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Abstract

This Master’s thesis describes the design, implementation and evaluation of a
neural network in an operating system kernel to classify processes based on
their behaviour and assign scheduling priorities accordingly. The design of the
system allows easy addition of features, making it an excellent platform for rapid
prototyping of new scheduler features without requiring a rewrite or substantial
modification of an existing scheduler.
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Chapter 1

Introduction

Contemporary OSes (operating systems) use exceedingly complex process schedul-
ing strategies (see chapter 2 for more information about OS scheduling) to han-
dle scheduling on multiple CPUs, but when it comes to uniprocessor scheduling
there has not been much new development. Current scheduling algorithms are
not very suitable for modern multimedia applications ([33]) because these algo-
rithms do not take into account the multimedia aspects of these applications.
Traditional schedulers were designed for large multi-user systems and aimed at
improving total throughput of the system, being fair to all users. Multimedia
applications represent the opposite of this model; they need all the system’s
resources to generate smooth video or audio playback. Only when the system is
fast enough to deliver all the resources the application needs can other applica-
tions be scheduled without resulting in a stutter in the multimedia application.

Application scheduling priorities are calculated based on simple heuristics
that can improve throughput. For example, a priority could be boosted when
a process is newly entered into the ready queue or lowered when a process is
forcedly removed from the CPU because it exceeded its allotted time quantum.
However, the base priority of a program must still be defined by the user if
it should be something else than the default. It is tedious to do this for ev-
ery program, and casual users often do not even know this functionality exists.
Ideally, the computer should determine the priority automatically. This is a
very hard problem to solve in a generic way, because different users have dif-
ferent needs. On a web server one would assign the highest priority to batch
processing-like functionality (disk/database access and network usage), while
on a personal multimedia computer, batch processing would have the lowest
priority and interactive processes would have a higher priority (audio and video
output mostly, but also CPU usage for decoding of audio, for example). This
problem could be solved by creating operating systems (or schedulers) tuned for
a specific usage scenario, but that would sacrifice generality. Most, if not all,
of today’s operating systems are designed to be general-purpose, thus a generic
solution would be preferred.

This master thesis proposes to use the Artificial Intelligence technique of
neural networks to create a solution to the problem described above. Thus,
this thesis strives to find an answer to the following question: How could neural
networks be used to schedule processes in an operating system? To answer this
question, a proof-of-concept implementation was created by patching an existing
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operating system kernel’s scheduler such that it delegated its scheduling deci-
sions to a neural network. One of the advantages of using neural networks is
that they can be trained for specific use cases by experts and advanced users and
then re-used by less technically inclined users without requiring any knowledge
about neural networks or schedulers. The particular neural network used here
is a backpropagation network with an added memory layer, but in future re-
search different network topologies may be explored. Features that are used for
input to the neural network ideally include everything that a human would use
to determine whether a process is “multimedia”, but the features used in this
implementation are based on audio, disk, terminal and socket I/O. Other typi-
cal “multimedia features” would be harder to obtain under Unix-like operating
systems, as discussed in section 5.6.

1.1 Motivation

1.1.1 Increasing performance

Operating systems still perform rather poorly when running multimedia ap-
plications. This is partly canceled by the ever increasing speed of computer
systems, but applications also continue to demand more from computer sys-
tems. In fact, OS performance does not increase at the same speed as hardware
does, as indicated by [35] and [41], for example.

The fact that there are specialized workshops for improving multimedia sup-
port in OSes, like NOSSDAV1 and ESTIMedia2, indicates that there is certainly
a demand for better handling of multimedia in operating systems.

1.1.2 Increasing user-friendliness

A large percentage of computer users are nontechnical and simply want to get
their work done. These users do not have the time or inclination to find out how
to tweak their computer for optimal performance. For this reason, operating
systems should be designed in such a way that at least their default settings
will provide optimal performance to this kind of user.

On many operating systems, all processes have the same default base priority.
This priority does not normally change unless the user explicitly indicates it
should be different from the default. Because typically only so-called “power-
users” know about the existence of this functionality, the average user’s system
will not have the perceived performance it could have if the process priorities
were optimally assigned.

A neural network scheduler can take care of assigning priority to processes
for the user in the background, without requiring any interaction. This will
create the opportunity for average computer users to enjoy the same perceived
performance from their system as power users do. The only thing that is required
is that a technical user at one time creates and tunes a neural network for the
usage pattern of the particular type of user, be it desktop user, server user or
anything in between. After that, the user can simply select the network labeled,

1International Workshop on Network and Operating System Support for Digital Audio and
Video, see http://www.nossdav.org.

2Workshop on Embedded Systems for Real-Time Multimedia, see
http://www.codes-isss.org/.

http://www.nossdav.org
http://www.codes-isss.org/
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for example, “multimedia desktop” and run the system in the configuration that
is optimal for them.

1.1.3 Maximizing customizability

Each user has their own individual needs. Some users might only use an oper-
ating system to run a spreadsheet program, some users might use it for playing
computer games and even others might run a personal web server. The process
profiles of these uses are very different. In order to cater to all these users’ needs,
an operating system needs to be versatile and customizable. Focusing purely on
the requirements of multimedia applications would decrease the generality of the
system, since this would necessarily mean that the system would be less than
optimal in non-multimedia environments where throughput is more important
than interactive responsiveness, for example web servers or batch computation
systems. In order to maintain generality, the system needs to be customizable
for all use scenarios. Neural networks are a useful tool to obtain this generality,
because one network can be trained for different situations. This means an op-
erating system could contain a generic “neural network driver” which can load
any network that was specially designed and trained for the expected situations
the machine will be used in. A proof-of-concept implementation of such a driver
is presented in this thesis. However, this thesis will mostly focus on the specific
aspect of scheduling multimedia applications.

1.2 Outline of thesis

This thesis has been broken up in such a way that the background material is
discussed first, so the reader has a foundation to help interpret the implemen-
tation and testing results.

In chapter 2 the problem of application scheduling in an operating system is
explored. Next, in chapter 3, several possible techniques from the field of Artifi-
cial Intelligence are discussed that could help us solve the application scheduling
problem. These two chapters end in a short section where we investigate what
existing research we can use to base our neural network scheduler design upon.

After the background material, the proof of concept implementation that
was created to explore this problem is introduced. A description of the general
network architecture can be found in chapter 4. How the network can be trained
and tested offline and how features are gathered from running processes by the
kernel, as well as some issues that had an influence on the implementation are
described in detail in chapter 5. The preliminary features used to test the
effect of using this type of scheduler are described in chapter 6, along with
an assessment of their usefulness and the results of benchmarking the original
scheduler and the new scheduler. Finally, we come to a conclusion in chapter 7.
The appendix describes a minor correction in the proof of [18], such that a study
that is useful but known to be presented slightly incorrectly would not have to
be removed from the bibliography.



Chapter 2

Process scheduling

2.1 Introduction

Today’s Operating Systems can handle large numbers of programs, all appearing
to be running concurrently from a user’s point of view. In actuality, what
happens on a single CPU is that processes are run one after another for a small
period of time in quick succession. This produces the illusion that they all run
at the same time. This is called multitasking.

Of these processes, several may simply be waiting for some kind of hardware
event to occur, so they will not all have to or be able to run at the same time.
The problem of process scheduling arises when there are more processes ready
to run (on the ready queue) than there are available processors in the system.
That is, which process will be next to run on the CPU, given several to choose
from? A short introduction to this problem will be given in this chapter. For
more detailed information, the reader is referred to one of the many high-quality
textbooks on operating systems that are available (e.g. [46], [15]).

2.2 Job-shop scheduling

Job-shop scheduling, also called linear workshop process scheduling ([13], [27])
stems from industrial environments. There, the ‘processes’ are actually jobs to
be processed and the machines are the different stages the jobs will go through.
The scheduling problem here is how to arrange the job processing order of
machines so the jobs have to wait in line for a machine the shortest possible
amount of time.

For example, if the job is a car to be produced, the different machines that
would process it are welding and bolting machines specialized to fit particular
components the car is made out of. Tires can only be bolted onto an axle, which
has to be welded to the chassis by another machine. The machine which bolts
the tires cannot perform its job unless the car has already been processed by
the machine which welds the axle to the chassis. Dependencies like this impose
a partial order in which the jobs must be processed by the different machines.
The goal here is to maximize throughput (thus, minimizing total processing
time) by reducing the time each machine has to wait for other machines to
finish. This can be achieved by having as many machines busy at the same
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CHAPTER 2. PROCESS SCHEDULING 7

time as possible by putting them to work on mutually independent parts of the
production process and only later putting these bigger parts together.

This does have some resemblance to the process scheduling problem in oper-
ating systems research, and some ideas have been taken from it. For the problem
at hand it is unsuitable for the simple reason that the algorithm requires knowl-
edge of the total job completion time in advance. One cannot know the total
job completion time for any application for which the lifetime depends on the
input. One would have to have solved the famous Halting Problem ([10]) in
order to be able to do so because one would have to calculate the time it takes
for an application to complete given a specific input. Jobs in a job-shop process-
ing system are always completely executed before taking on another job (batch
processing). This makes these algorithms impractical for OS process scheduling
purposes because this means it is impossible to dynamically add a new process
at runtime. In short, the job-shop scheduling is too static for process scheduling
in an operating system.

2.3 Preemptive scheduling

In preemptive scheduling, a process is given a time quantum during which it
is allowed to run. If the process exceeds that quantum, the kernel reclaims
the CPU and the next process on the ready queue is allowed to run. This is
generally implemented by a clock interrupt which is raised after a set period of
time, giving control back to the kernel so it can save and modify the CPU state
in such a way that another process is set up to resume processing.

A process can also voluntarily yield (give up, free) the CPU by performing an
I/O operation. The process will then be removed from the CPU until that I/O is
completed. There are a number of other operations that will also put a process
to sleep until some event occurs. In nonpreemptive or cooperative scheduling
a process is expected to always voluntarily relinquish the CPU because the
kernel is not equipped to forcedly reclaim it from a process. In this paper, only
preemptive scheduling is considered. This is not particularly restrictive because
modern operating systems rarely use cooperative scheduling.

When there is more than one process on the ready queue, the question “which
process will the system select to run on the CPU?” arises. Most strategies are
very simple. For example, in round-robin the head of the ready queue is always
selected to run next. Processes which go into the ready state will be inserted at
the tail of the ready queue. This is by far the most popular scheduling strategy.
For an overview of strategies, see [9].

This is not necessarily the best strategy. It may be important to schedule a
process which is doing a lot of I/O soon after it becomes ready. This will maxi-
mize throughput if the process is expected to go to sleep again after requesting
more I/O. There are also classes of processes where a short response time is
important. Examples include multimedia processes where even a short delay in
audio or video output is very noticeable to the user. On a desktop computer
used for multimedia these processes should preferably be scheduled more often
than processes where a delay is less noticeable.

For these reasons, most operating systems introduce the concept of schedul-
ing priority. From all processes in the ready queue, the one with the highest
priority will be scheduled to run on the CPU. Care must be taken to avoid
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starvation, which is said to occur when a process is never selected to run. More
advanced scheduling techniques involve varying the quantum as well.

Usually the goal of process scheduling is maximizing throughput, minimizing
resource usage and response times. The emphasis may vary from system to
system, depending on the situations it is typically used in.

2.4 Multithreading

In the preceding discussion, concurrent threads of control within one process
were not considered. Different systems implement threads differently. In this
section the differences will be discussed.

The simplest model for multithreading from the kernel’s point of view is
to employ an N:1 mapping for user-level threads to kernel-level threads. In
these systems, threads exist only on the user-level and are implemented as a
library. There, the discussion of the previous section applies directly, as the
kernel does not know about threads at all. There are very few, if any, modern
operating systems which still use this model. Portable threading libraries that
can be employed by applications to get threading support under such operating
systems are “MIT threads” ([36]) and the GNU “pth” library ([21]).

In Linux ([30], [5]), OpenBSD ([48]) and newer versions of Solaris ([47]),
threads are mapped 1:1 to so-called light-weight processes (LWP). In these sys-
tems, the scheduler does not need to differentiate between threads and processes.
A thread is merely a LWP which shares memory resources with another LWP.
This model is easy to understand: just substitute “thread” for “process” in the
previous section.

The FreeBSD, NetBSD and Mach schedulers employ an M:N model called
“scheduler activations” ([3], [7], [49], [24]). This model tries to profit from the
advantages that 1:1 and N:1 threads offer and suffer from none of the disad-
vantages. In this model, a user-level threading library implements a scheduler
which can communicate with the kernel’s scheduler to enable maximum control
over scheduling of threads within a process. The kernel scheduler views threads
as “units of execution of a process”. The threads themselves are mostly sched-
uled like in a 1:1 model. Simply put, the difference lies in what happens when
a thread yields the CPU. When it yields, the thread is notified and the user-
level thread scheduler is invoked. This can choose to have a different user-level
thread take over or have the kernel-level thread yield entirely. The kernel sees
only LWPs, just as in the above discussion of the 1:1 model. The user level
thread library does the extra work of dividing the threads across these LWPs,
but the kernel does not need to know about this.

As can be inferred from this section, threads do not necessarily introduce as
much complexity to the kernel scheduler as one might think. From this point
on, threads will be largely ignored for reasons of simplicity. A neural network
scheduler can be designed to assign per-thread priorities or per-process priorities
in much the same way. The current implementation assigns priorities on a per-
process basis because of its usage of the nice value (see also section 4.3).
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2.5 Multiple CPUs

Most current operating systems support multiple CPUs in one system, but in
this thesis only single-CPU scheduling is considered for simplicity. The system
under discussion only assigns priority to processes. It does not actually schedule
processes. Because of this, the algorithms for CPU assignment in the operating
system proper can remain in place without hindrance from the system under
discussion, making multiple CPU support a non-issue. If one were to build a
scheduler based on a neural network from scratch, processor affinity can most
likely be implemented as a post-processing step to be applied after running the
network.

2.6 Existing research

During my literature research, I mostly found articles on either scheduling for
SMP (Symmetric MultiProcessing, where multiple processing units work in par-
allel) or simple job-shop scheduling. See section 2.2 for a description of why this
is not very useful for process scheduling. There has not been much serious re-
search on uniprocessor scheduling since the early eighties, with some exceptions
that will be discussed below.

The emphasis in SMP scheduling is mostly on the difficulty of communicating
between the different processors. Some advanced research focuses also on the
case where not all processors are equal, but all this is not very relevant to the
case of simple uniprocessor scheduling.

Some newer research painstakingly tries to make use of the job shop schedul-
ing algorithms. Deadline notification is introduced in (soft) real-time schedulers
such as those mentioned in [34], [16] and [26]. With deadline notification an ap-
plication notifies the OS about its deadline for a certain (sub)computation. The
OS can then calculate when the application must be scheduled and for how long
in order to reach the deadline. In hard real-time systems the deadline must
be reached, or the computation is worthless. For example, in a medical envi-
ronment a system could be used to regulate a patient’s heartbeat. The exact
moment and duration of electric shocks emitted to the heart are literally vital.
In short, hard real-time system essentially must ensure the deadlines can be
met, without exception.

In soft real-time systems the deadline is important, but exceeding it is not a
problem. Generally, the deadline will be met on average, sometimes exceeding
it, sometimes being early. Multimedia applications are a typical example of
soft real-time applications. Using deadline notification is a good solution for
this type of applications, because for example a video player can drop frames
when it does not meet its deadlines and an audio player might switch to a lower
sampling frequency.

Introducing deadline notification entails a change in the API (Application
Programming Interface) of the OS which in turn requires a change in the applica-
tions. This is not an option for simple non-realtime scheduling, for two reasons:
a) Every application must be altered to use the new API, which is impossible for
many applications. For example sometimes common applications are no longer
maintained and the source code may not be available. b) Not every application
knows its deadline (either total running deadline or short-term deadline for a
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job). Some applications have semi-infinite data to process in unlimited time.
For example, consider a video encoding application that encodes data from an
incoming video feed and writes it to a file. This can start at any time and can
use all the system resources assigned to it until it is finished (someone presses
a “stop recording” button). There is no time limit for the entire process and
there are no intermediate deadlines either.



Chapter 3

AI techniques

There are a number of available AI techniques that could be used for scheduling.
The most appropriate ones will be listed here, along with a short discussion on
their applicability to this particular problem. For an in-depth discussion of
available AI techniques, the reader is referred to any good textbook on artificial
intelligence techniques, for example [43].

3.1 Genetic algorithms

Genetic algorithms are a technique where a population of possible solutions to
a problem is (often randomly) generated. These solutions are then ordered on
the basis of their fitness and the top (best) n are randomly grouped in pairs
which are combined by genetic operators like crossover and mutation. The rest
is discarded1. The crossover function selects a random point at which to split
the representation of each of the “parent” individuals of a pair. It attaches
the first part of one individual to the second part of the other individual and
vice-versa, generating two “children” which both have part of their parent’s
genetic material. The children are optionally mutated at a random point in
their representation. The new generation contains either only the children, or
the children and the parents. This process is repeated until there is a solution
in the set that exceeds a minimum fitness.

This method requires a simple string-like representation of the target schedul-
ing algorithm which must still be valid after random mutation. Also, a fitness
function must be formulated for that representation. In our case, the fitness
function could very simply be the sum of the per-process deviation from the
desired priority. The goal of the evolving individuals would thus be to assign
a priority to each process that matches the priority as assigned by the user on
a training run2. Algorithms represented as strings to be used as genes are by
nature reasonably static in what they can represent. The genetic information
would have to represent a general algorithm which can schedule any kind of
process. It would be interesting to see research that solves this in a generic way

1Usually some of the unfit individuals survive, with lower probability. This keeps the
population more versatile and can prove beneficial in a later stage.

2This method is very similar to the way the neural network under discussion is trained;
see chapter 4.

11
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for the problem domain at hand.

There has been at least one known research project on implementing genetic
algorithm-based schedulers [20]. In this scheduler the evolving entity was not
the scheduler algorithm, but the applications. The scheduler used the fitness
of the applications as priority, and applications could attempt to change their
resource usage profile in order to get scheduled more often. The evolution in
this case is in the applications, which also means that applications have to be
modified in order to work correctly with this scheduler. The advantage of this
specific system is that it is backwards-compatible in a way, so old applications
do not necessarily have to be adapted for this new scheduler. This would mean
that one would have to calculate a static fitness for every existing application
or use a default fitness and assign that to every existing application that does
not have a fitness value.

3.2 Decision tree learning

Decision tree learning is a way to build a decision tree (or “classification tree”,
in our case) from a full set of examples that are expressed in discrete values. It
recursively looks for a predicate that would divide the set as equally as possible
at the branch under consideration. These predicates do not have to be binary.
This process creates a shallow, balanced tree with the predicates at every node
and a final decision (or class) at every leaf. This decision tree can be used to
quickly classify new problems. One can simply feed an example into the tree
and at every node let the result of applying the predicate to the example decide
down which branch to descend.

The algorithm is very simple and easily implemented. The biggest disad-
vantage for using it as a priority assignment function is that it requires discrete
values to work with. This can only be done by looking at the input and, for ex-
ample, introducing “bigger than x?”-like statements into the decision set. This
is possible, but it is less precise than continuous values. Also, the data about
processes is continuous in nature since most are either counters or ratios of some
sort. Furthermore, this method is very sensitive to noise, since every value con-
trols which branch is taken at a particular node, which means the classification
process can be easily thrown off by an odd value [38]. Yet another possible
disadvantage is the fact that the granularity of the now-discrete values is to
be determined in advance. If, in the target use scenario, a variable fluctuates
around a small range of values, the other possible values the variable can attain
are less important than the small differences in that range. This has to be re-
flected in the way the values are turned into discrete ranges. The problem can
be eliminated by asking the user who builds the tree to supply the ranges, but
this also makes the system harder to use.

3.3 Rule-based knowledge system

This technique is basically a simple set of “if-then” rules. This has most of the
disadvantages as decision tree learning and it also means the rules have to be
hand crafted. This would make the entire system quite static and it would be
tiresome to produce new rule sets.
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This solution drastically reduces the number of people who can produce
schedulers that perform well. Only programmers can do this, generally speaking.
The goal is to design a scheduling system that is easily modified by slightly
advanced users.

3.4 Bayesian networks

Bayesian belief networks are very similar to neural networks. They represent
probability values by connecting two nodes a and b and assigning a weight to
that connection which has the value of P (b|a). The certainty of a particular
proposition can be calculated by traversing a path from the input to the node
that represents the proposition. Every node’s probability can be calculated
by doing a summation over the incoming connection weights multiplied by the
certainty of the nodes they are connected to.

The disadvantage of this approach is that all the network’s nodes must have
a meaningful interpretation to be able to assign a probability value to its con-
nections. There is no real structure that can easily be imposed on the data the
system produces in our case. This structure is not required for a neural net-
work. The backpropagation training algorithms for neural networks determine
the underlying structure required for the network to function correctly, but this
structure is usually not “meaningful” to human observers.

3.5 Neural Networks

Neural networks, or more precisely, Artificial Neural Networks (ANNs), are a
simplified model of biological neural networks like those found in the brains
of humans and animals. ANNs consist of nodes (also called units) which are
interconnected with certain weights. Usually the nodes are arranged in layers,
and nodes are only connected to the nodes in the next layer.

There is an input layer, optionally a number of “hidden layers” and an
output layer. The network is run by clamping input values on the nodes in the
input layer as activation. A node’s net input is calculated by multiplying every
incoming connection’s weight by the associated node’s activation and summing
these values. The node’s actual activation is calculated by applying a function
to its net input, which usually is a sigmoid or “step” function.

A commonly used learning rule is backpropagation learning, which takes the
difference between the desired activation value of the output node and the actual
output provided by the network. This is the network error. This error is prop-
agated backwards through the network, adjusting each weight in the direction
that would lessen the error for its node.

This type of learning is called supervised learning, because the target value
of the output is known and the network is adjusted to respond as desired. There
are also networks which are trained by using unsupervised learning techniques,
for example Kohonen’s Self Organizing Map (see for example [29]). These have
a different topology. They have not been used in this research because time did
not allow it.

Neural networks are the ideal AI technique to use here because they can be
deployed in different situations by training them for these. The input and output
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are continuous numbers, which the available process data usually is as well. It
also allows for a kind of “brute force” search by experimentation. One can simply
add features, even if it is still largely unclear how these features can be used to
calculate process priorities. The network can “figure out” how to do this, if it is
possible. Also, in case of noise in the input, neural networks degrade gracefully.
When features are introduced by subsystems that are “equally important” for
classification, the problem starts to resemble so-called P-type problems [38]. If
this is the case, neural networks will perform better than algorithms that look
at their input values one at a time in a hierarchical fashion, e.g. decision tree
algorithms.

A disadvantage of neural networks is that it is very hard to get any mean-
ing out of their structure, because their knowledge is encoded sub-symbolically.
When a network is trained for a new feature, it will not give much insight to
how the feature relates logically to other features. None of the other tech-
niques discussed above have this disadvantage. On the other hand, there has
been some research with the intent to extract rules from neural networks ([50],
[44]). This could be useful to create more optimized rule-based schedulers after
experimentation with the neural network scheduler.

3.6 Existing research

All neural network scheduling research I have been able to find focuses solely
on the job shop scheduling problem (see section 2.2). This is not relevant for
this project because job shop scheduling makes assumptions about available
knowledge about processes that is not available (see the previous section). This
can not be generalized to the problem at hand, because job-shop scheduling
deals with static data, where change across time is not involved.

Therefore, using neural networks for process scheduling is a relatively un-
explored field. The project under discussion is an ideal catalyst for starting
more research in this area. Hopefully it will be picked up by operating system
researchers as well as neural network researchers.



Chapter 4

System overview

4.1 Requirements of the network

To repeat our problem statement: We want to control a running process’
scheduling priority automatically and dynamically1 without requiring manual
intervention from the user. The basic assumption we work with is that a pro-
cess’ desired priority can be determined by analyzing its behaviour. We define
behaviour to be (any kind of) direct interaction of the process with the kernel,
as this is most easily measured by the OS. 2. This behaviour classifies a process
as “interactive”, “multimedia”, “cpu-bound” or any other classes one wishes to
distinguish from. The user defines the classes and the priorities to be assigned
to processes that fall into these classes.

The activities of a process will fluctuate quite a bit depending on availability
of resources, user instructions3 and other factors. To mitigate these factors, we
will furthermore assume that the basic nature of a process will be “rather stable”.
In concrete terms, this means we assume its behaviour will either stay the same,
or evolve gradually over time. Any abrupt fluctuations are purely the result of
the changes described above and will not fundamentally change the process
class. This is a simplifying, but realistic assumption since in most standard
schedulers processes already have a constant (albeit user-changeable) priority
as well, and most applications have a well-defined task. That the most common
tasks do not feature such erratic behaviour is a “common sense” observation we
will leave for later research to (dis)prove.

If the neural network classifies a process based only on its most recent ac-
tivity profile, processes will most likely be assigned different priorities on each
classification cycle because of these fluctuations, despite our assumption that on

1As opposed to complete a priori analysis of the processes, like in job-shop scheduling (see
chapter 2).

2We do not exclude the possibility that a program can be inspected or even instrumented
to provide more information, especially if emulation (eg, QEMU [8] or Xen [6]) is employed
or the OS is run as a regular process (eg, User-mode Linux [17] or NetBSD/usermode [31]),
but this is beyond the scope of this project

3Examples of user instructions that influence a program’s behaviour: A desktop environ-
ment will perform different tasks (“clean up the trash”, “run program”, “find this file”, “bring
program to foreground” etc) depending on the commands entered by the user. A computer
game’s behaviour is almost completely dependent on the user’s input and in many cases on
his reaction time.

15
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average a process has a rather stable behaviour. To lessen this fluctuation, the
neural network has to be enhanced with some form of memory. This memory
can only be effective if the above assumptions hold, otherwise a process which
frequently changes its behaviour will be regarded as a constant process which
fluctuates because of instabilities in resource availability or user response time.

The neural network used in this project is a simple back-propagation net-
work. To represent time, an approach similar to what Elman ([19]) suggested
is taken, but generalized so the memory is input pattern-specific. The following
subsection will explain how time is represented.

4.1.1 The problem of representing time

Usually in networks that have a memory, this memory is used to store the feature
values on the inputs at previous time steps. In our case the inputs at any given
time step have nothing to do with the previous (see also section 4.3). Every
network cycle a new process is selected, and its features clamped onto the input
nodes. Generally speaking, processes are unrelated. Thus, at one point in time
we have the features of one process clamped onto the input, but the memory
will contain a value related to the inputs of the previous, unrelated processes.
This will hamper learning rather than facilitate it.

The input at network cycle t is completely unrelated to the input at cycle
t − 1. If there are k processes, the input at cycle t is related to that at cycle
t−k, but only if no processes were created or destroyed in that time span. This
becomes too complicated too quickly. What we really want is a memory of input
history per process. The global history which represents the relationship between
processes is important in scheduling as well, but these issues are offloaded onto
the existing scheduler (see also section 4.3). This means the neural network
scheduler can focus on the main issues of calculating a priority for each process
based on their isolated behaviour.

4.1.2 The solution

Input history per process is realized by viewing memory nodes as “secondary
input”. This means that when the features of a process are presented to the
network by clamping them onto the input units, the memory of the process will
also be clamped onto the memory units. This logic is captured in pseudo-code
in Algorithm 4.1.



CHAPTER 4. SYSTEM OVERVIEW 17

Algorithm 4.1 Calculate priorities

for all proc in proclist do

gather features(proc) {Reset counters, perform preprocessing}
for i = 0 to nfeatures do {Clamp input and memory}

network.input[i] ⇐ proc.features[i]
network.memory[i] ⇐ proc.memory[i]

end for

run network(network, proc)
proc.nice ⇐ output to nice(network.output[0])
for i = 0 to nfeatures do {Remember new memory values}

proc.memory[i] ⇐ network.memory[i]
end for

end for

After running the network and updating activations, the new activations of
the memory nodes are extracted from the network and stored in the process
control block (PCB)4 for the next cycle. This is repeated for the next process.
This network is shown in Figure 4.1.

Features

Input & memory

2H H1

32

O

"layer"

network data
Common

Memorize previous input

M1 M MIII1 32

Hidden layer(s)

Output layer

PCB

Figure 4.1: Design of the network

When we consider a particular process, the memory will be a function of the
features at the previous time steps of only that process. The network’s weights
will still be updated on the basis of the network error value of every process,
but the memory will be process-specific for every network cycle. The strength
of the memory can be modified by changing the weight values of the recurrent
connections.

4The PCB is the structure where all the data relevant to a process is stored.
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Figure 4.2: The data-flow of the system

4.2 Infrastructural changes

To augment a process scheduler with a neural network, the operating system’s
scheduling infrastructure will necessarily become more complex because a neural
network requires features to operate, which means the kernel needs to be set up
to collect these.

The kernel can be logically divided into subsystems that service requests to
programs. These requests can be translated to features, for example the number
of disk reads or writes a process performs. These features need to be gathered
for every process. Thus, every subsystem that can report features must add its
feature data to the process control block of the relevant process so the scheduler
can make use of these features. This implies an extra record in the PCB for
every feature that gets added in this fashion, which will quickly lead to a huge
number of new records in the PCB. Usually a PCB already contains many fields
to begin with, so adding feature fields to the existing ones will make the PCB
too large to handle.

To control this complexity, a central feature collection API was implemented
to which the various subsystems report their feature data. The layout of this
system is shown in Figure 4.2. As can be seen, there is only one new API that
was added, and subsystems have no knowledge of features of other subsystems.
The feature collector dynamically allocates and deallocates memory in PCBs
to hold this feature data whenever new features are registered or new processes
are created. Only one extra field needs to be added to the PCB in this case,
namely one which holds the list of feature data. An added advantage of this is
that features can be introduced dynamically while the system is running, which
can happen when a new loadable kernel module (LKM) is loaded, for example.
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Whenever the scheduler updates process priorities (once per second), the
feature collection subsystem asks every subsystem that registered features for a
calculation of these features. The feature data is not extracted directly from the
PCB because some features may require preprocessing or special initialization.
For example, calculating the ratio of reads versus writes on a (pseudo-)terminal
is done by storing reads and writes in a substructure of the PCB. Only the
terminal subsystem knows how to interpret this substructure. When the fea-
tures are to be calculated, the feature collection subsystem asks the terminal
subsystem to extract the read/write ratio feature. The terminal subsystem then
extracts the reads and writes from the substructure, returns the ratio and resets
the number of reads and writes again for the next cycle.

4.3 Pre-existing priorities

All throughout the preceding discussion, it has been implicated that the neural
network scheduler calculates the priority completely on its own. This is not
exactly true. The intention is to leave the existing scheduler in place, so we can
focus on the pure problem of assigning the priorities.

Selection of processes based on priority, in such a way that no starvation5 can
occur, is a separate problem that has already been solved by the designers of the
operating system in which our scheduler will be integrated. There is no reason
to implement it ourselves. It will suffice to simply use the existing scheduler,
while only manipulating the base priority for a process. This is consistent with
the notion of the neural network scheduler as a helpful tool for the user that
takes away the work of deciding on a base priority by hand.

5Starvation occurs when a process never gets its turn on the CPU.



Chapter 5

Implementation details

This chapter describes implementation details that are useful mostly to those
who wish to work with the code or use the programs. First we will describe
the system used for testing, then an overview of a typical usage scenario is
presented. The chapter is concluded by a list of the various subsystems in the
kernel and the various utilities that were implemented.

The source code to the implementation described in this chapter will be
made available for download from http://nnsched.sourceforge.net.

5.1 The system

The implementation of the project was done under NetBSD 2.0 and later on 4.0
Release Candidate 11. Tests and measurements were performed with NetBSD
4 on an iBook G4 (PowerPC processor) with 512 Mb of RAM. The kernel was
tweaked by adding an options HZ=1000 line to the configuration file in order to
have its clock interrupt at 1000 Hz instead of the normal 100 Hz for improved
precision2, as described in [22]. NetBSD was chosen for its clean, modular
design, the availability of its source code and the author’s familiarity with its
code base.

5.2 Typical usage

A description of how to use the collection of tools created for this project will
be described below. The words printed in typewriter font are names of pro-
grams. More information on these programs can be found in section 5.5.

Training a network is done completely offline. This means it is not required
to have a modified kernel to train the networks. In fact, the networks can be
trained (as well as tested) on any other OS if this is required. The feature data
is extracted from a running modified kernel and written to a file which can

1See http://www.netbsd.org.
2With this modification, the clock interrupts more often. Processes that go to sleep soon

after they are allowed to run on the CPU will cause the system to idle for a shorter time,
because a new process can be selected sooner. Increased clock resolution also means more
overhead since the scheduler is invoked more frequently.

20

http://nnsched.sourceforge.net
http://www.netbsd.org
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be used for training and testing. The training application writes the trained
network to a file which can be uploaded to a modified kernel at any time.

To create a working network, the first thing one must do is set up the machine
in such a way that it will run all programs that are typically used. These must
all be assigned a priority at which they are supposed to operate. In essence, a
normal working situation is created, with the difference that a lot more programs
are run at the same time. This can be automated by running progstarter with
a suitable configuration file.

The activity patterns of the processes are captured by running nnfmon. The
resulting feature file is then given as input to nntrain, which will train a net-
work. This network can be tested on another dataset with nntest to see how
well it generalizes. This can be repeated while tweaking parameters like the
learning rate, number of hidden layers and units in those layers and so on until
the user is satisfied with the results. nngather is intended to automate this
process somewhat. It just requires a training and a testing dataset and trains a
number of networks with different settings, compares the settings and generates
statistical output on which performed best.

The trained network can be installed with the nnconf utility. This will
“upload” the network to the kernel’s neural network scheduler. From then
on, it will be activated and the processes should be assigned a fitting priority
automatically, in a way transparent to the user. For the user, it simply should
“just work”, without having to think about it. The system can be set up to load
this network every time at startup, to make use of the neural network scheduler
as unobtrusive as possible.

Training a network and fine-tuning it is too technical for the typical desktop
user. For this type of users, a set of pre-trained networks for certain common
usage situations could be shipped with the OS. The installation process could
improve user-friendliness by asking what the computer will be typically used for,
install the appropriate network and ensure it will always be loaded at startup.

5.3 Shared code

Since the neural network is the engine of most of the programs and subsystems
described below, it is only natural to share as much code as possible.

Everything that is used in both the kernel and the utilities is located in
the file sys/kern/kern nnnetwork.c. This is the code used to build a network
from scratch and to calculate net inputs and activations per layer. The utilities’
code pulls this in and makes use of it.

There is some utility-specific code under usr.sbin/nntrain/nnnetwork.c,
which is used in nntrain as well as in nntest. It contains the functions
required to generate random weights, calculate network error and functions
to select and clamp inputs. The reading code for network and feature files
is also shared between the testing, training and configuration programs in
usr.sbin/nntest/nnread.c and usr.bin/nntrain/nnfeat.c.
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5.4 Kernel level implementation

The existing kernel code was largely left untouched. The process scheduler was
slightly modified to call a new function to calculate priorities and a number
of subsystems were modified to report features to the feature collector. The
feature collector itself is was built as a mostly independent subsystem. One
extra field was added to the proc structure (NetBSD’s PCB) to hold feature
and memory data. The neural network running code, the feature calculation
and the feature monitor device are all mostly independent from the rest of the
kernel. See Figure 5.1 for an overview of the interaction between the parts.

To save time, it was decided that the easiest way to implement a new sched-
uler is to simply change the ‘nice’ value3 and leave the existing scheduler almost
untouched. This means control over the priority is less precise because the ker-
nel will add other factors into the calculation (for example, if a process did
not voluntarily release the CPU, its priority will drop but its nice value will
remain unchanged). The nice value is the same knob for tuning priorities that
is available to the user, so this approach is still consistent with the original idea
of taking work out of the user’s hands. The main disadvantage of this approach
is that power users can no longer influence or override the priority by changing
the nice value. The advantage is that the existing algorithm needs almost no
modification at all. There is also no problem regarding the interface with which
the user needs to define the target priority. The user can simply run programs
and tweak their nice values to indicate the target priority. The user can use the
familiar interface that existed before and no new tools have to be implemented
to define priority.

As has been said before, the end user does not necessarily have to do this as

3The nice value is a priority value which the user can modify. The real priority of a process
is determined by the nice value and the estimated CPU time.
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developers and distributors can ship the system with pre-trained networks for
a variety of common usage scenarios and have the installer offer to select one of
them for loading when the system boots.

5.4.1 Pseudo-devices

The following pseudo-devices are available to applications for retrieving feature
data from the kernel and uploading configuration data to the kernel.

nnfmon

The neural network’s feature monitor pseudo-device, nnfmon, exports feature
data from the kernel to applications. Every second, just before the features are
updated, nnfcoll sends the old feature values to nnfmon, which stores these in
a freshly allocated buffer. These buffers can be accessed by a process by opening
and reading from the pseudo-device.

nnconf

The configuration pseudo-device for the neural network. This allows applica-
tions to configure the neural network scheduler and upload a neural network’s
layout and connection weights to the kernel.

5.4.2 Scheduler and feature collection

nnsched

The existing scheduler in kern synch.c is modified to call the nice calculator
every hz clock ticks (every second), if the neural network has been initialized.
The nice calculator (which is located in kern nnsched.c) simply runs the net-
work from kern nnnetwork.c in feedforward mode, resulting in an activation
value on the output node. It is assumed that there is only one output node,
which represents the processes’ priority. This priority is expressed as a value
between 0 and 1, which is inverted and scaled back to an integer in the range of
0 to 40, from which 20 is subtracted to get a value between -20 and +20 (which
is the range of Unix nice values). See also section 6.1.

nnfcoll

On startup, all subsystems which collect data for a feature will register this
feature with the neural network’s feature collection subsystem, nnfcoll. This
allocates a unique feature identifier (ufid, for short) and associates this with the
callback function pointers for this feature in the list of known features. There
are three callback functions: One for allocation of process-specific feature data
(which is treated as opaque data by anything but the subsystem for which it is
intended), one for deallocation of this data, and one for calculating features.

The feature calculation function is called every time process priorities are
updated, for every process. This happens just before the features are fed into
the neural network for a new epoch. The allocation and deallocation functions
are called on process creation and exit.
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5.5 User level implementation

5.5.1 Tools for interacting with the kernel

nnfmon

The neural network’s feature monitor nnfmon is both the pseudo-device dis-
cussed in subsection 5.4.1 and the name of a program which reads data from
this device. This application simply empties all nnfmon feature buffers, stor-
ing the information in them in a file. This file is later read in by other neural
network applications.

nnconf

This simple program reads a saved neural network and ‘uploads’ its layout and
weight data to the kernel by means of ioctls on the nnconf pseudo-device.

5.5.2 Training tools

nntrain

The training application for the neural network. This application reads out a
file as stored by nnfmon and allows the user to create a network and train it
with these data as input. It accepts network configuration on the command line
in the form of size and number of hidden layers, maximum net error, maximum
number of epochs to train, learning rate, momentum and initial weights for
memory connections. It initializes the other weights and biases randomly.

nntest

An application intended for comparing existing pre-trained networks. It displays
a net’s error with regard to an nnfmon feature file.

nngather

This is a simple program used to gather data on the effectiveness of combinations
of features and settings in the nntrain program, by training a number of nets
and testing them on a training and testing set.

5.5.3 Miscellaneous tools

typesim

This is a very small program that will attach to a terminal and send simulated
keystrokes to it. These keystrokes will trigger writes to the terminal as though
they were real ones, thus creating a “fake interaction” with an interactive pro-
cess.

progstarter

This is a program that sets up a system to run a number of programs with
specified priority settings and calls nnfmon to record their feature values. It can
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optionally also start an instance of typesim to create a fake interaction with
some of these processes.

featmerge

This little tool can merge two output files from nnfmon. It is necessary when
one wishes to combine application runs which claim the audio device, if there
is no in-kernel mixing available. It can also be very useful to try out different
combinations of programs. One can simply run each program on its own, capture
its features and combine these output files to create usage scenarios.

gentest

A simple program used to generate test sets. One can define a number of
“features” and a number of “processes”. It will divide the range of nice values
equally among the simulated processes. The feature values that are written
are random, but they all add up to their converted nice value (meaning -20 is
mapped to 0 and 20 is mapped to 1). This program is useful if people would
want to test different kinds of network implementations or modifications to the
existing one.

5.6 Implementation issues

This section will deal with some practical problems that arose during imple-
mentation of the network.

5.6.1 Floating point

In NetBSD, it is not allowed to use floating point instructions inside the kernel.
At first, when all subsystems are initialized, the floating point unit (FPU) is not
initialized yet. About halfway through the main initialization process, when the
hardware is probed, the FPU is initialized.

The features are registered during hardware probe, as well, since their data
is generated by device drivers. We cannot control the order of device driver
initialization and probing, so there is no guarantee that the FPU has been ini-
tialized at feature initialization time. When a feature is registered, any process
which is forked afterwards will have its NN data structures initialized. This will
cause the system to crash if the FPU is not yet initialized at that time, because
these data are in floating point format.

A solution would be to wait until the FPU is initialized and only then initial-
izing the NN data structures for every existing process. This was implemented
and worked for a while, until a process used the FPU. This would cause a crash
as well because the kernel changes the FPU status while calculating features.
Saving and restoring of FPU register status is very slow on many machines, so
the kernel does not do this on every switch to kernel level, only when doing
a process switch. As a consequence, the kernel can not use any floating point
instructions at all.

Therefore, the current implementation uses fixed point arithmetic. This
considerably slowed down the implementation of the project, because the author
had no previous experience in writing fixed point arithmetic and there are many
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subtle things that can go wrong while using fixed point. A decent tutorial to
fixed point can be found in [28]. On the upside, because this required close
attention to the representation of the numbers, it provided some insights that
would otherwise probably have gone unnoticed.

5.6.2 Range and precision problems

Theoretically, neural networks can be used to calculate any mathematical func-
tion one can think of. In other words, they are Turing-Complete (See [18] for
a proof4). In practice, however, the computational power of neural networks is
directly proportional to the numerical range and precision of the implementa-
tion.

Consider a simple network with one input node and one output node. For
simplicity, let us assume we try to learn only two patterns, namely (0.001)
where the output shall be (1) and (0) where the output shall be (0). In order
to represent a network that can compute this, we must allow numbers as large
as 1000 in the weights. Also, in certain situations only very small changes in
weights can make a big difference. If the chosen representation does not allow
such precision, it may be impossible to learn such a pattern.

Fortunately this was not a real problem in practice, but it might matter
in the future for certain new patterns or features. Extra preprocessing could
probably be used to change ranges or clustering of activity in such cases. It
must be noted that the same problems can occur with other algorithms as well.
Even floating point has a maximum precision. The major difference is that
fixed point is much less flexible, because one has to decide a priori what the
position of the point will be. On the upside, fixed point is many times faster
than floating point on most systems, making it more suitable for use in kernels.

5.6.3 No audio mixing

NetBSD does not provide a possibility to multiplex the audio device. Once
one process has claimed the audio device, others can not access this device.
The kernel does not mix sound channels. This is not a real problem because
there are various ways to multiplex audio using userland applications, but this
means feature information about the application that outputs the audio is lost.
The kernel only sees audio output from the mixing application. To remedy
this, a program was created to combine feature outputs from several monitoring
runs. One can start a number of applications which includes up to one process
with direct kernel audio output. These can then be monitored for features,
after which a different combination of applications can be started for feature
monitoring. Finally these two feature files can be combined. This leads to
a feature file which interleaves the feature values from the first two feature
files. This circumvents the audio mixing problem by mixing the feature values
afterwards.

This has no negative effects, because this output would look exactly the
same if the processes were actually started together, if in-kernel audio mixing
was available.

4This proof is slightly incomplete, see the appendix for a discussion.
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5.6.4 The X Window System

In Unix, a graphical shell is optional. The most common Graphical User Inter-
face (GUI) for Unix is X11, which is generally not integrated in the kernel. The
system consists of a server and a number of clients. The server program controls
the display resources of the workstation while the clients send commands to it
over a socket. This means the clients look to the kernel like simple network pro-
grams. Generally, the server does not know (indeed it does not need to know)
which process is requesting graphical output. This makes it very difficult to
gather process information from X.

Probably the most interesting features for multimedia are the frequency and
nature of graphical requests by a process. To get this information available
to our scheduler, it must be extended with a way for X to communicate this
information to it. X would need to be modified as well. Because of a lack of time
this project did not include the task of making these modifications to X and
the kernel, but theoretically these should certainly improve the recognition of
multimedia processes. Etsion et al. [23] describe a system that does something
very similar, and it would be interesting to see this system re-implemented in
terms of features for our neural network scheduler.



Chapter 6

Results

Here we will present the results of running the neural network on certain example
program sets and a benchmark of the overhead of running a neural network in
the kernel.

The kernel that was used in the tests below is the GENERIC kernel for the
Macintosh PowerPC (“macppc”) port. There is a GENERIC kernel for every
port in the NetBSD source tree. These kernels include almost all drivers and
subsystems supported by the OS on that particular platform. This is the kernel
that one will find in a default installation of the operating system because it is
most likely to work on a wide range of hardware configurations.

Using such a “default” configuration means these results will be easier to
reproduce in other experiments if needed, since the configuration is not special
or tuned to specific hardware in any way. As stated before in section 5.1, there
was one change in this configuration: an options HZ=1000 line was added to
increase feature gathering granularity. The neural network kernel used is simply
a GENERIC configuration with the added neural network scheduler subsystem.

6.1 Features

The features that were used were the same for all subsystems: The number
of reads and writes were recorded, as well as the number of reads divided by
the number of writes. The number of reads divided by the number of writes
was deemed a good feature because it can not be calculated by the wiring of
a simple network with few layers. It does provide useful information, since
a process may do a lot of reads and writes or just a small number of reads
and writes, but the ratio might be the same. This will hopefully remove the
differences in hardware and/or bandwidth, making pre-trained networks more
generally deployable. The following subsystems were monitored for these three
features:

• Sockets (which can be both network and interprocess communication).
The expectation is that applications like HTTP daemons will need to be
given an elevated priority on server machines and filesharing programs will
need to be given a lowered priority on desktop machines. Another reason
to use this feature is that X window clients use sockets to communicate

28
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with the X server, which handles graphics, so it can help us in further
distinguishing background processes from interactive processes.

• Terminal interface (including pseudo-terminals like xterm). In most situ-
ations, terminal emulators should have a reasonably fast response because
they provide the main interaction with the system.

• Audio. Multimedia applications generally produce audio output, which
would make this a very suitable feature for detecting this kind of applica-
tion on a desktop system.

• Filesystem. Indexing of the filesystem, archiving, making backups and
many other typical background tasks interact solely with the filesystem,
which makes this a useful feature to detect these kinds of applications.

Target values were nice values, specified by a progstarter configuration file.
Nice values are in the range [−20, +20]. The network works with a linear acti-
vation function which has the range [0, +1], so target nice values were originally
normalized by the following function:

convert nice(n) =
n + 20

40

After some experimentation, it was observed that the network would not
learn very well. After some consideration it was determined that the reason for
this was that the calculation of the network would be biased in favor of high
priorities, because low nice values close to zero actually give high priority to
the processes. When a process does not have particularly interesting features,
it will result in zero values being clamped upon the input nodes of the network.

Uninteresting processes should run at a default nice value and only be el-
evated if they are interesting. There is no way by which a zero value can be
multiplied so that it will result in a more useful value. Biases introduced in
the network will help a little bit, but the training process tended to drop the
bias connection weights down, so this would often result in the network favoring
elevated priority. By inverting the output node value, this problem is solved.
This results in the following function to convert a nice value to a target value:

convert nice′(n) =
−1 · n + 20

40
=

20 − n

40

6.2 Network accuracy

To measure how well the network was able to learn feature sets for running
processes, data was gathered by running one program at a time with a target
nice value and monitoring its features using nnfmon. The target nice values
selected for each of the observed programs can be observed in Table 6.1. These
nice values are just an example of what a typical desktop user would most likely
prefer.

It is assumed most desktop users want their multimedia applications to run
at the highest priority (lowest nice) and processes that only perform a lot of
disk access (like find) to run at the lowest priority. Usually an editor does not
need the highest priority to achieve acceptable response times, but it should
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nice Program name Type of program
-20 Mplayer Movie player
-8 Firefox Graphical web browser
-4 Vi (600 kpm) Text editor
-2 Vi (120 kpm) Text editor
6 Ftp Network application

18 Bzip2 Compression application
18 Find File searching application
20 Mencoder Movie recoding program

Table 6.1: “Nice” values for a typical desktop situation

be assigned an elevated priority so it will not become too unresponsive on high
system load. Network applications should be fast, but as soon as system load
drops, they should yield to more important processes since downloads are not
as important as interactive applications. The current distribution of nice values
should be seen as an example, or proof of concept. The feature values of all
these processes were merged together to create a file for training and a file for
testing.

The rationale behind having two editors running with different typing speeds
(in keystrokes per minute) is that fast-typing users will benefit more of a fast
response time. As they type, they want to see immediate feedback. Slower
typists will not require such speedy feedback because they will not have hit so
many keys before noticing they made a typo.

The training set and the test set consisted of mainly the same programs, but
the files on which these programs operated were different between the sets. For
example, the movie player was instructed to play a different movie in a different
format, the web browser was used to visit different sites and the vi sessions had
different keystroke files for simulated typing.

To obtain a good network, nngather was run to try a number of combi-
nations of settings, running the network with the same settings 50 times to
eliminate random influences. This run took two full days, which the author
considers to be too long. It would be interesting to see if major speed improve-
ments could be made in the training and testing algorithms, which would be
needed for measurements concerning larger datasets. The generic backpropa-
gation algorithm has been improved upon by a number of studies, for example
Quickprop [25], Rprop [39] and GRprop [2]. Any of these could probably be used
as a drop-in replacement for the standard backprop algorithm. The author did
not expect backpropagation to be as slow as it proved to be. Nevertheless, the
results discussed below still provide some interesting insights.

The best network that was trained produced a network squared error of
0.169540 on the training set and one of 0.188568 on the test set. The error values
for the respective programs are presented in Table 6.2. Interesting results were
that find and the simulated vi sessions were very constant in error values. One
might think that this is a result of the fact that the keystrokes were simulated.
Looking

at the vi session with manual keystrokes, which are much less constant in
speed, the error was just as constant as with the simulated test runs. This is
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Average squared error Program name
0.480523 Mplayer
0.305481 Firefox
0.059364 Vi (600 kpm)
0.058685 Vi (360 kpm)
0.058640 Vi (manual typing)
0.036316 Vi (120 kpm)
0.121804 Ftp
0.127144 Bzip2
0.169342 Find
0.136162 Mencoder

Table 6.2: Error values of the tested programs

an indication that the memory layer does exactly what it was designed to do;
make the input smoother.

We can also observe that the features are apparently not quite suitable
enough for classifying multimedia processes. The errors of the movie player
and the web browser are notably higher than the other processes. The fact that
the web browser was classified badly was expected since it does not have any
very distinguishing features. It mostly does some disk reads and some network
access, like a combination of the compression and download programs. On the
other hand, the movie player can be accurately identified by its sound output, so
it was expected that it should be recognized by the network. The other features
apparently drown out the importance of the audio features. Introducing more
multimedia-specific features would hopefully balance this out.

In [23], a number of “Human-Centered” metrics are explored which can be
used for priority heuristics. The results shown in this studies are promising. It
would be trivial to implement these metrics as features for our neural network.
The biggest problem with these metrics is that the data required to measure
them are not available to the kernel directly. To make the kernel aware of, for
example, GUI features like horizontal and vertical size of a window, one needs
to implement a feature reporting system. Userlevel applications need a way to
notify the kernel about the service requests they receive from other applications.
In Unix much information is not available to the kernel, because for example the
graphics device is multiplexed to other userland applications by X. This is also
true for audio and pseudo terminals on certain systems. Where such systems
are in use, these would have to be modified as well as the kernel to realize the
gathering of these additional features.

On microkernel systems (examples are QNX [37], Windows NT [32], EROS
[45] and Mach [1] and its descendants Hurd [11] and Darwin/Mac OS X [4]) this
would probably be less of a problem. Microkernel systems are systems which
have a tiny kernel that performs only the minimal number of tasks required for
the OS to function. Functionality that is provided by the kernel in traditional
systems is provided by several processes or threads. This also allows easy re-
placement of kernel subsystems by simply starting a different implementation of
that particular subsystem. This architecture is more open to userland processes,
so on these systems it may be easier for these resource-multiplexing applications
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to access process information and report this to the neural network scheduler.
On systems with a monolithic design, where each and every resource is handled
by the kernel, these problems are nonexistent because all needed information is
directly available to the kernel.

6.3 Influence of the memory layer

One interesting, but possibly problematic result of introducing the memory
layer is that training a network toward a low error does not mean a testset will
produce the same error. If one trains a network, the memory layer is trained
as well, producing a memory “fingerprint” unique to this particular training
run. The weights are updated to reflect more or less importance of the relevant
feature’s history with regards to the current value of the feature (ie, the degree
of “decay” of the memory). The history that has been built up to this point
is still subject to the previous memory weight values. This is mathematically
expressed in Equation 6.1. Here am and ai are the activations of one memory
unit and its input unit, respectively. wim and wmm are the weights from the
input unit to its memory unit and the recurrent weight from the memory unit
to itself, respectively.

netinputm(t) = ai(t − 1) ∗ wim(t) + am(t − 1) ∗ wmm(t) (6.1)

This is not incorrect, but when one runs a test, the memory history will always
be different even on the same dataset, since the equation does not rely on
changing weights but assumes they are constants as can be seen in Equation 6.2.

netinputm(t) = ai(t − 1) ∗ wim + am(t − 1) ∗ wmm (6.2)

Introducing the LOCK MEMORY WEIGHTS option (which is a C preprocessor
define) into nntrain allowed experimentation with this phenomenon. When
one trains a network using nntrain, the network error is printed during training.
When testing this network with nntest, we only get exactly the same error
nntrain printed after the last epoch when memory weights are locked and the
number of runs of the training set is equal to the number of training epochs.
When the number of “epochs” of the test program is different, the memory layer
does not store the exact same history for all processes as the training program
recorded during its run.

6.4 Overhead

To measure the overhead of the neural network scheduler, a number of test
runs were performed with the benchmarking program hackbench [42], which
was specifically developed for benchmarking scheduling algorithms. This bench-
marking program creates a number of process groups which communicate through
a socket. It creates an equal number of senders and receivers in each group. All
of the senders in a group send one hundred bytes to all of the receivers in its
group, repeated a hundred times. The size of a group is 40 processes (meaning,
20 receivers and 20 senders).

The overhead calculation is performed by measuring the total execution time
or “wall clock time” of a hackbench session. By subtracting the end time of a
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Figure 6.1: Runs of hackbench with different kernels and networks

session from the start time, a result is obtained. These results can be compared
between different kernels to see how much scheduling overhead is involved by
subtracting one kernel’s total time of the same number of hackbench groups
from the other kernel’s total running time of these groups. The difference is the
extra time spent inside the scheduler, considering everything else is equal.

These tests were conducted in the so-called single-user mode, which is an
operating mode in which no services are started except for the ones that are
vital to keep the system running. This was done to minimize interference from
other processes that otherwise might be running (for instance, cron which might
run a daily script that performs quite heavy disk seeks). Each test was run 5
times and the results averaged to reduce further anomalies. After every batch
of 5, the system was rebooted to ensure earlier tests would not influence later
tests. The results are displayed in Figure 6.1.

6.4.1 Feature gathering overhead

The original NetBSD scheduler (marked GENERIC in the Figure 6.1) has a very
slight curve, indicating quadratic complexity of the scheduler. This curve be-
comes more pronounced as more time is being taken by the neural network
scheduler. The complexity of running the network and feature gathering for one
process is constant with respect to the number of processes. The features for one
process are gathered and the network for that process is run completely inde-
pendent from all other processes. Because the feature gathering is run for every



34 6.5. PERCEIVED SPEED

process, the total overhead of the feature gathering is linear. The network is run
inside the scheduler so, having constant complexity of itself, the scheduler as a
whole will be of quadratic complexity since O(1) · O(n2) = O(n2). The feature
gathering is not run inside the scheduler. Considering the total overhead of the
new system, this will still be of quadratic complexity as O(n2)+O(n) = O(n2).

In the graph we can see the overhead of the feature gathering (marked no
network in the figure) compared to a normal GENERIC kernel without feature
gathering. At around 15 groups of processes of hackbench (making 600 processes
in total) one starts to see a clear difference between a regular GENERIC kernel
versus the feature gathering kernel. The difference in feature gathering overhead
as compared to the kernel without feature gathering is about 8 milliseconds per
process group or 0.2 milliseconds per process.

This overhead consists of three things: First, when a process is created, the
kernel allocates of a buffer to hold bookkeeping information which is needed to
track the data required for calculating the feature’s input value for the network.
It initializes this buffer for each feature by copying from the parent process that
invoked the new process. Second, at every call in the subsystem which registered
the feature, there will be a call to a procedure that will increment a tally for this
feature or do something else, depending on the feature. Third, when a process
is destroyed, the kernel needs to deallocate the feature buffers.

To determine the overhead of the neural network itself, the above process
was repeated after loading a network into the kernel, causing it to go through the
steps of calculating the features as well as running the network in feedforward
fashion to calculate nice values for all the processes. The nice values would
all be exactly equal, so as not to cause skews in the measurements. This was
ensured by simply setting all the network’s weights to zero, thereby making all
processes get an equal nice value of 20 (lowest priority).

We can see that the overhead of a network is quite noticeable. The over-
head of the 12x8x1 network over the feature gathering is about as much as the
overhead of the feature gathering over a GENERIC kernel; it is roughly 12.5 mil-
liseconds per process group or 0.31 millisecond per process. The total overhead
of this network as compared to a GENERIC kernel is thus about 20.5 milliseconds
per process group or 0.51 milliseconds per process. The overhead of adding an
extra hidden layer of 12 nodes to the network is roughly 8.5 milliseconds per
process group or 0.21 milliseconds per process.

Seeing these numbers compared to each other is a strong motivation to
choose features very carefully in a production system, so that the total number
of nodes can be kept to a minimum. In actual usage of the system, it is more
interesting to see what the perceived speed is, as experienced by the user. This
will be dealt with in the next section.

6.5 Perceived speed

Most computer users are not interested in minor speed differences between pro-
cesses and schedulers. The reason for using a neural network scheduler on a
desktop system in a multimedia context is to see if it is possible to improve the
subjective speed or the speed the user perceives the system to have. When an
interactive or multimedia process slows down on a desktop system, this is much
more noticeable and annoying than when any long-running background process
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Kernel config fdrops±σ %fdrop fps±σ

GENERIC default 1389±8.5 96.46% 0.65±0.08
nnsched default 1389±13.9 96.46% 0.71±0.27
GENERIC manual 2±3.4 0.14% 21.95±0.08
nnsched manual 2±3.0 0.14% 21.96±0.05
nnsched network 41±11.3 2.85% 17.57±0.30

Table 6.3: Dropped frames with mplayer for one minute of play time

is taking a little longer to complete. The idea is then, to deallocate computing
time from “uninteresting” processes and reassign this time to more “interest-
ing” processes. A neural network can be trained on different data sets in order
to specify what behaviour profiles are considered “interesting” on a particular
system.

To measure if this works well, we have set up a system with a number of
processes that simply exist to slow down the system: two bzip2 processes are
enough to make this happen. To measure “responsiveness”, the mplayer process
is set up to record the number of so-called frame drops that have occurred. A
frame drop happens when the system is overloaded so much that the process
gets scheduled on the CPU so infrequently that the actual “wall clock time”
that has expired is so much that it is no longer possible to fit the number of
frames per second that the video uses on the screen. In that case, frames have
to be omitted, or “dropped”. The more frames are dropped, the lower the frame
rate and the higher the perceived “stuttering” effect of the video is because it
lacks smooth transitions between two frames.

The video that was used in this example is an AVI file with audio component
that is encoded with the AC3 codec at 48 KHz at a bitrate of 192kbit and
an XVid video component with a pixel size of 720x416, recorded with 23.976
fps (frames per second), which should run at 3289.4 kpbs (kilobit per second)
for optimal playback quality. This is at a high enough resolution to be so
demanding of the system that a slowdown is immediately noticeable when a few
CPU-intensive processes are started along with the video player.

The experiment that was set up consisted of five test runs for each situation
in order to get reliable results. After every run, the system was rebooted in
order to negate any effects of file caching. The averages of these test runs are
displayed in Table 6.3. The network that was loaded was reasonably simple and
trained with the test configuration given in section 6.2. The network consists of
12 input nodes, 12 memory nodes, one hidden layer of 8 nodes and one output
node. To produce a full comparison, four situations with no network loaded are
given, compared to one situation with the network specially trained to boost
priorities for multimedia applications.

The column marked config in Table 6.3 presents the following configurations:

• default is the default situation, where all processes get a default nice value
of 0, which means there is no priority boost or priority penalty for either
process type.

• manual is the situation where the user has manually indicated that he
wants the mplayer process to run at maximum priority (a nice value of
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-19 — note that the user needs to have root privileges in order to be able
to do this) and the bzip2 process to run at the minimum priority (a nice

value of 20). This is the best situation imaginable when simply running
only bzip2 and mplayer and we are only interested in making mplayer run
as fast as possible. Any background process (like the X server, the window
manager, the user’s shell etc) still run at nice 0, or default priority.

• network is the situation where the neural network scheduler is loaded
and actively monitoring and scheduling processes. Any nice value set
by the user is ignored and reassigned by the neural network scheduler.
All processes are automatically assigned priorities by the scheduler, not
only the mplayer and bzip2 processes under discussion. This includes the
user’s shell, X and the window manager. The network was trained with
example sets such that mplayer should receive a nice value of -19 and
bzip2 should receive a nice value of 20.

The column marked fdrops presents the average number of frames dropped
by mplayer in the given configuration and its standard deviation on the one
minute of play time in four trial runs.

The column marked %fdrop presents the average percentage of dropped
frames. The total number of frames in one minute of the video used for the
tests was 1440.

Finally, the column marked fps presents the average frames per second and
standard deviation that was achieved on the four runs in the given configuration.
This is what concretely determines how smooth the video plays for a human eye.
This number can differ from the fdrops average because even though a minute
of video was requested, the actual play time can be slightly higher depending
on the amount of stutter. When audio and video get out of sync because of
stuttering and video frame drops, the player needs to compensate by waiting
for the audio track to catch up. This means that with higher frame drop counts,
the total time taken for the video varies more. It is always higher than the total
time of the video clip. The better fps rate of the nnsched kernel in the default
config is the result of such fluctuation, as can be determined from standard
deviation.

These results indicate that the neural network scheduler performs quite well
in this task and does exactly what it was designed to do: take the nice value
assignment out of the hands of the user and automate it. The GENERIC
scheduler in the default situation does not take into account the fact that the
mplayer process is more important to the desktop user than the bzip2 processes
and simply divides the CPU time equally to the processes. This is not good
enough because it results in an extreme amount of dropped frames. The neural
network scheduler without a network loaded behaves identically.

When a network is loaded, the neural network scheduler adjusts the priorities
automatically by determining that the mplayer process is using audio output
and uses that to boost its priority, resulting in a negligible amount of dropped
frames. This certainly makes the video more pleasant to watch.
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Figure 6.2: Socket reads and writes for firefox, mplayer and ftp processes

6.6 Assessment of features

Even though this is only a proof of concept implementation, the usefulness of
the features used in the initial study will be described here.

6.6.1 Sockets

The socket features were expected to be indicative of X programs and net-
work programs. It turned out that multimedia programs are not necessarily de-
tectable this way because programs like mplayer and firefox use the X video
extension [12] in conjunction with the MIT shared memory extension [14]. This
combination of extensions to the X protocol allows client programs residing on
the same machine as the X server to store graphics in memory and grant access
to the X server to read this memory directly, instead of having to pass every
pixel over the socket connection. The only information going over the socket
connection is the client’s request to have the server read a new frame from
memory.

This is shown in Figure 6.2, where it is clearly visible that the mplayer

process has a constant amount of socket writes per second: around 22 per
second, corresponding to the frame rate. It performed no reads at all so this
is not shown. The lower spikes in the firefox plot are when the user has
scrolled or performed some other action that requires a redraw of the page.
The bigger spikes correspond to HTTP requests for new pages or images on
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pages. The FTP download process has no writes at all during download, but it
has a constantly high number of reads, which is visible in the plot as the wide
bar in the center of the plot. This bar will be higher when the connection is
faster and lower when the connection is slower, because the kernel will wake the
process up more often if there is more data available, resulting in a new read,
after which the process will go to sleep again. However, the reads divided by
writes is almost constantly the maximum representable value of the features,
resulting from a division by zero, the writes, (the system stores “infinity” as
the maximum representable value) as can be seen in Figure 6.3. The firefox

process fluctuates wildly between zero and the maximum value as a result of
the fluctuation in reads and writes.

With the right weight settings in the memory layer this can be smoothed
out and result in a fuzzy line through the center of the graph. The graph shows
the smoothed-out curve for the memory node values for both ftp and firefox

with a recurrent weight of 0.09 from the memory node to itself and a weight of
0.01 from the input to the memory node, thus resulting in the following set of
equations to calculate the activation value of the memory node:

f(xt) =

{

0 if t = 0

f(xt−1) ∗ 0.09 + xt ∗ 0.01 otherwise
(6.3)

Any particular network does not necessarily have to result in precisely these
settings for the weights. The read/write ratio feature, when smoothed out,
adds information to the raw read and write features: The firefox process is
the only interactive one, and using this feature one can distinguish more easily
between it and other socket-using processes than one would be able to do given
only the reads or the writes.

6.6.2 Audio

About audio there is not much to say, besides that mplayer is clearly the only
application that has any activity on audio writes, which confirms our expectation
that this is a very distinctive feature for multimedia applications. The audio
writes feature is displayed in Figure 6.4. The spikes and fluctuation in the figure
are most likely the result of chance; if the process was scheduled on the CPU
just before the feature was collected it would be higher and if the process was
scheduled just after the feature sampling it would be lower.

The mplayer process performs no reads at all, so the read/write ratio is
always 0. Here, too, the ratio seems irrelevant and could probably be removed.
In case audio recording tools can be used, the read ratio may be useful but in
other cases it could be removed too.

6.6.3 Terminal

The terminal features are more interesting. As can be seen in Figure 6.5, the
reads and writes are almost identical for the two vi processes. They overlap
so much that it is a little difficult to distinguish between the read and write
graphs. As is to be expected, the process with a higher number of simulated
keystrokes per minute has a higher number of reads and writes to the terminal
device. However, the mplayer, mencoder and ftp processes also show terminal
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writes. This is because both show status reports on the terminal. mplayer

outputs the current position in the audio/video stream which is constantly up-
dated, mencoder also shows the position which the encoding process is currently
working on and ftp shows an ASCII progress bar which is updated whenever
data has been read. It is interesting to see that programs with “typical” termi-
nal interfaces like vi show less terminal output than programs which need to
update a status report very often.

The read/write ratio, presented in Figure 6.6 again does not add a lot of
new information. For all applications this ratio is zero, except the vi processes.
The only thing we could possibly say about this is that the read/write ratio
can reliably be used to distinguish “traditional” (i.e., console-based) interactive
applications from other applications.

6.6.4 Filesystem

Almost every program in our test set uses the filesystem, even if the program
does not write to regular files. This is the case in Unix because there, devices are
accessed as files called “special files” or “device files” [40]. For example, mplayer
does not write anything to a regular file, but its audio output is written to the
device file /dev/audio. As discussed above, it also issues terminal writes, but
the terminal driver is also accessed through a device file, which is in this case
called a “pseudo device”, since (on modern systems which can multiplex many
terminal windows) it does not refer to a physical piece of hardware. Thus, by
the time the terminal subsystem is notified of a write to a terminal device, this
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has already passed through the subsystem that deals with the filesystem.

The only application that does not interact with the file system is, oddly
enough, the find application. Even though find searches through the filesys-
tem, it does not actually read from or write to any files. Because accessing the
contents of directories is not done through the same system calls as reading or
writing files, the filesystem feature handler does not register any activity for
find processes. This could be fixed by adding hooks for the features in the
corresponding kernel system call implementations.

In Figure 6.7, we see filesystem activity of applications which issue a large
number of filesystem requests per second. ftp shows prominently in this graph,
as it simply writes back to disk whatever it reads from the network. Compare
this band of the graph with Figure 6.2 and we see this relation clearly. The
bzip2 application has about an equal number of reads and writes, which overlap
almost entirely. The mencoder process writes out a quite consistent stream
of information, however the reads include peaks of activity. It may be that
these peaks correspond to small transitions in frames which means the decoding
process can fetch the next frames quickly without having to do a lot of decoding
work, but this is only speculation. mplayer itself also shows peaks which could
be of the same kind.

For the write behaviour of mplayer, we turn our attention to Figure 6.8,
which shows the low end of the filesystem activity. From this graph, the bzip2

activity was excluded because it would obscure the other graphs, since it has
such a wide graph. The mplayer graph ends up in this figure because there is
a lot less data that mplayer needs to write (only audio, not video), resulting in
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Figure 6.10: Filesystem, socket and tty features

smaller numbers than for the read activity. It is also much less erratic because
the audio output must be very constant; the movie’s audio layer is encoded at a
constant frequency which needs to be maintained to produce the correct sounds.

We also see that firefox has very few filesystem requests. The few peaks
are when web requests were made, and it read or wrote the received information
from or to its page and image cache. During reading and scrolling of the page, it
does not exhibit any disk activity. Lastly, we have a look at the vi processes. If
we compare these graphs to Figure 6.5, we see that these do indeed, as noted at
the beginning of this section, correspond to the writes to the terminal (pseudo-)
device file. Here, too, the reads and writes overlap so much they become almost
indistinguishable.

The filesystem read/write ratio graph, presented in Figure 6.9 contains a
bit more information than the other read/write ratio graphs. On the left and
right sides of the graph, we can see the “spikes” up to the maximum possible
value (which were cut off to keep the rest of the graph readable) for the firefox
process. These occur during time frames when the process reads but does not
write. In the lower part of the figure, we also see the vi graphs from Figure 6.6
repeated here, as expected. The mplayer and mencoder follow the graph of
the reads for these processes. Again, we can conclude that the read/write ratio
feature does not add any information and could probably be discarded from the
feature set.
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6.6.5 Application classification

In this final subsection we will try to visualize the classification process for
applications. In Figure 6.10 we see the data points for our processes plotted
across three dimensions. The axes that can be seen are those of the number
of socket reads, filesystem writes and writes to the terminal device. From this
visualization it again becomes clear that mencoder, bzip2 and ftp can best
be identified by their filesystem writing activity. The correspondence between
socket reads and filesystem writes for ftp which we noted earlier becomes very
prominent in this graph. There is another correspondence between two features
that becomes clear here, which we had not noticed before; namely that when
mencoder writes more to the disk, it also outputs more information to the
terminal. This is logical, as it has to update the percentage that it has completed
more often if it has been able to write more to disk. What is interesting is that
firefox can be better identified by its socket reads than became clear from
Figure 6.2, the 2d graph that displayed socket read and write activity across
time.

Further, the vi process belonging to the fast “typist” can be identified quite
well. However, the other vi process ends jumbled up with the find process
and some parts of the firefox and bzip2 processes. Interestingly, the mplayer

process is reasonably easy to pick out, even without the audio feature.

To test the conclusion that the read/write ratios are mostly useless for clas-
sifications, we tried to visualize the feature space with the read/write ratios for
the filesystem, sockets and terminal features. This is displayed in Figure 6.11.
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As we can see, there is hardly any information in this plot. All the data points
collapse on just a few values, and clusters from one process split far apart, while
values from different processes are clustered together. The only reasonably infor-
mational feature is the terminal read/write ratio. This confirms the conclusion
made in the preceding sections, that the ratio is mostly a useless feature and
should be left out, except for the terminal and possibly the smoothed-out socket
feature (see Figure 6.3 and the accompanying description).



Chapter 7

Conclusion and future work

This thesis described how a neural network was integrated in an operating sys-
tem. The implementation was described in detail; how process features can be
obtained and used as input for a neural network, and how the output of this
network can be used as a classification of the application. This output could
even be used directly as a scheduler priority value. The goal of this was to rec-
ognize multimedia applications automatically and schedule on a desktop system
with a higher priority than less important “background” applications. Testing
results showed that this was reasonably successful, but that the features could
be better.

Investigating the features resulted in the insight that the read and write fea-
tures are quite useful for the processes that were studied, except for audio reads,
but this feature could prove useful in situations with different types of processes.
The read/write ratio was useless in all cases except the socket case, as no infor-
mation was added by it that was not also in the reads or the writes themselves.
It turned out that the socket read/write ratio feature, when smoothed out a lit-
tle, was the distinguishing feature for the web browser process. The multimedia
process could very easily be picked out by writes to the audio device and pure
downloading could be picked out by the large number of reads from the network
and writes to disk. The application that walked the filesystem hierarchy (find
in this study) was the only application that showed no activity on any of the
features. This could be remedied by modifying the filesystem feature such that
it would also note when an application simply traversed the file hierarchy, or by
adding a new feature that does this.

The implementation is a proof-of-concept, but it was designed in a very mod-
ular fashion. This makes it an ideal platform for testing new ways of classifying
processes without spending a disproportionate amount of time modifying or
rewriting the existing scheduler. It allows researchers to freely experiment and
to evaluate the influence of different metrics on process scheduling performance.
Adding a new feature to the network is trivial and the effects can be observed
instantly with existing tools. Most new tools or modifications to measure or
improve performance are automatically independent of particular features, ben-
efiting everyone. Hopefully, this helps giving research on uniprocessor scheduling
the impulse it needed.

Using a neural network to assign priorities instead of requiring the user to
manually assign them is a design that works pretty well on the desktop. The
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results show that it visibly improves multimedia performance. In retrospect,
on a server it should be less useful, because the variety of applications running
on any particular server is much smaller, and it could be more effective to let
an administrator assign these priorities manually. Having the neural network
scheduler from this paper in a scheduler would not preclude this possibility, be-
cause the server’s administrator could simply not load a network at all, thereby
keeping manual control of all priority assignment.

Unfortunately, one of the most important aspects of scheduling multimedia
applications under Unix was not touched upon by this research simply because it
would be too big an undertaking. This would be gathering process feature data
from the X windowing system. This is important because multimedia applica-
tions are often graphics-intensive, and under Unix X is the system that draws
windows and all graphics output goes through X. For example, the “Human-
Centered” metrics explored in the study of Etsion et al. (described in [23]) could
be implemented as features for a neural network. Hopefully, this will provide
some features that can strongly improve the scheduling on multimedia desk-
top computers. This would require substantial modification of the X Window
system as well as the kernel in order to get the data from X to the kernel.

Another approach for making multimedia information available to the sched-
uler would be to move the scheduler to an external process. This process could
decide the “nice values” of other processes. This would be advantageous for
desktop environments, for example. Projects like the KDE or the GNOME desk-
top environments could build a userspace-only scheduler. The advantage here
is that if every application’s operations are performed through the abstraction
layers provided by these desktop environments, more multimedia information
is available to the scheduler. Because the neural network part of the scheduler
is in userspace, there is less overhead in the kernel. For example, desktop en-
vironments often have an audio multiplexer application.1 These multiplexing
processes should be able to register their feature with a scheduler in such a way
that the feature can be attributed to the process that requests its service. As
speculated in section 6.1, OSes with a microkernel architecture should not need
to implement such a complex system because they are designed around small
processes that perform system tasks and communicate with each other. This is
a very promising architecture for implementing a neural network scheduler.

Another interesting subject for future research would be to use unsupervised
learning techniques (for example Kohonen’s Self Organizing Map, as described in
[29]). This could be done by having this network identify classes of applications
and then presenting the user with these classes along with the names of the
processes in that class. Then the user could assign the desired priority for each
class. The memory system presented in this paper could be maintained by
creating a hybrid backpropagation network/Kohonen map. This can consist of
a memory and an input layer which are connected to an output layer of the
same size as the input layer. The resulting output can then be used as input to
the Kohonen map.

It is unfortunate that AI developments do not seem to have influenced re-
searchers in the scheduling field and the Operating System field in general. It
would be interesting to see what results would come from a higher degree of

1For example, KDE uses aRts (http://www.arts-project.org/) and Gnome uses Esound
(http://developer.gnome.org/doc/whitepapers/esd/) to multiplex their audio.

http://www.arts-project.org/
http://developer.gnome.org/doc/whitepapers/esd/
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collaboration between the research areas in the future.

7.1 Personal notes

In this section I will describe what I have personally learned from this project.
Implementing a neural network appears to be quite easy, but it becomes

very difficult when things go wrong. Debugging a neural network that does not
crash but does contain a bug is extremely difficult, in my opinion. If there is
no particular point where anything goes wrong, one has to step through the
network code with a debugger. Even this is not necessarily very helpful if the
network appears to learn correctly in the first number of epochs. The little steps
do not give a “big picture” of what is happening, and one can easily get lost in
details.

All of this means that the implementation of the neural network took a
very long time. It took so much longer than expected that there was not a lot
of time left for large-scale experimentation and measurements of effectiveness
of features. Also because of this, it was very disappointing to see that the
evaluation of the work focused only on the thesis and not on what constituted
the bulk of the work and in which most time was invested, namely the code.

Before this project, I was under the impression that neural networks are
formalized in a mathematical model. I learned that this may be true in theory,
but that in practice there are many common issues that can only be solved
empirically. For example, determining the best number of hidden units, and
the best values for the learning rate and momentum are a matter of trying out
what works best for the particular test set under consideration.

Another issue was that a network’s activation function can make a world of
difference. When the test set has continuous (instead of binary) target outputs,
the best activation function is a simple linear function. In retrospect, this is very
obvious, but at the time of implementation it was something I had not thought
about. I also did not expect that backprop would be such a slow algorithm. It
is the standard algorithm taught in neural network courses and tutorials, but it
is unacceptably slow for real-world applications. If this was known beforehand,
perhaps a different training algorithm could have been chosen.

The fact that floating point instructions can not be used in an OS kernel
was quite surprising to me. After a short discussion on the NetBSD kernel
mailing list, it became clear that there is no decent solution for this problem in
a portable OS. Certain systems might have no FPU (Floating Point Unit) at
all and on most architectures, saving and restoring the FPU registers are such
slow operations that the overhead is unacceptable. Implementing fixed point is
not very difficult, but it is very prone to errors. This was the source of quite a
number of bugs.

The helper progstarter program was written in a bit of a hurry, as well as
the nnread and nnwrite modules (which read and write a network from a file).
I did not spend much time thinking about them and wrote the code quickly,
expecting that I would not have to work with the code much after creating them.
Unfortunately, this assumption was not true. After some attempts to extend
nnread and nnwrite, I decided to completely rewrite these functions and also
change the file format. The code is a lot cleaner now, but the file format is still
very much a hack. The total time I spent writing and rewriting these modules
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could probably have been spent better by designing a good, extensible format
and writing a real parser for it using, for example, lex and yacc instead of
fscanf. Progstarter was extended without having to rewrite it, but these
changes cost more time than they should.



Appendix A

Correction of the

Turing-completeness proof

for NNs

The proof given in the diploma thesis [18] is not entirely correct. There is a
small error that will be discussed here. The author apparently forgot that an
aspect of his model required more bookkeeping than he uses in his proof.

The paper consists of a long path of proofs by simulation, starting from Tur-
ing machines, simulating these in stack machines, going from there to counter
machines, adder machines, alarm clock machines, restless counters and finally
sigmoidal neural networks, thus proving that these neural networks can simu-
late Turing machines. In other words, sigmoidal neural networks are Turing-
complete. I will assume the reader has read the paper in question.

The flaw is in the proof of Proposition 3.3.1. To repeat the proposition:

Proposition 3.3.1 An acyclic k-adder machine can be simulated by a (k2 +
k + 4)-restless counter machine.

This proposition should be modified to read:

Proposition 3.3.1’ An acyclic k-adder machine can be simulated by a (k2 +
k + 8)-restless counter machine.

We already know from Proposition 3.2.1 that an acyclic k-adder machine

D that computes in time T can be simulated by a (k2+k
2 +2)-alarm clock machine

in time O(T 3).

A.1 Background

Like in the original paper, we are simulating an alarm clock machine in a restless
counter machine. An alarm clock machine (which is in turn used to simulate an
adder machine) consists of a number of timers which all hold a number. This
number represents the number of time steps it takes for them to wind down
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and “sound an alarm”. In a normal situation, every time step every clock’s
number decreases by one. The machine is described by a transition function
δ : {0, 1}5k → 2{delay(i),lengthen(i):1≤i≤k}∪{halt}. The domain of δ is {0, 1}5k

because we need to remember the last 5 time steps for our simulation of an
adder machine. A 1 at position 5k + i in the vector means alarm clock Ai

alarmed at timestep k. The information about an alarm clock’s period and
time to alarm is the input for the machine. The alarm clocks can be delay-
ed or lengthen-ed by finite control, which means either the time to alarm is
increased by one (delay) or both the time to alarm and the period are increased
by one (lengthen).

To simulate an acyclic adder machine D with adders D1, ..., Dk, we use an
alarm clock machine with clocks A0, A1, ..., Ak, A00, Aij : 1 ≤ i < j ≤ k. The
clocks A1, ..., Ak are used to simulate D1, ..., Dk, the clocks A00 and A0 are used
to synchronize the machine. If any clock alarms simultaneously with A00, it gets
delayed. If A00 and A0 alarm simultaneously, the delay and lengthen operations
are completed and a new cycle can begin. For more details, please refer to [18].

A.2 Proof

In the restless counter machine, every alarm clock Ai is simulated by two restless
counters, a morning (Mi) and an evening (Ei)

1 counter. The period of the clock
is represented by the duration of the cycle of the two counters. The time to
alarm is represented by the time it takes the morning counter to hit zero. See
Figure A.1 for a depiction of this process.

Two counters for every alarm clock in the alarm clock machine gives us the
following number of counters if we use the alarm clock to simulate an acyclic
k-adder machine:

(
k2 + k

2
+ 2) ∗ 2 = (k2 + k + 4) (A.1)

An alarm clock that goes off corresponds to its morning counter hitting 0. An
alarm clock’s counters are said to be in the morning from the point the morning
counter starts counting upwards from 0, and we are in the evening from the
point the evening counter is counting upwards from 0 (intuitively speaking,
alarm clocks generally go off in the morning).

Mi and Ei will be in a cycle with a phase shift of 2p time steps as described
in the original paper. It will count up to 2p − 1 and then it will count back
to 0 and stay there for two additional time steps, before it will start to count
up again, as we can observe in Figure A.1. To be able to distinguish the three
states at which the counter is 0 (the zero states) when we refer to them, two
new zero values are introduced, 0′ and 0′′. When a counter reaches 0, finite
control will wake up and set the associated counter’s direction to Down. So if
Ei hits 0 at time t, Mi starts to drop at t + 1, and vice-versa. This causes the
pair of counters to cycle with period 4p, simulating one alarm clock of period
p. The mistake in the original paper is in the implementation of the delay and
lengthen operations. These work as follows:

• Delay. To delay we switch the direction of the corresponding morning
and evening counters for a duration of two time steps. Since finite control

1This includes the Aij counters.
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Figure A.2: Lengthening a clock in the morning

only wakes up when a counter hits 0, there must be a timer that hits 0 at
the end of the two time steps in order to be able to revert the direction
back to normal again. The original paper does not provide a counter like
this. We will first look at the other operation, lengthen, before we try to
fix this.

• Lengthen while in the morning. To lengthen Ai when in the morning,
its evening counter, Ei, will be incremented for one timestep and then
changed back to normal. This causes an (intended) delay which results in
the evening counter dropping to 0 four timesteps later than would normally
be the case. See Figure A.2 for clarification. Before the delay operation,
we see that the period is 10 since after hitting 0 it takes an additional 10
time steps for the morning counter to hit 0 again. We will need another
extra counter that hits zero to be able to turn it back around.

• Lengthen while in the evening. Lengthen-ing Ai when it is in the
evening is more problematic. Simply changing the evening counter like
we do when in the morning does not work, because the morning counter
hits zero before the evening counter. The delay that is implicit in the
lengthen operation does not take effect then. The morning counter will
simply continue decreasing until it hits 0, as if nothing happened. This
means the period will be longer from then on. Changing the morning
counter directly like we changed the evening counter is effective, but the
delay caused by this is only half a delay. Consider Figure A.3(a). We
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Figure A.3: Two attempts at lengthening a clock in the evening
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t c0 c1 c2 c3 Partial output (c0, c1, c2, c3)
0 (0, Down) (1, Down) (0′′, Up) (0′, Up) (U, N, D, N)
1 (0′, Up) (0, Down) (1, Down) (0′′, Up) (N, I, N, D)
2 (0′′, Up) (0′, Up) (0, Down) (1, Down) (D, N, I, N)
3 (1, Down) (0′′, Up) (0′, Up) (0, Down) (N, D, N, I)
4 (0, Down) (1, Down) (0′′, Up) (0′, Up) (U, N, D, N)

Table A.1: State changes of the extra control counters

can see that the original period is 10. When we do a lengthen operation
on the morning counter (similar to the evening situation), it will hit 0
two timesteps later, making the effective period of the previous cycle 12.
On the other hand, the period has become 14, as we can see from the
morning counter’s graph to the right of t = 12. This means the initial
delay is half from what it is supposed to be. Recall that one timestep
of the alarm clock machine is simulated by four timesteps of the restless
counter machine. Thus, the delay is half a timestep of the alarm clock
machine.

The correct way to get the implicit delay when in the evening is to delay
the morning counter twice. Doubling the delay of Figure A.3(a) causes
it to be a delay of one timestep in the alarm clock machine. This causes
a new problem. The lengthening was correct in our previous attempt,
only the delay needed to be fixed. By doing the operation twice, the
lengthening is doubled too. This means that a lengthen operation would
cause a lengthening of two timesteps. To remedy this, we also have to
cause a delay in the evening counter, as shown in Figure A.3(b).

Only when A00 hits 0 in the alarm clock machine there will be an action of
the finite control, and this translates to M00 hitting 0 in our restless counter
machine. Only then will there be a delay or lengthen operation taking place.
The lengthen operation in the evening requires a counter to hit zero every
timestep, because it requires four changes in direction. So, we will need at least
three extra counters, one for each timestep after M00 hits 0 (one or two will not
be enough, because we can only take action on a counter hitting 0. 0′ and 0′′

do not wake up finite control). Naturally, the other operations can “borrow”
these counters.

Because every timestep of the alarm clock machine is simulated by four
timesteps of the restless counter machine, we want our newly added “control
counters” to oscillate with period 4. The state changes can be observed in detail
from Table A.1.2 Because M00 does not necessarily hit zero every simulated

2Here the Up direction is used in all zero states except the first. The original paper does
not clearly specify if 0’ is greater than 0 (in the ordering laid down by Up and Down) or if
the Up/Down directions even have any effect on counters in the zero states. Since they must

remain in the zero position for two timesteps, the actual direction encoded is irrelevant. It
is unambiguous which state the counter will be in after any of the zero positions. The only
important aspect is that when it leaves the last zero state, 0′, it should go to the state (1, Up).
Using Up throughout the zero states except the first is perhaps the best choice conceptually,
because directions may only be changed at zero events. This way, counters can switch their
own direction unaided from Down to Up when hitting 0, thus going through these phases:
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time step (it can be lengthened too), we require an extra counter to keep our
counters under control. This is the fourth counter in Table A.1. Essentially it
keeps c1 from spinning off when M00 does not hit 0. The last column displays
a partial output of the mapping that is the restless counter machine, namely
the values for the four counters under consideration. N means No change, I

means Increase from next timestep onwards and D means Decrease from next
timestep onwards. All that is left to do when these changes are applied is to
add mappings to the function that defines the machine to ensure the delayed or
lengthened operations are completed by reversing the affected counters again.

In conclusion, we add these four counters to Equation A.1 and we end up
with:

(k2 + k + 4) + 4 = (k2 + k + 8) (A.2)

which is what our modified version of the original proposition (Proposition

3.3.1’) reads.

(0, Down) → (0′, Up) → (0′′, Up). from 0, then going Up because it changed. From this
follows that 0 > 0′ and 0′ < 0′′.
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