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Abstract

We introduce a way to compare neural networks on their mechanistic
similarity to the brain by investigating how they perform when impaired.
These networks are lesioned such that they simulate semantic dementia
(SD). Two models are used for comparison: one is trained with a category
objective and another with a semantics objective. Both models are used to
perform the word-picture matching task, a well known task in the research
and clinical assessment of SD (Rogers et al., 2004) (Rogers, Ralph, Patter-
son, & Jefferies, 2015). The results show that both models produce sensible
results and that we have created a proof of concept for a semantic dementia
based testbed. However, there is no clear answer on which of the two models
performs more like SD patients: both models produce behavioural features
similar to those of SD patients.
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Chapter 1

Introduction

Many computational neuroscience labs are striving to create neural net-
works that form similar representations to the brain when performing cog-
nitive human tasks. When the behaviour of these networks approximate
brain-behaviour, the assumption can be made that the network’s mechanis-
tic structure may also be brain-like. However, this does not need to be a
causal relation.

The Brain-Score platform is a benchmark that compares a model’s rep-
resentation to primate ventral stream neuroimaging activations and be-
havioural data to see how they correlate in measures of ’brain-likeness’
(Schrimpf et al., 2018).

It has been shown that with the use of deep convolutional neural net-
works (DCNN’s), functional signatures of primate visual processing can
be predicted across multiple hierarchical levels at unprecedented accuracy
(Kietzmann, McClure, & Kriegeskorte, 2018). Based on this, we may as-
sume that DCNNs have a good chance to perform well on the Brain-Score
platform.

A point of discussion is the fact that Brain-Score examines the submitted
networks only on how similar they are to healthy brain data. However
this data is not representative to all brains as not all brains are ’healthy’.
Another level of similarity is to be similar to an impaired brain, showing
it ‘breaks down’ similarly to the brain. It would be interesting to look at
the neural networks ranking high on Brain-Score and see how they would
perform when the networks are impaired by a brain deficit. Would the
responses still be brain-like? If networks can satisfy both levels of similarity
we can speak of a greater mechanistic similarity to the brain, than networks
that only satisfy one level of similarity.

What we try to achieve in this paper is creating an additional testbed to
be able to compare the mechanistic similarity of deep convolutional neural
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networks (DCNNs) to the brain when we impair these networks. This way
neural networks can be assessed on their similarity to the brain regardless
of its condition.

We have chosen to use semantic dementia patient data and implement
SD-like atrophy because it is uniquely well-suited for this testbed. The
atrophy of SD only affects a specific area of the brain: the ventral anterior
temporal lobe. This area lies in the ventral stream and as that system is
what DCNNs approximate at high level, it enables us to actually implement
this brain deficit. Additionally the atrophy progresses in a similar way for
different patients and the patients show specific and selective behavioural
impairment. Test results among patients performing on SD tasks are very
robust (Rogers et al., 2004) (Rogers et al., 2015). The selective lesioning
combined with robust resulting behaviour, forms a good testbed for networks
to determine their resemblance to the human brain.

To verify that mechanistic similarity of a DCNN to the brain can in-
dicate whether the performance is more brain-like, we fed two differently
trained models into the test-bed. The first model is trained with a cate-
gory objective while the second model is trained with a semantics objective.
We will investigate whether the category-trained model or the semantics-
trained model performs more similarly to SD patients when damaged with
SD-like atrophy. We hypothesize that the semantics-trained model will per-
form more similarly to SD patients since the brain represents information
by means of semantics rather than categories. It is very unlikely that cate-
gorisation is the ventral stream’s objective, semantic relationships are also
important.

In the following sections I will discuss relevant research which is the base
of the project that we are building upon. After that, the research methods
will be described. This will entail a way to reach different stages of SD
atrophy in a DCNN and carrying out a commonly seen task in the research
of SD. This task will be performed by the two models while impaired by the
different stages of SD. We will discuss the performance of those models in
the results and their actual similarity to the brain in the conclusion. At the
end we will discuss whether this testbed was the best way to simulate SD
lesioning and what the next step would be to further this research.
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Chapter 2

Previous Work

Semantic dementia

Semantic dementia is a disease that affects a specific part in the brain
that underlies semantic memory. Selective impairment of semantic mem-
ory causes severe anomia which is one of the core features of SD, as well as
impaired spoken and written single-word comprehension (J. Hodges, Pat-
terson, Oxbury, & Funnell, 1992).

Damage of the brain caused by SD is very local and similar across pa-
tients. Most atrophy is seen in the ventral anterior temporal lobe which is
thought to be the end of the ventral stream (Rogers et al., 2004).

Damage starts in the left temporal lobe and as the disease progresses,
the severity of atrophy increases and the right temporal lobe will ’catch
up’ by also experiencing atrophy (J. Hodges & Garrard, 2000). Thereafter,
there is evidence the disease spreads along the inferior and middle temporal
gyri posteriorly towards the occipital lobe. However, there is no evidence of
atrophy in the occipital lobe, this area stays intact (J. Hodges & Garrard,
2000) (J. R. Hodges, Graham, & Patterson, 1995).

Word-picture matching

The word-picture matching task frequently used task to assess semantic
memory, is impaired for people suffering from semantic dementia. The re-
sults of performing this task is robust among patients depending on the
degree of their semantic dementia diagnoses. Therefor, based on their re-
sults the severity of their disease can be suggested.

The word-picture matching task performed by people works as follows:
a word is presented followed by 2 images. One image actually corresponds
to the presented word and the other image is a distractor image. The par-
ticipants should choose the image that matches the presented word. This
is a two-alternative forced choice (2AFC) task, which means that chance
level is 50%. It has been shown that SD patients perform worse when the
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images are semantically closely related (Rogers et al., 2004) (Rogers et al.,
2015). There are two papers that looked into this by testing with visual
distractors that varied in there semantic distance to the target item (Rogers
et al., 2004) (Rogers et al., 2015). In the range of relatedness to the target
word, the papers used increasing distances for the distractors. The patients
of the 2004 Rogers paper were tested with four levels of distractors: a close,
dissimilar, distant and unrelated distractor. They chose to discard the dis-
similar distractor for their research purposes so the results of the patients
that are showed also discards this distractor level.

Figure 2.1: Results of the two patients, diagnosed with a severe case of
semantic dementia, performing the word-picture matching task in the 2004
Rogers paper

The patients in figure 2.1 suffer from a severe case of semantic dementia
so it is not surprising that the performance on the stimuli with close dis-
tractors is quite low. However, the performance is still above chance level
which is 50%. This indicates that not all semantic memory is lost. The per-
formance of the distant distractor variant is already less impaired and the
performance seen for the unrelated distractor cases are nearly 100 percent
which again indicates that there is a level of semantic memory still appar-
ent. Even severe SD patients do not mix up items from different semantic
domains, for example they do not mix up animate or inanimate categories.

The 2015 Rogers paper uses six distractor levels varying in typicality
between the items and eight distractor levels varying in familiarity between
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the items. Their study consists of fourteen patients suffering from mild to
more severe cases of semantic dementia.

(a) 2015.1 (b) 2015.2

Figure 2.2: Results of the fourteen patients performing the word-picture
matching task in the 2015 Rogers paper

In the left plot of figure 2.2, the distal bars represent far distractors
and the proximal bars correspond to close distractors. The three bars per
cluster represent more typical words to less typical words, shown by the
use of darker colors for more typical words. For both severities of semantic
dementia the far distractor stimuli perform better than the close distractor
stimuli. For the more severe case, we observe a performance worse than in
the mild case and the slope between the two distractor levels is steeper for
the more severe case than in the mild case.

In the right plot, we will focus on the high familiarity clusters as the low
familiarity clusters are not playing a part in our research. The blue and the
green bar represent far distractors, while the red and yellow represent close
distractors. The overall performance of the mild patients is higher than for
the more severe patients. Here the difference between the performance of
far and close distractors for more severe patients also differs more than in
the mild patients, like we observed in the left plot and in the 2004 Rogers
patients.

Both the 2004 and the 2015 Roger papers are relevant for our research.
They show us the behaviour seen in semantic dementia patients performing
the word-picture matching task with differing distractor distances. We can
conclude from this data that the behaviour is robust across both papers.
However, from now on we will focus on the 2004 paper, the reason for this
is given in section 3.2.
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Chapter 3

Research Methods

The goal of this project is to create an additional testbed to be able to com-
pare the mechanistic similarity of DCNNs to the brain when impaired. To
verify that mechanistic similarity of DCNNs to the brain indeed makes a dif-
ference in the behaviour that will arise, we are comparing the performance
of a category-trained and a semantics-trained model when the models are
damaged with SD-like atrophy.

The word-picture matching task is used to determine the performance of
the models. Within this task we are going to follow the idea of changing the
semantic distances of the distractors and look at the difference. This was
only done by the two papers that we discussed before (Rogers et al., 2004)
(Rogers et al., 2015).

The target and distractor set are selected from Ecoset which is comprised
of the most concrete and frequent basic-level categories in the English lan-
guage (Mehrer, Spoerer, Jones, Kriegeskorte, & Kietzmann, in press). To
impair the models with SD-like atrophy we started with determining which
lesion levels would correspond to different severities of semantic dementia.
The model is impaired and then submitted to the free-naming task, where
the model is classifying images that are fed in. The performance of this task
is observed and used to determine different lesion levels. Two models are
used as test cases and are fed into the testbed. Their performance will be
compared to each other and to patient data. This is done to see whether the
difference in training of the models has impact on the performance, it be-
ing similar to the performance of SD patients, of the word-picture matching
task.

3.1 Lesioning

From many different neuroscientific papers there is evidence that the damage
done by semantic dementia is localized to the ventral anterior temporal lobe
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and this extends along the inferior temporal gyrus towards the occipital lobe
(J. R. Hodges et al., 1995) (J. Hodges & Garrard, 2000).

This area is part of the inferior temporal cortex (IT) which is the lo-
cation of final stage of the ventral stream. The IT is especially important
in visual processing and visual object recognition. There is little evidence
of SD-related atrophy seen beyond the temporal lobe, which leads to the
apparent conclusion that earlier stages of the ventral stream such as V4,
V2 and V1 which are located in the intact occipital lobe are not impaired.
For the lesioning scheme to be biologically plausible we are focusing on le-
sioning the last part of the DCNN. This is for the reason that the network
approximates a human ventral stream and the atrophy seen in SD patients
is located in the final stage of this system. We decided to start by impairing
the very last layer of the networks.

Now that we know what to lesion, a lesioning scheme has to be con-
structed. The free-naming task is the most direct measure of behavioural
impairment to extract sensible lesion levels from. This task is performed
by feeding images to the network and classifying them to the corresponding
category, which is simply basic classification. This is done for multiple le-
sion levels on the last layer to see what kind of effect each level has on the
behaviour of the network. This way several lesioning levels are chosen that
can resemble different degrees of the SD disease.

3.1.1 Implementation

Lesioning the last layer is done by probabilistically dropping out a certain
percentage of its nodes and studying the performance of the free-naming
task for every lesioning level.

The models were given 45 held-out test images per category to classify.
The network classifies by selecting the image which has the highest acti-
vation for the target category. For every category the classification of 45
images was done 5 times to get a robust outcome due to the probabilistic
nature of dropout .
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Figure 3.1: Free-naming task performed by
the category-trained model at different lesion
levels. Blue dots correspond to chosen lesion
levels

Table 3.1: Perfor-
mance of the free-
naming task per lesion
level. Blue rows are
the chosen lesion lev-
els.

Dropout % % correct

0.1 69%

0.2 68%

0.3 67%

0.4 66%

0.5 65%

0.6 62%

0.7 58%

0.8 51%

0.85 45%

0.9 35%

0.93 26%

0.96 14%

0.97 9%

0.98 5%

0.99 2%

The networks we are testing were trained with 20 percent of dropout to
avoid overfitting, so this level of dropout represents the ’unlesioned’ perfor-
mance. From 60 percent dropout onward the accuracy drops in bigger steps.
To get an even distribution of steps in the distribution we included several
dropout levels between 80 and 100.
From this distribution, lesion levels are chosen that sample roughly uni-
formly across accuracy: 0.2, 0.4, 0.7, 0.85, 0.9, 0.93, 0.96, 0.97 and 0.98.
These levels of dropout are used in the word-picture matching. The level
of 0.2 is included to act as a baseline as this dropout level was used when
training the network.

3.2 Ecoset

The categories that will be used in the word-picture matching pipeline are
carefully thought of. We agreed on 60 different categories to use from Ecoset
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which is an ecologically more relevant set of image categories then Image-
Net, these categories are displayed on figure 3.2 (Deng et al., 2009). It has
been shown that an ecologically more relevant visual diet leads to signif-
icantly improved similarities in a DCNN to response properties in human
inferior temporal cortex (IT) (Kietzmann et al., 2018).

The 60 chosen categories are partly constructed from categories used in
the 2004 Rogers paper. The categories from the paper that overlap with the
565 categories of Ecoset were chosen. To fill up to 60, additional categories
are chosen from Ecoset that made sure that the domains and subcategories
had the same number of categories. The dataset is split into two domains:
animate and inanimate categories. The categories from both domains are
themselves divided into three subcategories and these consist of ten cate-
gories each.

The 2015 Rogers paper is left aside here, since they used more specific
categories than were included in Ecoset. For this reason we decided to focus
on the categories presented by the 2004 Rogers paper, this does not imply
that the 2015 Rogers paper is not relevant. The results of both papers show
that the behaviour of patients are robust.
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Animate

Land Water Insect

Squirrel Whale Ant

Horse Dolphin Bee

Monkey Fish Beetle

Rabbit Jellyfish Butterfly

Mouse Octopus Caterpillar

Elephant Shrimp Cockroach

Deer Lobster Grasshopper

Tiger Starfish Mantis

Lion Tadpole Mosquito

Rhino Crawfish Moth

Inanimate

Household objects Vehicles Musical instruments

Refrigerator Airplane Clarinet

Kettle Bicycle Cymbals

Lamp Boat Drum

Toaster Bus Guitar

Vase Car Kazoo

Phone Helicopter Mandolin

Table Motorcycle Piano

Chair Ship Ukelele

Stove Train Violin

Sink Truck Bugle

Figure 3.2: A selection of Ecoset that is used for the word-picture matching
task

For each of those categories a close, middle and far distractor are chosen
from within these 60 categories to create a dataset with distractors from
varying semantic distance to the target. The close distractor is chosen from
the same subcategory as the target. The middle distractor is chosen from
another subcategory while still staying within the same domain. The far
distractor is chosen from a subcategory of the other domain. As an example
from our dataset, I highlighted a target (red) and its close (orange), middle
(yellow) and far distractor (blue).
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All distractors are chosen in a way that there is little to no ambiguity to
whether it is a close, middle or far distractor. We verified this by having 5
people rank the distractors per target word. The distractors were presented
next to the target word in random order such that the people had to de-
termine which of the distractors were in their opinion the closest, medium
and furthest away related to the target without getting hints from the docu-
ment. The average distance for every distractor per target was chosen in the
way we had created it. The distractors were placed of increasing semantic
distance to the target. The results of our small inquiry, which includes the
averaged number of placing for every distractor and their standard devia-
tion, are included in Appendix A.2.

The full distractor dataset is included in Appendix A.1.

3.3 Word-picture matching task

The task is implemented as follows: two images are fed into a specific neural
network and the activation of node corresponding to the the target cate-
gory for each image is compared. The image with the highest activation for
the target category is selected as the chosen match of the word target the
picture. The implementation will be discussed in more detail in section 3.3.1.

The 2004 paper uses line drawings and the 2015 paper uses images, is
this going to affect our results when comparing behaviour? The behaviour of
the patients in the 2004 and the 2015 Rogers papers are robust despite other
methods of input. In addition, we look upon a 2008 paper that observed
the performance of the picture naming task done by semantic dementia
patients. The input stimuli they used in their research consisted of both
line drawings and images and they showed robustness across stimulus types.
The correlation between the scores of these two input types was near-perfect,
ρ = 0.99 (Woollams, Cooper-Pye, Hodges, & Patterson, 2008).

3.3.1 Implementation

For each target category, the target and distractor image are inputted to
the model. The image that elicits the highest value in the readout node
corresponds to the target image is taken to be the model’s selection of the
image. This is done for the 180 pairs of target and distractors in our distrac-
tor dataset. We distinguish the results based on the semantic distance of
the distractor that was used. There are 60 pairs per distractor level and the
performance of all these pairs are averaged. The whole distractor set is run
5 times, for robustness due to probabilistic dropout, to attain the overall
average outcome.
This task is then performed by the network for every lesioning level that
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was chosen. The results for close, middle and far distractors are calculated
for every lesioning level.

To show the variability of the performance for every distractor level, we
calculated the standard error or uncertainty per level. These bars show how
far from our averaged out value, the true value might lie. The standard error
is calculated over the different distractor pairs in one distractor level, after
averaging the multiple runs and images used for the pairs. The standard
error indicates the variability over different close, middle or far pairs.

3.4 Two models

Both models consist of a vNet architecture (Mehrer et al., in press). This
architecture consists of 10 layers where the sizes of convolutional kernels in
each layer approximates the biological foveal receptive field sizes from early
to late regions of the visual system.

The first network is a model with a category objective trained on Ecoset
categories (Mehrer et al., in press).

The second network is a model with a semantic objective trained on
300-dimensional fast-text word embedding vectors corresponding to Ecoset
categories. Words with more relation to each other than with other words
have more similar word embedding vectors. Semantically similar words are
closer in this ’semantic space’ than words with less similar meaning.

The last layer of the network is retrained with nodes corresponding to
the Ecoset categories such such that it can be inputted to the Ecoset-based
testbed pipeline.

I hypothesize that between the two differently trained models, the model
trained with a semantics objective will perform more similarly to SD pa-
tients when damaged with SD-like atrophy because its representations are
constrained to group semantically-related objects. Therefore, the semantics
model’s objective enforces that similar objects (whose word embedding vec-
tors are similar) should be positioned closeby in the model’s representation
space. This means that horse and bear will be close together in the model’s
‘semantic space’ because of similar vectors, whereas chair will be grouped
far away from both horse and bear. By lesioning this system, closely related
categories will likely be mixed-up whereas mix-ups between remotely related
categories such as horse and chair are less likely. In the category-trained
model however, this can still be the case. This model does not have a form of
semantic representation for its categories. The categories will be randomly
placed, in this way horse can be represented next to chair. When lesioned,
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the model will likely confuse categories within and between domains.

This suggests that when lesioned, the semantic model will likely confuse
objects from the same domain, while rarely or never confusing objects from
different semantic domains, similarly to SD patients. Whereas the category
model will likely confuse objects from both same and different semantic do-
mains, not similarly to SD patients
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Chapter 4

Results

Two models, one category-trained and one semantics-trained, performed the
word-picture matching task while being lesioned on different levels. The task
uses three different distractors for every target with varied semantic distance.
The performances of the models are compared to behavioural data from se-
mantic dementia patients at different stages of disease progression presented
in the two papers that were also using different distractor distances (Rogers
et al., 2004) (Rogers et al., 2015).

4.1 The two models

(a) Performance of category-trained model (b) Performance of semantics-trained model

Figure 4.1: Results of the two networks performing the word-picture match-
ing task. Left is the category-trained model and right is the semantics-
trained model. Chance level is at 50% as the task is choosing between two
images
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Figure 4.2: Behaviour of the two patients in the 2004 Rogers paper perform-
ing the word-picture matching task

Figure 4.2 displays the behavioural data of the patients M.S and D.C on
the word-picture matching task from the 2004 Rogers paper (Rogers et al.,
2004). These patients are diagnosed with a severe case of semantic dementia.
The plot uses distant and unrelated distractors where we call them middle
and far distractors.

Figure 4.1 displays the performance of the two different models on our
testbed. The color of the lines grow colder as the lesioning level increases.
The legend shows the correspondence between the line color and lesioning
level. For every lesion level the legend states the corresponding performance
of the free-naming task impaired by the lesion level. This gives an idea of
what every lesion level actually means or what kind of effect is has.

Figure 4.1(a) displays the performance of the category-trained model in
our testbed. There is a nice spread of performance between every lesion-
level. The drop in performance seems to be gradual in reference to the in-
crease of lesioning rate. We observe a steeper slope in general between close
and middle distractors, whereas the slope between middle and far distrac-
tors is much flatter. The error-bars show that the variance of the different
category pairs within 1 lesioning level is small. The biggest variance is ob-
served within close distractors.
The 0.97 and the 0.98 lesion levels have a similar performance as the patients
M.S and D.C for the close and middle distractor stimuli. However, only low
lesion levels show a similar behaviour for the far distractor stimuli. There
is no direct correspondance of the performance from the category-trained
model to patients M.S. and D.C.
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Figure 4.1(b) displays the performance of the semantics-trained model
in our testbed. The overall performance is seen along a greater performance
spread than seen in the category-trained plot. The highest lesion level,
0.98, is performing around chance level for the close distractor stimuli. This
means that the network lost the ability to distinguish closely related images
when its last layer lost 98% of its nodes. Although the slope seems flatter
between close and middle distractors, the difference in performance between
the two distractor level is bridging the same amount as the one observed in
the category-trained model plot. What is striking is the gaps between the
93/96 and the 97/98 % lesion-levels. This implies the possibility for more
differentiated behaviour between those lesion-levels. The error-bars show
that the variance within each distractor stimuli is very small. The averaged
performance is thus very robust.
The performance portrayed by the 93% lesion-level is quite similar to the
patients M.S. and D.C.. The close and middle distractor performances are
close to the one observed in the patients. The far distractor performance
is getting close to the behavioural data, closer than we observed for similar
lines in the category-trained model.

4.2 First-layer lesioning control

We include some controls for our testbed in order to determine whether our
models are performing sensibly.
The first control is switching the lesioning from the last to the first layer.
This way we can observe if lesioning the last layer indeed simulates semantic
dementia-like impairment. The behaviour produced by lesioning the first
layer should be distinct from the behaviour seen in the models that are
lesioned in the last layer. The first layer in our DCNN can correspond to
early visual stages like v1 that plays a role in detecting simple visual features.
Impairing this area can correspond to pattern of stroke in the early visual
system. A stroke in the inferior temporal cortex (IT) would not result in
the same behaviour for example.
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(a) Last layer lesioned (b) First layer lesioned

Figure 4.3: Category-trained model lesioning in different layers

Figure 4.3 displays the performance of the category-trained model when
its last layer is lesioned (a) and when its first layer is lesioned (b). The lines
of plot b are on average much flatter than in a. The average performance of
the first layer lesioned plot is also much lower than in the last layer lesioned
plot. There are however, some lines that display a change in slope between
the close and the middle distractor. This can be explained by the fact that
abstract features, created in later layers, are still learned. Close distractors
can have the same or similar abstract features which can hinder the network
in choosing the right image.

(a) Last layer lesioned (b) First layer lesioned

Figure 4.4: Semantics-trained model lesioning in different layers

Figure 4.4 displays the last (a) vs first (b) layer lesioned for the semantics-
trained model. Here the two plots are more similar to each other than were
the two plots for the category-trained model. The lines for the lower lesion-
levels are somewhat flatter and clustered together. The higher lesion-levels
do have a steeper slope between the different distractor types.
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4.3 Random network control

This control is used to determine whether the learned representations or
weights of our base model is causing the behaviour we see. We also try to
determine that the retrained readout is not causing the behaviour. For this
control we used a model with the same architecture as was used for our
two other models, but this one has random weights. The last layer of this
network was retrained with an Ecoset readout, like for the other models.

Figure 4.5: Random network retrained with an Ecoset readout with the last
layer lesioned.

Figure 4.5 displays the random network performance on the word-picture
naming task. The model is performing on average just above chance level.
The performance of the higher lesion-levels does not change much between
the distractor types. However, lower lesion-levels show some increase in per-
formance especially for middle and far distractor stimuli.
The error-bars show that there is some variance happening for every dis-
tractor type results.
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Chapter 5

Discussion

Two models, one category-trained and one semantics-trained, performed the
word-picture matching task while being lesioned on different levels. The task
uses three different distractors for every target, varying the semantic dis-
tance. The performances of the models are being compared to behavioural
data from semantic dementia patients at different stages of disease progres-
sion.

The performance of the models are also compared to the performance of
the models when impaired in the first layer rather than the last layer. This
way we can observe if lesioning the last layer indeed simulates semantic
dementia-like impairment. At last a random network with a retrained last
layer on a Ecoset readout is compared to the performance of the models to
determine whether our base-model is acting sensible.

5.1 Category vs semantics model

To go back to the question we are researching, does the category-trained
model or the semantics-trained model perform more similarly to semantic
dementia patients when damaged with SD-like atrophy?

There is no clear-cut answer for this question. Neither model has pro-
duced an output that correlates precisely to the behavioural data seen from
the patients M.S. and D.C. (Rogers et al., 2004). The lesion levels of 0.96
and 0.97 for the category-trained model and the 0.93 lesion level for the
semantics-trained model resemble the observed behaviour the most.
The high lesion levels for the category-trained model resemble the close and
middle distractor performance well. The slope is steep between these two
points. However, the slope between the close and far distractor stimuli is
much flatter: a near to perfect performance is expected for the far distractor
stimuli.
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The 0.93 lesion level for the semantics-trained model is also close to the
behaviour of the patients. There is a steep slope between the close and
middle distractors stimuli and the performance of the far distractor is also
getting higher towards the 100%, still not getting there completely. Also the
performance of higher lesion levels in the semantics model is lower than we
observed in the patients especially the performance on close distractor stim-
uli is around chance level for the highest lesion levels. This is not something
that is observed by the patients M.S. and D.C. who suffer from a severe case
of semantic dementia.

We expected the category-trained model to perform worse than it actu-
ally did. We hypothesized that the semantics model would perform better
because it consists of semantic representations, where we did not anticipate
the category model to have any. However, the category-trained model ap-
pears to have some form of semantic representation because otherwise we
would have observed flatter lines across the distractor types as the cate-
gory would not care about semantic relatedness. The semantic features are
possibly a result of similar visual features. For instance, sea creatures are
mostly depicted in an aquatic surrounding. The fact that these creatures
have similar visual features may result in the clustering of these creatures
within the model trained with a category objective.

The model trained with a semantics objective performed worse than we
expected. The lesion levels used for the category-trained model seems to
affect the performance of the semantics-trained model more. For the 0.98
lesion level the model performed around chance level for close distractor
stimuli and as we have seen from the behaviour of very severe SD patients,
this is not what we see in behavioural data.
This can be the result of us choosing the different lesion levels based on
the performance of the free-naming task run by the category-trained model.
The chosen lesion levels might not correspond exactly to a uniformly spread
across the performance when we had run the free-naming task in the semantics-
trained model. We observe in the results of the semantics-trained model that
there is quite a gap between the performance on the 0.93 and the 0.96 lesion
levels, which might indeed indicate that there is room for more different
behaviour. The semantics-trained model might be more fragile than the
category-trained model.
Another explanation for the semantics model to perform worse than ex-
pected would be the training time it had. Both category- and semantics-
trained model were trained for the same number of epochs. The performance
of the semantic model was nearing to its plateau. However, the model is not
trained beyond this number of epochs. We cannot be certain of whether it
actually reached its top point in behaviour. This also raises the question
of when to cut-off the training part. Assuming that the semantics-trained
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model needed more time to train, when is a fair cut-off point? Both models
must be able to learn a same amount to compare them in a fair way.

5.2 Controls

First layer vs last layer lesioning

The first layer lesioning showed less similar behaviour to SD-like behaviour
than the last layer lesioning as expected. The lines across the different
distractor types is much flatter than observed in the last layer lesioning per-
formances. The overall behaviour also dropped in the first layer lesioning,
this is sensible since recognizing basic features is impaired. However, we do
see similar features of the performance on the first layer lesioning compared
to the last layer lesioning. Their behaviour is not completely dissimilar.
Overall we can conclude that lesioning the last layer produces more simi-
lar behaviour to semantic dementia patients than the first layer lesioning.
Therefor lesioning the last layer indeed simulates SD-like atrophy best.

Random network

The performance of the randomly initialized network, of which last layer is
retrained on an Ecoset readout, is very dissimilar to the performance of both
category- and semantics-trained model. The overall average of the lines is
quite flat across the distractor types. The performance on the close distrac-
tor stimuli are around chance level. Some lower lesion levels show increase in
performance especially for midlel and far distractor stimuli. There is a pos-
sibility that the retrained readout has managed to find some combination
of the random weights that is useful for animate vs inanimate. However,
the performance of the random network is not well-enough to match the SD
patient behaviour.
Hereby we can conclude that the readout is not behind all behaviour, but
rather the trained weights and the learned representations.

5.3 Future steps

As both models did not produce the exact similar behaviour to the patients
M.S. and D.C., further research may include different lesioning schemes and
room for development of more brain-like models. We matched the whole
process happening in the inferior temporal cortex, also known as the last
part of the ventral stream, to the very last layer of the model. To simulate
SD-like atrophy, further research may look into lesioning more layers simul-
taneously and for different percentages of dropout in the different layers.
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Chapter 6

Conclusion

Our results show that both models produce sensible results and that we have
created a proof of concept for a semantic dementia based testbed. Neither
model is performing better or similar to SD-impaired patients.

The performance of the models is roughly similar to that of SD patients.
We observe correlation of high lesion levels to the behaviour of the severe
patients. The performance of close distractor stimuli are always worse than
of the middle distractor stimuli and there is an increase in performance be-
tween the middle distractor stimuli to the far distractor stimuli. However,
we had expected the performance on the far distractors to be near to per-
fection. As a consequence this means that neither model fully displayed
SD-like behaviour, because even severe SD patients almost never mix-up in
target and distractors from different domains.

Hereby we reject our hypothesis of the semantics-trained model per-
forming better because of its representations being constrained to group
semantically-related objects. Both models seem to perform similarly which
leads us to believe that the category-trained model also shows to have some
form of semantic knowledge. There is no clear answer to conclude which
of the two models is performing more like semantic dementia patients when
impaired by SD-like atrophy.
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Appendix A

Appendix

A.1 Dataset distractors

Target word Close distractor Middle distractor Far distractor

Squirrel Mouse Jellyfish Motorcycle

Horse Deer Dolphin cymbals

Monkey Squirrel Octopus sink

Rabbit Mouse Grasshopper helicopter

Mouse Rabbit Mantis violin

Elephant Rhino Ant chair

Deer Horse Lobster Vase

Tiger Lion Bee Ship

Lion Tiger mosquito Kettle

Rhino Elephant Moth Mandolin

Target word Close distractor Middle distractor Far distractor

whale fish Mouse Lamp

dolphin fish Squirrel ukelele

fish whale grasshopper Airplane

jellyfish Octopus Lion Truck

octopus Jellyfish Monkey phone

shrimp tadpole horse Table

lobster tadpole deer bicycle

starfish jellyfish Butterfly Refrigerator

tadpole shrimp Rhino Stove

Crawfish fish mantis chair
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Target word Close distractor Middle distractor Far distractor

Ant Cockroach Whale Guitar

Bee Mosquito Rabbit Car

Beetle Grasshopper Fish Piano

Butterfly Moth Starfish Clarinet

Caterpillar Grasshopper tiger drum

Cockroach Ant Elephant toaster

Grashopper Mantis Shrimp Boat

Mantis Mosquito Deer Bus

Mosquito Mantis tadpole Train

moth Mosquito Crawfish Kazoo

Target word Close distractor Middle distractor Far distractor

refrigerator stove Piano Ant

kettle vase Car mantis

lamp Vase boat Lion

toaster Stove Bicycle Dolphin

vase kettle kazoo deer

phone Toaster guitar jellyfish

table Stove ship Mosquito

chair table cymbals butterfly

stove refrigerator violin squirrel

sink Toaster clarinet caterpillar

Target word Close distractor Middle distractor Far distractor

airplane helicopter Chair monkey

bicycle motorcycle refrigerator lobster

boat ship toaster bee

bus truck phone starfish

car bus mandolin octopus

helicopter airplane vase mouse

motorcycle bicycle ukelele shrimp

ship boat drum horse

train truck kettle crawfish

truck car lamp moth
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Target word Close distractor Middle distractor Far distractor

Clarinet Kazoo table jellyfish

Cymbals Ukelele Airplane whale

drum Piano train fish

guitar Piano sink rhino

kazoo clarinet motorcycle tiger

mandolin ukelele stove grasshopper

piano clarinet helicopter butterfly

ukelele guitar truck tadpole

violin mandolin bus beetle

bugle clarinet Chair Rabbit
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A.2 Survey results

Target word Close distractor Middle distractor Far distractor

Squirrel 1 ±0 2 ±0 3 ±0

Horse 1 ±0 2 ±0 3 ±0

Monkey 1 ±0 2 ±0 3 ±0

Rabbit 1 ±0 2 ±0 3 ±0

Mouse 1 ±0 2 ±0 3 ±0

Elephant 1 ±0 2 ±0 3 ±0

Deer 1 ±0 2 ±0 3 ±0

Tiger 1 ±0 2 ±0 3 ±0

Lion 1 ±0 2 ±0 3 ±0

Rhino 1 ±0 2.2 ±0.4 2.8 ±0.4

Target word Close distractor Middle distractor Far distractor

Whale 1 ±0 2 ±0 3 ±0

Dolphin 1 ±0 2.2 ±0.4 2.8 ±0.4

Fish 1 ±0 2 ±0 3 ±0

Jellyfish 1 ±0 2 ±0 3 ±0

Octopus 1 ±0 2 ±0 3 ±0

Shrimp 1 ±0 2 ±0 3 ±0

Lobster 1 ±0 2 ±0 3 ±0

Starfish 1 ±0 2 ±0 3 ±0

Tadpole 1 ±0 2 ±0 3 ±0

Crawfish 1 ±0 2 ±0 3 ±0
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Target word Close distractor Middle distractor Far distractor

Ant 1 ±0 2 ±0 3 ±0

Bee 1 ±0 2 ±0 3 ±0

Beetle 1 ±0 2 ±0 3 ±0

Butterfly 1 ±0 2 ±0 3 ±0

Caterpillar 1 ±0 2 ±0 3 ±0

Cockroach 1 ±0 2 ±0 3 ±0

Grashopper 1 ±0 2 ±0 3 ±0

Mantis 1 ±0 2 ±0 3 ±0

Mosquito 1 ±0 2 ±0 3 ±0

Moth 1 ±0 2 ±0 3 ±0

Target word Close distractor Middle distractor Far distractor

Refrigerator 1 ±0 2 ±0 3 ±0

Kettle 1 ±0 2 ±0 3 ±0

Lamp 1 ±0 2 ±0 3 ±0

Toaster 1 ±0 2 ±0 3 ±0

Vase 1 ±0 2 ±0 3 ±0

Phone 1 ±0 2 ±0 3 ±0

Table 1 ±0 2 ±0 3 ±0

Chair 1 ±0 2 ±0 3 ±0

Stove 1 ±0 2 ±0 3 ±0

Sink 1 ±0 2 ±0 3 ±0
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Target word Close distractor Middle distractor Far distractor

Airplane 1 ±0 2 ±0 3 ±0

Bicycle 1 ±0 2 ±0 3 ±0

Boat 1 ±0 2 ±0 3 ±0

Bus 1 ±0 2 ±0 3 ±0

Car 1 ±0 2 ±0 3 ±0

Helicopter 1 ±0 2 ±0 3 ±0

Motorcycle 1 ±0 2 ±0 3 ±0

Ship 1 ±0 2 ±0 3 ±0

Train 1 ±0 2 ±0 3 ±0

Truck 1 ±0 2 ±0 3 ±0

Target word Close distractor Middle distractor Far distractor

Clarinet 1 ±0 2 ±0 3 ±0

Cymbals 1 ±0 2 ±0 3 ±0

Drums 1 ±0 2 ±0 3 ±0

Guitar 1 ±0 2 ±0 3 ±0

Kazoo 1 ±0 2 ±0 3 ±0

Mandolin 1 ±0 2 ±0 3 ±0

Piano 1 ±0 2 ±0 3 ±0

Ukelele 1 ±0 2 ±0 3 ±0

Violin 1 ±0 2 ±0 3 ±0

Bugle 1 ±0 2 ±0 3 ±0
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