
Mapping online data on offline documents

Bachelor’s Thesis

Stefan Kennedie

s.kennedie@student.ru.nl

0223409

Supervisors: R. Niels & L. Vuurpijl

February 1, 2008

Contents

1 Introduction 2

2 Method 5

2.1 Data . 5

2.2 Preprocessing data . 8

2.3 Searching for the query . 11

2.4 Investigating the interesting locations in detail 16

3 Experiment 18

3.1 Retrieval experiment . 18

3.2 Mapping on pixel level experiment 18

4 Results 19

4.1 Retrieval experiment . 19

4.2 Mapping on pixel level experiment 20

5 Discussion and conclusion 24

6 Acknowledgments 28

A Appendix 30

A.1 SPSS output experiment 1 . 30

A.2 SPSS output experiment 2 . 31

A.3 Command-line arguments . 33

A.4 Javadoc . 34

Abstract

This thesis describes a method to find a part of online data in an offline

document. This method is able to find the offline document that belongs to

the online data from a set of offline documents, or vice versa. In order to

optimize the mapping between the online and the offline data, an optimal

rotation and resizing of the online data is calculated. This is useful since

it produces a better mapping between online and offline data, which makes

several methods that are only applicable for online data available for offline

data, and vice versa.

Results show that this method can be used for finding the offline docu-

ment that belongs to certain online data, since it succeeded in 98.07% of the

cases for the used dataset. The results also show that computing the optimal

rotation and resize factor significantly improves the mapping between online

and offline data. This improvement is 6.56% for the used dataset.

1 Introduction

The reading of human handwriting by a computer is called (artificial) hand-

writing recognition. The data of the handwritten text can be obtained by

a computer in two different ways. The first is by writing on a tablet, the

second is by scanning a piece of written paper with a digital scanner.

The data obtained by writing on a tablet is called online data. Online

data consist of a sequence of coordinates, with a corresponding pressure.

These data can easily be visualized (see Figure 1).

Figure 1: A visualized example of online data.

The data obtained by scanning a piece of handwritten paper is called

offline data. Offline data is a bitmap which consists of pixels with a grey-

value or color (see Figure 2).

Figure 2: An example of a part of offline data.

Both online data and offline data have advantages and disadvantages

over one other. An advantage of online data is that the order of writing is

known, which is useful for segmentation [9]. Segmentation is an operation

that divides the handwritten signal in lines, words or characters [3]. There are

techniques for segmenting offline data (see [3] and [8]), but segmenting online

data is easier [2]. Besides that, since the number of coordinate-pressure pairs

per second, or sample rate, and the spatial resolution are known, the velocity

and acceleration of the pentip can be computed [8]. Both are not possible

2

with offline data. Another advantage of online data is that the location of

the pen is also known when it is not on the paper, but hovering above.

An advantage of offline data is that the width of the ink is exactly

known [2]. Since online trajectories have zero width, this information can

only be calculated from the pressure coordinate form the online data (see [5]).

Mapping online data on offline data allows us to use techniques that are

only applicable to online data for offline data, and vice versa. For example,

we can use the temporal information of online data [9] to help segmenting

offline data [3]. Besides that, the information of online data can be used for

preprocessing techniques (see Section 2.2) of offline data such as thresholding

and noise removal [8]. Another example is that the pressure coordinate of

the online data can explain the ink-distribution in the offline data. Since the

results on online handwriting recognition are better than on offline hand-

writing recognition, it is useful to know the mapping between these different

types of data in order to use the results of online handwriting recognition to

label the offline data. In other words, when we are able to map online data

on offline data, we can use the advantages of both data-types. As Vincia-

relli and Perrone [10] describe, recognition improves significantly when the

advantages of both modalities are combined, even when the offline data is

generated from online data.

Unfortunately, as Franke [5] describes, it is not possible to superimpose

the online pen trajectories and offline ink traces. There are several problems

that arise here. The first problem is the difference in resolution between the

used tablet and the digital scanner. This problem can easily be solved by

scaling with a constant factor since this difference is mostly constant within

a dataset (see Equation 1).[
x′

y′

]
=

[
c ∗ x

c ∗ y

]
, where c =

resolution′

resolution
(1)

The second problem is that the alignment of the sheet of paper on the tablet

is not always the same, it can differ slightly per page. The result is that

there can be a rotation and a translation of the paper with respect to the

3

online data (see Equations 2 and 3). The third problem is that this alignment

problem also occurs with the digital scanner. In other words, the different

pieces of paper are not aligned exactly the same (also see Equations 2 and 3).[
x′

y′

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

] [
x

y

]
(2)

[
x′

y′

]
=

[
dx + x

dy + y

]
(3)

The fourth problem is that people do not hold their pen vertical when

they write. The consequence of this is that the pen does not write on the same

place on the sheet of paper as that it produces pressure on the tablet (see

Figure 3 and [5]). Besides that, Franke [5] also describes that the magnetic

field of the pen that is used for writing on the tablet becomes asymmetric

when it is tilted. This leads to a displacement of the maximal activation of

this signal [5]. Unfortunately this problem is unsolved.

It is also possible that the the sheet of paper moves while a participant

writes on it, but this issue is not further investigated in this thesis.

In Section 2 we explain the method used to create a better mapping be-

tween the online and offline data. In Section 3 we explain the two experiments

that we have done for this thesis. In the first experiment we check whether

or not the method explained in this thesis can be used to retrieve the correct

offline data that belongs to the a certain part of online data. In the second

experiment we check whether or not rotating and scaling the online data

significantly improves the mapping of the online data on the offline data. In

Section 4 we describe the results of the experiments. In Section 5 we discuss

the weak points of the method and the problems that we encountered. At

the end we derive a conclusion.

4

Figure 3: The effect of not holding your pen vertical when writing on paper
that is situated on a tablet (problem four, described in Section 1).

2 Method

This section describes the method used for finding the optimal rotation and

resizing of the online data with respect to the offline data. Figure 4 gives a

visualization of the complete process.

2.1 Data

The NICI1 owns a database that contains the online and offline data of the

same handwritten text of 43 writers. This dataset was created by people

that wrote with a pen on a sheet of paper that was attached to a tablet.

By writing on the paper, and by that on the tablet, the coordinates and the

pressure of the pen were obtained. The handwritten trajectories are sampled

at a resolution of 200 dpi. By scanning the sheet of paper with a digital

scanner, the offline data became digitally available [2]. The used resolution

is 300 dpi. We use the data of three writers for this thesis.

1Nijmegen Institute for Cognition and Information (Radboud University Nijmegen).

5

Figure 4: Flowchart of the used method with references to the sections.

6

A unique identification code is situated in the upper right corner of the

document (see ’FAC101s’ in Figure 5). This is the only part of the document

that we focus on.

Figure 5: An example of offline data.

The online data-file contains a unique identification code that corresponds

with the unique identification code in the offline data, and the number of

coordinates in that data-file. On the following lines there is an x-coordinate,

an y-coordinate and a pressure coordinate (see Figure 6). The coordinates of

this file contain the unique identification code that is found in the first line

of the online data-file and the upper right corner of the offline document.

AAR-FAC101 523
2754.000000 16241.000000 100.000000
2754.000000 16239.000000 100.000000
2754.000000 16237.000000 100.000000
2754.000000 16235.000000 100.000000
2756.000000 16233.000000 100.000000
...

Figure 6: An example of online data (only the first 6 lines).

7

Every word, or even every part of the document can be used as query2.

Since the unique identification code is found only once in the handwritten

text, and the location of this code in the online data is known, we use this

as query.

2.2 Preprocessing data

In the used method, we lay the query over the offline document at all pos-

sible locations. The number of locations is huge (see Equation 4). At all

these locations the difference between the query and that particular part of

the offline document has to be computed, which is a sum that consists of

width(q) ∗ height(q) subtractions (see Section 2.3.1).

#locations = (width(off)− width(q)) ∗ (height(off)− height(q)) (4)

In this thesis, we use a method that avoids unnecessary calculations. This

method is based on first making a coarse scan. It appeared that a resizing to

one eight of the original size of the offline document created the best results

in reasonable time. When the interesting locations3 in the offline document

were found (see Section 2.3), these locations were further investigated in full

detail (see Section 2.4).

2.2.1 Creating a query

The online data consists of points with corresponding pressures (see Figure 6

in Section 2.1). The pen can be on and off the paper. Since the pen only

distributes ink when it is on the paper, we are only interested in where the

pen is on the paper. To be able to compare the coordinates of the online

data with the offline document, a bitmap was created from the online data.

We call this bitmap the query. Vinciarelli and Perrone [10] describe a way

to create a bitmap from online data. This is done by connecting succeeding

2A query is a bitmap created from the online data (see Section 2.2.1).
3An interesting location is a location at which the found difference between the query

and the part of the offline document is small.

8

coordinates by drawing a line between them, and subsequently applying a

filter several times that grows the foreground areas. This creates a black-

white image, but could be adapted to create a grey-value image. In this

thesis, the points of the online data are connected using the Bresenham’s

line algorithm [1], as is done in [10]. The difference is that we adapted the

line algorithm such that it is able to draw lines with a width of a certain

number of black pixels (see Figure 7). We have chosen this method because

it is computational less expensive than the method described in [10]. This

algorithm is also able to create a bitmap with given dimensions, such that

the resolution of the offline document and the query are approximately the

same. At a offline resolution of 300 dpi, the average linewidth is 5 pixels.

Since we work with one eight of that resolution, we used a linewidth of one

pixel.

Figure 7: Created query from the online data of Figure 6. Also see Figure 1.

2.2.2 Location of the unique identification code

The unique identification code is always found in the upper right corner of

the offline document, or, to be more exact, on the upper half of the first

quadrant of the offline document. For computational reasons the rest of the

offline document is not used. (See Figure 8, and compare it with Figure 5.)

2.2.3 Preprocessing the offline document

Since the query that was created from the online data only contains black

and white pixels, we have chosen to create a black-white image from the

offline data. First, the noise in the online document is reduced (See Figure 9,

and compare it with Figure 8.)

The noise reduction is done by making all pixels with a grey-value un-

der a certain threshold white. This threshold is determined using the Otsu

Threshold Algorithm [7].

9

Figure 8: The upper half of the first quadrant of the offline document of
Figure 5.

Figure 9: The result of removing the noise from the upper half of the first
quadrant of the offline document (compare to Figure 8).

After the noise reduction, the offline document is resized and subsequently

binarized (see Figure 10, and compare it with Figure 9). The threshold for

binarization is again determined using the Otsu Threshold Algorithm [7].

Binarization makes the offline document black and white.

10

Figure 10: The result of applying the resizing and binarization on the offline
data of Figure 9.

2.3 Searching for the query

This section describes the method used to find the location of the unique

identification code in the offline document using the query created from the

online data.

2.3.1 Comparing two images

Manmatha and Croft [6] describe Euclidean Distance Mapping for Match-

ing [4]. This is a method to compute the difference between two images with

the same size. In this thesis, an adjusted version of this Euclidean Distance

Mapping for Matching is used to compute the difference between a part of

the offline document and the query. A sliding window (with the size of the

query) compares all pixels of the offline document with the corresponding

pixel of the query (see Equation 5).

d(q, off) =
xmax∑

x0

ymax∑
y0

(Intensity(q, x, y)− Intensity(off, x, y)) (5)

Parts of the offline data (with the size of the query) are compared with

the query at all possible locations of the offline document. When two pixels

are the same (they are both black or both white), the error is 0, otherwise the

error is 1. To visualize the difference between the two images, a XOR image

is created. An error on the pixel level of 0 is visualized as a black pixel and

an error on the pixel level of 1 is visualized as a white pixel (see Figure 11).

A match error is computed by counting all errors at the pixel level. In other

11

words, comparing two images with a higher match error results in a XOR

image with more white pixels.

(a) A part of the offline document that is com-
pared with Figure 11(b). The error is visualized
in the XOR-image of Figure 11(c).

(b) The query that is compared with Fig-
ure 11(a). The error is visualized in the XOR-
image of Figure 11(c).

(c) The XOR-image created to visualize the dif-
ference between Figure 11(a) and Figure 11(b).

Figure 11: The input and output for a XOR-algorithm.

Since the majority of the pixels of both the offline document and the

query are white, only the errors corresponding to the black pixels of the

query are counted for the match error. The advantage of this is that the

range of possible errors is smaller since the total number of pixels that can

produce an error is smaller. Since the majority of the pixels of the offline

document is white, they now do not contribute to the match error. The result

is that the relative match error is bigger at locations of the offline document

12

where there are a lot white pixels. A disadvantage is that the match error is

zero at large black areas in the offline document (see Figure 23), which does

not correspond to the location of the unique identification code. A possible

solution for this problem is explained in Section 5.

2.3.2 Computing the match errors

The match error is computed for all possible locations of the query in the

offline document. We use an early pruning method to prevent the algorithm

from doing irrelevant calculations.

When all match errors are calculated, they can be visualized in an error

image. The locations with a large error produce a dark pixel, and the loca-

tions with a small error produce a light pixel. See Figure 12 for an example

of an error image.

Figure 12: Created error image for visualizing the match errors produced by
Figure 10 as offline document and Figure 7 as query, using the black pixels
of the query.

Every match error is visualized on the error image at the location that

corresponds to the upper left pixel of the part of the offline document that

is compared with the query.

Since small errors produce white pixels, a white spot on the error image

means that the unique identification code that is being searched could be

situated on that location. The locations that correspond with the lightest

pixels are called interesting locations.

The dimensions of the error image are smaller than the dimensions of the

13

offline document. This is because the unique identification code cannot be

found on a location that is near the right or lower side of the offline document

since a part of the query would then fall off the offline document.

2.3.3 Processing the match errors

Also for computational reasons, the number of interesting locations has to

be reduced. In order to do so, the number of locations that do not have the

maximum match error value is reduced. This is done by considering only

the locations at which the error is smaller than a certain threshold. This

threshold is computed using Equation 6.

threshold =
biggestMatchError + smallestMatchError

reduceFactor
(6)

The reduceFactor must be bigger than 1.0. The larger this reduceFactor

is, the more locations are considered as not interesting. The number of pixels

that remain can be adjusted. We chose to leave only three pixels since this

produced good results within reasonable time. The result of this operation

is visualized in Figure 13. Compare it with Figure 12.

Figure 13: Visualized result of removing the uninteresting locations (left),
and the magnification of the most important part of this visualization (right).
The most important part of the image is is the part of the image that contains
the interesting locations. Compare to Figure 12.

14

The locations that remain are the locations that possibly contain the

searched code, and are marked for further investigation. This is visualized

in Figure 14. They will be recalculated on the original size of the offline

document.

Figure 14: Visualized result of marking the interesting locations (left), and
the magnification of the most important part of this visualization (right).
Compare to Figure 13.

Since we also want to investigate the locations in the surrounding area

of the interesting locations, we add these locations to the list of interesting

locations. The effect of this operation is visualized in Figure 15.

Figure 15: Visualized result of adding the surrounding area of the interesting
locations (left), and the magnification of the most important part of this
visualization (right). Compare to Figure 14.

15

2.4 Investigating the interesting locations in detail

In Section 2.3 we explained how interesting locations were found using resized

offline data and a query created from the online data. In this section we

explain how we further investigate these interesting locations. The locations

are recalculated with all given rotations and resizing factors of the query (see

Section 2.4.2), and are saved to a file (see Section 2.4.3).

2.4.1 Resizing the coordinates of the interesting locations

The locations that correspond with the white pixels in Figure 15 are the

interesting locations. These locations possibly contain the unique identifi-

cation code, and are therefore recalculated in real size. In Section 2.2 we

explained that for computational reasons the offline document and the query

were resized to 12.5% of the original size of the offline document. To be

able to process the interesting locations in detail with the original offline

document, these locations have to be recalculated to the original size of the

image. In other words, the coordinates of the interesting locations have to

be multiplied with a factor 8.

2.4.2 Resizing and rotating the query

There are two methods for creating a resized and rotated query. The first

method is to create a query from the online data, and resize and rotate this

image. The second method is to resize and rotate the coordinates of the

online data, and create a query from this rotated data.

Resizing and rotating an image is done using affine transform operations.

Resizing the coordinates of the online data-file is done by multiplying the

coordinates with the resize factor. Rotating the coordinates of the online

data is done using the rotation-matrix of Equation 7.[
x′

y′

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

] [
x

y

]
(7)

The method used in this thesis is resizing and rotating the coordinates of

the online data-file since this are operations at the source of the data with a

16

higher resolution. This produces a better outcome then rotating and resizing

the an image.

2.4.3 Computing the errors

Next the offline document is loaded, and the match errors are recalculated

for all rotations and resizings of the query at the interesting locations. The

linewidth of the query plays a role in computing the match error. When the

query consists of more black pixels, there are more pixels that can produce

a match error. Since we only use the locations of the black pixels of the

query to compare with the corresponding pixels of the offline document, the

maximal possible match error is bigger when the linewidth of the query is

bigger. The used linewidth is one pixel since this produces the most reliable

match errors. The results can be visualized in an error image (see Figure 16

for an example).

Figure 16: Created error image using the offline data at its original size (left),
and the magnification of the most important part of this visualization (right).

The output is written to a file. This file contains the match error, the

location of the unique identification code, the used resize factor, the used

rotation in degrees, the total number of black pixels of the query and the

percentage pixels of it that maps on the ink of the offline document for all

calculated resize factors and rotations at all interesting locations. The higher

this percentage, the better the match between the document and the query

at that location with that resize factor and rotation.

17

3 Experiment

As noted in the introduction, we have done two experiments. The first ex-

periment is a retrieval experiment or mapping on document level experiment,

the second experiment is the mapping on pixel level experiment.

3.1 Retrieval experiment

For each writer, the data is divided in several parts. One part consists of

approximately 14 online data samples, and approximately three times as

much offline data samples.

In this experiment, all offline data is checked for the occurrence of all

online data. This is done by computing the optimal match of all online

data for all offline data. In the output-file we find the highest percentage

of correct pixels per data-pair. To see whether or not the offline document

with the highest percentage of correct pixels indeed was the document that

corresponds to the online document, we visually explored the results4. In

this experiment, the online data was not resized or rotated.

3.2 Mapping on pixel level experiment

When it is known what offline data-file belongs to what online data-file, the

mapping on pixel level experiment can be performed. In this experiment

the optimal mapping between the online and offline data is calculated by

computing the maximum percentage of correct pixels for all rotations and

resizings for all online-offline data-couples5. The chosen resizing factors are

0.99 till 1.03 with steps of 0.01. The chosen rotations are -0.3 till +1.5

degrees with steps of 0.1 degree. In total 95 (5 ∗ 19) resizing-rotation pairs

are calculated per online-offline data-couple. The wider the range of resizing

and rotation, and the smaller the step-size is, the better the result of this

experiment will be. We have chosen these ranges and step sizes because short

tests showed that they provide a good result within reasonable time.

4See http://baseline.ai.ru.nl/OnOff/ for more information.
5A data-couple is a offline and online document that belong together.

18

4 Results

Both experiments were performed on three writers (AAR, ALS and APR).

In the next sections you can read the results of these experiments.

4.1 Retrieval experiment

For the first writer, 57 online data-files were compared with 57 offline data-

files, from which we knew which online data-file belonged to which offline

data-file in advance. In other words, the mapping on document level was

already known. These data-files were subdivided in four parts, and 818

comparisons were made. These comparisons can be subdivided in two groups.

The first group is the group in which an online data-file was compared with

an offline data-file that did not belong to it. This group, that we will call

the ’no match’-group, consists of 761 comparisons. The other group is the

group in which an online data-file was compared with an offline data-file that

belongs to it. This group, that we will call the ’match’-group, consists of 57

comparisons.

The mean percentage of correct pixels found for the ’no match’-group was

40.38%, the mean percentage of correct pixels found for the ’match’-group

was 86.44% (see Figure 17 for the distribution of the percentage correct

pixels). The mean difference of 46.06% is a significant difference (p < .001).

The algorithm correctly found 100% of the data-couples for this writer.

For the second writer, 90 online data-files were compared with 274 offline

data-files. The data-files were subdivided in five parts, and 4783 comparisons

were made. The ’no match’-group consists of 4693 comparisons, and the

’match’-group consists of 90 comparisons.

The mean percentage of correct pixels found for the ’no match’-group was

35.51%, the mean percentage of correct pixels found for the ’match’-group

was 75.95% (see Figure 17 for the distribution of the percentage correct pix-

els). The mean difference of 40.44% is a significant difference (p < .001).

Since the mapping on document level was not known, we had to visually

explore the results. This showed that the algorithm was unable to find the

19

correct offline data of four online data-files. This are the four peeks in Fig-

ure 17 at 29%, 36%, 43% and 50%. The algorithm correctly found 95.56%

of the data-couples for this writer.

For the third writer, 60 online data-files were compared with 274 offline

data-files. The data-files were subdivided in five parts, and 1882 comparisons

were made. The ’no match’-group consists of 1822 comparisons, and the

’match’-group consists of 60 comparisons.

The mean percentage of correct pixels found for the ’no match’-group was

44.01%, the mean percentage of correct pixels found for the ’match’-group

was 83.67% (see Figure 17 for the distribution of the percentage correct

pixels). The mean difference of 39.65% is a significant difference (p < .001).

Since the mapping on document level was not known, we had to visually

explore the results. This showed that the algorithm was able to find 100%

of the data-couples.

The overall result shows that the algorithm was able to find 203 of 207

data-couples. This is a score of 98.07%. The overall mean percentage of

correct pixels found for the ’no match’-group was 38.15%, the overall mean

percentage of correct pixels found for the ’match’-group was 81.08% (see

Figure 17 for the distribution of the percentage correct pixels). The overall

mean difference of 42.93% is a significant difference (p < .001).

See Table 1 and 2 in Appendix A.1 for SPSS-output of this experiment.

4.2 Mapping on pixel level experiment

For the first writer, the optimal rotation and resize factor of 57 data-pairs

were calculated, and subsequently the effect of this rotation and resizing on

the percentage correct pixels was calculated. The percentage of correct pixels

before the experiment was 86.06%, after the experiment this was increased

to 93.21%. This difference of 7.15% is a significant difference (p < .001).

See Figure 21 for the distribution of optimal rotations, and Figure 22 for the

distribution of resize factors.

20

Figure 17: The number of occurrences of correct pixels for the three writers
for the ’no match’-group (left y-axis) and the ’match’-group (right y-axis).

For the second writer, the optimal rotation and resize factor were calcu-

lated for 86 data-pairs. The first results showed that the chosen range of

resizing factors was probably not large enough. In 22 of the 86 data-pairs

the optimal resizing factor found was 1.03. For the first writer we found

zero data-pairs with an optimal resizing factor of 0.99 or 1.03 (the lower and

upper bounds of the resize factor range, see Figure 22.) In other words, the

optimal resizing factor might be larger than 1.03. We decided to perform

the experiment for this writer with resizing factors 0.99 till 1.05. The effect

of this difference in range did not produce a large difference in percentage

correct pixels. This percentage rose with 0.03% to 81.91%.

The difference in correct pixels of 6.12% (75.79% before the experiment

and 81.91% after the experiment) was significant (p < .001). See Figure 21

for the distribution of optimal rotations, and Figure 22 for the distribution

of resize factors.

In Section 4.1 we noted that the algorithm was unable to find the correct

offline data for four online data-files. These online data-files also produce

21

a problem in the second experiment. The locations found by the algorithm

do not correspond with the location of the unique identification code (see

Figure 18).

Figure 18: Example of incorrect location found in the mapping on pixel level
experiment

When we tried to locate the unique identification code manually, we found

that the algorithm was probably unable to locate it since it was impossible

to map the online data on the offline data with rotation and resizing as only

operations. See the ’o’ and the ’g’ of Figure 19(a). This problem is probably

originate in the orientation of the pen (see [5]), but this remains an unsolved

problem.

In attempt to investigate whether or not this was the case, we did the

experiment again for this data-pair with linewidth three and five. The idea

was that with a linewidth of three or five, relatively more pixels of the query

mapped over the offline ink. As visualized in Figure 19(b) and 19(c), this

might be an explantation to the problem. Unfortunately the algorithm still

found the same location as before (see Figure 18).

Since this also did not solve the problem, we investigated the images that

were created during the experiment. The image of the resized offline data

showed that there were only a few pixels left of the unique identification

code (see Figure 20(a), and compare it with Figure 20(b)). Since there were

only so few pixels left, it was impossible to get a high match at the location

of the unique identification code. As a consequence of this, a location with

many black pixels has a higher match, and is chosen to investigate in detail.

Possible solutions for this problem are discussed in Section 5.

For the third writer, the optimal rotation and resize factor were calculated

for 56 data-pairs. The first results showed that the chosen range of rotation

factors probably was not large enough. In 15 of the 56 data-pairs the optimal

22

(a) Linewidth one. (b) Linewidth three.

(c) Linewidth five.

Figure 19: An example of the problem with four data-pairs of writer two. It
is impossible to produce a good mapping of the ’o’ and the ’g’ with rotation
and resizing as only operations. In this image, the image created from the
online data (solid black line) was pasted into the offline document.

Figure 20: The resized offline document (left) and the created query (right).

rotation found was 1.4. In other words, the optimal rotation might be larger

than 1.4. We decided to perform the experiment for this writer with rotating

factors -0.3 till 2.3. As a result of this difference in range, the percentage

correct pixels increased with 0.18% to 89.50%. An improvement of 2.02%.

The difference in correct pixels of 6.64% (82.86% before the experiment

and 89.50% after the experiment) was significant (p < .001). See Figure 21

for the distribution of optimal rotations, and Figure 22 for the distribution

of resize factors.

23

The overall mean difference in correct pixels of 6.56% (80.72% before the

experiment and 87.28% after the experiment) was also significant (p < .001).

Figure 21: The number of occurrences of the different optimal rotations for
the three writers.

It is also worth mentioning that when we only use rotation as operation,

the method also produces a significant difference for the three writers and

their sum (p < .001) for all four data-sets). The difference is also significant

(p < .001) for all four data-sets) when resizing is the only used operation.

The difference in percentage correct pixels is also significant when the

method is used with rotation and resizing instead of only resizing or only

rotation (both p < .001) for all four data-sets).

See Table 3, 4 and 5 in Appendix A.2 for SPSS-output of this experiment.

5 Discussion and conclusion

Since Java is easier to program than several other languages, it is platform

independent and it provides several libraries for processing images, we have

24

Figure 22: The number of occurrences of the different optimal resizings for
the three writers.

chosen to use Java. A disadvantage of Java is that the speed is inferior to

the speed of several other languages. To use the method described in this

thesis on large scale, it is recommended to write (parts of) the code in a

faster language. Besides that, the method used is a computational expensive

method. Therefore it is recommended to search for another method.

An alternative approach to locate features in an image is template match-

ing using a Fast Fourier transformation. This method is closely related to

Fast Convolution6. This works much faster than the method described in

this thesis. This method is very promising, but unfortunately we did not

have the time to elaborate it.

Another problem is a problem with the offline data. Sometimes the pages

where folded in the corner while being scanned. As a result of this, some

documents have large black regions. These black regions are problematic

6See http://www.mathworks.com/access/helpdesk/help/toolbox/images/
f21-17064.html for an example.

25

since the method only compares the black pixels of the query with the offline

document, which results in a perfect but false match (see Section 2.3.2).

Although this did not happen in the experiment, this problem can probably

be solved with an edge detection on the offline document. After the edge

detection, the image has to be inverted. This edge detection should take place

after the noise reduction that is described in Section 2.2.3. It is worthwhile

investigating this in future research. See Figure 23 for an example.

Figure 23: An example of an offline document that was folded while being
scanned (left), and the result of an edge detection algorithm and inversion
on this document (right).

The significance of the result of experiment 2 (see Section 4.2) depends

on the data. If there was no difference in rotation and resizing between

the offline and online data, the method would not have found a significant

difference.

We think that the problem that occurred for the second writer during the

mapping on pixel level experiment (see Section 4.2) can possibly be solved

on several ways. The first possible solution is increasing the number of lo-

cations that are investigated in detail (see Section 2.3.3). An disadvantage

of this method is that the algorithm will become slower as more locations

are investigated in detail. The second possible solution is computing the

26

match error for black and white pixels of the query instead of only using

the black pixels. But, as described in Section 2.3.1, this also has disadvan-

tages. The third possible solution is applying an edge detection algorithm

and inverting the image as described above. As you can see in Figure 23,

the unique identification code is bolder in the right image. As a result there

might remain more pixels of the unique identification code after resizing.

The last possible solution might be found in the Otsu algorithm since this

algorithm produces the threshold for binarization. However, the threshold

that was found for this example was comparable with thresholds that were

found for other offline documents. It is also possible to combine these possi-

ble solutions. Unfortunately we did not have time to focus on these possible

solutions.

As written in Section 2.1, every part of the handwritten text can be used

to compare online data with the offline data. This makes the method useful

for spotting words of online data in offline documents.

Since it is more interesting to provide a good mapping for the complete

document instead of only one word, it is worthwhile to investigate whether

or not the method described in this thesis is useful to use the complete online

data as query. It is probably also interesting to investigate whether or not

this result differs from the mean result of three queries at different locations

in the document.

The mean percentage correct pixels for the ’match’-group (see Figure 17)

in experiment 1 are different for the three writers. This might be originated

in the orientation of the pen (see Figure 3 and [5]). There is a possibility

that this characteristic can be used in the field of writer identification. It

is worthwhile investigating this in future research. Besides this, with an

adaptation to the method, it is possible to compare a single written letter

with a set of document in order to identify the writer of the letter.

To conclude, the method explained in this thesis is useful for finding the

correct offline document given the online data, it succeeded in 98.07% of

the cases. The method is also suitable for finding the rotation and resizing

of the online data for a significant better mapping with the corresponding

offline data, it provided a 6.56% better mapping on the pixel level. This

27

mapping can be increased further when local affine transformations and the

orientation of the pen are added to the used operations.

6 Acknowledgments

We would like to thank F.A. Grootjen for showing the possibility matching

using a Fast Fourier transformation.

References

[1] J. Bresenham, “Algorithm for computer control of a digital plotter.”

IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[2] S. K. C. Viard-Gaudin, P.M. Lallican and P. Binter, “The ireste on/off

(ironoff) dual handwriting database,” Document Analysis and Recogni-

tion, p. 455, 1999.

[3] R. G. Casey and E. Lecolinet, “A survey of methods and strategies in

character segmentation.” IEEE Transactions on Pattern Analysis and

Machine Intelligence., vol. 18, no. 7, pp. 690–706, july 1996.

[4] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics

and Image Processing, vol. 14, no. 3, pp. 227–248, february 1980.

[5] K. Franke, “The influence of physical and biomechanical processes on

the ink trace - methodological foundations for the forensic analysis of

signatures,” Ph.D. dissertation, Artifical Instelligence Institute, Univer-

sity of Groningen, 2005.

[6] R. Manmatha and W. Croft, “Word spotting: Indexing handwrit-

ten archives.” 1997. [Online]. Available: citeseer.comp.nus.edu.sg/

manmatha97word.html

[7] N. Otsu, “A threshold selectiion method from gray-level histograms.”

Transactions on Systems, Man and Cybernetics, vol. SMC-9, no. 1, pp.

62–66, Januari 1979.

28

[8] E. P. R. Plamondon, S. N. Srihari and Q. Montreal, “Online and off-line

handwriting recognition: a comprehensive survey,” IEEE Transactions

on Pattern Analysis and Machine Intelligence., vol. 22, no. 1, pp. 63–84,

january 2000.

[9] E. H. Ratzlaff, “Inter-line distance estimation and text line extraction

for unconstrained online handwriting,” Workshop on Frontiers in Hand-

writing Recognition, pp. 33–42, 2000.

[10] A. Vinciarelli and M. Perrone, “combining online and offline handwriting

recognition.” IEEE Computer Society, 2003.

29

A Appendix

A.1 SPSS output experiment 1

For the retrieval experiment (see Section 3.1) we have done four Independent-

Samples T Tests using SPSS 15.0. The test variables were the three writers

separately (AAR, ALS and APR) and the data of the three writers together

(Sum), the grouping variables were ”Match” and ”No Match”.

The results are shown in Table 1 and 2. For an explanation of the results

see Section 4.1.

Table 1: Experiment 1: Group samples

Std. Std. Error
Writer Type N Mean Deviation Mean
AAR No Match 761 40.3792 8.03877 .29141
AAR Match 57 86.4398 6.59679 .87399
ALS No Match 4693 35.5094 7.39322 .10792
ALS Match 90 75.9541 9.90381 1.04395
APR No Match 1822 44.0147 9.28853 .21761
APR Match 60 83.6665 7.08138 .91420
Sum No Match 7276 38.1485 8.78815 .10303
Sum Match 207 81.0770 9.48397 .65918

Table 2: Experiment 1: Independent Samples Test

Mean t-test for Equality of Means
95%Confidence Interval

Sig. Mean Std. Error of the Difference
F Sig. t df (2-tailed) Difference Mean Lower Upper

AAR 1.450 .229 -42.200 816 .000 -46.06065 1.09148 -48.20308 -43.91822
ALS .847 .357 -51.031 4781 .000 -40.44476 .79255 -41.99852 -38.89100
APR 7.271 .007 -32.751 1880 .000 -39.65177 1.21069 -42.02621 -37.27732
Sum .362 .548 -69.145 7481 .000 -42.92842 .62085 -44.14546 -41.71138

30

A.2 SPSS output experiment 2

For the mapping on pixel level experiment (see Section 3.2) we have done

an Paired-Samples T Test using SPSS 15.0. The paired variables were the

variables of Pair 1 through Pair 20 of Table 3. ”none” means that neither

rotation nor resizing was applied, ”rot” means that rotation was applied,

”res” means that resizing was applied, and ”both” means that both rotation

and resizing were applied.

The results are shown in Table 3, 4, and 5. For an explanation of the

results see Section 4.2.

Table 3: Experiment 2: Paired Samples Statistics

Std. Std. Error
Mean N Deviation Mean

Pair 1 AAR none 86.0584 57 6.54878 .86741
AAR both 93.2125 57 5.43403 .71975

Pair 2 ALS none 75.7876 86 10.05858 1.08464
ALS both 81.9103 86 10.11166 1.09037

Pair 3 APR none 82.8609 56 7.02309 .93850
APR both 89.4959 56 6.07564 .81189

Pair 4 Sum none 80.7199 199 9.45155 .67000
Sum both 87.2823 199 9.30282 .65946

Pair 5 AAR none 86.0584 57 6.54878 .86741
AAR rot 91.1614 57 6.45671 .85521

Pair 6 AAR none 86.0584 57 6.54878 .86741
AAR res 89.1926 57 5.60702 .74267

Pair 7 ALS none 75.7876 86 10.05858 1.08464
ALS rot 77.4664 86 9.84432 1.06154

Pair 8 ALS none 75.7876 86 10.05858 1.08464
ALS res 78.5324 86 10.00988 1.07939

Pair 9 APR none 82.8609 56 7.02309 .93850
APR rot 88.1973 56 6.38847 .85370

Pair 10 APR none 82.8609 56 7.02309 .93850
APR res 84.3568 56 6.55327 .87572

Pair 11 Sum none 80.7199 199 9.45155 .67000
Sum rot 84.4088 199 10.14154 .71891

Pair 12 Sum none 80.7199 199 9.45155 .67000
Sum res 83.2249 199 9.16591 .64975

Pair 13 AAR rot 91.1614 57 6.45671 .85521
AAR both 93.2125 57 5.43403 .71975

Pair 14 AAR res 89.1926 57 5.60702 .74267
AAR both 93.2125 57 5.43403 .71975

Pair 15 ALS rot 77.4664 86 9.84432 1.06154
ALS both 81.9103 86 10.11166 1.09037

Pair 16 ALS res 78.5324 86 10.00998 1.07939
ALS both 81.9103 86 10.11166 1.09037

Pair 17 APR rot 88.1973 56 6.38847 .58370
APR both 89.4959 56 6.07564 .81189

Pair 18 APR res 84.3568 56 6.55327 .87572
APR both 89.4959 56 6.07564 .81189

Pair 19 Sum rot 84.4088 199 10.14154 .71891
Sum both 87.2823 199 9.30282 .65946

Pair 20 Sum res 83.2249 199 9.16591 .64975
Sum both 87.2823 199 9.30282 .65946

31

Table 4: Experiment 2: Paired Samples Correlations

N Correlation Sig.
Pair 1 AAR none & AAR both 57 .727 .000
Pair 2 ALS none & ALS both 86 .958 .000
Pair 3 APR none & APR both 56 .760 .000
Pair 4 Sum none & Sum both 199 .911 .000
Pair 5 AAR none & AAR rot 57 .795 .000
Pair 6 AAR none & AAR res 57 .899 .000
Pair 7 ALS none & ALS rot 86 .990 .000
Pair 8 ALS none & ALS res 86 .968 .000
Pair 9 APR none & APR rot 56 .751 .000
Pair 10 APR none & APR res 56 .955 .000
Pair 11 Sum none & Sum rot 199 .923 .000
Pair 12 Sum none & Sum res 199 .962 .000
Pair 13 AAR rot & AAR both 57 .918 .000
Pair 14 AAR res & AAR both 57 .803 .000
Pair 15 ALS rot & ALS both 86 .969 .000
Pair 16 ALS res & ALS both 86 .961 .000
Pair 17 APR rot & APR both 56 .973 .000
Pair 18 APR res & APR both 56 .853 .000
Pair 19 Sum rot & Sum both 199 .965 .000
Pair 20 Sum res & Sum both 199 .938 .000

Table 5: Experiment 2: Paired Samples Test

Paired Difference
95% Confidence Interval

Std. Error of the Difference Sig.
Mean Std. Mean Lower Upper t df (2-tailed)

Pair 1 AAR none & AAR both -7.15404 4.54895 .60252 -8.36103 -5.94704 -11.873 56 .000
Pair 2 ALS none & ALS both -6.12279 2.91192 .31400 -6.74711 -5.49847 -19.499 85 .000
Pair 3 APR none & APR both -6.63500 4.62670 .61827 -7.87404 -5.39596 -10.732 55 .000
Pair 4 Sum none & Sum both -6.56231 3.95286 .28021 -7.11489 -6.00973 -23.419 198 .000
Pair 5 AAR none & AAR rot -5.10298 4.16410 .55155 -6.20780 -3.99810 -9.252 56 .000
Pair 6 AAR none & AAR res -3.13421 2.88741 .38245 -3.90034 -2.36808 -8.195 56 .000
Pair 7 ALS none & ALS rot -1.67884 1.42375 .15353 -1.98409 -1.37358 -10.935 85 .000
Pair 8 ALS none & ALS res -2.74488 2.53426 .27328 -3.28823 -2.20154 -10.044 85 .000
Pair 9 APR none & APR rot -5.33643 4.76946 .63735 -6.61370 -4.05916 -8.373 55 .000
Pair 10 APR none & APR res -1.49589 2.07976 .27792 -2.05286 -.93893 -5.382 55 .000
Pair 11 Sum none & Sum rot -3.68889 3.89762 .27629 -4.23375 -3.14404 -13.351 198 .000
Pair 12 Sum none & Sum res -2.50492 2.59684 .18408 -2.86794 -2.14191 -13.607 198 .000
Pair 13 AAR rot & AAR both -2.05106 2.60834 .34548 -2.74314 -1.35897 -5.937 56 .000
Pair 14 AAR res & AAR both -4.01982 3.47256 .45995 -4.94122 -3.09843 -8.740 56 .000
Pair 15 ALS rot & ALS both -4.44395 2.51819 .27154 -4.98385 -3.90405 -16.366 85 .000
Pair 16 ALS res & ALS both -3.37791 2.80762 .30275 -3.97986 -2.77595 -11.157 85 .000
Pair 17 APR rot & APR both -1.29857 1.48526 .19848 -1.69633 -.90082 -6.543 55 .000
Pair 18 APR res & APR both -5.13911 3.45501 .46169 -6.06436 -4.21385 -11.131 55 .000
Pair 19 Sum rot & Sum both -2.87342 2.68826 .19057 -3.24992 -2.49762 -15.078 198 .000
Pair 20 Sum res & Sum both -4.05739 3.26255 .23125 -4.51343 -3.60135 -17.545 198 .000

32

A.3 Command-line arguments

• -od: Name of the output-directory (default: output)

• -oe: Filename of the error-file (default: errorFile.txt)

• -df: The de-scale factor (should be 2, 4, 5, 8 or 10 default: 8)

• -nil: The number of interesting locations to recalculate (default: 3)

• -cfc: The compress factor changer (default: 0.00001, only change when

program asks for it.)

• -l: The linewidth of the online data (must be an odd number, default:

1)

• -s: The number of surrounding pixels (default: 0)

• -remin: The minimum resize value (must be >0 and <=1, default: 1)

• -remax: The maximum resize value (must be >=1, default: 1)

• -romix: The minimum rotate value (in degrees, default 0)

• -romax: The maximum rotate value (in degrees, default 0)

• -res: The resize step size (default: 0.5)

• -ros: The rotate step size (default: 0.5)

• -nes: Number of errors to save in the error-file (default: 100, use -1 for

all results)

• -nic: Number of output images to create (default: 1)

• -debug: Debug mode on (default: off)

• -bw: Use black and white pixels in comparing online and offline (de-

fault: only black)

33

A.4 Javadoc

A complete Javadoc, including the private methods, can be found in the
Internship report that belongs to this thesis, see http://www.student.ru.

nl/s.kennedie/OnOffMapping/InternshipReport.pdf

A.4.1 Class Error

The datastructure that contain all information about a error

Declaration

• public class Error

• extends java.lang.Object

• implements java.lang.Comparable

Fields

• private int x

– The x-coordinate of the error

• private int y

– The y-coordinate of the error

• private float resizing

– The used resizing of the error

• private float rotation

– The used rotation of the error

• private int nPixelsUsed

– The number of black pixels used of the pattern

• private float pctCorrect

– The percentage correct pixels

• private int width

– The widht of the pattern

• private int height

– The height of the pattern

34

Constructors
• public Error(float error, int x, int y, float

resizing, float rotation, int nPixelsUsed, int

width, int height)

– Usage

∗ Error constructor

– Parameters

∗ error - The error

∗ x - The x-coordinate

∗ y - The y-coordinate

∗ resizing - The used resizing

∗ rotation - The used rotation

∗ nPixelsUsed - The number of black pixels of the pattern

∗ width - The width of the pattern

∗ height - The height of the pattern

Methods
• public int compareTo(java.lang.Object o)

– Usage

∗ Compares errors for sorting
• public float getError()

– Usage

∗ Returns the error

– Returns - The error
• public int getHeight()

– Usage

∗ Returns the height of the pattern

– Returns - The height of the pattern
• public int getNBlackPixels()

– Usage

∗ Returns the number of black pixels of the pattern

– Returns - The number of black pixels of the pattern
• public float getPctCorrect()

35

– Usage

∗ Returns the percentage correct pixels

– Returns - The percentage correct pixels
• public float getResizing()

– Usage

∗ Returns the used resizing

– Returns - The used resizing
• public float getRotation()

– Usage

∗ Returns the used rotation

– Returns - The used rotation
• public int getWidth()

– Usage

∗ Returns the width of the pattern

– Returns - The width of the pattern
• public int getX()

– Usage

∗ Returns the x-coordinate

– Returns - The x-coordinate
• public int getY()

– Usage

∗ Returns the y-coordinate

– Returns - The y-coordinate
• public void print()

– Usage

∗ Prints the error information
• public void setError(float error)

– Usage

∗ Sets the error

– Parameters

∗ error - The error

36

• public void setResizing(float resizing)

– Usage

∗ Sets the used resizing

– Parameters

∗ resizing - The used resizing
• public void setRotation(float rotation)

– Usage

∗ Sets the used rotation

– Parameters

∗ rotation - The used rotation
• public void setX(int x)

– Usage

∗ Sets the x-coordinate

– Parameters

∗ x - The x-coordinate
• public void setY(int y)

– Usage

∗ Sets the y-coordinate

– Parameters

∗ y - The y-coordinate

37

A.4.2 Class HWRsample

The class that contains the information of a HWRfile

Declaration

• public class HWRsample

• extends java.lang.Object

Fields

• private String label

– The label of the HWRfile

• private int nCoordinates

– The number of coordinates in the HWRfile

• private double x

– The array of x-coordinates of the HWRfile

• private double y

– The array of y-coordinates of the HWRfile

• private double z

– The array of z-coordinates (pressure coordinates) of the HWRfile

• private double maxX

– The max x-coordinate of the HWRfile

• private double maxY

– the max y-coordinate of the HWRfile

• private double minX

– the min x-coordinate of the HWRfile

• private double minY

– the min y-coordinate of the HWRfile

38

Constructors

• HWRsample public HWRsample(xor.HWRsample fromHWR
)

– Usage

∗ Copies a HWRsample

– Parameters

∗ fromHWR - The HWRsample to copy
• public HWRsample(java.lang.String filename)

– Usage

∗ Creates a HWRsample from a certain HWRfile

– Parameters

∗ filename - The HWRfile to create the HWRsample from

Methods

• public double getHeight()

– Usage

∗ Returns the height of the HWRfile

– Returns - The height of the HWRfile

• public int getNCoordinates()

– Usage

∗ Retruns the number of coordinates of the HWRfile

– Returns - The number of coordinates of the HWRfile

• public double getWidth()

– Usage

∗ Returns the width of the HWRfile

– Returns - The width of the HWRfile

• public double getX(int i)

– Usage

∗ Returns the x-value of the i-th coordinate

– Parameters

∗ i - The coordinate number

39

– Returns - The x-value of the i-th coordinate
• public double getY(int i)

– Usage

∗ Returns the y-value of the i-th coordinate

– Parameters

∗ i - The coordinate number

– Returns - The y-value of the i-th coordinate
• public double getZ(int i)

– Usage

∗ Returns the z-value of the i-th coordinate

– Parameters

∗ i - The coordinate number

– Returns - The z-value of the i-th coordinate
• public void resize(float resizeFactor)

– Usage

∗ Resizes a HWR file with resizeFactor.

– Parameters

∗ resizeFactor - The factor to resize the HWR file with
• public void rotate(float degrees)

– Usage

∗ Rotates Rotates an HWR file over n degrees.

– Parameters

∗ degrees - The rotation in degrees.

40

A.4.3 Class MatrixImage

The datastructure that is used for calculating the error

Declaration

• public class MatrixImage

• extends java.lang.Object

Fields

• private float matrix

– The matrix that represents the image or the pattern

• private int width

– The widht of the matrix

• private int height

– The height of the matrix

Constructors
• MatrixImage public MatrixImage(xor.MyImage image)

– Usage

∗ Converts a MyImage to a MatrixImage

– Parameters

∗ image - The image of the type MyImage that is converted to
a MatrixImage.

Methods
• public static void createErrorImageBruteForce(
xor.MatrixImage online, xor.MatrixImage offline,
xor.MyHashMap map, float resizeFactor, float prune-
Factor)

– Usage

∗ Tries to find the location of the small image in the big image.

– Parameters

∗ small - The image to find in the big image. (the online image)

41

∗ big - The image that is being searched through. (the offline
image)

• public static void createRealSizeErrorImage(
xor.MatrixImage onlineRS, xor.MatrixImage offlineRS,
xor.MyHashMap mapToProcess, xor.MyHashMap pro-
cessedMap, boolean bw)

– Usage

∗ Tries to find the pattern in the image.

– Parameters

∗ onlineRS - The pattern.

∗ offlineRS - The image.

∗ mapToProcess - The map with the interesting locations.

∗ processedMap - The map with the interesting locations and
their error.

∗ bw - Whether or not to calculate black and white pixels of the
pattern.

• public int getHeight()

– Usage

∗ Returns the height of the MatrixImage

– Returns - the height of the MatrixImage
• public float getHSV V(int x, int y)

– Usage

∗ Retruns the HSV-value of ’pixel’ (x,y)

– Parameters

∗ x - x-coordinate of the pixel.

∗ y - y-coordinate of the pixel.

– Returns - HSV-value of the pixel.
• public int getWidth()

– Usage

∗ Returns the width of the MatrixImage

– Returns - the width of the MatrixImage

42

A.4.4 Class MyHashMap

The datastructure that contains the errorvalues of the locations

Declarations

• public class MyHashMap

• extends java.lang.Object

Constructors
• MyHashMap public MyHashMap()

– Usage

∗ default constructor, does nothing. Used for creating a My-
HashMap that is being filled by a function like ”createError-
Image()”.

• public MyHashMap(java.lang.String filename)

– Usage

∗ Loads a map from a filename.

– Parameters

∗ filename - The file to load.

Methods
• binarizeMap public void binarizeMap()

– Usage

∗ Binarizes the map, throws away the values by replacing them
with the minErrorValue. All these points will be recalculated
in the realsize image.

• public void compressMap(float compressFactor)

– Usage

∗ Deletes uninteresting points (points that hava an error-value
that is to big, points that are to dark) form the map.

– Parameters

∗ compressFactor - The factor to compress the map with.
Must be <1.0. 1.70 is a good value for this.

• public void determineImageSize()

43

– Usage

∗ Determines the size of the map and stores this in mapWidth
and mapHeight. These values are used in writing the map to
an image.

• public void determineMinAndMaxError()

– Usage

∗ Determines the biggest error found in the map and stores this
in maxMapErrorValue. This value is used for writing the map
to an image.

• public float get(java.awt.Point point)

– Usage

∗ Returns the value to which this map maps the specified Point.

– Parameters

∗ point - Point whose associated value is to be returned.

– Returns - The value of the point.
• public int getHeight()

– Usage

∗ Returns the Height of the map.

– Returns - the Height of the map.
• public float getLightestPixel()

– Usage

∗ Returns value of the lightest pixel.

– Returns - The value of the lightest pixel.
• public int getSize()

– Usage

∗ Returns the size of the map, in other words the number of
interesting points.

– Returns - The size of the map, in other words the number of
interesting points.

• public int getWidth()

– Usage

∗ Returns the width of the map.

44

– Returns - the width of the map.
• public void load(java.lang.String filename)

– Usage

∗ Loads a map from a filename.

– Parameters

∗ filename - The file to load.

∗ map - The map to load the file in.

– Exceptions

∗ java.io.IOException -
• public void printMap()

– Usage

∗ Prints the map to the schreen: [x] [y] [value]
• public void put(java.awt.Point point, java.lang.Float

value)

– Usage

∗ Associates the specified value with the specified Point in this
map.

– Parameters

∗ point - Point with which the specified value is to be associ-
ated.

∗ value - Value to be associated with the specified key.
• public void resizeMap(int scale, xor.MatrixImage of-

fline, xor.MatrixImage online)

– Usage

∗ Resizes a map to a map with the dimensions of the original
offline image.

– Parameters

∗ scale - The scalesize (must be >1).

– Returns - The resized map.
• public void save(java.lang.String fileName)

– Usage

∗ Saves the map in the format [x] [y] [error-value].

45

– Parameters

∗ fileName - The name of the ouptufile.
• public void saveBest(int n, float resizing, float ro-

tating, int removedWidth, java.lang.String OUT-
PUT DIR, java.lang.String OUTPUT ERROR FILE,

int l, int s, java.lang.String pngFile,
java.lang.String hwrFile)

– Usage

∗ Saves the n best locations of the current resizing and rotating
to a file

– Parameters

∗ n - The number of locations that have to be saved

∗ resizing - The current resize factor

∗ rotating - The corrent rotate factor

∗ removedWidth - The widht removed in preprocessing the of-
fline image

∗ OUTPUT ERROR FILE - The filename of the errorFile

∗ l - Linewidth

∗ s - Number of surrounding pixels

∗ pngFile - The offline filename

∗ hwrFile - The offline filename

– Exceptions

∗ java.io.IOException -
• public void surroundInterestingPoints(int bw)

– Usage

∗ Add points that surround the interesting points of the map
to the map

– Parameters

∗ bw - The widht of the border that is added around interesting
points

• public void writeBinarizedMapToImage(java.lang.String

filename)

– Usage

∗ Writes a binarized map to an image.

46

– Parameters

∗ filename - The filename of the image.
• public void writeMapToImage(java.lang.String filename
)

– Usage

∗ Writes a map to an image.

– Parameters

∗ filename - The filename of the image.

47

A.4.5 Class MyImage

The class that contains the image and its information.

Declaration

• public class MyImage

• extends java.lang.Object

Fields

• private BufferedImage img

– The image.

• private static final int BACKGROUND COLOR

– The color of the background.

• private static final float BLACK

– The value of black.

• private static final float GRAY

– The value of grey.

• private static final float WHITE

– The value of white.

• private static final int RGB RED

– The value of red.

• private int removedWidth

– The number of removed pixels in the width of the image.

Constructors
• MyImage public MyImage(xor.HWRsample hwr, int

lineWidth, float resizeFactor)

– Usage

∗ Creates a MyImage from a HWRsample with a certain
lineWidth an a certain scaling factor.

– Parameters

48

∗ hwr - The HWRsample to create a MyImage from.

∗ lineWidth - The lineWidth of the image.

∗ resizeFactor - The scaling factor.
• public MyImage(int w, int h)

– Usage

∗ Constructs an empty image with the backgroundcolor with a
certain width and height.

– Parameters

∗ w - The width of the new image.

∗ h - The height of the new image.
• public MyImage(xor.MatrixImage matrix)

– Usage

∗ Converts a MatrixImage to a MyImage.

– Parameters

∗ matrix - The MatrixImage that is converted to a MyImage.
• public MyImage(xor.MatrixImage matrix, int x, int

y, int width, int height)

– Usage

∗ Creates a MyImage from a part of a MatrixImage

– Parameters

∗ matrix - The MatrixImage

∗ x - The x-coordinate of the upperleft corner of the part of the
MatrixImage

∗ y - The y-coordinate of the upperleft corner of the part of the
MatrixImage

∗ width - The width of the part of the MatrixImage

∗ height - The height of the part of the MatrixImage
• public MyImage(xor.MyImage fromImage)

– Usage

∗ Creates a new image from a certain image.

– Parameters

∗ fromImage - The image to create a new image from.
• public MyImage(java.lang.String filename)

49

– Usage

∗ Constructs and crops an image from a file.

– Parameters

∗ filename - The file to create an image from.

Methods
• public void binarizeImage(float thresshold)

– Usage

∗ Creates a black-white image.

– Parameters

∗ thresshold - The higher the thresshold the more pixels be-
come black.

• public static void createErrorImageBruteForce(
xor.MyImage online, xor.MyImage offline)

– Usage

∗ Tries to find the location of the small image in the big image,
and writes this to an errorImage.

– Parameters

∗ online - The image to find in the big image.

∗ offline - The image that is being searched through.
• public void crop()

– Usage

∗ Creates a sub-image that doesn’t have a white framing.
• public void crop(int minX, int minY, int width, int

height)

– Usage

∗ Creates a sub-image.

– Parameters

∗ minX - The x-coordinate of the upper-left corner of the sub-
image.

∗ minY - The y-coordinate of the upper-left corner of the sub-
image.

∗ width - The width of the sub-image.

50

∗ height - The height of the sub-image.
• public void drawLine(int x0, int y0, int x1, int

y1, int imageWidth, int imageHeight, int lineWidth
)

– Usage

∗ Draws a line from (x0,y0) to (x1,y1).

– Parameters

∗ x0 - The X-coordinate to start from.

∗ y0 - The Y-coordinate to start from.

∗ x1 - The X-coordinate to end with.

∗ y1 - The Y-coordinate to end with.

∗ imageWidth - The widht of the image in which the line comes
(needed to prevent drawing lines outside the image).

∗ imageHeight - The height of the image in which the line
comes (needed to prevent drawing lines outside the image).

∗ lineWidth - The width of the line (must be na odd number).
• public int getBlue(int x, int y)

– Usage

∗ Returns the Blue-value of a pixel.

– Parameters

∗ x - x-coordinate of the pixel.

∗ y - y-coordinate of the pixel.

– Returns - Blue-value of the pixel.
• public int getGreen(int x, int y)

– Usage

∗ Returns the Green-value of a pixel.

– Parameters

∗ x - x-coordinate of the pixel.

∗ y - y-coordinate of the pixel.

– Returns - Green-value of the pixel.
• public int getHeight()

– Usage

∗ Returns the height of the image.

51

– Returns - The height of the image.

• public float getHSV(int x, int y)

– Usage

∗ Returns the HSV value of a pixel.

– Parameters

∗ x - The x-coordinate of the pixel.

∗ y - The y-coordinate of the pixel.

– Returns - The HSV value of the pixel.

• public int getRed(int x, int y)

– Usage

∗ Returns the Red-value of a pixel.

– Parameters

∗ x - x-coordinate of the pixel.

∗ y - y-coordinate of the pixel.

– Returns - Red-value of the pixel.

• public int getRemovedWidth()

– Usage

∗ Returns the removed width

– Returns - The removed widht

• public int getRGB(int x, int y)

– Usage

∗ Returns the RGB value of a certain pixel.

– Parameters

∗ x - x-coordinate of the pixel.

∗ y - y-coordinate of the pixel.

– Returns - RGB value of the pixel.

• public int getWidth()

– Usage

∗ Returns the width of the image.

– Returns - The width of the image.

• public int HSVtoRGB(float h, float s, float b)

52

– Usage

∗ Converts a HSB-value to a RGB-value

– Parameters

∗ h - H-value

∗ s - S-value

∗ b - B-value

– Returns - RGB-value
• public void mergeImages(xor.MyImage online)

– Usage

∗ Merges the online image in the offline image

– Parameters

∗ online - The online image to merge in the offline image
• public float otsu()

– Usage

∗ Returns the otsu-value of the image

– Returns - The otsu-value of the image
• public void removeGray(float threshold)

– Usage

∗ Removes pixels that have a gray-value below thresshold

– Parameters

∗ threshold - thethreshold
• public void resizeTo(int w, int h)

– Usage

∗ Resizes the image to a certain widht an hight

– Parameters

∗ w - The widht to resize the image to

∗ h - The height to resize the image to
• public void resizeTo(xor.MyImage image)

– Usage

∗ Resizes the mimage to the size of the argument image.

– Parameters

53

∗ image - The image who’s size is used to resize the image to.
• public void rotate(double degrees)

– Usage

∗ Rotates an image with a certain number of degrees

– Parameters

∗ degrees - Number of degrees to rotate
• public void rotateRad(double theta)

– Usage

∗ Rotates an image with theta Radials.

– Parameters

∗ theta - The angle of rotation in radians.
• public void scale(double scale)

– Usage

∗ Scales an image with a certain factor.

– Parameters

∗ scale - Scale-factor.
• public void scale(int w, int h)

– Usage

∗ Scales an image to a certain width an height.

– Parameters

∗ w - Number of pixels in the width.

∗ h - Number of pixels in the height.
• public void selectFirstQuadrant()

– Usage

∗ Crops the image to the upper half of the first quadrant, the
regio that contains the unique code

• public void setRGB(int x, int y, int rgb)

– Usage

∗ Sets the RGB value of a pixel.

– Parameters

∗ x - x-coordinate of the pixel.

54

∗ y - y-coordinate of the pixel.

∗ rgb - RGB-value of the pixel.
• public void write(java.lang.String name)

– Usage

∗ Writes the image as a PNF file to ”name”

– Parameters

∗ name - Filename.
• public void write(java.lang.String name,
java.lang.String type)

– Usage

∗ Writes the image to a file, and writes the filename to the
screen.

– Parameters

∗ name - The name of the output file.

∗ type - The type of the output file.
• public void writeToFile()

– Usage

∗ Writes the image to output.png.
• public static void writeXorImage(xor.MyImage input1,
xor.MyImage input2)

– Usage

∗ Writes the Xor-image of two images to a file named XorIm-
age.png.

– Parameters

∗ input1 - Image1.

∗ input2 - Image2.

55

A.4.6 Class Stopwatch

A class to help benchmark code It simulates a real stop watch

Declaration

• public class Stopwatch

• extends java.lang.Object

Fields

• private long startTime

• private long stopTime

• private boolean running

Constructors
• Stopwatch public Stopwatch()

Methods
• getElapsedTime public long getElapsedTime()

– Usage

∗ returns elapsed time in milliseconds if the watch has never
been started then return zero

• public Stopwatch reset()

– Usage

∗ resets the stopwatch

– Returns - The stopwatch
• public Stopwatch start()

– Usage

∗ Starts the Stopwatch

– Returns - The stopwatch
• public Stopwatch stop()

– Usage

∗ Stops the stopwatch

– Returns - The stopwatch

56

A.4.7 Class Xor

The main programm Finds the optimal rotation en resizing for a image and a
pattern.

Declaration

• public class Xor

• extends java.lang.Object

Fields

• private static final int HWR LINE WIDTH RESIZED

– The linewidth of the resized pattern.

• private static final float BINARIZATION THRESHOLD

– The binarization threshold.

• private static final float RESIZE FACTOR HWR REAL SIZE

– The relation between the resolution of the scan and the hwr.

• private static final float PRUNE FACTOR

– The prune factor, used to throw away uninteresting locations.

• private static float COMPRESS FACTOR

– The compress factor used to compress the map (in other words:
to delete uninteresting points).

• private static String OFFLINE FILENAME

– The filename of the offline data. THis should be a png-file.

• private static String ONLINE FILENAME

– The filename of the online data. This should be a hwr-file.

• private static int HWR LINE WIDTH REAL SIZE

– The linewidth of the pattern.

• private static float RESIZE FACTOR OFFLINE SHRINK

– The resize factor for the offline data, used for computational rea-
sons.

57

• private static int RESIZE FACTOR OFFLINE ENLARGE

– The resize factor used to scale the map with the errors up.

• private static float RESIZE FACTOR HWR SHRINK

– The resize factor for the online data, used for computational rea-
sons.

• private static float COMPRESS FACTOR CHANGER

– Factor that adds up to the compressfactor.

• private static int N LOCATIONS TO RECACULATE

– Number of interesting locations to recalculate.

• private static int N SURROUNDING PIXELS

– The number of surrounding pixels used.

• private static float RESIZE MAX

– The default maximum resize factor.

• private static float RESIZE MIN

– The default minimum resize factor.

• private static float ROTATE MAX

– The default maximum rotation.

• private static float ROTATE MIN

– The default minimum rotation.

• private static float RESIZE STEP SIZE

– The default resize step size.

• private static float ROTATE STEP SIZE

– The default rotate step size.

• private static String OUTPUT DIR

– The default ouptutdirectory.

• private static String OUTPUT IMAGE FILE

– The default name of the output image.

58

• private static String OUTPUT ERROR FILE

– The default name of the error file.

• private static boolean DEBUG

– Whether or not debug mode is on.

• private static boolean EDGE DETECTION

– Whether or not edge detection is on.

• private static boolean BLACK AND WHITE

– Wether or not to calculate black and white pixels of the pattern.

• private static int N ERRORS TO SAVE

– Number of errors to save in the error file.

• private static int N IMAGES TO CREATE

– Number of output images to create.

Constructors
• Xor public Xor()

Methods
• public static void main(java.lang.String [] args)

– Parameters

∗ args - The parameters of the command line

– Exceptions

∗ java.io.IOException -

59

A.4.8 Class Merge

Creates an image with both the online as the offline data.

Declaration

• public class Merge

• extends java.lang.Object

Fields

• private static final float RESIZE FACTOR HWR REAL SIZE

– The relation between the resolution of the scan and the hwr.

• private static String ERROR FILENAME

– The filename of the error file used.

• private static int N IMAGES TO CREATE

– The number of images to create.

• private static String OFFLINE FILENAME

– The filename of the offline data.

• private static String ONLINE FILENAME

– The filename of the online data.

• private static String OUTPUT DIR

– The default outputdirecory

• private static String OUTPUT IMAGE FILE

– The default filename of the output image.

• private static int LINE WIDTH

– The used linewidth

• private static int N SURROUNDING PIXELS

– The used number of surrounding pixels

• private static int N ERRORS IN FILE

– The number of errors in the file

60

Constructors
• Merge public Merge()

Methods
• public static void main(java.lang.String [] args)

– Parameters

∗ args -

– Exceptions

∗ java.io.IOException -

61

