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Abstract

In 2011 Nishimoto et al. successfully managed to reconstruct naturalistic movies from
the brain activity of the visual cortex. In this study we repeat their experiment with
a bigger dataset containing 24 hours of densely sampled fMRI data of a single subject
watching a television series, overcoming the problem of having to adjust for a low
amount of data in multiple brains. Originally, a motion-energy model was used to
create features for the encoding model, which is a model of how motion is processed
in the early visual cortex. We compared the performance of motion-energy features to
the performance of an encoding model that uses features from a trained convolutional
neural network in order to cover more higher-order areas in the visual cortex. These
two types of features were also combined to create an encoding model selective to
both lower- and higher-order information. We showed that this combination performs
significantly better than the performance of the features separately. However, it must
also be concluded that the current method of reconstruction is not sufficient to create
scenes that have the complexity that a regular television series displays, leaving room
for future research in methods to create more detailed reconstructions.

1 Introduction

Reconstructing percepts from brain activity
is currently a hot topic within neuroscience.
Being able to model brain activity leads to
a better understanding of the dynamic pro-
cesses that make up the brain and shows
us how information is represented along the
cortex. Over the past few years, multiple
studies have been able to successfully recon-
struct brain activity using functional mag-
netic resonance imaging (fMRI), mainly in
the visual system. The visual system is an
interesting and useful area to reconstruct as
the input of the system is quite clear: the
light that enters our eyes forms an image
which is projected on the visual cortex in
the back of the brain. If one is able to suc-
cessfully reconstruct the information in the
visual system, this would not only lead to a
better understanding of how information is
represented across the different visual areas
in the brain, but the output of the model
could also be seen as a brain-reading device,
that is capable of showing what a person was
seeing.

In order to make these reconstructions, an
encoding and decoding model are required
to make a mapping between the brain activ-
ity and the stimulus that was seen. Brain
activity is measured as the blood oxygen
level-dependent (BOLD) response in sepa-
rate voxels in the brain using fMRI. Encod-
ing models are used to predict the brain ac-
tivity in response to the seen stimuli, while
decoding models use the brain activity to
predict the seen stimuli instead. It is only
necessary to train the parameters of the en-
coding model, as the decoding model can
be learned from the encoding model using
Bayes’ rule (Naselaris et al., 2011), which
states that the decoding model is propor-
tional to the product of the encoding model
and a prior.

Training the encoding models consist of two
parts: First, the stimuli are transformed into
features by using a non-linear feature model.
This is done non-linearly as most computa-
tions performed by the brain are nonlinear
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(Naselaris et al., 2011). The second step is
to train a response model that linearly trans-
forms features to brain activity. In contrast
to the feature model this is done linearly, be-
cause the mapping should represent which
features stimulate activity in what voxels.

Over the last few years, multiple success-
ful reconstruction models of perceived visual
stimuli have been made using the technique
described above. Reconstructions have been
made of a variety of visual stimuli, for exam-
ple geometric patterns (Thirion et al., 2006;
Miyawaki et al., 2008), handwritten letters
(Schoenmakers et al., 2013, 2015) and nat-
uralistic images (Naselaris et al., 2009). In
2011, Nishimoto et al. even successfully re-
constructed movie clips (Nishimoto et al.,
2011). The research by Nishimoto et al. was
the first to show that dynamic brain activity
can be decoded using fMRI data. The com-
bination of the ability to capture visual mo-
tion using motion-energy features (Adelson
and Bergen, 1985; Watson and Ahumada,
1985) and being able to represent the mech-
anisms of the slow hemodynamic response
was key for their good results. In this study
we have reproduced the work by Nishimoto
et al. on a new and bigger dataset, contain-
ing 24 hours of densely sampled fMRI data,
and tried to improve upon their results by
using an additional feature model: Convolu-
tional neural networks.

Convolutional neural networks (CNNs) are
currently the state-of-the-art when it comes
to automatic object recognition and are suc-
cessful in many machine learning applica-
tions. Neural networks were originally de-
signed to act as a computational model to
simulate how neurons in the brain work (Mc-
Culloch and Pitts, 1943) and convolutional
neural networks specifically were inspired

by the inner workings of the visual cortex
(Fukushima, 1980). Just like the recep-
tive fields that become increasingly more
complex along the visual system, the ear-
lier layers of a CNN are more sensitive to
simple features while the higher layers re-
spond to more abstract, object-like features.
Recently, they have steadily increased their
popularity in the neuroscience community
again. Research has shown that the features
created by convolutional neural networks ac-
curately predict responses in both the ven-
tral and dorsal stream in the visual cortex
(Güçlü and van Gerven, 2015, 2017). Fur-
thermore, Güçlü et al. (2015) showed that
CNNs produce state-of-the-art results when
they are used as feature models for encod-
ing and decoding models in the domain of
naturalistic images. They improved upon re-
sults of earlier research where only low-level
features were used, showing that also using
high-level features is crucial for optimal per-
formance. Since motion-energy features are
solely low-level features, it seems plausible
that the features from CNNs can improve
the reconstructions when decoding movies
instead of images as well. This hypothesis
gets substantiated by the the fact that con-
volutional neural networks are also state-of-
the-art in the domain of action recognition
models where videos are classified based on
their contents (Tran et al., 2018).

To create the CNN features, we used a feed-
forward CNN that was trained on 240,000
videos to predict 400 classes of different ac-
tions. The learned filters of the last convolu-
tional layer of the network were used as the
features to train the encoding model to cap-
ture the high-level information in the data.
To investigate if CNN features perform bet-
ter than its motion-energy counterpart, we
collected both types of features on the same
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data set and trained encoding models to pre-
dict the BOLD responses collected from the
entire brain. A combined model of the best
predictive voxels over both feature types was
also constructed to see if having a combina-
tion of both features would lead to better
reconstructions. A Bayesian approach was
used to combine a naturalistic movie prior
with the encoding models to create recon-
structions from unseen BOLD responses.

Using this approach we were able to show
that a combined model that includes both
features that represent lower-order and fea-
tures that include higher-order information
is significantly better at making reconstruc-
tions than models that use only one of these
types of features. However, the quality of
the reconstructions is still very crude. This
is mainly caused by the fact that the stimuli
set, a television series, displays very com-
plex scenes and is not easily reconstructed,
leaving room for future research on the im-
provement of more detailed reconstructions.

1.1 Previous work

The research towards building a so called
brain-reading device has increased for the
last few decades, following the emergence of
fMRI. Most work has been performed on the
decoding of information from the visual cor-
tex, with the most successful methods using
fMRI to measure the activity. Pioneering
research was done by Haxby et al. (2001),
who investigated the ventral visual pathway.
In the study, subjects were presented with
pictures of faces, cats, man-made objects
and control scrambled objects in an fMRI
scanner. It was shown that each category
caused a distinct response pattern in the vi-
sual cortex, and they were therefore able to
predict which category the participants were

seeing. Interestingly, the patterns were also
predicted correctly when highly specialized
areas like the fusiform face area (FFA) or the
parahippocampal place area (PPA) were left
out from the analysis. This indicated that
representations of objects are distributed
across the entire visual cortex and that they
are unique even in earlier stages of the vi-
sual pathway. In 2005, Kamitani and Tong
confirmed this finding by showing that they
could decode the orientation of a stimulus
out of eight possible options by just looking
at the the fMRI activity in the primary vi-
sual cortex (V1) (Kamitani and Tong, 2005).

A big breakthrough in the field was made by
Thirion et al. (2006), as they were able to
make an actual reconstruction of the shape
of the image that had been presented to
their participants. Until that time, all stud-
ies about visual decoding had done image
classification, where an image would be cho-
sen from a predefined set of options. By
showing their participants flickering checker-
board patterns, Thirion et al. (2006) made
a retinotopic mapping. A generative model
was then created by mapping the retinotopic
visual stimuli patterns to the fMRI data. By
inverting this model using a Bayesian frame-
work, unseen fMRI data could be used to
reconstruct the corresponding pattern on a
retinotopic map. They were also able to re-
produce their findings on mental imagery,
albeit not as well as in the visual task, sup-
porting the hypothesis that imagery acti-
vates the early visual cortex (Chen et al.,
1998; Kosslyn et al., 1995). Miyawaki et al.
(2008) build upon this research by extend-
ing to a multi-voxel, multi-scale approach in
order to be able to reconstruct luminance
in an image. They showed that using mul-
tiple voxels was beneficial for the decoding
performance, suggesting that visual infor-
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mation is not only represented by renotopic
mapping, but also by the correlations be-
tween voxels. A multi-scale approach was
chosen as conventional retinotopy only cre-
ates a location-to-location mapping, and it
is thought that the visual cortex represents
visual information at multiple scales. In con-
trast to Thirion et al. (2006), they did not
invert the encoding model to receive a decod-
ing model, but instead directly computed it.
For each patch in the image a decoder was
trained that predicted the luminance based
on a weighted sum of the fMRI signals. With
this approach they were able to reconstruct
geometric shapes and letters quite clearly.

Naselaris et al. (2009) took it one step fur-
ther by trying to reconstruct natural images.
They used a Bayesian framework that used
two different encoding models to integrate
both low-level and high-level information:
the structural model and semantic model.
Furthermore a natural image prior was used
to create preexisting knowledge about the
structure of natural images. The structural
model defined a mapping between the fMRI
data of the most predictive voxels in the
visual cortex and natural images filtered by
two-dimensional Gabor filters. The semantic
encoding model defined a mapping between
the fMRI data of the most predictive voxels
and the semantic category of natural images
as labeled by human observers. The recon-
structions are created by choosing an image
from the prior that has the highest posterior
probability, which was proportional to the
multiplication of the likelihoods of the two
encoding models. The reconstructions were
able to accurately depict the spatial struc-
ture and semantic category of the stimuli.

One of the most recent work on reconstruc-
tions was done by Schoenmakers et al. (2013,

2015). The ideas from Thirion et al. (2006)
and Naselaris et al. (2009) were combined in
Schoenmakers et al. (2013) to create an ap-
proach that could reconstruct handwritten
letters. An encoding model based on image
features together with a suitable image prior
was used to explicitly invert the encoding
model to create the decoding model. The
encoding model was constructed as a regu-
larized linear Gaussian model and the im-
age prior used was a multivariate Gaussian.
During encoding a mapping was learned be-
tween the pixel values of the input image and
the fMRI data. High quality reconstructions
were made, even of unseen letters, making
this a very universal method. Schoenmakers
et al. (2015) expanded on this research by
adding higher-level semantic information to
the model. This was done by adding infor-
mation from higher-order brain areas and
using a Gaussian mixture model as a prior.
This lead to even better reconstructions then
their previous work.

The most important work for the current
study was the work by Nishimoto et al.
(2011). They extended their research in
Naselaris et al. (2009) from reconstructing
natural images to the reconstruction of nat-
ural movies. Decoding the brain over time is
a difficult problem as using fMRI to measure
BOLD responses is relatively slow in com-
parison with the rate that vision is processed
in the brain. However, fMRI is currently
the best tool for noninvasive measurement
of brain activity. Nishimoto et al. (2011)
solved this problem by designing an encoding
model that includes a set of hemodynamic
response filters spanning various temporal
delays to fit each voxel to their distinctive
hemodynamic delay. The encoding model
also makes use of motion-energy (Adelson
and Bergen, 1985; Watson and Ahumada,
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1985) as their feature model, which uses
three-dimensional Gabor filters at its basis,
to make a mapping between the movies and
the fMRI data (for a more elaborate expla-
nation of motion-energy see section 2.2.1).
Reconstructions were constructed by using a
Bayesian approach to combine the encoding
model with a natural movie prior that con-
sisted of approximately 18 million seconds of
clips sampled from the internet. The top 100
videos with the highest posterior probability
were averaged to create the final reconstruc-
tion. Their results were the first successful
reconstructions of natural movies created
from human brain activity.

2 Materials and Methods

2.1 Dataset

This research will use the data collected by
Seeliger et al. (2019). An overview of the
details described in that study will be pre-
sented here. Seeliger et al. (2019) collected
24 hours of fMRI data from a single subject
(male, age 27) who watched 31 episodes of
the television series Doctor Who (BBC). The
data was collected especially to have a suffi-
cient amount of free parameters in order to
train machine learning models for decoding
and encoding analysis. Only a single sub-
ject was used to be able to analyze a brain
at voxel resolution without having to com-
pensate for the phenotypic diversity between
brains by smoothing and normalizing across
them. In total, 121.360 volumes of training
data and 1.178 volumes of test data were
recorded.

In contrast with Nishimoto et al. (2011) who
only collected slices covering the posterior
occipital cortex and two hours of data, the
data by Seeliger et al. (2019) covers the en-

tire brain and was collected over a ten times
bigger time frame. This means we have a
lot more data to incorporate into our mod-
els and see whether performance of both the
motion-energy and the deep neural network
encoding models can be increased using more
areas than the brain than just the posterior
occipital cortex.

2.1.1 Experimental procedure

The volumes were recorded over a six month
period. In each session one episode of Doc-
tor Who was shown. All episodes were split
into four clips, where the first three clips
were all twelve minutes long and the last
clip was the remainder of the episode with
a variable length. Two clips were shown
per fMRI recording to support the atten-
tion of the participant. Additionally seven
short clips (ranging from one to four min-
utes with a total length of approximately 12
minutes) were concatenated and presented
each session in an extra fMRI recording to
be included in the test set. The test set clips
featured mini-episodes from different seasons
than the episodes from the train set, featur-
ing different actors but very similar stories
and surroundings. The test clips were pre-
sented in total 22 times over all sessions and
the final test volumes were averaged over all
repetitions. The training set was presented
just once. All fMRI recordings ended with
a black screen lasting 16 seconds to account
for the hemodynamic delay. The videos were
presented on a mirror in the MRI machine
reflecting the projection of a video projector
on the outside. The videos were shown at
20 horizontal and vertical degrees of the vi-
sual field. To make sure the participant was
able to see as much as possible of the orig-
inal video, the videos were first resized to
696×1264 and then cropped to 696×732 to
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fill the screen within the 20 degrees. Black
margins were added to the cropped video
to fill the screen to the projector resolu-
tion of 768 × 1024. Audio was presented
using earphones and the dynamic range of
the audio was compressed in order to have
the speech not overshadowed by the scanner
noise, but have a tolerable volume for the
louder sounds. The subject was instructed
to fixate on the fixation cross placed in the
center of the video. A custom-made foam
head cast, a chin rest and constant distances
within the set-up were used to ensure stable
positions across the sessions. It was always
ensured that the participant was comfortable
during the sessions.

2.1.2 fMRI parameters

The measurements were taken in a Siemens
3T MAGNETOM Prisma with a 32-channel
head coil. The functional scans had a TR of
700 ms, a TE of 39 ms and a flip angle of 75
degrees. Volumes were recorded with a voxel
size of 2.4 mm3 using 64 transversal slices.
The videos were measured with a multiband
acceleration factor of 8. Next to functional
scans, structural scans were carried out in
order to localize areas related to the visual
and auditory systems. Specifically, localiz-
ers were collected for V1, V2, V3, MT, LOC,
FFA, OFA, AC and M1. The first three were
mapped separately for the dorsal and ven-
tral stream, and all areas were provided for
the different hemispheres. These structural
scans had a TR of 2300 ms, a TE of 3.03 ms
and a flip angle of 8 degrees. These volumes
were recorded with a voxel size of 1 mm3 us-
ing 192 saggital slices.

2.1.3 Data preprocessing

After the data was recorded, preprocessing
was applied. The preprocessing only con-

sisted of realignment and standardization.
No slice time correction was necessary due
to the fast multiband protocol. The series of
volumes of both the train and test set were
realigned per twelve minutes to their middle
volume and then all volumes were realigned
to the middle volume from the first twelve
minutes of the first episode to ensure align-
ment across all clips. Each voxel was stan-
dardized with zero mean and unit variance.

2.2 Feature models

Two feature models were used in this re-
search to train the encoding models and
learn the mapping to the BOLD responses
of the train set. The original research by
Nishimoto et al. (2011) used motion-energy
as their feature model and we expanded
on their research by including convolutional
neural networks as a feature model. Both
models will be explained below. Code for
the feature models and the rest of this re-
search can be found on https://github.

com/LeoniekevandenBulk/Thesis.

2.2.1 Motion-energy

The concept of motion-energy was origi-
nally proposed as a model of the human
perception of motion (Adelson and Bergen,
1985; Watson and Ahumada, 1985). Motion-
energy is designed to be selective to differ-
ent spatiotemporal frequencies and is con-
sidered to be similar to the processing that
occurs in the early visual pathway. The out-
put of a motion-energy model gives infor-
mation about the direction of motion at a
given location in a given moment in time.
Nishimoto et al. (2011) based their compu-
tations for the motion-energy model on the
work by Adelson and Bergen (1985). The
motion-energy features are created in several
steps. The first step is to resize the input
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videos to 96 × 96 and discard the color in-
formation by transforming the RGB values
of the input to CIELAB color space. Color
information is removed as it does not im-
prove predictions, making it computation-
ally better to remove it (Nishimoto et al.,
2011). The videos are then passed through
three-dimensional spatiotemporal Gabor fil-
ters. Gabor filters are filters that are sensi-
tive to different positions, orientations and
frequencies (e.g. a vertical bar moving to
the right). The filters are made by multi-
plying a three-dimensional sinusoid with a
three-dimensional Gaussian envelope. Two
of the three dimensions represent space, the
last dimensions represent time. The research
by Nishimoto et al. (2011) used 6555 sepa-
rate Gabor filters, containing filters with a
range of eight directions (0, 45, 90, 135, 180,
225, 270 and 315 degrees), six spatial fre-
quencies (0, 2, 4, 8, 16 and 32 cycles per
frame) and three temporal frequencies (0, 2
and 4 Hz). Filters at each spatial frequency
are positioned such that they are separated
by 3.5 standard deviations. Each of the 6555
filters is created at two quadratic phases (0
and 90 degrees), causing one to have co-
sine phase and the other to have sine phase.
The output of the two phases is squared and
summed, taking advantage of the fact that
sin2(θ) + cos2(θ) = 1. This is done to ensure
that the resulting filter is contrast invariant
and phase insensitive and is thus not influ-
enced by the alignment of the movement to
the receptive field of the filter. The summed
filters are compressed using a logarithm and
downsampled to the sampling rate of the
measured BOLD signals by averaging over
the TR. Each downsampled signal is normal-
ized to have a mean of zero and a standard
deviation of one by normalizing across time
using a Z-score transformation. Outliers of
more than three times the standard devia-

tion are truncated to improve stability. Note
that the motion-energy features of the test
set and movie prior made use of the mean
and standard deviation of the motion-energy
features of the train set to be normalized.
Nishimoto et al. (2011) made their imple-
mentation of their framework available on-
line at https://github.com/gallantlab/

motion_energy_matlab, which we used to
obtain the motion-energy features for our
dataset.

2.2.2 Convolutional neural network

We propose to use the features created
by convolutional neural networks next to
the motion-energy features to include more
higher-order information. Zeiler and Fergus
(2014) have shown that the layers of a neu-
ral network respond to increasingly complex
features. The first couple of layers resemble
Gabor-like filters, but in the deeper layers
the features start to resemble (parts of) ob-
ject shapes. We therefore believe the neural
network features to be a better fit for the
higher-order areas of the visual cortex than
the motion-energy features.

We used a convolutional neural network de-
signed for the classification of videos. These
so called action recognition networks are
state-of-the-art when it comes to identify-
ing and detecting activities in video. One
of the best models of the past year is the
R(2+1)D network (Tran et al., 2018), which
is a variation on the successful ResNet ar-
chitecture (He et al., 2016). The network
uses spatiotemporal convolutions that are
in-between 2D and 3D, called (2+1)D con-
volutions. It splits a full 3D convolution
in two successive operations: a spatial 2D
convolution followed by a temporal 1D con-
volution. This decomposition doubles the

8

https://github.com/gallantlab/motion_energy_matlab
https://github.com/gallantlab/motion_energy_matlab


Figure 1: The architecture of the R(2+1)D network. The different elements of the archi-
tecture are color-coded, their specifics can be found in their corresponding colored boxes on
the right. The curved arrows denote the skip-connections that carry over the input of a block
to be summed with the output of that block. Note that in the architecture only the number of
neurons in the temporal layers are displayed, the number of neurons in the spatial layers can
be computed via Equation 1.

amount of nonlinearities in comparison with
a 3D convolution for the same number of
parameters, making the network capable of
learning more complex representations. The
decomposition also makes the network easier
to optimize, yielding a better performance.

The network used for the current study is
the 18-layer R(2+1)D network from Tran
et al. (2018) and is depicted in Figure 1.
We will give an overview of the architecture
here, the specific details, however, can be
found in the original paper. The network is
equal to an 18-layer 3D ResNet where the 3D
convolutions have been replaced with the de-
composed convolutions as described above.

The network starts out with a (2+1)D con-
volution, which is followed by eight (2+1)D
blocks, an average pooling layer and ends
with a fully convolutional layer which maps
to the final labels by means of a softmax
function. A (2+1)D block is defined as
two sequential (2+1)D convolutions that get
summed with the initial input of that block
via a skip connection. Tran et al. (2018)
designed the (2+1)D convolutions such that
they have the same amount of parameters
as a full 3D convolution, which results in
that the temporal 1D convolutions have the
same number of neurons as their respective
3D counterparts, but the number of neurons
in the spatial 2D convolution are determined
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via the following formula:

Ns =
k2sktNt−1Nt

k2sNt−1 + ktNt

(1)

where ks and kt are the kernel sizes for the
spatial 2D and temporal 1D convolutions re-
spectively, and Nt−1 and Nt are the number
of neurons in the previous and current tem-
poral convolution respectively.

The number of neurons for the temporal con-
volutions is 64 for the first separate (2+1)D
convolution and 64, 64, 128, 128, 256, 256,
512, 512 for the (2+1)D blocks. The spatial
kernel sizes are set to 1×3×3 and the tem-
poral kernel sizes are 3×1×1. For each con-
volution, the input is padded with 1 in the
dimensions of the convolution. The stride
is set to 1×1×1 to keep the dimensions of
the input the same, except in the first spa-
tial and temporal convolution of blocks 3, 5
and 7. There the stride is set to 1×2×2 and
2×1×1 respectively to half the dimension of
the input. In these blocks the input that
gets summed via the skip-connections is also
downsampled with the use of a normal 3D
convolution with a kernel size of 1×1×1, a
stride of 2×2×2 and a padding of 0×0×0
to avoid summing two volumes with differ-
ent dimensions. Batch normalization and a
ReLu activation function are always applied
after each convolution.

We used the pretrained network from Tran
et al. (2018), which can be downloaded from
https://github.com/facebookresearch/

VMZ/blob/master/tutorials/models.md

and is implemented in PyTorch (Paszke
et al., 2017). The network was trained on the
Kinetics dataset (Kay et al., 2017), which
consists of videos in which human actions
are performed (e.g. playing certain sports,
shaking hands or laughing). The dataset

contains 240,000 ten second long training
videos at 15 FPS divided over 400 classes.
The network expects an input size of 112
pixels × 112 pixels × 16 frames. Training
videos were scaled to a size of 128 × 171
pixels and input was created by randomly
cropping windows of size 112 × 112 pixels
from 16 random consecutive frames and mir-
rored horizontally with a 0.5 probability. By
doing this spatial and temporal jittering, the
training size was artificially enlarged mean-
ing that training could continue for longer
before hitting a plateau in the loss. Training
was done over 45 epochs with an epoch size
of 1,000,000 clips. During training, an initial
learning rate of 0.01, a momentum of 0.9, a
weight decay of 0.0004 and a mini-batch size
of 32 were used. Every 10 epochs the learn-
ing rate was divided by 10.

Although the Kinetics dataset uses a frame
rate of 15 FPS, we should use an FPS that
fits the speed of the BOLD response record-
ings with a TR of 0.7 seconds. In order to
create 16 frames over 0.7 seconds, we thus
needed an FPS of 22.86 (note that this FPS
was also used for the motion-energy features
to be consistent across features). We decided
to finetune the network to train with the new
FPS and also to train the network to be sen-
sitive to the full input instead of cropped
windows, as this is more useful when trying
to reconstruct entire scenes. Training pa-
rameters were kept mostly the same, only
the videos were directly resized to 112 × 112
pixels, omitting the spatial jittering. Fur-
thermore, the finetuned network was trained
for 30 epochs with an epoch size of 240,000
clips and a mini-batch size of 10. Both train-
ing and finetuning was done with stochastic
gradient descent using cross-entropy loss.

The final features from our R(2+1)D model
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are created by taking the output from the
average pooling after the last (2+1)D con-
volution, which is a feature vector of size
1×512. This layer was taken as the most in-
formative higher order information, as fully
connected layers are proven not to be very
useful in the encoding of BOLD responses
from movies (Güçlü and van Gerven, 2017).

2.3 Encoding model

Encoding models were trained for both fea-
ture models between the features created
with the training data and their associated
BOLD responses. The data was fit per voxel.
Let xt be a 0.7 second video from the training
data consisting of pixels at timepoint t and
yt+d
i the BOLD response of the ith voxel at

timepoint t plus a hemodynamic delay of d.
Furthermore, let f(xt) be the feature repre-
sentation of the video input at timepoint t.
Ridge regression, which is a form of regular-
ized linear regression, was used to fit the in-
dividual voxels, giving us the following equa-
tion:

yt+d
i = β>j f(xt) + εi (2)

where βj represents a regression coefficient
and εi is residual noise equal to N (0, σ2

i ).
The regression coefficients can be deter-
mined by estimating:

β̂i = (F>F + λI)−1F>Y (3)

where F = (f(x1), f(x2), ..., f(xt)), Y =
(y1i , y

2
i , ..., y

t
i), I is the identity matrix and

λ is a regularization parameter. Leave-one-
out cross-validation was used to optimize the
regularization parameters. The code that
was used for the regression can be found at
https://github.com/alexhuth/ridge.

To account for the hemodynamic delay, five
encoding models were trained for each fea-
ture model. Each of the encoding models
corresponded to a different delay, covering
the feature responses from 2.8 - 5.6 seconds
before the BOLD response, with a 0.7 sec-
ond interval. This in contrast to the origi-
nal work by Nishimoto et al. (2011), which
used a fixed delay of 4 seconds for their
reconstructions. For each voxel, it was de-
termined on a separate validation set which
delay lead to the most accurate predictions
of the BOLD responses. Accuracy was based
on Pearson’s correlation coefficient between
the observed and predicted BOLD responses.
From the set of voxels and their optimal
delays, a selection was made to only in-
clude voxels with a high prediction accuracy
as adding voxels with low predictive power
leads to a decrease in performance (Kay
et al., 2008). Similar to Nishimoto et al.
(2011), we collected the top 2000 voxels for
both the motion-energy and the R(2+1)D
pooling layer encoding model from a total
of 117,010 collected voxels. A combined
voxel selection was also created in order to
be able to capture both the voxels sensitive
to low-level features and the voxels sensi-
tive to high-level features. This was done by
extracting the voxels (and their respective
weights) that were unique across both voxel
selections (i.e. can only be found in one of
the voxel selections) and adding these to the
combined selection. For all voxels that were
shared between the two voxel selections, the
voxel and weights from the feature model
that has the best predictive power is added
to the combined selection as well.

2.4 Decoding model

A Bayesian approach was used to reconstruct
the test set from the corresponding BOLD
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responses. Although it is possible to train
a separate decoding model that maps back
from the BOLD response to the respective
feature, common practice is to derive the
decoding model from the learned encoding
model (Naselaris et al., 2011). This can be
achieved through Bayes’ rule, which states
that the decoding model is proportional to
the encoding model multiplied with a prior.
The prior that was used consisted of ∼5
million natural video clips sampled from
the internet via two different datasets: the
Youtube 8M dataset (Abu-El-Haija et al.,
2016) and the Moments in Time dataset
(Monfort et al., 2019). The Youtube 8M
dataset is a big video dataset created to
train machine learning models on, consist-
ing of 6.1 million videos divided over 3862
classes extracted from Youtube based on
an automatic quality assessment. The Mo-
ments in Time dataset was created as an
action recognition set consisting of a mil-
lion videos labeled with 339 different classes.
We randomly sampled 4453362 and 765000
0.7 second videos from the videos in those
datasets respectively. All prior clips were
assigned a uniform probability. Note that
the original work by Nishimoto et al. (2011)
used a prior set of ∼18 million clips, how-
ever, because of time constraints, we had to
use a more limited set.

Each of the prior videos was transformed
by both feature models into a set of fea-
tures. Using the trained encoding model
weights from the voxel selections, the BOLD
responses for the top 2000 selected voxels
were predicted for both feature sets of the
prior videos. These were compared to the
observed BOLD responses for the test set
by taking the Pearson’s correlation coeffi-
cient between the two. Just like in Nishi-
moto et al. (2011), we took the top 100

prior videos that had the highest likelihood
per TR, based on the correlation coefficient.
Note that originally instead of the correla-
tion coefficient, the likelihood estimation was
based on a multivariate Gaussian. However,
since our training data was only collected
once, it was not possible to estimate the
covariance matrix, so Pearson’s correlation
coefficient was taken instead.

The top 100 best prior videos per TR were
averaged to create the final reconstruction.
Each clip was normalized to have unit stan-
dard deviation before averaging to make
sure each clip had an equal contribution
to the average. After averaging, the mean
and standard deviation of the reconstruction
were normalized to be equal to the average
mean and standard deviation of the top 100
videos.

2.5 Analyses

In order to evaluate the quality of the re-
constructions, a method is necessary that
quantifies the similarity between the test set
videos and their reconstructions. Research
surrounding video similarity is mostly fo-
cused on content similarity such that videos
with the same context can be easily grouped
together. However, since we are investigat-
ing whether a video can be reconstructed
pixel-by-pixel, we chose to resort to a frame-
by-frame comparison using an image sim-
ilarity measure. Recently, the most suc-
cessful methods for image similarity have
been using features from convolutional neu-
ral network to compare images (Wang et al.,
2014; Jing et al., 2015). For our compar-
isons, we will use AlexNet (Krizhevsky et al.,
2012). AlexNet is a eight-layer convolutional
neural network consisting of five convolu-
tional layers (with 64, 192, 384, 252 and
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252 neurons respectively) and three fully
connected layers (with 4096, 4096 and 1000
neurons). AlexNet was one of the first suc-
cessful artificial neural networks used for
image classification and the ImageNet chal-
lenge and has been shown to have a high
accuracy and display clear hierarchical ob-
ject features across the layers (Zeiler and
Fergus, 2014). The network maps to a 1000
object categories, containg both animate
and inanimate objects. We used the pre-
trained network from the PyTorch platform
(Paszke et al., 2017), which can be found
on https://pytorch.org/docs/stable/

torchvision/models.html.

The test video and all three reconstructions
were fed frame-by-frame through AlexNet.
For each of the layers of the network the
features from each of the reconstructions
were compared with the features from the
test video by using Pearson’s correlation co-
efficient. In order to have a baseline for
the correlation coefficients, we also created
a random reconstruction by selecting ran-
dom top 100 videos for each TR. To test the
significance of the reconstructions, we com-
pared the correlation coefficients of each of
the reconstructions with the random recon-
struction by means of a Wilcoxon rank-sum
test for each of the layers in the network. To
test whether there was any significant dif-
ference between the reconstructions them-
selves, a Wilcoxon signed-rank test was used
between the correlation coefficents for each
of the layers of the network.

2.6 Imagery

We can take the decoding of the visual cortex
one step further by trying to decode mental
imagery from the BOLD responses, as pre-
viously successfully tried by Thirion et al.

(2006). Research has shown that mental im-
agery engages the visual cortex just like vi-
sual information, albeit in a weaker manner
(Chen et al., 1998; Kosslyn et al., 1995). We
will apply our learned encoding models to
the BOLD responses of a mental imagery
task, to see if this can be reconstructed as
well. The data used was collected by Seeliger
et al. (2019), just as the rest of the data used
for this research. The same participant that
collected the earlier described train and test
data was used for the mental imagery task
and it was collected with the same proto-
col and preprocessing. The participant was
asked to imagine the two different intro se-
quences of the Doctor Who series appearing
in the test set for 10 seconds, in which a blue
telephone box flies either through a blue or
orange colored space. Both these conditions
were repeated 24 times. The final BOLD re-
sponses were created by taking the average
over these repetitions. As it is unclear what
the hemodynamic delay is between the onset
of imagining and the BOLD response, data
was only collected during the 10 seconds of
imagery and the signals were not shifted for-
ward in time. To make the imagery recon-
structions, the same encoding and decoding
model as for the test set reconstructions were
applied. This resulted in a top 100 of prior
videos for each of the 14 TRs, which were
averaged to create the final reconstruction.

3 Results

3.1 Voxel selection

Five encoding models were trained for each
feature model, where each of the encoding
models represented a delay in a range of 2.8-
5.6 seconds between the stimuli onset and
the BOLD response using 0.7 second inter-
vals. Across all delays, the 2000 most predic-
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Figure 2: Top 2000 voxel selection from the motion-energy encoding model presented on a
flat-map of the brain.

tive voxels were chosen for the motion-energy
encoding models and the R(2+1)D pooling
layer encoding models. Figures 2 and 4 dis-
play the voxel selections for motion-energy
and the R(2+1)D pooling layer respectively
across flat-maps of the brain. All flat-maps
presented in this paper were created using
Pycortex software (Gao et al., 2015). Fig-
ures 3 and 5 display Pearson’s correlation
coefficients for those selected top 2000 vox-
els on the validation set that was used for

the selection procedure. These figures show
that there is a distinct difference between
the locations of the voxels selected through
the two feature models. The motion-energy
features are mainly localized in brain areas
V1, V2 and V3, while the pooling layer fea-
tures from the R(2+1)D network are more
localized in the higher-order layers of the vi-
sual areas and can even be found strongly in
the auditory cortex. However, both voxel se-
lections occur in both the lower- and higher

Figure 3: The validation correlation coefficients for the voxel selection of the motion-energy
encoding model presented on a flat-map of the brain.
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Figure 4: Top 2000 voxel selection from the R(2+1)D pooling layer encoding model presented
on a flat-map of the brain.

order visual areas and are not exclusively
found in one region. The correlation coeffi-
cients do show that the motion-energy voxel
selection distinctly has the best validation
performance in the early visual cortex, while
the pooling layer voxel selection seems to
have a preference for the higher-order vi-
sual areas, but only slightly. Overall the
correlations are significantly higher for the
motion-energy voxel selection with an av-
erage of 0.36 and a standard deviation of

0.052 in contrast to a average of 0.28 and a
standard deviation of 0.039 for the R(2+1)D
pooling layer voxel selection.

These two voxel selections were merged to
create the combined voxel selection. There
are 1300 voxels that were shared across
the motion-energy voxel selection and the
R(2+1)D pooling layer voxel selection, of
which 1171 voxels had the best predictive
power in the motion-energy voxel selection

Figure 5: The validation correlation coefficients for the voxel selection of the R(2+1)D
pooling layer encoding model presented on a flat-map of the brain.
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Figure 6: The resulting voxel selection by combining the voxel selections from the motion-
energy and the R(2+1)D pooling layer presented on a flat-map of the brain. It includes 2700
voxels, the blue colored ones were taken from the pooling layer selection and the red colored
ones ones were taken from the motion-energy selection.

and 129 voxel were picked from the R(2+1)D
pooling layer selection. The remaining vox-
els consist of 700 voxels uniquely occurring in
the motion-energy selection and 700 voxels
uniquely occurring in the R(2+1)D pooling
layer selection, giving a total of 2700 vox-
els for the combined voxel selection. The
final voxel selection for the combined model
can be found in Figure 6 and its respective

Pearson’s correlation coefficients on the val-
idation set can be found in Figure 7. Figure
6 shows that the voxels in visual areas V1,
V2 and V3 almost entirely come from the
motion-energy selection, while the higher-
order visual areas are predominantly voxels
from the R(2+1)D pooling layer selection.
Area MT, however, also seems to be heavily
influenced by the motion-energy selection.

Figure 7: The validation correlation coefficients for the combined voxel selection presented
on a flat-map of the brain.
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Delay Motion-energy R(2+1)D Pooling Combined

2.8 seconds 212/2000 voxels 80/2000 voxels 247/2700 voxels

3.5 seconds 454/2000 voxels 331/2000 voxels 560/2700 voxels

4.2 seconds 608/2000 voxels 675/2000 voxels 842/2700 voxels

4.9 seconds 246/2000 voxels 462/2000 voxels 445/2700 voxels

5.6 seconds 480/2000 voxels 452/2000 voxels 606/2700 voxels

Table 1: The distribution over the selected delays for the three different voxel selections.

The correlation coefficients of the combined
selection have an average of 0.33 and a stan-
dard deviation of 0.062.

Table 1 shows the distribution over the se-
lected delays across the three voxel selec-
tions. A delay of 4.2 seconds was selected
most across all three selections with per-
centages of 30.4%, 33.8% and 31.2% for
the motion-energy selection, the R(2+1)D
pooling layer selection and the combined se-
lection. A delay of 2.8 seconds is chosen
least, with percentages of 10.6%, 4.0% and
9.1% respectively. The average delay for
the three models comes down to 4.3 seconds
for the motion-energy selection, 4.5 seconds

for the (2+1)D pooling layer selection and
4.4 seconds for the combined selection. Fig-
ures 8, 9 and 10 show the distribution over
the delays on an individual voxel level for
the motion-energy, R(2+1)D pooling layer
and the combined voxel selections respec-
tively. In Figure 8, the motion-energy selec-
tion shows a systematic change in the delay
selection from the lower-order visual areas
with smaller delays to the higher-order vi-
sual areas with bigger delays. In contrast,
the R(2+1)D pooling layer selection in Fig-
ure 9 does not show such a change and dis-
plays mainly bigger delays in every area of
the visual pathway. Interestingly however,
there can be found smaller delays in the

Figure 8: The distribution over delays for the voxel selection of the motion-energy encoding
model presented on a flat-map of the brain.
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Figure 9: The distribution over delays for the voxel selection of the R(2+1)D pooling layer
encoding model presented on a flat-map of the brain.

elongated area to the top-right of the LOC
in the right hemisphere, which seems to be
the intraparietal sulcus (IPS), although we
do not have a localizer that identifies it. The
combined voxel selection in Figure 10 shows
the change in delay selection from the lower-
order visual areas to the higher-order visual
areas quite well again, with the exception of
the IPS region, as the lower-order areas are
mainly composed of voxels from the motion-
energy selection.

3.2 Reconstructions

The three voxel selections described above
were used to create the reconstructions of the
test set by predicting the respective BOLD
responses for all prior videos and selecting
the top 100 videos per TR. The top 100
videos were averaged to create the final re-
constructions. Figures 11 - 16 shows exam-
ples of the created reconstructions. The fig-
ures show different scenes from the test set,
spanning four TR’s, together with the recon-

Figure 10: The distribution over delays for the combined voxel selection presented on a
flat-map of the brain.
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structions and the first five videos from the
top 100 that formed these reconstruction.
The scenes are the same across all models
to make comparison easier. The full recon-
struction videos can be viewed on https://

github.com/LeoniekevandenBulk/Thesis.

Figures 11, 13 and 15 show reconstructions
of three scenes from the test set that were
successfully reconstructed for the motion-
energy, R(2+1)D pooling layer and com-
bined model respectively. We define this as
successful reconstructions as we can recog-
nize the scenes in the reconstructions. The
first scene is depicted in the first big column
of these figures and shows the intro sequence
from the episodes used in the test set, the
second column shows the second scene de-
picting one of the main characters talking
and the last column shows a scene where
two characters are sitting across a table from
each other. Scene one gets reconstructed
quite well by the motion-energy and com-
bined model, we can clearly see centralized
white text against a darker background. In
the R(2+1)D pooling layer model, the text
is a lot less present, but becomes more of
a centralized spotlight. However, it seems
to focus quite a lot on the color blue with
its prior videos, which could be linking to
the background color. Scene two gets re-
constructed as a human form by all three
models, albeit less sharply by the R(2+1)D
pooling layer model. Interesting to see is
that although the character in the scene is
not upright, all its reconstructions are. Fur-
thermore, even though a different character
is shown in the fourth frame, the recon-
structions do not seem to change a lot from
the previous reconstruction frames. The re-
constructions for the third scene are quite
clearly two human shapes next to each other
for all three models, but it is again hard to

pick up the scene transition to a different
perspective from the reconstructions.

Figures 12, 14, 16 show unsuccessful recon-
structions from four different scenes from
the test set for the motion-energy, R(2+1)D
pooling layer and combined model respec-
tively. The reconstructions are deemed un-
successful as they do not resemble the scenes
sufficiently. Note that the majority of the
reconstructed scenes from the test set was
unsuccessful. Each of these scenes was se-
lected to show the limitations of the current
reconstruction method. Column one depicts
a scene with one of the main characters in
the foreground and multiple soldiers in the
background. The top five prior videos in
all models show several videos with groups
of people, with some even showing a per-
son more clearly in the foreground. How-
ever, because the locations of these people
do not align with each other, the recon-
structions become very noisy and not rec-
ognizable as people. Scene two depicts a
humanoid alien who gets reconstructed as
an elongated lighter blob. Even though the
character looks quite similar to a human, the
prior videos display almost no human faces.
This in contrast to the second column of
the successful reconstructions which shows
quite a similar perspective and shows al-
most solely human faces in the prior videos.
The prior videos instead seem to focus on
the elongated shape of the alien. The third
column shows the three main characters in-
side a space ship, which contains a lot of
futuristic details. The reconstructions are
again mostly noise. The prior videos from
the models seem to focus on quite different
videos. The motion-energy model seems to
depict mostly water or grassy terrains, the
R(2+1)D pooling layer model seems to fo-
cus more on big groups of people and the
combined model shows mostly big machin-
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Figure 11: Examples of successful reconstructions of three different scenes by the motion-
energy model. The second through sixth rows display the first five videos from the top 100
prior videos that create the reconstruction. Each frame within a scene is separated by 0.7
seconds.

Figure 12: Examples of unsuccessful reconstructions of four different scenes by the motion-
energy model. The second through sixth rows display the first five videos from the top 100
prior videos that create the reconstruction. Each frame within a scene is separated by 0.7
seconds.
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Figure 13: Examples of successful reconstructions of three different scenes by the R(2+1)D
pooling layer model. The second through sixth rows display the first five videos from the top
100 prior videos that create the reconstruction. Each frame within a scene is separated by 0.7
seconds.

Figure 14: Examples of unsuccessful reconstructions of four different scenes by the R(2+1)D
pooling layer model. The second through sixth rows display the first five videos from the top
100 prior videos that create the reconstruction. Each frame within a scene is separated by 0.7
seconds.
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Figure 15: Examples of successful reconstructions of three different scenes by the combined
model. The second through sixth rows display the first five videos from the top 100 prior
videos that create the reconstruction. Each frame within a scene is separated by 0.7 seconds.

Figure 16: Examples of unsuccessful reconstructions of four different scenes by the com-
bined model. The second through sixth rows display the first five videos from the top 100 prior
videos that create the reconstruction. Each frame within a scene is separated by 0.7 seconds.
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ery. The last column visually shows just a
telephone, but the audio was that of some-
one leaving a voice-mail. Interestingly, al-
though the motion-energy reconstruction is
mainly just noise, the reconstructions of the
R(2+1)D pooling layer and combined model
depict a face, reconstructing a person behind
the voice instead of the telephone itself.

When comparing the selected prior videos
across the three models, it becomes clear
that they focus on different elements in the
original test videos. The motion-energy
model seems to focus more on individual
visual features in the prior videos, while the
R(2+1)D pooling layer model focuses more
on the entire scenes. This can for example be
seen in the first scene of the successful recon-
structions, where the motion-energy model
separately tries to represent either the text

or the background in the prior videos, while
the R(2+1)D pooling layer model tries to
represent those two visual features more at
the same time. Another example of this can
be seen in the second scene of the unsuccess-
ful reconstructions, where the motion-energy
model uses different prior videos to incor-
porate the alien face, its body, the round
button and the background. In contrast, the
R(2+1)D model seems to focus on the shape
of the entire scene with its prior videos. The
combined model seems to strike a balance
between these two approaches such that the
prior videos displaying important visual fea-
tures still keep the overall shape in the scene
into account.

To analyze the reconstructions, they were fed
to the AlexNet neural network (Krizhevsky
et al., 2012). In each of the eight layers of
the network, the features of the reconstruc-

Figure 17: Results of the correlation analyses based on the AlexNet network features for
all eight layers between the original test video and a random reconstruction, the motion-
energy model reconstruction, the R(2+1)D pooling layer model reconstruction and the com-
bined model reconstruction.
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tions were compared to the features of the
test video in the same layer using Pearson’s
correlation coefficients. To create a base-
line, a random reconstruction was also cre-
ated and compared to the test video. Figure
17 shows the results of this analysis in a box-
plot. Only in layers 1, 2, 7 and 8 are all mod-
els significantly better than chance, in layer
4 the R(2+1)D pooling layer and the com-
bined model are significantly better than the
random model and in layers 5 and 6 it is just
the combined model that is significantly bet-
ter than chance (p <0.001, Wilcoxon rank-
sum test). In every layer except layer 3,
it holds that the combined model is signif-
icantly better than both the motion-energy
and R(2+1)D pooling model. In layer 3
there is no significant difference between any
of the models. In layers 1, 4, 5, 6 and 8
it holds that the R(2+1)D pooling model is
significantly better than the motion-energy
model, in layer 2 the motion-energy model is
significantly better than the R(2+1)D pool-
ing model and in layer 7 there is no signif-
icant difference between the motion-energy
model and the R(2+1)D pooling model (p
<0.001, Wilcoxon signed-rank test). The
highest average score in the correlation coef-
ficients is achieved with the combined model
in layer 2 with a score of 0.26, but the av-
erage score with the biggest difference with
the other models within a layer is achieved
by the combined model in layer 8 with a dif-
ference of 0.11 with the random model, 0.07
with the motion-energy model and 0.03 with
the R(2+1)D pooling model. Note that the
standard deviation is much larger in layer
8 than in the other layers, this is proba-
bly caused by the fact that the purpose of
this layer is to classify the images to one
of the object categories. If the reconstruc-
tion is successful, it is probably recognizable
enough to be classified in the right category.

On the other hand, if it is unsuccessful and
thus very noisy, it could be classified as any-
thing and create a feature vector that is not
correlated with the original frame at all.

3.3 Imagery

The voxel selections were also used to create
reconstructions of imagery data that was col-
lected. Two different intro sequences of the
Doctor Who series appearing in the test set
were imagined for ten seconds by the par-
ticipant, in which a blue telephone box flies
either through a blue or yellow colored space.
For each TR, a top 100 of prior videos was
collected in the same manner as for the other
reconstructions. The intro sequences plus
the reconstructions for each of the models
can be found in Figure 18 and 19. Note
that because it is unclear what the hemody-
namic delay is between the process of imag-
ining and the resulting BOLD response, the
fMRI data was not shifted forward in time.
It is thus very well possible that the intro se-
quence and the reconstruction do not align in
time. Overall, the imagery reconstructions
are very noisy. For the first imagery task,
the motion-energy and combined model have
a bright spotlight in the middle of the re-
constructions from the fourth through the
eighth frame, which could point to the par-
ticipant focusing on the telephone box in the
middle of his imagined scene. The R(2+1)D
pooling layer model mainly seems to display
noise. In the second imagery task, the bright
spotlight for the motion-energy and com-
bined model is visible as well, only the fifth
frame clearly shows text, possibly represent-
ing the text that was indeed visible in the
intro sequence. Interestingly, the R(2+1)D
pooling layer model clearly shows a human
shape in the first three frames. It is unclear
to why this is. Possibly was the participant
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Figure 18: The reconstructions of the first imagery task in which a blue telephone box flies
through blue space by the motion-energy, the R(2+1)D pooling layer and the combined model.
Each frame shown is separated by 0.7 seconds.

thinking about someone right before the im-
agery tasks, or maybe the imagining of the
words “Doctor Who” elicited the participant
to think of the actual character that portrays
Doctor Who. Nevertheless, the rest of the
frames mainly display noise again. A clear
difference between the two imagery tasks was

the color of the background. However, since
the color of the reconstructions appears to
be mostly the same across the two imagery
tasks, color does not seem to be a feature
that was reconstructed correctly.

Figure 19: The reconstructions of the second imagery task in which a blue telephone box
flies through orange space by the motion-energy, the R(2+1)D pooling layer and the combined
model. Each frame shown is separated by 0.7 seconds.
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4 Discussion

The present study elaborated on the work
by Nishimoto et al. (2011) who successfully
reconstructed naturalistic movies from cor-
tical activity in the visual cortex by training
an encoding model between motion-energy
features and BOLD responses and combin-
ing this with a naturalistic movie prior in
a Bayesian decoder. Our addition to their
work was three-fold. In contrast to the two
hours of fMRI data that was originally col-
lected of the visual cortex from three par-
ticipants, we used a dataset of 24 hours of
fMRI data covering the entire brain from a
single subject. A bigger dataset ensures that
there are enough free parameters for the en-
coding model to be trained more adequately.
Furthermore, a convolutional neural network
was introduced as feature model to be able to
capture the higher-order information in the
visual cortex next to the motion-energy fea-
tures that capture just lower-order informa-
tion. Lastly, for each voxel in the encoding
models it was decided for which hemody-
namic delay its prediction performance was
best, ensuring a more optimal mapping be-
tween features and BOLD responses.

By selecting the top 2000 most predictive
voxels per encoding model, we were able to
differentiate between the visual areas more
sensitive to lower-order information and the
areas more sensitive to higher-order infor-
mation. In line with previous research, we
found that lower-order information is mainly
localized and best predicted in visual areas
V1, V2 and V3, while the higher-order in-
formation is mainly localized and best pre-
dicted in the higher-order visual areas (Huth
et al., 2012; Güçlü and van Gerven, 2015).
However, a minority of voxels in the motion-
energy voxel selection still also appeared in

the higher-order visual areas in the com-
bined model and a minority of voxels in
the R(2+1)D pooling layer voxel selection
appeared in the lower-order areas of the
combined model. This can be explained by
findings that there are higher-order voxels
that are responsive to more basic features,
and lower-order voxels that are responsive to
more complex features (Hegdé and Van Es-
sen, 2006). Interestingly, higher-order area
MT is mostly encoded by the motion-energy
voxels in our combined model, while research
would suggest that it should be well pre-
dicted by higher layers in a convolutional
neural network (Güçlü and van Gerven,
2017). Nonetheless, motion-energy was de-
veloped to be a model of human motion per-
ception and previous work has shown it to
be a good model of MT neurons (Nishimoto
and Gallant, 2011). The fact that motion-
energy revolves around motion specifically
probably outweighs the higher-level features
from the R(2+1)D model.

Through the selection of the hemodynamic
delay per voxel, we have shown that there is
a trend in increasing delays along the visual
pathway, which is in line with the findings
that the motion-energy model has a lower
average in delays than the R(2+1)D pool-
ing layer model. This result makes sense
as we know that visual signals start in the
early visual cortex and travel along the vi-
sual pathway to higher-order areas. The
exception to this rule was found in an area
thought to be the IPS, which could be ex-
plained by the fact that the IPS is involved
in visual-spatial attention (Corbetta et al.,
1995; Corbetta and Shulman, 2002), which
is a relatively fast process. As the partici-
pant was fixating on the centre of the video,
good visual-spatial attention was necessary
to follow the events in the episodes, possibly
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explaining why the voxels in the IPS were
among the top voxels to be predicted.

The goal of this research was to create recon-
structions of naturalistic movies from fMRI
brain responses. Although shown to be pos-
sible by Nishimoto et al. (2011) and again
in the present study, the quality of the re-
constructions appears to be very sensitive
to the particular naturalistic movies and the
viewing conditions of the fMRI participant.
Ultimately, the task seems to be too complex
for the current method. Most naturalistic
movies contain too many details that can’t
be reconstructed well by taking an average
over prior videos, current successful recon-
structions mainly seem to be single objects
against a relatively simple background. As
soon as there appear multiple objects in the
same scene or objects that are not repre-
sented well by the prior videos, the quality
of the reconstructions drops drastically. The
same holds for the imagery task, it was prob-
ably a too complex scene to reconstruct well
with this technique. Even though there were
some characteristic features that should have
been relatively easy to reconstruct like the
text in the second task, because there was a
lot more to imagine around it, it might have
influenced the focus on specifically the text.
When looking at the reconstructions across
the three models, it becomes clear from the
selected prior videos that each model focuses
on different elements. The motion-energy
model focuses on smaller shapes, while the
R(2+1)D pooling layer model appears to be
more influenced by the entire picture. The
combined model seems to combine these two
approaches. Overall, combining lower-order
and higher-order information does appear to
have an advantage in comparison to just us-
ing either one of these types of information.
The AlexNet analyses showed that it was

significantly better than the other models in
all layers but one, pointing to the fact that
there is merit to the approach of combining
lower- and higher-order information.

4.1 Future work

There are some limitations to the current
research when compared to the work by
Nishimoto et al. (2011). Our prior set of
5 million videos is quite small compared to
the prior set of Nishimoto et al., that was
more than three times our size with 18 mil-
lion. Logically, the more videos present in
the prior set, the more variety in objects
and events are available to make better re-
constructions with. However, we still stand
by our finding that that having many ob-
jects or uncommon objects in a scene will
always be hard to reconstruct with the cur-
rent method, even with a very large prior
set. Secondly, our likelihood calculation was
different. We did not use a multivariate
Gaussian to express the likelihood between
the observed and predicted BOLD response,
but just took Pearson’s correlation between
the two. It is unclear whether this has had a
big impact on the prior selection. Lastly, the
fMRI data collected by Nishimoto et al. was
based on videos with 15 Hz, or 15 frames per
second (FPS). The standard FPS of video,
however, is normally 24 Hz. This results in
videos of 15 Hz feeling like they have been
slowed down as each frame is stretched out
of a longer period of time. The dataset that
was used for this research had a normal FPS
to simulate natural viewing conditions as
much as possible, but this likely resulted
in more noisy BOLD signals relative to the
work by Nishimoto et al. (2011). This would
explain why our correlation coefficients in
the early visual cortex on the validation set
in the motion-energy model, next to the fact
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that our validation set was not an average
over trials and thus contains a higher signal-
to-noise ration, are about 0.2 lower than the
corresponding correlation coefficients on the
test set of the original work.

Relatively low prediction accuracies are over-
all a common problem when training encod-
ing models on fMRI data. This is caused
by two important factors. First, the features
used are not good enough in representing the
voxel activity. For this research, it would be
a good step to not just use the last convo-
lutional layer from the R(2+1)D model, but
determine for each voxel which of all the
convolutional layers had the best predictive
power as in Güçlü and van Gerven (2015,
2017). This way all levels of information
(low-, mid- and high-level) would be repre-
sented as best as possible. Alternatively, we
could adopt recurrent neural networks in-
stead of the feed-forward networks that nor-
mal convolutional neural networks belong
to. This way the top-down influence and
long-term dependencies in the neural infor-
mation flow can be modelled and therewith
hopefully improve the encoding prediction
accuracies. Recurrent convolutional neural
networks have already been successfully used
in EEG research (Bashivan et al., 2015).

Another way of improving the prediction ac-
curacies is to develop more complex encoding
models. Currently, most encoding models
are trained on a single voxel level. However,
research has shown that the firing patterns
between voxels have an important role in the
decoding of stimuli from brain data since
visual features elicit responses across multi-
ple voxels (Chen et al., 2006; Engel et al.,
1997). Thus, an encoding model that trains
on a multi-voxel level might prove beneficial
for the prediction accuracy as it is able to

pick up more in-depth cortical signals. Such
an approach was already taken by Miyawaki
et al. (2008), who used a multi-voxel decod-
ing model to reconstruct geometric shapes
from the visual cortex and showed that it
outperformed the decoding model based on
single voxels.

As the quality of the reconstructions is one
of the bigger concerns after analyzing our
results, there is quite some future work pos-
sible in making accurate, detailed video re-
constructions from brain data. A promising
method from the last few years that could
be adopted for creating such reconstructions
are generative adversarial networks (GANs)
(Goodfellow et al., 2014). GANs became
popular because of their powerful ability to
create original images that look very realis-
tic. Recent research has already had success
in the reconstruction of natural images from
fMRI data (Güçlütürk et al., 2017; Seeliger
et al., 2018; Shen et al., 2019), so it seems
like the next logical step to test this method
for the reconstruction of naturalistic video.

4.2 Conclusion

We have shown that combining higher-level
and lower-level information is significantly
better than using either of these levels of in-
formation in the reconstruction of natural-
istic videos created from fMRI data. How-
ever, it must also be concluded that the cur-
rent method of reconstruction is not suffi-
cient enough to create scenes that have the
complexity that regular naturalistic videos
display and that there is still a lot of perfor-
mance to be gained in the mapping between
voxel activity and feature representations.
Future work is necessary to create methods
for more detailed reconstructions and better
feature and encoding models.
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Güçlü, U. and van Gerven, M. A. J. (2015), ‘Deep
neural networks reveal a gradient in the complex-
ity of neural representations across the ventral
stream’, Journal of Neuroscience 35(27), 10005–
10014.
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