
Predictive Processing in Proximal Policy Optimization

Master Thesis
Walraaf Borkent

Supervisor
Prof. Marcel van Gerven

Radboud University

Department of Artificial Intelligence

Faculty of Social Sciences

Radboud University

April 26th 2021

Abstract

Advances in reinforcement learning have led to drastically more complex agents that require
unrealistic amounts of compute resources. The human brain often achieves comparable results with a
fraction of the energy requirements of these models. Therefore, we turn to insights from neuroscience
on predictive processing and efficient coding to design an efficient agent. We present the Predictive
Processing Proximal Policy Optimization (P4O) agent, an actor-critic reinforcement learning agent
that applies predictive processing to a recurrent variant of the PPO algorithm by integrating a world
model in its hidden state. The prediction error that results from subtracting the encoded observed
state from the world model prediction is used as the primary signal in our model. We demonstrate
that with this approach, predictive processing with a world model can be incorporated while reducing
a model’s biologically analogous energy footprint, thus supporting the efficient coding hypothesis.
When we use the encoded state information only to inhibit the recurrent connections, rather than
providing the prediction error separately as input, the number of neurons in the model can be
drastically reduced. Moreover, this approach encourages activations in the model to remain centered
around the zero point, analogous to a lower spiking rate in a biological system and reduced energy
usage. Furthermore, the P4O agent far outperforms the original PPO algorithm on the Seaquest
environment while retaining its efficiency and can be run on a single GPU. It also outperforms other
model-based and model-free state-of-the-art single GPU agents on Seaquest given the same wall-clock
time and exceeds human gamer performance in an initial performance comparison. Future research
could extend the agent with additional uses of its world model, improve its performance through
tuning, inspect its neural coding of competing goals on different timescales or investigate the use of
our approach in modeling brain function in various scenarios. Altogether, our work underlines the
synergistic benefits of the convergence of insights from the fields of neuroscience, artificial intelligence
and cognitive science.

1

1 Introduction

Over the past decade, many advances have been made in the field of reinforcement learning. Initially,
reinforcement learning models were still relatively biologically plausible to the extent that their per-
formance was in large part due to the use of artificial neural networks. However, these models were
notoriously difficult to train and unable to be generalized or used for transfer learning. Many techniques
were introduced that attempted to improve the stability and performance of these models, but they
remain typical drawbacks of reinforcement learning. Attention also focused on more complex problems
to solve. For example, the ‘Human Atari benchmark’; a set of 57 Atari games where the overall goal is
to beat human performance across the entire library of games ((Bellemare, Naddaf, Veness, & Bowling,
2013)). Some of these games were solvable with typical reinforcement learning techniques such as deep
Q learning (Mnih et al., 2015) or actor-critic models, while others required a different approach. As
performance on this benchmark became more competitive, more elaborate models were designed to beat
the state-of-the-art.

Current state-of-the-art for most of these games is the MuZero agent (Schrittwieser et al., 2020), a
complex model which utilizes the biologically implausible Monte Carlo tree search (MCTS) to improve
its policy with large amounts of computing power. The direct competition for MuZero comes mostly
from similarly complex models, such as Agent57 (Badia et al., 2020), which combines a large number
of innovative approaches into a single model, and GoExplore (Ecoffet, Huizinga, Lehman, Stanley, &
Clune, 2019), which keeps an archive of trajectories to force exploration of promising unknown states.
All three of these agents are distributed multi-GPU approaches that are too computationally expensive
to be viable for most research groups, and their code has not been made publicly available. Each of
these approaches has added significant complexity to their model compared to the earlier breakthrough
approaches in reinforcement learning and none of these models appear particularly biologically plausible
as is. Since we know that the human brain is able to solve these tasks with ease, there must exist a
more biologically plausible way of tackling these problems. Similarly, there must be a more efficient and
elegant solution, considering that the human brain requires a fraction of the power and sampling that
these complex algorithms use.

To find such a solution, it would be preferable to start from a foundation that is comparatively sim-
ple and efficient. The best performing recent algorithm that fits this description is the proximal policy
optimization (PPO) algorithm (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017). This algorithm
uses an actor-critic approach whereby the change in the policy at every update is constrained by its
divergence from the previous policy through a simple clipping operation. This ensures that the policy
cannot change too drastically and undo its progress in a single update. With this foundation, we can look
at biologically plausible modifications that improve its performance, inspired by advances in neuroscience.

To better estimate future states and plan actions in a biologically plausible way, the neural network at
the heart of the algorithm would need to have recurrent connections. Recurrent neural networks (RNN)
take inspiration from our brain’s recurrent connections to implement complex behavior (Elman, 1990;
Jordan, 1990; Rumelhart, Hinton, & Williams, 1985) and it has been shown that they are well suited to
predict sensory information processing in the human brain (Güçlü & van Gerven, 2017). Biological neu-
ral networks are known to make ample use of recurrent processing to integrate information, for example
in order to be able to navigate environments, as well as for memory (Maass, 2016; Moser, Rowland, &
Moser, 2015). For any agent to be able to successfully complete complex tasks in dynamic environments
they must be able to integrate evidence, both over time and space. Otherwise, the agent would not be
able to distinguish between situations that may appear identical given the current perceptual input, but
may differ substantially in broader context and thus in the required action. This issue, where many world
states could map onto a single internal state, or vice versa, is called perceptual aliasing (Whitehead &
Ballard, 1991). The recurrent connections in an RNN would allow it to integrate evidence, keep informa-
tion in memory and thus seem to have the potential to incorporate advanced action planning. Traditional
RNNs struggled with retaining information over longer periods of time due to vanishing gradients. Long
short-term memories (LSTM) were invented to address this problem by enforcing a constant error flow
(Hochreiter & Schmidhuber, 1997).

2

Related work by Ha and Schmidhuber (2018a) proposed the World Models algorithm, which incorpo-
rated an LSTM to allow the agent to learn through ‘dreaming’ by generating simulated future states after
learning a model of the environment. A large number of recent studies investigated similar model-based
approaches (Babaeizadeh, Finn, Erhan, Campbell, & Levine, 2017; Buckman, Hafner, Tucker, Brevdo,
& Lee, 2018; Buesing et al., 2018; Chiappa, Racaniere, Wierstra, & Mohamed, 2017; Chua, Calandra,
McAllister, & Levine, 2018; Denton & Fergus, 2018; Doerr et al., 2018; Gal, McAllister, & Rasmussen,
2016; Gemici et al., 2017; Gregor, Papamakarios, Besse, Buesing, & Weber, 2018; Ha & Schmidhuber,
2018b; Hafner et al., 2019; Henaff, Whitney, & LeCun, 2017; Higuera, Meger, & Dudek, 2018; Igl, Zint-
graf, Le, Wood, & Whiteson, 2018; Kalweit & Boedecker, 2017; Karl, Soelch, Bayer, & Van der Smagt,
2016; Krishnan, Shalit, & Sontag, 2015; Kurutach, Clavera, Duan, Tamar, & Abbeel, 2018; A. X. Lee,
Nagabandi, Abbeel, & Levine, 2019; Nagabandi, Kahn, Fearing, & Levine, 2018; Oh, Guo, Lee, Lewis,
& Singh, 2015; Srinivas, Jabri, Abbeel, Levine, & Finn, 2018; Wang & Ba, 2019; Wang et al., 2019;
Watter, Springenberg, Boedecker, & Riedmiller, 2015; Wayne et al., 2018; Weber et al., 2017). Many of
these studies intended to use the model of the world to improve sample efficiency; by allowing the agent
to train on imagined trajectories, in addition to rollouts in the actual environment, fewer steps in the
real environment would be needed to reach similar performance. However, this often did not translate
into more efficient use of computational resources than the model-free counterparts and the performance
tended to be strongly affected by imperfections in the predicted trajectories. Furthermore, many of these
studies limited the practical application to simpler tasks than Atari environments.

Recent work on DreamerV2 (Hafner, Lillicrap, Norouzi, & Ba, 2020) demonstrated that the world
model introduced by Hafner et al. (2019) can be used to learn behavior exclusively from latent space
predictions and can outperform current state-of-the-art model-free algorithms simultaneously in both
absolute score and sample efficiency in a collection of 55 Atari games. The world model in DreamerV2
is trained entirely separately from its policy with an additional neural network and attains human-level
performance. The work on DreamerV2 made significant strides to reduce complexity and computational
requirements compared to models such as MuZero (Schrittwieser et al., 2020), which requires multiple
TPUs to train; equivalent to 80 days of single GPU training. However, DreamerV2 still uses six sepa-
rate components in its model, 22M trainable parameters and requires roughly 10 days to process 200M
environment frames (Hafner et al., 2020). It generates 468B imagined latent states to train its policy,
leaving us to question whether this is the only way to benefit from a model-based approach and whether
more efficient methods can be designed.

A leading theory in neuroscience proposes that the brain processes sensory information through a
process named predictive coding or predictive processing (Ciria, Schillaci, Pezzulo, Hafner, & Lara,
2021; Clark, 2013; Friston, 2005; Mumford, 1992; Srinivasan, Laughlin, & Dubs, 1982). This theory sug-
gests that higher-level brain areas predict the activation of lower-level brain areas and inhibit neuronal
activation when it matches the expectation. The remaining prediction error signal can be seen as a
measure of surprise compared to its internal model of the world that was used to generate the predic-
tions. This surprise signal can then be used to adjust behavior and update its internal understanding of
the world. A number of studies have contributed to the growing experimental evidence for this theory
(Alink, Schwiedrzik, Kohler, Singer, & Muckli, 2010; De Lange, Heilbron, & Kok, 2018; Dijkstra, Am-
brogioni, Vidaurre, & van Gerven, 2020; Ekman, Kok, & de Lange, 2017; Hupé et al., 1998; Kok, Jehee,
& De Lange, 2012; Murray, Kersten, Olshausen, Schrater, & Woods, 2002; Näätänen, Tervaniemi, Suss-
man, Paavilainen, & Winkler, 2001; H. M. Rao, Mayo, & Sommer, 2016; Schwiedrzik & Freiwald, 2017;
Squires, Squires, & Hillyard, 1975; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008), while
others reproduced the experimentally observed phenomena in explicit computational models of predic-
tive coding (Friston, 2005, 2010; T. S. Lee & Mumford, 2003; R. P. Rao & Ballard, 1999). It stands to
reason then, that such an approach would be a key component of a biologically plausible reinforcement
learning agent. Besides biological plausibility as a merit on its own, there may be additional benefits to
employing this approach in terms of performance or efficiency.

Considering the limited energy available to the brain, efficiency is likely to be one of the most im-
portant features of its computational mechanisms. This was phrased by Barlow (1961) as the efficient
coding hypothesis; the suggestion that the brain minimizes redundancy and overall neuronal activity,
i.e. energy consumption, while maximizing the amount of sensory information it can represent. Previous

3

work has since expanded on this hypothesis (Bell & Sejnowski, 1995; Berkes & Wiskott, 2005; Bialek,
Van Steveninck, & Tishby, 2006; Chalk, Marre, & Tkačik, 2018; Eckmann, Klimmasch, Shi, & Triesch,
2020; Olshausen & Field, 1996), while a particularly relevant study by Ali, Ahmad, de Groot, van Ger-
ven, and Kietzmann (2021) showed that predictive coding may naturally emerge in energy-constrained
neural networks. Vice versa, this relationship between predictive coding and efficient coding implies it
is at least possible to apply predictive coding in an energy-efficient manner and may even contribute to
energy efficiency. However, most current work on practical model-based reinforcement learning agents
tends to require additional neuronal networks for the world model, instead leading to increased energy
usage. Therefore, the present study aims to investigate whether we can use recurrent neural networks,
enriched with insights from predictive coding theory, to improve upon the performance and efficiency of
the PPO algorithm on discrete Atari environments.

Enhanced efficiency in solving these complex tasks could also open the door to solving even more
complex tasks and more intelligent behavior from our artificial agents. Crucially, we would be further
approaching the way the human brain is likely to solve these tasks through convergence of insights from
the fields of cognitive science, neuroscience and artificial intelligence; which is referred to as the great
convergence (Gershman, Horvitz, & Tenenbaum, 2015; Van Gerven, 2017). Thus, besides adding to the
state-of-the-art of intelligent artificial agents, we could use these models to further our understanding of
human intelligence and brain function with regards to action planning, predictive coding and efficient
coding.

2 P4O

We present the Predictive Processing Proximal Policy Optimization (P4O) agent, an actor-critic rein-
forcement learning agent that incorporates ideas from predictive coding theory in a recurrent variant
of the PPO algorithm. We build upon the work by Ali et al. (2021) that demonstrated how predictive
processing can naturally emerge under energy constraints, incorporating predictions in the hidden state.
In particular, we reserve part of the recurrent hidden state to integrate a world model, predicting the
encoded state of the environment at every step. The prediction error that results from subtracting the
encoded observed state from this prediction is used as the primary signal in our model. This allows the
model to continuously adjust its predictions and outputs exclusively through prediction error. Addition-
ally, by reserving part of the existing hidden state rather than utilizing a separate network, we show that
this can be done without increasing the number of parameters in the model. In fact, when we provide
the prediction error in place of the prediction before every recurrent cycle, rather than providing both
separately, the number of neurons used can be drastically reduced compared to the typical model-based
approach. Moreover, this approach strongly encourages activations in the model to remain centered
around the zero point. Both these properties show that predictive processing with a world model can be
incorporated while reducing a model’s biologically analogous energy footprint, thus efficiently represent-
ing sensory information and supporting the efficient coding hypothesis.

We show that incorporating this use of predictive processing with a world model significantly improves
the performance of the agent without drastically changing the way the original model-free PPO algorithm
operates. The P4O agent far outperforms the original PPO algorithm on the Seaquest environment
while retaining its efficiency and can be run on a single GPU. It also outperforms other current state-
of-the-art single GPU agents on Seaquest, both model-based and model-free, and exceeds human gamer
performance. The agent could easily be extended with more involved usages of its world model, such as
learning from full predicted trajectories similarly to DreamerV2 (Hafner et al., 2020). The exact benefit
of each such extension can then verified by comparing to our minimalist approach.

2.1 Predictive Processing

The basis of the P4O agent consists of a simple ResNet encoder and an LSTM main model for recurrent
connections, generating state value predictions and action distributions. The simplest way to transform
a model-free algorithm to model-based would be to add a separate network that is trained to encode a
prediction of the input the main model will receive at a future point in time, in other words, a prediction

4

of the future sensory information in either original or encoded form. Then, this model of the world can be
used in some way in the agent’s behavioral decision-making process or state value estimation. However,
this relatively straightforward approach to incorporating a model-based approach is not sufficient to be
called predictive processing.

As mentioned, predictive processing suggests that the brain continuously updates its prediction of
sensory information and inhibits sensory input activations that match the expectation, leaving only the
prediction error as a surprise signal to update its beliefs. Therefore, rather than adding a prediction of
the encoded next state as an additional output, it ought to be integrated in recurrent dynamics of the
main model itself. Additionally, the primary input signal to the main model should not be the actual
encoded sensory information, but instead the prediction error.

2.2 Base Model

To achieve this in our P4O agent, we reserve half of the hidden state of the LSTM-based main model and
assume it contains the future state prediction (Figure 1). The LSTM hidden state h therefore consists
of an unrestricted part z and the future state prediction p. Before each LSTM cycle, we take the current
encoded state information xt and subtract it from the prediction pt−1, generating the prediction error
et:

et = pt−1 − xt (1)

Instead of providing xt as input to the gating functions, we only provide et, leading to the following
gating functions:

ft = σg(Wfet + Ufht−1 + bf)

it = σg(Wiet + Uiht−1 + bi)

ot = σg(Woet + Uoht−1 + bo)

c̃t = σc(Wcet + Ucht−1 + bc)

(2)

where ft, it, ot and c̃t are the forget gate, input gate, output gate and cell input respectively, while W , U
and b are the weight matrices and bias vector. The sigmoid activation function is represented as σg and
σh denotes the tanh activation function. Similarly to a normal LSTM, the final cell state ct results from
an element-wise product of the forget gate ft and the previous cell state ct−1 added to the element-wise
product of the input gate it and the cell input c̃t:

ct = ft ◦ ct−1 + it ◦ c̃t (3)

Finally, we can define the hidden state ht as the element-wise product of the output gate ot and the
activated cell state ct:

ht = ot ◦ σh (ct)

=

[
zt
pt

]
(4)

where the resulting vector ht contains the new prediction pt and an unrestricted part of the hidden state
zt.

By minimizing e during training, the model naturally learns to encode predictions in the reserved
part of the hidden state p. Minimizing the prediction error also forces the activations to center around
the zero point, reducing the analogous biological energy consumption in line with the efficient coding
hypothesis. Similarly to the MuZero agent (Schrittwieser et al., 2020), we do not add a decoder with a
pixel-wise loss based on the unencoded input, so that the latent space is free to arrange itself optimally
for planning and behavioral choices, rather than for image reconstruction. We refer to this base variant
of our agent as ’P4O Base’ throughout the following sections.

5

Figure 1: Visual representation of the P4O Base model. A game state observation is encoded to xt, which
is subtracted from the prediction pt−1 contained in the hidden state ht−1, generating the prediction error
et. The model then uses zt−1, pt−1 and et to generate action probabilities at, state value vt and the new
hidden state ht.

2.3 Integrated Prediction Error

Ideally, the main model learns to improve its predictions based purely on the information contained in
the free part of hidden state z, and the prediction error e. To generate new predictions, state value
estimations and action distributions, it would not necessarily need the previous prediction itself as an
input to the LSTM. We can therefore take the integration one step further, as shown in Figure 2, and
consider e the inhibited form of p, and only provide z and e as the hidden state in each cycle:

ĥt−1 =

[
zt−1

et

]
(5)

Here ĥt−1 represents the partially inhibited form of the hidden state h that resulted from inhibiting pt−1

by xt. The LSTM then requires no direct inputs besides its own recurrent connections with only an
inhibitory signal on part of these connections, resulting in the following simplified gating functions:

ft = σg

(
Uf ĥt−1 + bf

)
it = σg

(
Uiĥt−1 + bi

)
ot = σg

(
Uoĥt−1 + bo

)
c̃t = σc

(
Ucĥt−1 + bc

)
(6)

All other equations remain equal to the base model. This approach drastically reduces the number
of parameters in the main model since only weights for the hidden state are required. This reduction
in redundancy and fewer connections with low activation values nicely aligns with the efficient coding
hypothesis. We refer to this variant of our agent as ’P4O Integrated’ throughout the following sections.

6

Figure 2: Visual representation of the P4O Integrated model. In this variant, we consider et the inhibited
form of pt−1. The model only uses zt−1 and et to generate new action probabilities, the state value and
the next hidden state.

2.4 Additional Efficient Coding Constraint

Although the previous variants improve the efficiency of the predictive processing part of the main model,
the free part of the hidden state z is left unchanged. To force this part of the recurrent dynamics to be
similarly efficient in its biologically analogous energy consumption, we can place an additional L1 norm
on z. Although this is only an extra constraint on the model with no immediate benefit to performance, it
would be interesting to see if the model is still able to perform well, even with such an energy constraint.
It also provides another hyperparameter that can be tuned to optimize the model. We refer to this
variant of our agent as ’P4O Constrained’ throughout the following sections.

3 Algorithm

For the most part, the training procedure of our agents follows the standard PPO algorithm (Schulman
et al., 2017). That is, the agent retrieves a batch of data by interacting with a number of parallel envi-
ronments simultaneously and then updates the model by splitting the data in mini-batches and training
for multiple epochs while constraining the divergence of the policy. However, since we use a recurrent
main model, hidden states need to be retained during rollout to be able to update the model multiple
times using the same data, and the mini-batches cannot be randomized the way they are in PPO or the
temporal relationships would be lost. If we would store all hidden states for each step in the environment,
without updating them during training, the hidden states would be stale after the first update. Updating
multiple times in a row could then destabilize the model, since its gradients would be based on hidden
states of a much older model. To minimize this effect, we only use the first hidden state of a mini-batch
for each environment and generate fresh hidden states by unrolling the LSTM for the entire sequence of
an environment’s steps in the mini-batch at once.

For similar reasons, we also refresh the calculated advantages with the latest model before each update
as suggested by Andrychowicz et al. (2020). The advantages are calculated with generalized advantage
estimation (Schulman, Moritz, Levine, Jordan, & Abbeel, 2015) in its truncated form, as described by

7

Schulman et al. (2017). Furthermore, we add an optional action encoding as input to the main model in
all variants, which can be used to inform the model of the taken action when generating future trajecto-
ries. Lastly, in standard PPO the first update is unconstrained because the batch was retrieved with the
same policy that is being updated, leading to a ratio of always 1.0. To avoid the first update changing
the policy too drastically, we retrieve data with the second last policy of the previous set of updates,
rather than the latest policy, so that divergence from this policy can be clipped as normal even in the
first update. For further details on our baseline PPO implementation, please refer to Appendix D.

For the model to naturally incorporate predictions within its hidden state, we minimize the prediction
error e during training. For our objective this is simply defined as follows:

LPPt (θ) = Êt[e
2
t], (7)

where et denotes the prediction error generated at timestep t. If we only use the prediction error
of predicting a single step ahead, the model might be tempted to copy the previous state, since the
difference in the environment after a single step can be very small. To force the world model to learn
temporal relationships, we let the model process each mini-batch again, only now the model unrolls
multiple steps ahead without input from the encoder, by assuming a prediction error of zero. The model
can use the actions taken during rollout to adjust its predictions. We use the prediction errors from
predictions at each step for the loss calculation. We then combine this predictive processing loss with
the standard PPO loss components, starting with LCLIPt (θ), the typical PPO surrogate clipped actor
loss (Schulman et al., 2017):

LCLIP (θ) = Êt[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (8)

where

rt(θ) =
πθ(atst)

πθold(atst)
(9)

denotes the action probability ratio between the old policy and the current policy, At is the advantage
function estimator at timestep t and ε determines the clip range. The loss component for our critic is
also clipped to avoid strong divergence from the values V̂t originally estimated under θold:

V CLIP = clip(Vθ(st)− V̂t,−ε,+ε) (10)

LV Ft (θ) = Êt[|V CLIP (st)−Rt|], (11)

where Rt denotes the return (V̂t +At). The combined objective to minimize can then be defined as:

Lt(θ) = Êt[c1L
CLIP
t (θ) + c2L

V F
t (θ) + c3L

PP
t (θ)− c4S[πθ](st)], (12)

where S[πθ](st) represents the entropy bonus and the loss coefficients are denoted by c1, c2, c3, c4. For
the P4O Constrained variant we add an additional loss in the form of an L1 norm on the normal half of
the hidden state z:

LCt (θ) = Êt[‖zt‖1], (13)

resulting in the following total objective for the P4O Constrained variant:

Lt(θ) = Êt[c1L
CLIP
t (θ) + c2L

V F
t (θ) + c3L

PP
t (θ) + c5L

C
t (θ)− c4S[πθ](st)]. (14)

4 Experiments

4.1 Experimental Setup

As mentioned before, we focus on the Atari games often used in model-free reinforcement learning
research so that comparisons can easily be made. Due to computational resource limitations and the
large number of variants to test, we select a single game from this set: Seaquest. Seaquest was chosen

8

for both its popularity among research, as well as its relatively high performance ceiling compared to
games like Pong, which is easily solved by a large number of models. Additionally, to perform well at
Seaquest an agent must effectively juggle multiple goals on different timescales, requiring more complex
planning behavior than, for example, Breakout. This makes it one of the more difficult games in the Atari
collection to achieve superhuman performance in, as demonstrated by Mnih et al. (2015), who reported
a DQN achieved only 25% of their human gamer normalized score, or roughly 12% of the human gamer
used by Deepmind (Hafner et al., 2020).

We compare the performance of several predictive processing variants with the LSTM-PPO baseline
algorithm. We evaluate the agents after 80M environment steps rather than the 40M in the original PPO
paper, so that the differences between these agents can become even clearer. We use the typical frame
stacking of four, sticky actions, the full action space, and train with 16 environments in parallel. We do
not enforce a time or frame limit per episode, as suggested by Toromanoff, Wirbel, and Moutarde (2019).
After training, we compare the average scores of the final 100 episodes. For most PPO-related hyperpa-
rameters we do not apply grid search, but instead use commonly reported hyperparameter values from
other PPO implementations, also see Appendix C for specific hyperparameter values. We additionally
run a single P4O Base agent for 10 days to compare performance with the current state-of-the-art in
model-based and model-free single GPU agents.

4.2 P4O Base

As can be seen in Figure 3, our P4O algorithm significantly outperforms the baseline PPO algorithm
(p = .016, N = 14) with a mean score of 6407 compared to our ResNet LSTM-PPO baseline’s mean
score of 2165, or a 196% increase in performance, without increasing the number of parameters. The
original PPO paper reported a 1204 mean score on Seaquest at 40M frames, at which point both our
PPO baseline implementation and the P4O agent perform better as well, as they ramp up in score much
more quickly. The fact that our baseline PPO implementation outperforms the results in the original
PPO paper is likely due to the modifications we made to the original implementation and the addition
of a ResNet encoder and LSTM main model, as described in Appendix D. Further tuning of the hyper-
parameters for the P4O Base agent, such as the scaling of the predictive processing component of the
loss, may lead to further performance improvements.

Figure 3: Average score over the last 100 episodes, comparison of the P4O Base agent, original PPO
agent and our PPO baseline.

The final average score of the baseline PPO algorithm seems to be related to a particularly difficult
barrier at a score of roughly 2000, preventing some agents from achieving higher scores (Figure 4B).
When we look at the individual curves of each run of our P4O agent (Figure 4A), we can see this
same barrier having a strong effect on the final score. Whether the agent breaks through this barrier

9

early or late into the run heavily influences the outcome. However, once it does, further learning of the
environment is unobstructed, and scores continuously climb. Investigating the behavior of the agents
around this barrier level shows that the agent at this point struggles to juggle the multiple competing
goals on different temporal scales. Specifically, the agents play the game by only avoiding and destroying
the enemy ships; frantically shooting while staying in the bottom half of the screen. These agents did
not learn to tackle the other goals; rescuing the stranded divers and coming up for air when the oxygen
level is low. However, once the P4O agents break through this barrier they learn to come up for air in
time and can play for much longer, using the entire screen and rescuing divers in the process.

Figure 4: Comparison of individual performance curves.

4.3 Varying Prediction Horizons

Figure 4C shows individual runs of the P4O Integrated agent where we vary the number of steps to
predict ahead during training and compare with the mean of predicting three steps ahead, the number of
steps used in all other experiments. Although variance likely plays a large role in these results, it seems
that predicting many more steps ahead during training of the world model does not provide consistently
better results, while it comes at a slightly larger computational cost. Similarly, predicting only one step
ahead seems to decrease performance, as the result is very similar to the baseline PPO algorithm. Based
on this, we can infer that predicting three steps ahead is a decent choice as it seems to provide the
benefits of predicting future sensory information with minimal computational impact.

4.4 P4O Integrated

As can be seen in Figure 5A, the P4O Integrated variant also outperforms the baseline PPO algorithm.
This difference is nearly statistically significant (p = .06, N = 14) even with a sample size of 14. Even
though it achieved a slightly lower average score, the P4O Integrated variant roughly approaches the
performance of the P4O Base agent, despite requiring 21% fewer parameters.

Figure 5: Comparison of different P4O variants and LSTM-PPO baseline.

10

Any difference in average score is well within the standard error of the mean so that many more
runs would be required to determine whether this difference is statistically significant or not. This shows
that predictive processing can be incorporated in a model while considerably reducing the number of
parameters, in contrast to most model-based approaches that use a separate network or many additional
parameters.

4.5 P4O Constrained

Figure 5B demonstrates how the P4O Constrained variant that applies an additional L1 norm loss
component also outperforms the baseline PPO algorithm. However, this difference is not statistically
significant with the current number of runs (p = .16, N = 14). The additional L1 norm used in the P4O
Constrained variant results in a reduced average score compared to the P4O Base agent although this
difference is also not statistically significant (p = .30) due to the low sample size (N = 12). We do note
that the P4O Constrained variant only learned to go up for oxygen and break through the 2000 barrier
two times out of six runs given 80M frames. On the other hand, the P4O base agent was able to break
through this barrier in five out of six runs given the same amount of frames. This may indicate that
the 0.1 scale used on the L1 norm loss component affects the learning speed of the model. Tuning this
parameter might alleviate this negative effect. At the same time, in certain biological or neuromorphic
systems, the benefit of an analogous energy constraint on neuronal firing might outweigh a difference in
speed at which the model learns. Given that the agent still outperforms the baseline PPO algorithm
despite such a constraint, we consider this is worth further investigation in the context of efficient coding.

4.6 Comparison with state-of-the-art

To place the performance of our agent in a broader context, a 10 days long run of the P4O Base agent is
compared with a number of current state-of-the-art single GPU reinforcement learning agents in Figure
6.

Figure 6: Initial single seed performance comparison with IQN, Rainbow and DreamerV2 after 10 days
of accelerator time. Dashed lines represent final reported scores of the IQN, Rainbow and DreamerV2
agents after 10 days. Reported average score is a rolling mean of the last 100 episodes.

The model-based DreamerV2 agent and model-free Rainbow and IQN agents all report their perfor-
mance after 10 accelerator days in wall-clock time (Dabney, Ostrovski, Silver, & Munos, 2018; Hafner
et al., 2020; Hessel et al., 2018). Each of these three models has processed 200M Atari frames at this
point, whereas our P4O agent is able to process 1.2B frames in 10 days with the same Nvidia Tesla
V100 GPU as used by DreamerV2 (Table 1). Furthermore, the DreamerV2 agent uses 22M parameters,
whereas our P4O Base agent uses 9.6M parameters, and 7.6M for the P4O Integrated variant. As can
be seen in Figure 6, this single run of our agent surpasses the Rainbow agent’s final score in less than 3
days, surpasses the IQN agent after 5 days, and the DreamerV2 average after roughly 6 days, achieving

11

a final average score of 180054 over the last 100 episodes, or 428% of the human gamer score reported
by Hafner et al. (2020).

Agent Atari Frames Accelerator Days Average Score Gamer-Normalized Score
Rainbow 200M 10 15898 0.37
IQN 200M 10 30140 0.71
DreamerV2 200M 10 45898 1.09
P4O 1.2B 10 180054 (727033) 4.28 (17.28)

Table 1: Comparison of our P4O Base agent with top single GPU agents on Seaquest after 10 days of
accelerator time (Dabney et al., 2018; Hafner et al., 2020; Hessel et al., 2018). Gamer-normalized score
based on the human gamer score reported by Hafner et al. (2020). Scores in parentheses for P4O are
achieved when running the trained agent in deterministic mode (only exploitation).

The highest score achieved by the agent was 999999; the maximum score possible in the game. The
performance curve shows no sign of tapering off at the end of the run, suggesting that the agent would
still benefit from additional time to further approach perfect play. The relatively large gap between
high score and average score indicates that the agent is still exploring through action sampling with
the entropy bonus, although it has already beaten the game multiple times. To extract the maximum
performance out of our agent we can take the trained agent and run it in a deterministic mode by no
longer sampling from the action distribution, but instead always selecting the highest probability ac-
tion. Testing the trained agent this way in another 100 episodes leads to a much higher average score
of 727033, or 1728% of the human gamer score. Further inspection shows that the agent achieved the
maximum score in 70% of these episodes. Given this result, it may be beneficial to apply a decay factor
to the entropy bonus to allow the model to already become more deterministic towards the end of training.

We note that these results are an initial comparison with a single long run on Seaquest due to
limitations in compute resources. To exhaustively compare these algorithms, multiple runs on the entire
set of Atari games would be required. One additional difference with the Rainbow and DreamerV2
agents in particular is that these agents enforce a frame limit for each episode equivalent to 30 minutes
of gameplay. This could potentially affect scores, however, in Seaquest their reported scores should not
be affected by this limit, since episodes with such a score are significantly shorter than 30 minutes.
Another potential limitation is that Seaquest might be particularly suited to our model, as it forces the
agent to deal with competing goals on different timescales. The performance benefit of our approach may
therefore not directly translate to all Atari games, which can be investigated in future research. Finally,
further tuning of the hyperparameters may lead to enhanced performance, for example by adjusting the
learning rate, the entropy bonus or other loss coefficients.

4.7 Neural coding

When we inspect the effect of predicting future states on our neural coding, we can see a clear effect
(Figure 7). In the traditional baseline PPO algorithm, the output of the encoder shows a typical tanh
activation profile, in other words almost all values are grouped at the extremes; -1 and 1. On the other
hand, when we look at the neural coding of our P4O algorithm, we observe a very different distribution.
Despite the tanh activation, the values remain grouped around the zero point and do not approach the
extremes. The prediction contained in the hidden state shows a very similar distribution with values
roughly between -0.7 and 0.7. The resulting prediction error is thus even more centered around the zero
point, with values mostly distributed between -0.05 and 0.05. The coefficient of determination (R2) of
the prediction with respect to the encoded input is 0.86 for the particular run used in Figure 7, meaning
much of the variance in the input is explained by the prediction of the model. While the exact score
varies from agent to agent, most P4O agents achieve a similar result.

12

Figure 7: Comparison of activation distributions between the baseline latent encoding, the P4O latent
encoding, the P4O prediction and the P4O prediction error. The distributions are a typical encoding of
a randomly selected single state.

As larger activation values in neural coding can be related to energy consumption in biological neurons
in terms of spiking frequency, one interpretation of this difference is that our P4O model is much more
energy efficienct, in line with expectations from efficient coding literature.

5 Discussion

We have demonstrated that predictive processing with a world model can be integrated into an arti-
ficial agent without increasing its biologically analogous energy footprint while leading to significant
performance gains. Furthermore, we showed that when we integrate the prediction error in the form of
inhibition on recurrent connections, the number of neurons in the model can even be reduced compared
to a model-free approach, in stark contrast to the typical model-based approaches that use an entirely
separate network for their world models. The fact that our agent achieved significantly better perfor-
mance compared to the model-free variant implies that the need to predict future states entices the model
to extract features that are relevant in understanding temporal relationships and that these features are
more informative for the policy than the features normally extracted. Our model also demonstrates that
prediction error is all that is required as an input to the main model to achieve state-of-the-art perfor-
mance. The model can operate unhindered by the lack of direct access to the actual encoded sensory
information. These findings support predictive coding theory, as our approach works fundamentally sim-
ilarly to what it proposes. The fact that it is possible to learn complex behavior in such an environment
and exceed the performance of a human gamer further reinforces the idea that the human brain may use
a similar approach. While we do not hard-code a hierarchy of multiple levels of predictive processing,
the ability of the agent to deal with multiple competing goals on different temporal scales supports the
suggestion that an LSTM can integrate information over long timescales (Lu, Hasson, & Norman, 2020)
and suggests that a temporal hierarchy may have self-organized (Paine & Tani, 2005; Yamashita & Tani,
2008) within its neural dynamics through shifting neural states, as in the human brain (Geerligs, van
Gerven, Campbell, & Güçlü, 2021; Geerligs, van Gerven, & Güçlü, 2021). Future studies could reveal
how the model balances these competing goals at different timescales and whether such a temporal hi-
erarchy has self-organized. The agent could also be modified in later research to encourage exploration
through the use of its prediction error, for example by adding a bias towards areas that generate surprise.

Additionally, the P4O agent supports the efficient coding hypothesis in three distinct ways. First,
the ability to incorporate a prediction of its sensory information inside existing recurrent connections
without adding parameters, or extending the model in other ways, maximizes the information stored
in the model. Second, when we use sensory information exclusively as an inhibitory signal on these
recurrent connections, we can reduce the size of the model, since we remove the need to provide a sep-
arate input signal. Third, the minimization of prediction error entices the model to encode its sensory
information in an efficient way, centering the activation values around the zero point, which would be
biologically analogous to a lower spike firing rate and reduced energy usage. We should note, however,
that our approach does require the number of neurons used in the hidden state of the LSTM to be large
enough to encode its sensory information prediction while leaving space for normal usage of the rest of
the hidden state.

13

In an initial single run performance comparison, the P4O agent outperformed other model-free and
model-based state-of-the-art single GPU reinforcement learning agents’ final scores reported after 10 days
of wall-clock time on Seaquest. Wall-clock time is arguably the most limiting factor in reinforcement
learning research, and therefore should be prioritized as a metric besides cumulative reward. On the
other hand, although it requires six-fold the wall-clock time to process the same amount of Atari frames,
the DreamerV2 agent (Hafner et al., 2020) achieves better sampling efficiency; performance per frames
observed. It accomplishes this by making extensive use of its world model to predict entire trajectories,
and train its policy on these imagined trajectories rather than the actual environment. Future research
could extend our agent with such an approach and investigate how much sampling efficiency could be
gained without sacrificing wall-clock time or requiring significantly more compute resources. A balance
could likely be struck where most of the benefit in terms of sampling efficiency is combined with most of
the benefit in terms of wall-clock time, overall efficiency and compute requirements of our agent. Future
studies could also further investigate the performance of the P4O agent across the entire domain of Atari
games and other environments.

As discussed, the current trend in state-of-the-art reinforcement learning has been excessively com-
plex, biologically implausible and computationally intensive multi GPU agents (Badia et al., 2020; Ecoffet
et al., 2019; Schrittwieser et al., 2020). The DreamerV2 agent already made great strides reversing this
trend by reducing complexity and demonstrating what is possible with a single GPU agent (Hafner et
al., 2020). Our P4O agent continues this line of research by incorporating a world model with biolog-
ically plausible elements that boost efficiency and performance. Improvements in performance without
sacrificing efficiency, or even improving efficiency, are vital to future progress in the field and allow rein-
forcement learning to be more widely applicable. Furthermore, when reinforcement learning can be done
more efficiently, this creates computational room for more intelligent systems, for example, to facilitate
transfer learning, meta learning or behavior in much more complex environments. Besides improving
the current artificial agents, the benefit of a more biologically plausible approach is that it is naturally
more likely to accurately describe how the human brain tackles similar problems. This can help further
understand human action planning and guide research and exploration in the field of neuroscience, high-
lighting the synergy between the fields of neuroscience, cognitive science and artificial intelligence.

Acknowledgements

I would like to thank prof. Marcel van Gerven for his stellar supervision and suggestions that led to this
thesis, Burcu Küçükoğlu for her in-depth feedback on the baseline code and my fiancée Hyemi for her
continuous support and insightful comments.

References

Ali, A., Ahmad, N., de Groot, E., van Gerven, M. A. J., & Kietzmann, T. C. (2021). Predictive coding

is a consequence of energy efficiency in recurrent neural networks. bioRxiv 2021.02.16.430904 .

Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus predictability

reduces responses in primary visual cortex. Journal of Neuroscience, 30 (8), 2960–2966.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., . . . others (2020).

What matters in on-policy reinforcement learning? a large-scale empirical study. arXiv preprint

arXiv:2006.05990 .

14

Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., & Levine, S. (2017). Stochastic variational

video prediction. arXiv preprint arXiv:1710.11252 .

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., & Blundell, C.

(2020). Agent57: Outperforming the atari human benchmark. In International conference on

machine learning (pp. 507–517).

Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In

W. A. Rosenblith (Ed.), Sensory communication (p. 217-234). Cambridge, MA: MIT Press.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and

blind deconvolution. Neural computation, 7 (6), 1129–1159.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47 , 253–279.

Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties.

Journal of vision, 5 (6), 9–9.

Bialek, W., Van Steveninck, R. R. D. R., & Tishby, N. (2006). Efficient representation as a design

principle for neural coding and computation. In 2006 ieee international symposium on information

theory (pp. 659–663).

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., & Lee, H. (2018). Sample-efficient reinforcement

learning with stochastic ensemble value expansion. arXiv preprint arXiv:1807.01675 .

Buesing, L., Weber, T., Racaniere, S., Eslami, S., Rezende, D., Reichert, D. P., . . . others (2018).

Learning and querying fast generative models for reinforcement learning. arXiv preprint

arXiv:1802.03006 .

Chalk, M., Marre, O., & Tkačik, G. (2018). Toward a unified theory of efficient, predictive, and sparse

coding. Proceedings of the National Academy of Sciences, 115 (1), 186–191.

Chiappa, S., Racaniere, S., Wierstra, D., & Mohamed, S. (2017). Recurrent environment simulators.

arXiv preprint arXiv:1704.02254 .

Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful

of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114 .

Ciria, A., Schillaci, G., Pezzulo, G., Hafner, V. V., & Lara, B. (2021). Predictive processing in cognitive

robotics: a review. Neural Computation, 33 (5), 1402–1432.

Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of cognitive science.

Behavioral and brain sciences, 36 (3), 181–204.

Dabney, W., Ostrovski, G., Silver, D., & Munos, R. (2018). Implicit quantile networks for distributional

reinforcement learning. In International conference on machine learning (pp. 1096–1105).

De Lange, F. P., Heilbron, M., & Kok, P. (2018). How do expectations shape perception? Trends in

15

cognitive sciences, 22 (9), 764–779.

Denton, E., & Fergus, R. (2018). Stochastic video generation with a learned prior. In International

conference on machine learning (pp. 1174–1183).

Dijkstra, N., Ambrogioni, L., Vidaurre, D., & van Gerven, M. (2020). Neural dynamics of perceptual

inference and its reversal during imagery. Elife, 9 , e53588.

Doerr, A., Daniel, C., Schiegg, M., Duy, N.-T., Schaal, S., Toussaint, M., & Sebastian, T. (2018).

Probabilistic recurrent state-space models. In International conference on machine learning (pp.

1280–1289).

Eckmann, S., Klimmasch, L., Shi, B. E., & Triesch, J. (2020). Active efficient coding explains the

development of binocular vision and its failure in amblyopia. Proceedings of the National Academy

of Sciences, 117 (11), 6156–6162.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., & Clune, J. (2019). Go-explore: a new approach

for hard-exploration problems. arXiv preprint arXiv:1901.10995 .

Ekman, M., Kok, P., & de Lange, F. P. (2017). Time-compressed preplay of anticipated events in human

primary visual cortex. Nature Communications, 8 (1), 1–9.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14 (2), 179–211.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., . . . others (2018). Impala:

Scalable distributed deep-rl with importance weighted actor-learner architectures. In International

conference on machine learning (pp. 1407–1416).

Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the Royal Society B:

Biological sciences, 360 (1456), 815–836.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature reviews neuroscience,

11 (2), 127–138.

Gal, Y., McAllister, R., & Rasmussen, C. E. (2016). Improving pilco with bayesian neural network

dynamics models. In Data-efficient machine learning workshop, icml (Vol. 4, p. 25).

Geerligs, L., van Gerven, M., Campbell, K., & Güçlü, U. (2021). A nested cortical hierarchy of neural

states underlies event segmentation in the human brain. bioRxiv 2021.02.05.429165 .

Geerligs, L., van Gerven, M., & Güçlü, U. (2021). Detecting neural state transitions underlying event

segmentation. NeuroImage, 118085.

Gemici, M., Hung, C.-C., Santoro, A., Wayne, G., Mohamed, S., Rezende, D. J., . . . Lillicrap, T. (2017).

Generative temporal models with memory. arXiv preprint arXiv:1702.04649 .

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging

paradigm for intelligence in brains, minds, and machines. Science, 349 (6245), 273–278.

Gregor, K., Papamakarios, G., Besse, F., Buesing, L., & Weber, T. (2018). Temporal difference varia-

16

tional auto-encoder. arXiv preprint arXiv:1806.03107 .

Güçlü, U., & van Gerven, M. A. (2017). Modeling the dynamics of human brain activity with recurrent

neural networks. Frontiers in computational neuroscience, 11 , 7.

Ha, D., & Schmidhuber, J. (2018a). Recurrent world models facilitate policy evolution. arXiv preprint

arXiv:1809.01999 .

Ha, D., & Schmidhuber, J. (2018b). World models. arXiv preprint arXiv:1803.10122 .

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., & Davidson, J. (2019). Learning

latent dynamics for planning from pixels. In International conference on machine learning (pp.

2555–2565).

Hafner, D., Lillicrap, T., Norouzi, M., & Ba, J. (2020). Mastering atari with discrete world models.

arXiv preprint arXiv:2010.02193 .

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In European

conference on computer vision (pp. 630–645).

Henaff, M., Whitney, W. F., & LeCun, Y. (2017). Model-based planning with discrete and continuous

actions. arXiv preprint arXiv:1705.07177 .

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., . . . Silver, D. (2018).

Rainbow: Combining improvements in deep reinforcement learning. In Proceedings of the aaai

conference on artificial intelligence (Vol. 32).

Higuera, J. C. G., Meger, D., & Dudek, G. (2018). Synthesizing neural network controllers with

probabilistic model-based reinforcement learning. In 2018 ieee/rsj international conference on

intelligent robots and systems (iros) (pp. 2538–2544).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9 (8), 1735–

1780.

Hupé, J., James, A., Payne, B., Lomber, S., Girard, P., & Bullier, J. (1998). Cortical feedback improves

discrimination between figure and background by v1, v2 and v3 neurons. Nature, 394 (6695),

784–787.

Igl, M., Zintgraf, L., Le, T. A., Wood, F., & Whiteson, S. (2018). Deep variational reinforcement learning

for pomdps. In International conference on machine learning (pp. 2117–2126).

Jordan, M. I. (1990). Attractor dynamics and parallelism in a connectionist sequential machine. In

Artificial neural networks: concept learning (pp. 112–127).

Kalweit, G., & Boedecker, J. (2017). Uncertainty-driven imagination for continuous deep reinforcement

learning. In Conference on robot learning (pp. 195–206).

Karl, M., Soelch, M., Bayer, J., & Van der Smagt, P. (2016). Deep variational bayes filters: Unsupervised

learning of state space models from raw data. arXiv preprint arXiv:1605.06432 .

17

Kok, P., Jehee, J. F., & De Lange, F. P. (2012). Less is more: expectation sharpens representations in

the primary visual cortex. Neuron, 75 (2), 265–270.

Krishnan, R. G., Shalit, U., & Sontag, D. (2015). Deep kalman filters. arXiv preprint arXiv:1511.05121 .

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., & Abbeel, P. (2018). Model-ensemble trust-region policy

optimization. arXiv preprint arXiv:1802.10592 .

Lee, A. X., Nagabandi, A., Abbeel, P., & Levine, S. (2019). Stochastic latent actor-critic: Deep

reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953 .

Lee, T. S., & Mumford, D. (2003). Hierarchical bayesian inference in the visual cortex. JOSA A, 20 (7),

1434–1448.

Lu, Q., Hasson, U., & Norman, K. A. (2020). Learning to use episodic memory for event prediction.

bioRxiv 2020.12.15.422882 .

Maass, W. (2016). Searching for principles of brain computation. Current Opinion in Behavioral

Sciences, 11 , 81–92.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . others (2015).

Human-level control through deep reinforcement learning. nature, 518 (7540), 529–533.

Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring

Harbor perspectives in biology , 7 (2), a021808.

Mumford, D. (1992). On the computational architecture of the neocortex. Biological cybernetics, 66 (3),

241–251.

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception

reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences,

99 (23), 15164–15169.

Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘primitive intelli-

gence’in the auditory cortex. Trends in neurosciences, 24 (5), 283–288.

Nagabandi, A., Kahn, G., Fearing, R. S., & Levine, S. (2018). Neural network dynamics for model-based

deep reinforcement learning with model-free fine-tuning. In 2018 ieee international conference on

robotics and automation (icra) (pp. 7559–7566).

Oh, J., Guo, X., Lee, H., Lewis, R., & Singh, S. (2015). Action-conditional video prediction using deep

networks in atari games. arXiv preprint arXiv:1507.08750 .

Olshausen, B. A., & Field, D. J. (1996). Natural image statistics and efficient coding. Network:

computation in neural systems, 7 (2), 333–339.

Paine, R. W., & Tani, J. (2005). How hierarchical control self-organizes in artificial adaptive systems.

Adaptive Behavior , 13 (3), 211–225.

Rao, H. M., Mayo, J. P., & Sommer, M. A. (2016). Circuits for presaccadic visual remapping. Journal

18

of Neurophysiology , 116 (6), 2624–2636.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation

of some extra-classical receptive-field effects. Nature neuroscience, 2 (1), 79–87.

Rosenblith, W. A. (1961). Sensory communication. The MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error

propagation (Tech. Rep.). California Univ San Diego La Jolla Inst for Cognitive Science.

Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate

training of deep neural networks. arXiv preprint arXiv:1602.07868 .

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., . . . others (2020).

Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588 (7839), 604–609.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous

control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 .

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347 .

Schwiedrzik, C. M., & Freiwald, W. A. (2017). High-level prediction signals in a low-level area of the

macaque face-processing hierarchy. Neuron, 96 (1), 89–97.

Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves

evoked by unpredictable auditory stimuli in man. Electroencephalography and clinical neurophysi-

ology , 38 (4), 387–401.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., & Finn, C. (2018). Universal planning networks: Learn-

ing generalizable representations for visuomotor control. In International conference on machine

learning (pp. 4732–4741).

Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: a fresh view of inhibition in

the retina. Proceedings of the Royal Society of London. Series B. Biological Sciences, 216 (1205),

427–459.

Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition

suppression reflects fulfilled perceptual expectations. Nature neuroscience, 11 (9), 1004.

Toromanoff, M., Wirbel, E., & Moutarde, F. (2019). Is deep reinforcement learning really superhuman

on atari? leveling the playing field. arXiv preprint arXiv:1908.04683 .

Van Gerven, M. (2017). Computational foundations of natural intelligence. Frontiers in computational

neuroscience, 11 , 112.

Wang, T., & Ba, J. (2019). Exploring model-based planning with policy networks. arXiv preprint

arXiv:1906.08649 .

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois, E., . . . Ba, J. (2019). Benchmarking

19

model-based reinforcement learning. arXiv preprint arXiv:1907.02057 .

Watter, M., Springenberg, J. T., Boedecker, J., & Riedmiller, M. (2015). Embed to control: A locally

linear latent dynamics model for control from raw images. arXiv preprint arXiv:1506.07365 .

Wayne, G., Hung, C.-C., Amos, D., Mirza, M., Ahuja, A., Grabska-Barwinska, A., . . . others (2018).

Unsupervised predictive memory in a goal-directed agent. arXiv preprint arXiv:1803.10760 .

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., . . . others (2017).

Imagination-augmented agents for deep reinforcement learning. arXiv preprint arXiv:1707.06203 .

Whitehead, S. D., & Ballard, D. H. (1991). Learning to perceive and act by trial and error. Machine

Learning , 7 (1), 45–83.

Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural

network model: A humanoid robot experiment. PLOS Computational Biology , 4 (11).

A Hardware and implementation details

We programmed our implementation in Python using the MxNet framework. Because our model is
relatively small and efficient, it can be run on a single GPU requiring roughly 6GB of GPU memory.
We used a combination of Google Cloud instances with Nvidia Tesla V100 and T4 GPUs and consumer
hardware ranging from Nvidia GTX 1060 to RTX 2080TI graphics cards with typical multi-core CPUs
to run our experiments. The fact that the agent can be run on an Nvidia GTX 1060 with 6GB of GPU
memory demonstrates the small footprint of our model. The choice of CPU did not seem to affect the
speed of the model significantly, considering that the largest bottleneck during training was GPU speed.

B Model Architecture

Our model consists of a ResNet encoder and an LSTM-based main model. The original Atari frames of
210 by 160 pixels in RGB color are converted to the commonly used 84 by 84 pixels grayscale format.
After frame-stacking four times, the final input is four channels of 84 by 84.

In the ResNet encoder, we define a residual block as two convolutional layers each preceded by a ReLU
activation, where the original input is added back to the output, in the preactivation configuration as
suggested by He, Zhang, Ren, and Sun (2016). Note that we do not use batch normalization because
Salimans and Kingma (2016) argued that batch normalization can destabilize the learning process in a
reinforcement learning context. Our overall encoder configuration is very similar to the encoder used by
Espeholt et al. (2018), albeit with a different number of channels and groups, as well as an additional
ReLU activation function preceding each group and a tanh final activation function. The preceding ReLU
is used to ensure there is an activation function between convolutional layers of consecutive groups. The
ResNet model uses four groups of a convolutional layer, a max-pooling layer and two residual blocks,
where the number of channels for all layers in a group is the same. The number of channels per group
increases with the depth of the model: 24, 32, 64, and 128 channels respectively. We use a kernel size
of three in all layers, a padding of one and a stride of one, except for the max-pooling layers, where
the stride is two. Kernel size, padding and strides are the same in both dimensions. The output of the
ResNet architecture is 128 channels with 6 by 6 dimensions. The final layer of the encoder is a densely
connected layer containing 512 neurons with tanh activation.

20

Figure 8: Encoder architecture, following a similar structure to the architecture used by Espeholt et al.
(2018) with a few modifications. The encoder uses a total of 20 convolutional layers and 3.3M parameters.

For the baseline main model, we apply a simple LSTM with 1024 neurons and outputs for value
prediction and softmax action probabilities. For our P4O models, we modify the LSTM significantly.
First, we reserve half of the LSTM hidden state to represent input predictions. In the P4O Base model,
we subtract the actual input from the input prediction and provide this prediction error signal as input
to the model, along with a single action encoding. In the P4O Integrated variant, we again subtract
the actual input from the input prediction, but this time transform this part of the hidden state to the
prediction error signal. We replace the normal input in the LSTM with a vector that only provides space
for a one-hot encoding of an action. The weight matrices and gating functions of the LSTM are therefore
applied to the normal half of the hidden state, the prediction error and an action vector. Note that this
means we do not provide the input on its own, thus the only way the model will receive information
about its true state is through the prediction error incorporated in the hidden state. During training, we
minimize the prediction error segment of the hidden state. The direct output hidden state of the LSTM
then again consists of half an unrestricted hidden state and the other half represents the new input
prediction. For the P4O Constrained variant, we use the same model as the P4O Integrated variant, but
add an additional L1 loss component to the normal part of the hidden state during training.

21

C Hyperparameters

Hyperparameter Value
Learning rate 2.5× 10−4

Optimizer Adam
Adam (ε) 1× 10−5

Num. parallel environments 16
Mini-batch size 400
Discount (γ) 0.99
GAE parameter (λ) 0.95
PPO clip range (ε) 0.1
Epochs per batch 4
Num. mini-batches 5
Actor loss coefficient (c1) 1.0
Critic loss coefficient (c2) 0.5
Predictive processing loss coefficient (c3) 1.0
Entropy term coefficient (c4) 0.02
L1 norm loss coefficient (c5) 0.1
Hidden units in final encoder layer 512
LSTM hidden units 1024
ResNet channels [24,32,64,128]
Image width, height, channels 84, 84, 1
Frame stacking 4

Table 2: Hyperparameters used in the P4O agents.

D Baseline PPO Algorithm

While the standard PPO algorithm with a clipped objective as described in the original paper works well
as is, due to its popularity a number of best practices and adjustments have appeared in other studies
and online resources. We have incorporated a number of these improvements in our baseline model,
as well as a few of our own modifications. The foundation of the algorithm is PPO with generalized
advantage estimation (Schulman et al., 2015) combined with a ResNet encoder and an LSTM as our
final layer. The final layer of the ResNet encoder is a densely connected layer with tanh activation to
be compatible with our LSTM output. Besides clipping the actor loss, we also clip the critic to stabilize
the critic further and avoid sudden large deviations from the previous model. We apply an entropy term
to encourage exploration and avoid the model becoming too deterministic early on. As mentioned by
Andrychowicz et al. (2020), in standard PPO the advantages are calculated as the last step of retrieving
a batch of data, resulting in stale advantages after a few epochs with the same data. To avoid this, we
recalculate the advantages for every update with the new model rather than once at the end of a batch
rollout. We apply a similar approach to refresh the hidden states for the LSTM at every update. We
also standardize the advantages to have a mean of zero and a standard deviation of one. For further
stability, we clip the gradients before every update. The learning rate decays linearly relative to the total
number of updates and ends at zero, except for the long run where we decay with a constant factor of
0.995 every 100 batches to a minimum learning rate of 5× 10−6.

An additional observation about the original PPO algorithm that we addressed in our implementation
is that the first update in a set of updates on a batch of data is unconstrained. This occurs because
the policy in the first update is the same as the policy that generated the data, and therefore the ratio
between these policies is always one, allowing this update to be unconstrained. Since training should be
more stable if we also constrain the first update, we have done so by rolling out with the second-last
policy parameters from the previous set of updates, rather than the latest policy. The latest policy can
then be used for the first update with the new set of data and will be constrained by its ratio compared
to the previous model, as described in Algorithm 1.

22

Algorithm 1 Modified PPO
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . , N do
Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, . . . , ÂT
end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT for a total of U
updates, generating θ1, . . . , θU
θold ← θU−1

θ ← θU
end for

(15)

23

	Introduction
	P4O
	Predictive Processing
	Base Model
	Integrated Prediction Error
	Additional Efficient Coding Constraint

	Algorithm
	Experiments
	Experimental Setup
	P4O Base
	Varying Prediction Horizons
	P4O Integrated
	P4O Constrained
	Comparison with state-of-the-art
	Neural coding

	Discussion
	Hardware and implementation details
	Model Architecture
	Hyperparameters
	Baseline PPO Algorithm

