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1 Introduction

Despite the availability of highly structured databases for some applications, for most companies it
nevertheless holds that the major portion of valuable information resides in collections of relatively un-
structured text documents. One example is the publishing company Wolters Kluwer, which maintains
a large corpus of about half a million legal documents that includes jurisprudence, Dutch law, several
legal magazines, legal textbooks and legal commentaries. As a service to legal professionals, Wolters
Kluwer offers a search engine to retrieve information from these documents by querying keywords.

Such keyword-based information retrieval systems assume that the content of documents can be
meaningfully captured by a set of keywords. If a keyword is indeed an adequate indication of what a
document is about, then any document containing the queried term is likely to be meaningful for the
query (Grootjen, 2005, p. 6). Although these systems work well in practice, a keyword-based query
will often return a large amount of documents that the end user has to further inspect manually. Even
though there are numerous methods for ranking search results on their relevance for a given query,
such as the well-known TF*IDF relevancy measure (Spark Jones, 1972), manually browsing through
search results nevertheless takes a lot of time. In the case of legal professionals who work at a high
hourly rate there is high pressure to quickly assess the quality of a particular result. But this need
for efficiency is at the same time at odds with the need to not miss any crucial information. In other
words, within the high information need of legal professionals we can further distinguish a demand to
not miss crucial information (high recall), while simultaneously not wasting any time on less relevant
documents (accuracy and relevance). The practical motivation behind this thesis project is to support
users with a high information need, such as lawyers, in navigating through search results efficiently.

For that purpose, this thesis project investigates and implements a pipeline using Natural Language
Processing (NLP) and Formal Concept Analysis (FCA), which is a combination that has attracted
significant research interest (e.g. Cimiano et al., 2003, 2005; Ilieva and Ormandjieva, 2007). Formal
Concept Analysis is an unsupervised machine learning technique that will be used to automatically ex-
tract (formal) concepts from legal texts of the Wolters Kluwer database, in order to build a conceptual
taxonomy that represents semantic relations between documents. Because this conceptual structure
is based on the contents of documents, the need to manually inspect documents is reduced. Instead,
the proposed pipeline gives users a meaningful abstraction of the contents of search results with which
they can further specify their search for relevant information. One could for example employ query
by navigation through the semantic structure (Grootjen, 2005, p.58), give relevance feedback (Groot-
jen, 2005, chap.6), or make suggestions for query refinement to related sub-concepts. This thesis
investigates query by navigation, in which users can themselves interactively browse the conceptual
hierarchy efficiently based on what they themselves deem relevant. Moreover, this proposed pipeline
is emancipated from human labour because it is automated.

Applying NLP and concept-extraction techniques such as FCA in the legal domain is an active line of
research that this thesis hopes to contribute to (e.g. Wyner et al., 2010). When these techniques meet
legal praxis, they can lead to new insights into “the interconnections among authoritative legal texts
and the behavior of courts, legislatures, lawyers, and other legal professionals” (Conrad and Branting,
2018). Many design decisions have to be taken in the implementation of various steps of the proposed
automated pipeline, and they will be explained and justified in what follows.

There are three main research questions that this thesis addresses:

1. How can Formal Concept Analysis be used meaningfully with a large corpus of documents (0.5
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million)?

2. How do we choose relevant formal context attributes to adequately represent the content of a
set of documents?

3. How do different choices for formal context attributes affect concept navigation by the user?

2 Data

All analyses of this thesis are performed on data provided by the publishing company Wolters Kluwer.
Wolters Kluwer maintains a large dataset of legal documents, containing amongst other things Dutch
jurrisprudence, Dutch legal text books, the Dutch law, some international law relevant for Dutch legal
practice, and yearly editions of legal journals. Legal professionals can purchase a license to access and
search these documents to support their legal practices. To be able to work with this data for my
thesis, I signed a Non-Disclosure Agreement (NDA).

The documents in this database are stored as semi-structured xml documents, sometimes containing
links to relevant pdf documents with photocopies of printed editions. Each document contains xml
tags indicating a hierarchical categorization of that document in terms of a general rubric (e.g. civil
law), a main discipline therein (e.g. inheritence law), subtopics (e.g. testaments), and then relevant
keywords (e.g. ”codicil”). These categories are associated with an ID in a large thesaurus. In total
the database provided by Wolters Kluwer contains 496.311 ≈ 0.5 million xml documents (excluding
pdf files).

3 Methods and background information

3.1 What are concepts and how will we use them?

There are many philosophical answers to the question what a concept is. Even though there are
fundamental disputes about this ontological question, there is a general agreement that a concept is
a representation, irregardless of whether this representation is for example mental or abstract. This
thesis deals with concepts, but will do so in a quite specific manner. First of all, with respect to the
ontology of concepts this thesis shall be agnostic: it will for example not claim that concepts exist as
mental representations. Secondly, we thus also do not speak informally of a concept as just “an idea”.
Thirdly, instead we will define a concept formally and use it as a formal tool of analysis.

For the latter formalization we will investigate an unsupervised machine learning technique called For-
mal Concept Analysis (FCA), which has a mathematically well-defined definition of a concept, that
nevertheless fits the basic philosophical intuitions about what the essential structure of a concept is,
namely a relation between its extension (what objects to we indicate with the concept) and intension
(their attributes). Formal Concept Analysis was coined by Rudolf Wille as an attempt to use mathe-
matics to represent real-world meanings, rather than just performing “elaborate mental gymnastics”
(Wille, 2009). As a formal tool, FCA can be applied to various domains and various problems. We
will explore FCA as a tool for information retrieval from a corpus of texts.

Texts are full of concepts. In some cases a concept can be named with a single word. For example, when
we encounter the word “cat” in a text, this is a so-called “lexical concept” that either refers to actual
cats, mental representations thereof, or perhaps some “abstract” cat. However, simultaneously this
example illustrates another aspect of concepts: they have super- and subrelations to other concepts.
A cat is, as we all know, a suitable pet (a superconcept), but is also an animal (an even more general
superconcept, because not all animals can be pets). However, a “Siamese” is a particular type of cat
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(a subconcept). Concepts thus have a particular “scope” that can be more general or more specific.
Interestingly, there seems to be an inverse relationship between how many objects are part of a concept
(its extension), and the amount attributes that the concept expresses (its intension). On the most
general level (large extension: all animals), relatively little attributes need to be shared between
various “animal instances” for us to call them animals. However, when we speak of cats specifically
(smaller extension), we specify way more attributes (bigger intension): not just that it is alive and
can move autonomously, and that it feeds on organic matter (an animal, basically), but also that it
meows, is small, likes to sleep, has whiskers and retractable claws, and that it is carnivorous etc.

A cat is a subset of the larger set of animals, but the properties of animals are a subset of the
properties of cats. This gives us a clue about how we can navigate from subsets to supersets and
vice versa. To go from a subset to a superset, we either add objects to the concept’s extension, or we
remove attributes from the concepts’ intension. Vice versa for the other direction. That is, based on
a conceptual hierarchy, we can formalize a form of conceptual navigation.

So far, we have discussed concepts simply as linking some entity (e.g. a cat) to a set of attributes.
However, companies such as Wolters Kluwer deal with large text corpora, and a main concern for
them is how to retrieve relevant documents for clients and allow those clients to navigate through
those documents. We will address this concern by trying to build a conceptual structure of a corpus
of documents rather than on objects occurring in a single document, which allows navigation through
those documents based on this conceptual structure. This poses two distinct challenges:

1. What is a “concept” in this type of information retrieval problem?

2. How do we manage the increased complexity due to the size of those corpa?

In the following, I will first give a brief explanation of Formal Concept Analysis and an indication of
its relevance. In this section it will also become clear how we can define a conceptual hierarchy on
a larger set of documents, as well as how navigation through this conceptual structure can aid the
user in finding relevant documents. Secondly, I will address the added complexity that comes with a
large corpus size, and how this limits the effectiveness of applying FCA in these scenarios. I explore
potential countermeasures to keep FCA feasible and justify the approach taken in this thesis.

3.2 Short explanation of Formal Concept Analysis

Ignatov describes FCA as such:

FCA is concerned with the formalisation of concepts and conceptual thinking and has been
applied in many disciplines such as software engineering, machine learning, knowledge dis-
covery and ontology construction during the last 20-25 years. Informally, FCA studies how
objects can be hierarchically grouped together with their common attributes.“ (Ignatov,
2015, p. 1)

The formalisation of concepts that FCA offers is based on mathematical lattice theory. The goal here
is not to exhaustively summarize all mathematical background, nor provide proofs. However, there
are some important definitions without which it is not possible to understand FCAs capabilities and
limitations. I specifically focus on the definitions that are required for understanding what a formal
concept is. I base myself on the extensive FCA tutorial of Ignatov (Ignatov, 2015, p. 3-19).

First of all, in order to find concepts we first need to define a formal context, which contains the
ingredients we already shortly indicated to be relevant for a formal concept: a set of objects whose
subsets are possible extensions, and a set of attributes defining the possible intensions. We will define
a formal concept explicitly below, but we already know that at least we also must know the relations
between objects and attributes. A formal context is thus defined as:
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C = (O,A,R)

Where O is a set of objects, A is a set of attributes and R is a set of relations defined on pairs (o,a)
∈ R.

Given these relations between objects and attributes, we can define two derivation operators, namely
one that returns for a set of objects the set of attributes that they share, and another one that returns
for a set of attributes the set of objects that they have in common. This gives us the following formal
definitions.

For some subset of objects, X ⊆ O, we can derive a set X ′ such that

X ′ := {a ∈ A|(o, a) ∈ R for all o ∈ X}

and likewise for some subset of attributes, Y ⊆ A, we can derive Y ′ such that:

Y ′ := {o ∈ O|(o, a) ∈ R for all a ∈ Y }

These operators are concept-forming because they are the basis of the formal definition of a concept.
A formal concept within a particular formal context is a pair (X,Y ) where X ⊆ O and Y ⊆ A such
that X ′ = Y and Y ′ = X.

That is, a formal concept consists of a set of objects (its extent) and a set of attributes (its intent)
in such a way that the extent is the derivation of the intent, and the intent is the derivation of the
extent. As such, it is conform an old philosophical tradition as well as an international standard of
the terminology of concept:

This definition says that every formal concept has two parts, namely, its extent and intent.
This follows an old tradition in the Logic of Port Royal (1662), and is in line with the
International Standard ISO 704 that formulates the following definition: A concept is
considered to be a unit of thought constituted of two parts: its extent and its intent
(Ignatov, 2015, p. 7).

It is important that for any subset X ⊆ O we can potentially find a concept, which gives a large
amount of potential concepts as the set of objects O becomes larger (and likewise for the set of
attributes A). The set of all concepts of a formal context can be represented in a lattice, which is
then called a concept lattice. There are various algorithms to efficiently produce concept lattices, but
to understand the underlying principle a sketch of a naive approach is sufficient.

We know that for any concept (X,Y), we have X = Y ′ and Y = X ′ by definition. We can therefore
rewrite any concept (X,Y) in two ways, that directly show a straightforward way of producing concept
lattices. First of all, for any subset of objects X we have Y = X ′. But then we can write X = Y ′ = X ′′,
giving formal concept (X,Y ) ≡ (X ′′, X ′). Secondly, for any subset of attributes Y we have X = Y ′

and with Y = X ′ = Y ′′ we thus get formal concept (X,Y ) ≡ (Y ′, Y ′′). In other words, to produce
concept lattices we can take all subsets either of objects or attributes, and then apply the appropriate
derivation operator as specified in the rewritten expressions. To summarize, a formal concept thus
is a pair (X,Y ) where each object in X has all attributes in Y , and where each attribute in Y is
common to all objects in X. This relation between intent and extent of a concept is unique, so it does
not fundamentally matter if you take subsets of objects or attributes as the point of departure. To
clarify, let us discuss an easy example to illustrate this and also show sub- and superconcept relations.

6



3.2.1 Example of a formal context with visualized concept lattice

Ignatov provides a short example (see Ignatov, 2015, p. 7-8) that I reproduced here with my own
Python code. We have four geometric objects and four possible attributes: they have either three or
four vertices, a 90 degree angle, and can be equilateral. These attributes are either present or not,
which gives the following formal context:

3 4 90◦ equil.
4 X X

X X

X X

X X X

After applying FCA, we can visualize the concept lattice as such, where objects are labeled under the
nodes and attributes on top of them:

△◺

◻

3 equilateral

▯

4

90°

Figure 1: Simplified visualization of the concept lattice

Superconcepts are visualized higher in respect to their subconcepts. By definition, a concept lattice
has a single highest concept that contains all objects but no attributes, and a single lowest concept
that contains all attributes but no objects. At the lowest node, we have a concept (∅, A) with A
the set of all attributes. Moving upwards, we incrementally increase the set of objects and try to
find concepts. For example, when choosing the subset of objects that includes “square” we get the
concept ({square}, {4, 90∗, equil}). This is a formal concept because square has all those attributes,
while simultaneously each of these attributes is common to all objects of the concept (which in this
case, trivially, is only the square). We also see in the visualized concept lattice that “rectangle”
is a superconcept of square. This makes sense semantically : a square is a type of rectangle with
the restriction that it is equilateral. The concept “rectangle” within this formal context thus is
({square, rectangle}, {4, 90∗}). Again, if we look at the formal context we see that all objects in the
extension, i.e. both a square and a rectangle, have the properties that they have four sides and a
90 degree angle, and these properties are common to all objects of the concept. Because there is no
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concept with an extension between {square} and {square, rectangle}, the latter is the superconcept
of the former, and the former is the subconcept of the latter.

Notice that the nodes are not labeled with the whole concept, which is a tuple of sets, but only
partially through a particular reduction. Specifically, to prevent clutter and in order to highlight the
main semantic structure, each concept can either be labeled by the extent or by the intent, due to
the property that any concept (X,Y ) can be rewritten as (X ′′, X ′) or as (Y ′, Y ′′). Labeling is further
simplified in two ways:

1. either by only labeling with the object name that is not shared by subconcepts. E.g. we label
{square, rectangle} with “rectangle” because that is what semantically distinguishes this concept
from its subconcept with extent {square}. Simpler said: we label this node with the rectangle
because this is the first time it occurs from the bottom up.

2. or by only labeling with the attribute name that is common to all subconcepts but not to
superconcepts, which occurs in the “higher” area of the concept lattice. E.g. the concept
({equilateral triangle, rectangle triangle}, {3} ) is labeled with “3” because that attribute is the
first occurrence of the common denominator of the two subconcepts ({rect. triangle}, {3, 90*})
and ( {equil. triangle}, {3, equil.}). Said simply: we label a node with an attribute the first
time it occurs when moving top-down through the concept lattice.

These reductions effectively try to represent formal concepts as much as possible as lexical concepts
without actually reducing information. In this manner, concept lattice visualization is a useful tool for
highlighting semantic relations in a conceptual structure in a matter that is informative to humans.

3.3 Query by navigation

Based on the latter example we can also illustrate how query by navigation in such a conceptual
structure works. If the extent of a concept contains documents and the intent some indication of
shared content in those documents, then we can navigate through documents in two manners:

1. We can expand our query by “moving up” in the concept lattice, because a superconcept has a
larger set of documents and a smaller intent. I.e. a higher concept describes more documents
because these documents have to have less attributes in common.

2. We can narrow our query by “moving down” in the concept lattice, because subconcepts return
less documents that have more attributes in common.

I will explain my implementation of query by navigation in a later section.

3.4 Interpretability

The aim of Formal Concept Analysis is to produce a structured representation of a space of objects
and their properties. There are other methods available for achieving that goal. One could for
example use clustering algorithms or even dimensionality reduction techniques such as SVD or PCA
to extract features of a corpus of texts. When one however finds these features, e.g. clusters or
principle component vectors, one invariably asks: but what do they really mean? In other words,
after having done a data analysis and having some representation of the data, there remains an issue
of the interpretation of that representation. Imagine we apply clustering to a corpus of texts. We will
then always end up with a set of clusters, with texts within the same cluster being close to each other
in terms of some distance measure. Under the assumption that texts that are close to each other in
content represent a similar meaning, we then ask what that meaning exactly is? Does this cluster
represent a concept? To complicate matters, we could have found different clusters had we used a
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different measure for calculating distance between two clusters, or if we had changed the amount of
clusters.

At this point, FCA really excels. There is no need for humans to for example think about what
label to assign to a cluster, because a concept states a well-defined mathematical relation between
objects and attributes, and we know of each of them what they mean. On top of that, the relations
between different concepts are also exactly defined, so that for example we can specify for a given
pair of concepts what their common superconcept is. There is no ambiguity in where one concept
begins and another ends. Given some formal context, the outcome of FCA does not depend on the
tuning of hyperparameters or a statistical computation that is only “understandable” by computers,
because a concept expresses a direct relation within a formal context, without further abstractions.
This does not mean that FCA presents a neutral representation of data, as if that would imply no
interpretation at all. Decisions need to be made in determining how to represent the content of
documents. For example, is every single term of a document a potential representation of the content
of that document? Or can we select the most relevant terms? This thesis makes an effort to explain
the choices in defining a formal context.

To summarize, FCA is a technique that facilitates the interpretation and understanding of data. This
explainability is valuable for humans using intelligent computer systems, as humans are peculiar types
of animals that always look for meaning. This thesis therefore pays special attention to interactive
data exploration that keeps the human in the loop, presenting the user with information that is easy
to understand, and that is based on concepts that can at any time be inspected and traced back to the
documents they come from. Query by navigation is a good example of how a meaningful conceptual
structure can support a user’s search through documents in a transparent manner.

3.5 FCA in information retrieval

The particular issue that a company such as Wolters Kluwer deals with is one of information retrieval
on a large scale, in this case for a corpus of specialized legal texts of about half a million documents.
Currently, the search through this database is keyword-based. Queries are expanded based on a
single hand-crafted synonym that is defined per document. This way of searching through documents
is straightforward, but returns many results and requires the user of the system to smartly choose
keywords in order to narrow down the scope of the search enough. Again, FCA can aid in this process
by 1) creating a conceptual structure of the corpus itself, and 2) guide the user query by navigating
through this structure.

Although the notion of concept is perhaps more intuitive when speaking about cats and their charac-
teristics, the “formality” of a concept in FCA means that it is agnostic to the particular problem it is
applied to. In the case of an information retrieval system, the extent of a concept is defined as a set
of documents, and the intent is a set of document characteristics, for example important keywords.
This then also directly shows the relevance of query by navigation. Moving up in the concept lattice
expands the extent of the query, resulting more documents, whereas moving down in the concept
lattice returns less documents. The latter is done by enlarging the intent, i.e. adding another keyword
to the query. Based on the concept lattice, we know exactly which search term (part of the intent of
subconcepts) we need to add to specify the query.

We have thereby reviewed the essential FCA terminology that is required for understanding this thesis.
In the following section we will formulate the particular challenges of FCA in information retrieval
applications and explain the approach this thesis takes.
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3.6 Techniques for reducing concept lattice complexity

FCA as a technique has been around since the 80s, and by now is an established and “important for-
malism for knowledge representation, extraction and analysis” (Dias and Vieira, 2015, p. 7084). How-
ever, contemporary applications deal with increasingly larger datasets, and this makes FCA quickly
prohibitive for many applications due to its high computational cost, which in the worst case is is
2min(|G|,|M |) (Dias and Vieira, 2015, p. 7084). But apart from the computational cost of FCA, a main
issue with larger datasets is that the resulting concept lattices quickly become too big, which entails
that a concept lattice’s “key aspects, those which are effectively sought, can be immersed in a maze
of irrelevant details” (Dias and Vieira, 2015, 8074). In other words, this threatens the advantage of
interpretability that I highlighted. “In fact, the problem of obtaining a concept lattice of appropriate
complexity and size is one of the most important problems of FCA” (Dias and Vieira, 2015, 7084)
and is so poignant for FCA because “the main applications make use of the concept lattice, usually
represented by means of a line diagram, or a nested line diagram, or a tree diagram, etc.” (Dias and
Vieira, 2015, p. 7084). The latter visualizations can be very useful because they show a semantic
conceptual structure that is readable and meaningful to humans. This desirable property is lost if
conceptual lattices become too complex, in addition to full visualization becoming impossible, in the
worst case.

I observe that while most publications of the technique of FCA itself are often relatively old, there
are plenty of recent papers on reducing concept lattice complexity, further underlining the importance
of dealing with complexity for the survivability of FCA as a relevant data analysis tool (e.g. Aswani
Kumar and Srinivas, 2010; Buzmakov et al., 2015; Codocedo et al., 2011; Dias and Vieira, 2015, 2017;
Medina, 2012; Sumangali and Aswani Kumar, 2018). The goal and challenge of such a complexity
reduction is to simplify the concept lattice in such a way that the key aspects (i.e. the information of
interest) are preserved. We therefore explore options to keep the desirable properties of FCA when
applied to larger corpora, such as the legal database of Wolters Kluwer. Somehow the complexity of
concept lattices needs to be reduced, while retaining the general desirable properties, in particular a
clear enough semantical structure and support of query by navigation.

Dias and Vieira distinguish three classes of techniques used for concept lattice reduction (Dias and
Vieira, 2015, 7085).

1. Removal of redundant information as much as possible, without changing the original structure
of the concept lattice

2. Construct a high-level abstraction of the concept lattice that highlights the truly important
aspects

3. Select formal concepts, objects or attributes based on a relevance criterion

In the context of information retrieval, the option of throwing away information is not desirable, as
that excludes certain information from ever being found and by definition hurts the recall measure.
Recall is important in the case of finding legal documents, as missing a relevant piece of information
can have large professional consequences, and give an edge to opposing parties. However, removing
redundant information is also not very suitable: “As redundant information removal techniques do
not actually reduce the size of the lattice, they are not of much practical value” (Dias and Vieira,
2015, 7094). If it is a hard requirement that the structure of the reduced matrix is isomorphic, this
option would be the best. However, to make it more feasible to use FCA for query by navigation in
a way that presents the user with information of a sensible granularity, we really do want to reduce
concept lattice complexity for our purpose.

For these reasons option 1 (redundant information removal) and option 3 (selection) are the least pre-
ferred potential methods for us. Dias and Vieira explicitly highlight the leftover option, simplification
techniques, as “more suitable for applications that require interacting directly with the user”, stat-
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ing that they ”have more applicability” than the other options (Dias and Vieira, 2015, 7095). They
however also highlight an important trade-off for simplification techniques. On the one hand, simplifi-
cation techniques are the most appropriate choice for handling “truly large formal contexts”(Dias and
Vieira, 2015, 7095). But on the other hand, a strict isomorphism between the original and reduced
concept lattice is lost and this could negatively impact the quality of the resulting concept lattice for
some given application. The latter downside also makes this solution suboptimal for our purpose. If
we first build a concept lattice and then simplify it, we might lose relevant information. Moreover, we
do care about the structure of the concept lattice because we use it for query by navigation.

The important take-away here is that the main preference for simplification techniques would be 1)
because of our focus on applicability, and 2) because of our focus on scalability. However, this thesis
takes a different approach altogether to ensure applicability and scalability. The three classes of
complexity reduction that are mentioned above all depart from a formal context that is already built.
A fourth class, Dias and Vieira concede, would be a class of techniques that reduce complexity in
some way before the formal context is built. This thesis explores such an approach in a pragmatic
manner that fits the needs and the existing infrastructure of companies such as Wolters Kluwer.

3.7 Reducing complexity by leveraging existing search infrastructures

Companies dealing with big databases likely already have an infrastructure in place to search those
databases, for example based on keywords. Wolters Kluwer offers their customers a search engine for
finding relevant legal information from a large database of law textbooks, laws, case law, jurisprudence
etc. In legal applications having a good recall is crucial, because missing relevant to a case might
mean the difference between winning or losing that case. Ensuring good recall however comes at the
cost of returning many documents, of which customers only have time to view some. This means that
a further technique is needed to support the end user in finding what is relevant to him fast enough.
I distinguish two classes of solutions:

1. Compute a relevance measure per document

2. Support the user in selecting relevant information more easily by him- or herself.

Even before looking at specific techniques, I propose to highlight on a more philosophical level a
conceptual difference between these two approaches. One could say that computing a relevance
measure is an “external” approach to understanding relevance, because it is based on an explicit
computation over the contents of a document corpus, that ideally coincides with what is relevant to
the user. The second approach does not in the same degree attempt to define objectively what is
relevant to the user, but instead lets the user act based on his or hers subjective “internal” sense of
relevance. In that case, a main issue is not whether the “explicit” computation of relevance coincides
with what the user deems relevant, but instead to provide the user with enough information to enact
his or her own sense of relevance. In other words, when speaking about relevance we can consider
objective facts concerning the corpus (e.g. term frequency), but also in a more subjective sense what
corresponds to the preferences of the user.

A clear advantage of the first approach is that the user is immediately presented with the results
that are deemed most relevant, which reduces effort on the side of the end user. Various approaches
to computing relevance exist. One could for example compute TF*IDF scores for terms from a user
query to get an indication of how relevant that query term is in a particular document. More advanced
approaches could take into account client profiles to tailor the search results to a specific user, although
it is not clear how accurate using “client profiles” would be here, because the legal professionals that
use the search service do not represent themselves but others, in cases that all have their own context.
In a sense, for personalization of the results one would thus need “case profiles” instead. But in all
cases, for big databases this would require a Big Data solution that is currently not realistically feasible
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for many companies, as it would usually require a big investment in changing ICT infrastructures and
software.

The second approach reserves a more active role for the user to select relevant results. From a
conversation with an IT employee from Wolters Kluwer, it became clear that Wolters Kluwer has
ambitions to provide techniques that follow this line of thought. One could for example think of
automatically highlighting and presenting important blocks of texts, such as the particular charge
that instigated a legal case or the final ruling of the judge, so that it becomes quicker for the end user
to inspect these texts on relevance. The “query by navigation” approach this thesis takes also belongs
to this category. I propose an implementation that presents the user with meaningful choices that
support finding relevant results interactively. This gives the end user a lot of freedom and control over
refining or broadening queries, while avoiding that the user has to deal with a bulk of individual texts.
Instead, the user interacts with a meaningful representation of a group of texts, namely a concept
lattice that is formed based on an analysis of the contents of the documents.

However, in order for the query by navigation approach to actually support the user in finding relevant
results quickly, and if this approach should not be too complex, then we again quickly return to the
issue of FCA’s computational complexity. Computing a formal context over all texts in a large
database is computationally infeasible, and to keep navigation user-friendly and efficient a lattice
needs to be small. In line with the fourth class of lattice complexity reduction, as mentioned above,
I propose a method that extends traditional search with FCA and query by navigation, as follows:

1. A subset of documents is returned in a traditional search query

2. FCA is applied on this smaller subset of documents to build a concept lattice

3. This allows query by navigation to further refine the search interactively

So we reduce the complexity of our concept lattice before the creation of any formal context. The
underlying rationale is that in this two-stage process, the first stage is coarse-grained and efficient,
so that a fine-grained approach based on a semantic analysis of the documents themselves becomes
feasible in the second stage. We choose the right granularity at the right time. Another advantage
of this approach is that the recall and accuracy of the process are the same as for the chosen search
method, because a full Formal Concept Analysis can now be applied without losing any information.

To summarize, this approach is taken because it uses both above-mentioned approaches to relevance
at the appropriate time. It narrows down the set of documents quickly using some search method, that
might employ and “external” relevance calculation, after which the user can further navigate based
on what in the conceptual structure is relevant to him or her (“internal” relevance). Furthermore,
this approach is very practical for companies because it is an extension to existing search mechanisms
and infrastructure rather than a replacement of them.

Our goals were to make FCA applicable and scalable. Applicability is ensured by performing 1)
query by navigation, which is a clear application with the user in mind, and 2) by not performing
query by navigation on all texts, which would be too laborous for the user. Scalability is better by
only applying FCA when sufficiently zoomed in on a relevant subset of texts. Moreover, Wolters
Kluwer does not deal with streaming data, so pre-computation of formal contexts is possible if the
set of possible queries is known in advance. This should be possible for Wolters Kluwer, because
they maintain a thesaurus with usable search keywords that describe the legal corpus. If new texts
matching a particular keyword are added, only the formal context of documents resulting from a
search on that keyword have to be recomputed. Scalability is now of course co-determined by the
chosen search method. But the approach put forward here is agnostic with respect to the particular
search method used, and it is assumed that in any real scenario where this approach is potentially
applied, the pre-existing search mechanisms are already feasible - otherwise they would not be used.

With these goals in mind, and based on the given justifications, I implemented a data pipeline that
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starts at raw xml files in the database of Wolters Kluwer, and ends in a query by navigation application.
In the following section I explain choices made in the implementation of this pipeline.

4 Data pipeline: Design choices

Within this thesis a data pipeline was designed that starts with raw data and ends with a query by
navigation prototype based on fCA. In the following section I will provide an overview of this pipeline,
with special focus on some design decisions that were made and their justification.

4.1 Overview data pipeline

This thesis implements a pipeline with the following components.

1. Simple search over corpus for documents matching a keywords from the Wolter Kluwers the-
saurus. Can be replaced by any other search method.

2. Extracting relevant text by parsing the remaining xml documents

3. FCA: Creation of concept lattice

(a) keyword extraction with lemmatization and PoS-tagging

(b) attribute determination using stopword removal and relevance calculations over keywords

(c) computing of formal context by checking attribute presence per document

(d) computation of concept lattice with Formal Concept Analysis

4. Query by navigation over concept lattice

Figure 2 shows a graphical overview of the proposed pipeline.

4.2 Design choices

Several components of the general outline above demand an explicit interpretation in order to be
implemented. Such an interpretation is a design choice that needs to be highlighted and justified.
The following interpretative issues need to be answered in practice:

1. How do we define search over the Wolters Kluwer corpus?

2. What do we consider relevant text?

3. What is a keyword exactly?

4. What is an attribute in our formal context?

5. What do we present to the user in order to navigate?

I will discuss relevant design decisions concerning these points in order.
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Figure 2: Proposed pipeline

4.2.1 Search

The work in this thesis is presented as a possible extension to existing search systems, but it never-
theless is agnostic with respect to how this search system is implemented or how advanced it is. For
a proof of concept, the main requirement for a search is that

1. it returns a sufficiently small subset of documents

2. that have a minimal relevance guarantee for the given query

This is guaranteed in the current pipeline. Documents of the Wolters Kluwer database are annotated
by hand by a search term. It is safe to assume that this manual labeling by experts ensures minimal
relevance of documents if their search term matches the user query (requirement 2). The Wolters
Kluwer thesaurus contains many of these search terms that are sufficiently specific to return relatively
small subsets of documents to which FCA can be applied. For example, a search on a quite specific
term such as “beroepsopleiding” (professional education) returns 38 documents, whereas a search on
one of the most general terms possible such as “arbeidsrecht” (labour law), which effectively describes
a whole domain of law, returns 624 documents. (Note that “arbeidsrecht” here is a search term
belonging to the category “Arbeidsrecht / Algemeen” and not an identifier for the whole field of
“arbeidsrecht”).

For the purpose of a proof of concept within the scope of this thesis, a very simple search based on
these search terms of the thesaurus thus suffices. Because of the modular pipeline approach, search
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can be interchanged with another search method without affecting the rest of the pipeline.

4.2.2 Extract Relevant Text

In order to build a formal context for the purpose of information retrieval, we need a set of features
(“attributes” in FCA lingo) that are able to sufficiently represent the content of documents. A first
question is where to look for these attributes. Based on inspection of the xml-markup of documents
in the Wolters Kluwer corpus, I have identified the xml tags in which the “content” of a document is
displayed. The data pipeline inspects the contents of both a search summary and the article title and
body, because these are considered to contain appropriate representations of the document content.
Text that I considered inessential, such as footnotes, which contain technicalities, formalities and
references, and xml-metadata, are discarded.

4.2.3 Keyword extraction

After selecting text that contains a document’s content, we need to represent this content in a manner
that aids the construction of a formal context.

The approach of this thesis is to represent document features as keywords (1-grams, specifically). If
the chosen methods in the prototype pipeline work well, extending this representation to bi-grams
is an obvious candidate for follow-up experiments. However, especially because the complexity of
the techniques explored in this thesis are of critical importance, it makes sense to start with a good
baseline representation that does not impose extra complexity challenges. Furthermore, although the
final keywords are 1-grams, word context is nevertheless taken into account because a preliminary
selection of descriptive keywords is done based on PoS-tagging.

There are two more important choices to be made about what type of keyword we consider to describe
a document feature. Two requirements need to be taken into account:

1. Different inflections of the same word need to mapped onto the same keyword.

2. A pre-selection needs to be made about what type of word is descriptive of a document’s content.

Firstly, different inflections of the same word have a different morphological form but are semantically
intertwined. From a practical perspective, defining each single word as a keyword would lead to an
extremely large set of keywords. Since our document features are supposed to represent the semantical
content of documents, it is therefore desirable to map different inflections onto the same keyword. To
achieve this we could for example reduce words to their stem, or lemmatize them. However, inflections
of different lemmas that really have different meanings could end up with the same stem, which makes
stemming undesirable for our use case. Moreover, because our goal is to define attributes to be used in
FCA and in a user-facing query by navigation application, it is a must that the resulting keywords are
clearly readable and interpretable by the end user. This also justifies a choice for lemmatization, as
this results in proper words that can be found in a dictionary, whereas this does not hold for stems. In
this manner, the user can be prompted with meaningful well-formed words in the query by navigation
prototype.

Secondly, many words, e.g. stop-words, are clearly not descriptive of any content. The approach
chosen for this thesis is to tokenize and PoS-tag words (Part of Speech), and only nominate words
with particular tags that are deemed suitable as a feature description. Much readily available software
supports processing the English language. If there is support for Dutch, the trained models are often
not of production quality. However, there is a software package called Frog that offers high quality
natural language processing for Dutch (Van den Bosch et al., 2007):
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Frog’s current version will tokenize, tag, lemmatize, and morphologically segment word
tokens in Dutch text files, will assign a dependency graph to each sentence, will identify
the base phrase chunks in the sentence, and will attempt to find and label all named
entities. (Van der Sloot et al.)

So we can use Frog to tokenize, PoS-tag and lemmatize Dutch texts, which is all we need based on
the above reasoning. Frog uses the CGN tagset (“Corpus Gesproken Nederlands”) for Dutch PoS-
tagging, which is extensively documented and justified (Eynde, 2004). A Frog client in Python has
been written by Maarten van Gompel, who also maintains the software distribution LaMachine, which
contains Frog and all its dependencies and is available under the GNU General Public License (Van
Gompel).

Part of Speech Tags used by Frog The CGN set of PoS-tags contains a grand total of 320
tags, divided over various categories (Eynde, 2004). Notably, because Frog also recognizes interpuc-
tion (LET()) or special tokens, such as interrupted words (SPEC(afgebr): e.g. “binnen-”), or other
languages (SPEC(vreemd): e.g. ”wishful”, ”ad hoc”), considerably less manual preprocessing was
necessary to get sensible results.

Some categories of tags can be straightforwardly excluded as candidates for keywords, such as “tel-
woorden”(cardinal numbers), “voornaamwoorden” (pronouns), “lidwoorden” (articles), “voorzetsels”
(prepositions), “voegwoorden” (conjunctions), “bijwoorden” (adverbs), “tussenwerpsels” (interjec-
tions), special tokens and interpunction.

A candidate that is left is the category of “adjectieven” (adjectives). Examples from this category
are: “bester kwaliteit”, “het leukste is dat”, “zaliger gedachtenis”, “het is hier stilletjes”, “het langst
slapen”. Another candidate is the category of “werkwoorden” (verbs). Examples are: “zal komen”,
“een getemde feeks”, “het geschrevene”, “liep lachend weg”. The last candidates are nouns. Examples
are: “deze muziek”, “dit stoeltje”, “de Ardennen”, “het Nederlands” “een riool”, “Linux” (Eynde,
2004, 62-74).

What distinguishes noun-tags from adjective- and verb-tags is that nouns indicate some (real-life)
object, whereas adjectives offer further qualifications of these objects, and verbs indicate some relation
of an object. If in a formal context our objects correspond to nouns, then adjectives and verbs could
be meaningful attributes. However, we define a formal context on a higher level of abstraction,
where objects correspond to documents. In that context, attributes can be thought of as what these
documents “are about”, which roughly corresponds to the entities indicated by noun-type phrases.
Because adjectives and nouns are mostly meaningful in relation to those nouns rather that the objects
(i.e. documents) themselves, and because we are trying to define attributes of those documents, it
is justifiable to single out words corresponding to noun-tags as potential attributes for our formal
context. Even though in some special instances words of other tag categories might result in possible
keywords, it is not desirable to seek this level of nuance because the main priority is in fact to reduce the
amount of attributes for our formal context as much as possible, to limit the combinatorial explosion
that comes with FCA of a large formal context.

After producing a list of keywords per document, it needs to be decided which keywords are relevant
for the whole corpus of documents under consideration. In other words, if we use FCA to navigate
over a corpus, which keywords are appropriate attributes for the required formal context?

4.2.4 Formal Context Attributes: Domain feature extraction

After the previous step we have a set of keywords per document. In order to perform FCA on a set of
texts we however need a set of attributes that is able to describe the contents of all documents in a
corpus, i.e. we need domain attributes describing the subset of documents returned by a query. But
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when we simply add up the keywords of individual texts and use those as domain attributes, we end
up with thousands of attributes in our formal context, even after the previous preprocessing steps.
But this again would make the calculation of a concept lattice prohibitive very quickly. We have
limited control over the amount of objects in the formal context because we do not know in advance
how many documents a query will return, but we can choose the amount of attributes we use. If we
however manually limit the amount of domain attributes we choose from all available keywords, we
need to ensure we pick the most relevant ones. This step is non-trivial, and this thesis will compare
three different methods for calculating relevance.

Domain specific keyword removal Before calculating relevance, I found it beneficial to remove a
hand-selected set of keywords specific to the legal domain. Both the previous preprocessing steps and
the following TF*IDF relevance calculation minimize the influence of stop words, but nevertheless I
found that a small set of lemmas were so frequent that they were almost always picked as most relevant,
irregardless of the relevance measure. They are however often not informative, because they pertain to
irrelevant formalities of the legal domain. I selected the following “legal stop words” to removed from
consideration as a formal context attribute: {advocaat, advocatuur, artikel, auteur, appellant, deel,
eis, geval, gerecht, gerechtshof, hof, jaar, jurist, lid, punt, raad, recht, rechter, rechtbank, verweerder,
wet}.

Approach 1: Term frequency (TF) A first straightforward option is to take term frequency as
a indication of relevance. Usually, term frequency is computed within each document, because this
allows the ranking of documents in a query, based on how important a query term is in any given
document. In our case, we can extend this approach to the domain under consideration by calculating
a frequency distribution over all words in the corpus that we apply FCA to, and then taking the top
n most frequent keywords as domain attributes. The rationale is that if a keyword appears in most
documents of a particular corpus, then it must be relevant not only for a single document but for the
corpus as a whole.

An obvious drawback of this approach is that frequent but unimportant words, i.e. stop words such
as “the”, are then unjustly regarded as important. This makes preprocessing steps, such as stop
word removal, absolutely necessary in this approach. Note that the approach with Frog taken at the
previous step, effectively achieves this by only returning words belonging to noun phrases as keyword
candidates.

Approach 2: Term Frequency x Inverse Document Frequency (TF*IDF, with a note on
complexity) The simplicity of using term frequency is both its charm and its downside. Term
frequency is only a reasonable indication of relevance if the frequent term is not a stop word or some
other filler word.

Although stop words in the ordinary sense of the word are filtered out at the lemmatization step, this
issue of the term frequency measure still remains when describing domain attributes. For example,
when we search on the term “beroepsopleiding” the word “advocaat” (lawyer) is very frequent. Ac-
cording to the term frequency measure, this term is then also a highly relevant descriptor of the group
of documents we retrieved by searching on “beroepsopleiding”. But for any other query than “beroep-
sopleiding”, it is very likely that “advocaat” will also occur very frequently. If this is the case, then
this term does not distinguish the results of different queries well, from which we can conclude that it
is not specific enough to a particular domain in order to capture what distinguishes that domain from
others. This issue is especially expected to become prominent if the search returns larger groups of
documents. It is very well possible that then the top n most frequent terms are all platitudes, such as
“lawyer”. As a result, during query by navigation the user will then not be able to narrow the query
down to a small group of documents fast enough, because all attributes appear in many documents.
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A common technique to counter this problem is called TF*IDF (Spark Jones, 1972), which multiplies
the (normalized) term frequency (TF) of some term with the inverse document frequency (IDF). The
rationale behind TF*IDF is that a frequent term of some document that occurs in many documents
is more likely a stop word and less distinguishing than a term that is very frequent in a particular
document but appears in relatively little other documents. In other words, if a term occurs in almost
all documents of a given corpus, its document frequency (DF) is very high, and its inverse document
frequency (IDF) is thus very low, resulting in a low TF*IDF relevancy score, despite perhaps having a
very high term frequency (TF). In this thesis, smoothening is applied to the IDF computation to avoid
divisions by zero. The inverse document frequency with smoothening is computed as such, where DF
is the number of document in which term t appears (Pedregosa et al., 2011):

IDF (d, t) =
log((1 + n)

(1 + DF (d, t))) + 1

This technique is usually used to offer a document ranking for a given query. Given some query,
the TF*IDF scores of terms in that query can be computed per document. Documents with higher
TF*IDF scores are, according to this measure, considered to be more relevant and will rank higher in
the search results. The problem formulated in this thesis is slightly different. Instead of computing the
relevance of documents given a query directly, the goal instead is to extract relevant domain attributes
for use with FCA. If we want to delimit the complexity of FCA through reducing the amount of used
attributes in the formal context, then it is very important to choose the most relevant attributes in
order not to lose too much expressivity. So how can we use the rationale of TF*IDF to get a better
solution to finding domain attributes rather than relevant terms for a single document?

This is the approach taken:

1. Take the list of lemmas extracted from the document subset with duplicates as potential domain
attributes.

2. Compute the normalized term frequency of these lemmas

3. Scale these term frequencies with the IDF scores of these lemmas, computed over the bigger
corpus.

In other words, we act as if the selected lemmas of the documents returned by a search compose one
document. By then calculating the TF*IDF score per lemma to produce a ranking over all lemmas
within one document, rather than over one lemma in different documents. The top n lemmas are
considered the most relevant, and are chosen as attributes for our formal context.

It is of crucial importance that the IDF is computed over a way larger corpus than the set of documents
of which we extracted the lemmas. Imagine we would compute the IDF over the same corpus as we
compute TF over, for example for the query “beroepsopleiding”. It is then rather obvious that the
lemma “beroepsopleiding” would appear almost in every document. In terms of FCA, it would be
meaningful if “beroepsopleiding” would characterize very general concepts, that we can further specify
with query by navigation. However, if we compute the IDF scores over this smaller set of documents,
“beroepsopleiding” will be heavily penalized because it occurs in many documents. As a result, this
potentially relevant lemma that describes this group of documents will be unfairly downvoted in our
relevance ranking.

If instead we use IDF scores computed over the larger corpus for TF*IDF, beroepsopleiding is expected
to still be ranked relatively high, provided that “beroepsopleiding” is a lemma that does not appear
very frequently in all other documents of the larger corpus. Therefore, the inverse document frequency
needs to be based on a sufficiently large corpus so as to not be biased by a particular subset of
documents or domain. Ideally, this means computing the inverse document frequency over the whole
corpus (500.000 documents). The morale of this thesis is that by making more intelligent choices
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in the preprocessing steps for determining attribute candidates, i.e. by lemmatizing and making a
deliberate selection of appropriate lemmas, the complexity of the formal concept analysis is reduced.
To keep all results comparable, the same preprocessing steps to select attributes must be performed
as preparation for computing TF and IDF scores. This use of lemmatization does, of course, increase
the computational load of the preprocessing steps, which makes computing the inverse document
frequency over the whole corpus time intensive. More importantly, for fault tolerance the resulting
lemma’s have to be written to disk, to avoid possible recomputation on failure. Even though Frog’s
lemmatization is itself fast with a rate of 900 words per second according to Van der Sloot et al. ,
writing to disk is notoriously slow. On the machine used for this thesis (which is shared with others),
a worst case time for lemmatizing a long text and writing it to disk was close to 2 seconds. If we
assume this worst case scenario in which every document is very long, then for 600.000 documents
this computation would take ≈ 14 days. After that, the IDF scores over all terms still need to be
computed.

In production settings, with a professional hardware setup, doing those computations is not an issue
though and moreover, recomputation of the IDF would be very infrequent given that IDF values are
stable when computed over a large corpus. For this thesis, the IDF scores were computed over 143.275
documents, which is sufficiently large for the IDF scores to not be biased, considering that the size
we amount of documents we compute term frequencies over is more in the range of 0-500 documents.
This computation took little over two days. An interesting observation here is that, in a meeting
with an ICT officer of Wolters Kluwer, they stated that they once tried to compute TF*IDF scores
over the whole dataset, but that this attempt failed due to a too high computational load. In the
approach taken in this thesis, however, computing the IDF scores over the whole corpus is feasible
with more computing power, because even though IDF scores are then computed over all documents,
they are not computed over all terms, but over selected lemmas. There are less lemmas due to the fact
that similar terms are mapped on the same lemma, and also because of further informed selection of
lemmas. In the proposed pipeline we can make such informed decisions because we have a particular
application, FCA, in mind for which this choice is appropriate. A similar choice might however not
be the most appropriate for different applications.

Approach 3: IDF It might however also be interesting to disregard term frequency altogether,
and look only at the IDF values of terms. This could potentially have benefits. Whereas using term
frequency, even scaled as TF*IDF, primarly defines the attributes of a set of documents as what they
have in common, using only IDF would instead represents the attributes of this set of documents as
what is most unique and distinguishing compared to other documents. This would lead to attributes
that are extremely specific to this set of documents, which could be appropriate because we are after
formulating domain attributes after all. Although TF*IDF is the most common approach, using only
IDF could be an interesting option for the aims of this thesis for three reasons.

First of all, if we put a hard limit on the amount of attributes we will use in a formal context for
the purpose of reducing the complexity of the analysis, then we might want to prioritize the most
distinguishing attributes. A risk of using term frequency in any way is that the top n terms will be
platitudes such as “lawyer”. This might be appropriate for a conceptual representation of what these
texts are about, but less for information retrieval.

Secondly, because we know we are working with specialized texts from the legal domain, it may be
more interesting to select a relevance method that is sensitive to the very specific and specialized
terms of legal jargon.

Thirdly, if the resulting attributes are indeed more distinguishing between documents, the formal
context will be very sparse. As a result, the resulting concept lattice is expected to be much smaller
and shallow. This would greatly lower the computational load of doing Formal Concept Analysis, but
for our purpose would have the added benefit of allowing faster query by navigation. This is because
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in this scenario a single decision for query expansion will single out more of the other documents
on account of being very specific, thus taking less steps to reach the bottom of the concept lattice
through navigation. Consequently, it is expected to take less steps to single out a very select subset
of documents, or to say it simply: a lawyer can potentially zoom in on his particular interest faster.

There might be an interesing tradeoff between the potential benefits of a sparse formal context with
very distinguishing attributes, and whether these attributes are still sufficiently meaningful to users
or too detailistic.

4.2.5 Query by Navigation

Query by navigation is implemented on top of a concept lattice. Navigation is thus not just simply
navigating a hierarchical tree structure, but is conceptual navigation and says something about what
a group of documents means. Both the intent and extent of concepts grow big in information retrieval
tasks, and even though conceptual relations indicate semantic differences between texts, they are not
always necessarily easy to interpret for humans. When implementing query by conceptual navigation
we thus need to think about how to provide information to the user about which concepts can be
explored in the concept lattice, depending on the current concept in the navigation process. It should
be easy for the user to understand the meaning of the possible choices. This is achieved in two ways.

1. The objects of the formal context are document IDs, which are not meaningful in themselves
for users, even though it is perfectly possible to navigate based on increasing or narrowing the
extent. The attributes of the formal context are however understandable in natural language
for the user. Therefore, navigation will be performed by presenting choices for widening or
narrowing the intent.

2. It is not user-friendly to display the whole intent of concepts that can be visited. Instead, the
user is presented with the set difference between the intent of the current concept and of each
concept that can be visited. Often that means that the user is presented with a single attribute
in natural language, which is easy to understand, but if the set difference is several attributes,
all of these will be displayed together. The intent of the current concept is always visible in full
to the user, so the user can at all times access all information about the intent of each candidate
concept by taking that extent and adding the displayed set difference.

Further remarks:

• Because navigation is achieved by increasing the intent of concepts, the concept lattice is navi-
gated from top to bottom, where the “highest” concept (the lattice supremum) has all documents
as extent, and an empty set as intent. By specifying more attributes, the extent diminishes until
we ultimately reach the “lowest” concept (the lattice infemum) that has an empty set as extent
and an intent with all attributes.

• Choosing an initial concept as a starting point of the navigation process can be done both by
querying on one or more document IDs, or based on one or more attributes. If an exact match
is not found, the closest matching extent or intent (depending on what you provided) is taken
as the initial starting point. If no arguments are provided for the query, the query starts with
the lattice’s supremum.

• Because of the top-down approach there is currently not a function to directly move back up the
lattice in a way that retraces the path taken. Instead, this functionality is effectively achieved
by querying on the concept you want to backtrack to.

• The user is thus not displayed with a static list of attributes, but with a dynamic list of attributes
that depends on the lower neighbouring concepts in the concept lattice.
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• At any time the extent can be shown, and there is a command available to the user to inspect
any document in the extent of the current concept.

5 Results

In this section I provide results for a number of example search queries. I will report on

1. Statistics of set of documents returned by the search

2. Attributes of the formal context and their properties

3. Properties of the resulting concept lattices

Evaluation of concept taxonomies, whether it is done manually or automatically, is in the scientific lit-
erature achieved by comparison with so-called golden-standard ontologies. However, such an ontology
is not available for the Wolters Kluwer database. Neither does it make sense to evaluate performance
in terms of accuracy or recall, because in the current pipeline those are the same as the search method
used in the chosen hybrid approach. In the following I will instead provide an in-depth manual review
of five examplary results produced by the implemented pipeline.

5.1 Query results

Example queries are taken from different main topics from the Wolters Kluwer thesaurus. They are
sorted in increasing order on the amount of documents that they return.

Table 1: Seksuele geaardheid

Rubric Burgerlijk recht
Main topic Arbeidsrecht
Subtopic Arbeidsrecht / Algemeen
Keyword Seksuele geaardheid
Number of documents 25
Number of attributes 1145
Keyword lexical diversity 0.08
Attributes / Document 45.80

Table 2: Beroepsopleiding

Rubric Recht algemeen
Main topic Juridische beroepen
Subtopic Juridische beroepen / Notaris
Keyword Beroepsopleiding
Number of documents 38
Number of attributes 1035
Keyword lexical diversity 0.32
Attributes / Document 27.24
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Table 3: Automatisering

Rubric Ondernemingsrecht
Main topic Informatierecht
Subtopic Informatierecht / ICT
Keyword Automatisering
Number of documents 130
Number of attributes 4084
Keyword lexical diversity 0.20
Attributes / Document 31.41

Table 4: Terrorisme

Rubric Openbaar bestuur
Main topic Openbare orde en veiligheid
Subtopic Openbare orde en veiligheid / Terrorismebestrijding
Keyword Terrorisme
Number of documents 247
Number of attributes 4965
Keyword lexical diversity 0.10
Attributes / Document 20.10

Table 5: Arbeidsrecht

Rubric Burderlijk recht
Main topic Openbare orde en veiligheid
Subtopic Arbeidsrecht / Algemeen

International privaatrecht / Internationaal bevoegdheidsrecht
Keyword Terrorisme
Number of documents 624
Number of attributes 9548
Keyword lexical diversity 0.07
Attributes / Document 15.30
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5.2 Formal context attributes for different relevancy measures

5.2.1 Seksuele geaardheid (n=25)
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The difference between TF-attributes and TF*IDF-attributes is only six attributes and thereby rel-
atively small. The TF-attributes { grond, omstandigheid, regeling, toepassing } are all very gen-
eral and not particularly informative. They are replaced through TF*IDF by {considerans, lev-
enspartner, school, verzoeker}. “Levenspartner” and ”School” have a clear relevance for the query.
“Considerans” and ”Verzoeker” indicate an aspect and a role in a legal process, and are not much
more informative than the replaced TF-attributes. Two other TF-attributes, {pensioenontvanger,
werknemer} are replaced by very similar terms that are apparently more rare in the overall corpus,
{pensioengerechtigden, werkingssfeer}.

The small difference between TF- and TF*IDF attributes is to be expected because this query returned
a small amount of documents. In general the selected attributes seem relevant for the query term.
The attributes {behandeling, discriminatie, geaardheid, geslacht, huwelijk, levenspartner, onderscheid,
ouderdomspensioen, partnerschap, pensioen, pensioengerechtigden, werkingssfeer} all have a relevance
that is quite easily understood. Some attributes refer more to formal aspects of the legal documents,
such as {arrest, beginsel, bepaling, considerans, hoofdgeding, richtlijn, verzoeker}. This does not
necessarily make them irrelevant though, because for lawyers these terms are meaningful. An “arrest”
is for example stated in higher court, and says something about the type of legal document that can
be retrieved.

Some very general and seemingly useless terms that remain both in TF and TF*IDF are {persoon,
situatie, vraag}.

An interesting outlier is the term “X”. If we query on X using query by navigation and inspect the
document in which it occurs, we see that “X” is a placeholder for persons, that due to the sensitive
nature of the subject of sexual orientation do not appear in the document by name.

In the IDF-attributes we see a few attributes that fit the query term very well, such as {lhbti-zaak,
zelfacceptatieprocess, anti-vrouwendiscriminatiewet, lhbti-asielzoeker, anti-seksediscriminatiewet}. “lhbti”
stands for ”lesbische vrouwen, homoseksuele mannen, biseksuelen, transgender- en intersekse perso-
nen.” We can also see that “njcm” is an interesting term here, because that stands for ”Nederlands
Juristen Comité voor de Mensenrechten”, and thus concerns human rights. Many of the other at-
tributes are very specific jargon. Most terms are not very relevant, and from the counts in the IDF
graph you can see they are so specific that they only occur in one or two documents.
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5.2.2 Beroepsopleiding (n=38)
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A look at the attributes in all graphs shows that almost all attributes fit the query “beroepsopleid-
ing” very well. It is good to realize that this set of documents is focused on the education of legal
professionals in specific. The difference between the TF- and the TF*IDF-attributes are that the
TF-attributes {aandacht, data, onderzoek, ontwikkeling, praktijk, rol, studie, vraag, werking, wijze}
are replaced in TF*IDF with {bestuursvoorzitter, master, parket, patroon, po-punt, profiel, stagiair,
stagiaire-ondernemer, togajurist, vak}.

Some of the TF-attributes that are replaced are clearly relevant, such as “onderzoek”, “ontwikkeling”
and “studie”, but they indeed seem quite general and it is thus no shock that their IDF scores are
low. An interesting frequent attribute is “data”. Query by navigation shows that this term comes
from “Data Juridica”, which is the name of a Wolters Kluwer database. Since this name then appears
in many other documents, either part of or referring to this database, it is to be expected that it loses
relevance according to the TF*IDF calculation. From the TF*IDF attributes, only the relevance of
“bestuursvoorzitter” is not immediate, but other than that the selected attribute are of high quality.
The meaning of two attributes were not immediately clear to me. “Effect” comes from ”civiel effect”,
which is legal jargon for the prerequisites required to get access to further education to become for
example a lawyer or judge. The other attribute is “po-punt”, which refers to “opleidingspunten”, i.e.
educational points that each laywer has to earn to show his or her knowledge is up to date.

Interestingly enough, whereas the IDF-attributes of the previous query were of poor quality, there is
now a selection of many relevant and interesting IDF attributes. Practically all attributes are directly
connected with eduction. It is not clear why “deficiëntie” and “autopsie” show up, but apparently
there are documents about a doctor’s education as well (cf. the attribute “artsdiploma”). We see
that using IDF can in some circumstances provide interesting attributes, but of course some terms
have a high IDF not because they are interesting but because they contain a spelling mistake or have
an unconventional spelling or abbreviation. “ongepubl”, is an example, being an abbreviation for
“ungepubliceerd”.
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5.2.3 Automatisering (n=130)
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The TF-attributes contain several relevant keywords for the given query “automatisering”, such as
{data, digitalisering, automatisering, burger, computer, privacy, informatie, algorithme, bescherming
}. There are also again a few formal terms that refer to legal practice itself, such as {vraag, zaak,
preadvies, uitspraak, besluit}. Other terms are too general to be informative, such as {rechtspraak,
zaak, belang, mens, mogelijkheid, rol, aantal, voorbeeld}.

The TF-attributes {aantal, besluit, data, mogelijkheid, rol, uitspraak, voorbeeld} are replaced by the
TF*IDF attributes {data-analyse, digitalis, homo, intelligentie, preadviseur, robot, technologie}. In
general these substitutions make sense. For example, it is to be expected that a term such as “data”
occurs often in texts about a “digital” topic. It is however not really descriptive and its disappearance
when using TF*IDF is desirable. But regarding the substitutions, in particular the term “homo”
is a surprising result, but a closer look shows that this comes from “homo digitalis”. “Homo” thus
does not refer to “homosexuality”, which would be off-topic, but to the “digital human”. “Digitalis”
appears separately as an attribute as well, but since these terms clearly belong together this can be
considerd a downside of not using longer n-grams. Another interesting term is “intelligentie”. Texts
matching this query concern the legal aspects of automatic decision making and concern the impact
of artificial intelligence.

When we look at the IDF-attributes we see a few terms that are very interesting, such as {privacyorganisatie,
opsporingstechnologie, computerveiligheid, uitlegbaarheid}. The relevance of the first three terms is
immediately clear as they relate to digital security and privacy. The relevance of the term “uitleg-
baarheid” (explainability) is less immediate, but nevertheless clear when we remember that the
TF*IDF attributes learn us that many texts are about the impact of artificial intelligence. The
term “explainability” is important for the legal aspects of artificial intelligence, because it relates to
how decisions of intelligent digital systems can be explained and justified when they act as “black
boxes”. However, as for the previous queries, these few interesting terms each only occur in a single
document, and the other attributes are too specific and quite off-topic.
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5.2.4 Terrorisme (n=247)
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Looking at the TF-attributes, we see a few relevant terms, such as {terrorisme, lijst, organisatie,
groep}. “Organisatie” (organisation) and ”groep” (group) both zoom in on terroristic groups rather
than individuals. “Lijst” (list) is interesting because various lists of known and wanted terrorists are
maintained. Even though some “meta-attributes” pertaining to legal practice itself could be beneficial
for navigating through different types of legal documents, in this case they completely dominate the
top-n TF-attributes. Consider the terms {arrest, verorderning, maatregel, handeling, beroep, feit,
zaak, entiteit, verdrag, vraag, commissie, strafrecht, nietigverklaring, besluit, onderzoek, beslissing,
rekwirante}. Apart from those, a few very general terms are left over: {middel, misdrijf, data, naam,
oogmerk}.

A careful reader will notice that there is one very strange attribute present, namely “been”. When
we use query by navigation to inspect documents containing “been”, we see that this attribute is an
artefact of the preprocessing, that is however not trivially avoidable. The “terrorisme” query returns
four documents that contain very long citations of English legal texts concerning terrorism, which in
itself is understandable as terrorism is an international issue. However, in many sentences the phrase
“has been” occurs, which is an inflection from the ubiquitous “to be”. The preprocessing pipeline can
deal with languages other than Dutch, but coincidence has it that “been” means ”leg” in Dutch, and
that moreover this is a noun that is thus selected as a candidate lemma. On top of this coincidence, it
is also another coincidence that this confusion arises for a word that is extremely frequent in English
but infrequent in the Dutch corpus that the IDF scores where computed over. Therefore we see that
“been” does not only occur in the TF-attributes, but also in the TF*IDF-attributes.

The TF-attributes {beslissing, besluit, data, onderzoek, rekwirante, strafrecht, vraag} are replaced by
the TF*IDF-attributes {as, conflict, hofstadgroep, medeverdachte, rekwirant, sanctieregeling, tegoed}.
These replacements are not a huge improvement, as most are still either general or formal, with the
clear exception of “hofstadgroep”. The “Hofstad group” was an infamous Dutch terrorist network, so
it makes sense that someone could navigate to a specific subset of documents concerning that topic.
Unfortunately, the TF*IDF-attributes are still dominated by what I called “meta-attributes” that
concern legal practice itself.

Another interesting observation is that in the TF*IDF-attributes we see the strange term “as” appear,
which was absent in the TF-attributes. The underlying issue is the same as for the term “been”,
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because “as” means “ash” in Dutch. The difference with the term “been” is that “as” is not as
frequent in English as the word “been”, which is why it did not show up as an TF-attribute. However,
it is not surprising that “ash” practically never occurs in the larger corpus of legal documents and
thus has a high IDF score to boost it into the top-n TF*IDF-attributes.

When we look at the IDF-attributes, we see a similar pattern as with the previous queries. There
are several quite interesting terms, such as {radicaliteit, gezagslacunes, antiterrorismebevoegdheid, cy-
bermisdaad, duimschroef, anti-terreurmaatregel, antiterreurmaatregel, non-interventie-beginsel, meer-
sporenstrategie}. You clearly see that IDF scores are very sensitive to alternative spellings (“anti-
terreurmaatregel” vs “antiterreurmaatregel”). If a given word is spelled in an unconventional way or
simply mispelled, its IDF value will be high. The same holds for English words that make it through
the preprocessing pipeline, such as {fourteen, spite, fighter, findings, affording}. All attributes are
very infrequent.

5.2.5 Arbeidsrecht (n=624)
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A look at the TF-attributes shows that many attributes are quite general, even when they are relevant
for the query “arbeidsrecht”. Independent of the chosen relevance measure, this is not too surprising
as “arbeidsrecht” is the least specific query of the examples discussed here, and returns way more
documents than the other queries as a result. Relevant yet still quite general terms are {werknemer,
werkgever, arbeidsovereenkomst, onderneming, beroep, zaak, overgang, ontslag, arbeid, regeling}.
Again, there are quite many formal terms, namely {partij, kantonrechter, vraag, arrest, omstandigheid,
richtlijn, overeenkomst, sprake, belang, vordering, lidstaat, oordeel, eiser, bepaling, feit, arbeidsrecht}.
Other terms whose relevance is less clear, are {informatie, tijd, onderdeel, wijziging}.

The TF- and TF*IDF-attributes are quite similar. The formal and general TF-attributes {bepaling,
feit, onderdeel, regeling, tijd, wijziging} are replaced by the TF*IDF-attributes {brief, grief, per-
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soneelszaak, rov, tuincentrum, werkneemster}, which I would consider a slight improvement. The
term “rov” is a juridical abbreviation for “rechtsoverweging”, which refers together with a paragraph
number to a legal consideration somewhere else in a relevant work. The appearance of the term
“tuincentrum” (gardening center) is surprising. Query by navigation shows that there are two large
articles describing cases about a gardening center going bankrupt, in which the term “tuincentrum”
is very frequent. Being an uncommon word, a high IDF value combined with a surprisingly high
frequency resulted in this word being marked as relevant for a set of 624 documents, even though it
is only present in two very specific documents.

Some IDF-attributes are relevant and interesting, such as {ploegendienst, minimumbeschermingsniveau,
reorganisatie-ontslag, exportuitkering, beloningsstelsel, ziektegeld, (door)betaling, veiligheidsnet, goed-
werkgeverschap, werkloosheidsdagen, oproepwerken}. Again, we also see words from a different lan-
guage (the German “arbeitsgericht”) and typo’s appear in this list (e.g. “uiktkering”). Some of the
IDF-attributes occur in multiple documents, but most terms still only occur only once despite the set
of documents being significantly larger.

5.2.6 Summary

In general TF*IDF clearly replaces some general TF-attributes with more specific and relevant at-
tributes. In some queries relatively many attributes are formal juridical terms. In some cases this
might be useful for lawyers, but ideally there is a balance between juridical terms and terms that are
more descriptive of the content (rather than the type) of the documents. We see that some of these
formal terms are filtered out when using TF*IDF, but not all of them. If this is not desired one could
extend the list of domain-specific juridical stopping words. I would nominate a term such as “rov”
as a domain specific stopword. But deciding which term counts as a stopword and which term could
help make meaningful distinctions should be done in cooperation with legal experts and is a matter
of fine-tuning.

5.3 Lattice properties

The purpose of selecting a limited amount of relevant attributes is done to ensure that conceptual
navigation is meaningful and feasible. For conceptual navigation it is important that there are not
so many concepts that it takes very long for users to specify a sufficiently narrowed down set of
documents. By limiting the amount of formal context attributes, we restrict the total amount of
concepts in the resulting concept lattice, but there is still variation in the amount of objects (i.e.
documents) of a formal context. To estimate the feasibility of concept navigation we therefore need to
get an insight about how the amount of concepts in a concept lattice grows with increasing document
numbers, and how our attribute choice affects this increase rate. Ideally, if we have attributes that are
a relevant representation of a particular domain, the amount of concepts hopefully grows somewhat
proportional to the increase in documents.

There is expected to be a trade-off between how general or specific attributes should be. If all
attributes are too general and apply to almost all texts, we can expect a combinatorial explosion
of concepts when many of the 2n − 1 subsets apply to many documents. Having so many concepts
and small variations between concepts makes conceptual navigation tedious. On the other hand, if
our attributes are too specific, the concept lattice might not capture meaningful relations between
documents, which could impact the quality and potential benefits of conceptual navigation.

Again, the quality of a concept lattice and by extension of the navigation over that lattice would ideally
be tested with a large enough testing groups of legal professionals. This is not feasible within this
thesis, so therefore I instead propose a crude quantitative measure to try to capture the aforementioned
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expected trade-off. We have five example queries that return different amounts of documents. To get
an insight into how the structure of the concept lattice changes for increasing document numbers, we
can record the number of concepts per document. Intuitively, if for a given amount of documents there
are more concepts, it will take longer to use these concepts to navigate to a small enough subset of
documents. In other words, the average amount of concepts per document is inversely related to the
concept navigation speed, which we can thus express as the average amount of documents we browse
per concept (document/concept). We can record this measure for all three strategies for selecting
relevant attributes.

Note that this attempt does not take into account that some domains might be more complex than
others, independent of the size of documents.

Table 6: Seksuele geaardheid

“Seksuele geaardheid” (n=25) Concepts Concepts/doc. Speed (docs/concept)
TF 119 4.76 0.21

TF*IDF 85 3.40 0.29
IDF 21 0.84 1.19

Table 7: Beroepsopleiding

“Beroepsopleiding” (n=38) Concepts Concepts/document Speed (docs/concept)
TF 185 4.87 0.21

TF*IDF 64 1.68 0.59
IDF 21 0.55 1.81

Table 8: Automatisering

“Automatisering” (n=130) Concepts Concepts/document Speed (docs/concept)
TF 3555 27.35 0.04

TF*IDF 1424 10.95 0.09
IDF 21 0.16 6.19

Table 9: Terrorisme

“Terrorisme” (n=247) Concepts Concepts/document Speed (docs/concept)
TF 1481 6.00 0.17

TF*IDF 591 2.39 0.42
IDF 23 0.09 10.74
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Table 10: Arbeidsrecht

“Arbeidsrecht” (n=624) Concepts Concepts/document Speed (docs/concept)
TF 143906 230,62 0.0043

TF*IDF 64995 104 0.0096
IDF 30 0.05 21

5.3.1 Summary
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Note that all these plots use a logarithmic scale on the y-axis and a linear scale on the x-axis. The
logarithmic scale is used due to large differences in values.

We see that the absolute number of concepts grows exponentially with the number of documents, both
for TF and TF*IDF, but that the amount of concepts grows faster for the TF-attributes. The amount
of concepts for IDF attributes are however near constant, increasing from 21 concepts at 25 documents
to 30 concepts for 624 documents. We see that for the query “terrorisme” there are actually way less
concepts than for the “automatisering” query, despite having almost the double amount of documents.
This shows us that the size of the concept lattice cannot be straightforwardly predicted based on the
amount of documents. When interpreting results like these, we should also take into account how
attribute counts are distributed over documents. For example, a term occurring twenty times in a set
of documents could occur once in twenty documents, but could also occur twenty times in the same
document. The former case will result in more concepts in the lattice than for the latter case. In the
latter case that term, even though it might have a very high TF*IDF score, will only appear in one
concept (excluding the infimum). The concept lattice of “terrorisme” is thus likely smaller because
attributes on average occur in less documents, but then quite frequent in those documents. This could
in turn be correlated with articles about specific topics being very lengthy.

When we look at the curve expressing the amount of concepts per document we see the same trends as
in the previous plot, but this plot expresses a bit nicer how the amount of concepts for IDF-attributes
decreases when compared to the increase in document size. That is, the amount of concepts for IDF-
attributes is barely affected by an increase in documents and the complexity of the concept lattice is
thus near constant. Notice that the values for IDF-attributes are all lower than 1. This means that
in the average case a document does not occur at all in a meaningful concept in the concept lattice
(i.e. outside of the supremum). The IDF-attributes are so specific that they only occurr in one to
eight documents irregardless of how many documents we are considering. This makes IDF-attributes
useless for concept navigation: each chosen concept will almost always immediately be the upper
neighbour of the infimum, so the user can on average only make a single navigational choice before
the navigation process terminates.

This is also represented in the (inverse) “navigational speed” values. A speed higher than 1 is too
fast, because you exclude almost the whole set of documents with a single navigational choice. Lower
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speed values mean that on average a concept choice rules out less documents. This is a very crude
measure though that does not take into account the actual structure of the concept lattice.

5.4 Query by navigation

We have discussed the influence of relevancy measures and the number of documents on the size
of concept lattices. We have also tried to interpret what the consequences on the structure of the
concept lattice are likely to be. In this section we look at how the user sees these concept lattices in
the “query by navigation” application written for this thesis. We try to interpret this against the idea
of “navigational speed” from the previous section, but now taking into account considerations about
the structure of the concept lattice.

In the previous section we considered that, against the general trend, the navigational speed of the
“terrorisme”-lattice was higher than that of the “automatisering”-lattice, even though the former has
almost double the number of documents. We hypothesized that this is because attribute occurrences
for the “terrorisme”-lattice are divided over less documents than for the “automatisering”-lattice.
Let’s look at the most general concepts (so the lower neighbours of the supremum concept), and how
many documents they describe.

(a) Top level concepts for “automatisering”
(TF*IDF attributes)

(b) Top level concepts for “terrorisme”
(TF*IDF attributes)

The “automatisering” query returned 130 documents. Interestingly enough, if we look at the concept
with the intent “automatisering” we see that only 52/130 documents contain the lemma “automatis-
ering” itself. If we choose option 0 (“automatisering”) in the navigation interface, we get a new set
of conceptual choices. The concepts returning the most documents are “computer”, which returns 13
documents of a total of 26 matching that term (see the top concepts in 3a), and “rechtspraak” (9/19)
and “bescherming” (9/12). Interestingly, if we instead initially choose option 1 (“ontwikkeling”), the
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follow-up concepts correspond to the lemmas “vraag” (22/42), “belang” (22/36) and “digitalisering”
(21/34). The important insight here is that these two initial choices that encompass the most docu-
ments give entirely different follow-up concepts, meaning that they immediately diverge and branch
out.

This is not the case for the “terrorisme” query. The option returning the most documents is “ter-
rorisme” (193/247). If we choose the option “terrorisme”, the top three follow-ups in document size
are “maatregel”(47/60), “organisatie” (40/53) and “zaak” (38/50). Because the documents counts
are still close to the total document matches of those terms in isolation (c.f. 3b), we can already infer
that “terrorisme”, “maatregel”, “organisatie” and “zaak” occur together very often. Moreover, they
are all part of the top four attributes ranked on the amount of documents they match, specifying the
bulk of all results. In only two steps the amount of documents can be reduced from 247 to 38-47
documents, and without the need to “merge in” larger side branches later.

In other words, it seems that the “terrorisme”-concept lattice has less concepts per document because
it has a more desirable structure, with a main strong branch that describes and distinguishes the bulk
of documents quickly, whereas the “automatisering”-lattice starts with multiple equally large branches
that all interact and need to “merge” into each other lower in the concept hierarchy. This finding is
consistent with the hypothesis that the “terrorism”-lattice has a relatively higher “navigation speed”
because terms co-occur together more often rather than being more or less uniformly spread out over
the set of documents.

(a) Top level concepts for “beroepsopleid-
ing” (TF*IDF attributes)

(b) Top level concepts for “beroepsopleid-
ing” (IDF attributes), c.f. figure 5

It is also interesting to regard the difference in conceptual structure when using TF*IDF-attributes (a
sane default choice) and IDF-attributes. We have seen that attributes co-occurring together relatively
often tend to give a nicer concept structure that moves from general concepts to specific concepts
without branching out too much, i.e. without becoming very wide. Indeed, for the TF*IDF variant,
the user is presented with a nicely limited set of initial navigation choices (6 top level concepts of
a potential 30 initial concept choices). What is also nice is that the user can either choose to enter
a main path (option 0 and 1), or directly jump to a narrow set of documents (e.g. by choosing
“rechtsgebied” or “po-punt”).

What we instead see for the navigation options when using IDF-attributes is that the concept lattice
has an extremely wide and flat structure. It is wide because documents almost never share the
IDF-attributes. It is extremely shallow because the attributes are so specific that they most of the
time only occur in a single document. Using IDF-attributes there is thus not much to navigate,
really. Option 1 is interesting because it displays the desirable property of the navigation process that
multiple attributes are chosen at once when they all only occur in one particular set of documents (2
documents in this case), i.e. they always occur together.

Because the concept lattice is so small when using IDF-attributes, it is possible to draw a graphical
visualization of this concept lattice, which nicely shows this extremely flat lattice structure.
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Figure 5: Visualized concept lattice of “beroepsopleiding” with IDF-attributes. Cf. 4b

6 Discussion

A main strategy for reducing concept lattice complexity of the proposed pipeline was to limit the
amount of formal context attributes, but as a consequence the attention of this research shifted
towards finding the most relevant attributes. If we want to capture meaningful structure in our
concept lattices, we need to make sure the top-n selected attributes are not flooded by too common
terms and stopwords. We have seen that compared to using TF, TF*IDF does a better job reducing
the amount of common uninteresting attributes, and as a result TF*IDF scales slightly better with
increasing document numbers. The occurence of general terms as such is not undesirable, because the
beauty of query by navigation is that the user can start navigation using general and common terms,
but then narrow down the query using more specific attributes. This works well as long as not all
attributes are very general.

However, we have also seen that when queries return > 200 documents, the top-n attributes are
nevertheless increasingly dominated by general terms and formal terms pertaining to legal practice
itself in particular. A solution for the latter problem is to extend the list of domain specific stopwords
in cooperation with legal professionals. But one might also wonder if there really is a problem with
the current pipeline if this issue only becomes poignant when FCA is done on > 200 documents. Since
the purpose of query by navigation is to support finding information in search results, we could simply
make the assumption that this process is not started on more than 200 search results. Which user
really cares about search result 201? Of course, if the list of search results is truncated, quantitative
measures such as accuracy and recall do become very relevant as information is lost.

The alternative solution is to increase the amount of formal context attributes until the attributes
that make it into the top-n attributes are specific enough. However, there are two reasons why this
option was avoided in this thesis.

• Choosing n attributes puts a clear restriction on FCA complexity. Especially because the size
of objects is variable by definition, it is beneficial to keep the number of attributes bounded.

• In the query by navigation application we present the user with an amount of choices whose
upper bound is the amount of formal context attributes. If we for example increase the amount of
attributes from 30 to 60, the user is potentially presented with 60 initial choices, which I would
consider an information overload and as being detrimental to the usability of the navigation
process.
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Of course, when FCA is applied with other applications in mind, it might very well be appropriate to
increase the number of attributes.

In the following section I discuss limitations of this research and suggestions for further research.

6.1 Limitations and suggestions for further research

N-grams A clear limitation of the current pipeline is that attributes are defined as keywords (1-
grams). By limiting ourselves to keywords, we have effectively set up a baseline with regards to the
quality of the concept lattice and the complexity of the overall pipeline. This baseline can serve as
a point of comparison for further experimentation, for example with n-grams. My hypothesis is that
using n-grams would be appropriate for the investigated legal texts, because some legal terms are
meaningful only in their direct context. For example, a relevant attribute for the “beroepsopleiding”
was “effect”. By itself it is not immediately clear how the term “effect” is a relevant attribute for all
documents returned by the “beroepsopleiding” query, but if we apply query by navigation to find the
documents containing the effect-attribute, then we see this term comes from the phrase “civiel effect”.
This phrase is legal jargon for the prerequisites any education to become a legal professional (lawyer,
judge etc.) must have. Suddenly, the connection to the search query “beroepsopleiding” (professional
education) is completely obvious. Another example was for the query “automatisering”, where in the
TF*IDF attributes “homo” appeared. On further inspection, it turned out this keyword was part of
“homo digitalis”, which also explained the appearance of the attribute “digitalis”, which by itself also
does not make much sense.

However, I think there is also an argument for not considering too long n-grams. Imagine a search
that returns a group of texts about digital privacy, including specific privacy issues about the online
identities of homosexual people. It is not unlikely that “homo” would then be selected as an attribute
in our formal context. But for the topic of the documents under consideration, it could very well
be the case that in one half of the texts the term “homo” is used in the sense of “homo digitalis”,
and in another part of the texts in terms of homosexuality. The power of query by navigation would
however be that you could disambiguate this query simply by choosing a follow up attribute. A user
could choose “digitalis” to select texts about the “digital human” (as we’ve seen that it appears as an
attribute as well), and a choice for another attribute could return documents specifically about the
digital life of homosexual people. In this sense it is not a fundamental problem that “homo” appears
alone, because FCA nicely treats this as part of a superconcept of the subconcepts containing different
disambiguated meanings of the word “homo”.

Experimenting with IDF Even though the IDF relevancy measure completely failed to capture
common attributes in groups of documents, it nevertheless showed very interesting features that were
often highly tailored to the search query. In other words, using IDF only does not return attributes
that are relevant to a subdomain but instead features that are interesting in some individual document.
Because of this extreme specificity, using only IDF results in extremely shallow concept lattices that
do not allow for any sensible navigation. However, what could be interesting is experimenting with
schemes where IDF scores have a larger influence in the TF*IDF calculation, where the goal is to
find a balance between relevancy for the domain and uniqueness that results in interesting domain
attributes. This could be appropriate for the legal domain this thesis worked on, because this might
pick up jargon that is interesting from a legal perspective.

Using fuzzy approaches to deal with large formal contexts This thesis limited the amount
of documents by only performing FCA after a search operation. The advantage of this approach is
that all desirable properties of FCA are maintained, without the required computations becoming
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completely unfeasible. If however in a follow-up application formal contexts nevertheless become too
big, more fuzzy approaches that simplify the formal context can be explored. A good option are
clustering techniques, which “can be applied to sets of objects, attributes or formal concepts” (Dias
and Vieira, 2015, 7088). Cheung and Vogel for example apply Singular Value Decomposition (SVD)
to term-document matrices in order to cluster together documents based on cosine similarity, thereby
reducing the amount of objects for a formal context (Cheung and Vogel, 2005). Another option which
is current state of the art in FCA research is to apply interestingness measures to formal concepts in
order to select only the most interesting concepts. An overview of various interestingness measures
specifically tailored to formal concepts can be found in Kuznetsov and Makhalova (2018).

It would also be interesting to compare FCA with another common unsupervised technique for extract-
ing concept taxonomies, such as the quite similar technique of hierarchical clustering (e.g. de Knijff
et al., 2013; Martino and Cantiello, 2009). Although there is plenty of literature on both FCA and
hierarchical clustering separately, “there is actually a lack of comparative work concerning the task of
automatically learning concept hierarchies with clustering techniques” (Cimiano et al., 2005, p.306).
Such a comparison however would be fruitful for investigating what approach is more suitable for
particular knowledge domains, such as law (also see Drymonas et al., 2010). A benefit of clustering
techniques is that they abstract away from details and noise, but at the cost of losing the well-defined
properties of formal concepts. Further research would have to point out how bad that is for information
retrieval purposes.

Varying the amount of attributes Further experimentation can be done in varying the amount of
formal context attributes used. Especially if a relevance measure is chosen that returns very specific
terms (of which IDF is an extreme), it is possible to radically increase the amount of attributes,
because we have observed that when using very specific attributes the size of the concept lattice
barely increases for larger groups of documents. Moreover, increasing the number of (very specific)
attributes might remedy the undesirable concept lattice flatness to some degree, as the chance becomes
higher that attributes are present in multiple documents when you select more attributes.

Create a “golden standard” In order to complement the evaluation of concept lattices, a “golden
standard” is required for (parts of) the Wolters Kluwer database. Benchmarking with respect to a
golden standard is de facto the way to evaluate ontologies, but unfortunately such a golden standard
is not available for Dutch legal texts. For this pipeline, such a golden standard would be an ontology
handcrafted by legal experts, for several subdomains from the total corpus. Within the scope of this
project the construction of such an ontology was not feasible, but in the case of follow-up research the
construction of a golden standard would be desirable.

Incorporating feedback from user navigation choices During query by navigation users
continually indicate what they consider to be relevant by choosing a particular concept over others for
further exploration. This data could be used by Wolters Kluwer to infer user preferences and serve
individualized search results.

7 Conclusion

To conclude, let us revisit the research questions of this project.

Firstly, we asked how Formal Concept Analysis can be used meaningfully with a large corpus of 0.5
million documents. After exploring various options, we chose the pragmatic solution to use an initial
search to reduce the amount of documents FCA will be applied to. A main benefit of this “pipeline”
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approach is that we can retain the exactness of FCA, whereas most other methods first build a formal
context and then simplify or abstract away from it. The experiments done in this thesis suggest that
we can plausibly assume that most queries reduce the document space to a size that can be handled
by FCA quite well, and that is in particular still usable for query by navigation. Another advantage
is flexibility: another company can use its own search system and database, without having to adjust
the rest of the pipeline containing FCA and query by navigation.

Secondly, in addition to this strategy to limit the amount of objects in the formal context, we further
reduce complexity by limiting the amount of attributes to only the most relevant ones. Therefore we
explored how we can choose relevant formal context attributes that adequately represent the content
of a set of documents. We explored three different relevance measures (TF, TF*IDF, and IDF) and
manually evaluated the resulting attributes on relevance. The results are conform to expectations:
TF-attributes are usually too general, whereas IDF-attributes are too specific, and TF*IDF-attributes
strike a good balance between generality and specificity. We however also observed that especially
when larger document sets are considered, the top-n TF*IDF-attributes are still increasingly domi-
nated by formal legal terms. Some of those terms can effectively structure a set of documents and
be useful in query by navigation, others might not. Further discussion with legal professionals could
point that out and lead to the decision to put some terms on a domain-specific list of stop words that
will not be considered as attributes.

Thirdly, we discussed how different choices for formal context attributes might affect concept naviga-
tion by the user. In particular, we considered how properties of concept lattices change as a result
of which type of attributes are chosen for the formal context, and what properties are desirable for
concept navigation. A property that is important for navigation is the structure of a concept lattice.
A structure that is flat and wide will present the user with too many initial choices, and with very
little options for further navigation. Conversely, a structure that is deep and narrow will require too
many navigational choices to narrow down the query. A concept lattice structure that suits query by
navigation ideally balances these two extremes.

However, the structure of a concept lattice can not simply be explained based on the amounts of
concepts, but depends on multiple factors, including the type and amount of chosen attributes, but
also the distribution of attribute presence over the corpus. Neither can non-trivial concept lattices
be visualized in a way that would support interpretation. Despite the unavailability of quantitative
measures we nevertheless provided indications on how to evaluate which of the resulting concept
lattices is better for query by navigation. As a crude measure that does not take lattice structure
into account, we indicated a “conceptual navigation speed”. This showed that when using IDF-
attributes most documents do not appear in a meaningful place in the concept lattice, and that query
by navigation is expected to take longer when using TF-attributes than for TF*IDF-attributes. We
then manually evaluated exemplary lattices based on the distribution of documents over concepts, as
reported by the query by navigation application. This provided further support for a relevance measure
such as TF*IDF that balances generality with specificity, since an ideal browsable structure seems to
contain few very general concepts that appear in almost all documents, and then incrementally more
specific attributes.
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and S. Rudolph, editors, International Conference on Formal Concept Analysis, pages 314–339.
Springer, 2009.

A. Wyner, R. Mochales-Palau, M.F. Moens, and D. Milward. Approaches to text mining arguments
from legal cases. In Semantic processing of legal texts, pages 60–79. Springer, 2010.

44

http://dx.doi.org/10.1007/978-3-319-25485-2_3
http://dl.acm.org/citation.cfm?id=1647636.1647713
http://dl.acm.org/citation.cfm?id=1647636.1647713
http://arxiv.org/abs/1611.02646
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2012.03.087
http://www.sciencedirect.com/science/article/pii/S0898122112002921
http://www.sciencedirect.com/science/article/pii/S0898122112002921
http://dx.doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
http://dx.doi.org/10.1007/s12652-018-0831-2 LK - https://ru.on.worldcat.org/oclc/7626005760
http://dx.doi.org/10.1007/s12652-018-0831-2 LK - https://ru.on.worldcat.org/oclc/7626005760
https://languagemachines.github.io/frog/
https://proycon.github.io/LaMachine/


9 Appendix: Notes on code implementation

A major portion of the effort that went into this project was time spent on implementating the whole
pipeline from A to Z. Since this is not a coding project, I will not explain the code into detail, but I
will provide an overview of the used classes and project dependencies.

Email me at my university email edwin.wenink@student.ru.nl to get access to the code.

9.1 Used modules

Python 3.6.7 was used. Python built-in modules are not mentioned.

beautifulsoup4 4.7.1 used for xml parsing

concepts 0.8 query by navigation is built on top of FCA functions provided by this package

nltk 3.4.1 not used heavily, can be easily replaced

python-frog 0.3.7 python wrapper for FROG

scikit-learn 0.20.3 used for TF*IDF and IDF

One method for getting all required dependencies in one go is to install the LaMachine software
distribution (Van Gompel), which also contains all necessary dependencies for the python wrapper for
FROG. python-frog can however also be installed independently. concepts is an implementation of
the “Fast Concept Analysis” algorithm of Lindig (Lindig, 2000), and is used as the basis of query by
navigation.

9.2 Classes

9.2.1 pipeline.py

The end user calls this script, which imports all required classes and other dependencies, and prompts
the user to set options for the pipeline.

-----------------------------------------

QUERY BY NAVIGATION USING:

___ ___ ___

/\__\ /\__\ /\ \

/:/ _/_ /:/ / /::\ \

/:/ /\__\ /:/ / /:/\:\ \

/:/ /:/ //:/ / ___ /:/ /::\ \

/:/_/:/ //:/__/ /\__\/:/_/:/\:\__\

\:\/:/ / \:\ \ /:/ /\:\/:/ \/__/

\::/__/ \:\ /:/ / \::/__/

\:\ \ \:\/:/ / \:\ \

\:\__\ \::/ / \:\__\

\/__/ \/__/ \/__/

BY EDWIN WENINK

@Radboud University

-----------------------------------------
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The pipeline consists of:

- Optional: Preprocess whole corpus for IDF scores

- Optional: Selecting a subset of texts matching a keyword

- Optional: Preprocessing that subset

- Computing a formal context and concept lattice

- Query by navigation of that concept lattice

Indicate whether to perform the optional steps.

The user is guided through these steps and asked whether to perform the optional steps. For each
step, it is explained what it does and why you might be able to skip it. Effort is put into avoiding
work wherever possible. The pipeline writes intermediate results to standard locations, so that when
a user chooses to not repeat a step, pre-computed results are loaded instead.

• The first step of computing the IDF scores over the whole corpus is very expensive, so you only
want to do this once. Uses the ExtractAll class from extract all text.py (18 LOC), and the
ComputeIDF class from the compute idf.py script (70 LOC).

• The second step will search through the whole corpus (in this case 0.5 million documents) for
all documents matching the keyword of interest, and write them to disk in a folder labeled with
the ID and name of the keyword. Uses the Selector class from preprocessing.py (450 LOC).

• The third step will perform all preprocessing steps involving analysis of the documents in the
folder from the previous step. Uses the PreProcessor class from preprocessing.py. End result
are files with statistics, keywords, and TF- TF*IDF- and IDF-attributes.

• The fourth step calls the FCA class from fca.py (440 LOC). This computes a formal context and
a concept lattice using either TF, TF*IDF, or IDF attributes. Also handles serialization and
loading of concept lattices with the LatticeSerialization class from serialize lattice.py

(75 LOC).

• The fifth step calls the interactive QueryByNavigation class from query by nav.py (120 LOC).

That roughly summarizes the interaction between classes.

9.2.2 extract all text.py

Uses Frog to parse the whole corpus. The parsed lemmas are written to disk for later use. Because
the preprocessing steps rely on Frog parsing, the IDF scores also need to be computed on Frog-parsed
words.

9.2.3 compute idf.py

Computes an IDF vector over all lemmas extracted from the corpus. A very important detail here is
that a custom tokenizing regular expression is provided, because the scikit-learn default tokenizer does
not correctly handle compound words. E.g. the word “advocaat-stagiar” is handled as two tokens by
scikit-learn, which causes issues because Frog (correctly) considers this to be one word. This issue is
correctly handled by this script, using the approach of Frog. The resulting word count and IDF-vector
are serialized and written to disk for later use.
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9.2.4 preprocessing.py

This script contains two classes, Selector for searching texts matching the query, and PreProcessor

for analysing the contents of the retrieved raw xml files. The PreProcessor extracts relevant text
sections from the xml files (title, search summary, body content) and applies several filtering actions
to make sure that clean plain text is outputted and written to disk. From each text files noun lemmas
are extracted using Frog, with the exclusion of lemmas defined as stop words. From the resulting set
of lemmas three sets of attributes are computed, based on TF, TF*IDF and IDF calculations. For TF
I used an nltk function to compute word frequencies. For TF*IDF and IDF computations I worked
with efficient sparse matrices and used the vector models from the previous step.

Note that this whole script depends on the layout of the Wolters Kluwer database, and has to be
adapted if the pipeline is used for different purposes.

9.2.5 fca.py

Contains functions for computing the formal context and concept lattices, and various helper functions
that are needed for query by navigation, such as returning the lower neighbours of a concept. The user
is presented with the choice whether to use the TF, TF*IDF, or IDF attributes. Because computation
of a concept lattice can be very expensive, this script makes sure to always load the formal context
and the corresponding concept lattice if they are already computed. This requires concept lattices to
be serialized. However, big concept lattices cannot be serialized using the native python serialization
module pickle, and unfortunately the concepts package also did not support this.

9.2.6 serialize lattice.py

However, I contacted the author of the concepts package, Sebastian Bank from Leipzig University,
to suggest this serialization feature and explain my issue and use case. He helped me and suggested a
code sample to solve my problem. I tested the correctness of the code, and used it to serialize concept
lattices to the json format. I am glad to say that this feature is now merged into the master branch
of the concepts package. I am currently in the process of helping the author test the performance of
serialization for json on the concept lattices I computed for this project.

9.2.7 query by nav.py

This script provides a command line REPL application to interactively traverse the computed concept
lattice. The following print shows the available commands:

You can use the following commands:

- query [args]: start a new query with keywords [args], default=supremum

- [int]: expand query with option [int]

- show: show document names for current query

- inspect [id]: inspect contents of file with id [id]

- help: show this message

- quit: stop navigation

Available query options are displayed to the user in the form of a nice ascii tree, For each available
option it is displayed how many documents are in the extent of the concept, if you would choose that
option.
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