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Abstract: The brain is considered a "critical system," which continuously transitions between 
two phases: in one the neural activity amplifies and spreads over the largest distances in the 
network, and in the other the neural activity is reduced and localized. A strong indication that a 
system is in a critical state is scale-free behaviour, which is best described by the exponent of a 
power-law function. This scaling exponent can be obtained from Demeaned Fluctuation Analysis 
(DMA), and indicates in which state the system is. In this study, we analyzed local field potential 
(LFP) recordings from the hippocampal-cortical network in 6 mice during an object recognition 
task, and DMA was applied for frequencies from 2 Hz to 150 Hz to identify neural oscillations 
and regions indicating above-noise level scaling exponents for each experimental stage. Our 
results suggest that there is a significant increase of hippocampal scaling exponents in beta 
(24-29 Hz) associated with novelty and exploration compared to rest. We also found evidence 
suggesting that different CA1 hippocampal sides might be contributing differently to the scaling 
properties of theta (4-7 Hz) associated with novelty detection. We hypothesize that scaling 
dynamics in theta might be reflecting coordination of information in the hippocampal-cortical 
network during object recognition. The greatest variability in scaling dynamics was observed in 
gamma (96-102) in the parietal cortex during object exploration. We therefore hypothesize that 
parietal gamma scaling dynamics reflect a rather general mechanism involved in the task. 
Overall, our results suggest that the scaling dynamics of different frequency bands can be linked 
to behavioral outcomes, and reflect different processes involved in the object recognition task.  
 
Keywords: Demeaned Fluctuation Analysis, Criticality, Scaling Exponents, LFP, Object 
Exploration, Novelty.  
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Introduction 
 
Criticality: Origins 
 
The theory of self-organized criticality (SOC) was first introduced by Per Bak (1987, 1988). In 
the last few decades SOC has significantly influenced the development of complexity science, 
and has found applications in numerous fields (Watkins et al., 2016). This framework describes 
systems which undergo a phase transition at a special state, often described by a single parameter 
such as temperature or pressure.  
 
A strong indication of a critical system operating at a phase transitioning point is scale-free 
behavior. Scale-free phenomena are best described by the exponent of a power law function, 
because it best captures the relationship between fluctuations on different scales (Hardstone et 
al., 2012). This means that the output of a critical system cannot be described by a single scale. 
Numerous natural phenomena, such as earthquakes (Christensen et al., 2002), forest fires 
(Malamud et al., 1998), and sand pile avalanches (Carlson et al., 1990) are best described by a 
power law distribution and are therefore believed to be the result of a critical process. In time 
series, power law means that signal power is inversely proportional to its frequency, and is often 
referred to as 1/f noise. 
 
Criticality and the Brain 
 
There is a growing evidence that diverse non-linear multi-unit systems tend to self-organize 
towards criticality to form spatiotemporal long-range correlations (Bak et al., 1988; Usher et al., 
1995).  The mechanism hypothesized to lead to self-tuning towards criticality is that the 
interactions between different units on a local level undergoes activity-induced changes, which 
in turn accumulate to form the system's memory (Maslov et al., 1994). There is also evidence 
suggesting that similar processes are present in neural systems (K. Linkenkaer-Hansen et al., 
2001; Pritchard, 1992; Ville et al., 2010).  
 
The first piece of empirical evidence supporting the critical brain hypothesis comes from neural 
avalanches, which are defined as a series of consecutively firing neurons or consecutively 
activated electrodes, preceded and followed by inactivity (Beggs & Plenz, 2003; Friedman et al., 
2012). Beggs and Plenz (2003) measured spontaneous activity from cultured and acute slices 
from mice cortex, and found that the probability of an avalanche occurring of a given size is 
characterized by a power law, and these results were robust to the discrete interval of 
measurement.  
 

 

https://paperpile.com/c/6k85Y5/5r5f+lZJF/?noauthor=1,1
https://paperpile.com/c/6k85Y5/agGW
https://paperpile.com/c/6k85Y5/Yzu6
https://paperpile.com/c/6k85Y5/Yzu6
https://paperpile.com/c/6k85Y5/JIw2
https://paperpile.com/c/6k85Y5/LthW
https://paperpile.com/c/6k85Y5/VMih
https://paperpile.com/c/6k85Y5/lZJF+ep5x
https://paperpile.com/c/6k85Y5/lZJF+ep5x
https://paperpile.com/c/6k85Y5/pAsA
https://paperpile.com/c/6k85Y5/VSlA+3zZ7+kRUp
https://paperpile.com/c/6k85Y5/VSlA+3zZ7+kRUp
https://paperpile.com/c/6k85Y5/d7Bg+Gfex
https://paperpile.com/c/6k85Y5/d7Bg+Gfex


 

Theoretical and computational models show that under criticality, memory is enhanced, 
resources are optimized, and a neuronal system will be most efficient in information 
communication (Beggs & Plenz, 2003). Shew and colleagues (2009) studied the dynamic range 
of cortical networks, defined by the range of responses to stimulus intensities, and showed that 
the dynamic range is maximized under an intermediate excitation-inhibition ratio, when neuronal 
avalanches are occurring. In another study, the authors from the same research group showed 
that information capacity and mutual information are optimized under the intermediate 
excitation-inhibition ratio (Shew et al., 2011). Altogether, these studies outline the functional 
significance of criticality in the brain.  
 
Most of the research exploring criticality dynamics in humans is based on the analysis of 
spontaneous oscillatory activity, and comparing these dynamics between health and disease. It 
has been shown that in numerous mental conditions such as Alzheimer’s (Jiang et al., 2018; 
Maxim et al., 2005), Schizophrenia (Moran et al., 2019) , Major Depressive Disorder (Klaus 
Linkenkaer-Hansen et al., 2005), and Autism (Lai et al., 2010) brain patterns are deviating from 
criticality either on a global scale, or in specific regions when compared to controls. It has been 
thus hypothesized that criticality might be a vital property of healthy and functioning brain 
networks (Massobrio et al., 2015).  
 
However, little is known about the functional significance and differences between criticality 
dynamics in different frequency bands. It has been shown that alpha (10 Hz) and beta (20 Hz) 
spontaneous oscillations are scale-free, with persistent power-law scaling ranging from 5 to 300 
seconds. Moreover, it has been shown that the power-law scaling is significantly different for 
these oscillations, suggesting potentially different underlying mechanisms (K. 
Linkenkaer-Hansen et al., 2001). It has also been shown that midfrontal theta, known to be 
involved in action monitoring, is also scale-free (Cohen, 2016). Scale-free brain dynamics are 
found to be attenuated in a task compared to rest (He et al., 2010; Klaus Linkenkaer-Hansen et 
al., 2004), as well as strengthened (Borges et al., 2018; Ciuciu et al., 2008), suggesting that 
scaling analysis can reveal different aspects of task involvement. It has been shown that the 
scale-free amplitude modulation of gamma oscillations monotonically increases with accelerated 
speech rate, and gamma scale-free dynamics are therefore hypothesized to reflect cognitive load 
(Borges et al., 2018). Here we aim to investigate the impact of novelty on the scale-free 
amplitude modulation of narrow sub-bands of theta, beta and gamma neuronal oscillations in the 
hippocampal-cortical novelty detection circuit in mice.  
 
Novelty and Exploration in Mice 
 
Research on novelty dynamics in mice has indicated that hippocampal beta2 (23-30 Hz) power 
increases during the first couple of minutes of spatial and object novelty exposure (Berke et al., 
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2008; França et al., 2014). Moreover, it has been demonstrated that hippocampal beta2 etrained 
cells rapidly gain spatial specificity during the first minutes of novelty exposure (Berke et al., 
2008). Recently submitted work investigating hippocampal-cortical dynamics involved in the 
novelty detection circuit in mice has reported high coherence among the cortical regions 
(prefrontal and parietal cortices) and the hippocampus in beta2 frequency band during novelty. 
Notably, the coherence between the cortical regions is reported to be reduced after novelty 
exposure (França et al., n.d.).  
 
The Current Study 
 
The goal of this study is to examine the long range temporal correlations in free-moving mice 
during the exploration of novel and familiar objects. For this, local field potentials (LFP) were 
continuously recorded from the hippocampal-cortical circuit during task and rest, and in order to 
investigate the scaling properties of frequency-specific amplitude time series, Demeaned 
Fluctuation Analysis was applied (DMA). To our knowledge, this is the first project to examine 
long range temporal correlations in the mouse brain during novelty and familiarity. DMA is the 
most commonly used method to quantify scale-free behaviour in physiological data (Hardstone 
et al., 2012). With this method the so-called scaling exponent (⍺) is obtained, which is a measure 
of self-similarity for power law distributions, capturing the relationship of the data between 
different scales and is often interpreted as memory of the system. We verified that mice explore 
novel objects longer than familiar ones. We also found evidence for above-noise scale exponents 
in multiple frequency bands during rest and task, spanning between 0.6 and 1. Finally, we 
applied mixed-effects linear modeling to examine the contribution of the hippocampal-cortical 
circuit and behavioural outcome on the scaling exponents, and found evidence that regions and 
behavioural outcomes contribute differently to the scaling exponents in theta (4-7 Hz), beta2 
(24-29 Hz) and gamma (96-102 Hz).  
 

Methods 
 

Data Acquisition and Animals 
 
For this project 6 mice of two transgenic lines with a C57BL/6J background were used. The 
SST-Cre mouse line expressed Cre-recombinase in somatostatin-positive interneurons (4 mice in 
total), while PV-Cre mice expressed Cre in parvalbumin-positive interneurons (2 mice in total). 
 
Local field potential (LFP) recordings with 32 channels were obtained from the prefrontal cortex 
(16 channels), parietal cortex (8 channels) and the hippocampus (8 channels, targeted at CA1) in 
6 freely moving mice undergoing a one-trial object recognition task. The sampling rate of the 
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LFP recordings is 1000 Hz. Detailed information about the electrode hardware can be found in 
Franca et al (n.d.). 
 
Experimental Procedure: One-Trial Object Recognition Task 
 
The experiment was conducted by dr. Arthur Franca and his students from previous years.  
 
The experiment consists of two main sessions - training and test. During each exploration stage, 
two objects were placed in a rectangular open field. Each session, training and test, consists of 3 
stages: pre-exploration (home cage) followed by object exploration, and post exploration (home 
cage). The two object exploration stages of each session are termed “object training” and “object 
test” respectively. During object training, the two objects explored were identical, while during 
the object test, one of the previously explored objects was replaced by a novel one. The objects 
were placed in the same location of the field for each session. The setup of the experiment is 
illustrated in Figure 1, provided by dr. Arthur Franca. 
 
The duration of the recordings from the pre- and post-exploration stages is 5 minutes, while the 
duration of each object exploration stage is 10 minutes. Both sessions of the experiment were  
 
 

 

Figure 1:  Experimental Setup. Different color and shape signify difference in the objects 
shapes used in this experiment. 

 
recorded within the same day with a one hour time window between them. Each LFP data set is 
supported by a video recording of the same duration to monitor behaviour, sampled at 30 Hz. 
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Data Preprocessing 
 
The LFP recordings were visually inspected for artifacts with the EEGLAB toolbox (Delorme & 
Makeig, 2004) in Matlab (R2019b). In this study, high amplitude sharp spikes were considered 
as artifacts and removed. For each data set, Independent Component Analysis (ICA) was 
performed using the routine runica from EEGLAB with the jader algorithm (Cardoso & 
Souloumiac, 1993). The ICA components identified to contain mainly artifacts were subtracted 
from each data set (the effect of the subtraction was first visually inspected). Channels were 
removed from a recording only if the component subtraction procedure did not completely 
remove all signal artifacts as defined above. Generally, this is the case when an electrode has 
detached from its original position.  
 
Before proceeding to further steps in the analysis pipeline, region-wise normalization was 
performed by subtracting the mean of each region from the corresponding channels. 
 
Frequency Decomposition 
 
Narrow-band frequency decomposition was achieved by using Complex Morlet Wavelets. For 
each frequency, a Gaussian in the frequency domain (Morlet Wavelets in the time domain are 
Gaussians in the frequency domain) centered around the desired frequency was multiplied with 
the Fourier Transform of the data, and the Inverse Fourier Transform of the result was taken, 
which results in narrow band filtered signal. The time-frequency specificity of the wavelet is 
determined by the full-width at half-maximum (FWHM), a measure quantifying the width of the 
Gaussian at half amplitude in the frequency domain (Cohen, 2019). The FWHM parameter 
affects the frequency/time specificity ratio of the filtered signal.  
 
For this work, frequencies between 2 Hz and 150 Hz were considered using linearly spaced 
FWHM between 2 Hz and 15 Hz. In the time domain these values translate to integration 
between 454ms and 60ms for the lowest and highest frequencies respectively.  
 
Demeaned Fluctuation Analysis 
 
Demeaned Fluctuation Analysis was first developed by Peng and colleagues (1994), and is 
implemented in this work as follows:  
 

1. The signal profile was computed based on the demeaned cumulative sum of the 
amplitude envelope corresponding to each frequency. Figure 2A shows the amplitude 
envelope at 10 Hz from a single channel.  

2. Twenty logarithmically spaced time scales were defined on the range between 1s and 30s. 
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3. Then, for each time scale: 
3.1. The signal profile was reconstructed via convolution with the corresponding time 

scale. The effect of the convolution is essentially smoothening the signal. The 
larger the time scale is, the more smoothened the reconstruction becomes relative 
to the signal profile obtained in step 1. 

3.2. Residuals were calculated by taking the difference between the signal profile and 
the corresponding reconstruction defined in step 3.1 

3.3. The scale fluctuation was obtained by rearranging the residuals times series into N 
adjacent non-overlapping windows, calculating the root square of each window 
and averaging across windows. The window size here corresponds to the length of 
the time scale used.  

4. Steps 3.1 to 3.3 were repeated for each of the 20 time scales.  
5. The fluctuations obtained for each scale were plotted on a log-log scale, and a line was 

fitted by means of linear regression.  
6. The scaling exponent (⍺) is the slope of the fitted line. Figure 2B shows the resulting 

fluctuations against the scale sizes plotted on a log-log scale. The results shown in Figure 
2B correspond to  the amplitude envelope at 10 Hz illustrated on Figure 2A. The slope of 
the linearly fitted line corresponds to the resulting scaling exponent (0.69). 

 
There is little consensus in the literature on the choice of scales duration and on the amount of 
scales to be considered. However, it is recommended that the shortest scale covers at least 4 data 
points, and the duration of the largest scale considered is no more than 10% of the total signal 
duration (Hardstone et al., 2012). As mentioned in the Experimental Procedure section, the 
duration of each object exploration stage is twice the length of the recordings obtained from the 
home cages. To be able to consistently compare the results from different experimental stages, 
we chose the longest scale to be 10% of the total duration of a home cage recording. To avoid 
temporal correlations induced by the narrow-band filtering, the shortest scale used in this study is 
chosen to be greater than the FWHM in the time domain of the wavelet used for extracting the 
lowest frequency (454 ms). 
 
The scaling exponent ⍺ is also referred to as “self-similarity parameter” (Lux & Marchesi, 1999), 
which quantifies long-range temporal correlations across the signal. It can take values between 0 
and 2, with the following interpretation: 

● ⍺ ≈ 1 indicates the system is behaving at a critical point 
● ⍺ >1 indicates the system is at a supercritical state. More specifically, ⍺ = 1.5 is 

associated with Brownian Noise.  
● ⍺ < 0.5 indicates negative autocorrelation  
● ⍺ > 0.5 indicates positive autocorrelation with 1/f power spectrum 
● ⍺ ~ 0.5 indicates white noise - a random process with no memory, 
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In human neuroimaging data, signals resulting from power-law behaviour often result in scaling 
exponents (as assessed by Demeaned or Detrended Fluctuation Analysis) between 0.5 and 1 
(Ghosh et al., 2018). Reports of scaling exponents from resting state M/EEG can be found, 
among others, in Linkenkaer-Hansen and colleagues (2001). 
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Figure 2: A - Amplitude time series at 10 Hz from one animal (single channel); B - resulting 
fluctuation plotted against the scale sizes on a log-log scale. The slope of the linearly fitted 
line corresponds to the resulting scaling exponent (0.69).  

 
Influence of Filter Parameters on DMA Estimates 
 
As mentioned in the previous section, the scaling exponent (⍺) for white noise is expected to be 
0.5. However, it is known that filters (such as wavelets used for frequency extraction) can 
introduce autocorrelation, especially for low frequencies. Autocorrelation is a correlation 
function between the signal itself and its delayed copy. Procedures, such as frequency extraction 
via wavelet convolution inflate the autocorrelation for law frequencies because the wavelet is 
then very narrow in the frequency domain, and thus, signal leakage can occur in the time 
domain. To inspect the effects of the filter on the scaling exponent, DMA was applied for 
frequencies between 2 Hz and 150 Hz extracted from white noise with duration of 300s. This 
procedure was repeated for 500 times. The exponents associated with each frequency were then 
averaged. The results are summarized in Figure 3 and indicate that the frequency extraction 
procedure inflates the scaling exponents. This effect is most prominent for frequencies below 
100 Hz. To account for this effect and to preserve the interpretation of the scaling exponents, we 
quantify the inflation introduced through the frequency extraction procedure as the difference 
between the noise simulation results and 0.5. Thus, the area under the curve in Figure 3 was 
subtracted from the DMA results.  
 

 

Figure 3: Effect of frequency extraction on the scaling exponents. 

 



 

Linking Criticality to Behaviour 
 
Sliding-Window Demeaned Fluctuation Analysis 
 
The procedure for the sliding-window DMA is similar to the one described above. The main 
difference is that now, instead of a single scaling exponent, a time course of scaling exponents 
with the length of the original time series is obtained. This is achieved by sliding the time scales 
across the entire signal while computing the fluctuations of the DMA. The discrete time step of 
the sliding procedure is 2 data points. The range of scales used for this analysis is the same, 
namely logarithmically spaced scales of duration between 1s and 30s.  For this analysis 15 scales 
were used per computation instead of 20.  
 
The analysis was performed on selected channels within a region, and for the following 
frequency bands: Theta (4-7 Hz), Beta (24-29 HZ), and Gamma (96-102 Hz). To explore 
whether the hippocampus might be operating in distinct spatial networks, and that the operations 
of these networks could be reflected in the scaling exponents, the hippocampus was represented 
by two distinct sets of hippocampal channels.  Channels used to represent each region are the 
following:  

● Prefrontal cortex (PFC) - channels 9, 10, 11 
● Parietal cortex (PAR) - channels 21, 22, 23, 24 
● Hippocampus  (HIP) - channels 27, 28, 29 and channels 30, 31, 32 

 
The channels chosen to represent each region, as well as the width of each frequency sub-bands, 
are solely chosen based on the results obtained from the static DMA procedure, averaged across 
animals (Figure 6A, Results section).  
 
Pose Estimation: DeepLabCut 
 
To link the scaling exponents  time courses to distinct behavioral outcomes, first, pose estimation 
is performed with DeepLabCut  (DLC, (Mathis et al., 2018)). DLC is a software package for 1

markerless pose estimation based on deep neural networks. This software allows to track the 
location of predefined body parts of the animal from frame to frame. This analysis is performed 
only on the object exploration stages of the experiment, because the objective is to link scaling 
exponent with specific behavioural outcomes, such as object exploration vs free movement in the 
arena. 
 
For each stage, training and test, 200 frames were labeled for the models’ training. The body 
parts used for pose estimation are the following: left ear, right ear, nose and the beginning of the 

1 http://www.mousemotorlab.org/deeplabcut 
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tail. The corners of each object were also labeled and used in further analysis to determine 
whether the mouse was exploring an object or not. Figure 4 illustrates the points taken for animal 
tracking and defining the object boundaries with DLC. Two models (one per object exploration 
stage) were trained on the ResNet-101 network (convolutional neural network with 101 layers) 
with 200 000 iterations. The number of iterations during training is based on the observation that 
the network's performance does not improve above this threshold. Since the true performance 
rate of the DLC model is hard to estimate precisely due to the low resolution of the videos and 
lack of true labels, the model’s performance was visually inspected by plotting the inferred 
coordinates on top of the original videos. It was observed that the model sometimes swaps the 
left and right ear coordinates of the mouse. To overcome this issue, the median of the mouse 
body parts was taken as a single estimate of the animal’s position.  
 
The threshold used for object exploration in this study was whether the animal is in the polygon 
derived from the object corners, that is, whether the upper body of the mouse is within the 
boundaries of the object. The derived behavioural categories are the following: 

● Exploration - the animal is within the boundaries of any of the two object during object 
training 

● Novelty - the animal is within the boundaries of a novel object during object test 
● Familiarity - the animal is within the boundaries of a familiar object during object test 

 
Finally, the behavioural categorizations were synchronized with the scaling exponents time 
courses based on the interpl1 function from Matlab. To avoid artifacts characteristic for vectors 
obtained through a sliding-window procedure, the last 1500 data points from each behavioral 
vector were disregarded, and the beginning of the computation was set to the first video frame 
free from the researcher.  
 
For each animal, for each object exploration session, the scaling exponents at time t 
corresponding to a behavioural category were summed and averaged.  
 
The video recording from one animal during object test was corrupted, and therefore the data 
from this experimental stage coming from this animal was excluded from further analysis.  
 
 

 



 

 

Figure 4:  Coordinates used for animal tracking and behavioural analysis 

 
Mixed-Effects Linear Modeling 
 
To examine the effect of the hippocampal-cortical circuit and the behavioural outcomes on the 
scaling exponents, linear-mixed effects models were independently constructed for each 
frequency band. To compare the scaling exponent dynamics between object exploration and rest, 
the average values within each frequency band and region from the home cage recordings were 
also included in the model.  
 
The general linear mixed-effects models were fit to averaged within region estimates of the 
scaling exponents per frequency band with behavioural category and regions as independent 
variables and random intercepts and/or slopes per animal as the mixed effect component. To 
facilitate log-likelihood ratio tests, the models were fitted using the maximum likelihood method. 
The modeling was based on reference encoding for each predictor, setting the coefficients of the 
first level (in alphabetical order) of each predictor to zero. The reference for regions is thus the 
hippocampus, and for behavioural categories - exploration. Thus, the meaning of the intercepts is 
the average predicted scaling exponent for exploration in the hippocampus. 
 

 



 

Model selection was based on the outcome of simulated likelihood ratio tests with 1000 
simulations per test, as well as visual examination for violation of model assumptions (e.g., 
homoscedasticity, normality of residuals). The models chosen for each frequency band were the 
following: 
 

● Theta: alpha~category + regions + category:regions + (1|animalID) 
● Beta: alpha~category + regions + (1|animalID) 
● Gamma: alpha ~ category + regions + (-1 + regions|animalID) 

 
Here alpha is the obtained scaling exponent, and the terms in brackets is the random effects 
component. For theta and beta the random effects component is an individual intercept per 
animal, and in gamma it is individual regional dynamics per animal without separate individual 
intercepts.  
 
 

Results 
 
Behavioural Trends During Object Exploration 
 
The animals spend roughly only 15% of their time actively exploring an object, while during the 
rest of the session the animals are engaged with non-exploratory activity. During object training, 
the animals explore the objects between 8% and 21% percent of the total duration of the session. 
During object test, the animals tend to spend, on average, around twice longer exploring a novel 
object compared to the familiar one. This is in line with previous reports on exploratory 
behaviour in rodents (Dere et al., 2007). Animals explore the novel object between 4% and 13% 
of the total duration of the session, while the familiar object is explored between 3% to 5% of the 
session’s duration.  The difference between animals on the time spent exploring objects cannot 
be attributed to genetic differences. However, one mouse explored the objects during training 
much less than its peers. This animal explored the objects for only 8% of its time, while its peers 
explored the objects for 10% to 21% of their time. Another animal spent in total 7% of its time 
on object exploration during the test session (3% on the familiar object, and 4% on the novel 
one), while the rest spent at least 11% of their time exploring objects. Figure 5 illustrates the 
average time spent on object exploration for each object exploration stage.  
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Figure 5: Average behaviour during object exploration stages of the experiment. Panel A 
illustrates the behavioural trends for object training, Panel B shows the behavioural trends for 
object test.  

 
Above-Noise Scaling Exponents in the Mouse Brain 
 
Figure 6A shows the scaling exponents per session averaged across all animals. The red dashed 
lines indicate regional boundaries. From left to right, the regions are prefrontal cortex (PFC), 
parietal cortex (PAR), and the hippocampus (HIP). Figure 6B shows a schematic representation 
of the electrode layout.  
 
The most striking bursts of scaling exponents were observed in the parietal cortex for the gamma 
frequency band (~96-102 Hz) during object training and test experimental stages. The values of 
the scaling exponents for gamma during object training for this region vary, on average, between 
0.59 and 0.86, and for object test - between 0.7 and 0.93. These gamma bursts in scaling 
exponents were most prominent during object exploration stages, however remained consistent 
during the rest of the experimental stages Figure 5A.  
 
Smaller in magnitude, but yet relatively high bursts of scaling exponents were also observed in 
theta (~4-7 Hz) and beta (~24-29 Hz) in the parietal cortex during the two object exploration 
stages. The scaling exponents for theta and beta for this region vary, on average, between ~0.5 
and ~0.6, with slightly higher values of scaling exponents during object test compared to object 
training. The bursts in scaling exponents in theta and beta were most prominent during object 
exploration stages, and, on average, were attenuated during the staying in home cages.  
 
Bursts of higher scaling exponents were also found in the hippocampus during object exploration 
stages in theta and beta. The scaling exponents were slightly higher for object training in beta 

 



 

compared to object test (ranges: [0.58 0.65] vs. [0.55 0.62]). This effect was observed to be the 
opposite for theta (object training: [0.53 0.58]; object test: [0.56 0.61]).  
 
Interestingly, electrode 10, positioned in the prefrontal cortex (cingulate), displayed similar 
dynamics to the parietal cortex in terms of scaling exponents results.  
 
 

Figure 6: Panel A - average (across animals) scaling exponents per experimental stage. The 
red dashed lines indicate regional boundaries. From left to right the regions are: prefrontal 
cortex (PFC), parietal cortex (PAR), and the hippocampus (HIP). Panel B shows a schematic 
representation of the electrode layout. The colour signify different region: magenta-PFC, gray 
- PAR, red - HIP 

 
Influence of Hippocampal Channels on the Scaling Exponents in Theta 
 
The most prominent effect for the choice of hippocampal channels on the linear mixed effects 
model’s (LMEs)  inference can be observed in theta frequency band (4-7 Hz). Table 1 contains a 
summary of the most prominent differences in coefficient estimates between the two models. 
The coefficients are rounded up to four decimals. From here on, the model including 
hippocampal channels 27-29 will be referred to as model 1, and the model including 
hippocampal channels 30-32 as model 2.  
 
One of the most striking differences between the two models lies in the effect of novelty on the 
prediction of the scaling exponents. In model 1, novelty raises the scaling exponents by 0.0541 

 



 

compared to exploration, while in model 2 the scaling exponents for novelty are 0.0021 lower 
compared to exploration, and this effect is not significant. Moreover, the interaction between 
novelty and the parietal cortex brings a twofold increase in the scaling exponents in model 2 
compared to model 1. A similar effect can be observed in the interaction between familiarity and 
the parietal cortex.  
 
Another notable difference between the two theta models lies in familiarity. Even though the 
effect of familiarity is not significant compared to exploration in either of the models, in model 1 
familiarity on average increases the scaling exponents, while in model 2, familiarity decreases 
them. Moreover, the scaling exponents in the prefrontal cortex are on average 0.0568 higher than 
in the hippocampus for model 1, while in model 2 the increase in scaling exponents due to 
prefrontal dynamics is not significant. 
 
In both models, the increase in scaling exponents associated with the parietal cortex alone is not 
significant compared to the hippocampus. However, the contribution of the parietal cortex to the 
scaling exponents is higher for model 1 compared to model 2. Both models indicate no 
significant difference between the contribution of each of the cortical regions to the scaling 
exponents (p-value model 1: 0.4744; p-value model 2: 0.4498).  
 
In both models the interaction between regions and behavioural categories is a significant term 
(p-value model 1: 0.0076204; p-value model 2: 2.3109e-05). Consistent between both models is 
the finding that the interaction between some home cage recordings and the prefrontal cortex 
significantly influence the prediction of scaling exponents by decreasing them by ~0.07 
compared to the intercept (Table 2). Together, these results suggest that, from the view of 
criticality,  there might be distinct hippocampal networks operating in the theta frequency band 
involved in the discrimination between novelty and familiarity. Moreover, scaling exponents in 
theta might also reflect a rather general mechanism involved in the coordination of information 
from multiple regions.  
 
  

 



 

 

 Theta Model 1 (HIP channels 27-29) Theta Model 2 (HIP channels 30-32) 

Name Estimate  SE 
pValu
e Name Estimate SE  pValue 

(Intercept) 0.5809 0.0179 <0.01 (Intercept) 0.6031 0.0165 <0.01 

category_familiar 0.0242 0.0245 >0.1 category_familiar -0.0077 0.0232 >0.1 

category_novel 0.0541 0.0245 <0.05 category_novel -0.0022 0.0232 >0.1 

category_home4 0.0215 0.0233 >0.1 category_home4 -0.0017 0.0221 >0.1 

regions_PAR 0.0402 0.0233 <0.1 regions_PAR 0.0179 0.0221 >0.1 

regions_PFC 0.0569 0.0233 <0.05 regions_PFC 0.0346 0.0221 >0.1 

category_familiar: 
regions_PAR 0.0588 0.0346 <0.1 

category_familiar: 
regions_PAR 0.0925 0.0327 <0.01 

category_novel: 
regions_PAR 0.0402 0.0346 >0.1 

category_novel: 
regions_PAR 0.0983 0.0327 <0.01 

category_home4: 
regions_PAR -0.0189 0.033 >0.1 

category_home4: 
regions_PAR 0.0044 0.0312 >0.1 

category_novel: 
regions_PFC 0.0049 0.0346 >0.1 

category_novel: 
regions_PFC 0.0631 0.0327 <0.1 

category_home1: 
regions_PFC -0.0664 0.033 <0.05 

category_home1: 
regions_PFC -0.0578 0.0312 <0.1 

category_home2: 
regions_PFC -0.0571 0.033 <0.1 

category_home2: 
regions_PFC -0.0454 0.0312 >0.1 

category_home3: 
regions_PFC -0.0868 0.033 <0.01 

category_home3: 
regions_PFC -0.0756 0.0312 <0.05 

category_home4: 
regions_PFC -0.0954 0.033 <0.01 

category_home4: 
regions_PFC -0.0722 0.0312 <0.05 

Table 1: Summary of the coefficients for the theta models depending on hippocampal channels. 
In this table, coefficients are included either on the base of significance, or on the base of 
change in the estimate sign. 

  

 



 

 
Frequency Specific Differences in Contributions to the Scaling Exponents 
 
Unlike in theta, in beta and gamma the choice of hippocampal channels did not have a significant 
effect on the models’ inference. Table 2 provides a summary of both beta and gamma models 
fixed effects coefficients for hippocampal channels 27-29.  
 
In both beta and gamma, the average scaling exponents for novelty are roughly ~0.0021 lower 
compared to exploration. However, this effect is significant in beta, while it is not in gamma. It is 
also interesting to note that only in theta with hippocampal channels 27-29 on average novelty 
increases the scaling exponents (relative to exploration), while in the rest of the models novelty 
attenuates them.  
 
The effect of familiarity compared to exploration is significant only in beta frequency band, 
while it is not neither in gamma, nor in theta, regardless of the hippocampal channels. On 
average, compared to exploration, familiarity attenuates the scaling exponents by ~0.06 in beta, 
and by ~0.02 in gamma. There is no significant difference between the contribution of novelty 
and familiarity to the scaling exponents for any of the explored models (theta model 1 p-value: 
0.2424, theta model 2 p-value: 0.8197, beta p-value: 0.7764, gamma p-value: 0.3537).  
 
Compared to exploration, the scaling exponents from all home cage recordings are on average 
~0.1 lower in beta frequency band (Table 2), and this effect is significant for all home cages. 
Similar effect, but to a lesser magnitude, is observed in gamma (Table 2), where the scaling 
exponents from home cages are on average ~0.05 lower compared to exploration. However, in 
gamma this effect is not significant for all home cage stages. Interestingly, in the gamma model 
with hippocampal channels 30-32, the attenuation in scaling exponents from home cages 
following object exploration is greater (roughly ~0.06), than for home cages preceding object 
exploration (roughly ~0.03). However, similar to the results in gamma with hippocampal 
channels 27-29, this effect is not significant for all home cage stages. In theta, the contribution of 
a home cage recording to the scaling exponents (relative to exploration) is not significant, 
regardless of the hippocampal channels. Together, these findings contradict previous results 
suggesting that scaling exponents decrease during task (He, 2011), but are in line with (Ciuciu et 
al., 2008). Our results suggest that scaling exponents in beta could reflect involvement in novelty 
detection.  
 
Regions wise, the cortical regions are significantly different from each other in beta (p-value: 
5.4868e-05) and gamma (p-value: 0.0046), while they are not in theta (see previous section). The 
scaling exponents for the parietal cortex in gamma are on average 0.07 higher compared to the 
hippocampus, and this contribution is significant only in this frequency band (Table 2), and 
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strongest in magnitude compared to beta and theta. In theta, the contribution of the parietal 
cortex is not significant, regardless of the hippocampal channels, however, the elevation of 
scaling exponents due to the parietal cortex is twofold stronger in magnitude in model 1 (Table 
1). These results suggest that the scaling exponents in gamma (96-102 Hz) are primarily driven 
by the parietal cortex.  
 
Interestingly, the contribution of the prefrontal cortex to the scaling exponents is significant in 
theta (hippocampal channels 27-29, Table 1) and beta (Table 2), but with an opposite effect. In 
theta, the prefrontal cortex increases the scaling exponents, while in beta this region attenuates 
them.  
 

 Beta model (HIP channels 27-29) Gamma model (HIP channels 27-29) 

Name Estimate  SE pValue Name Estimate SE  pValue 

(Intercept) 0.6784 0.0137 <0.01 (Intercept) 0.6325 0.0178 <0.01 

category_familiar -0.0616 0.0117 <0.01 category_familiar -0.0255 0.0233 >0.1 

category_novel -0.0582 0.0117 <0.01 category_novel -0.003 0.0233 >0.1 

category_home1 -0.0938 0.0111 <0.01 category_home1 -0.047 0.0221 <0.05 

category_home2 -0.1325 0.0111 <0.01 category_home2 -0.0797 0.0221 <0.01 

category_home3 -0.1106 0.0111 <0.01 category_home3 -0.0544 0.0221 <0.05 

category_home4 -0.1237 0.0111 <0.01 category_home4 -0.0695 0.0221 <0.01 

regions_PAR 0.0014 0.0075 >0.1 regions_PAR 0.0702 0.0252 <0.01 

regions_PFC -0.0298 0.0075 <0.01 regions_PFC 0.0218 0.0194 >0.1 

Table 2: Comparison of coefficients for beta and gamma models with hippocampal channels 
27-29 

 
Individual Variability in Scaling Exponents 
 
Figure 7A shows individual conditional expectation (ICE) plots for the random effects of the 
models for each frequency band. The results shown in this figure are from the models including 
hippocampal channels 27-29. The plots contain 21 lines (behavioural categories x regions), and 
show how each observation affects the prediction of the scaling exponent in each frequency 
band. The thick red lines illustrate the average effect an animal has on the prediction of the 
scaling exponents. The analysis of the random effects does not indicate any costincy between the 
frequency bands. In theta, the analysis indicates that the intercept for animal #346110 is 
significantly different from from the rest (p-value: 0.009); in beta - animal #339295 (p-value: 

 



 

4.7898e-05); in gamma - cortical responses from animal #346111 are significantly different from 
the hippocampus (p-values: 0.0019). These results are preserved in the models including 
hippocampal channels 30-32.  
 
Figure 7B shows the original data from each frequency band (with hippocampal channels 27-29) 
grouped by behavioural outcome, and color coded by regions. A striking observation is that the 
scaling exponents in gamma from the hippocampus are within a tight range (~0.5-0.65), while 
the scaling exponents from the cortical regions are more sparsely distributed. This is especially 
prominent for a few scaling exponents from the parietal cortex with values above 0.75. These 
scattered parietal scaling exponents come from 3 animals (#279419, #339295, #346111), and 
cannot be attributed to genetic differences. Interestingly, the characteristic bursts of scaling 
exponents in gamma (~96-102 Hz) in the parietal cortex, as evident from the averaged scaling 
exponents across animals in Figure 6A, are individually present only in these 3 animals. These 
bursts are most prevalent during the object exploration stages of the experiment, but also during 
Home Cage 1 and Home Cage 3 (these home cage recordings precede an object exploration 
stage). Only 1 animal out of these 3 (#346111) exhibits high gamma scaling exponents in this 
gamma sub-band in all experimental stages, and has the highest maximal scaling exponents 
compared to the other two animals. Notably, this is the same animal that was recognized by 
LMEs to have significantly different cortical influences on the prediction of the scaling 
exponents. The scaling exponents for this narrow gamma sub-band (96-102 Hz) across the entire 
parietal cortex in the three animals can reach values of ~1.05. This observation explains why the 
gamma scaling exponent bursts are so prominent in the averaged scaling exponent maps (Figure 
6A) despite not being present in all animals.  
 
Additionally, one more animal (#339296) displays high scaling exponents in a lower gamma 
sub-band (centered at ~80 Hz), also in the parietal cortex. For this animal, the scaling exponents 
vary between 0.5 and 0.7 across the entire cortical region. Moreover, all animals to a certain 
extent display high scaling exponents in broadband gamma (>100 Hz), which are not necessarily 
restricted to the parietal cortex. However, there does not seem to be any particular pattern in 
scaling exponents across animals. Whether the scaling exponents from different gamma 
sub-bands are functionally meaningful awaits future investigation. The individual patterns of 
scaling exponents per experimental stage can be found in the Appendix, Figure A1. 
 
All animals show above noise-level scaling exponents in the beta range (~24-29 Hz) in the 
parietal cortex and the hippocampus, predominantly during the first home cage recording and 
during the object exploration stages (Figure A1 A-D). These experimental stages are most 
intense in contextual, spatial and/or object novelty. The scaling exponents for the animals vary 
between ~0.6 and ~0.7 across all parietal channels,  and can reach ~0.8 across the hippocampus. 
This observation gives further support for the interpretation of beta scaling exponents as possibly 
reflecting the processing of novelty and/or exploratory behaviour. Moreover, the scaling 

 



 

exponents for the somatostatin-positive animals are on average higher compared to the 
parvalbumin-positive ones, however, the LMEs did not indicate consistent significance based on 
genetic background.  
 
Above noise-level scaling exponents are also present in the theta frequency range (~4-7 Hz) 
across all channels and all experimental stages in five out of six animals (in the remaining 
animal, above average scaling exponents are also present, but not in all channels/experimenta; 
stages). The scaling exponents for theta vary between 0.6 and ~0.86. The scaling exponents in 
this frequency range do not seem to majorly vary between regions. The maximum values of theta 
scaling exponents are evenly distributed across regions and experimental stages. These results 
point out that there is no clear regional specificity of theta scaling exponents when regions as a 
whole are taken into account. This is also partially supported by the results of the LME including 
hippocampal channels 30-32. In this model, neither of the cortical regions was estimated to have 
significantly different contributions in the scaling exponents compared to the hippocampus 
(Table 2). 
 
 

 

 



 

 

Figure 7: Panel A - Individual Condition Expectation Plots showing responses from individual 
animals for each frequency band. The thick red line shows the average effect an animal has on 
the prediction of the scaling exponents; Panel B - distribution of scaling exponents grouped by 
behavioural category and region across animals for each frequency band. The results in both 
sub-figures are from the datasets including hippocampal channels 27-29. 

 
 

Discussion 
 
In this study we found support for the presence of long range temporal correlation in the mouse 
brain during object recognition spanning from 1s to 30s in multiple frequency bands. To our 
knowledge, this is the first piece of research investigating the scaling dynamics of continuous 
oscillatory activity during object recognition in rodents.  
 
Our results indicate that the scaling exponents associated with exploration in the hippocampus 
are the highest in beta frequency band (23-29 Hz). Moreover, the greatest attenuation of scaling 
exponents in magnitude for rest compared to task was observed in beta. Together with previous 
research linking the role of beta entrained place cells on rapidly obtained spatial specificity 
(Berke et al., 2008), and increased beta power during exposure to novelty (Berke et al., 2008; 
França et al., 2014), our results suggest that the scaling exponents in beta could be reflecting 
cognitive processes involved in novelty detection. Alternatively, beta scaling exponents might 
also be linked to anxiety. While there is no comprehensive research on this topic, especially 
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investigating the effect of anxiety on the long range temporal correlations of oscillatory activity, 
some (unpublished) research has shown increased beta power and altered theta/beta synchrony 
associated with anxiety (Cruces-Solis et al., n.d.). There is also an alternative theory suggesting 
that functional neuronal networks operate at a “reverbating regime”, which enables networks to 
tune to task demands. According to this theory, only networks which need to integrate 
information over multiple time scales will be operating at a critical regime (Wilting et al., 2018). 
If this is the case, then the hypothesis that the scaling exponents in beta reflect novelty detection 
and exploratory behaviour seems to be more plausible than the anxiety hypothesis. Moreover, if 
the beta scaling exponents would be reflecting anxiety levels, it is reasonable to hypothesize that 
throughout the experiment the anxiety levels would drop, which would in turn be reflected in the 
scaling dynamics (e.g., decrease in scaling exponents during object test session). Another piece 
of research supporting our interpretation of the functional significance of criticality in beta 
comes from scale-free analysis of inter-spike intervals of interneurons in the mouse hippocampus 
(CA1 region) during slow wave sleep and free exploration. The authors report an increase of 
~0.1 in scaling exponents during exploration compared to slow-wave sleep, however, the 
observed changes in scaling properties were not formally tested for significance (Guo et al., 
2007). Whether our results of increased scaling exponents in beta truly reflect involvement in 
novelty detection or alternatively, increased levels of anxiety, awaits future investigation.  
 
Our work also provides evidence that different hippocampal sides could be contributing 
differently to the scaling properties of theta (4-7 Hz) frequency band associated with novelty. To 
our knowledge, this is the first piece of evidence to demonstrate that hippocampal subregions can 
potentially contribute differently to the long-range temporal correlations of continuous 
oscillatory activity. However, these results need to be validated through better channel selection 
in the analysis pipeline. In the current work, channels representing a region were solely selected 
based on the averaged scaling exponent maps, and anatomical proximity was not taken into 
account. This poses constraints on the validity and the interpretation of these results, however, 
our research already gives novel evidence for potentially different scaling regimes in theta across 
the CA1 region of the hippocampus. Regardless of the choice of hippocampal channels, our 
results indicate that only in theta frequency band the interaction between regions and behavioral 
outcomes significantly influences the scaling dynamics. Consistent across both models is the 
finding that the interactions of two out of four home cage recordings with the prefrontal cortex 
significantly decrease the scaling exponents by ~0.07.  In humans, theta oscillations have been 
implicated to play a crucial role in working memory (Stam, 2000) and are hypothesized to 
integrate information in inter-regional networks involved in mnemonic tasks (Kirk & Mackay, 
2003). Moreover, midfrontal theta, implicated in action monitoring in humans, has been shown 
to be scale free (Cohen, 2016). It has also been shown that long-range temporal correlations in 
patients with major depressive disorder (a symptom of which is memory impairment) in theta 
from multiple sources is nearly absent, while it is robust in healthy participants (Klaus 
Linkenkaer-Hansen et al., 2005). In rodents (rats) it has been previously shown that the neuronal 
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firing of the prefrontal cortex is phase-locked to hippocampal (CA1) theta rhythm (Siapas et al., 
2005), and that increased phase-locking of the prefrontal cortex to hippocampal theta is 
associated with increased working-memory loads and/or decision making (Jones & Wilson, 
2005). Therefore we hypothesize that theta scaling properties might reflect a rather general 
mechanism involved in the coordination of information from multiple regions associated with 
memory in the object recognition task.  
 
The greatest variability in scaling exponents was observed in the gamma frequency band. In the 
averaged across animals scaling exponent maps, prominent gamma (~96-102 Hz) scaling 
exponent bursts were observed during object exploration stages, spanning on average between 
0.6 and 0.93. Interestingly, only three out of six animals contributed to these prominent scaling 
dynamics, and in these animals the scaling exponents were observed to reach values above 1. 
Additionally, one more animal showed similar scaling dynamics for a lower gamma sub-band 
(centered around ~80 Hz). These results cannot be attributed to genetic differences and suggest 
that possibly different underlying mechanisms are contributing to the scaling properties of 
gamma. Contrary to our expectations, these prominent bursts of scaling exponents were found in 
the parietal cortex. The parietal cortex in mice has been implicated to take part in various tasks, 
such as processing different modalities of sensory information (Mohan et al., 2018; Olcese et al., 
2013), resolving conflicts of sensory information coming from different modalities (Song et al., 
2017), and decision-making and navigation (Harvey et al., 2012; Krumin et al., 2018). Therefore 
the prominent bursts in scaling exponents found in the parietal cortex might reflect a multitude of 
mechanisms involved in the object recognition task. However why the results indicate prominent 
above-noise level scaling exponents in the narrow gamma sub-band (~96-102 Hz), and what is 
the possible interpretation for the generally high scaling exponents observed in broad gamma 
(>100 Hz) awaits future investigation.  
 
Interestingly, channel 10 from the prefrontal cortex, positioned at the cingulate, displayed 
strikingly similar scaling dynamics to those observed in the parietal cortex. There is  research 
indicating the presence of reciprocal connections between the parietal cortex and the anterior 
cingulate cortex in the mouse brain (Zingg et al., 2014). Moreover, the anterior cingulate cortex 
has been implicated to take part in the novelty detection circuit in mice (Weible et al., 2009). 
Therefore it is plausible to hypothesize that the similarity in scaling properties between these two 
regions reflect both connectivity and general involvement of these regions in the task. Whether 
this is the case awaits future investigation. Another plausible interpretation for the similarity of 
scaling dynamics between the cingulate and the parietal cortices is the possibility for 
short-circuit on the electrode level. Even though all data was carefully preprocessed for artifacts, 
it is still possible that short-circuits have significantly contributed to the remaining signal. 
Whether the similarity in scaling dynamics between the cingulate and the parietal cortices is due 
to short circuits or is alternatively due to strong connectivity between these regions and reflects a 
general network involved in the object recognition task awaits future investigation.  
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A limitation of the current work lies in the experimental design. In this work mice were not 
habituated to the open field before being exposed to novel objects. Therefore, our behavioural 
category “exploration” encodes not only object novelty, but also spatial novelty, and it is 
impossible to compare the scaling properties of neural oscillations associated with each of the 
two types of novelty. Another strong limitation of the current work is that the chosen modelling 
framework (LMEs) does not allow for the formal testing for significance between the intercepts 
of each model. Our results that the scaling exponents associated with exploration in the 
hippocampus are the highest in beta are not supported with a formal significance test. 
Comparison of the intercepts for significance is possible in linear regression models with the 
same slopes, and in a seemingly unrelated regression model, where the individual regressions are 
allowed to have different slopes. However, both of the above mentioned models do not allow for 
the explicit specification of the random effects, as it is done in this work. Moreover, the linear 
mixed effects models might not be the most optimal modelling paradigm to investigate the 
difference between the scaling dynamics associated with each behavioural outcome. This is 
reflected in the relatively low R-squared (a measure of the variance explained) for each model. 
The highest R-squared is ~0.7 for the beta models, in theta this measure is ~0.6 and in the 
gamma models - only ~0.4. The relatively low R-squared in gamma could partially be attributed 
to the wider range of scaling exponents observed within this frequency sub-band. This might 
suggest that there are different, conquering processes, independently contributing to the scaling 
exponents within gamma. However, whether this is the case awaits future investigation.  
 
A future direction would be to explore the long-range temporal correlations of other low 
frequency bands, such as delta and alpha. Individual scaling exponent maps, as well as the 
averaged results across sessions give preliminary support for the presence of scale-free amplitude 
modulations in the lower end of the frequency spectrum. Moreover, Figure 2B gives preliminary 
support for the presence of long-range temporal correlations in alpha (10 Hz). The results 
demonstrated there (from a single channel in the parietal cortex, from one randomly selected 
animal during object test) are strikingly similar to the ones reported by Linkenkaer-Hansen and 
colleagues (2001; 2004). Moreover, a recently submitted work investigating cross-frequency 
coupling during spatial and object novelty in mice has provided evidence for transient delta-beta 
coupling during exposure to novelty.  (França et al., n.d.). Therefore, it will be interesting to 
investigate whether the scaling properties of these frequencies are also similar during the object 
recognition task.  
 

Acknowledgements  
 
Throughout this project I have learned a lot not only about the theory of criticality in the brain, 
but I have also developed on a personal level. I have learned to be persistent in my work, no 

 

https://paperpile.com/c/6k85Y5/VSlA+E7wQ/?noauthor=1,1
https://paperpile.com/c/6k85Y5/Hg2q


 

matter whether I am personally encouraged by the results or not, and I have improved my critical 
thinking. I would like to thank my supervisor dr. Michael Cohen for his guidance throughout my 
research internship, encouragement, support and motivating me to continue. I would also like to 
thank dr. Arthur Franca for the help in interpretation of my results and suggestions, Ashutosh 
Mishra for helping me to get acquainted with DeepLabCut and dr. Bernhard Englitz for setting 
up access for me to more powerful machines, which greatly accelerated the behavioral 
categorization part of this work. Last but not least, I would like to thank all of my friends who 
were forced to listen in great detail about my work and didn’t break their friendship with me 
after that.  

  

 



 

References 
 

Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 

1/fnoise. In Physical Review Letters (Vol. 59, Issue 4, pp. 381–384). 

https://doi.org/10.1103/physrevlett.59.381 

Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. In Physical Review A 

(Vol. 38, Issue 1, pp. 364–374). https://doi.org/10.1103/physreva.38.364 

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. The Journal of 

Neuroscience: The Official Journal of the Society for Neuroscience, 23(35), 11167–11177. 

Berke, J. D., Hetrick, V., Breck, J., & Greene, R. W. (2008). Transient 23-30 Hz oscillations in 

mouse hippocampus during exploration of novel environments. Hippocampus, 18(5), 

519–529. 

Borges, A. F. T., Giraud, A.-L., Mansvelder, H. D., & Linkenkaer-Hansen, K. (2018). Scale-Free 

Amplitude Modulation of Neuronal Oscillations Tracks Comprehension of Accelerated 

Speech. In The Journal of Neuroscience (Vol. 38, Issue 3, pp. 710–722). 

https://doi.org/10.1523/jneurosci.1515-17.2017 

Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-gaussian signals. In IEE 

Proceedings F Radar and Signal Processing (Vol. 140, Issue 6, p. 362). 

https://doi.org/10.1049/ip-f-2.1993.0054 

Carlson, J. M., Chayes, J. T., Grannan, E. R., & Swindle, G. H. (1990). Self-organized criticality 

in sandpiles: Nature of the critical phenomenon. Physical Review. A, 42(4), 2467–2470. 

Christensen, K., Danon, L., Scanlon, T., & Bak, P. (2002). Unified scaling law for earthquakes. 

Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 

 

http://paperpile.com/b/6k85Y5/5r5f
http://paperpile.com/b/6k85Y5/5r5f
http://paperpile.com/b/6k85Y5/5r5f
http://paperpile.com/b/6k85Y5/5r5f
http://paperpile.com/b/6k85Y5/5r5f
http://dx.doi.org/10.1103/physrevlett.59.381
http://paperpile.com/b/6k85Y5/lZJF
http://paperpile.com/b/6k85Y5/lZJF
http://paperpile.com/b/6k85Y5/lZJF
http://paperpile.com/b/6k85Y5/lZJF
http://dx.doi.org/10.1103/physreva.38.364
http://paperpile.com/b/6k85Y5/Gfex
http://paperpile.com/b/6k85Y5/Gfex
http://paperpile.com/b/6k85Y5/Gfex
http://paperpile.com/b/6k85Y5/Gfex
http://paperpile.com/b/6k85Y5/Gfex
http://paperpile.com/b/6k85Y5/Gfex
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/mPGw
http://paperpile.com/b/6k85Y5/ojeF
http://paperpile.com/b/6k85Y5/ojeF
http://paperpile.com/b/6k85Y5/ojeF
http://paperpile.com/b/6k85Y5/ojeF
http://paperpile.com/b/6k85Y5/ojeF
http://paperpile.com/b/6k85Y5/ojeF
http://dx.doi.org/10.1523/jneurosci.1515-17.2017
http://paperpile.com/b/6k85Y5/7AQ2
http://paperpile.com/b/6k85Y5/7AQ2
http://paperpile.com/b/6k85Y5/7AQ2
http://paperpile.com/b/6k85Y5/7AQ2
http://paperpile.com/b/6k85Y5/7AQ2
http://dx.doi.org/10.1049/ip-f-2.1993.0054
http://paperpile.com/b/6k85Y5/VMih
http://paperpile.com/b/6k85Y5/VMih
http://paperpile.com/b/6k85Y5/VMih
http://paperpile.com/b/6k85Y5/VMih
http://paperpile.com/b/6k85Y5/VMih
http://paperpile.com/b/6k85Y5/VMih
http://paperpile.com/b/6k85Y5/JIw2
http://paperpile.com/b/6k85Y5/JIw2
http://paperpile.com/b/6k85Y5/JIw2
http://paperpile.com/b/6k85Y5/JIw2


 

1, 2509–2513. 

Ciuciu, P., Abry, P., Rabrait, C., & Wendt, H. (2008). Log Wavelet Leaders Cumulant Based 

Multifractal Analysis of EVI fMRI Time Series: Evidence of Scaling in Ongoing and 

Evoked Brain Activity. In IEEE Journal of Selected Topics in Signal Processing (Vol. 2, 

Issue 6, pp. 929–943). https://doi.org/10.1109/jstsp.2008.2006663 

Cohen, M. X. (2016). Midfrontal theta tracks action monitoring over multiple interactive time 

scales. NeuroImage, 141, 262–272. 

Cohen, M. X. (2019). A better way to define and describe Morlet wavelets for time-frequency 

analysis. NeuroImage, 199, 81–86. 

Cruces-Solis, H., Babaev, O., Ali, H., Chatain, C. P., Mykytiuk, V., Balekoglu, N., Wenger, S., 

& Krueger-Burg, D. (n.d.). Altered theta / beta frequency synchrony links abnormal 

anxiety-related behavior to synaptic inhibition in Neuroligin-2 knockout mice. 

https://doi.org/10.1101/726190 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial 

EEG dynamics including independent component analysis. Journal of Neuroscience 

Methods, 134(1), 9–21. 

Dere, E., Huston, J. P., & De Souza Silva, M. A. (2007). The pharmacology, neuroanatomy and 

neurogenetics of one-trial object recognition in rodents. In Neuroscience & Biobehavioral 

Reviews (Vol. 31, Issue 5, pp. 673–704). https://doi.org/10.1016/j.neubiorev.2007.01.005 

França, A. S. C., Borgegius, N., & Cohen, M. X. (n.d.). Beta2 oscillations in the 

hippocampal-cortical novelty detection circuit. https://doi.org/10.1101/2020.06.15.151969 

França, A. S. C., do Nascimento, G. C., Lopes-dos-Santos, V., Muratori, L., Ribeiro, S., 

Lobão-Soares, B., & Tort, A. B. L. (2014). Beta2 oscillations (23-30 Hz) in the mouse 

 

http://paperpile.com/b/6k85Y5/JIw2
http://paperpile.com/b/6k85Y5/JIw2
http://paperpile.com/b/6k85Y5/6NVk
http://paperpile.com/b/6k85Y5/6NVk
http://paperpile.com/b/6k85Y5/6NVk
http://paperpile.com/b/6k85Y5/6NVk
http://paperpile.com/b/6k85Y5/6NVk
http://paperpile.com/b/6k85Y5/6NVk
http://dx.doi.org/10.1109/jstsp.2008.2006663
http://paperpile.com/b/6k85Y5/vLIk
http://paperpile.com/b/6k85Y5/vLIk
http://paperpile.com/b/6k85Y5/vLIk
http://paperpile.com/b/6k85Y5/vLIk
http://paperpile.com/b/6k85Y5/vLIk
http://paperpile.com/b/6k85Y5/vLIk
http://paperpile.com/b/6k85Y5/OZtr
http://paperpile.com/b/6k85Y5/OZtr
http://paperpile.com/b/6k85Y5/OZtr
http://paperpile.com/b/6k85Y5/OZtr
http://paperpile.com/b/6k85Y5/OZtr
http://paperpile.com/b/6k85Y5/OZtr
http://paperpile.com/b/6k85Y5/FrBG
http://paperpile.com/b/6k85Y5/FrBG
http://paperpile.com/b/6k85Y5/FrBG
http://paperpile.com/b/6k85Y5/FrBG
http://paperpile.com/b/6k85Y5/FrBG
http://paperpile.com/b/6k85Y5/FrBG
http://dx.doi.org/10.1101/726190
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/1TGr
http://paperpile.com/b/6k85Y5/knmR
http://paperpile.com/b/6k85Y5/knmR
http://paperpile.com/b/6k85Y5/knmR
http://paperpile.com/b/6k85Y5/knmR
http://paperpile.com/b/6k85Y5/knmR
http://dx.doi.org/10.1016/j.neubiorev.2007.01.005
http://paperpile.com/b/6k85Y5/Hg2q
http://paperpile.com/b/6k85Y5/Hg2q
http://paperpile.com/b/6k85Y5/Hg2q
http://paperpile.com/b/6k85Y5/Hg2q
http://dx.doi.org/10.1101/2020.06.15.151969
http://paperpile.com/b/6k85Y5/ZlhQ
http://paperpile.com/b/6k85Y5/ZlhQ


 

hippocampus during novel object recognition. In European Journal of Neuroscience (Vol. 

40, Issue 11, pp. 3693–3703). https://doi.org/10.1111/ejn.12739 

Franca, A. S. C., van Hulten, J. A., & Cohen, M. X. (n.d.). Low-cost and versatile electrodes for 

extracellular chronic recordings in rodents. https://doi.org/10.1101/2020.02.06.937201 

Friedman, N., Ito, S., Brinkman, B. A. W., Shimono, M., DeVille, R. E. L., Dahmen, K. A., 

Beggs, J. M., & Butler, T. C. (2012). Universal critical dynamics in high resolution 

neuronal avalanche data. Physical Review Letters, 108(20), 208102. 

Ghosh, D., Sengupta, R., Sanyal, S., & Banerjee, A. (2018). Musicality of Human Brain through 

Fractal Analytics. In Signals and Communication Technology. 

https://doi.org/10.1007/978-981-10-6511-8 

Guo, S.-B., Wang, Y., Yan, X., Lin, L., Tsien, J., & Huang, D.-S. (2007). Long-Range Temporal 

Correlations in the Spontaneous in vivo Activity of Interneuron in the Mouse Hippocampus. 

In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial 

Intelligence (pp. 1339–1344). https://doi.org/10.1007/978-3-540-74205-0_137 

Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & 

Linkenkaer-Hansen, K. (2012). Detrended fluctuation analysis: a scale-free view on 

neuronal oscillations. Frontiers in Physiology, 3, 450. 

Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in parietal cortex 

during a virtual-navigation decision task. Nature, 484(7392), 62–68. 

He, B. J. (2011). Scale-free properties of the functional magnetic resonance imaging signal 

during rest and task. The Journal of Neuroscience: The Official Journal of the Society for 

Neuroscience, 31(39), 13786–13795. 

He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and 

 

http://paperpile.com/b/6k85Y5/ZlhQ
http://paperpile.com/b/6k85Y5/ZlhQ
http://paperpile.com/b/6k85Y5/ZlhQ
http://paperpile.com/b/6k85Y5/ZlhQ
http://dx.doi.org/10.1111/ejn.12739
http://paperpile.com/b/6k85Y5/scb0
http://paperpile.com/b/6k85Y5/scb0
http://paperpile.com/b/6k85Y5/scb0
http://paperpile.com/b/6k85Y5/scb0
http://dx.doi.org/10.1101/2020.02.06.937201
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/d7Bg
http://paperpile.com/b/6k85Y5/VE9M
http://paperpile.com/b/6k85Y5/VE9M
http://paperpile.com/b/6k85Y5/VE9M
http://paperpile.com/b/6k85Y5/VE9M
http://paperpile.com/b/6k85Y5/VE9M
http://dx.doi.org/10.1007/978-981-10-6511-8
http://paperpile.com/b/6k85Y5/Bvcq
http://paperpile.com/b/6k85Y5/Bvcq
http://paperpile.com/b/6k85Y5/Bvcq
http://paperpile.com/b/6k85Y5/Bvcq
http://paperpile.com/b/6k85Y5/Bvcq
http://paperpile.com/b/6k85Y5/Bvcq
http://dx.doi.org/10.1007/978-3-540-74205-0_137
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/Yzu6
http://paperpile.com/b/6k85Y5/JLA1
http://paperpile.com/b/6k85Y5/JLA1
http://paperpile.com/b/6k85Y5/JLA1
http://paperpile.com/b/6k85Y5/JLA1
http://paperpile.com/b/6k85Y5/JLA1
http://paperpile.com/b/6k85Y5/JLA1
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/TgCk
http://paperpile.com/b/6k85Y5/VwkL


 

functional significance of scale-free brain activity. Neuron, 66(3), 353–369. 

Jiang, L., Sui, D., Qiao, K., Dong, H.-M., Chen, L., & Han, Y. (2018). Impaired Functional 

Criticality of Human Brain during Alzheimer’s Disease Progression. Scientific Reports, 

8(1), 1324. 

Jones, M. W., & Wilson, M. A. (2005). Theta Rhythms Coordinate Hippocampal–Prefrontal 

Interactions in a Spatial Memory Task. In PLoS Biology (Vol. 3, Issue 12, p. e402). 

https://doi.org/10.1371/journal.pbio.0030402 

Kirk, I., & Mackay, J. (2003). The Role of Theta-Range Oscillations in Synchronising and 

Integrating Activity in Distributed Mnemonic Networks. In Cortex (Vol. 39, Issues 4-5, pp. 

993–1008). https://doi.org/10.1016/s0010-9452(08)70874-8 

Krumin, M., Lee, J. J., Harris, K. D., & Carandini, M. (2018). Decision and navigation in mouse 

parietal cortex. eLife, 7. https://doi.org/10.7554/eLife.42583 

Lai, M.-C., Lombardo, M. V., Chakrabarti, B., Sadek, S. A., Pasco, G., Wheelwright, S. J., 

Bullmore, E. T., Baron-Cohen, S., MRC AIMS Consortium, & Suckling, J. (2010). A shift 

to randomness of brain oscillations in people with autism. Biological Psychiatry, 68(12), 

1092–1099. 

Linkenkaer-Hansen, K., Monto, S., Rytsälä, H., Suominen, K., Isometsä, E., & Kähkönen, S. 

(2005). Breakdown of long-range temporal correlations in theta oscillations in patients with 

major depressive disorder. The Journal of Neuroscience: The Official Journal of the Society 

for Neuroscience, 25(44), 10131–10137. 

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-range 

temporal correlations and scaling behavior in human brain oscillations. The Journal of 

Neuroscience: The Official Journal of the Society for Neuroscience, 21(4), 1370–1377. 

 

http://paperpile.com/b/6k85Y5/VwkL
http://paperpile.com/b/6k85Y5/VwkL
http://paperpile.com/b/6k85Y5/VwkL
http://paperpile.com/b/6k85Y5/VwkL
http://paperpile.com/b/6k85Y5/VwkL
http://paperpile.com/b/6k85Y5/N1u5
http://paperpile.com/b/6k85Y5/N1u5
http://paperpile.com/b/6k85Y5/N1u5
http://paperpile.com/b/6k85Y5/N1u5
http://paperpile.com/b/6k85Y5/N1u5
http://paperpile.com/b/6k85Y5/N1u5
http://paperpile.com/b/6k85Y5/tcLv
http://paperpile.com/b/6k85Y5/tcLv
http://paperpile.com/b/6k85Y5/tcLv
http://paperpile.com/b/6k85Y5/tcLv
http://paperpile.com/b/6k85Y5/tcLv
http://dx.doi.org/10.1371/journal.pbio.0030402
http://paperpile.com/b/6k85Y5/n9AL
http://paperpile.com/b/6k85Y5/n9AL
http://paperpile.com/b/6k85Y5/n9AL
http://paperpile.com/b/6k85Y5/n9AL
http://paperpile.com/b/6k85Y5/n9AL
http://dx.doi.org/10.1016/s0010-9452(08)70874-8
http://paperpile.com/b/6k85Y5/J94Y
http://paperpile.com/b/6k85Y5/J94Y
http://paperpile.com/b/6k85Y5/J94Y
http://paperpile.com/b/6k85Y5/J94Y
http://paperpile.com/b/6k85Y5/J94Y
http://paperpile.com/b/6k85Y5/J94Y
http://dx.doi.org/10.7554/eLife.42583
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/Gqw2
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/P7sn
http://paperpile.com/b/6k85Y5/VSlA
http://paperpile.com/b/6k85Y5/VSlA
http://paperpile.com/b/6k85Y5/VSlA
http://paperpile.com/b/6k85Y5/VSlA
http://paperpile.com/b/6k85Y5/VSlA
http://paperpile.com/b/6k85Y5/VSlA
http://paperpile.com/b/6k85Y5/VSlA


 

Linkenkaer-Hansen, K., Nikulin, V. V., Palva, J. M., Kaila, K., & Ilmoniemi, R. J. (2004). 

Stimulus-induced change in long-range temporal correlations and scaling behaviour of 

sensorimotor oscillations. The European Journal of Neuroscience, 19(1), 203–211. 

Lux, T., & Marchesi, M. (1999). Scaling and criticality in a stochastic multi-agent model of a 

financial market. In Nature (Vol. 397, Issue 6719, pp. 498–500). 

https://doi.org/10.1038/17290 

Malamud, B. D., Morein, G., & Turcotte, D. L. (1998). Forest fires: An example of 

self-organized critical behavior. Science, 281(5384), 1840–1842. 

Maslov, S., Paczuski, M., & Bak, P. (1994). Avalanches and 1/f noise in evolution and growth 

models. Physical Review Letters, 73(16), 2162–2165. 

Massobrio, P., de Arcangelis, L., Pasquale, V., Jensen, H. J., & Plenz, D. (2015). Criticality as a 

signature of healthy neural systems. Frontiers in Systems Neuroscience, 9, 22. 

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. 

(2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep 

learning. In Nature Neuroscience (Vol. 21, Issue 9, pp. 1281–1289). 

https://doi.org/10.1038/s41593-018-0209-y 

Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., & Bullmore, E. (2005). 

Fractional Gaussian noise, functional MRI and Alzheimer’s disease. NeuroImage, 25(1), 

141–158. 

Mohan, H., de Haan, R., Mansvelder, H. D., & de Kock, C. P. J. (2018). The posterior parietal 

cortex as integrative hub for whisker sensorimotor information. Neuroscience, 368, 

240–245. 

Moran, J. K., Michail, G., Heinz, A., Keil, J., & Senkowski, D. (2019). Long-Range Temporal 

 

http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/E7wQ
http://paperpile.com/b/6k85Y5/hSdQ
http://paperpile.com/b/6k85Y5/hSdQ
http://paperpile.com/b/6k85Y5/hSdQ
http://paperpile.com/b/6k85Y5/hSdQ
http://paperpile.com/b/6k85Y5/hSdQ
http://dx.doi.org/10.1038/17290
http://paperpile.com/b/6k85Y5/LthW
http://paperpile.com/b/6k85Y5/LthW
http://paperpile.com/b/6k85Y5/LthW
http://paperpile.com/b/6k85Y5/LthW
http://paperpile.com/b/6k85Y5/LthW
http://paperpile.com/b/6k85Y5/LthW
http://paperpile.com/b/6k85Y5/pAsA
http://paperpile.com/b/6k85Y5/pAsA
http://paperpile.com/b/6k85Y5/pAsA
http://paperpile.com/b/6k85Y5/pAsA
http://paperpile.com/b/6k85Y5/pAsA
http://paperpile.com/b/6k85Y5/pAsA
http://paperpile.com/b/6k85Y5/Pb8u
http://paperpile.com/b/6k85Y5/Pb8u
http://paperpile.com/b/6k85Y5/Pb8u
http://paperpile.com/b/6k85Y5/Pb8u
http://paperpile.com/b/6k85Y5/Pb8u
http://paperpile.com/b/6k85Y5/Pb8u
http://paperpile.com/b/6k85Y5/1Zer
http://paperpile.com/b/6k85Y5/1Zer
http://paperpile.com/b/6k85Y5/1Zer
http://paperpile.com/b/6k85Y5/1Zer
http://paperpile.com/b/6k85Y5/1Zer
http://paperpile.com/b/6k85Y5/1Zer
http://dx.doi.org/10.1038/s41593-018-0209-y
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/ULr8
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/pDYI
http://paperpile.com/b/6k85Y5/8GtX


 

Correlations in Resting State Beta Oscillations are Reduced in Schizophrenia. Frontiers in 

Psychiatry / Frontiers Research Foundation, 10, 517. 

Olcese, U., Iurilli, G., & Medini, P. (2013). Cellular and synaptic architecture of multisensory 

integration in the mouse neocortex. Neuron, 79(3), 579–593. 

Pritchard, W. S. (1992). The brain in fractal time: 1/f-like power spectrum scaling of the human 

electroencephalogram. The International Journal of Neuroscience, 66(1-2), 119–129. 

Shew, W. L., Yang, H., Yu, S., Roy, R., & Plenz, D. (2011). Information capacity and 

transmission are maximized in balanced cortical networks with neuronal avalanches. The 

Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(1), 

55–63. 

Siapas, A. G., Lubenov, E. V., & Wilson, M. A. (2005). Prefrontal phase locking to hippocampal 

theta oscillations. Neuron, 46(1), 141–151. 

Song, Y.-H., Kim, J.-H., Jeong, H.-W., Choi, I., Jeong, D., Kim, K., & Lee, S.-H. (2017). A 

Neural Circuit for Auditory Dominance over Visual Perception. Neuron, 93(5), 1236–1237. 

Stam, C. J. (2000). Brain dynamics in theta and alpha frequency bands and working memory 

performance in humans. Neuroscience Letters, 286(2), 115–118. 

Usher, M., Stemmler, M., & Olami, Z. (1995). Dynamic pattern formation leads to 1/f noise in 

neural populations. Physical Review Letters, 74(2), 326–329. 

Ville, D. V. D., Van De Ville, D., Britz, J., & Michel, C. M. (2010). EEG microstate sequences 

in healthy humans at rest reveal scale-free dynamics. In Proceedings of the National 

Academy of Sciences (Vol. 107, Issue 42, pp. 18179–18184). 

https://doi.org/10.1073/pnas.1007841107 

Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., & Jensen, H. J. (2016). 25 Years 

 

http://paperpile.com/b/6k85Y5/8GtX
http://paperpile.com/b/6k85Y5/8GtX
http://paperpile.com/b/6k85Y5/8GtX
http://paperpile.com/b/6k85Y5/8GtX
http://paperpile.com/b/6k85Y5/8GtX
http://paperpile.com/b/6k85Y5/8GtX
http://paperpile.com/b/6k85Y5/s8di
http://paperpile.com/b/6k85Y5/s8di
http://paperpile.com/b/6k85Y5/s8di
http://paperpile.com/b/6k85Y5/s8di
http://paperpile.com/b/6k85Y5/s8di
http://paperpile.com/b/6k85Y5/s8di
http://paperpile.com/b/6k85Y5/3zZ7
http://paperpile.com/b/6k85Y5/3zZ7
http://paperpile.com/b/6k85Y5/3zZ7
http://paperpile.com/b/6k85Y5/3zZ7
http://paperpile.com/b/6k85Y5/3zZ7
http://paperpile.com/b/6k85Y5/3zZ7
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/pwPQ
http://paperpile.com/b/6k85Y5/htnx
http://paperpile.com/b/6k85Y5/htnx
http://paperpile.com/b/6k85Y5/htnx
http://paperpile.com/b/6k85Y5/htnx
http://paperpile.com/b/6k85Y5/htnx
http://paperpile.com/b/6k85Y5/htnx
http://paperpile.com/b/6k85Y5/ROlF
http://paperpile.com/b/6k85Y5/ROlF
http://paperpile.com/b/6k85Y5/ROlF
http://paperpile.com/b/6k85Y5/ROlF
http://paperpile.com/b/6k85Y5/ROlF
http://paperpile.com/b/6k85Y5/ROlF
http://paperpile.com/b/6k85Y5/v8sD
http://paperpile.com/b/6k85Y5/v8sD
http://paperpile.com/b/6k85Y5/v8sD
http://paperpile.com/b/6k85Y5/v8sD
http://paperpile.com/b/6k85Y5/v8sD
http://paperpile.com/b/6k85Y5/v8sD
http://paperpile.com/b/6k85Y5/ep5x
http://paperpile.com/b/6k85Y5/ep5x
http://paperpile.com/b/6k85Y5/ep5x
http://paperpile.com/b/6k85Y5/ep5x
http://paperpile.com/b/6k85Y5/ep5x
http://paperpile.com/b/6k85Y5/ep5x
http://paperpile.com/b/6k85Y5/kRUp
http://paperpile.com/b/6k85Y5/kRUp
http://paperpile.com/b/6k85Y5/kRUp
http://paperpile.com/b/6k85Y5/kRUp
http://paperpile.com/b/6k85Y5/kRUp
http://paperpile.com/b/6k85Y5/kRUp
http://dx.doi.org/10.1073/pnas.1007841107
http://paperpile.com/b/6k85Y5/agGW


 

of Self-organized Criticality: Concepts and Controversies. In Space Science Reviews (Vol. 

198, Issues 1-4, pp. 3–44). https://doi.org/10.1007/s11214-015-0155-x 

Weible, A. P., Rowland, D. C., Pang, R., & Kentros, C. (2009). Neural correlates of novel object 

and novel location recognition behavior in the mouse anterior cingulate cortex. Journal of 

Neurophysiology, 102(4), 2055–2068. 

Wilting, J., Dehning, J., Neto, J. P., Rudelt, L., Wibral, M., Zierenberg, J., & Priesemann, V. 

(2018). Operating in a Reverberating Regime Enables Rapid Tuning of Network States to 

Task Requirements. In Frontiers in Systems Neuroscience (Vol. 12). 

https://doi.org/10.3389/fnsys.2018.00055 

Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N., 

Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural Networks of the 

Mouse Neocortex. In Cell (Vol. 156, Issue 5, pp. 1096–1111). 

https://doi.org/10.1016/j.cell.2014.02.023 

  

 

http://paperpile.com/b/6k85Y5/agGW
http://paperpile.com/b/6k85Y5/agGW
http://paperpile.com/b/6k85Y5/agGW
http://paperpile.com/b/6k85Y5/agGW
http://dx.doi.org/10.1007/s11214-015-0155-x
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/nkHx
http://paperpile.com/b/6k85Y5/cObb
http://paperpile.com/b/6k85Y5/cObb
http://paperpile.com/b/6k85Y5/cObb
http://paperpile.com/b/6k85Y5/cObb
http://paperpile.com/b/6k85Y5/cObb
http://paperpile.com/b/6k85Y5/cObb
http://dx.doi.org/10.3389/fnsys.2018.00055
http://paperpile.com/b/6k85Y5/Gw1L
http://paperpile.com/b/6k85Y5/Gw1L
http://paperpile.com/b/6k85Y5/Gw1L
http://paperpile.com/b/6k85Y5/Gw1L
http://paperpile.com/b/6k85Y5/Gw1L
http://paperpile.com/b/6k85Y5/Gw1L
http://dx.doi.org/10.1016/j.cell.2014.02.023


 

Appendix 

 

 

 



 

 

 

 



 

 

 

Figure A1: Individual patterns of scaling exponents per experimental stage. 

 

 

 


