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Abstract

Social Marketing is significantly gaining importance with companies advertising on
social media such as Facebook and Twitter. Consumers prefer personalised advertise-
ments that are related to for example their hobbies, work or interests. However, not
all companies can afford to spend a lot of money for buying data of their potential
customers. Therefore, I want to investigate if an artificial intelligence approach can
predict (from existing user created content on social media) if someone is a potential
customer for a specific company or product. In my approach I focus on predictions
based on streams of short messages only, in contrast to approaches adopted by compa-
nies such as for example Facebook that involves many additional sources of data (e.g.
mouse trajectories, browse history). The predictions of the artificial intelligence ap-
proach are compared to annotations from a human expert. This annotator reads the
timeline of all users in the dataset and assigns a label PC (Potential Customer) or non-PC
(no Potential Customer) to the users. There are already many studies that investigate
how data models can process natural language in tweets and identify the sentiment of
social posts, but combining all these techniques to detect purchase intentions in tweets
is a relatively unexplored field.
In my approach, models have been trained using different machine learning algorithms
and tested with 10-fold cross-validation. Two experiments have been conducted in
which the performance of the these models is evaluated by comparing the model’s
predictions to the annotations of the human expert. I have trained one model using
knowledge-rich features, two models using knowledge-poor features, and a model us-
ing both. The results are compared to find out the contribution of the features to each
other. The results of the experiments give an answer to the research question: To what
extend can AI approach the predictions (potential customer vs. no potential customer)
that are assigned by a human expert? The results show that the AI approach classifies
a user too often as a potential customer. When the artificial intelligence model uses all
information that is available it can identify nearly 90% of the PC instances. However,
the precision at this threshold is slightly below chance level. There are several reasons
for future work. One reason is that the dataset that is used in this study is based on
predictions of a human expert and not on actual purchase behaviour. The reliability
of the artificial intelligence approach can be improved by using a dataset that contains
tweets of users that are actual customers of a company. This dataset can be used to
investigate if the artificial model can identify someone’s purchase intention before he
became a real customer of the company.
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1 Introduction

Since the introduction of Web 2.0, big companies, such as Facebook and Google, know
more of us than we can imagine. They do not only store your browse history, but
also the time that you spend online, the links you click and the mouse trajectories.
Among other things, this data is processed to find out your interests, so you can get
personalised advertisements. I am very interested in the role of artificial intelligence
in big data. Furthermore, I am also attracted by the strength of marketing on social
media. Social Media Marketing is a relatively new approach to Social Marketing. Social
Marketing was introduced as a concept in the early 70s. Kotler and Zaltman (1971)
used this concept to refer to the promotion of social objectives, such as brotherhood and
safe driving. This interpretation of social marketing became less important and when
you ask a marketer how they interpret social marketing nowadays, they will explain
that social marketing is related to applying marketing through social networks, online
or offline. It should be noted that, although my study will focus on purchase intent, that
Social marketing is not only related to trying to sell as many products through social
networks. In general, Social marketing is used in applying all 4 Ps that are known in the
marketing mix: product, price, place and promotion (Thackeray et al., 2008). There
exist different purposes of social marketing: viral marketing, increase buyers loyalty,
increase product awareness. In this study, I will focus on the latter and I am going to
find out if it is possible to efficiently identify purchase intents without involving all the
other data sources (e.g. mouse trajectories, browse history) which companies like for
example Google and Facebook deploy in their approaches.

It would be too simplistic to assume that big companies only filter on relevant keywords
and show advertisements related to the keywords you used in your posts. In their
approaches more than keyword filtering is used to ensure that undesirable scenarios
are prevented. Such a scenario could for example be that someone receives a promotion
for cigarettes after he posted a tweet (a micropost with a maximum of 140 characters
on Twitter) about cigarettes in a negative context: “@username: No more cigarettes
#diagnosis #lungcancer”. Even so, there still exist cases that seem innocent in which
advertisements are not filtered, but these cases can nevertheless be very painful for
the person itself. A simple example of this would be a woman seeing advertisements
of baby clothes 9 months after she started following Facebook pages with information
about pregnancy, although she has now stopped searching this because of an unwanted
abortion. Such could have been avoided with an approach understanding more of the
personal context1.

To work on this problem, I am going to combine existing techniques (e.g. sentiment
analysis2) with my own functions to extract features from tweets. Then, I will create a
model that tries to predict whether or not someone can be a potential customer. This
prediction will only be based on streams of short messages (i.e. the tweet history of a
person). I will apply the model to tweets of people that use product-related terms in
one of their tweets. The model can be trained using labels that are manually assigned

1The approach should thus not only understand the message that is posted, but also why it is posted,
the relations between this post and older posts, etc.

2Determine whether a message is positive, negative or neutral
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by an employee of the marketing division of the company that is used. This employee
determines whether the author of tweets is a potential customer (PC) or not (non-PC)
in his opinion. Besides, the annotation, she marks the number of tweets that had to
be read before the decision could be made. After a model is trained, it is applied to a
subset of the data. How these subsets are formed is explained later. I can evaluate the
model by looking at the precision3 and recall4. The evaluation should give an answer
to the question: To what extend can AI approach the predictions (potential customer
vs. no potential customer) that are assigned by a human expert?

In the next section of this report I discuss previous research that is relevant to this study,
what is achieved so far and what I want to improve. In Section 3, I will introduce the
approach to create the model and explain how the tweets are collected, processed
and annotated. Furthermore, I will explain which features are used and how they are
obtained. To conclude, I will compare different machine learning techniques and clarify
which one will be uses. The experimental setup and results are explained in section
4. The results are interpreted and related to the literature in section 5. In section 6,
dicsusses possible improvements and future work.

2 Related Work

Previous studies have shown that it is possible to apply Natural Language Processing
(NLP) and Named Entity Recognition (NER) to tweets (Li et al., 2012) (Liu et al.,
2011). However, applying NER to tweets is very difficult because people often use
abbreviations or (deliberate) misspelled words and grammatical errors in tweets. Finin
et al. (2010) tried to annotate named entities in tweets using crowdsourcing. Other
studies used these techniques to apply sentiment analysis to tweets. The first studies
used product or movie reviews because these reviews are either positive or negative.
Wang et al. (2011) and Anta et al. (2013) analysed the sentiment of tweets filtered
on a certain hashtag (keywords or phrases starting with the symbol that denote the
main topic of a tweet). These studies merely analyse the sentiment of a tweet about
a product after the author has bought it. In this study, I use the Sentiment140 API5

developed by Go et al. (2009).

2.1 Identifying Purchase Intentions

Kim et al. (2011) investigated purchase intentions for digital items (e.g. online avatars,
digital wallpapers, skins) on social networking communities. They concluded that there
is a lack of understanding the way in which social network members elect to purchase
something. They also mention that is hard to identify on which factors the purchase de-
cision is based. Another study did not only use the sentiment of tweets, but also seman-
tic patterns to analyse purchase intentions on Twitter (Hamroun et al., 2015). Their

3Precision: How many selected items are relevant?
4Recall: How many relevant items are selected?
5http://help.sentiment140.com
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approach showed a consistent performance on a Twitter dataset (precision: 55.59%,
recall: 55.28%). Gupta et al. (2014) did not use tweets but Questions&Answers sites
(Quora6, Yahoo! Answers7) to identify purchase intentions. They used different fea-
tures extracted from the posts on these websites to assign classes (PI: Purchase Inten-
tion and non-PI: no Purchase Intention) to these posts using a Support Vector Machine
(SVM). They experimented with different sets of features and used the area under the
ROC curve (i.e. a curve of the sensitivity and the aspecificity8 for a binary classifier)
as measurement for the accuracy. The highest AUC (Area Under the Curve) was 0.89
when they used all features together. Precision, recall and AUC are different metrics
for the performance of a classification model. The ROC curve is created by plotting the
false positive rate against the true positive rate. This curve does not take the precision
into account, so one needs all results to compare the AUC from a ROC curve against
the precision and recall.

3 Methodology

3.1 Approach

The diagram in figure 1 gives an overview of the approach adopted in this project.
Collecting and annotating the data is done at the start of the project and is not repeated.
During the annotation process, the moment when a label is assigned is stored. This
moment is used later on, so it is passed to the feature extractor together with the true
classes (i.e. assigned labels). The steps in the box with denoted with the black dashed
line are repeated for each experiment. The steps in the box denoted with the orange
dashed line are repeated for each machine learning algorithm. Each combination of
an experiment and an algorithm leads to a performance that is shown in the results
section.

Figure 1: General Overview of the Approach

6https://www.quora.com
7https://www.answers.yahoo.com
81−specificity
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3.2 Data Collection and Annotation

3.2.1 Tweets

I have decided to query for tweets about one particular product, so I did not have to
experiment with settings of the model that are different for short-term purchases ver-
sus long-term purchases. The product that I focussed on in this study is the Philips Hue
Lamp. This product is relatively new and expensive, so potential buyers might post
their questions and thoughts of the product on Twitter before they potentially buy it.
Furthermore, I assume that the majority of the target audience for the Hue Lamp is
actively using Twitter.

To collect tweets, I have used 2 separate methods. The first method is the Twitter
API. However, due to some limitations of this API (the API uses a rate limit and gives
inaccurate query results), I had to find another method. For example, when I query
for tweets before a particular date that contain a specific term, it does not return all
existing tweets. In other scenarios, it returned an empty set because the Twitter API
was not able to search for tweets before a specific date. I wanted to be able to use this
’until date’ because I needed Twitter users that wrote several tweets after they used
product-related keywords. The Twitter API would return tweets with the product men-
tion from the last couple of days when there was not set an until date. Most of the
writers of those tweets did not have enough tweets after the mention, so they were
not usable for machine learning. The alternative method I used parses the output of
the search page on twitter.com when the input is a query with keywords, an until date
and a language. This method receives a list of tweets in chronological order. I have
created a list of keywords to find users for the dataset. These keywords are based on
the content of the product’s website9 and on specific terms that are used in the posts on
the product’s Facebook page. The keywords that I have used are Personal light, Personal
lamp, Ambiance light, Automatic light and the exact combination Homework ambiance.
Automatic light is often used on the Facebook page to promote the new motion sensor.
On this page, they also promote the Concentrate Mode of the Philips Hue.

For each user, I downloaded all tweets that were posted in the period between ten
days before and two months after the tweet with the keyword. I wanted to use some
tweets that were posted before the tweet with the keyword because that particular
tweet can be written because the author has bought the related product already and
if this is the case, the tweets before that tweet can be relevant. While this would have
been interesting, it would have given the human annotator (whose task will be ex-
plained later) much more work. Since there is a possibility that the user never wrote
about the intention to buy the product, the annotator would annotate this user as a
non-potential customer, unless he read everything until the last tweet. Therefore, the
annotator would be required to read all tweets of every user and unfortunately this
was not possible at this moment. It was hard to decide how the window had to be
placed. I had to make a choice between knowing for sure that a person has bought
a product and investigating if the user wants to buy more products (but that would

9http://www2.meethue.com/en-US
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change the research question), or having a human expert that annotates the dataset.
The downside to the first scenario is that I do not know if the tweets of the user are
useful (i.e. did the user express his purchase intentions). The limitation of the second
case are that the dataset cannot be too big, since the human expert cannot spend all
his spare time annotating data.

I have used the sinceID parameter on queries to download tweets that were posted in
the same period as the tweet that contains one of the keywords. For each user, this pa-
rameter is set to an id that is slightly smaller than the id of the tweet with a keyword.
In this way, the Java program can collect 40-80 tweets that are posted in a period of
71 days, where the tweet with the keyword is posted at the tenth day. Note that the
number of tweets before the tweet with the product-related keyword is different. The
size of the timeline should not be expressed as the number of tweets but the number
of days, because the number of tweets that people post per day varies. In this way, I
ensure that the dataset does not contain users that have only posted 40-80 tweets in
more than a year, because it is not likely that a purchase intention can be identified by
looking at 40 messages that are posted in one year.

3.2.2 Annotation

I am very grateful that a Global Social Media Analyst at Philips wanted to help with
this study. This employee, Ms. Corina Bordeianu, operated as a human expert for this
study. Her judgment on people being a potential customer or not functions as ground
truth for my model. I created a webpage that reads a JSON file that contains the entire
dataset and then displays all tweets in chronological order for every user in the dataset
(figure 2). The human expert can read those tweets and click ’positive’ or ’negative’ at
the moment a decision can be made on whether or not the user is a potential customer
for the product. The web-interface stores the position when the annotator has made the
decision. When all users have been assigned with a class label (1= potential customer;
0 = non-potential customer) the data is exported to a JSON file.

3.2.3 Privacy

Obviously, only tweets of users that have made their account public are used in this
study. According to the Developer Agreement & Policy10 it is forbidden to display or
distribute tweets in a manner that would have the potential to be inconsistent with the
Twitter users’ reasonable expectations of privacy or to display tweets to any person that
may use the data to violate the Universal Declaration of Human Rights. Therefore, I
have anonymised the tweets as much as possible, so the author can not be traced via
my web-interface. The webpage for annotation can only be reached via an encrypted
connection and the annotator should use a a username and password. The webpage
only shows the texts of tweets together with the date and time of the tweet. All user-
names in tweets are replaced by @username. Furthermore, the URLs in tweets are

10https://dev.twitter.com/overview/terms/agreement-and-policy
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Figure 2: Web Interface for Data Annotation

replaced by [url] since they were not clickable. The same has been applied to tweets
when they are mentioned as examples. The model can read the usernames in tweets
in order to recognise possible patterns that may be relevant for machine learning, but
the usernames are not stored.

3.3 Java Implementation

To represent the users with their tweets in Java I have created 2 classes. The user
is represented by a class User which has attributes for the id, username, bio and
timeline. This timeline is filled with a number of Tweet objects. Each Tweet has
an id, text and datetime attribute. Both classes have a method that returns JSON
objects. These methods are used when the dataset is exported to JSON to prepare the
task of the annotator. When a timeline is used in this report, it refers to the timeline
object in the Java implementation, so the end of the timeline means the latest tweet
that was downloaded for this user.

Not only collecting tweets but also extracting features from tweets, storing them in
temporary files, training the machine learning models and testing those models on
unknown test sets of the data happens in Java. Since the features differ for the exper-
iments, you choose the experiment when the features are extracted. Figure 3 shows a
couple of screenshots of the Java program.

7



(a) Screenshot 1

(b) Screenshot 2

(c) Screenshot 3

Figure 3: Screenshots of Java implementation.
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3.4 Features

Somehow, it is necessary to store some properties of the data into features. These fea-
tures are used by a machine learning algorithm to make a prediction. The features are
inspired by the human behaviour, since the artificial intelligence model tries to copy
the human process of decision making. There are several studies that investigate how
humans identify intentions in texts. Goldberg et al. (2008) did a study on how wishes
can be detected. In their paper they write that we first try to identify the topic of a text.
Then humans try to identify the sentiment of the text. Sentiment is the attitude of an
author with regards to a certain topic. Besides the topic and sentiment of the texts I
have used a third property of the tweets: the number of days between the end of the
timeline and a tweet that expresses the purchase intention. Imagine two persons. The
first person has posted a tweet that expresses a purchase intention for a particular prod-
uct two months ago and the other person has posted a tweet that expresses a purchase
intention for the same product yesterday. Intuitively, it is more likely that the second
person still wants to buy the product.

I have used two different types of features. The three properties that are mentioned
here form the basis of the first type of the features. These features are called abstract
features and are knowledge-rich. The other type of features is knowledge-poor. I have
used two knowledge-poor features: unigrams and skip-bigrams. In this field, unigrams
and skip-bigrams are widely accepted as standard when you want features to process
natural language (Zampieri et al., 1992). In this study, I do not process the unigrams
and skip-bigrams. In future work one might pre-process the n-grams and for example
also use trigrams.

Tag Description
N Noun
^ Proper noun
V Verb
! Interjection
# Hashtag
@ Username mention
~ RT @user in retweet
U URL
E Emoticon
$ Numeral
, Punctuation
G Abbreviation

Table 1: Relevant tags from
POS Tagger for Twitter

Tri-grams need more computing power when they
are not filtered before they are used to train a
model. I have separated the knowledge-poor fea-
tures from the knowledge-rich features there is a sig-
nificant difference in the size of the features. The
unigram feature has over 4000 values, whereas the
abstract feature has only 9 values. When the fea-
tures would not be separated, the contribution of
the knowledge-rich features would be nil. Be-
sides, when they are separated I can investigate
how much the two types of features contribute
to each other in terms of performance by train-
ing models on the abstract features only, on the
knowledge-poor features only and on both types of fea-
tures.

The knowledge-poor features store all words that are
used by all users in the dataset. Somehow, I needed to
separate all tokens in a tweet. This is done using a Java library that offers a Part-Of-
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Speech tagger especially for tweets11. This tagger returns all separate tokens in a tweet
assigned with a tag. The most important types of tokens are shown in table 1.

3.4.1 Unigrams

This feature is the first knowledge-poor feature. The model creates a list with all uni-
grams that appear in all tweets of all users in the dataset. A unigram is a single token in
a text. I do not store URLs in the unigram list, because of several reasons. First, URLs
are shortened by Twitter, so the URL itself does not give any information. Second, the
model does not read the content of the website the URL is referring to and since there
are many different URLs it is not likely that the model finds patterns in the URLs. Every
uppercase in a token is replaced by a lowercase and all diacritical signs are removed.
Although I think diacritics are not frequently used in English texts, I have excluded the
coincidence when relevant words are (accidently) spelled different. The list is shrinked
by removing all unigrams that have a frequency of 1 in the entire dataset. When the
frequency of a unigram is 1, there is only one user that has used this token, so this to-
ken can not be used to find a pattern. When the list of unigrams is created, the model
loops over all tweets in the timeline of a user and creates a list with frequencies of
all unigrams. These frequencies are divided by the number of tokens in all tweets of
a user. In my Java implementation, the counting of unigrams happens on a separate
thread. When the list with frequencies is created for every user, a model is trained on
these frequencies. The output of the trained model is the confidence value, i.e. the
certainty that an instance belongs to class A (P(A) ∈ [0,1]). This confidence value is
used as additional abstract feature learned_unigrams.

User unigram1 unigram2 unigram3 · · · unigramn

user1 z1,1 z2,1 z3,1 · · · zn,1

user2 z1,2 z2,2 z3,2 · · · zn,2
...

...
...

...
. . .

...
userm z1,m z2,m z3,m · · · zn,m

Table 2: Matrix with unigram frequencies.

Table 2 shows a matrix with frequencies of unigrams. For a user y , the frequencies
of unigrams are normalised, i.e. zx ,y = frequency of unigramx / #unigrams in the
timeline of user y . The matrix with the frequencies of skip-bigrams has the same struc-
ture.

3.4.2 Skip-bigrams

The skip-bigrams form the second knowledge-poor feature. It is more or less the same
as the unigram feature. The only difference is that it creates a list of skip-bigrams
instead of a list of unigrams. A k-skip-ngram is a sequence of n tokens (i.e. n-gram)

11http://www.cs.cmu.edu/ ark/TweetNLP/
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where there can be k or less tokens between the two unigrams. Guthrie et al. (2006)
use the following sentence in their paper to explain skip-grams:

”Insurgents killed in ongoing fighting.”

In this paper they mention that the 2-skip-bigrams are all pairs of unigrams in the
sentence with a maximum of 2 tokens in between the unigrams. The set of 2-skip-bi-
grams in this sentence according to the paper is:

{insurgents killed, insurgents in, insurgents ongoing, killed in, killed ongoing, killed
fighting, in ongoing, in fighting, ongoing fighting}

. In my study, I have used k-skip-bigrams slightly different. The value of k is different
for each tweet. I have set k to be the length of the tweet −2 (i.e. the number of
unigrams in a tweet). So, the skip-bigrams are all pairs of words that occur in a tweet.
Consider the example sentence as a tweet in my dataset. The set of 3-skip-bigrams
becomes now:

{insurgents killed, insurgents in, insurgents ongoing, insurgents fighting, killed in, killed
ongoing, killed fighting, in ongoing, in fighting, ongoing fighting}

Again, the URLs are not used, uppercases are replaced by lowercases and all dia-
critics are removed. The list is filtered by removing all skip-bigrams that occur at
most 3 times, The frequencies of all skip-bigrams in the list are counted on a sepa-
rate thread for every user. Again, the frequencies are normalised. Then, the frequen-
cies are the input for machine learning and the output is a additional abstract feature:
learned_skipbigrams.

3.4.3 Maximum relevance score

For all tweets in a timeline, the model computes a relevance score. This score tells
how relevant a tweet is with regards to the product that is used. In order to compute
this score, I have used a list of product-related and purchase related keywords. Note
that these keywords are not the same as the keywords that were used to collect tweets.
Most keywords are given by the human expert. These keywords have a weight that
is denoted by the human expert. Other keywords are based on the product’s website
and the product’s Facebook page. The weights of these keywords are determined by
looking at how often this word is used on the webpages. The complete list of keywords
can be found in appendix I. When a tweet contains a keyword, it’s relevance score is
incremented with the weight of a keyword. Every relevance score of a tweet that is
computed in the algorithm and is normalised by dividing the score over the number of
tokens in that particular tweet. Tweets with a relevance score higher than 0 are stored
as relevant tweets. The max_relevance_score of a user is the highest relevance
score in the timeline of that user. When the annotator was able to make a decision
before the end of the timeline, it is possible that the most relevant tweet is not really
the most relevant tweet, because the annotator has assigned a label before the most
relevant tweet of the timeline had been posted.

11



3.4.4 Days since maximum relevance score

This feature returns the number of days between the tweet with the maximum rele-
vance score and the end of the timeline. The rationale behind this feature is that the
probability of a user being a potential customer is higher when he recently used rele-
vant terms. The number of days is divided by the total length of the timeline of the user.
The length of the timeline depends on the position where the annotator has assigned
a label. The name of this feature is days_since_max_relevance_score.

3.4.5 Sentiment of most relevant tweet

The sentiment of the tweet with the maximum relevance score is computed and stored
in the feature: sentiment_tweet_max_relevance_score. I want to measure the
sentiment of the most relevant tweet because whether this tweet is positive or negative
can make a difference in the final prediction. The sentiment of a tweet is obtained
by the Sentiment140 API. This API takes a tweet and a topic as input and returns -2
(negative), 0 (neutral) or +2 (positive). It does not use additional settings.

3.4.6 Average relevance score

This features computes the average relevance score of all tweets in the timeline. When
this score is high, the user actively talks about the product or uses related keywords or
posts tweets that are very relevant. The name of this feature is avg_relevance_score.

3.4.7 Average sentiment of relevant tweets

This feature computes the average sentiment of all tweets with a relevance score > 0.
It is important to know if the user is positive or negative when he uses relevant terms
in his tweets. This feature is called avg_sentiment_relevance_tweets.

3.4.8 Relevance score of last relevant tweet

I want to know the relevance of the last relevant tweet of the user. If someone recently
posted a very relevant tweet, he is more likely to be a potential customer at the end of
the timeline. The name of this feature is relevance_score_last_relevant_tweet.
Since the relevance scores have been normalised already, it is not necessary to nor-
malise the output of this feature again.

3.4.9 Days since last relevant tweet

Together with the previous feature the algorithm stores how relevant someone’s tweet
was and how many days ago it has been posted. This feature is called
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days_since_last_relevant_tweet. When this number is low, the possibility that
the user is a potential customer increases. Again, the number of days is divided by the
length of the timeline of this user.

3.4.10 Sentiment of last relevant tweet

The sentiment of the last relevant tweet is important to know, since a very relevant
tweet can also be negative. When this tweet is negative, the author is less likely to be
a potential customer. The value of the sentiment is stored in the feature
sentiment_tweet_last_relevant_tweet.

3.4.11 Following company and influencers

At last, I have created a feature that computes a score that represents the user’s involve-
ment with the company. To compute the involvement score I have again used a list of
weighted Twitter accounts. The human expert gave me a list of Twitter accounts of pos-
sible influencers. I have extended this list by adding the Twitter account of the product
(tweethue) and Twitter accounts of other departments of Philips. The weight of an in-
fluencer represents the importance of this account. The list of influencers can be found
in appendix II. For each of these accounts, I check if the user follows this account. If
so, the following_influencing_accounts feature is incremented with the weight
of the account that is followed by the user. It is not possible to check whether a user
was followed at a specific date. So, this feature is time-independent and the values are
the same in both experiments (experiments are explained later).

3.5 Machine Learning

Data mining is the extraction of information (knowledge) from massive datasets (Way,
1996). Extracting information is usually done by applying machine learning to those
datasets. Machine learning is concerned with minimizing the error of a model that can
be used to find ’hidden’ patterns in datasets. Usually, such a model is trained until the
error can not be decreased anymore. The patterns that are found are used to make
predictions (classification), to divide the data into groups (clustering) or to detect out-
liers (anomaly detection). The datasets that are used are often very large, so potential
relationships between variables cannot be found by a human analyst. There exist many
different machine learning algorithms, each with its own strengths and weaknesses. In
this study I have used machine learning to make predictions. I have decided to apply
machine learning to the unigram feature, to the skip-bigram feature, to the abstract
features and to all features combined. In this study I have used supervised machine
learning algorithms, so the algorithms use true classes to train a model. For example,
when a model is trained on the unigram features, a machine learning model tries to
find a pattern in the frequencies of words that are only used by users that are assigned
as potential customer.
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There are different properties of machine learning algorithms that can influence the
output of the algorithm. First, the size of the training set and the number of features
(input dimensions) are important to know. Some machine learning algorithms are easy
to scale for training on larger datasets, while for others the training time exponentially
grows when the input size increases. Second, some algorithms often have a lower accu-
racy. However, they can be quite faster in training than others. There should be made
a trade-off between training time and accuracy. So, in this section I compare multiple
algorithms with their strengths and weaknesses and explain which algorithms I have
used.

Linear Regression
Linear regression is a statistics technique. This technique assumes that there is a lin-
ear relationship between variables in the dataset (input) and the label of an instance
(output). Linear regression tries to find a linear function that can compute the output
with the input (y = B0 + B1 ∗ x). This algorithm does not use parameters, so tuning
is not necessary. I have used linear regression as baseline, since it is a very simple and
standard technique. The performance of other algorithms are compared to the perfor-
mance of linear regression.

Decision Tree
Classification Tree
A classification tree is a top-down machine learning algorithm that can be interpreted
without much knowledge of machine learning Safavian and Landgrebe (1991). The
labels for test instances are assigned by walking through the tree. Every attribute of
the data has a node in the tree and every possible value has a leaf that leads to another
node. When the attribute has continuous values, the algorithm computes the optimal
threshold that is used to split the data into two (or more) subsets. The decision tree
algorithm tries to create a tree that partitions the data into subsets with all instances
having the same label. Figure 4 shows a simplified version of a decision tree for this
project.
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Figure 4: Simplified Decision Tree

There are a couple of metrics that can be used to compute the variance within a subset
to partition the data. Some of them use the entropy (the degree of uncertainty). An
advantage of this algorithm, in contrast to other algorithms, is that it can handle both
categorical and numerical attributes. Furthermore, decision trees work for two-class
data as well as for multiple class data and they can handle large datasets (note that
when there are many attributes the trees become very complex and the result tends to
be inaccurate). Another disadvantage of implementations of decision trees is that they
handle missing values in a variety of ways. Some implementations assign all instances
with missing values to the node that has the most instances. Other types assign these
instances to a random node. Since the output of decision trees is easily affected by
small changes in the data, the accuracy is not always as high as possible. I think that
decision trees are not the best option for training models on the frequencies of the un-
igrams and skip-bigrams, since there are too many attributes and the variance within
the attributes is very small.

Random Forest
Random forest combines multiple decision trees. The output is the mode of the out-
puts of all decision trees. Random forest is used to compensate for the fact that a single
decision tree is very sensitive to small changes in the data. Furthermore, decision trees
tend to overfit the data and random forest can correct for this. Random forest are
less easy to interpret, but the variance within the partitions becomes smaller, while the
performance is usually better. The random forest algorithm applies bagging: it selects
random subsets of the data and creates a tree that fits this subset best. This process
is repeated x times, after which the outputs are averaged. Depending on the size of
x , this algorithm can be fast and it almost works off-the-shelf. Random forest is not
the best option to train models on the unigram and skip-bigram frequencies because
there are too many attributes and the variance within the attributes is still very small.
However, it can be a good model to train the abstract features. The advantage of using
this model is that one can easily detect which features are most important.
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Support Vector Machine
A support vector machine (SVM) is a supervised model that represents data instances
as points in a multidimensional space (Andrew, 2000). This model is less easy to inter-
pret compared to decision trees. However, it can handle missing values by just ignoring
them. SVMs tries to create a linear gap that divides the space into two parts. This gap
should be as wide as possible. It tries to separate the instances belonging to one class
from instances belonging to the other class. A support vector machine works for two-
class datasets only, since it tries to assign an unknown instance to either one or another
part of the space. The input for an SVM is represented as vectors of features. A so-called
kernel function maps these vectors to a space. There are several kernel functions. I will
briefly explain the kernel functions that I have used. At the end, some of the vectors
that are mapped are assigned as support vectors, i.e. vectors that are used to find the
line that separates the two classes.
When you use an SVM, you should spend more time on pre-processing the data. This
is usually done by scaling the data. For each feature, the mean should be zero and the
standard deviation should be 1, so all points are between -1 and +1. SVMs are ideal
when you need to categorise text data or images. To classify this type of data that has
a huge number of features, other machine learning algorithms need a lot more time
for training. Therefore, an SVM may be a good choice to classify the unigrams and
skip-bigrams.

Linear kernel
A linear kernel is usually faster than any other kernel. It tries to find a linear plane or
line that separates the data (see Figure 5a). A linear kernel uses just one parameter
that should be tuned. This parameter C is a measure for how much you want to avoid
that an instance is misclassified. When C is high, the cost of misclassification is also
high. When C is low, the cost of misclassification is low. You need to find a balance
between being too strict and being too loose.
An SVM with a linear kernel tries to find some function K(x , y) = x ∗ y that translates
the data points in such a way that they are linearly separable. A linear kernel is recom-
mended when classifying text data, since this type of data is often linearly separable
due to the high number of features.

Polynomial kernel
When data is not linearly separable, you can decide to use a polynomial kernel. This
kernel uses more parameters than a linear kernel. Now you need to tune C as well as
a parameter γ. This parameter is a measure for the sensitivity to differences in the fea-
tures. The default value is 1

# f eatures . A polynomial kernel tries to map the points in the
feature space to a higher dimension with a function of the form K(x , y) = x T y + c)d

where d is the degree of the kernel. Figure 5b and figure 5c show how a non-linear
separable problem can be mapped onto a space with more dimensions. In this new
space, the points can be separated by a hyperplane. Finding this hyperplane is less
difficult for a machine compared to finding the function that separates the points in
Figure 5b. Therefore, choosing the right kernel function is a very important step when
building a support vector machine.
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RBF kernel
Another type of a kernel is the radial basis function (RBF) kernel. The most popular
RBF kernel is the Gaussian RBF kernel. This kernel tries to form circles about all data
points, where all points that fall within a particular circle have to belong to the same
class. It uses the function K(x , y) = ex p(−γ ∗ |x − y|2) where γ is the strength of the
influence of a single training instance. Figure 5d shows an example of how an SVM
with an RBF kernel classifies a dataset.

(a) Linear separable (b) Polynomial kernel (1)

(c) Polynomial kernel (2) (d) RBF kernel

Figure 5: Examples of svm classification with different kernels. (a) Input vectors that are sep-
arated by a linear kernel. (b) Input vectors that can not be separated by a linear kernel. (Kim,
2013) (c) The space is transformed using a polynomial kernel, so the instances can be separated
(Kim, 2013) (d) Input vectors that are separated by an RBF kernel.
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Sigmoid kernel
A sigmoid kernel uses the sigmoid function from linear regression (K(x , y) = tanh(γ∗
x T y + r)). An SVM that uses a sigmoid kernel is equivalent to a two-layer neural net-
work. The sigmoid kernel is only conditionally positive definite (Lin and Lin, 2003), so
it is not widely used. The result of classifying using a sigmoid kernel is similar to the
result of classifying using an RBF kernel (figure 5d).

Neural Network
A neural network is a machine learning algorithm that is based on a biological neural
network. It can classify non-linear separable datasets. Another advantage of neural
networks is that they can become as large as needed, but the computation will not in-
crease exponentially. However, a neural network is more like a black box, so it difficult
to adapt the network when you want better performance.
The aim of a neural network is to find a function f : X → Y that maps a data point
x ∈ X to it’s label y ∈ Y . The algorithm tries to minimise the difference between the
real label y and the network’s output f (x), which is usually measures by the mean-
squared error. A reliable neural network has many ’neurons’ and uses multiple layers,
but one will need a large dataset to train such network. Since my dataset might be too
small, I did not choose to build a neural network, although it might be a good option
for this kind of data.

Figure 6: Example of a Simple Neural Network

Figure 6 shows the structure of a simple network. It can contain multiple hidden layers.
After every layer, a value for each class is increased or decreased and at the end, a test
instance is assigned to the class that has the highest value.

Naive Bayes Classifier
A naive Bayes classifier is an algorithm that is based on Bayes’ theorem. The features
are assumed to be independent once the class labels are known. The output is com-

puted via the function ŷ = arg max
k∈{1,...,K}

p(Ck)
n
∏

i=1
p(x i|Ck).

A naive Bayes classifier, a popular algorithm for classifying text documents, uses a cou-
ple of parameters that are linear in the number of instances and features. However,
the training time of this machine learning model increases linearly with the size of the
dataset. So, I chose not to use a naive Bayes classifier, since it would take a lot of time
to train, update parameters for a better performance, train again and so on.
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4 Experiments & Results

I have conducted two experiments. In the first experiment, the model uses all tweets in
the users’ timelines. In the second experiment, the model only uses the tweets until the
position where the annotator has assigned the true label. Table 3 show some properties
of both experiments.

Experiment 1 Experiment 2
Number of samples 214
#positive instances 101
#negative instances 113
Number of unigrams 5,820 2,028
Number of skip-bigrams 60, 055 20,447
Number of abstract features 11 11

Table 3: Statistical properties of experiments.

In each experiment I have trained four different models. One model is trained on nine
abstract features, another model is trained on the unigram frequencies, yet another is
trained on the skip-bigram frequencies and the last model is trained on 11 abstract fea-
tures (nine original abstract features+ learned_unigrams+ learned_skipbigrams).
The learned_unigrams and learned_skipbigrams features are confidence values.
These four models are trained using the machine learning techniques that I have ex-
plained in the previous section, except for neural networks because a good neural net-
work uses multiple layers, but is hard to train and needs a lot of tuned parameters.

I have used Weka (Frank and Witten, 2016) to train models with 10-fold cross-validation.
k-fold cross-validation is used when the dataset is too small to use a fixed part to train
a model and use the rest of the data for testing. The dataset is split up into k samples.
k− 1 samples are used to train a model. The kth sample is used for validation. I have
set the random seed to 0, so the subsamples are not randomly created. I have used this
setting because I need to know to which instance a confidence value belongs in order
to add the additional features to the abstract features. Table 4 shows the parameters
that are used for the support vector machines. I have used Weka’s default values, since
Weka does not have a function that can tune parameters automatically. There are too
many combinations of parameter settings, so tuning them manually would need too
much time.
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Parameter Value
coef0 0
cost 1
degree 3
eps 0.001
γ 0
loss 0.1
nu 0.5
shrinking true

Table 4: Parameters that are used for support vector machines.

Weka has returned the confidence values instead of either one class or the other class.
After each run I have stored the confidence values. For classification models that use
nominal classes (SVMs, naive Bayes and random forest), it also returns the area under
the precision-recall curve. The precision-recall curve is formed by computing precision
and recall for several thresholds. Usually, the threshold is set to the confidence values
of all instances. The linear regression model uses numeric classes, so the precision-
recall curve can not be created. I have used the output of the linear regression model
to create the curve manually. The results are not probabilities between 0 and 1, so I
have normalised the output before I have formed the precision-recall curves. Then I
have approximated the area under those curves. Table 5 and table 6 show the area
under precision-recall curve for all combinations of input and algorithm.

Input# f eatures LR NB RF lin-SVM poly-SVM rbf-SVM sig-SVM
Abstract9 0.467 0.580 0.605 0.558 0.499 0.558 0.489
Unigram4000 0.521 0.579 0.602 0.498 N/A N/A N/A
Skipgram4000 0.414 0.482 0.506 0.522 N/A N/A N/A
All11 0.538 0.568 0.577 0.595 0.528 0.532 0.553

Table 5: Experiment 1: Area under precision-recall curve for combinations of input and machine
learning algorithm. Bold values denote the optimal input for an algorithm. For the SVM I have
denoted only one highest value for all kernels. The underlined value denotes the best combination
of input and algorithm. LR= Linear Regression; NB= Naive Bayes; RF= Random Forest; lin-SVM
= SVM (linear kernel); poly-SVM = SVM (polynomial kernel); rbf-SVM = SVM (RBF kernel);
sig-SVM = SVM (sigmoid kernel).
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Input# f eatures LR NB RF lin-SVM poly-SVM rbf-SVM sig-SVM
Abstract9 0.595 0.518 0.543 0.484 0.501 0.505 0.544
Unigram2028 0.506 0.534 0.531 0.525 N/A N/A N/A
Skipgram4000 0.566 0.504 0.533 0.488 N/A N/A N/A
All11 0.595 0.505 0.574 0.521 0.534 0.502 0.519

Table 6: Experiment 2: Area under precision-recall curve for combinations of input and machine
learning algorithm. Bold values denote the optimal input for an algorithm. For the SVM I have
denoted only one highest value for all kernels. The underlined value denotes the best combination
of input and algorithm. LR= Linear Regression; NB= Naive Bayes; RF= Random Forest; lin-SVM
= SVM (linear kernel); poly-SVM = SVM (polynomial kernel); rbf-SVM = SVM (RBF kernel);
sig-SVM = SVM (sigmoid kernel).

Table 7 shows how fast models could be trained and validated on a relative scale. There
was no significant difference between the durations in the two experiments.

Input LR NB RF lin-SVM poly-SVM rbf-SVM sig-SVM
Abstract - +++ +++ - + ++ ++
Unigram — ++ ++ – N/A N/A N/A
Skipgram — ++ ++ – N/A N/A N/A
All - +++ +++ - + ++ ++

Table 7: Time that was needed to train and validate all models on a relative scale (—, –, -, +,
++, +++). LR = Linear Regression; NB = Naive Bayes; RF = Random Forest; lin-SVM = SVM
(linear kernel); poly-SVM = SVM (polynomial kernel); rbf-SVM = SVM (RBF kernel); sig-SVM =
SVM (sigmoid kernel).

Figure 7 shows the precision-recall curves of each input in experiment 2. Figure 7a
shows the curves for a linear regression model. Figure 7b shows the curves for a naive
Bayes model. Figure 7c shows the curves for a random forest model. Figure 7d shows
the curves for a support vector machines model. For the SVM I have only used the
kernel with highest area under the curve. The highest area under the curve for the
abstract features was obtained when classifying with a linear kernel. The highest area
under the curve for all features (9 abstract features + 2 additional features) was also
obtained with a linear kernel. I have only trained SVM models on the unigram and
skip-bigram features using a linear kernel, because a linear kernel should be the best
option when the number of features is much higher than the number of samples.

The curves of the unigram and skip-bigram input for naive Bayes are different than
all other curves, because the output of the naive Bayes classifier was almost always 0
or 1 and in a few cases very close to 0 (< 0.010) or very close to 1 (> 0.990). Most of
the thresholds had no effect on the precision and recall values, so the curves is formed
by only a few of combinations of precision and recall.
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(a) Linear Regression (b) Naive Bayes

(c) Random Forest (d) Support Vector Machine

Figure 7: Within-algorithm precision-recall curves of experiment 1. The subplots show the
precision-recall curves of different inputs for (a) linear regression, (b) naive Bayes, (c) random
forest and (d) support vector machines.

Figure 8 shows the precision-recall curves of each input in experiment 1. Figure 8a
shows the curves for a linear regression model. Figure 8b shows the curves for a naive
Bayes model. Figure 8c shows the curves for a random forest model. Figure 8d shows
the curves for a support vector machines model. For the SVM I have again only used the
kernel with highest area under the curve. The abstract features have the highest area
under the curve when a sigmoid kernel is used. Again, the unigram and skip-bigram
features are only used to train a model with a linear kernel. When two additional
features are added to the abstract features, an SVM with a polynomial kernel has the
highest area under the curve. The curves of the unigram and skip-bigram input for
naive Bayes are again different than all other curves, because of the same reason in
experiment 1.
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(a) Linear Regression (b) Naive Bayes

(c) Random Forest (d) Support Vector Machine

Figure 8: Within-algorithm precision-recall curves of experiment 2. The subplots show the
precision-recall curves of different inputs for (a) linear regression, (b) naive Bayes, (c) random
forest and (d) support vector machines.

I have used the values from the tables above to determine which algorithm performs
best in an experiment (bold values in table 5 and table 6). Figure 9a and figure 9b
show the between-algorithm precision-recall curves for experiment 1 and experiment
2.

(a) Experiment 1 (b) Experiment 2

Figure 9: Between-algorithm precision-recall curves of (a) experiment 1 and (b) experiment 2.

Figure 10 shows the precision-recall curves of the best combinations of input and algo-
rithm of both experiments (underlined values in table 5 and table 6).
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Figure 10: Precision-recall curve of the best combinations of input and algorithm for both exper-
iments.

5 Discussion

The interpretation of the results can be different for the type of product and the goal of
the selling company. A company might want to send targeted advertisements to people
that are classified as a potential customer. In this scenario, it is preferred to have the
number of false negatives as low as possible because a company does not advertise to
all potential customers. A high number of false negatives will result in less new cus-
tomers for the company. One might argue that people will go to the company although
they do not receive advertisements. However, small or new companies do not have the
advantage of being a company with a good reputation. In another scenario a company
wants to invest in its new potential customers. In this scenario, it is not preferred when
there are many false alarms because that would be a waste of investments. Therefore,
I have used the precision-recall curves as main result, because they do not depend on
the need for high precision or high recall.

The area’s under the curves in all figures are not equal to the area’s under the curves
from table 5 and table 6. Weka uses 214 thresholds to compute 214 different precision-
recall combinations. Weka can return the precision-recall curves, but it can not plot
multiple precision-recall curves in one figure. Therefore, I have used a consistent se-
ries of thresholds for all outputs (0, 0.1,0.2, 0.3,0.4, 0.5,0.6, 0.7,0.8, 0.9,1.0). At each
threshold, a class is assigned to an instance (PC if the confidence value >= threshold
and non-PC otherwise). Then, I have computed the number of true positives (hits),
false positives (false alarm) and false negatives (prediction = non-PC but actual class
= PC). The precision and recall can be computed with these numbers. For each com-
bination of input and algorithm, I have used 11 combinations of precision and recall
values to create a curve. The area under the curve that can be approximated from this
curve is less accurate then the area under the curve from the results in Weka, because
the curves I have created use less points than the plots that are formed by Weka. There-
fore, the area’s under the curves in the figures are smaller than the area’s under the
curves in the tables. In this section, I will use both the tables with Weka’s results and
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the curves that I have plotted using 11 different thresholds to compare the performance
of algorithms, where the performance is expressed in terms of area’s under the curve.
So, the higher the area under the curve, the higher the performance of a model.

Within-algorithm comparison
First, I compare the results for different inputs in experiment 1 (table 5). For naive
Bayes and random forest is shown that the area under the curve (AUC) of abstract fea-
tures as input and the AUC of unigrams as input are almost equal. However, the AUC
becomes smaller when the two additional abstract features are added. The table shows
that the AUC of naive Bayes with skip-bigrams as input is lower than 0.5 and since the
AUC decreases when all features are used to classify the data, I conclude that the skip-
bigrams add noise to the abstract features. Therefore, I have applied naive Bayes and
random forest to the abstract features with the learned_unigrams only. For naive
Bayes, the AUC is even lower (0.566) than the AUC for all features. For random forest,
the AUC is higher than the AUC for all features and just slightly lower than the AUC of
the abstract features (0.596). These results support my conclusion that skip-bigrams
add noise when classifying with random forest or naive Bayes.
For all types of kernels in an SVM, the AUC increases when the additional features are
added to the abstract features. The results of linear regression show the highest in-
crease of the AUC when the additional features are added. The abstract features have
an AUC of 0.467. This is surprising because I expected that there is a linear relationship
between the abstract features and the class. However, I can think of an explanation.
The selection of keywords that are used to compute the relevance score might be too
wide, so users with the non-PC label also have a high relevance score. Then, the linear
relationship weakens and a linear regression model can not classify the data.

In experiment 2 (table 6), naive Bayes performs worse when all features are used in-
stead of the abstract features. Again, the AUC of the skip-bigrams is around 0.5, so
it is likely that the skip-bigrams add noise. For random forest, there is less difference
between the AUCs of the abstract features and the skip-bigram frequencies compared
to experiment 1. Now, the AUC becomes bigger when the additional features are used.
For the support vector machine, the conclusions from experiment 1 do not hold in ex-
periment 2. With an linear and polynomial kernel, the AUC becomes higher when all
features are used. With the other kernels, the AUC becomes lower. A polynomial kernel
has always a higher AUC in experiment 2 than in experiment 1, but the difference is
very small. The other kernels always perform worse in experiment 2. This shows that
an SVM works better if all data can be used instead of just a subset.

Between-algorithm comparison
When the input consists of abstract features, almost all algorithms perform better than
chance level (precision > 50%), except for the support vector machine and linear re-
gression in the first experiment. In experiment 1, the highest AUC is obtained when
classifying with a random forest model. In experiment 2, linear regression performs
best. From the tables can be concluded that if the difference between the AUC of skip-
bigrams and the AUC of the abstract features is smaller than 0.1, then the performance
of the algorithm increases when the additional features are added to the abstract fea-
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tures. The AUC of a support vector machine with a polynomial, RBF or sigmoid kernel
is lower than 0.5. When using all features (abstract features + 2 additional features),
random forest performs also well, but an SVM with a linear kernel is slightly better
(AUC of 0.577 and 0.595 respectively).

The results of support vector machines are less consistent with my expectations. I
expected that either a polynomial kernel, an RBF kernel or a sigmoid kernel would per-
form better on the abstract features compared to a linear kernel, because the number
of features is very small. Nevertheless, for both the abstract features and all features,
a linear kernel has the highest AUC. When the knowledge-poor features are used as
input, an SVM with a linear kernel performs worse than other algorithms.
According to figure 9a there is no algorithm that always has the highest precision for
any value for recall. When recall is higher than 0.5, the precision is more or less the
same for algorithms. In the left half of the graph, the linear regression curve is much
higher than all other curves. So, when you do not need high recall, linear regression
is the best option. In the second experiment (figure 9b), the linear regression curve is
almost always higher than any other curve. For very low values of recall, the support
vector machine has a very high precision, but this curve decreases exponentially after
the first threshold. Random forest is slightly worse than linear regression, but it is still
better than support vector machine and naive Bayes.

Between-experiment comparison
Figure 10 shows the curves belonging to combinations of input and algorithm with the
highest AUC of experiment 1 and experiment 2. This figure shows that the precision
is always higher (for any value for recall) in experiment 1. So I can conclude that the
machine learning methods perform better when the features are extracted from more
tweets. This is consistent with the idea that the results of machine learning become
more accurate when you use more data to extract features.

6 Conclusion

This section is mainly focussed on answering the research question. I will also look
back to this project and mention some limitations and restrictions. First, it was neces-
sary to adapt the research question. Initially, I wanted to make an artificial intelligence
model that can identifies potential customers based on tweets. It was hard to find a
ground truth for this study. The output of this model could not be compared to the pre-
dictions assigned by an annotator, because this annotator is also not sure if someone
is a potential customer. The dataset should consist of actual customers of a company
and people that will not be customers of this company. However, companies do not just
give a list of customers due to privacy reasons. Besides, this type of dataset is not yet
publicly available. I changed the research question, so I was going to make a model
that predicts whether the author of tweets can be a potential customer or not.

Second, I wanted to implement my own machine learning model. I was only able
to test this model to a small dataset in the first months, because not all data was an-
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notated yet. I received the complete dataset just within days before the deadline, so
this was a bit problematic. I observed that the results of classifying the entire dataset
were not good. Therefore, I have used Weka to use other algorithms (instead of my
own SVM implementation and without tuning), so I was able to compare results from
multiple algorithms.

Thirdly, the curves do not correspond to the AUCs in the tables. This is caused by
the fact that I have used other thresholds to compute the precision and recall. I have
used the curves that I have created to compare performance of algorithms in different
experiments, but I will use the AUCs from Weka to answer the research question.

The results show that there is no algorithm that is significantly better than other al-
gorithms when Twitter data is used for classification. The AUCs range from 0.538 to
0.605 in the first experiment and from 0.534 to 0.595 in the second experiment. In both
experiments, 2 out of 4 algorithms perform better when all features are used. There is
only one algorithm (naive Bayes in experiment 2) that performs best on the knowledge-
poor features. In both experiments, the performance does not significantly increase
when the unigrams and skip-bigrams are added to the abstract features. In some cases,
the performance decreases when the unigrams and skip-bigrams are added. I expected
that the performance of polynomial, RBF and sigmoid kernels would increase when the
number of features is increased, but that is only the case for the polynomial kernel in
both experiments and for the sigmoid kernel in experiment 1. A possible explanation
for these observations is that the knowledge-poor features offer too few information.
There are too many tokens that are used too little. The frequencies of most tokens are
the same, so it is very hard to find a strong pattern. In the second experiment when
there are less unigrams and skip-bigrams, the knowledge-poor features contribute in a
positive way.

For most algorithms I can conclude that they perform better when they can use more
data, except for linear regression. I think this makes sense because the linear rela-
tionship between attributes and output dissolves when the model uses more data to
compute the features. Usually, when the AUC is 0.5, the precision is 0.5 for each value
of recall, i.e. the performance is as good as random guessing. In this study, the preci-
sion of the best models for each algorithm is always higher than 50%. I can compare
this to the study of Hamroun et al. (2015) where they analyses customer intentions us-
ing semantic patterns. The precision in their study was 55.59% for a recall of 55.28%.
I do not know the precision for other values of recall, but based on these numbers, the
performance of the models that are trained in this study is more or less the same as the
performance of the model of Hamroun et al. (2015). Gupta et al. (2014) have created
a model that tries to identify purchase intentions from social posts on online fora. The
performance of their study is expressed in terms of area under the ROC curve (0.89).
Without knowing all results I cannot compare the performance of their model to the
performance of the models in my study.

To conclude, an artificial intelligence approach is not as good in predicting if someone
is a potential customer compared to human annotator. The best AI model is obtained
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by training on all data and using a random forest classifier to make the predictions.
A t-test for proportions shows that the performance of this model is not significantly
higher than the performance of the best model that is trained on a subset of the data:
p = 0.64552, so p > 0.05 (Z = 0.4564). However, the artificial intelligence models
are much faster than a human expert. Most models were trained within one minute,
whereas the human annotator needed days to annotate the data. Besides, a human an-
notator can become drowsy after reading many tweets. An artificial does not have this
disadvantage and can keep training models as long as we want. The models perform
better than random guessing. So, when we improve the features and tune the param-
eters of the machine learning models, AI can approach the performance of a human
expert to a higher extend.

7 Recommendations

This study can be extended in order to obtain more reliable results. One major im-
provement would be to deploy labels of users in a dataset that are not assigned by
a human expert to be potential customers, but users in the dataset being actual cus-
tomers. Instead of working with data from users that have used one or more keywords
in their tweets, one could take users who are known to have bought a specific product.
Such could be possible with the cooperation of a company having a list of customers
of one or more particular products. The customers should be offered a discount or
voucher if they give permission to use the tweets from a period of time before they
have purchased the product. This approach offers a ground truth for my original re-
search question, since the true classes are not based on predictions anymore but on the
fact that one is an actual customer.

Another issue that applies to my study as well as to the proposed extended study, is
the need for more time and computing capacity. The model starts by extracting fea-
tures from all tweets and by training a model. Applying this model to the test set should
be done in small steps in further research. The testing phase should start with just the
oldest tweet that is posted in the period that is used. The model returns a possibility
of a user belonging to either thePC class or the non-PC class. If this possibility is too
low, the model should be applied again, but now it should add the next tweet on the
timeline to the test set. This machine learning model can be really useful to compa-
nies when it is applied in real-time, since it detects customers as soon as possible. This
however was not feasible for my project as testing the model would require more time
than allowed by the project.

Finally, it would be an interesting study to investigate how important abstract features
are for the classification. Initially, I wanted to experiment with the number of features
that is used in this project, but all features were correlated, and randomly leaving out
some features is not a good approach. However, in another study one might experi-
ment with this. First, for each feature two separate models should be trained. One
model should be trained with a single feature and the other model should be trained
with all features except that single feature. This does not only show the importance of
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the feature, but also its contribution to the other features.
Another approach to investigate which features are most important is to test all possi-
ble combinations of features. This will need a lot more time and cannot be done using
a single device, since all the steps that I have described in my experiments have to
be repeated 2n − 1 times where n is the number of features. In my experiments that
means that all steps have to repeated 2047 times. However, when you know the most
important features and a model can be trained with just these features, it will reduce
the training time and increase the performance. Another approach to investigate the
importance of a feature is by training a decision tree model. This model will learn
which features can be used best to efficiently split the dataset.
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Appendix I: Weighted Product-Related and Purchase-Related
Keywords

Listing 1: keywords.csv

lamp, 1
light, 1
personal, 0.6
ambiance, 0.7
homework, 0.8
automatic, 0.6
motion, 0.6
buy, 1
purchase, 1
opinion, 0.5
sale, 0.7
for sale, 0.6
offer, 0.6
special offer, 0.6
sale on amazon, 0.5
hot price, 0.5
cheap, 0.5
discount, 0.8
best value, 0.6
amazon deal, 0.8
best deal, 0.8
looking for a deal, 0.7
snap deal, 0.5
want to buy, 0.8
need to buy, 0.8
want to try, 0.8
want to order, 0.8
thinkin to order, 0.8
thinking to order, 0.8
thinkin to try, 0.8
thinking to try, 0.8
thinkin to buy, 0.8
thinking to buy, 0.8
acquire, 0.7
need an advice, 1
work, 0.4
play, 0.4
night, 0.5
dark, 0.7
party, 0.8
firework, 0.7
sensor, 0.6
bought, 1
magic, 0.7
relax, 1
concentrate, 1
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help, 0.3
room, 0.6
ipad, 0.6
android, 0.7
iphone, 0.7
support, 0.8
custom, 0.4
scene, 0.8
early, 0.6
morning, 0.8
smart, 0.6
future, 0.6
home, 0.8
bulb, 0.6
new, 0.4
question, 0.1
glow, 0.2
app, 0.5
picture, 0.4
color, 0.4
brightness, 0.8
light color, 1
change light, 1
philips hue, 1
energy, 0.4
energy boost, 1
boost energy, 1
connected, 0.7
connected lamp, 1
hue go, 1
travel, 0.6
holiday, 0.6
camping, 0.6
camping light, 1
light schedule, 1
schedule light, 1
warm glow, 1
couch, 0.5
energize, 0.4
energize light, 1
cold, 0.4
chill, 0.6
cozy, 0.8
cozy glow, 1
dimmer, 1
easy to control, 1
control, 0.4
warm light, 1
wellness, 0.7
white light, 1
enlightening, 1
daily routine, 0.7
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mood, 0.6
turn on, 0.7
turn off, 0.8
automatic light, 1
automatic lamp, 1
motion sensor, 1
personal light, 1
personal lamp, 1

Appendix II: Weighted Twitter Accounts of Influencers

Listing 2: influencers.csv

tweethue, 1
philips, 1
philipspr, 0.7
philipslight, 1
philipslivefrom, 0.6
philips_uk, 0.8
PhilipsNA, 1
PhilipsLightIND, 0.8
PhilipsMenUK, 0.5
philipshuedev, 1
philipshue1, 1
AmbeeApp, 1
HueMenu, 1
HueDisco, 0.8
Huemote, 1
HueParty, 1
huecamera, 1
syncmylights, 0.8
nickisnpdx, 0.7
CancerGeek, 0.6
JohnNosta, 0.7
JoostMaltha, 1
pascalmeijer74, 1
RenateWijma, 1
jeroentas, 0.8
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Appendix II: Data Package

Listing 3: Tweet.java

package data;

import twitter4j.JSONException;
import twitter4j.JSONObject;

import java.util.Date;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 20/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class Tweet {

private final long ID;
private final String TEXT;
private final Date DATETIME;

public Tweet(long id, String text, Date datetime) {
this.ID = id;
this.TEXT = text;
this.DATETIME = datetime;

}

public JSONObject getJSONObject() {
JSONObject tweetObj = new JSONObject();
try {

tweetObj.put("id", ID);
tweetObj.put("text", TEXT);
tweetObj.put("datetime", DATETIME);

} catch (JSONException e) {
e.printStackTrace();

}
return tweetObj;

}

public String getText() {
return TEXT;

}

public long getID() {
return ID;

}

public Date getDateTime() { return DATETIME; }

@Override
public String toString() {
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StringBuilder sb = new StringBuilder(TEXT);
for (int i = 0; i < sb.length(); i++) {

if (sb.charAt(i) == ’@’) {
int start = i;
int end = sb.indexOf(" ", i) >=0 ? sb.indexOf(" ", i) :

sb.length();
sb.replace(start+1, end, "username");

}
}
return ID + ": " + sb.toString() + "(" + DATETIME + ")";

}
}

Listing 4: User.java

package data;

import java.util.ArrayList;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 20/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class User {

private final long ID;
private final String NAME;
private final String BIO;
private ArrayList<Tweet> timeline;
private long idFirstTweet;
private String sinceDate;
private double[] unigramFreqs;
private double[] skipBigramFreqs;
private int breakpoint;

private int label;

public User(long id, String name, String bio) {
this.ID = id;
this.NAME = name;
this.BIO = bio;
this.timeline = new ArrayList<>();

}

public void setSinceDate(String sinceDate) {
this.sinceDate = sinceDate;

}

public void setIdFirstTweet(long id) {
this.idFirstTweet = id;

}
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public long getIdFirstTweet() {
return idFirstTweet;

}

public void fillTimeline(Tweet tweet) {
timeline.add(tweet);

}

public org.json.simple.JSONObject getJSONObject() {
org.json.simple.JSONObject userObj = new org.json.simple.

JSONObject();

userObj.put("id", ID);
userObj.put("name", NAME);
userObj.put("bio", BIO);

org.json.simple.JSONArray timelineArray = new org.json.simple.
JSONArray();

for (Tweet tweet : timeline) {
timelineArray.add(tweet.getJSONObject());

}
userObj.put("timeline", timelineArray);
return userObj;

}

public long getID() {
return ID;

}

public String getName() {
return NAME;

}

public ArrayList<Tweet> getTimeline() {
return timeline;

}

public int getLabel() {
return label;

}

public void setLabel(int label) {
this.label = label;

}

public void setBreakpoint(int breakpoint) { this.breakpoint =
breakpoint; }

public int getBreakpoint() { return breakpoint; }

public void setUnigramFreqs(double[] unigramFreqs) {
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this.unigramFreqs = unigramFreqs;
}

public void setSkipBigramFreqs(double[] skipBigramFreqs) {
this.skipBigramFreqs = skipBigramFreqs;

}

public double[] getUnigramFreqs() {
return unigramFreqs;

}

public double[] getSkipBigramFreqs() {
return skipBigramFreqs;

}

@Override
public String toString() {

StringBuilder sb = new StringBuilder();
sb.append("Account: " + NAME);
sb.append("\n");
for (Tweet tweet : timeline) {

sb.append(tweet.toString());
sb.append("\n");

}
return sb.toString();

}

@Override
public boolean equals(Object o) {

if (o == null) return false;
if (o.getClass() != this.getClass()) return false;

User tempUser = (User) o;
return tempUser.getID() == getID();

}

}

Listing 5: SkipGram.java

package data;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 07/11/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class SkipGram {

private final String string1, string2;

public SkipGram(String s1, String s2) {
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this.string1 = s1;
this.string2 = s2;

}

@Override
public boolean equals(Object o) {

if (o == null) return false;
if (o.getClass() != this.getClass()) return false;

SkipGram tempSG = (SkipGram) o;
return (tempSG.getString1().equals(this.string1) && tempSG.

getString2().equals(this.string2)) ||
(tempSG.getString1().equals(this.string2) && tempSG.

getString2().equals(this.string1) );
}

public String getString1() {
return string1;

}
public String getString2() {

return string2;
}

@Override
public String toString() {

return "(" + string1 + ", " + string2 + ")";
}

}

Listing 6: WeightedPair.java

package data;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 29/11/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class WeightedPair {

private final String word;
private final double weight;

public WeightedPair(String word, double weight) {
this.word = word;
this.weight = weight;

}

public String getWord() {
return word;

}
public double getWeight() {
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return weight;
}

}
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Appendix III: Util Package

Listing 7: JSONReader.java

package util;

import data.Tweet;
import data.User;
import main.Main;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;
import org.json.simple.parser.ParseException;

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 26/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class JSONReader {

private final String path;
private final JSONParser parser = new JSONParser();

public JSONReader(String path) {
this.path = path;

}

/**
* Read dataset from json
* @return list of users, each with a timeline of tweets
*/
public ArrayList<User> readJSON() {

System.out.println(Main.GREEN + "> Reading tweets from JSON
file." + Main.RESET);

ArrayList<User> users = new ArrayList<>();
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss");
try {

Object obj = parser.parse(new FileReader(path));
JSONObject jsonObject = (JSONObject) obj;
JSONArray dataArray = (JSONArray) jsonObject.get("data");

Iterator<JSONObject> iterator = dataArray.iterator();
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System.out.println(Main.GREEN + "> Parsing user" + Main.
RESET);

while (iterator.hasNext()) {

JSONObject userObject = iterator.next();
String bio = (String) userObject.get("bio");
String user_id = (String) userObject.get("id");
String name = (String) userObject.get("name");
User u = new User(Long.parseLong(user_id), name, bio);

String label = (String) userObject.get("label");
u.setLabel(Integer.parseInt(label));
int breakpoint = (int) userObject.get("at_tweet");
u.setBreakpoint(breakpoint);

JSONArray timeline = (JSONArray) userObject.get("
timeline");

Iterator<JSONObject> iterator_timeline = timeline.
iterator();

while (iterator_timeline.hasNext()) {
JSONObject tweetObject = iterator_timeline.next();
Date datetime = dateFormat.parse((String) tweetObject

.get("datetime"));
String tweet_id = (String) tweetObject.get("id");
String text = (String) tweetObject.get("text");
u.fillTimeline(new Tweet(Long.parseLong(tweet_id),

text, datetime));
}
users.add(u);

}

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (ParseException e) {
e.printStackTrace();

} catch (java.text.ParseException e) {
e.printStackTrace();

}
return users;

}

public ArrayList<User> readJSON(int experiment) {
System.out.println(Main.GREEN + "> Reading tweets from JSON

file." + Main.RESET);
ArrayList<User> users = new ArrayList<>();
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss");
try {

Object obj = parser.parse(new FileReader(path));
JSONObject jsonObject = (JSONObject) obj;
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JSONArray dataArray = (JSONArray) jsonObject.get("data");

Iterator<JSONObject> iterator = dataArray.iterator();
System.out.println(Main.GREEN + "> Parsing user" + Main.

RESET);
while (iterator.hasNext()) {

JSONObject userObject = iterator.next();
String bio = (String) userObject.get("bio");
String user_id = (String) userObject.get("id");
String name = (String) userObject.get("name");
User u = new User(Long.parseLong(user_id), name, bio);

String label = (String) userObject.get("label");
u.setLabel(Integer.parseInt(label));
String breakpoint = (String) userObject.get("at_tweet");
u.setBreakpoint(Integer.parseInt(breakpoint));

JSONArray timeline = (JSONArray) userObject.get("
timeline");

Iterator<JSONObject> iterator_timeline = timeline.
iterator();

if (experiment == 1) {
while (iterator_timeline.hasNext()) {

JSONObject tweetObject = iterator_timeline.next()
;

Date datetime = dateFormat.parse((String)
tweetObject.get("datetime"));

String tweet_id = (String) tweetObject.get("id");
String text = (String) tweetObject.get("text");
u.fillTimeline(new Tweet(Long.parseLong(tweet_id)

, text, datetime));
}

} else {
int count = 1;
while (iterator_timeline.hasNext()) {

JSONObject tweetObject = iterator_timeline.next()
;

if (count >= Integer.parseInt(breakpoint)) {
Date datetime = dateFormat.parse((String)

tweetObject.get("datetime"));
String tweet_id = (String) tweetObject.get("

id");
String text = (String) tweetObject.get("text"

);
u.fillTimeline(new Tweet(Long.parseLong(

tweet_id), text, datetime));
}
count++;

}
}

44



users.add(u);
}

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (ParseException e) {
e.printStackTrace();

} catch (java.text.ParseException e) {
e.printStackTrace();

}
return users;

}
}

Listing 8: PairReader.java

package util;

import data.WeightedPair;
import main.Main;
import org.apache.lucene.search.Weight;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 28/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class PairReader {

public PairReader() {}

/**
* Read combinations of keyword and weights.
* @param path path to files
* @return list of pairs
*/
public ArrayList<WeightedPair> readPairsFromFile(String path) {

ArrayList<WeightedPair> pairs = new ArrayList<>();
try (BufferedReader br = new BufferedReader(new FileReader(path

))) {
String line;
while ((line = br.readLine()) != null) {

String[] values = line.split(",");
double weight = 0.0;
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try {
weight = Double.parseDouble(values[1]);

} catch(NumberFormatException nfe) {
System.out.println(Main.RED + "Invalid csv file: " +

path + Main.RESET);
}
pairs.add(new WeightedPair(values[0], weight));

}

} catch (IOException ignored) {}
return pairs;

}

public boolean canOpenFile(String path) {
File keywordsFile = new File(path);
if (!keywordsFile.exists())

return false;
return true;

}

}

Listing 9: SentimentClassifier.java

package util;

import twitter4j.JSONArray;
import twitter4j.JSONException;
import twitter4j.JSONObject;

import com.google.appengine.repackaged.org.apache.http.HttpResponse;
import com.google.appengine.repackaged.org.apache.http.client.

HttpClient;
import com.google.appengine.repackaged.org.apache.http.client.methods.

HttpPost;
import com.google.appengine.repackaged.org.apache.http.entity.

StringEntity;
import com.google.appengine.repackaged.org.apache.http.impl.client.

DefaultHttpClient;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 27/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class SentimentClassifier {

public SentimentClassifier() {
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}

/**
* Create a request for getting the sentiment of a tweet
* @param tweet tweet to classify
* @param topic topic that is used as extra parameter
* @return integer representing the sentiment
*/
public int classify(String tweet, String topic) {

HttpClient httpClient = new DefaultHttpClient();
HttpResponse response = null;
int sentiment = -999;
try {

HttpPost request = new HttpPost("http://www.sentiment140.com
/api/bulkClassifyJson?appid=martijn.oele@student.ru.nl");

StringEntity params =new StringEntity("{\"data\"=[{\"text
\":\""+tweet+"\", \"topic\":\""+topic+"\"}]}");

request.addHeader("content-type", "application/json");
request.addHeader("Accept","application/json");
request.setEntity(params);
response = httpClient.execute(request);

sentiment = parseJSONResult(response);
}catch (Exception ex) {
} finally {

httpClient.getConnectionManager().shutdown();
}
return sentiment;

}

public int classify(String tweet) {
return classify(tweet, "");

}

/**
* Parse JSON output from sentiment classifier website.
* @param response json response
* @return integer representing the sentiment
*/
public int parseJSONResult(HttpResponse response) {

BufferedReader reader ;
int sentiment = -999;

try {
reader = new BufferedReader(new InputStreamReader(response.

getEntity().getContent(), "UTF-8"));
StringBuilder builder = new StringBuilder();
for (String line; (line = reader.readLine()) != null;) {

builder.append(line).append("\n");
}
if (!builder.toString().equals("")) {

JSONObject jsonObject = new JSONObject(builder.toString
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());
JSONArray myResponse = jsonObject.getJSONArray("data");

for(int i=0; i<myResponse.length(); i++){
sentiment = Integer.parseInt(myResponse.getJSONObject

(i).getString("polarity"));
}

}

} catch (IOException e) {
e.printStackTrace();

} catch (JSONException e) {
e.printStackTrace();

}
return sentiment;

}
}

Listing 10: Tagger.java

package util;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import cmu.arktweetnlp.Twokenize;
import cmu.arktweetnlp.impl.Model;
import cmu.arktweetnlp.impl.ModelSentence;
import cmu.arktweetnlp.impl.Sentence;
import cmu.arktweetnlp.impl.features.FeatureExtractor;

/**
* Tagger object -- wraps up the entire tagger for easy usage from Java

.
*
* To use:
*
* (1) call loadModel().
*
* (2) call tokenizeAndTag() for every tweet.
*
* See main() for example code.
*
* (Note RunTagger.java has a more sophisticated runner.
* This class is intended to be easiest to use in other applications.)
*/
public class Tagger {

public Model model;
public FeatureExtractor featureExtractor;
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/**
* Loads a model from a file. The tagger should be ready to tag

after calling this.
* @param modelFilename
* @throws IOException
*/
public void loadModel(String modelFilename) throws IOException {

model = Model.loadModelFromText(modelFilename);
featureExtractor = new FeatureExtractor(model, false);

}

/**
* One token and its tag.
**/
public static class TaggedToken {

public String token;
public String tag;

}

/**
* Run the tokenizer and tagger on one tweet’s text.
**/
public List<TaggedToken> tokenizeAndTag(String text) {

if (model == null) throw new RuntimeException("Must loadModel()
first before tagging anything");

List<String> tokens = Twokenize.tokenizeRawTweetText(text);

Sentence sentence = new Sentence();
sentence.tokens = tokens;
ModelSentence ms = new ModelSentence(sentence.T());
featureExtractor.computeFeatures(sentence, ms);
model.greedyDecode(ms, false);

ArrayList<TaggedToken> taggedTokens = new ArrayList<TaggedToken
>();

for (int t=0; t < sentence.T(); t++) {
TaggedToken tt = new TaggedToken();
tt.token = tokens.get(t);
tt.tag = model.labelVocab.name( ms.labels[t] );
taggedTokens.add(tt);

}

return taggedTokens;
}

}

Listing 11: Extractor.java

package util;
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import data.SkipGram;
import data.Tweet;
import data.User;
import main.Main;

import java.text.Normalizer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 05/12/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class Extractor {

/**
* Create a list of all unigrams from all timelines in the dataset.
* @param tagger tagger that is used to assign tags to tokens.
* @param users dataset
* @return list of unigrams
*/
public static ArrayList<String> extractUnigrams(Tagger tagger,

ArrayList<User> users) {
ArrayList<String> unigrams = new ArrayList<>();
System.out.print(Main.GREEN + "> Storing all unigrams" + Main.

RESET);
for (User u : users) {

for (Tweet tweet : u.getTimeline()) {
List<Tagger.TaggedToken> taggedTokens = tagger.

tokenizeAndTag(tweet.getText());
for (Tagger.TaggedToken taggedToken : taggedTokens) {

if (!taggedToken.tag.equals("U")) {
String token = Normalizer.normalize(taggedToken.

token, Normalizer.Form.NFC);
token = token.replaceAll("[^\\p{ASCII}]", "").

toLowerCase();

if (!unigrams.contains(token))
unigrams.add(token);

}
}

}
}
int[] unigramFreqs = new int[unigrams.size()];
Arrays.fill(unigramFreqs, 0);
int totalNumberOfTokens = 0;

for (User u : users) {
for (Tweet tweet : u.getTimeline()) {
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List<Tagger.TaggedToken> taggedTokens = tagger.
tokenizeAndTag(tweet.getText());

totalNumberOfTokens += taggedTokens.size();
for (Tagger.TaggedToken taggedToken : taggedTokens) {

if (!taggedToken.tag.equals("U")) {
String token = Normalizer.normalize(taggedToken.

token, Normalizer.Form.NFC);
token = token.replaceAll("[^\\p{ASCII}]", "").

toLowerCase();
if (unigrams.contains(token)) {

int index = unigrams.indexOf(token);
unigramFreqs[index]++;

}
}

}
}

}

ArrayList<String> filtered_unigrams = new ArrayList<>();
for (int i = 0; i < unigramFreqs.length; i++) {

if (unigramFreqs[i] > 3) {
filtered_unigrams.add(unigrams.get(i));

}
}
System.out.print(" (" + filtered_unigrams.size() + " items) \n"

);
return filtered_unigrams;

}

/**
* Create a list of all skip-bigrams from all timelines in the

dataset.
* @param tagger tagger that is used to assign tags to tokens.
* @param users dataset
* @return list of skip-bigrams
*/
public static ArrayList<SkipGram> extractSkipBigrams(Tagger tagger,

ArrayList<User> users) {
ArrayList<SkipGram> skipBigrams = new ArrayList<>();

System.out.print(Main.GREEN + "> Storing all skip-bigrams" +
Main.RESET);

for (User u : users) {
for (Tweet tweet : u.getTimeline()) {

List<Tagger.TaggedToken> taggedTokens = tagger.
tokenizeAndTag(tweet.getText());

ArrayList<String> tempTokens = new ArrayList<>();
for (Tagger.TaggedToken taggedToken : taggedTokens) {

if (!taggedToken.tag.equals("U") && !taggedToken.tag.
equals("@")) {
String token = Normalizer.normalize(taggedToken.

token, Normalizer.Form.NFC);
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token = token.replaceAll("[^\\p{ASCII}]", "").
toLowerCase();

tempTokens.add(token);
}

}
for (int i = 0; i < tempTokens.size()-1; i++) {

for (int j = i + 1; j < tempTokens.size()-1; j++) {
SkipGram sg = new SkipGram(tempTokens.get(i),

tempTokens.get(j));
if (!skipBigrams.contains(sg))

skipBigrams.add(sg);
}

}
}

}

double[] skipBigramFreqs = new double[skipBigrams.size()];
Arrays.fill(skipBigramFreqs, 0.0);
int totalNumberOfTokens = 0;
for (User u : users) {

for (Tweet tweet : u.getTimeline()) {
List<Tagger.TaggedToken> taggedTokens = tagger.

tokenizeAndTag(tweet.getText());
totalNumberOfTokens += taggedTokens.size();
ArrayList<String> tempTokens = new ArrayList<>();
for (Tagger.TaggedToken taggedToken : taggedTokens) {

if (!taggedToken.tag.equals("U") && !taggedToken.tag.
equals("@")) {
String token = Normalizer.normalize(taggedToken.

token, Normalizer.Form.NFC);
token = token.replaceAll("[^\\p{ASCII}]", "").

toLowerCase();
tempTokens.add(token);

}
}

for (int i = 0; i < tempTokens.size(); i++) {
for (int j = i+1; j < tempTokens.size(); j++) {

SkipGram sg = new SkipGram(tempTokens.get(i),
tempTokens.get(j));

if (skipBigrams.contains(sg)) {
int index = skipBigrams.indexOf(sg);
skipBigramFreqs[index]++;

}
}

}
}

}

ArrayList<SkipGram> filtered_skipbigrams = new ArrayList<>();
for (int i = 0; i < skipBigramFreqs.length; i++) {

if (skipBigramFreqs[i] > 3) {
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filtered_skipbigrams.add(skipBigrams.get(i));
}

}
System.out.print(" (" + filtered_skipbigrams.size() + " items)

\n");
return filtered_skipbigrams;

}

/**
* Count all unigrams for a user.
* @param tagger tagger that is used to assign tags to tokens.
* @param u user
* @param unigrams list of all unigrams
*/
public static void countUnigrams(Tagger tagger, User u, ArrayList<

String> unigrams) {
System.out.println("\t> Counting unigrams");
double[] unigramFreqs = new double[unigrams.size()];
Arrays.fill(unigramFreqs, 0.0);
int totalNumberOfTokens = 0;

for (Tweet tweet : u.getTimeline()) {
List<Tagger.TaggedToken> taggedTokens = tagger.

tokenizeAndTag(tweet.getText());
totalNumberOfTokens += taggedTokens.size();
for (Tagger.TaggedToken taggedToken : taggedTokens) {

if (!taggedToken.tag.equals("U")) {
String token = Normalizer.normalize(taggedToken.token

, Normalizer.Form.NFC);
token = token.replaceAll("[^\\p{ASCII}]", "").

toLowerCase();
if (unigrams.contains(token)) {

int index = unigrams.indexOf(token);
unigramFreqs[index]++;

}
}

}
}

for (int i = 0; i < unigramFreqs.length; i++)
unigramFreqs[i] = unigramFreqs[i]/totalNumberOfTokens;

u.setUnigramFreqs(unigramFreqs);
}

/**
* Count all skip-bigrams for a user.
* @param tagger tagger that is used to assign tags to tokens.
* @param u user
* @param skipBigrams list of all skip-bigrams
*/
public static void countSkipBigrams(Tagger tagger, User u,

ArrayList<SkipGram> skipBigrams) {

53



System.out.println("\t> Counting skip-bigrams");
double[] skipBigramFreqs = new double[skipBigrams.size()];
Arrays.fill(skipBigramFreqs, 0);

int totalNumberOfTokens = 0;

for (Tweet tweet : u.getTimeline()) {
List<Tagger.TaggedToken> taggedTokens = tagger.

tokenizeAndTag(tweet.getText());
totalNumberOfTokens += taggedTokens.size();
ArrayList<String> tempTokens = new ArrayList<>();
for (Tagger.TaggedToken taggedToken : taggedTokens) {

if (!taggedToken.tag.equals("U") && !taggedToken.tag.
equals("@")) {
String token = Normalizer.normalize(taggedToken.token

, Normalizer.Form.NFC);
token = token.replaceAll("[^\\p{ASCII}]", "").

toLowerCase();
tempTokens.add(token);

}
}

for (int i = 0; i < tempTokens.size(); i++) {
for (int j = i+1; j < tempTokens.size(); j++) {

SkipGram sg = new SkipGram(tempTokens.get(i),
tempTokens.get(j));

if (skipBigrams.contains(sg)) {
int index = skipBigrams.indexOf(sg);
skipBigramFreqs[index]++;

}
}

}
}

for (int i = 0; i < skipBigramFreqs.length; i++)
skipBigramFreqs[i] = skipBigramFreqs[i]/totalNumberOfTokens;

u.setSkipBigramFreqs(skipBigramFreqs);
}

}

Listing 12: FeatureReader.java

package util;

import main.Main;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;

/**

54



* Created by Martijn Oele (martijn.oele@student.ru.nl) on 10/01/2017.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class FeatureReader {

private final String path;
private ArrayList<ArrayList<Double>> unigramFreqs;
private ArrayList<ArrayList<Double>> skipBigramFreqs;
private ArrayList<ArrayList<Double>> abstractFeatures;
private ArrayList<ArrayList<String>> usersInfo;

public FeatureReader(String path) {
this.path = path;

try {
unigramFreqs = normalizeDoubles(readFeatures("

unigram_features.csv"));
skipBigramFreqs = normalizeDoubles(readFeatures("

skipbigram_features.csv"));
abstractFeatures = normalizeDoubles(readFeatures("

abstract_features.csv", 9));
usersInfo = readUsersInfo("users_info.csv");

} catch (IOException e) {
e.printStackTrace();

}
}

public int getSize() {
return usersInfo.size();

}

private ArrayList<ArrayList<Double>> subList(ArrayList<ArrayList<
Double>> list, int from, int to) {
ArrayList<ArrayList<Double>> subList = new ArrayList<>();
for (int i = from; i < to; i++) {

subList.add(list.get(i));
}
return subList;

}

private ArrayList<ArrayList<String>> subListString(ArrayList<
ArrayList<String>> list, int from, int to) {
ArrayList<ArrayList<String>> subList = new ArrayList<>();
for (int i = from; i < to; i++) {

subList.add(list.get(i));
}
return subList;

}

public ArrayList<ArrayList<Double>> getUni(int from, int to) {
if (to < from) {

ArrayList<ArrayList<Double>> list = subList(unigramFreqs,
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from, unigramFreqs.size());
list.addAll(subList(unigramFreqs, 0, to));
return list;

}
return subList(unigramFreqs, from, to);

}
public ArrayList<ArrayList<Double>> getSkip(int from, int to) {

if (to < from) {
ArrayList<ArrayList<Double>> list = subList(skipBigramFreqs,

from, skipBigramFreqs.size());
list.addAll(subList(skipBigramFreqs, 0, to));
return list;

}
return subList(skipBigramFreqs, from, to);

}
public ArrayList<ArrayList<Double>> getAbstr(int from, int to) {

System.out.println(from);
System.out.println(to);
if (to < from) {

ArrayList<ArrayList<Double>> list = subList(abstractFeatures
, from, abstractFeatures.size());

list.addAll(subList(abstractFeatures, 0, to));
return list;

}
return subList(abstractFeatures, from, to);

}
public ArrayList<ArrayList<String>> getUsers(int from, int to) {

if (to < from) {
ArrayList<ArrayList<String>> list = subListString(usersInfo,

from, usersInfo.size());
list.addAll(subListString(usersInfo, 0, to));
return list;

}
return subListString(usersInfo, from, to);

}

private ArrayList<ArrayList<Double>> readFeatures(String filename,
int max) throws IOException {
System.out.println(Main.GREEN + "> Read features from file " +

Main.RESET + "[" + filename + "]");
ArrayList<ArrayList<Double>> features = new ArrayList<>();
String fileToParse = path + "/features/" + filename;
BufferedReader fileReader = null;

final String DELIMITER = ",";

fileReader = new BufferedReader(new FileReader(fileToParse));
String line;
while ((line = fileReader.readLine()) != null) {

ArrayList<Double> subList = new ArrayList<>();
String[] tokens = line.split(DELIMITER);
for (int n = 0; n < max; n++)
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subList.add(Double.parseDouble(tokens[n]));
features.add(subList);

}
fileReader.close();
return features;

}

private ArrayList<ArrayList<Double>> readFeatures(String filename)
throws IOException {
System.out.println(Main.GREEN + "> Read features from file " +

Main.RESET + "[" + filename + "]");
ArrayList<ArrayList<Double>> features = new ArrayList<>();
String fileToParse = path + "/features/" + filename;
BufferedReader fileReader = null;

final String DELIMITER = ",";

fileReader = new BufferedReader(new FileReader(fileToParse));
String line;
while ((line = fileReader.readLine()) != null) {

ArrayList<Double> subList = new ArrayList<>();
String[] tokens = line.split(DELIMITER);
for (String token : tokens)

subList.add(Double.parseDouble(token));
features.add(subList);

}
fileReader.close();
return features;

}

private ArrayList<ArrayList<String>> readUsersInfo(String filename)
throws IOException {
ArrayList<ArrayList<String>> usersInfo = new ArrayList<>();
String fileToParse = path + "/features/" + filename;
BufferedReader fileReader = null;

final String DELIMITER = ",";

fileReader = new BufferedReader(new FileReader(fileToParse));
String line;
while ((line = fileReader.readLine()) != null)
{

ArrayList<String> subList = new ArrayList<>();
String[] tokens = line.split(DELIMITER);
for(String token : tokens)

subList.add(token);
usersInfo.add(subList);

}
fileReader.close();
return usersInfo;

}
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private ArrayList<ArrayList<Double>> normalizeDoubles(ArrayList<
ArrayList<Double>> data) {
System.out.println(Main.GREEN + "> Normalizing data" + Main.

RESET);
ArrayList<ArrayList<Double>> norm_data = new ArrayList<>();
double dataHigh = 0, dataLow = 9999;

for (ArrayList<Double> features : data) {
for (Double feature : features) {

if (feature > dataHigh)
dataHigh = feature;

if (feature < dataLow)
dataLow = feature;

}
ArrayList<Double> norm_features = new ArrayList<>();
for (Double feature : features) {

norm_features.add(scale(feature, -1, 1, dataLow,
dataHigh));

}
norm_data.add(norm_features);

}
return norm_data;

}

private double scale(double unscaled, double min, double max,
double dataLow, double dataHigh) {
return (max - min) * (unscaled - dataLow) / (dataHigh - dataLow

) + min;
}

}
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Appendix IV: TweetManager Package

Listing 13: TweetManager.java

package tweetmanager;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URLEncoder;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import data.User;
import main.Main;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.HttpClientBuilder;
import org.json.JSONObject;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;
import twitter4j.*;

/**
* Class to getting tweets based on username and optional time

constraints
*
* @author Jefferson Henrique
*/
public class TweetManager {

/**
* @param username A specific username (without @)
* @param since Lower bound date (yyyy-mm-dd)
* @param until Upper bound date (yyyy-mm-dd)
* @param scrollCursor (Parameter used by Twitter to do pagination of

results)
* @return JSON response used by Twitter to build its results
* @throws Exception
*/
private static String getURLResponse(String username, String since,

String until, String querySearch, String lang, String scrollCursor
) throws Exception {

String appendQuery = "";
if (username != null)
appendQuery += "from:"+username;

if (since != null)
appendQuery += " since:"+since;

if (until != null)
appendQuery += " until:"+until;
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if (querySearch != null)
appendQuery += " "+querySearch;

if (lang != null)
appendQuery += " lang:"+lang;

String url = String.format("https://twitter.com/i/search/timeline?f
=realtime&q=%s&src=typd&max_position=%s", URLEncoder.encode(
appendQuery, "UTF-8"), scrollCursor);

HttpClient client = HttpClientBuilder.create().build();
HttpGet request = new HttpGet(url);
HttpResponse response = client.execute(request);
BufferedReader rd = new BufferedReader(new InputStreamReader(

response.getEntity().getContent()));

StringBuffer result = new StringBuffer();
String line;
while ((line = rd.readLine()) != null) {

result.append(line);
}

return result.toString();
}

public static List<User> getUsers(TwitterCriteria criteria) {
List<User> results = new ArrayList<>();

try {
String refreshCursor = null;
outerLace: while (true) {

JSONObject json = new JSONObject(getURLResponse(criteria.
getUsername(), criteria.getSince(), criteria.getUntil(),
criteria.getQuerySearch(), criteria.getLang(), refreshCursor
));

refreshCursor = json.getString("min_position");
Document doc = Jsoup.parse((String) json.get("items_html

"));
Elements tweets = doc.select("div.js-stream-tweet");

if (tweets.size() == 0)
break;

for (Element tweet : tweets) {
String username = tweet.select("span.username.js-action-

profile-name b").text();
String id = tweet.attr("data-tweet-id");
long dateMs = Long.valueOf(tweet.select("small.time

span.js-short-timestamp").attr("data-time-ms"));
Date date = new Date(dateMs);

Twitter twitter = TwitterFactory.getSingleton();
twitter4j.User twUser = twitter.showUser(username);
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User u = new User(twUser.getId(), twUser.
getScreenName(), twUser.getDescription());

u.setIdFirstTweet(Long.parseLong(id));
u.setSinceDate(date.toString());
if (!results.contains(u))

results.add(u);

if (criteria.getMaxTweets() > 0 && results.size() >=
criteria.getMaxTweets())
break outerLace;

System.out.print(".");
}

}
} catch (Exception e) {

e.printStackTrace();
}

System.out.print("\n");
return results;

}

public static List<Status> getNTweets(long user_id, int n, long
first_id) {

Twitter twitter = new TwitterFactory().getInstance();
List statuses = new ArrayList();
int pageno = 1;

while (true) {
try {
int size = statuses.size();
long sinceId = new Double(first_id * 0.995).longValue();
Paging page = new Paging(pageno++, n).sinceId(sinceId);
statuses.addAll(twitter.getUserTimeline(user_id, page));
if (statuses.size() == size)
break;

}
catch(TwitterException e) {
System.out.println(Main.RED + "Rate limit exceeded. Program

will sleep until limit has been reset." + Main.RESET);
try {
Thread.sleep(900 * 1000);

} catch(InterruptedException ex) {
Thread.currentThread().interrupt();

}
}

}

Status lastStatus = (Status) statuses.get(0);
Date startDate = lastStatus.getCreatedAt();
for (Object o : statuses) {
Status status = (Status) o;
if (status.getId() == first_id)

61



startDate = status.getCreatedAt();
}

ArrayList<Status> result = new ArrayList<>();
int tweetsBeforeMention = 0;
for (Object o : statuses) {
Status status = (Status) o;
Date statusDate = status.getCreatedAt();
int daysBetween = daysBetween(startDate, statusDate);
if ( (daysBetween <= 61) && (daysBetween >= 0))
result.add(status);

else if (daysBetween >= -10 && tweetsBeforeMention <= 20) {
result.add(status);
tweetsBeforeMention++;

}
}
if (result.size() >= n)
return result.subList(result.size()-n, result.size());

else if (result.size() >= 40)
return result;

else
return null;

}

public static int daysBetween(Date d1, Date d2){
if (d2.getTime() >= d1.getTime())
return (int)( (d2.getTime() - d1.getTime()) / (1000 * 60 * 60 *

24));
else
return (int)( -1 * (d1.getTime() - d2.getTime()) / (1000 * 60 *

60 * 24));
}

}

Listing 14: TwitterCriteria.java

package tweetmanager;

/**
* A class to guide how the tweets must be searched on {@link

TweetManager}
*
* @author Jefferson Henrique
*
*/
public class TwitterCriteria {

private String username;
private String since;
private String until;
private String querySearch;

62



private String lang;
private int maxTweets;

private TwitterCriteria() {
}

public static TwitterCriteria create() {
return new TwitterCriteria();

}

/**
* @param username (whitout @) Username of a specific twitter account
*
* @return Current {@link TwitterCriteria}
*/
public TwitterCriteria setUsername(String username) {
this.username = username;
return this;

}

/**
* @param since The lower bound date (yyyy-mm-aa)
*
* @return Current {@link TwitterCriteria}
*/
public TwitterCriteria setSince(String since) {
this.since = since;
return this;

}

/**
* @param until The upper bound date (yyyy-mm-aa)
*
* @return Current {@link TwitterCriteria}
*/
public TwitterCriteria setUntil(String until) {
this.until = until;
return this;

}

/**
* @param querySearch A query text to be matched
*
* @return Current TwitterCriteria
*/
public TwitterCriteria setQuerySearch(String querySearch) {
this.querySearch = querySearch;
return this;

}

/**
* @param maxTweets The maximum number of tweets to retrieve
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*
* @return Current {@link TwitterCriteria}
*/
public TwitterCriteria setMaxTweets(int maxTweets) {
this.maxTweets = maxTweets;
return this;

}

public TwitterCriteria setLang(String lang) {
this.lang = lang;
return this;

}

String getUsername() {
return username;

}

String getSince() {
return since;

}

String getUntil() {
return until;

}

String getQuerySearch() {
return querySearch;

}

int getMaxTweets() {
return maxTweets;

}

String getLang() { return lang; }

}
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Appendix V: Algorithm Package

Listing 15: Main.java

package main;

import algorithm.FeatureExtractor;
import algorithm.Tester;
import algorithm.Trainer;
import algorithm.TweetCollector;
import data.WeightedPair;
import libsvm.svm;
import libsvm.svm_model;
import org.apache.http.impl.client.FutureRequestExecutionMetrics;
import util.FeatureReader;
import util.PairReader;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 20/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class Main {

public static final String RED = "\u001B[31m";
public static final String GREEN = "\u001B[32m";
public static final String RESET = "\u001B[0m";
private ArrayList<WeightedPair> keywords;
private ArrayList<WeightedPair> influencers;
private svm_model uniModel, skipModel, finalModel;
private int[] parameter_options;

// ----------------------------------------------------------------
private String WORKING_DIRECTORY = "/Users/Martijn/Documents/Thesis

/";
private static ArrayList<String> SELECTION_KEYWORDS = new ArrayList

<>();
private static final int NUMBER_OF_USERS = 300;
private static final int MAX_NUMBER_OF_TWEETS_PER_USER = 80;
private static final String UNTIL_DATE = "2016-10-01";
// ----------------------------------------------------------------

public Main() {

}

private void start() {
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System.out.println("Identifying Potential Customers in Tweets (
Martijn Oele)");

readFilePath();
SELECTION_KEYWORDS.add("\"personal light\"");
SELECTION_KEYWORDS.add("\"personal lamp\"");
SELECTION_KEYWORDS.add("\"ambiance light\"");
SELECTION_KEYWORDS.add("\"automatic light\"");
SELECTION_KEYWORDS.add("\"homework ambiance\"");
if (haveReadFiles()) {

int input = 1;
while (input != 0) {

showMenu();
input = readInput();
processInput(input);

}
}

}

private void showMenu() {
System.out.println("------------------------");
System.out.println(" MENU");
System.out.println("------------------------");
System.out.println(" 1)\tCrawl tweets");
System.out.println(" 2)\tExtract features experiment 1");
System.out.println(" 3)\tExtract features experiment 2");
System.out.println(" 4)\tTrain & Test experiments");
System.out.println(" 0)\tExit");
System.out.println("------------------------");

}

private int readInput() {
int input;
while(true) {

System.out.print("Enter choice: ");
try {

input = new Scanner(System.in).nextInt();
if(input == 1 || input == 2 || input == 3 || input == 4

|| input == 0)
return input;

}
catch (Exception e) {

System.out.println(RED + "> Please enter a number." +
RESET);

}
}

}

private void readFilePath() {
System.out.print("Enter path to directory <Leave empty for

default path>: ");
String input = new Scanner(System.in).nextLine();
if (!input.equals(""))
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this.WORKING_DIRECTORY = input;
}

private boolean haveReadFiles() {
PairReader pr = new PairReader();
if (pr.canOpenFile(this.WORKING_DIRECTORY + "keywords.txt")) {

System.out.println(GREEN + "Reading keywords from file" +
RESET);

this.keywords = pr.readPairsFromFile(this.WORKING_DIRECTORY
+ "keywords.txt");

} else {
System.out.println(RED + "Can not read keywords from file" +

RESET);
return false;

}
if (pr.canOpenFile(this.WORKING_DIRECTORY + "influencers.txt"))

{
System.out.println(GREEN + "Reading influencers from file" +

RESET);
this.influencers = pr.readPairsFromFile(this.

WORKING_DIRECTORY + "influencers.txt");
} else {

System.out.println(RED + "Can not read influencers from file
" + RESET);

return false;
}

return true;
}

private void processInput(int input) {
switch(input) {

case 1:
collect();
break;

case 2:
extract(1);
break;

case 3:
extract(2);
break;

case 4:
train();
break;

default: break;
}
System.out.println("");

}

private void collect() {
TweetCollector tc = new TweetCollector(SELECTION_KEYWORDS);
tc.collectUsers(NUMBER_OF_USERS, UNTIL_DATE);
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tc.collectTweets(MAX_NUMBER_OF_TWEETS_PER_USER);
tc.storeTweets(WORKING_DIRECTORY);

}

private void extract(int experiment) {
FeatureExtractor fe = new FeatureExtractor(WORKING_DIRECTORY,

keywords, influencers);
fe.extract(experiment);

}

private void train() {
System.out.println(Main.GREEN + "> Training phase " + Main.

RESET);
FeatureReader fr = new FeatureReader(WORKING_DIRECTORY);
int n = fr.getSize();
Trainer[] trainers = new Trainer[10];
Thread[] threads = new Thread[10];
for (int i = 0; i < 10; i++) {

int i0 = (int) ((i * 0.1 + 0.0)%1.0 * n);
int i1 = (int) ((i * 0.1 + 0.8)%1.0 * n);
int i1end = i1;
int i2 = (int) ((i * 0.1 + 0.9)%1.0 * n);
int i2end = i2;
if (i1 == 0)

i1end = n;
if (i2 == 0)

i2end = n;
Trainer trainer = new Trainer(fr.getUsers(i0, i1end), fr.

getUsers(i1, i2end));
trainer.setData(fr.getUni(i0, i1end), fr.getUni(i1, i2end),

fr.getSkip(i0, i1end), fr.getSkip(i1, i2end), fr.getAbstr
(i0, i1end), fr.getAbstr(i1, i2end));

Thread thread = new Thread(trainer);
thread.start();
trainers[i] = trainer;
threads[i] = thread;

}
try {

for (int i = 0; i < 10; i++)
threads[i].join();

} catch (InterruptedException e) {
e.printStackTrace();

}
trainers[0].showResults(0);

System.out.println(Main.GREEN + "> Testing phase" + Main.RESET)
;

ArrayList<Double> labels = new ArrayList<>();
ArrayList<Double> predictions = new ArrayList<>();
for (int i = 0; i < 10; i++) {
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int i2 = (int) ((i * 0.1 + 0.9)%1.0 * n);
int i3 = (int) ((i * 0.1 + 1.0)%1.0 * n);
if (i3 == 0)

i3 = n;
ArrayList<ArrayList<String>> users = fr.getUsers(i2, i3);
ArrayList<ArrayList<Double>> uniTest = fr.getUni(i2, i3);
ArrayList<ArrayList<Double>> skipTest = fr.getSkip(i2, i3);
ArrayList<ArrayList<Double>> abstrTest = fr.getAbstr(i2, i3)

;
for (int t = 0; t < users.size(); t++) {

abstrTest.get(i).add(trainers[i].applyUniModel(uniTest.
get(i)));

abstrTest.get(i).add(trainers[i].applySkipModel(skipTest
.get(i)));

labels.add(Double.parseDouble(users.get(i).get(2)));
predictions.add(trainers[i].applyAbstractModel(abstrTest

.get(i)));
}

}

System.out.println(Main.GREEN + "\n> Results of test " + Main.
RESET);

System.out.println("\tThreshold\tPrecision\tRecall");

int finaltp = -1, finaltn = -1, finalfp = -1, finalfn = -1;
for (double threshold = 0; threshold < 1; threshold += 0.1) {

int tp = 0, tn = 0, fp = 0, fn = 0;
for (int i = 0; i < labels.size(); i++) {

int label = labels.get(i).intValue();
int pred = predictions.get(i).compareTo(threshold) > 0 ?

1 : 0;
if (label == pred) {

if (label == 1)
tp++;

else
tn++;

} else {
if (label == 1)

fn++;
else

fp++;
}
if (threshold == 0.2) {

finaltp = tp;
finaltn = tn;
finalfp = fp;
finalfn = fn;

}

}
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printMetrics(tp, tn, fp, fn, threshold);
}
System.out.println(Main.GREEN + "> Confusion matrix" + Main.

RESET);
System.out.println("\t\t\t Predicted");
System.out.println("\t\t\t | 1 | 0 ");
System.out.println("\t\t-------------");
System.out.println("\tTrue 1 | " + finaltp + " | " + finalfn);
System.out.println("\tclass 0 | " + finalfp + " | " + finaltn);

}

private void printMetrics(int tp, int tn, int fp, int fn, double
threshold) {
double precision = precision(tp, fp);
double recall = recall(tp, fn);
Double f1_new = 2 * ((precision * recall) / (precision + recall

));
f1_new = f1_new.isNaN() ? 0.0 : f1_new;
System.out.println("\t" + String.format("%.01f", threshold) + "

\t\t" + String.format("%.02f", precision) + "\t\t" + String.
format("%.02f", recall));

}

private double precision(int tp, int fp) {
double precision = tp / (double)(tp+fp);
return Double.isNaN(precision) ? 0.0 : precision;

}

private double recall(int tp, int fn) {
double recall = tp / (double)(tp+fn);
return Double.isNaN(recall) ? 0.0 : recall;

}

public static void main(String[] args) {
Main main = new Main();
main.start();

}
}

Listing 16: TweetCollector.java

package algorithm;

import data.Tweet;
import data.User;
import main.Main;
import tweetmanager.TweetManager;
import tweetmanager.TwitterCriteria;
import twitter4j.Status;

import java.io.*;
import java.util.ArrayList;
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import java.util.Collection;
import java.util.Collections;
import java.util.List;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 20/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class TweetCollector {

private final ArrayList<String> keywords;
private List<data.User> users;

public TweetCollector(ArrayList<String> keywords) {
this.keywords = keywords;

}

/**
* Collect a number of users that have used one of the keywords

before a certain date.
* @param n number of users
* @param untilDate date to check if a users has used a keyword
*/
public void collectUsers(int n, String untilDate) {

System.out.println(Main.GREEN + "> Collecting +-" + n + " users
" + Main.RESET);

users = new ArrayList<>();

for (String keyword : keywords) {
TwitterCriteria criteria = TwitterCriteria.create()

.setUntil(untilDate)

.setQuerySearch(keyword)

.setMaxTweets(n/(keywords.size()))

.setLang("en");

for (User u : TweetManager.getUsers(criteria)) {
if (!users.contains(u))

users.add(u);
}

}
}

/**
* Collect a number of tweets for every user. If users has too few

tweets, remove him from the set.
* @param n number of tweets needed
*/
public void collectTweets(int n) {

ArrayList<Integer> indicesToRemove = new ArrayList<>();
int index = 0;
for (data.User user : users) {
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System.out.println(Main.GREEN + "> Collecting tweets for
user " + user.getID() + " (" + (index+1) + " of " + users
.size() + ")" + Main.RESET);

List<Status> tweets = TweetManager.getNTweets(user.getID(),
n, user.getIdFirstTweet());

if (tweets != null && !user.getName().contains("tweethue"))
{
for (Status tweet : tweets) {

user.fillTimeline(new Tweet(tweet.getId(), tweet.
getText(), tweet.getCreatedAt()));

}
System.out.println("\t Collected " + user.getTimeline().

size() + " tweets");
} else {

indicesToRemove.add(users.indexOf(user));
System.out.println("\t User has too few tweets, will be

removed from dataset.");
}
index++;

}
for (int i = indicesToRemove.size()-1; i >= 0; i--) {

users.remove((int) indicesToRemove.get(i));
}

}

/**
* Store tweets in file
* @param path path to file
*/
public void storeTweets(String path) {

Collections.shuffle(users);
int nr_users = users.size();

System.out.println("\n* Collected: " + nr_users + " users");

org.json.simple.JSONArray userArray = new org.json.simple.
JSONArray();

for (int i = 0; i < nr_users; i++) {
userArray.add(users.get(i).getJSONObject());

}
org.json.simple.JSONObject dataObj = new org.json.simple.

JSONObject();
dataObj.put("data", userArray);

try {
FileWriter file = new FileWriter(path + "tweets.json");
file.write(dataObj.toJSONString());
file.flush();
file.close();

} catch (IOException e) {
e.printStackTrace();

}
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}
}

Listing 17: FeatureExtractor.java

package algorithm;

import data.SkipGram;
import data.Tweet;
import data.User;
import data.WeightedPair;
import main.Main;
import tweetmanager.TweetManager;
import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import util.Extractor;
import util.JSONReader;
import util.SentimentClassifier;
import util.Tagger;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 26/10/2016.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class FeatureExtractor {

private final Twitter twitter = new TwitterFactory().getInstance();
private final Tagger tagger = new Tagger();
private final SentimentClassifier sentClassifier = new

SentimentClassifier();
private final String path;
private final ArrayList<WeightedPair> keywords;
private final ArrayList<WeightedPair> influencers;

public FeatureExtractor(String path, ArrayList<WeightedPair>
keywords, ArrayList<WeightedPair> influencers) {
this.path = path;
this.keywords = keywords;
this.influencers = influencers;

try {
tagger.loadModel("/cmu/arktweetnlp/model.20120919");

} catch (IOException e) {
System.out.println(Main.RED + "* Can not load tagger model"

+ Main.RESET);
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}
}

/**
* Make a list of unigrams and skip-bigrams, count them on a

separate thread and
* extract all features. For every user, create a line with

features in csv files.
*/
public void extract(int experiment) {

try {
PrintWriter pw_1 = new PrintWriter(new File(path + "/

features/abstract_features.csv"));
PrintWriter pw_2 = new PrintWriter(new File(path + "/

features/unigram_features.csv"));
PrintWriter pw_3 = new PrintWriter(new File(path + "/

features/skipbigram_features.csv"));
PrintWriter pw_4 = new PrintWriter(new File(path + "/

features/users_info.csv"));

ArrayList<User> data = readData(experiment);
ArrayList<String> unigrams = Extractor.extractUnigrams(

tagger, data);
ArrayList<SkipGram> skipBigrams = Extractor.

extractSkipBigrams(tagger, data);

for (User user : data) {
StringBuilder abstractFeaturesString = new StringBuilder

();
StringBuilder unigramFeaturesString = new StringBuilder

();
StringBuilder skipbigramFeaturesString = new

StringBuilder();
StringBuilder usersString = new StringBuilder();

System.out.println(Main.GREEN + "> Extracting all
features for user " + (user.getID()+1) + " (" + data.
indexOf(user) + "/" + data.size() + ")" + Main.RESET)
;

Thread unigramThread = new Thread(() -> {
Extractor.countUnigrams(tagger, user, unigrams);

});
Thread skipBigramThread = new Thread(() -> {

Extractor.countSkipBigrams(tagger, user, skipBigrams)
;

});
unigramThread.start();
skipBigramThread.start();

try {
unigramThread.join();
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skipBigramThread.join();
} catch (InterruptedException e) {

e.printStackTrace();
}

double[] features = extractAbstractFeatures(user);

double[] unigramFreqs = user.getUnigramFreqs();
double[] skipBigramFreqs = user.getSkipBigramFreqs();

user.setUnigramFreqs(new double[0]);
user.setSkipBigramFreqs(new double[0]);

for (int i = 0; i < unigramFreqs.length; i++) {
unigramFeaturesString.append(unigramFreqs[i] + ", ");

}
unigramFeaturesString.deleteCharAt(unigramFeaturesString

.length()-1);
unigramFeaturesString.deleteCharAt(unigramFeaturesString

.length()-1);
unigramFeaturesString.append("\n");

for (int i = 0; i < skipBigramFreqs.length; i++) {
skipbigramFeaturesString.append(skipBigramFreqs[i] +

", ");
}
skipbigramFeaturesString.deleteCharAt(

skipbigramFeaturesString.length()-1);
skipbigramFeaturesString.deleteCharAt(

skipbigramFeaturesString.length()-1);
skipbigramFeaturesString.append("\n");

for (int i = 0; i < features.length; i++) {
abstractFeaturesString.append(features[i] + ", ");

}
abstractFeaturesString.deleteCharAt(

abstractFeaturesString.length()-1);
abstractFeaturesString.deleteCharAt(

abstractFeaturesString.length()-1);
abstractFeaturesString.append("\n");

usersString.append(user.getID() + ", " + user.getName()
+ ", " + user.getLabel() + ", " + user.getBreakpoint
() + "\n");

pw_1.write(abstractFeaturesString.toString());
pw_2.write(unigramFeaturesString.toString());
pw_3.write(skipbigramFeaturesString.toString());
pw_4.write(usersString.toString());

}

System.out.println(Main.GREEN + "> Storing all features to
csv files." + Main.RESET);
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pw_1.close();
pw_2.close();
pw_3.close();
pw_4.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

}

}

/**
* Extract the abstract features for a user
* @param u user
* @return an array with 9 abstract features
*/
private double[] extractAbstractFeatures(User u) {

System.out.println("\t> Extracting abstract features");

double[] abstractFeatures = new double[9];
HashMap<Tweet, Double> relevantTweets = new HashMap<>();

for (Tweet tweet : u.getTimeline()) {
double relevance_score = 0.0;
for (WeightedPair keyword : keywords) {

if (tweet.getText().contains(keyword.getWord()))
relevance_score += 10 * keyword.getWeight();

}
if (relevance_score > 0.0)

relevantTweets.put(tweet, relevance_score);
}

double max_relevance_score = 0.0;
double total_relevance_score = 0.0;
double total_sentiment = 0.0;
Date date_max_relevance_score = new Date();
int sentiment_max_relevance = 0;

Set set = relevantTweets.entrySet();
Iterator iterator = set.iterator();

double relevance_score_last_relevant_tweet = 0.0;
Tweet last_relevant_tweet = u.getTimeline().get(0);
while(iterator.hasNext()) {

Map.Entry entry = (Map.Entry)iterator.next();
Tweet tweet = (Tweet) entry.getKey();

if ((Double) entry.getValue() > max_relevance_score) {
max_relevance_score = (Double) entry.getValue();
date_max_relevance_score = tweet.getDateTime();
sentiment_max_relevance = sentClassifier.classify(tweet.

getText());
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}

total_relevance_score += (Double) entry.getValue();
total_sentiment += sentClassifier.classify(tweet.getText());
relevance_score_last_relevant_tweet = (Double) entry.

getValue();
last_relevant_tweet = tweet;

}

double following_influencing_accounts = 0.0;
for (WeightedPair influencer : influencers) {

try {
boolean isFollowing = twitter.showFriendship( u.getName

(), influencer.getWord() ).isSourceFollowingTarget();
if (isFollowing)

following_influencing_accounts += 10 * influencer.
getWeight();

} catch (TwitterException e) {
if (e.getErrorCode() != 429) {

following_influencing_accounts = 0;
break;

} else {
System.out.println(Main.RED + "Rate limit exceeded.

Program will sleep until limit has been reset." +
Main.RESET);

try {
Thread.sleep(900 * 1000);

} catch (InterruptedException ex) {
Thread.currentThread().interrupt();

}
}

}
}

abstractFeatures[0] = max_relevance_score;
abstractFeatures[1] = (double) TweetManager.daysBetween(

date_max_relevance_score, u.getTimeline().get(0).getDateTime
());

abstractFeatures[2] = (double) sentiment_max_relevance;
abstractFeatures[3] = total_relevance_score/set.size();
abstractFeatures[4] = total_sentiment/set.size();
abstractFeatures[5] = relevance_score_last_relevant_tweet;
abstractFeatures[6] = (double) TweetManager.daysBetween(

last_relevant_tweet.getDateTime(), u.getTimeline().get(0).
getDateTime());

abstractFeatures[7] = (double) sentClassifier.classify(
last_relevant_tweet.getText());

abstractFeatures[8] = following_influencing_accounts;
return abstractFeatures;

}

private ArrayList<User> readData(int experiment) {
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ArrayList<User> data = new ArrayList<>();
JSONReader jsonReader = new JSONReader(path + "/dataset.json");
data.addAll(jsonReader.readJSON(experiment));

return data;
}

}

Listing 18: Trainer.java

package algorithm;

import libsvm.*;
import libsvm.svm;
import main.Main;

import java.io.IOException;
import java.util.ArrayList;

import static libsvm.svm_parameter.C_SVC;

/**
* Created by Martijn Oele (martijn.oele@student.ru.nl) on 05/01/2017.
* Bachelor’s Thesis Artificial Intelligence
* Radboud University Nijmegen
*/
public class Trainer implements Runnable {

private double[] train_labels;
private double[] tune_labels;
private double[] labels;
private double[] f1s = new double[6];
private double[] cs = new double[6];
private double[] gammas = new double[6];
private svm_model uniModel;
private svm_model skipModel;
private svm_model abstractModel;
private svm_problem problem_train_uni;
private svm_problem problem_tune_uni;
private svm_problem problem_train_skip;
private svm_problem problem_tune_skip;
private svm_problem problem_train_abstr;
private svm_problem problem_tune_abstr;
private svm_problem problem_uni;
private svm_problem problem_skip;
private svm_problem problem_abstr;
private int index1, index2, index3;
private ArrayList<ArrayList<Double>> train_abstr;
private ArrayList<ArrayList<Double>> tune_abstr;

public Trainer(ArrayList<ArrayList<String>> train_users, ArrayList<
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ArrayList<String>> tune_users) {
train_labels = new double[train_users.size()];
tune_labels = new double[tune_users.size()];
labels = new double[train_users.size() + tune_users.size()];
for (int i = 0; i < train_labels.length; i++) {

train_labels[i] = Double.parseDouble(train_users.get(i).get
(2));

labels[i] = Double.parseDouble(train_users.get(i).get(2));
}
for (int i = 0; i < tune_labels.length; i++) {

tune_labels[i] = Double.parseDouble(tune_users.get(i).get(2)
);

labels[train_labels.length+i] = Double.parseDouble(
tune_users.get(i).get(2));

}
}

/**
* This function creates an svm_problem of a dataset
* @param data features
* @param labels true labels
* @return svm_problem with nodes and labels
*/
private svm_problem createProblem(ArrayList<ArrayList<Double>> data

, double[] labels) {
int l = data.size();
int n = data.get(0).size();
svm_node[][] x = new svm_node[l][n];

for (int i = 0; i < l; i++) {
ArrayList<Double> subList = data.get(i);
for (int j = 0; j < n; j++) {

svm_node node = new svm_node();
node.index = j;
node.value = subList.get(j);
x[i][j] = node;

}
}
svm_problem problem = new svm_problem();
problem.l = l;
problem.x = x;
problem.y = labels;
return problem;

}

/**
* Create a problem of a training and tune set
* @param data1 training set
* @param data2 tune set
* @param labels true labels
* @return svm_problem with nodes and labels
*/
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private svm_problem createProblem(ArrayList<ArrayList<Double>>
data1, ArrayList<ArrayList<Double>> data2, double[] labels) {
ArrayList<ArrayList<Double>> new_data = data1;
new_data.addAll(data2);
return createProblem(new_data, labels);

}

public void setData(ArrayList<ArrayList<Double>> train_uni,
ArrayList<ArrayList<Double>> tune_uni, ArrayList<ArrayList<
Double>> train_skip, ArrayList<ArrayList<Double>> tune_skip,
ArrayList<ArrayList<Double>> train_abstr, ArrayList<ArrayList<
Double>> tune_abstr) {
this.problem_train_uni = createProblem(train_uni, train_labels)

;
this.problem_tune_uni = createProblem(tune_uni, tune_labels);
this.problem_train_skip = createProblem(train_skip,

train_labels);
this.problem_tune_skip = createProblem(tune_skip, tune_labels);
this.problem_train_abstr = createProblem(train_abstr,

train_labels);
this.problem_tune_abstr = createProblem(tune_abstr, tune_labels

);
this.problem_uni = createProblem(train_uni, tune_uni, labels);
this.problem_skip = createProblem(train_skip, tune_skip, labels

);
this.problem_abstr = createProblem(train_abstr, tune_abstr,

labels);
this.train_abstr = train_abstr;
this.tune_abstr = tune_abstr;

}

/**
* Train all models
*/
public void train() {

uniModel = solveProblem(problem_uni, problem_train_uni,
problem_tune_uni, 0, 1000, 1000);

skipModel = solveProblem(problem_skip, problem_train_skip,
problem_tune_skip, 1, 20000, 20000);

abstractModel = solveProblem(problem_abstr, problem_train_abstr
, problem_tune_abstr, 2, 2, 2);

}

/**
* Print results of best models
* @param fold number of fold
*/
public void showResults(int fold) {

System.out.println(Main.GREEN + "> Results of fold " + fold +
Main.RESET);

String[] setups = {"Unigram (linear)", "Skip-bigram (linear)",
"Final (linear)", "Unigram (rbf)", "Skip-bigram (rbf)", "
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Final (rbf"};
for (int i = 0; i < 3; i++) {

System.out.println(Main.GREEN + "\t" + setups[i] + Main.
RESET + "\n\tF1 = " + f1s[i] + "\n\tC = " + cs[i]);

System.out.println(Main.GREEN + "\t" + setups[i+3] + Main.
RESET + "\n\tF1 = " + f1s[i+3] + "\n\tC = " + cs[i+3] + "
\n\tgamma = " + gammas[i]);

}
}

/**
* Solve an svm problem by training a linear and an RBF model and

return the model with the highest F1
* @param problem problem to solve
* @param train_problem train problem
* @param tune_problem tune problem
* @param run 0 = unigram; 1 = skipBigram; 2 = abstract model
* @param delta_gamma max difference in gamma value
* @param g_step stepsize to increment gamma value
* @return a trained model
*/
private svm_model solveProblem(svm_problem problem, svm_problem

train_problem, svm_problem tune_problem, int run, int
delta_gamma, int g_step) {
int n_features = train_problem.x[0].length;
// Train with linear kernel
svm_model linearModel;
int best_c = 15;
Double f1 = 0.0;
double gamma = 1 / (double) n_features;
for (int c = 10; c > 1; c--) {

linearModel = svm.svm_train(train_problem, svm_parameters(
svm_parameter.LINEAR, c, gamma));

ArrayList<Double> predictions = new ArrayList<>();
for (int i = 0; i < train_problem.x.length; i++)

predictions.add(svm.svm_predict(linearModel,
train_problem.x[i]));

Double f1_new = computeF(predictions, train_labels);
if (f1_new.compareTo(f1) > 0) {

f1 = f1_new;
best_c = c;

}
}
f1s[run] = f1;
cs[run] = best_c;
linearModel = svm.svm_train(train_problem, svm_parameters(

svm_parameter.LINEAR, best_c, gamma));

// Train with RBF kernel
svm_model rbfModel;
best_c = 15;
f1 = 0.0;
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gamma = 1 / (double)(n_features-delta_gamma);
double best_gamma = gamma;
for (int g = -1 * delta_gamma; g <= delta_gamma; g += g_step) {

gamma = 1/(double)(n_features+g);
for (int c = 7; c > 0; c--) {

rbfModel = svm.svm_train(train_problem, svm_parameters(
svm_parameter.RBF, c, gamma));

ArrayList<Double> predictions = new ArrayList<>();
for (int i = 0; i < tune_problem.x.length; i++)

predictions.add(svm.svm_predict(rbfModel,
tune_problem.x[i]));

Double f1_new = computeF(predictions, tune_labels);
if (f1_new.compareTo(f1) > 0) {

f1 = f1_new;
best_c = c;
best_gamma = gamma;

}
}

}
f1s[run+3] = f1;
cs[run+3] = best_c;
gammas[run] = best_gamma;
rbfModel = svm.svm_train(problem, svm_parameters(svm_parameter.

RBF, best_c, best_gamma));

// Return best model but save both
if (f1s[run] >= f1s[run+3]){

try {
svm.svm_save_model("model" + run + ".txt", linearModel);
svm.svm_save_model("model" + run + "_alt.txt", rbfModel)

;
} catch (IOException e) {

e.printStackTrace();
}
return linearModel;

} else {
try {

svm.svm_save_model("model" + run + "_alt.txt",
linearModel);

svm.svm_save_model("model" + run + ".txt", rbfModel);
} catch (IOException e) {

e.printStackTrace();
}
return rbfModel;

}
}

/**
* Create a set of parameters
* @param kernel the kernel to be used
* @param c c parameter
* @param gamma gamma parameter
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* @return svm parameters
*/
private final svm_parameter svm_parameters(int kernel, int c,

double gamma) {
svm_parameter param = new svm_parameter();
int[] weight_labels = {0, 1};
double[] weights = {1,1};
param.weight_label = weight_labels;
param.weight = weights;
param.cache_size = 100;
param.eps = 0.001;
param.nr_weight = 2;
param.nu = 0.5;
param.p = 10;
param.shrinking = 0;
param.probability = 1;
param.svm_type = C_SVC;

param.kernel_type = kernel;
param.C = c;
param.gamma = gamma;

return param;
}

/**
* Compute the F1 score
* @param predictions list of predictions
* @param labels list of labels
* @return F1 score
*/
private double computeF(ArrayList<Double> predictions, double[]

labels) {
int tp = 0, fp = 0, fn = 0;
for (int i = 0; i < labels.length; i++) {

Double label = labels[i];
Double pred = predictions.get(i);
System.out.println(Main.RED + pred + " - " + label + Main.

RESET);
if (label.equals(pred)) {

if (label.compareTo(0.5) > 0)
tp++;

}
else {

if (label.compareTo(0.5) > 0)
fn++;

else
fp++;

}
}
double precision = tp / (double)(tp + fp);
double recall = tp / (double)(tp + fn);
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double f1 = 2 * ((precision * recall) / (precision + recall));
return Double.isNaN(f1) ? 0.0 : f1;

}

/**
* Apply a model to a new dataset
* @param users list of user in test set
* @param uni list of unigram frequencies
* @param skip list of skip-bigram frequencies
* @param abstr list of abstract features
* @return list of confidence values
*/
public ArrayList<Double> applyModel(ArrayList<ArrayList<String>>

users, ArrayList<ArrayList<Double>> uni, ArrayList<ArrayList<
Double>> skip, ArrayList<ArrayList<Double>> abstr) {
double[] true_labels = new double[users.size()];
for (int i = 0; i < true_labels.length; i++)

true_labels[i] = Double.parseDouble(users.get(i).get(2));
svm_problem uniProblem = createProblem(uni, true_labels);
svm_problem skipProblem = createProblem(skip, true_labels);
svm_problem abstrProblem = createProblem(abstr, true_labels);

ArrayList<Double> predictions_uni = new ArrayList<>();
ArrayList<Double> predictions_skip = new ArrayList<>();
for (int i = 0; i < uniProblem.x.length; i++) {

double uni_pred = svm.svm_predict(uniModel, uniProblem.x[i])
;

predictions_uni.add(uni_pred);
double skip_pred = svm.svm_predict(skipModel, skipProblem.x[

i]);
predictions_skip.add(skip_pred);

}

for (int i = 0; i < abstrProblem.l; i++) {
abstr.get(i).add(predictions_uni.get(i));
abstr.get(i).add(predictions_skip.get(i));

}

ArrayList<Double> predictions_abstr = new ArrayList<>();
for (int i = 0; i < abstrProblem.x.length; i++) {

double[] probs = new double[abstractModel.nr_class];
double prediction = util.svm.svm_predict_probability(

abstractModel, abstrProblem.x[i], probs);
System.out.println(Main.RED + probs[0] + " - " + probs[1] +

Main.RESET);
predictions_abstr.add(prediction);

}

return predictions_abstr;

}
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@Override
public void run() {

train();
}

}
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