∈ RK×K×m(k−1)

) where 0 < I ≤ Wk and 0 < J ≤ Wk. By

multiplying the weight matrix w(k) ∈ RK×K×m(k−1)×m(k)
to the patch p

(k−1)
(I,J)

centered at (I, J), we create the set of output nodes for that point o
(k)
(I,J) ∈

R1×m(k)
. While calculating the patches, we also make use of a parameter

called stride, sk ∈ N+. sk defines the number of vertical and horizontal steps
to take between each patch.

In other words, strides (sk) are used to define the width (Wk) and height
(Hk) of the output in layer k as

Wk =

⌊Wk−1
sk

⌋
,Hk =

⌊Hk−1
sk

⌋

Using this relationship between dimensions of outputs, we can define a con-
volutional layer as

ψ
(Conv)
(k) : RHk−1×Wk−1×m(k−1) → RHk×Wk×m(k)

To perform this operation, we need to define and create the patch at location
(I, J) as

p
(k−1)
(I,J) ∈ RK×K×m(k−1)

p
(k−1)
(I,J) ⊆ o(k−1)

The subindices (i, j) of patch (p
(k−1)
(I,J)) are a direct reference to the features

at subindex (a, b) of the output. Using these indices, elements of this patch
are defined as

p
(k−1)
(I,J),(i,j) ∈ Rm(k−1)

, 0 < i ≤ K, 0 < j ≤ K

o
(k−1)
a,b ∈ Rm(k−1)

, 0 < a ≤ Hk−1, 0 < b ≤ Wk−1

This direct reference is
p
(k−1)
(I,J),(i,j) = o

(k−1)
a,b

12

where the relationship between subindices of the output layer (a, b) and the
patch ((I, J), (i, j)) are defined dependent on the strides and the kernel size
as

a = Isk + (i− bK/2c)
b = Jsk + (j − bK/2c)

In cases where a and b become less than 0 (i.e. i = 0, I = 0) or greater
than Hk−1 and Wk−1 respectively, we assign zeroes to relative values of the
patches. This method is called same padding, and we will be using this
method for the rest of our definitions.

Having the definition for a patch p
(k−1)
(I,J) and the indices related to it, we

can define the output of the next layer as

ψ
(Conv)
(k) (o(k−1)) = o(k) = {o(k)(I,J) | ∀(I, J)(∃p(k−1)(I,J))[o

(k)
(I,J) = σ(p

(k−1)
(I,J) w

(k) + b(k)) }

where the weight and the bias are defined as

w(k) ∈ RK×K×m(k−1)×m(k)

b(k) ∈ Rm(k)

In other words, as shown in Figure 1.3, the output of layer is a set of vectors
(o(k) = {o(k)(I,J)}). For every pair of indices (I, J), there exists a patch p

(k−1)
(I,J)

defined by the outputs of the previous layer. We apply the weight, the bias
and the activation function to these patches to calculate the set o(k). Given
this description, we can define the complexity of this operation as

O(ψ
(Conv)
(k)) = O(WkHkK

2m(k−1)m(k))

1.2.6 Pooling

Just like strides, pooling is another way of reducing the dimensionality (Wk
and Hk) of a layer. Depending on the task, one may choose from different
pooling methods. Similar to convolution operation, pooling methods also
work with patches p

(k−1)
(I,J) ∈ RK×K×m(k−1)

and strides sk−1. But this time,
instead of applying a weight, bias and activation function, they apply simpler
functions. Here we will see two types of pooling layers.

13

where the relationship between subindices of the output layer (a, b) and the
patch ((I, J), (i, j)) are defined dependent on the strides and the kernel size
as

a = Isk + (i � bK/2c)
b = Jsk + (j � bK/2c)

Having the definition for a patch p
(k�1)
(I,J) and the indices related to it, we can

define the output of next layer as

(Conv)
(k) (o(k�1)) = o(k) = {o

(k)
(I,J) | 8(I, J)(9p

(k�1)
(I,J))[o

(k)
(I,J) = �(p

(k�1)
(I,J) w(k) + b(k)) }

where the weight and the bias are defined as

w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

b(k) 2 Rm(k)

In other words, the output of layer is a set of vectors (o(k) = {o
(k)
(I,J)}). For

every pair of indices (I, J), there exists a patch p
(k�1)
(I,J) defined by the outputs

of the previous layer. We apply the weight, the bias and the activation
function to these patches to calculate the set o(k). Given this description, we
can define the complexity of this operation as

O(
(Conv)
(k)) = O(WkHkK

2m(k�1)m(k))

1.2.6 Pooling

Pooling is a way of reducing the dimensionality of a layer. Depending on the
task, one may choose from di↵erent pooling methods. Similar to convolution
operation, pooling methods also work with patches p

(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

and
strides sk�1. But this time, instead of applying a weight, bias and activation
function, they apply simpler functions. Here we will see two types of pooling
layers.

Max Pooling

Max pooling takes the maximum value in a channel within the patch. Let’s
define the first subindex of a patch as if it is referring to a node as

p
(k�1)
(I,J),i 2 RK⇥K , 0 < i  m(k�1)

13

Let us assume a 3 dimensional layer output o(k�1) 2 RHk�1⇥Wk�1⇥m(k�1)

where the dimensions Hk�1 representing the length of the height dimension,
Wk�1 representing the length of the width dimension and m(k�1) representing
number of nodes in that layer. Convolution operation first creates a sliding
window of size K⇥K⇥m(k�1) that goes through height and width dimensions.
The contents of this sliding window would be patches (p

(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

)
where 0 < I  Wk and 0 < J  Wk. By multiplying the weight matrix
w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

to the patch p
(k�1)
(I,J) centered at (I, J), we create the

set of output nodes for that point o
(k)
(I,J) 2 R1⇥m(k)

. While calculating the

patches, we also make use of a parameter called stride, sk 2 N+. sk defines
the number of vertical and horizontal steps to take between each patch.

In other words, strides (sk) are used to define the width (Wk) and height
(Hk) of the output in layer k as

Wk =

�Wk�1

sk

⌫
, Hk =

�Hk�1

sk

⌫

Using this relationship between dimensions of outputs, we can define a con-
volutional layer as

(Conv)
(k) : RHk�1⇥Wk�1⇥m(k�1) ! RHk⇥Wk⇥m(k)

To perform this operation, we need to define and create the patch at location
(I, J) as

p
(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

p
(k�1)
(I,J) ✓ o(k�1)

The subindices (i, j) of patch (p
(k�1)
(I,J)) are a direct reference to the features

at subindex (a, b) of the output. Using these indices, elements of this patch
are defined as

p
(k�1)
(I,J),(i,j) 2 Rm(k�1)

, 0 < i  K, 0 < j  K

o
(k�1)
a,b 2 Rm(k�1)

, 0 < a  Hk�1, 0 < b  Wk�1

This direct reference is
p

(k�1)
(I,J),(i,j) = o

(k�1)
a,b

12

Let us assume a 3 dimensional layer output o(k�1) 2 RHk�1⇥Wk�1⇥m(k�1)

where the dimensions Hk�1 representing the length of the height dimension,
Wk�1 representing the length of the width dimension and m(k�1) representing
number of nodes in that layer. Convolution operation first creates a sliding
window of size K⇥K⇥m(k�1) that goes through height and width dimensions.
The contents of this sliding window would be patches (p

(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

)
where 0 < I  Wk and 0 < J  Wk. By multiplying the weight matrix
w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

to the patch p
(k�1)
(I,J) centered at (I, J), we create the

set of output nodes for that point o
(k)
(I,J) 2 R1⇥m(k)

. While calculating the

patches, we also make use of a parameter called stride, sk 2 N+. sk defines
the number of vertical and horizontal steps to take between each patch.

In other words, strides (sk) are used to define the width (Wk) and height
(Hk) of the output in layer k as

Wk =

�Wk�1

sk

⌫
, Hk =

�Hk�1

sk

⌫

Using this relationship between dimensions of outputs, we can define a con-
volutional layer as

(Conv)
(k) : RHk�1⇥Wk�1⇥m(k�1) ! RHk⇥Wk⇥m(k)

To perform this operation, we need to define and create the patch at location
(I, J) as

p
(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

p
(k�1)
(I,J) ✓ o(k�1)

The subindices (i, j) of patch (p
(k�1)
(I,J)) are a direct reference to the features

at subindex (a, b) of the output. Using these indices, elements of this patch
are defined as

p
(k�1)
(I,J),(i,j) 2 Rm(k�1)

, 0 < i  K, 0 < j  K

o
(k�1)
a,b 2 Rm(k�1)

, 0 < a  Hk�1, 0 < b  Wk�1

This direct reference is
p

(k�1)
(I,J),(i,j) = o

(k�1)
a,b

12

where the relationship between subindices of the output layer (a, b) and the
patch ((I, J), (i, j)) are defined dependent on the strides and the kernel size
as

a = Isk + (i � bK/2c)
b = Jsk + (j � bK/2c)

Having the definition for a patch p
(k�1)
(I,J) and the indices related to it, we can

define the output of next layer as

(Conv)
(k) (o(k�1)) = o(k) = {o

(k)
(I,J) | 8(I, J)(9p

(k�1)
(I,J))[o

(k)
(I,J) = �(p

(k�1)
(I,J) w(k) + b(k)) }

where the weight and the bias are defined as

w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

b(k) 2 Rm(k)

In other words, the output of layer is a set of vectors (o(k) = {o
(k)
(I,J)}). For

every pair of indices (I, J), there exists a patch p
(k�1)
(I,J) defined by the outputs

of the previous layer. We apply the weight, the bias and the activation
function to these patches to calculate the set o(k). Given this description, we
can define the complexity of this operation as

O(
(Conv)
(k)) = O(WkHkK

2m(k�1)m(k))

1.2.6 Pooling

Pooling is a way of reducing the dimensionality of a layer. Depending on the
task, one may choose from di↵erent pooling methods. Similar to convolution
operation, pooling methods also work with patches p

(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

and
strides sk�1. But this time, instead of applying a weight, bias and activation
function, they apply simpler functions. Here we will see two types of pooling
layers.

Max Pooling

Max pooling takes the maximum value in a channel within the patch. Let’s
define the first subindex of a patch as if it is referring to a node as

p
(k�1)
(I,J),i 2 RK⇥K , 0 < i  m(k�1)

13

where the relationship between subindices of the output layer (a, b) and the
patch ((I, J), (i, j)) are defined dependent on the strides and the kernel size
as

a = Isk + (i � bK/2c)
b = Jsk + (j � bK/2c)

Having the definition for a patch p
(k�1)
(I,J) and the indices related to it, we can

define the output of next layer as

(Conv)
(k) (o(k�1)) = o(k) = {o

(k)
(I,J) | 8(I, J)(9p

(k�1)
(I,J))[o

(k)
(I,J) = �(p

(k�1)
(I,J) w(k) + b(k)) }

where the weight and the bias are defined as

w(k) 2 RK⇥K⇥m(k�1)⇥m(k)

b(k) 2 Rm(k)

In other words, the output of layer is a set of vectors (o(k) = {o
(k)
(I,J)}). For

every pair of indices (I, J), there exists a patch p
(k�1)
(I,J) defined by the outputs

of the previous layer. We apply the weight, the bias and the activation
function to these patches to calculate the set o(k). Given this description, we
can define the complexity of this operation as

O(
(Conv)
(k)) = O(WkHkK

2m(k�1)m(k))

1.2.6 Pooling

Pooling is a way of reducing the dimensionality of a layer. Depending on the
task, one may choose from di↵erent pooling methods. Similar to convolution
operation, pooling methods also work with patches p

(k�1)
(I,J) 2 RK⇥K⇥m(k�1)

and
strides sk�1. But this time, instead of applying a weight, bias and activation
function, they apply simpler functions. Here we will see two types of pooling
layers.

13

Figure 1.3: Convolution operation visualized.

Max Pooling

Max pooling takes the maximum value in a channel within the patch. Let’s
define the first subindex of a patch as if it is referring to a node as

p
(k−1)
(I,J),i ∈ RK×K , 0 < i ≤ m(k−1)

Using this definition, max pooling can be defined as

ψ
(maxpool)
(k) (o(k−1)) = o(k) = {o(k)(I,J),i | ∀((I, J), i)(∃p(k−1)(I,J),i)[o

(k)
(I,J),i = max(p

(k−1)
(I,J),i)]}

In other words, for every index (I, J), i, there exists a K×K matrix. The
value of the output at index (I, J), i is defined as the maximum value of that
matrix. Max pooling is mostly used after the first or second convolutional
layer to reduce the dimensionality of the input in classification tasks.

14

Average Pooling

Average pooling averages the values within the patch per channel. The
subindices of patch p

(k−1)
(I,J) are defined as

p
(k−1)
(I,J),i,a,b ∈ R

Using this definition, average pooling can be defined as

ψ
(avgpool)
(k) (o(k−1)) = o(k) = {o(k)(I,J),i | ∀((I, J), i)(∃p(k−1)(I,J),i)[o

(k)
(I,J),i =

K∑

a=1

K∑

b=1

p
(k−1)
(I,J),i,a,b

K2
]}

In other words, for every index (I, J), i, there exists a K ×K matrix. The
value of the output at index (I, J), i is defined as the average value of that
matrix.

Global Pooling Methods

Global pooling methods take the output layer as one patch and reduce height
and width dimensions to a single channel by applying the target function
(max or average). Global average pooling is mostly used before the last fully
connected layers in classification tasks.

1.2.7 Deconvolution

Introduced by [ZKTF10], deconvolution operation aims to increase the di-
mensionality of an input. To do that, it basically transposes the convolution
operation. Deconvolution operation creates patches of p

(k−1)
(I,J) ∈ R1×1×m(k−1)

from the input, and applies a weight matrix of w(k) ∈ Rm(k−1)×K×K×m(k)
. In

other words, it creates a K × K × m(k) output from every 1 × 1 × m(k−1)

patch and expands the height and width of the input.

1.2.8 Batch Normalization

[IS15] introduced a method called batch normalization. Batch normalization
aims to normalize the output distribution of every node in a layer. By doing
so it allows the network to be more stable.

15

Assume the layer k with o(k) ∈ Rm(k)
where m(k) is the number of nodes.

Batch normalization has four parameters. Mean is µ(k) ∈ Rm(k)
, variance is

σ(k) ∈ Rm(k)
, scale is γ(k) ∈ Rm(k)

and offset is β(k) ∈ Rm(k)
.

Since we are interested in normalizing the nodes, even if k was a convo-
lutional layer, the shapes of these parameters would not change. Therefore,
batch normalization function BN can be defined as

BN(o(k)) =
γ(k)(o(k) − µ(k))

σ(k)
+ β(k)

1.2.9 Regularization

Regularization methods aim to prevent overfitting in neural networks. Over-
fitting is the case where the weights of a a neural network converge for the
training dataset. Meaning that the network performs very good for the train-
ing dataset, while it is not generalized to work with any other data. Regu-
larization methods try to prevent this.

One common regularization method is to add a new term to the loss,
which influence the weight in certain ways. We also add a term λ which
determines the effect of this regularization. Setting λ too high will influence
the gradient descent steps more than the data itself. In such a case, we may
end up with a non-optimal solution. Setting λ too low will reduce the effects
of regularization. We look at two types of regularizers, L1 and L2.

L1 Regularization

L1 regularization pushes regularized values towards zero. Therefore, it is
good to force the weights to become small or very close to zero. L1 regular-
ization is defined as

L1 = λ
∑

w∈W
|w|

L2 Regularization

L2 regularization punishes values with a square term. Therefore, L2 regu-
larization pushes the weights towards zero. However, it pushes the values
that are greater than one or minus one more than the values in between. L2
regularization is defined as

L2 = λ
∑

w∈W
w2

16

1.3 Datasets

In this section we will see the datasets that we have experimented with. Since
we are mostly focusing on convolutional neural networks, we will look at 3
image classification datasets.

1.3.1 MNIST

MNIST dataset [LCB98] consists of 60.000 training and 10.000 test samples.
Each sample is a 28 × 28 black and white image of a handwritten digit (0
to 9). To our knowledge, the best model trained on MNIST achieve almost
zero (0.23%, [CMS12]) error rate.

1.3.2 CIFAR10

CIFAR10 dataset [KH09] consists of 50.000 training and 10.000 test samples.
Each sample is a 32× 32 colored image belonging to one of 10 classes. The
classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck. To our knowledge, the best model trained on CIFAR10 achieve 3.47%
([Gra14]) error rate.

1.3.3 ImageNet

The dataset used in ILSVRC is called ImageNet. ImageNet [DBS+12] comes
with 1.281.167 training images and 50.000 validation images consisting of
1000 classes containing multiple dog species and daily objects. ImageNet
comes with bounding boxes showing where the object is in the image. We
are interested in the object detection task. So we crop these bounding boxes
and feed them to our neural network for training. The best submission from
2016 challenge has achieved 0.02991 error rate. This is equal to 97.009%
top-5 accuracy.

17

Chapter 2

Methods

So far, we have defined some neural network building blocks. In this chap-
ter, we are going to introduce some methods to define models with reduced
computational cost and some methods to reduce the computational cost of a
defined model. After introducing each method, we are going to explain how
we used them in our experiments.

2.1 Pruning

Pruning aims to reduce model complexity by deleting the parameters that
has low or no impact on the result. [LDS+89] has shown that using the
second order derivative of a parameter, we can estimate the effect it will
have on the training loss. By removing parameters that have low effect on
the outcome, they have reduced the computational cost of their model and
increased accuracy. [HPTT16] has shown that there may be some neurons
that are not being activated by the activation function (i.e. ReLU in their
case). Therefore, they count the neuron activations and remove the ones that
are not being activated. Following pruning, they retrain their network and
achieve better accuracy than non-pruned network. [HPTD15] shows that we
can prune the weights that are very close to 0. By doing that they reduce
the number of parameters in some networks about 10 times with no loss in
accuracy. To do that, they train the network, prune the unnecessary weights,
and train the remaining network again. [TBCS16] shows that using Fisher
Information Metric we can determine the importance of a weight. Using
this information they prune the unimportant weights. They also use Fisher

18

Information Metric to determine the number of bits to represent individual
weights. Also, [Ree93] compiled many pruning algorithms.

In this study, we are going to look at two types of pruning methods,
pruning connections and pruning nodes.

2.1.1 Pruning Connections

This type of pruning methods reduce the number of floating point operations
by removing some connections. In other words, as seen in Figure 2.1, they
remove individual values from weight matrices. In theory, removing values
from a weight matrix benefits the computational complexity. In practice, we
represent the connections between layers using dense weight matrices and
to be able to remove weights and reduce complexity in such a setting, we
need to convert these dense weight matrices to sparse weight matrices. How-
ever, the implementation of dense to dense matrix multiplications can be
optimized much better than the implementation of sparse to dense matrix
multiplications because they access memory indices very predictably. There-
fore, unless we prune a substantially large part (about 90%) of the weight
matrix, we would be slowing down the operation. Because of this situation,
we will not apply this method using sparse matrices. However, we will make
use of this method using dense matrices when we are investigating approxi-
mation methods in Section 2.2.

To determine the nodes to be pruned, we will look at one simple criterion.

Irrelevant Connections

One way to prune weights is to remove relatively irrelevant connections. To
do so, we will set a threshold and remove the absolute values below that
threshold. To determine this threshold we will make use of the mean and
the variance of weight matrices. By finding a different threshold for different
weight matrices, we will try to maximize the efficiency of this method.

19

Figure 2.1: Pruning connections of two fully connected layers. The figure
on the left shows the connections before pruning, and the figure on the right
shows the connections after pruning.

2.1.2 Pruning Nodes

This type of pruning methods reduce the number of floating point operations
by removing nodes from layers and all the weights connected to them, as
seen in Figure 2.2. Let us assume two fully connected layers, k and k + 1.
The computational complexity of computing the outputs of these two layers
would be O(ψ

(FC)
(k+1)(ψ

(FC)
(k) (o(k−1))) = O(m(k)(m(k−1)+m(k+1)). Assuming that

we have removed a single node from layer k, the complexity would drop by
m(k−1) +m(k+1).

Figure 2.2: Pruning the nodes of a layer fully connected to two layers. The
figure on the left shows the node structure before pruning, and the figure on
the right shows the node structure after pruning.

Similar to the fully connected layer, a convolutional layer k also contains
m(k) nodes. The only difference is, in a convolutional layer, these nodes are
repeated in dimensions Hk and Wk. Therefore, it is possible to apply this
technique to convolutional layers.

To determine the nodes to be pruned, we will look at two simple pruning
criteria, activation counts and activation variance. Then we will explain the
training cycles that apply pruning.

20

Activation Counts

Assuming ReLU activations, we can count the number of activations per
node and determine which nodes are not used. We can set a range using
the mean and variance of activation counts and prune the nodes outside this
range. By doing so, we can determine the nodes that are not frequently used
or the nodes that are too frequently used.

Activation Variance

We can also collect statistics about output values per node. Using this infor-
mation it is possible to determine which nodes are more important for the
results by calculating the variance per node and removing the low variance
nodes.

Training Cycles

Based on these criteria, as used by [HPTT16] and many others, we employ
training cycles. First we initialize our models with random weights. After our
model converges, we collect statistics based on the selected pruning criteria.
Using these statistics, we prune the model. If we have successfully pruned
any nodes, we go back to the training step and keep iterating over these steps
until we cannot find any nodes to prune at the end of a training cycle. The
training cycles are illustrated in Figure 2.3.

2.1.3 Experiments

So far we have defined two pruning methods, pruning connections and prun-
ing nodes. Since we cannot directly use pruning connections to reduce com-
putational cost, we will focus on experimenting with pruning nodes. To be
able to interpret our results, we will try to create some simple cases for which
we can find the most optimum solution without using pruning. Knowing the
most optimum solution for an experiment will give us a baseline to evalu-
ate the performance of different configurations. In these experiments we are
aiming to find the configurations that can achieve the best results.

21

Collect Statistics

Nodes
Pruned?

Train

Prune

Yes

Initialize

Training Cycle

Finish

No

Figure 2.3: Training cycles we have defined.

Fully Connected Networks

To experiment with fully connected networks, we chose to train a neural
network to predict the summation of two inputs. As we have shown in Fig-
ure 2.4a, we have defined a neural network consisting of 2 input dimensions

22

(xn ∈ R2), one fully connected layer with 1000 nodes and one fully connected
output with a single node (yn ∈ R). We have defined the expected output as
the summation of two inputs, (yn = xn,1 + xn,2).

Thanks to this definition, we precisely know the neural network structure
that we’re aiming for. As you can see in Figure 2.4b, the neural network
architecture we’re aiming for has only one node in its fully connected layer.
If all of the weights are equal to 1 and all of the biases are equal to 0 in
such a setting, we can calculate the output with zero loss. To achieve such a
setting, we are going to prune the nodes on that layer.

We have calculated the loss using RMSE, and used Momentum Opti-
mizer (learning rate 0.01 and momentum 0.9) to train the weights. We have
generated 1.000.000 samples, and trained the network with batch size 1000.

Input Layer

Fully Connected Layer

Output Layer

(a) Initial network structure.

Input Layer Fully Connected Layer Output Layer

(b) The most mathematically plausible
pruned network.

Figure 2.4: (a) Neural network structure used to on the fully connected
summation experiment, (b) the result we are trying to achieve.

23

Convolutional Neural Networks

To extend our pruning experiments to convolutional neural networks, we
have trained an autoencoder on the MNIST dataset.

Introduced by [HS06], autoencoders consist of encoder and decoder blocks.
Encoder blocks use convolution operations to reduce the dimensionality of
input. Decoder blocks use deconvolution operation to increase the dimension-
ality back to it’s original form. The output of encoders are approximations
of the input.

We use autoencoders because they have a clear baseline. In the baseline
autoencoder, the dimensionality of the input would be equal to the output
dimensions of every layer. Assuming an input xn ∈ RH0×W0×m(0)

, the baseline
autoencoder would satisfy the following equation for every layer

HkWkm
(k) = H0W0m

(0)

Normally, an autoencoder aims to reduce the dimensionality using en-
coder blocks. This baseline definition is not good as an encoder, because the
dimensionality remains the same in every layer but it is a good comparison
for our results.

We have defined our autoencoder with two encoder and two decoder lay-
ers. Each encoder layer (ψ

(Conv)
(1) and ψ

(Conv)
(2)) is running a convolution with

kernel size 3 and stride of 2. After each encoding layer, we add bias, apply
batch normalization and ReLU activation. Each decoding layer (ψ

(Deconv)
(3)

and ψ
(Deconv)
(4)) is running deconvolutions with kernel size of 3 and strides

of two. After each, we add bias and apply batch normalization. The first
decoding layer(ψ

(Deconv)
(3)) is followed by ReLU activation and the last one is

followed by tanh activation. We defined the loss as the root mean square of
the input and the output of the network. The initial autoencoder configura-
tion can be seen in Figure 3.1a and the baseline autoencoder configuration
can be seen in Figure 2.5b.

2.2 Approximation Methods

In this section, we are going to look at some ways to reduce the computational
cost of fully connected layers and convolutional layers by approximating their
results. We will look at two types of approximation methods, factorization
and quantization.

24

Input Image
28x28x1

Encoder
14x14x32

Encoder
7x7x64

Decoder
14x14x32

Decoder
28x28x1

Output Image
28x28x1

(a) Initial autoencoder configuration.

Input Image
28x28x1

Encoder
14x14x4

Encoder
7x7x16

Decoder
14x14x4

Decoder
28x28x1

Output Image
28x28x1

(b) Baseline autoencoder that doesn’t reduce the dimensionality.

Figure 2.5: Autoencoders configurations.

2.2.1 Factorization

Factorization approximates a weight matrix as the product of smaller matri-
ces. As explained by [ZZHS16], [DZB+14], [CS16], factorization has interest-
ing uses with neural networks. Let us assume that we have a fully connected
layer k. Using factorization, we can approximate w(k) ∈ Rm(k−1)×m(k)

using
two smaller matrices, Uw(k) ∈ Rm(k−1)×n and Vw(k) ∈ Rn×m(k)

. As shown in
Figure 2.6, if we can find matrices such that Uw(k)Vw(k) ≈ w(k), we can rewrite

ψ
(FC)
(k) as

ψ
(FC)
(k) (o) ≈ ψ

′(FC)
(k) (o) = σ(oTUw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a sufficiently
small n. As we have mentioned before, O(ψ

(FC)
(k)) = O(m(k−1)m(k)). When

we approximate this operation, the complexity becomes

O(ψ
′(FC)
(k)) = O(n(m(k−1) +m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate

25

} }}1.3.1 Factorization

Factorization is approximating a weight matrix using smaller matrices. As
explained by [ZZHS16], [DZB+14], [CS16], factorization has interesting uses
with neural networks. Let us assume that we have a fully connected layer
k. Using factorization, we can approximate w(k) 2 Rm(k�1)⇥m(k)

using two
smaller matrices, Uw(k) 2 Rm(k�1)⇥n and Vw(k) 2 Rn⇥m(k)

. If we can find

matrices such that Uw(k)Vw(k) ⇡ w(k), we can rewrite
(FC)
(k) as

(FC)
(k) (o) ⇡

0(FC)
(k) (o) = �(oT Uw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a su�ciently
small n. As we have mentioned before, O(

(FC)
(k)) = O(m(k�1)m(k)). When

we approximate this operation, the complexity becomes

O(
0(FC)
(k)) = O(n(m(k�1) + m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate
results. The only di↵erence is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(
0(Conv)
(k)) = O(WkHkK

2n(m(k�1) + m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without a↵ecting the results.

n <
m(k�1)m(k)

m(k�1) + m(k)
(1.3)

The quality of the approximation will influence how this operation a↵ects
the accuracy.

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) 2 Rm(k�1)⇥m(k)

into 3 parts as

w(k) = USV T

14

1.3.1 Factorization

Factorization is approximating a weight matrix using smaller matrices. As
explained by [ZZHS16], [DZB+14], [CS16], factorization has interesting uses
with neural networks. Let us assume that we have a fully connected layer
k. Using factorization, we can approximate w(k) 2 Rm(k�1)⇥m(k)

using two
smaller matrices, Uw(k) 2 Rm(k�1)⇥n and Vw(k) 2 Rn⇥m(k)

. If we can find

matrices such that Uw(k)Vw(k) ⇡ w(k), we can rewrite
(FC)
(k) as

(FC)
(k) (o) ⇡

0(FC)
(k) (o) = �(oT Uw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a su�ciently
small n. As we have mentioned before, O(

(FC)
(k)) = O(m(k�1)m(k)). When

we approximate this operation, the complexity becomes

O(
0(FC)
(k)) = O(n(m(k�1) + m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate
results. The only di↵erence is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(
0(Conv)
(k)) = O(WkHkK

2n(m(k�1) + m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without a↵ecting the results.

n <
m(k�1)m(k)

m(k�1) + m(k)
(1.3)

The quality of the approximation will influence how this operation a↵ects
the accuracy.

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) 2 Rm(k�1)⇥m(k)

into 3 parts as

w(k) = USV T

14

1.3.1 Factorization

Factorization is approximating a weight matrix using smaller matrices. As
explained by [ZZHS16], [DZB+14], [CS16], factorization has interesting uses
with neural networks. Let us assume that we have a fully connected layer
k. Using factorization, we can approximate w(k) 2 Rm(k�1)⇥m(k)

using two
smaller matrices, Uw(k) 2 Rm(k�1)⇥n and Vw(k) 2 Rn⇥m(k)

. If we can find

matrices such that Uw(k)Vw(k) ⇡ w(k), we can rewrite
(FC)
(k) as

(FC)
(k) (o) ⇡

0(FC)
(k) (o) = �(oT Uw(k)Vw(k) + b(k))

Therefore, we can reduce the complexity of layer k by setting a su�ciently
small n. As we have mentioned before, O(

(FC)
(k)) = O(m(k�1)m(k)). When

we approximate this operation, the complexity becomes

O(
0(FC)
(k)) = O(n(m(k�1) + m(k)))

One thing that is similar between a convolutional layer and a fully con-
nected layer is that both are performing matrix multiplications to calculate
results. The only di↵erence is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(
0(Conv)
(k)) = O(WkHkK

2n(m(k�1) + m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without a↵ecting the results.

n <
m(k�1)m(k)

m(k�1) + m(k)
(1.3)

The quality of the approximation will influence how this operation a↵ects
the accuracy.

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) 2 Rm(k�1)⇥m(k)

into 3 parts as

w(k) = USV T

14

Figure 2.6: Factorization on fully connected layers.

results. The only difference is, a convolutional layer is performing this ma-
trix multiplication for every width and height dimension of the output layer.
Therefore the same technique can be used with convolutional layers. If we
apply factorization, the complexity of a convolutional layer would become

O(ψ
′(Conv)
(k)) = O(WkHkK

2n(m(k−1) +m(k)))

When factorizing fully connected and convolutional layers, if there is a
good enough approximation satisfying the following equation, we can reduce
the complexity without affecting the results.

n <
m(k−1)m(k)

m(k−1) +m(k)
(2.1)

The quality of the approximation will influence how this operation affects
the accuracy.

26

SVD

Singular Value Decomposition (SVD) ([GR70]), is a factorization method
that we can use to calculate the elements this approximation. SVD decom-
poses the weight matrix w(k) ∈ Rm(k−1)×m(k)

into 3 parts as

w(k) = USV T

Where, U ∈ Rm(k−1)×m(k−1)
and V ∈ Rm(k)×m(k)

are two square matrices and
S ∈ Rm(k−1)×m(k)

is a rectangular diagonal matrix. The diagonal values of
S are called as the singular values of w(k). Selecting the n highest values
from S and corresponding columns from U and V lets us create a low rank
decomposition of w(k) as

w(k) ≈ U ′S ′V ′T

where U ′ ∈ Rm(k−1)×n, V ′T ∈ Rn×m(k)
, and S ′ ∈ Rn×n. By choosing a suffi-

ciently small rank (n) satisfying Equation 2.1 and setting Uw(k) = U ′S ′ and
Vw(k) = V ′T , we can approximate the weights, and reduce the complexity
of a layer. [ZZHS16] applies this method to reduce the execution time of a
network by 4 times and increase accuracy by 0.5%.

2.2.2 Quantization

A floating point variable cannot represent all decimal numbers perfectly. An
n-bit floating point variable can only represent 2n decimals. The decimals
that cannot be represented perfectly using these bits are going to be repre-
sented with some error. Quantization is the process of representing values
using fewer bits and some error. For example, [HMD15] uses 5-bits to repre-
sent decimals, instead of 32-bit floating point variables.

At a higher level, the computational complexity does not depend on num-
ber of bits. But if we dive deeper in the computer architecture, using fewer
bits to represent variables provide some major advantages. As the number
of bits gets smaller, the required cpu-cycles to perform an operation and the
cost of transferring data from memory to cpu cache reduces. Moreover, it
increases the amount of data that can fit into the cache. One disadvantage
is, most architectures implement optimizations that speed up 16/32/64-bit
floating point operations. By using fewer bits, we are giving up on these
optimizations.

27

Weight Clustering

Also as known as hashing trick or feature hashing, this method aims to rep-
resent weight matrices using a set of vaues. [NH92] trains their model with
regular weight matrices. Once the model is trained, they use clustering (i.e
k-means) to find a set of weights(W ′ ∈ Ra) that approximate the learned

weights. Then they store the cluster index per weight in d(k) ∈ Nm(k−1)×m(k)
.

By redefining w
(k)
i,j = W ′

d
(k)
i,j

, they perform weight clustering.

[CWT+15] uses a method called frequency sensitive hashing. Assum-
ing that low-frequency weights have more importance than high-frequency
weights, they cluster the weights in similar frequencies, then they create
shared weights for these clusters, By doing so, they emphasize the low-
frequency (high importance) features.

Please note that weight clustering methods do not necessarily reduce
model complexity. However, they reduce the model size by storing indices
using fewer bits. In theory, these methods should also provide a lower rank
in low rank decomposition.

2.3 Convolution Operation Alternatives

As we have shown in the first chapter, the computational cost of convo-
lution operation is described as the multiplication of width, height, kernel
size squared, input channels and output channels. This computational cost
can be quite high when we are working with large images, or large kernels,
or large input and output channels. Here we will look at some alternative
methods to define convolution operations with lower computational cost.

2.3.1 Kernel Composing Convolutions

As [AP16] explains, a convolution operation with a weight matrix w(k) ∈
RK×K×m(k−1)×m(k)

, could be composed using two convolution operations with
kernels w(k,1) ∈ R1×K×m(k−1)×n and w(k,2) ∈ RK×1×n×m(k)

as

w(k) ≈ w(k,1)w(k,2)

Their technique, instead of factorizing learned weight matrices, aims to
define weight matrices as if they were factorized and learn these values. They

28

2.2 Convolution Operation Alternatives

As we have shown in the first chapter, the computational cost of convo-
lution operation is described as the multiplication of width, height, kernel
size squared, input channels and output channels. This computational cost
can be quite high when we are working with large images, or large kernels,
or large input and output channels. Here we will look at some alternative
methods to define convolution operations with lower computational cost.

2.2.1 Kernel Composing Convolutions

As [AP16] explains, a convolution operation with a weight matrix w(k) 2
RK⇥K⇥m(k�1)⇥m(k)

, could be composed using two convolution operations with
kernels w(k,1) 2 R1⇥K⇥m(k�1)⇥n and w(k,2) 2 RK⇥1⇥n⇥m(k)

as

w(k) ⇡ w(k,1)w(k,2)

Figure 2.5: Kernel composing convolutions visualized

Their technique, instead of factorizing learned weight matrices, aims to
define kernels as if they were factorized and learn these values. They also aim
to increase non-linearity by adding bias and activation function in between.
Therefore this operation can be defined as

0(KCConv)
(k) (o) =

(Conv)
(k,2) (

(Conv)
(k,1) (o))

As [AP16] explained, their method forces the separability of the weight
matrix as a hard constraint. By performing such an operation, they convert

28

2.2 Convolution Operation Alternatives

As we have shown in the first chapter, the computational cost of convo-
lution operation is described as the multiplication of width, height, kernel
size squared, input channels and output channels. This computational cost
can be quite high when we are working with large images, or large kernels,
or large input and output channels. Here we will look at some alternative
methods to define convolution operations with lower computational cost.

2.2.1 Kernel Composing Convolutions

As [AP16] explains, a convolution operation with a weight matrix w(k) 2
RK⇥K⇥m(k�1)⇥m(k)

, could be composed using two convolution operations with
kernels w(k,1) 2 R1⇥K⇥m(k�1)⇥n and w(k,2) 2 RK⇥1⇥n⇥m(k)

as

w(k) ⇡ w(k,1)w(k,2)

Figure 2.5: Kernel composing convolutions visualized

Their technique, instead of factorizing learned weight matrices, aims to
define kernels as if they were factorized and learn these values. They also aim
to increase non-linearity by adding bias and activation function in between.
Therefore this operation can be defined as

0(KCConv)
(k) (o) =

(Conv)
(k,2) (

(Conv)
(k,1) (o))

As [AP16] explained, their method forces the separability of the weight
matrix as a hard constraint. By performing such an operation, they convert

28

Figure 2.7: Kernel composing convolutions visualized

also aim to increase non-linearity by adding bias and activation function in
between. Therefore this operation can be defined as

ψ
′(KCConv)
(k) (o) = ψ

(Conv)
(k,2) (ψ

(Conv)
(k,1) (o))

As [AP16] explained, their method forces the separability of the weight
matrix as a hard constraint. By performing such an operation, they convert
the computational complexity of a convolution operation to O(Kn(m(k−1) +
m(k))). Suggesting that, similar to factorization methods, choosing an inter-
mediate number of channels, n, satisfying

n

K
<

m(k−1)m(k)

m(k−1) +m(k)

we can represent a convolution operation with less computational complexity.

2.3.2 Separable Convolutions

Suggested by [Sif14], separable convolutions separate the standard convolu-
tion operation into two parts. These parts are called depthwise convolutions
and pointwise convolutions. Separable convolutions are used by [Cho16],
[HZC+17] and [HZC+17] to reduce complexity of neural networks.

29

Depthwise Convolution

Depthwise convolutions (also referred to as inner convolution) apply a sepa-
rate convolution operation on every input channel. Therefore, the number of
output channels of a depthwise convolution is the number of input channels
times the number of output channels of these inner convolutions. In other
words, it results with a number of output channels that is equal to (or multi-
ples of) the number of input channels. Unless defined otherwise, we use inner
convolution operations with one output channel. Therefore the number of
input channels are equal to the number of output channels for our depthwise
convolutions. Please see Figure 2.8 for a visual explanation.

Formally, given a patch p
(k−1)
(I,J) ∈ RK×K×m(k−1)

, depthwise convolution

has a single weight matrix w(k,dw) ∈ RK×K×m(k−1)
. Let us assume that the

subscripts of patch p
(k−1)
(I,J) and weight matrix w(k,dw) are described as p

(k−1)
(I,J),i ∈

RK×K×1 and w
(k,dw)
i ∈ RK×K×1.

The depthwise convolution operation is defined as

ψ
(dw)
(k) : RHk−1×Wk−1×m(k−1) → RHk×Wk×m(k−1)

ψ
(dw)
(k) (o(k−1)) = o(k,dw)

where the output o(k,dw) is given as

o(k,dw) = {o(k,dw)I,J,i | ∀(I, J, i)(∃p
(k)
(I,J),i)[o

(k,dw)
I,J,i = (w

(k,dw)
i)Tp

(k−1)
(I,J),i]}

In other words, depthwise convolution applies a 1 ×K ×K kernel to every
K ×K × 1 output channel to calculate every output channel of o

(k,dw)
I,J . The

complexity of this operation is

O(ψ
(dw)
k) = O(HkWkK

2m(k−1))

Pointwise Convolution

Pointwise convolution (ψ
(pw)
(k) : RHk×Wk×m(k−1) → RHk×Wk×m(k)

) is a regular

convolution operation with kernel size 1 (K = 1). The weight matrix that

we will use for this operation is w(k,pw) ∈ R1×1×m(k−1)×m(k)
. The complexity

of this operation is

O(ψ
(pw)
(k)) = O(HkWkm

(k−1)m(k))

30

Dot Product

K x K
K x K

K x K
K x K

K x K
K x K

K x K
K x K

K x K

[K x K] patches
from input image

output image

K x K
K x K

K x K
K x K

K x K
K x K

K x K
K x K

K x K

[K x
K] k

ern
el

per
ch

an
ne

l{

{Cha
nn

els

Figure 2.8: Depthwise convolution visualized

Since we have defined depthwise and pointwise convolutions, we can com-
bine them to describe separable convolution function as

ψ
(SConv)
(k) : RHk−1×Wk−1×m(k−1) → RHk×Wk×m(k)

ψ
(SConv)
(k) (o(k−1)) = ψ

(pw)
(k) (ψ

(dw)
(k) (o(k−1)))

The complexity of this operation is

O(ψ
(SConv)
(k)) =O(ψ

(pw)
(k) +O(ψ

(dw)
(k))

=O(HkWkm
(k−1)m(k) +HkWkK

2m(k−1))

=O(HkWkm
(k−1)(m(k) +K2))

31

Non-Linear Separable Convolutions

[HZC+17] proposed that, applying batch normalization and ReLU activations
after depthwise convolutions in separable convolutions would increase the
model accuracy. Therefore, we also consider non-linear separable convolution
as an alternative to convolution operation.

2.3.3 Experiments

In general, convolution operations are expensive. Here we experiment with
alternative convolution operations to see which one is the better alternative.
To see the differences between these operations, we try to compare them on
two tasks, one classifying MNIST dataset, the other classifying CIFAR-10
dataset. For these experiments we have defined a baseline model consisting
of three convolutional layers followed by a fully connected layer. Each convo-
lutional layer has kernel size 5. Convolutional layers are followed with bias,
batch normalization, and ReLU activations. First two convolution layers are
followed by a max pooling layer with kernel size 2 and strides of 2. The third
convolutional layer is followed by a global average pooling layer. We have
trained the model with SCE loss and momentum optimizer with momentum
0.9 and learning rate 0.1 divided by 10 in steps [20000, 30000, 40000]. We
train this model for 50000 steps with batch size 128.

Overall, the layers and their outputs can be seen in Figure 2.9. By re-
placing second and third convolution operations with separable convolution,
separable convolution with nonlinearity and kernel composing convolution,
we obtain 3 alternative models for comparison.

We don’t change the first convolution operation because using an alter-
native operation does not reduce the computational cost in case of 3 input
channels.

We also use a few operations using large kernels (5 × 5). First, kernel
decomposition only provides speed up for large kernels. Second, we exper-
iment with a small model that we can train fast, so that we can run these
experiments multiple times.

2.4 Small Models

Another approach to creating neural networks with low computational cost
is to design smaller models. These type of models would be designed to have

32

24x24x3

24x24x32

12x12x32

12x12x64

6x6x64

6x6x128

128

10

Max Pooling 2x2 /2

Convolution 5x5

Max Pooling 2x2 /2

Convolution 5x5

Global Average Pooling

FC

Result

Input

Convolution 5x5

Figure 2.9: Baseline model visualised. Second and third (green) convolution
operations are replaced with 3 other alternatives for comparison.

small input dimensions or do aggressive dimensionality reduction in first
layers, use alternative convolution operations, have fewer layers and/or have
a smaller number of features per layer. For example, [HZC+17] introduced
a series of models with varying input dimensions and number of features.
Here, we will define and train some small models for CIFAR-10 and ImageNet
datasets. While defining our model, we will make use of the knowledge we
have gained from the experiments we ran in Section 2.3. We will also use the
methods we introduced in Sections 2.2 and 2.1 and try to make our models
even smaller.

2.4.1 Models

Both models that we have defined were inspired by the [HZRS15] which
introduces a connection that improves the performance of a neural network.
Before going into the details of our models, we will explain the concepts
introduced by [HZRS15].

33

Residual Networks

[HZRS15] introduced residual connections and they called the convolutional
neural networks having these connections as residual networks (ResNet).
They show that residual connections improve the network performance. Ac-
cording to their results, as the network gets deeper, the effect of adding
residual connections increases. [HZRS15] trains neural networks up to 1000
layers.

However, using residual connections, [ZK16] achieves a better perfor-
mance by increasing the number of features per layer, instead of adding
more layers to ResNets. In other words, they show that having wider and
shallower networks works better than having narrower and deeper networks.
They use a ResNet with 16 wide layers to outperform the original 1000 layer
ResNet model in various tasks.

Since residual connections increase the performance of a given network
with very little overhead, we will make use of them and see how they perform
in small models.

Definition of Residual Connections

Let us assume blocks to be repeated groups of consecutive layers in a neural
network and define them as we have defined layers, so that the output of a
block is o(b) and the function(layers) that this block applies is ψ(b). We create
a residually connected block when we add the input of a block to the output
of the last layer in the block to calculate the input of the next block. Let us
assume a block b with input o(b−1) ∈ Rm(b−1)

and output o(b) ∈ Rm(b)
. We call

this block residually connected when o(b) = o(b−1) + ψ(b)(o
(b−1)).

Residually Connected Block Types

[HZRS15] introduced two types of residually connected blocks. The first is
called a residual block, consisting of two convolution operations and a residual
connection between the input and the output of the block. The second is
called a residual bottleneck block, consisting of three convolution operations.
First reducing number of channels with a one by one kernel, second applying
a three by three kernel, third applying another one by one kernel to increase
the number of dimensions. They have used residual blocks to train networks
up to 34 layers. For networks having 50 or more layers, they have used the
residual bottleneck block. Their 50 layer network using residual bottleneck

34

blocks achieves 22.85% top-1 error rate on ImageNet dataset, their 34-layer
network using residual blocks achieves 25.3% top-1 error rate. For our models

Convolution, 3x3

Convolution, 3x3

Residual Connection

Input

H x W x m

H x W x m

H x W x m H x W x m

(a) A residual block.

Convolution, 1x1

Convolution, 3x3

Residual Connection

Input

Convolution, 1x1

H x W x m

H x W x m/4

H x W x m/4

H x W x m

H x W x m

(b) A residual bottleneck block.

Figure 2.10: Residually connected blocks, visualized as proposed by
[HZRS15]. ReLU non-linearity, batch normalization and identity mappings
hidden for simplicity.

we chose to use the residual blocks. 1× 1 convolutions in residual bottleneck
blocks are relatively more expensive and we cannot reduce their cost using
an alternative operation. Furthermore, residual bottleneck blocks are not
a good fit for networks with fewer layers because they do not expand the
receptive field as aggressively as residual blocks.

Separable Residual Blocks

To create separable residual blocks, we have replaced the convolution layers
with separable convolution layers in residual blocks. Following [HZRS15],
[HZRS16] proposed that using full pre-activation residual connections in-
creases the model performance. This type of residual connections residu-
ally connect the outputs before batch normalization and ReLU activation.
We have illustrated these connections with separable residual blocks in Fig-
ure 2.11.

When necessary, we apply strides in the first depthwise convolution and
we increase the number of channels in the first pointwise convolution. As
shown in Figure 2.11.

35

Batch Norm + Relu

Residual Connection

Input

Identity Mapping
(Optional)

Depthwise Convolution 3x3

Batch Norm + Relu

Pointwise Convolution

Batch Norm + Relu

Depthwise Convolution 3x3

Batch Norm + Relu

Pointwise Convolution

Separable Residual Block

H x W x m

H/s x W/s x m*s

H x W x m

H/s x W/s x m

H/s x W/s x m*s

Figure 2.11: Full pre-activation separable residual block. H/s and W/s
represents the strides applied to height and width dimensions respectively.
m represents the output channels and m ∗ s represents multiplying number
of channels by the strides. Dimensions are not shown if they do not change
between two layers.

First Convolutional Layer

Assume that the first layer has 3 input and 32 output channels. For this layer
the number of operations for the convolution operation (K∗K∗m(k−1)∗m(k) =
3 ∗ 3 ∗ 3 ∗ 16 = 864) is sufficiently higher than the separable convolution al-
ternative (K ∗K ∗m(k−1) +m(k−1)m(k) = 3 ∗ 3 ∗ 3 + 3 ∗ 32 = 123). However,
for an actual image input, separable convolution comes with a disadvantage.
The channels of the input image are RGB color channels, which cannot be

36

assumed independent. Therefore, since separable convolutions start with a
depthwise convolution, they assume that we can apply independent convolu-
tions on different channels, so we think that they are inefficient for such an
input.

CIFAR-10 Model

For CIFAR-10, we define a very small model consisting of a convolutional
layer followed by 6 separable residual blocks. The model is illustrated in
Figure 2.12. For identity mapping we have used average pooling with strides
and kernel size of two. To multiply the number of channels, we have padded
the feature matrices with zeros.

We divided the dataset for 50.000 training images and 10.000 validation
images. We used momentum optimizer with momentum 0.9 and learning
rates 0.1, 0.01, 0.001 for steps 0 to 40.000, 40.000 to 60.000 and 60.000 to
80.000 respectively. We have defined the loss with SCE of the truth and
prediction, with an addition of L2 norm of weights multiplied by 0.001. We
trained our model using the training images for 80.000 steps with batch size
128.

We preprocess the images using the routines defined in Tensorflow tuto-
rials12. We start by taking 24× 24 random crops and then we randomly flip
the image to left or right. Then we randomly change the brightness and con-
trast. Then we normalize this image by subtracting the mean and dividing
by variance by using a method called per image standardize.

ImageNet Model

We recreated the Resnet-34 using separable residual blocks instead of residual
blocks. The resulting model is shown in Figure 2.13. For identity mappings,
we have used 1× 1 convolutions with strides of two because [HZRS15] shows
that they work better for ImageNet dataset.

Aggressive Dimensionality Reduction in ImageNet

In [HZRS15], models defined for ImageNet start with a 7 × 7 convolution
with strides of two, which followed by a max pooling layer with strides of

1https://github.com/tensorflow/models/tree/master/tutorials/image/

cifar10
2https://www.tensorflow.org/tutorials/deep_cnn#cifar-10_model

37

https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10
https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10
https://www.tensorflow.org/tutorials/deep_cnn#cifar-10_model

24x24x3

24x24x32

12x12x64

12x12x64

Separable Residual Block, /2

Separable Residual Block

Input

Convolution 3x3

6x6x128

128

10

Global Average Pooling

FC

Result

12x12x64
Separable Residual Block

6x6x128

6x6x128

Separable Residual Block, /2

Separable Residual Block

Separable Residual Block

Figure 2.12: Model trained for CIFAR-10. Light green blocks reduce the
image dimensionality by two while multiplying the number of features by 2.

two and kernel size 2. If we think about this design choice, we see that the
kernel size choice (7 × 7) is to cover the receptive field to minimize the loss
of information caused by two consecutive layers with strides of two. From
another point of view, those two layers decrease the image size from 224×224
to 56× 56. This decreases the computational cost of future layers. When we
apply such a convolution, the first convolutional layer becomes very complex
compared to the rest of the network. To prevent that we propose a different
first layer. We change this 7× 7 convolution followed by a max pooling layer
with two 3×3 convolutions. Following that, before applying the max pooling
layer, we apply a 3× 3 depthwise convolution that multiplies the number of

38

channels with two. Then we apply a 1 × 1 convolution (pointwise) to that.
By doing so we reduce the complexity of these layers about four times.

We trained our model in ImageNet training dataset. We used gradient
descent optimizer and learning rates 0.01, 0.001, 0.0001 for steps 0 to 150.000,
150.000 to 200.000 and 250.000 to 300.000 respectively. We have defined the
loss with SCE of the truth and prediction, with an addition of L2 norm of
weights multiplied by 0.001. We train our model using the training images
with batch size 128.

We preprocess images using the routines defined for open sourced Ten-
sorflow implementation of inception network3. We start by creating a new
random bounding box overlapping with the original bounding box and make
sure that 0.1 of the bounding box is inside our new bounding box. Then we
crop this new bounding box and resize it using bilinear resizing algorithm.
Then we randomly flip it to left or right. Then we distort the colors us-
ing random brightness and saturation. Then we normalize this input to the
range of [−1, 1] by subtracting 0.5 and multiplying by 2.

After training these models, we try to apply the methods we have defined
in Sections 2.1, and 2.2 to see how they perform with small models.

2.4.2 Pruning Small Models

To be able to prune nodes on these models, we have defined two new pruning
routines.

Pruning Residual Connections

The addition operation in the residual block creates a one-to-one relationship
between the output channels of different blocks. With the existence of such
a relationship, it is not possible to prune a residual block’s output nodes
without pruning the former or latter blocks. Therefore, we group the sep-
arable residual blocks that are residually connected with same dimensions
or without identity mappings and refer to them as directly connected (in
Figure 2.13, residual blocks represented with the same colors are directly
connected). Then, using a pruning criterion, we calculate the channels to
keep for the input and output of every residual block. We union the nodes
to be kept in those layers and prune the remaining nodes from the inputs

3https://github.com/tensorflow/models/blob/master/slim/preprocessing/

inception_preprocessing.py

39

https://github.com/tensorflow/models/blob/master/slim/preprocessing/inception_preprocessing.py
https://github.com/tensorflow/models/blob/master/slim/preprocessing/inception_preprocessing.py

224x224x3

Max Pool 2x2, /2

Pointwise

Convolution 3x3, /2

Depthwise 3x3

Global Average Pooling

FC

FC

Separable Residual Block

Separable Residual Block

Separable Residual Block

Separable Residual Block

Input

112x112x32

112x112x64

56x56x64

56x56x64
x3

x4

x6
28x28x128

14x14x256

7x7x512
x5

56x56x64

Result

512

1000

1000

Figure 2.13: Resnet-34 recreated using separable residual blocks and pro-
posed input layers. ReLU and Batch Normalization operations are hidden.
Dimensionality is reduced in the first block of second (yellow), third(green)
and fourth(red) repeated separable residual blocks.

40

and outputs of the directly connected residual blocks. We also prune the
pointwise convolutions within residual blocks separately.

Pruning Depthwise Convolutions

Since depthwise convolutions multiply the number of channels (nodes) by a
number, their number of output channels are dependent on their number of
input channels. Therefore, if the output channels of the previous layer are
pruned, the corresponding input channels of the next layer should also be
pruned.

2.4.3 Approximating Small Models

We apply pruning connections and weight clustering before factorization to
be able to reduce the computational complexity as much as possible.

Pruning Connections

We set weight values that are smaller than a threshold to 0. Despite the
fact that this operation does not change computational complexity, when
combined with factorization, it increases the number of zeros within the
matrix. Therefore it helps with finding a lower rank.

Weight Clustering

We round the weights after the second decimal. This is a very basic method
of weight clustering, however it may help finding a lower rank.

Factorization

We factorize the trained, pruned and rounded weights using SVD. We cannot
apply this method to depthwise convolution operation. So we only factorize
the convolution, pointwise convolution and fully connected weights. To do
that, we calculate U , S and V for each of the weight matrices. We lower
the rank of the decomposition by one. Then, we calculate the approximation
error using mean squared error between the original matrix and the low rank
weight matrices. We chose this method because it scales for the number of
parameters in the weight matrix. We keep reducing the rank by 1 while the
approximation error is above the predefined error threshold. When the error

41

threshold is reached, we check if this low rank decomposition would actually
reduce the complexity. If it does, we apply factorization. Otherwise we use
the original weights.

Quantization

We quantize the weights from 32-bits to 8-bit and run performance and
accuracy benchmarks.

42

2.5 Experiments

In Table 2.1 we provide a summary of the experiments we ran.

Method Model Dataset(s) Variables

Pruning nodes Fully connected Summation

Regularization,
distortion,
activation counts,
activation variance

Pruning nodes Autoencoder MNIST

Regularization,
distortion,
activation counts,
activation variance

Convolution alternatives Baseline model
CIFAR-10
MNIST

Convolution,
kernel composing,
separable
non-linear separable

Small models CIFAR-10 model CIFAR-10
Number of layers,
number of features

Small models ImageNet model ImageNet
Approximation methods +
pruning connections

CIFAR-10 Model CIFAR-10
Error threshold
pruning threshold

Table 2.1: A summary of all experiments we ran.

43

Chapter 3

Results

3.1 Pruning

In this section we consider the configurations that have pruned the most
nodes as our results. Since the combination of variables and parameters that
we have used are very big, we chose not to report the configurations that are
not working.

As we have explained in Chapter 2, we have pruned the nodes of a fully
connected neural network trained to predict the summation of two floating
point values, and an autoencoder trained on the MNIST dataset. We ran the
experiments at least three times with each configuration to verify our results.

3.1.1 Fully Connected Networks

We have initialized and run training cycles on the fully connected network.
By applying distortions to remaining weights between training cycles, we
have achieved the optimum result we have shown in Figure 2.4b, with only
one node in the hidden layer.

When distortions were applied between training cycles, both pruning cri-
teria worked equally good. For both criteria, we were able to achieve the
optimum network structure using a fixed threshold of 0. In other words, for
activation count criteria, we have pruned the nodes that were not being ac-
tivated, and for activation variance criteria, we have pruned the nodes that
had zero variance in values.

The loss was almost zero for the training and test datasets. Even though
we have achieved the optimal shape, the model was overfitting for the mean

44

and standard deviation parameters we set for the random number generator
while generating the training dataset.

In the experiments that we did not apply distortions, we could not find
a configuration that achieves the optimal network structure. In most of the
configurations we were unable to find any nodes to prune after the first train-
ing cycle. We could not see any difference between different regularization
terms or pruning criteria.

3.1.2 Convolutional Neural Networks

In this setting using activation variance criterion and L2 regularization, we
have achieved the most optimum result. We did not see any improvement
by using distortions. Using L2 regularization, compared to no regularization
and L1 regularization, we have seen an improvement in the number of nodes
pruned in every training cycle and the final result.

We were unable to find a good threshold for activation count criterion.
However, doing a basic outlier selection with the activation variances worked
best. Given that v is the variance vector each output feature of a layer, by
choosing a lower and upper boundaries as,

mean(v)− 2 ∗ var(v) < x < mean(v) + 2 ∗ var(v)

and removing the nodes that are not outside these boundaries, we were able
to find the most optimum solutions.

The most ideal case was with no distortion, L2 regularization (with λ =
0.01) and pruning nodes based on activation variance criterion given above.
Using this setting, we have pruned the autoencoder from 1−32−64−32−1
to 1− 2− 4− 3− 1 nodes per layer, which is a much better result compared
to the baseline we have defined. It took us 10± 4 training cycles to achieve
this result. The loss we have achieved is very close to 0. The encoder we
have achieved is shown in Figure 3.1.

45

Input Image
28x28x1

Encoder
14x14x32

Encoder
7x7x64

Decoder
14x14x32

Decoder
28x28x1

Output Image
28x28x1

(a) Initial autoencoder configuration.

Input Image
28x28x1

Encoder
14x14x2

Encoder
7x7x4

Decoder
14x14x3

Decoder
28x28x1

Output Image
28x28x1

(b) Resulting autoencoder configuration.

Figure 3.1: Pruned autoencoder compared to initial autoencoder.

3.2 Convolution Operation Alternatives

We ran experiments to see which operation is could be an alternative to
convolution operation. We ran our experiments 10 times to validate our
results. We compare these results in terms of accuracy.

3.2.1 MNIST

In our experiments with MNIST dataset, we have not seen a comparable
difference between experiments with different operations. All of the exper-
iments have resulted with 99 ± 0.3% top-1 accuracy, with no clearly visible
difference in terms of accuracy.

3.2.2 CIFAR-10

The results of our experiments in CIFAR-10 dataset are given in Table 3.1. As
emphasized in the table, separable convolution operation with non-linearity
performed slightly better than the rest of the operations. The models that
use separable convolutions require 8 times fewer operations than the baseline

46

Model Mean accuracy Max accuracy Ops
Convolution (baseline) 81.84 82.56 16.1 M
Kernel composing conv. 81.98 82.51 8 M
Separable convolution 82.11 82.53 2.1 M
Separable convolution
with non-linearity

82.16 82.75 2.1 M

Table 3.1: Mean and max of top-1 accuracy results, using CIFAR-10 valida-
tion dataset and number of operations for each model.

and almost 4 times fewer operations than the kernel composing convolution
operation. To validate our results, we ran each experiment 10 times.

3.3 Small Models

In this section we will present the results of our experiments on small models.
We show how small models perform compared to large ones and see how
pruning and approximation methods work with them.

3.3.1 Models

CIFAR-10

The model we have defined for this task (see Figure 2.12), has achieved a
maximum of 91.1% top-1 classification accuracy on CIFAR-10 test dataset
in 10 training sessions. As we have shown in Table 3.2, compared to ResNet-
20 ([HZRS15]), our model has performed slightly worse in terms of top-1
classification accuracy. However, in terms of floating point operations and
number of parameters, our model is about 2 times smaller in terms of number
of parameters, and requires 4 times fewer floating point operations to perform
an inference.

Model Params Layers Blocks Ops Size Top-1 ac. (%)
Our Model 0.12 M 27 6 ∼ 13 M 581KB 91.10
ResNet-20 0.27 M 20 9 ∼ 40 M 1109KB 91.25

Table 3.2: Our small model compared with ResNet-20 from [HZRS15].

47

ImageNet

The model we have defined for this task (see Figure 2.13), has achieved a
maximum of 63 % top-1 classification accuracy on ImageNet test dataset. We
trained this model only once. Compared to ResNet-34 ([HZRS15]), which
is reported to achieve 73.1% top-1 classification accuracy1, our model has
performed badly.

3.3.2 Pruning Small Models

Using the pruning criteria we have defined for autoencoders, we have tried to
prune the CIFAR-10 model. However, we were unable find a configuration
that prunes a significant amount of nodes and recover the accuracy in the
next training cycle.

3.3.3 Approximating Small Models

We ran the approximation tool we have defined on our best model (91.1
% top-1 accuracy) from our CIFAR-10 experiments. Using various pruning
thresholds and error thresholds, we could not find any factorization that
would make this model faster while preserving the accuracy.

3.3.4 Quantization

We have quantized the CIFAR-10 model, converting 32-bit floating point
operations to 8-bit floating point operations. However, in our benchmarks,
we have seen that this method has slowed down the inference speed by almost
half. We haven’t seen any significant change in the model accuracy.

1http://torch.ch/blog/2016/02/04/resnets.html

48

http://torch.ch/blog/2016/02/04/resnets.html

Chapter 4

Discussion

Here we will try to reason about our results, criticize our decisions in model
and method selection. We will also talk about the problems we have faced
during this research.

We think that some of our design decisions regarding the pruning experi-
ments were wrong or misleading. First, to select the best nodes to prune, we
tried to find the best pruning criterion. However, in our experiments, we have
seen that randomly pruning nodes and leaving out some nodes also produced
similar results. We think that this is the result of using high learning rates in
the beginning of every training cycle. To fix that, we could use smaller learn-
ing rates in every training cycle, but this would make our model converge
to a non-optimal structure. Second, we started with very large initial mod-
els. We believe that this may have left a false impression that our pruning
methods will reduce the number of nodes by 1000 times for any given model.
We think that this is also the case for some recent work on pruning. In our
research, we have seen that the ability to greatly reduce model complexity
using pruning implies that the model is heavily over-parameterized for the
problem. Finally, our pruning criteria selection was based on very simple
methods. However, more complicated methods, such as aforementioned fre-
quency sensitive hashing or some gradient based pruning criteria may have
worked better on small models.

In Section 2.3, we have defined a neural network to compare alternative
convolution operations and we have seen that nonlinear separable convolu-
tions outperform the baseline convolution operations and kernel composing
convolution operations. When we were designing our experiments, we have
tried to find the best values for some parameters, such as learning rate and

49

regularization constant. We think that using the same setting may have in-
fluenced our results. This may have worked in favor of alternative methods
especially because they have smaller number of parameters. However, one
can also argue that the same setting should be used in such a comparison.
Moreover, we have used large kernels (5×5) for these experiments so that the
number of parameters would reduce greatly when an alternative operation is
used. However, we do not know if these results can be translated to 3 × 3
kernels.

In Section 3.3.1, we have compared our CIFAR-10 model with ResNet-
20 ([HZRS15]). It should be noted that there are small differences between
how these models were trained. First ResNet-20 is trained using a different
data preprocessing and data augmentation technique. Second, ResNet-20
([HZRS15]) does not employ full pre-activation residual connections. ResNet-
20 may have performed better with these techniques.

In Section 2.4 when we have defined our ImageNet model, we started with
the assumption that recreating ResNet-34 with separable residual blocks and
aggressive dimensionality reduction would perform well. However, compared
to MNIST and CIFAR-10, ImageNet is a very large dataset. Using CIFAR-
10, we were able to search the parameter space for the smallest model by
validating our assumptions and found an optimum model. However, since
training a model for ImageNet took about a week with the available equip-
ment, we were unable to do the same thing for our ImageNet model. Also, we
think that our proposal to aggressively reduce image dimensions effected our
results negatively. We think that this method requires more experimentation
and fine tuning.

In Section 3.3.2, we stated that we were unable to find a pruning criterion
that would provide an essential performance improvement while preserving
the accuracy. We think that this is because our model was well balanced in
terms of complexity and accuracy. However, we may have made some bad
decisions in search for a criterion. First, while pruning residual networks,
we have set a very strict rule that grouped separable residual blocks and
pruned their output features together. This is a very strong assumption.
We could also define a rule to prune residual blocks separately and place
zeros on pruned indices before residual connections with previous layers.
However, we decided to stay away from this complicated method. Second,
the autoencoder model that we have experimented with is not a classification
model. However, we have applied the best practices that worked for this
model to prune a classification model. Instead of experimenting with an

50

autoencoder, we should have worked with a classifier. Third, since residual
blocks have a one to one relationship between their output channels it may
have been possible to prune some of the residual blocks as a whole in some
cases. However, we didn’t have time to try such a method.

Similar to the pruning experiments, in Section 3.3.3, we were unable to
find a good approximation for our small model. We think that this also
supports the theory that our model is well balanced in terms of complexity
and accuracy.

In Section 3.3.4 we stated that quantization slowed down the inference
speed by half. We think that this is caused by the suboptimal operation
implementations.

Using Tensorflow

We have been using latest versions of Tensorflow. It comes with some ad-
vantages, such as:

• We do not need to implement lower level operations (such as convolu-
tions). It gives us the opportunity to focus on higher level implemen-
tations, such as pruning, or factorization.

• Most of the operations are highly optimized for many platforms and
devices. If we were to implement a model in C++, we’d have to spend
considerable effort in optimizing it for efficient use of memory and pro-
cessor. In such a case comparing various techniques and models would
take considerable time.

And it comes with some disadvantages, such as:

• When we started our work, Tensorflow was in version 0.10. By the date
we write this, it is on 1.2. There have been 4 major releases that we
had to modify our codebase for.

• Not all operations are properly implemented. For example, before ver-
sion 1.2, Tensorflow implementation of separable convolutions were not
very well optimized. They were as fast as convolution operations. Be-
fore that we could only hope that they would optimize their implemen-
tation.

51

• It is difficult to implement new operations and modify the existing ones
because the C++ internals and build procedures (as of Tensorflow 1.2)
are not well documented.

• Tensorflow does not provide tools to implement low-bit variables (e.g.
a 2-bit integer). So it is not possible to implement some methods
that make use of variable width decimals. This limitation makes some
methods impossible to use or useless. For example it is not possible
to use methods that represent weights using variable width decimals.
Also, storing low bit weight indices in combination with a small global
weight array to reduce the model size is useless. Since we cannot use
low bit integers to represent these indices, our model size does not
shrink at all.

52

Chapter 5

Conclusion

In this research, we have investigated some methods to reduce the compu-
tational cost of convolutional neural networks. To do that, we experimented
with some methods that could be used to define models with lower com-
putational cost. We also experimented with some methods to reduce the
computational complexity of a given model.

To be able to experiment with pruning using larger models, we have
implemented a tool to describe pruning routines. We have also implemented
a tool that applies simple quantization, pruning and factorization methods
to trained models. Using these tools, we have observed that these methods
reduce the computational cost of sufficiently large models.

In our experiments we have observed that the models using separable con-
volutions with non-linearity results with a slightly better accuracy compared
to models using convolution or kernel compositing convolution operations
while requiring a significantly smaller number of operations. Using them, we
have redefined residual blocks and designed a model that achieves similar re-
sults to ResNet-20 on CIFAR-10 classification task. Our model is two times
wider, however it has fewer residual blocks, using two times fewer parame-
ters and requiring 3 times fewer operations. However, more work needs to
be done to achieve similar results using ImageNet dataset.

When developing models aimed for processing power restricted environ-
ments, we think that designing and training small models based on the re-
quirements is a more stable alternative to compressing large networks. We
have seen that wider and shallower residual networks using separable residual
blocks are one way of designing such models.

53

Bibliography

[AP16] Jose Alvarez and Lars Petersson. Decomposeme: Sim-
plifying convnets for end-to-end learning. arXiv preprint
arXiv:1606.05426, 2016.

[Cho16] François Chollet. Xception: Deep learning with depthwise sepa-
rable convolutions. arXiv preprint arXiv:1610.02357, 2016.

[CMS12] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-
column deep neural networks for image classification. CoRR,
abs/1202.2745, 2012.

[CPC16] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An
analysis of deep neural network models for practical applications.
05 2016.

[CS16] Jaeyong Chung and Taehwan Shin. Simplifying deep neural net-
works for neuromorphic architectures. In Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pages 1–6.
IEEE, 2016.

[CWT+15] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Wein-
berger, and Yixin Chen. Compressing convolutional neural net-
works. arXiv preprint arXiv:1506.04449, 2015.

[DBS+12] J Deng, A Berg, S Satheesh, H Su, and A Khosla. Image net
large scale visual recognition competition. (ILSVRC2012), 2012.

[DZB+14] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun,
and Rob Fergus. Exploiting linear structure within convolutional
networks for efficient evaluation. In Advances in Neural Informa-
tion Processing Systems, pages 1269–1277, 2014.

54

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and Statistics,
pages 315–323, 2011.

[GDN13] Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy
vs. squared error training: a theoretical and experimental com-
parison. In Interspeech, volume 13, pages 1756–1760, 2013.

[GR70] Gene H Golub and Christian Reinsch. Singular value decom-
position and least squares solutions. Numerische mathematik,
14(5):403–420, 1970.

[Gra14] Benjamin Graham. Fractional max-pooling. CoRR,
abs/1412.6071, 2014.

[HMD15] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quan-
tization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[HPTD15] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pages 1135–
1143, 2015.

[HPTT16] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang.
Network trimming: A data-driven neuron pruning approach to-
wards efficient deep architectures. 07 2016.

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing
the dimensionality of data with neural networks. science,
313(5786):504–507, 2006.

[HZC+17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

55

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 12 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Iden-
tity mappings in deep residual networks. In European Conference
on Computer Vision, pages 630–645. Springer, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages 1097–
1105, 2012.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The
mnist database of handwritten digits, 1998.

[LDS+89] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard,
and Lawrence D Jackel. Optimal brain damage. In NIPs, vol-
ume 2, pages 598–605, 1989.

[NH92] Steven J Nowlan and Geoffrey E Hinton. Simplifying neural net-
works by soft weight-sharing. Neural computation, 4(4):473–493,
1992.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10), pages
807–814, 2010.

[Qia99] Ning Qian. On the momentum term in gradient descent learning
algorithms. Neural networks, 12(1):145–151, 1999.

[Ree93] Russell Reed. Pruning algorithms-a survey. IEEE transactions
on Neural Networks, 4(5):740–747, 1993.

56

[Sif14] L Sifre. Rigid-motion scattering for image classification. PhD
thesis, Ph. D. thesis, 2014.

[SLJ+14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. 09
2014.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. 09 2014.

[TBCS16] Ming Tu, Visar Berisha, Yu Cao, and Jae-sun Seo. Reducing
the model order of deep neural networks using information the-
ory. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual
Symposium on, pages 93–98. IEEE, 2016.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. 05 2016.

[ZKTF10] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob
Fergus. Deconvolutional networks. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
2528–2535. IEEE, 2010.

[ZZHS16] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Ac-
celerating very deep convolutional networks for classification and
detection. IEEE transactions on pattern analysis and machine
intelligence, 38(10):1943–1955, 2016.

57

	Introduction
	Notations
	Neural Networks
	Fully Connected Layers
	Activation Function and Nonlinearity
	Loss
	Minimizing Loss
	Convolutional Layer
	Pooling
	Deconvolution
	Batch Normalization
	Regularization

	Datasets
	MNIST
	CIFAR10
	ImageNet

	Methods
	Pruning
	Pruning Connections
	Pruning Nodes
	Experiments

	Approximation Methods
	Factorization
	Quantization

	Convolution Operation Alternatives
	Kernel Composing Convolutions
	Separable Convolutions
	Experiments

	Small Models
	Models
	Pruning Small Models
	Approximating Small Models

	Experiments

	Results
	Pruning
	Fully Connected Networks
	Convolutional Neural Networks

	Convolution Operation Alternatives
	MNIST
	CIFAR-10

	Small Models
	Models
	Pruning Small Models
	Approximating Small Models
	Quantization

	Discussion
	Conclusion

