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Abstract

Readback errors in English Air Traffic Control speech pose a significant safety
risk. The National Aeronautics and Space Administration (NASA) and Federal
Aviation Administration (FAA) have published various reports illustrating com-
munication errors as prominent factors resulting in aviation incidents. While com-
munication errors exist in a broad range, readback and hearback errors will be the
main focus in this thesis. In an attempt to reduce readback or hearback errors,
this research looked at the possibility of automating the hearback process where
controllers are required to verify readbacks made by pilots. The task of classifying
readbacks as ’Correct’, ’Incomplete’ or ’Wrong’ was seen as analogous to a sentence
matching task, where the relationship between instruction from a controller and
readback from a pilot was determined. A processing pipeline was introduced as
’The Proposed Scheme’ and Natural Language Processing techniques and Convo-
lutional Neural Network architectures were explored. The best implementation of
the proposed scheme had a 78.2% recall rate, higher than the most recent reported
recall rate of human controllers which stood at 77.8%.
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1 Introduction

Controllers in the domain of Air Traffic Control (ATC) manage aircrafts on the ground
and through controlled airspaces. A big challenge in introducing automation to the
ATC domain is the intensive use of voice radio communication. Pilots and controllers
rely primarily on radio transmissions to communicate and it is critical that both par-
ties understand each other accurately. Controllers ensure the safety of aircraft within
their jurisdiction by issuing clearances and advisories to pilots. Controllers also ver-
ify readbacks from pilots, ensuring that pilots repeat clearances or advisories fully and
correctly and then monitor aircraft movements to confirm pilots’ compliance to issued
commands. However, errors do occasionally occur in these processes resulting in avia-
tion incidents. Aviation incidents are defined by the Convention on International Civil
Aviation in Annex 13 (International Civil Aviation Organization, 1994), as events as-
sociated with the operation of an aircraft that affect or could potentially affect its safety.

Various researchers have warned about the dangers of miscommunication in ATC, it
was found that at least 2,000 people have died in aeroplane crashes in the last 45 years,
in which communication errors were a strong factor (Patty, 2016) and language-related
communication problems tend to arise during nonstandard and emergency situations
(Gontar et al., 2017). The latest update to the International Air Transport Association’s
(IATA) 20-Year Air Passenger Forecast projected that passenger numbers could double
to 8.2 billion in 2037 (International Air Transport Association, 2018). The increase
in flight volume contributes to added pressure and stress experienced by controllers
and pilots, as well as frequency congestion, these could lead to human errors which
are already a significant factor in miscommunication. Technical reports from Federal
Aviation Administration (FAA) and National Aeronautics and Space Administration
(NASA), including the Aviation Safety Reporting System (ASRS) report, have stated
that communication errors such as misunderstandings are a prominent factor resulting
in aviation incidents (Billings and Cheaney, 1981; Cardosi et al., 1998; Schroeder et al.,
2007). Moreover, Eurocontrol has identified readback or hearback errors as the most
common error in ATC speech (Van Es, 2004). While communication errors exist in a
broad range, this research will therefore focus on the classification of readback errors.

Verifying readbacks constitutes a significant part of an ATC controller’s responsibili-
ties. This process may also be referred to as making a hearback, and here controllers
ensure pilots repeat instructions properly and to correct any mistakes a pilot may have
made in a readback. A readback error occurs when a pilot fails to repeat the instruction
from a controller fully and accurately. Errors in readback or hearback could lead to sit-
uations involving altitude deviation, runway incursion, airborne conflict or operational
deviation among many others. The most frequent consequence of hearback errors was
found to be prolonged loss of communication. Additionally, it should be highlighted
that a single error could lead to multiple consequences. Often, it occurred that when
an error leads to a wrong aircraft accepting an instruction from the controller, this
was followed by the wrong aircraft deviating from its appropriate altitude (Es, 2004).
When making a hearback, in the best-case scenario: the instruction and readback are
exactly the same sentences. In the worst-case scenario: there is no readback. However
in reality, most readbacks fall between these two extremes, making it difficult to verify if
readbacks are correct. In a series of studies in the 1990s, researchers found that ≤ 1 % of
readbacks were incorrect and of those approximately 40-45% were not corrected by con-
trollers (Burki-Cohen, 1995; Cardosi and Han, 1997). In the 2000s, researchers reported
readback errors rates were at 6% and out of 723 readback errors 92% were not corrected
(Prinzo et al., 2006). More recently, the readback error rate was again found to be ≤
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1% and the hearback error rate was reported to be 22% (Lennertz, 2017). Automating
the process of hearback i.e. readback error classification would involve several areas of
natural language processing (NLP) such as speech recognition and semantic processing.
Additionally, the situational awareness and readiness of both controllers and pilots are
imperative.

1.1 Research Question

Classifying readback is analogous to sentence matching or paraphrase identification that
is applied to ATC speech. In sentence matching, it is critical to identify the relationship
between two sentences. It is important to be able to appropriately model the relationship
and compare the textual similarity. Similarly in classifying readback, it is necessary to
identify the relationship between the instruction given by controllers and the readback
provided by pilots. Here it is also relevant to look at the textual similarities especially
in semantics. Many algorithms have been proposed for sentence matching, some take
advantage of word embeddings to express words as vectors in semantic space (Kenter
and de Rijke, 2015) while others have utilized linguistic analysis (Mihalcea et al., 2006),
lexical matching (Islam and Inkpen, 2008), and artificial neural networks such as deep
neural networks (Agarwal et al., 2018) and convolutional neural networks (CNNs) (Hu
et al., 2014)). In spite of the double-check that readbacks afford, human errors tend
to be difficult to notice because controllers are susceptible to inattentional blindness,
attentional blink, working memory overload and disruption of memory consolidation
(Xing and Bailey, 2005). In hopes to reduce the mental load controllers endure, by
automating the hearback process, the research question is as follows:

Is it possible to build an effective classifier for readbacks in English ATC speech
through the use of Natural Language Processing (NLP) techniques and Convolutional
Neural Networks (CNNs)?

It should be noted that the outcomes of this research is dependent on speech recog-
nition technologies which are robust and capable of transcribing conversations between
pilots and controllers accurately.

1.2 Structure

This bachelor thesis can be broken down into several components. The first stage looked
into computationally modelling the classification of readbacks in English ATC speech. A
suitable scheme for readback classification was then developed, based on methods used
in previous research, and proposed. The proposed scheme was intentionally developed to
be general enough to allow variations in implementation so that various configurations
can be evaluated to identify the most efficient classifier.

The second stage entails the collection of data. The aim of the data collection stage was
to create a dataset of textual Instruction-Readback (I-R) pairs with the corresponding
class label for the relationship within the pair of texts - Correct, Wrong or Incomplete.

The third stage was to implement relevant models that were identified in the litera-
ture survey. In this study, two relevant models were identified. The corresponding
research were studied and the models proposed in those were replicated and then ad-
justed to fit the proposed scheme. Additionally, an original novel model was developed
by incorporating features from existing research in a new arrangement. With that, the
dataset was then used in the this stage to train the models implemented.
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The fourth stage of this bachelor thesis addressed the evaluation of the various models
that were implemented. In this section the research question ’Is it possible to build an ef-
fective classifier for readbacks in English ATC speech through the use of NLP techniques
and CNNs? ’ was addressed through the efficacy of the proposed scheme. As such it
was necessary to decompose the research question into two parts - 1) which implemen-
tation of the proposed scheme should be adopted and 2) with this implementation, is
it possible to automate the readback classification? These questions were addressed in
the Experiments and Results section.

2 Background

This chapter will give some insights into phraseology in Aviation English and guidelines
with regards to readback and hearback, as well as explore existing literature on the
problem of readback classification.

2.1 Aviation English Phraseology

Aviation English, a semi-artificial sublanguage based on English, serves as the de facto
international language of civil aviation and plays a dominant role in communication be-
tween pilots and air traffic controllers especially in international contexts. English and
Aviation English differ in terms of phonology, lexis and syntax (Breul, 2013). Interna-
tional Civil Aviation Organization (ICAO), which was founded by the United Nations
to set up international standards in aviation, developed a series of diction and pronun-
ciation standards that have been formulated in a bid to improve language norms and
terminology standards in Aviation English.

’Swedestar 05Z line up RWY 31’ ’Lining up RWY 31 Swedestar 05Z’
Here, the callsign would be pronounced ’Swedestar zeero-fife-zulu’ and the runway
id would be pronounced ’runway tree-wun’.

The diction and pronunciation standards are specified in ICAO Annex 10 (Interna-
tional Civil Aviation Organization, 2001). It includes the pronunciation of alphabets,
numbers, times as well as call signs and is being improved continuously, this facilitates
pronunciation for non-native English speakers. Additionally, Aviation English features
various standard words and phrases to convey meanings often expressed differently in
natural conversation. For example, “affirm” is used in place of “yes”, and “over” is
used to express the end of a message and expectation of a response. Syntax also differs
between English and Aviation English, the most significant difference lies in the deletion
of parts of speech in order to maximise brevity - determiners, prepositions and pronouns
are often omitted. For example “resume own navigation” is said in place of “resume your
own navigation” or “climb 150” usually means “climb to flight level 150”. Furthermore,
controllers and pilots are trained to strictly abide by the ICAO standards to reduce the
likelihood of aviation incidents. Despite these measures, communication errors persist
and readback/hearback problems still exist. These issues are also a significant worry as
the aviation industry continues to grow, this added pressure on controllers and pilots
increases the likelihood of mistakes being made.

2.1.1 Defining Readback Requirements

Readbacks provide controllers with the opportunity to verify that pilots have understood
instructions and clearances correctly. Pilots should provide a readback that is clear and
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complete so that it can be understood by the controllers and allow controllers to rectify
any misunderstandings. Requirements for readbacks are stringent due to its direct re-
lation to the serious implications that a possible misunderstanding in the transmission
and receipt of ATC clearance and instruction can cause (International Civil Aviation
Organization, 2001). It was identified that readback and hearback errors could result
in one or more of the following types of events: altitude deviation, less-than-standard
separation, wrong aircraft accepting clearance, operational error or heading/track devi-
ation (Cardosi et al., 1998).

ICAO (Civil Aviation Authority, 2016) and CAA guidelines (Civil Aviation Author-
ity, 2015) established that instructions with information specifying any of the items
below should be included in the readback and should always include the aircraft call-
sign: (1) Taxi/Towing Instructions, (2) Level Instructions, (3) Heading Instructions,
(4) Speed Instructions, (5) Airways or Route Clearances, (6) Approach Clearances, (7)
Runway-in-Use, (8) Clearance to Enter, Land On, Take-Off On, Backtrack, Cross, or
Hold Short of any Active Runway, (9) SSR Operating Instructions, (10) Altimeter Set-
tings, including units when a value is below 1000 hectopascals, (11) VDF Information,
(12) Frequency Changes, (13) Type of ATS Service and (14) Transition Levels.

Controllers are obliged to ask for a readback if it was not received and pilots should
not use the terms “Roger”, “Wilco”, or “Copies” in place of a complete and correct
readback.

2.2 Related Work

Readback verification has the potential to significantly reduce the frequency of commu-
nication errors. While, English serves as the de facto international language for civil
aviation, more research about readback verification in Chinese ATC was found to be
publicly available. With that, this thesis aims to fill the gaps in existing research with
regards to readback verification in Aviation English. In this section, existing research
relevant to the task of readback classification will be reviewed. Additionally, given the
recent trend of using CNNs which were originally designed for computer vision on NLP
tasks, existing works in relevant NLP domains like Sentence Matching, and Sentence
Classification will also be reviewed.

2.2.1 Readback Classification in Existing Literature

A literature survey gave insight into methods that have already been utilized to classify
readback errors. Although the main goal of Chen et al. (2017) was to study the feasibil-
ity of using automatic speech recognition technologies in ATC, readback detection tasks
were used as a validation measure. They developed a Semantic Meaning Extraction
Algorithm to identify instruction phrases and its parameters, and a Pattern Matching
Algorithm to identify aircraft call signs. The techniques used to build these algorithms
were not divulged in their research article however in a small case study consisting of
only 199 hold-short instructions, they reported 86% accuracy in detecting readback er-
rors.

Jia and Cheng (2018) sought to solve the task of readback classification through deep
learning, they developed a semantic checking model using Long-Short-Time Memory net-
works (LSTM). Their proposed architecture boosts robustness by introducing a mean-
pooling layer to exploit all the information in the hidden layers, a multilayer perceptron
(MLP) in place of a similarity function. The output of the MLP layer was then passed
to a K-Nearest Neighbour classifier. In order to validate this model, the researchers
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created a corpus of readbacks in Chinese ATC which consisted of 2442 Instruction and
Readback (I-R) pairs with 1,326 positive samples and 1116 negative ones. The nega-
tive samples were deliberately designed according to an investigation of communication
problems in ATC speech in order to overcome the class imbalance as readback errors do
not regularly occur. This architecture was able to produce an impressive accuracy rate
of above 92%.

Subsequently, Cheng teamed up with Jia again in another bid to solve the readback
classification task. In this research (Cheng et al., 2018), another architecture was pro-
posed - it had two channels of a one-layer CNN to process the instruction and the
readback sentences. It was claimed that with one-layer, a CNN was able to learn the
semantics of the I-R pairs. The pairs were then classified according to a matching vector
which was a concatenation of the semantic vectors of the instruction and the readback
and the cosine similarity. The Chinese Civil Radiotelephony Communication (CCRC)
dataset was also developed in this research to assess the performance of the proposed
method. The dataset was based on the ATC recordings between controllers and pilots,
and radiotelephony training books. This dataset included 3800 pairs and distinguished
between readbacks labelled into seven classes: correct, heading information error, run-
way information error, call sign information error, altitude information error, and partial
information loss with 1300 pairs in the correct category and 500 in each error category.
It was concluded that this method was able to achieve accuracy rates above 95% on
the CCRC dataset when readbacks were doubled i.e. represented twice, as this strategy
strengthened the semantics and allowed CNNs to extract better representations. This is
an improvement from their previous research (Jia et al., 2018), as this method yielded
better results with a simpler architecture.

2.2.2 Sentence Matching and Sentence Classification

CNNs have become an increasingly popular method for various NLP tasks and have
recently demonstrated impressive performance on text classification (Hu et al., 2014;
Johnson and Zhang, 2015; Severyn and Moschitti, 2015). Collobert et al (2011)were one
of the earliest to model sentences using CNNs, forming sentence representations by ap-
plying convolutions on windows that slide over a sentence and using max-pooling. Later,
Kalchbrenner (2014) stacked convolutional layers which used sliding windows to split
sentences into n-grams, with higher layers extracting more abstract features by com-
bining information from lower layers thus achieving multi granularity, and introduced
k-max-pooling which extracted the k features with the highest values. These research
showed that CNNs are able to learn the structures and meanings of long sentences re-
gardless of the positions of its elements.

The task of readback classification can be seen as analogous to sentence matching and
classification in NLP as sentence pairs that semantically match are classified as correct
and sentence pairs that do not as incorrect.

Existing research has demonstrated CNNs performance on such tasks as well as illus-
trated the various architectures employed. Researchers (Hu et al., 2014) came up with
two convolutional architectures ARC-I and ARC-II for sentence matching, both archi-
tectures combined learning sentence representations and training the classifier. ARC-I
adopted a Siamese network whereby two CNNs, worked in parallel to learn the repre-
sentation for each sentence, were connected to an MLP for classification. ARC-II, on
the other hand, allowed the two sentences to interact during the process sentence rep-
resentation formation by applying sliding windows over both sentences and modelling
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all possible combinations through 1D convolutions. However, there was no significant
difference in performance for a paraphrase identification task, ARC-I had an accuracy
of 69.6% and ARC-II had an accuracy of 69.9%.

Kim (2014) used word vectors obtained from an unsupervised neural language model,
word2vec (Mikolov et al., 2013), to train a one-layer CNN for sentence classification. It
was concluded that this simple model achieved impressive results in a variety of tasks
despite minimal tuning.

Additionally, given the successes of CNNs on sentence classification tasks, Zhang &
Wallace (2017) looked into sensitivity of CNNs performance with regards to its configu-
rations. Their research specifically analysed one-layer CNNs to identify important and
comparatively inconsequential design decisions, and discovered that sentence represen-
tation, filter region size and number of feature maps are influential hyperparameters
requiring tuning.

3 Method

In this section, a scheme is proposed to solve the task of readback classification in English
ATC speech. In order to evaluate the effectiveness of that scheme, a dataset - the
Readback Dataset, was built and the scheme was implemented in three different models
with varying architectures. The models implementing the three different architectures
serve as independent variables for the experiments conducted to answer the research
question. While the implementation stage in this section provides a glimpse of how well
each model performs, the experiment and results explores each model’s efficacy in detail.

3.1 Proposed Scheme For Readback Classification

Figure 1: The Proposed Scheme for Readback Classification

Taking inspiration from previous research tackling readback classification (Cheng et al.,
2018; Jia et al., 2018, 2017), the scheme handles I-R pairs in textual format and fea-
tures a bi-stream CNN network as well. The scheme involves processing the controller’s
instructions and the pilot’s readbacks which is fed into a bi-stream CNN to extract the
sentences’ semantic features and then given as input into a classifier to map the rela-
tionship between the two sentences. The proposed scheme is visualized above.

Corpus Preprocessing. In Corpus Preprocessing, the transcribed instructions and
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the readbacks will be cleaned and segmented. For efficiency, since the same transforma-
tions will be applied on the instructions and readbacks, both are concatenated to form
a corpus and passed along a preprocessing pipeline.

Text Vectorization. This step uses embedding techniques trained on the entire corpus
to capture all unique words present in the instructions and readbacks. The segmented
text is transformed to a corresponding vector so that it can be used as input into the
CNN layer.

Semantic Extraction. As seen in previous research, CNNs have demonstrated im-
pressive performance on NLP tasks (Johnson and Zhang, 2015; Zhang and Wallace,
2017). Beyond being popular for sentence classification, there has been strong empirical
evidence suggesting shallow CNN architectures in particular (Cheng et al., 2018; Kim,
2014; Zhang and Wallace, 2017) to be useful in extracting semantic meaning due to their
feature detection capabilities. CNNs are especially relevant for this task as the length
of the instructions and readbacks are relatively short and the word presence is more
important than word order. In this proposed scheme, a bi-stream CNN architecture
would be used to extract semantic features of each sentence. The vectorized instruction
and readback sentences would be fed into a bi-stream CNN. The output of the Semantic
Extraction step would be a concise semantic vector of each sentence.

Classification. The proposed scheme incorporates training the bi-stream CNN in Se-
mantic Extraction and an MLP classifier together. Research showed that combining the
steps of sentence modelling and classification into one network resulted in better per-
formance than training them separately (Yin and Schütze, 2015). The semantic vectors
generated by Semantic Extraction will be given as input into an MLP which consist of
a hidden layer and a final layer with a softmax to predict the class label representing
the relationship between the I-R pair.

3.2 Building Readback Dataset

Given, there was no dataset built for the purpose of classifying I-R pairs in English
ATC speech publicly available, much less one in textual format. A corpus was created
to train and test models built based on the proposed scheme in order to evaluate its
efficacy. The corpus is based on transcriptions of ATC speech recordings between pilots
and air traffic controllers obtained from the Air Traffic Control Communication (ATCC)
corpus.

3.2.1 Data Collection

The ATCC corpus was published by Šmı́dl et al (2019) from University of West Bohemia,
Department of Cybernetics for the research project “Intelligent technologies for improv-
ing air traffic security (IT-BLP)”. It contained communication from the Air Navigation
Services of the Czech Republic in Jenec and some from the Lithuanian and Philippines
airspaces.

TRS Transcriber files containing the transcribed ATC speech from the ATCC corpus
were obtained from the LINDAT-Clarin repository published online by Smidl and Lu-
bos. The ATCC corpus contained communications from three different domains - tower,
approach and area control. The tower domain is responsible for takeoff, landing and
landing standby correspondences, the approach domain is responsible for communicating
with aircrafts approaching the airspace to land and the area control domain is respon-
sible for communication during overflights and cruises. Instructions from controllers
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and the corresponding readback from pilots were extracted from the TRS files to form
I-R pairs. Extraction of complete instructions and readbacks from the transcribed TRS
files proved to be a time-consuming task, as many sentences were not fully transcribed.
Not all utterances could be understood due to radio noise, unclear pronunciation from
the speakers, and fast speech. Additionally, utterances were often cut off before the
sentence was completed. Since the ATCC corpus contained more data from the area
control domain, this translates to more I-R pairs about level, speed and contact instruc-
tions as aircrafts move from one airspace to another. To ensure equal representation,
250 random I-R pairs were extracted for each domain summing up to 750 I-R pairs in
total. In order to ensure random pairs, the TRS files were first divided into the respec-
tive domains, then a short AppleScript program was written to assign random 3-digit
numbers at the start of the filename. From there, the files in each domain were sorted
in ascending order and combed to extract the instructions and corresponding readbacks
until 250 I-R pairs were extracted.

3.2.2 Data Labelling

I-R pairs are labelled into “Correct”, “Wrong” and “Incomplete” classes according to the
degree of understanding. Correct readbacks demonstrate full understanding, a wrong
readback shows misunderstanding and an incomplete readback falls somewhere in be-
tween. An incomplete readback does not allow the controller to distinguish if the pilot
understood the instruction fully or not because pieces of information are missing. To
label the extracted I-R pairs, the guidelines specified by ICAO in Annex 10 and CAA
in CAP 493 were referred to. ICAO specified that pilots must always include the call
sign of the aircraft when making readbacks in order to avoid any possible confusion.
The figure below obtained from Chapter 5 of Annex 10 (International Civil Aviation
Organization, 2001) illustrates how call signs may be abbreviated.

Type (a) Type (b) Type (c)

Full Call Sign ABCDE
Airbus

ABCDE
Rushair
BCDE

Rushair 1234

Abbreviated
Call Sign

ADE or
ACDE

Airbus DE or
Airbus ABDE

Rushair DE or
Rushair BDE

No
Abbreviated

Form

Table 1: Examples of Full Call Signs and Abbreviated Call Signs.

Most airlines call signs come under type (c) and have no abbreviated form and
specifying only the carrier or the flight number is not acceptable. Abbreviations are only
tolerated if the controller has used the abbreviation or satisfactory communication has
been established and the abbreviation is not likely to cause confusion. In all other cases,
readbacks made with abbreviated call signs will be categorized as wrong. Also, readbacks
made without the aircraft’s call sign are classified as incomplete. In addition to ICAO
and CAA guidelines, several behaviour patterns in ATC speech identified in previous
literature (Chen et al., 2017) were also taken into consideration as similar patterns
were observed in the ATCC corpus. Different order of phrases between instruction
and readback, the use of words semantically equivalent to “follow” such as “after” or
“behind”, omission of “left turn” or “right turn” as long as the heading vector was
correctly specified were all tolerated and did not contribute to an error in readback
making. A decision-making chart was developed to visualize how the I-R pairs should
be categorized into each class.
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Figure 2: Decision Tree to Classify Readbacks

Out of 250 I-R pairs in the tower domain, 181 pairs were correct, 26 wrong and
43 incomplete. For the approach domain, 187 pairs were correct, 21 wrong and 42
incomplete. Similarly for the area control domain, 209 pairs were correct, 22 were
wrong and 19 incomplete.

Class/Domain Tower Approach
Area

Control

Correct 181 187 209

Wrong 181 21 22

Incomplete 43 42 19

Table 2: Counts of samples in each domain

3.2.3 Data Augmentation

Data augmentation offers a useful way to significantly increase the number of samples
for training the readback classification models without extracting more I-R pairs from
the ATCC corpus. Beyond expanding the dataset, data augmentation also changes the
makeup of the data and is often used to overcome class imbalances. Increasing training
set size and representation of minority classes improves model performance and increases
generalizability. Additionally, augmentation was recognised as one of the best practices
with regards to convolutional neural networks applied to document analysis (Simard
et al., 2003). Since the Readback Dataset built so far contains 750 samples with 77%
of those classified as correct, data augmentation was used to avoid overfitting through
the increase in training set size and reduction of class imbalance. Moreover, the dataset
should be augmented to reflect the flexible nature of Aviation English given that there
are arrays of acceptable and unacceptable readbacks for a single instruction.
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Various techniques to augment text data exist but replacing words or paraphrasing
were not appropriate for this dataset as swapping keywords with synonyms may violate
the phraseology of Aviation English. Thus, word shuffling was adopted as a different
order of phrases between instruction and readback is tolerated. However, sentences in
the Readback Dataset were not annotated, this made automatic shuffling problematic
and the resulting sentences implausible i.e. sentence does not make sense or is not likely
to occur. As such, the sentences in the dataset were shuffled manually.

The sentences were augmented in such a way that there will be 3 correct, 1 incomplete
and 1 wrong readbacks for each unique instruction. Besides shuffling, some relevant
words were added or removed. For example “flight level” or “climb level” was some-
times shortened to “level”. To come up with manually augmented readbacks, inspiration
was drawn from CAP 49 and phrases often used in extracted readbacks. For augmenta-
tion of incomplete and wrong readbacks in the minority classes, common mistakes found
in extracted readbacks were referred to. With that, 750 samples were expanded to 3,750
samples and the percentage of incomplete and wrong readbacks almost doubled from
22% to 40%. The figures below illustrate how a single original sample in the first row
was expanded into five samples.

Instruction Readback Class Label Domain

CIG 1642 climb flight level 340 flight level 340 CIG 1642 Correct ACCU

CIG 1642 climb flight level 340 climbing flight level 340 CIG 1642 Correct ACCU

CIG 1642 climb flight level 340 CIG 1642 flight level 340 Correct ACCU

CIG 1642 climb flight level 340 flight level 340 CIG Incomplete ACCU

CIG 1642 climb flight level 340 flight level 340 CIG 1632 Wrong ACCU

Table 3: Data Augmentation of an originally correct sample (first row)

Instruction Readback Class Label Domain

Lufthansa 6TU climb to FL 300 6TU climbing FL 300 Incomplete ACCU

Lufthansa 6TU climb to FL 300 Lufthansa 6TU climbing FL 300 Correct ACCU

Lufthansa 6TU climb to FL 300 Lufthansa 6TU FL 300 Correct ACCU

Lufthansa 6TU climb to FL 300 climbing level 300 Lufthansa 6TU Correct ACCU

Lufthansa 6TU climb to FL 300 Lufthansa 6TU climbing FL 330 Wrong ACCU

Table 4: Data Augmentation of an originally incomplete sample (first row)

3.3 Implementation

The proposed scheme is implemented using the Python programming language in Py-
Charm Professional IDE. Python was chosen to tap into the open-source neural network
library Keras which uses TensorFlow as its backend. Keras was chosen as it offered
a simple interface for developing and evaluating neural networks, shifting away from
technicalities and towards NN architecture exploration.
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Corpus Preprocessing. The collected data was formatted into a CSV file with each
sample having four features - instruction, readback, class label and the domain. In or-
der to prepare the data for sentence segmentation, the CSV file was transformed into a
pandas data frame and the instructions and readbacks were extracted to build a corpus.
It was found that there were inconsistencies in the corpus, the spoken word runway was
transcripted as “RWY” sometimes and “runway” other times. In order to resolve incon-
sistencies, abbreviated words were replaced with the spelt out version. From there, the
NLTK library’s word tokenize() function was use to separate individual words within
each instruction and readback sentence. Initially, multi-word expressions were learnt
and assembled together using the Phraser() from the Gensim library. This way, the
sentence “roger direct DIBET Singapore 52 thank you” will be segmented into [’roger’,
’direct’, ’DIBET’, ’Singapore’, ’52’, ’thank you’]. The motivation behind doing this was
to allow the CNN to learn patterns in transcribed ATC speech beyond words that nat-
urally occur together in English. However, further along in the research it was decided
that the Phraser function should not be used because as a side effect, several call signs
were assembled together which other were not i.e. ’CIG 1642’ was assembled together
while ’CIG 1622’ was separated as two tokens. With that, CNN would have difficulties
detecting and comparing features because call signs are represented unevenly.As such,
the Phraser function was not used because it was critical to keep the processing of call
signs standardised. Once the transformations are applied, the instructions and read-
backs are separated to output a list of segmented sentences for each.

Text Vectorization. This step transforms the segmented sentence into a sentence
vector, with the length of the vector representing the number of words and the width
of the vector representing the vocabulary or embedding size. Before vectorization tech-
niques are applied, the text is first padded to a length of 25 which was slightly longer
than the length of the longest sentence. Even though previous research found great suc-
cess in the use of one-hot vectors, the word2vec method was favoured and implemented.
Word2vec produces dense vectors of floating-point values in a low dimensional space
compared to sparse vectors of binary values in high dimensional space that the one-hot
encoding method produces.

Word2vec is a popular method for NLP tasks created by Mikolov (2013) at Google,
and has shown promising results in various English NLP tasks (Kim, 2014; Zhang and
Wallace, 2017). The CBOW word2vec algorithm predicts a word given its context i.e
the words before and after the target word. This embedding technique processes words
through a two-layer neural network to create word embeddings that are mapped onto a
vector space in a way where the distance between vectors represent their semantic rela-
tionship i.e. words that are mapped close together would have similar meaning. Given
that the specificity of the corpus influences the applicability of the embeddings on a task
more than the size of the corpus (Dusserre and Padró, 2017), a new word2vec model
instead of using pre-trained vectors. The Gensim library which is open source on Python
was used to create the model, with a min count =1, to extract every unique word in the
dataset, and an embedding size of 32. The dataset used to develop the word2vec model
was the corpus made up of both instructions and readback, to maximise the vocabulary
of the model. From there, every segmented instruction and readback sentences was en-
coded into vectors with each word having a length of the embedding size of 32. Thus,
the resulting vector for each sentence was of size 25 x 32.

Semantic Extraction. To harness the feature detection capabilities of CNNs, this
step uses a bi-stream CNN with two input channels to learn concise semantic vectors
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from instructions and readbacks simultaneously. For processing a sentence vector S of
size a x b, one-dimensional filters would be applied across the sentence. The CNN would
convolve over words in a sentence with windows so the features can be extracted inde-
pendently of their position within the sentence (Kalchbrenner et al., 2014). A feature
fi can be generated from a window of words Si:i+x−1 using Eq (1)

fi = σ(W × Si:i+n−1 + bias) (1)

where n denotes the size of the window, W stands for the weight matrix in convolutional
layer and σ represents an activation function. Windows of differing sizes would represent
detection of patterns of different sizes, i.e. a window size = 2 would represent learning
bigrams while and window size = 5 would represent patterns of 5 adjacent words. Thus,
CNNs would be used to learn expressions such as “clear for”, “flight level”, or “proceed
direct to” and identify them in a sentence. By applying the filter to all possible window
of words in S, a feature map can be learned by concatenating all the features as seen in
Eq (2)

f = f1, f2, ..., fn−h+1 (2)

A convolution over the sentence vector produces a feature of size (a - n +1). However,
taking inspiration from CNNs used for object recognition in computer vision (Lecun
et al., 1998), researchers suggested that multiple feature maps should be applied to en-
rich the sentence representation and learn complementary features (Kalchbrenner et al.,
2014).

In this research, three different CNN architectures will be explored to determine which
would contribute to the best instance of the proposed scheme. It should be noted that
given the configuration of the bi-stream CNN which features two input channels, it
was not possible to use methods such as GridSearch or RandomSearch to optimize the
hyperparameters. As such, hyperparameters were tuned manually.
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3.3.1 The Cheng & Jia Architecture

Figure 3: Visualizing the layers in the Cheng & Jia Architecture CNN

This research was inspired by the work of Cheng et al (2018) who achieved impres-
sive results classifying readbacks in Chinese ATC Speech, thus it was only necessary
their architecture was replicated. This architecture is a bi-stream CNN featuring two
one-layer CNNs composed of an input layer, a convolutional layer and a pooling layer. It
takes two zero-padded sentence matrices as an input of size a × b where a is the sentence
length and b is the word vector dimension. Each input is passed through a convolu-
tional filter of size n × b to generate feature maps. To increase the number of features
learnt, multiple filters are applied to generate multiple feature maps. The feature maps
are pushed through a k-max-pooling layer to dimensionality reduction and to prevent
overfitting. The top k features of all feature maps are extracted and concatenated into
a semantic vector with k features as the output.

In terms of hyperparameter tuning, upon training, it was found that the value n of
the window size of the convolutional filter was best to set at a value of 4 and the num-
ber of feature maps learnt to 100. In the k-max-pooling layer, the value of k should be
set to approximately 150 features for optimal performance. For the activation function,
ReLU was used for all layers.
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3.3.2 The Zhang & Wallace Architecture

Figure 4: Visualizing the layers in the Zhang & Wallace Architecture CNN

Zhang and Wallace (2017) had done extensive research on using CNN for sentence
classification and illustrated a CNN architecture for the task. Their architecture was
implemented in such a way to suit our readback classification scheme which features a
bi-stream CNN configuration. Each CNN features an input layer, convolutional layers
with differing window sizes and a pooling layer. Similar to the Cheng and Jia model,
it takes two inputs of zero-padded sentence matrices of size a × b where a is the sen-
tence length and b is the word vector dimension. However, in this architecture, each
input is passed through multiple convolutional filters of sizes n1,2,3× b simultaneously
instead of one. This method is also known as grouping and was introduced in AlexNet
(Krizhevsky et al., 2017). The convolutional filters of different sizes allow the network
to learn phrases of different lengths and generate feature maps of varying sizes. A one-
dimensional global max-pooling layer is then applied on the feature maps produced by
the convolutional layers to extract the most prominent feature over the length of the
feature map, essentially max pooling over time. This reduces the matrix to a fixed size,
the matrices are then concatenated to output a concise semantic vector representing the
sentence.

In terms of hyperparameter tuning, in the training phase, it was found that the value
n1,2,3 of the window sizes of the convolutional filters was best set to 3,4,5, the number
of feature maps to 300 and with regards to the activation function, ReLU was used for
all layers.
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3.3.3 The Novel Architecture

Figure 5: Visualizing the layers in the Novel Architecture CNN

In this research, a novel architecture was designed and implemented to extract semantic
value from sentences for this readback classification task. This bi-stream CNN config-
uration features two relatively deeper CNNs compared to the models discussed above.
Additionally, this configuration stacks multiple convolutional layers consecutively in-
stead of alternating convolution and pooling layers as done traditionally. Each CNN
has an input layer, three convolutional layers and one pooling layer. The two input
channels each take a zero-padded sentence of size a × b, like the aforementioned mod-
els, where a is the sentence length and b is the word vector dimension. Each input
channel is connected to the first convolutional layer with a filter of size n1× b. Instead
of passing the feature maps generated from the first layer, they are passed through a
second convolutional layer with a filter of size n2× b, to extract higher-level seman-
tic features without reducing the matrix dimensions and produce better representation
compared to a single convolutional layer (Jeong et al., 2019). The resulting feature maps
are then passed through a third consecutive convolutional layer of size 1× b. The third
convolutional layer with a kernel size = 1 was incorporated for dimensionality reduction
by downsampling the number of feature maps and acts as a channel-wise pooling layer
by pooling features across channels (Lin et al., 2014). The feature maps generated from
the third convolutional layer are then used as input to a pooling layer to extract the
most prominent features of each feature map by applying one-dimensional global max
pooling or in other words, max pooling over time.

In terms of hyperparameter tuning, upon training, it was found that the value n1,2
of the window sizes of the convolutional filters was best set to 2 for both, the number
of feature maps to 300 and for the activation function, ReLU was used for all layers.

Classification. This step matches the semantic vectors of the instructions and read-
backs to predict the class label representing the relationship between the I-R pair by
merging the bi-stream CNN with an MLP. Mathematically, cosine proximity reflects
the angle between two vectors. For classification, cosine proximity - a measure for text
similarity (Gunawan et al., 2018; Zahrotun, 2016) between the instruction and readback
vectors will be computed and given as part of the input to the MLP. The similarity score
for an I-R pair is defined by Eq (3).
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CosineSimilarity =
ITi ×Ri

‖Ii‖ × ‖Ri‖
(3)

The input to the MLP is defined as the concatenation of the semantic vector of the
instruction, the similarity score, and the semantic vector of the readback. The input is
defined by Eq (4).

Inputi = [[Ii], [CosineSimilarityi], [Ri]] (4)

The class labels for each I-R pair was predicted by pushing the inputs through an
MLP with a visible input, hidden, and dropout and output layers. To prevent the model
from overfitting, a dropout layer was incorporated after the hidden layer and a constraint
is imposed on the weights of the hidden layer to ensure the max normalization does not
exceed a value of 3. The dropout layer was connected to 3 nodes in the output layer,
one for each class label, and a softmax activation was applied. With regards to the
hyperparameters, it was found that the network performed best with 128 nodes in the
hidden layer with a reLU activation and a 30% dropout layer.

Figure 6: Visualizing the layers in the classifier network

In order to jointly train the bi-stream CNN and the MLP classifier to maximise cor-
rect classification of readbacks from pilots based on its semantic similarity to instructions
from controllers, they were merged together to form a biCNN-MLP configuration.

When training the biCNN-MLP models, the proportion of training data was increased
until the loss reduces over time reasonably well. It was identified that best results were
achieved then splitting the dataset into training and test sets with a ratio of 80:20 while
keeping the same proportion of classes. Additionally, Keras by default uses the last 10%
of the training samples as the validation set to test the model’s performance after each
epoch. By looking at the validation accuracy and loss values, adjustments can be made
to hyperparameters to overcome overfitting or underfitting. As such, the models were
trained on 2700 samples, validated on 300 samples after each epoch and tested on 750
samples.
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Figure 7: Training and Validation Accuracies and Losses during Implementation
depicting that none of the models were underfitting or overfitting

The biCNN-MLP models were trained using the Adaptive Moment Estimation (Adam)
optimizer for 30 epochs with a batch size of 16. Categorical cross-entropy was used as the
loss function and the metric used was accuracy. As mentioned before, it was necessary
to tune these models manually as they feature two input streams. However, the training
and validation accuracy and loss values were analysed to ensure that the models did
not suffer from underfitting or overfitting as seen in the graphs above. It was observed
that with these training configurations, all three models were trained adequately since
the training losses were approximate to the validation losses. Additionally, across all
models, the graphs of the training and validation accuracy values hover around a small
range of values towards the last few epochs.

4 Experiment and Results

This section is aimed at addressing two questions in this research - which implementation
of the proposed scheme should be adopted and 2) with this implementation, it is possible
to automate the readback classification?

The metrics for comparing the performance across the models and the metrics for
determining whether the proposed scheme can be recommended for hearback automation
will be defined. With that, experiments to address the two questions will be conducted.

4.1 Performance Evaluation Metric and Baseline

Given there are three models implemented from the proposed scheme each with a dif-
ferent CNN architecture, the performances of these models will be compared. With
regards to evaluation metrics, while accuracy gives a general idea of how the model is
performing, F-scores provide a more comprehensive understanding of the model perfor-
mance. Accuracy is the proportion of true positives and true negatives across all the
samples and is mathematically defined by Eq (5).

Accuracy =
TruePositives+ TrueNegatives

AllSamples
(5)

On the other hand, F-score is the weighted harmonic mean of precision and recall for each
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class in case of multi-class classification. In order to compare the f-scores across models,
the per-class f-scores have to be combined into an overall f-score. The overall F-score
for the model is taken by calculating the macro-average of the per-class f-scores. The
formula for calculating overall f-score, F-score, precision and recall is mathematically
defined by Eq (6), (7), (8) and (9) respectively.

OverallF − score =
F1 + F2 + F3

3
(6)

F − score = 2 · Precision×Recall
Precision+Recall

(7)

Precision =
TruePositives

TruePositives+ FalsePositives
(8)

Recall =
TruePositives

TruePositives+ FalseNegatives
(9)

The models will be compared against a baseline rate of accuracy to determine whether
the models were capable of learning patterns in the dataset. The baseline for accuracy
is derived by selecting the majority class and using it as the prediction for all samples,
and is taken as 60%. Additionally, to identify the best implementation for the pro-
posed scheme, a comparison will be made between the three models, the performance of
each model will be evaluated based on its accuracy and overall f-score for each class label.

With regards to addressing the research question - whether it is possible to develop
an effective readback classifier capable of automating the hearback process, it is nec-
essary to compare the performance of the model against that of a human controller.
The controller’s recall rate corresponds to the proportion of readback errors they cor-
rect when making hearbacks, the most recent hearback recall rate was reported to be
at 77.8% (Lennertz, 2017). As such, it is critical to look at the proportion of samples
from the minority class correctly labelled. The recall metric is used to evaluate whether
automation of the hearback process is possible. It is especially critical to compare recall
rates for readbacks from the classes “Incomplete” or “Wrong”, as this can be directly
measured against the controller’s recall rate. The proposed scheme and its best imple-
mentation can be recommended to automate the hearback process if the recall rate of
the model outperforms that of the human controllers.

4.2 Performance Comparison

In order to obtain experimental results, repeated random subsampling i.e. repeated
Monte Carlo cross-validation or repeated holdout, was done 15 times on each model.
The I-R pairs in each run were randomly divided into fixed-sized training and test sets.
This strategy allows for more possible combinations of samples in each set and can
be repeated numerous times without compromising the size of the training and test
set. For example, with 3750 samples, the model can be trained on 3000 and evaluated
on 750 samples for an arbitrary number of times but this is limited to k=5 if k-fold
cross-validation is used. Repeated random subsampling was selected because it ensured
randomness to a great extent and offers flexibility in determining the sizes of training
and test sets.

First, 15 random numbers between 0-99 would be generated. This list of random num-
bers served as random states to be given as input when calling the train test split()
function, which would result in 15 training and test splits. This was done to ensure
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consistent testing across the models and replicability of the experiments. Then, for each
split the model would be trained on the training set and afterwards evaluated on the
test set. The accuracy and loss of each test would be reported, and a list of predicted
values y pred would be obtained by passing the test split to the predict() function. The
list y pred would then be compared against a list of target values y true, to create a
confusion matrix. From the confusion matrix, metrics such as recall, precision and f-
score can be calculated and averaged over the 15 splits.

Model
Accuracy

Loss
Mean
Overall
F-score

’Correct’
Mean
F-score

’Incomplete’
Mean
F-score

’Wrong’
Mean
F-score

Cheng &
Jia

71.8 0.13 54.7 82.7 68.8 12.7

Zhang &
Wallace

78.5 0.11 70.3 86.3 73.5 51.0

Novel 84.8 0.09 79.4 88.9 80.3 68.9

Table 5: Summary Statistics of Model Performances given in percentages (%)

Findings reveal that in terms of accuracy all the models outperform the baseline of 60%,
even the Cheng & Jia Model which performed the worst had a mean accuracy of 71.8%.
The Zhang & Wallace Model performed better than the Cheng & Jia Model with a mean
accuracy of 78.6% however, the spread of its accuracy values is the biggest. On the other
hand, the Novel Model outperformed the baseline as well as both other models, with
the highest mean accuracy of 84.8%. The Novel Model reached above 86% accuracy in
some training and test splits. Moreover, its accuracy values do not vary as much as the
other models as observed in the small vertical spread in its box plot. With regards to
f-scores, the same patterns were observed. The Cheng & Jia Model performed worst
with an overall f-score of 54.7% averaged over the 15 splits, the Zhang & Wallace Model
had an average overall f-score of 70.3% and the Novel Model had the highest average
overall f-score with a value of 79.4%.

Figure 8: Boxplots representing the accuracies of each model on the test dataset

4.3 Proposed Scheme for Hearback Process Automation

Precision and recall rates were also recorded during each experiment. Findings show that
across all models, recall rates for the “Correct” class was always the highest, followed by
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Label Cheng & Jia Zhang & Wallace Novel
Precision Recall Precision Recall Precision Recall

Correct 73.9 93.9 80.7 92.9 86.3 91.7
Incomplete 69.8 68.6 80.8 68.0 80.4 80.7
Wrong 45.5 7.8 64.0 43.7 78.0 62.1
All

Samples
63.1 56.8 75.2 68.2 81.6 78.2

Table 6: Precision and Recall Performance of Models given in percentages (%)

Comparable Recall Rate

Human 77.8 (2017) 8.0 (2006) 60.0 (1997)
Cheng &

Jia
51.8

Zhang &
Wallace

69.9

Novel 78.2

Table 7: Precision and Recall Performance of Models given in percentages (%)

“Incomplete” and the rates were lowest for the I-R pairs in the “Wrong” class. This is
reflected in the average per-class recall rates. Similar to accuracy and f-score, the Cheng
& Jia model performed the worst and the Novel model performed the best in terms of
precision and recall as well.

However, to compare the recall rates of the model to the controller’s recall rates, it
was necessary to convert the classification from a multiclass problem to a binary problem.
This was because the recall rate reported by the researchers (Lennertz, 2017) reflected
that out of 9 readback errors 7 were detected, i.e. the readbacks were classified into two
categories - correct and erroneous. Therefore, to identify how many erroneous samples
were detected out of all erroneous samples i.e. the comparable recall rate, for each test a
second confusion matrix is generated. This second confusion matrix is generated using
the multilabel confusion matrix() function from the Sklearn library, it is binarized with
the “Correct” as the positive class while “Incomplete” and “Wrong” class labels were
combined to be the negative or “Erroneous” class. With that, the comparable recall rate
for the model is calculated by averaging the recall rates for the “Erroneous” class over 15
tests. The “Erroneous” recall rates from the binarized classification is tabulated below.
Similar to the multilabel classification, the Novel model performed best, followed by the
Zhang & Wallace model and the Cheng & Jia model performed worst. When compared
to the human recall rates, only the Novel model outperformed all three statistics of the
human controllers across three different years.
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5 Discussion

In this section, the findings will be discussed with regards to the goals of the experiments
i.e. to determine which model to be used for the proposed scheme as well as to answer
the research question.

5.1 Best Implementation for Proposed Scheme

Findings suggest that the Novel model should be adopted when implementing The Pro-
posed Scheme, it performed best in comparison to the Cheng & Jia and Zhang & Wallace
models. Beyond being able to learn patterns correctly from the training samples, the
Novel model had the highest f-scores and accuracy. This shows that the model is capable
of performing well on imbalanced datasets as f-scores take false positives and false nega-
tives into consideration. Upon further inspection, it was observed that the Novel model
had good f-scores across all class labels while the other models did not and suffered
especially in classifying samples from the ’Wrong’ class. The Novel model accurately
classified many ’Wrong’ samples (i.e. good recall) and did not classify many ’Incomplete’
or ’Correct’ readbacks as ’Wrong’ (i.e. good precision). This suggests that the Novel
model was the only model capable of distinguishing wrong samples from incomplete or
correct ones.

However, in contrast with previous research (Cheng et al., 2018), the Cheng & Jia
model performed poorly on the Readback Dataset developed in this research. Unlike its
performance on the CRCC data with 90.2% accuracy (without doubling the sentences),
it had a mean accuracy of 71.8% in this research on the Readback Dataset. This model
was not able to learn the patterns in the Readback Dataset well, despite a simpler clas-
sification problem with 3 class labels in this research as compared to the 6 class labels
which Cheng et al had. Additionally, the model was trained with a significantly higher
number of trainable parameters in this research in an attempt to capture more compli-
cated functions i.e. 100 feature maps were learnt and k was set to 750 as compared to
50 and 7 respectively set by Cheng et al. To abolish the difference in word embedding
technique resulting in a significant difference in model performance, One-Hot Vector-
ization was applied on the Readback Dataset. Training took much longer, and the test
accuracy was approximately the same. Moreover, the model was heavily overfitted and
could not capture any relevant patterns as validation accuracy did not see any steady
increase even after 30 epochs.

Figure 9: Training & Validation Graph showing overfitting (left) and screenshot of
PyCharm console showing performance of model (right)

23



A plausible reason for the difference in performance could be linguistic differences be-
tween Mandarin and English. Mandarin is an uninflected language i.e. tenses do not
exist, and the language does not feature phrasal verbs such as “take on” or “up to”.
Moreover, Chinese words are logograms where each symbol represents a meaning and
not a sound, this is very different compared to English especially in the context of tran-
scribed ATC speech. The example I-R pair from the CRCC dataset was concise and
exact. In each I-R pair, every phrase in the readback can be matched to a phrase in
the instruction, i.e. the exact same phrasing was used. Additionally, sentences did not
contain any noise such as greetings or reordering of elements. On the other hand, in
English ATC phrases such as “flight level” were used interchangeably with “level” and
sometimes omitted altogether and only the values repeated. Nuances in English ATC
speech would make it more difficult for the models to identify relevant patterns for read-
back classification.

Delving into the details of the models, findings suggest that global max pooling performs
better than top-k pooling as the Zhang & Wallace and the Novel models significantly
outperformed the Cheng & Jia model. This is in line with previous work (Zhang and
Wallace, 2017), suggesting that it is necessary to keep n-grams intact but its position
within the sentence is not relevant. Also congruent with previous findings which sug-
gest that shallow CNNs were capable of capturing the semantics of a sentence, all three
CNN models were capable of performing above a baseline threshold of 60%. However,
the best performing model featured three consecutive convolutional layers, outperform-
ing two other models which applied only one convolution to word embeddings. With
that, this suggests that CNN configurations for NLP should not be limited to only
one-layer convolutions that most researchers propose (Cheng et al., 2018; Kim, 2014;
Zhang and Wallace, 2017). There are advantages to learning abstract higher-level fea-
tures, and channel-wise pooling in NLP by applying more than one convolutional layer
consecutively.

5.2 Hearback Automation

Besides performing better than the other models, findings reveal that the Novel model
had higher recall rates than that of controllers when differentiating between correct
and erroneous I-R pairs. High recall rates represent a low amount of false negatives,
suggesting that the model is able to distinguish between the correct and erroneous classes
well. The recall rate of the Novel model of 78.2% was higher than the most recent
controller hearback recall rate which was reported to be 77.8% as researchers found
7 out of 9 readback errors were corrected (Lennertz, 2017). Additionally, the Novel
model outperformed controller recall rates reported in older research as well (Burki-
Cohen, 1995; Cardosi and Han, 1997; Prinzo et al., 2006). Given that the Novel model
outperforms human controllers, the experimental results show that the proposed scheme
is effective in facilitating the automation of the hearback process by classifying readback
errors when the Novel model is implemented.

5.3 Relevance of Results

By conducting research on the applicability of CNNs and NLP techniques on hearback
process automation, this study contributes to existing literature particularly with re-
gards to sentence matching. This would contribute to the increasing research of CNNs
on textual data through a new CNN configuration to extract semantic features. More-
over, this research could be an introduction to addressing hearback automation in En-
glish ATC. On the other hand, beyond scientific knowledge, this study also has social
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relevance. With The Proposed Scheme and the Novel model, the hearback process could
be automated or computer-aided so as to reduce the likelihood of aviation incidents and
miscommunication in ATC through the decrease in mental load of controllers as well as
the rate of miscommunication in ATC.

6 Conclusion

In this section, the research as a whole will be discussed with regards to the research
question. This would include limitations and suggestions for future work as well.

6.1 The Research Question

In conclusion, the results of this research gave insight as to how the hearback process
could potentially be automated. This research builds on previous research investigating
the use of neural networks, specifically CNNs to extract semantic features in textual data
to perform sentence classification tasks. Specifically for hearback automation, the results
of current research has empirically shown that CNNs are capable of classifying readbacks
into three categories - Correct, Incomplete and Wrong relatively well in comparison to
human controllers. The Proposed Scheme developed in this research together with its
recommended implementation, the Novel model, was able to identify readback errors
better than controllers.

6.2 Research Limitations

However, it is necessary to realize the limitations of this research. The proposed scheme
is not standalone, it depends on language technologies capable of perceiving and tran-
scribing ATC speech accurately. In this research, the transcriptions were compiled from
only one source, the ATCC corpus. This was due to scarcity of publicly available ATC
speech, much less those which are transcribed. While the ATCC contains communi-
cations from three different domains and a few airspaces, the data contained spelling
errors and incomplete transcriptions. As such, the amount of I-R pairs that could be
extracted were limited.

On top of that, it was also difficult to find available existing research analysing controller-
pilot communications from recent years. This could be because they may not have been
made publicly available or fewer analysis had been conducted. In the 1990s, there was
a series of reports analysing communication across different domains. However in 2006
and 2017 there was only one, making it challenging to generalize statistics reported in
these reports or use these statistics to make meaningful comparisons. Looking at the
most recent report, in 2017 researchers analysed a set of 1,169 instructions and clear-
ances from ten hours of communication from the Kansas City Air Route Traffic Control
Centre. It was reported that from the ten hours of communication, 9 readback errors
were identified making up ≤ 1% of all readbacks (Lin et al., 2014). Additionally, re-
searchers, in the analysis conducted in 2006, had classified readbacks differently from
controllers. It appeared that controllers evaluated the intrinsic safety component of each
readback before deciding whether or not to correct a detected error while researchers
followed the readback requirement guidelines strictly. In other words, it is difficult to
find a reliable statistic about controllers’ hearback recall and as such it is challenging to
make definitive comparisons.
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6.3 Future Work

For further improvements, the Readback Dataset should compile data across several
sources and the quality of transcriptions from those sources should be verified. More-
over, utilizing a recent controller hearback recall rate with high construct validity by
ensuring that both researchers and controllers follow the same guidelines when classi-
fying readbacks and using a large enough dataset could also be recommended. This
should hold true for both analysing human recall rates as well as model recall rates.
With the use of a valid dataset and a reliable statistic for controller hearback recall rate,
the predictive validity of the research would be heightened.

On the other hand, given the performance of the Novel model on the Readback Dataset,
it may be interesting to improve it by combining rule-based methods with CNNs. This
would allow CNN to learn more complex patterns that cannot be captured by the ruled-
based methods. Alternatively, it would also be useful to investigate how the interaction
between the instruction and readback sentences in the sentence representation formation
process affect the performance of the model. Additionally, beyond ATC, future research
could look into the applicability of CNN and feature extraction on other air services
such as filtering of NOTAMs.
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A The Readback Dataset

The Readback Dataset is made up of instruction and readback (I-R) pairs extracted
from the ATCC corpus published by Šmı́dl et al (2019) from University of West Bo-
hemia, Department of Cybernetics for the research project “Intelligent technologies for
improving air traffic security (IT-BLP)”. 750 I-R pairs in total, 250 from each domain,
were extracted randomly from the TRS files published. To ensure the pairs were ran-
domly extracted, a short AppleScript program was used to assign 3-digit number to the
beginning of each filename. When entering this script into AppleSript, a prompt will
ask for a folder to be chosen. All files in the chosen folder will be have a 3-digit random
number prefix attached to the filename, which is useful for randomly sorting the files.
The script is as follows:

set a to choose folder
tell application ”Finder”

set all Files to every file in folder a
repeat with a file in all Files
set a file’s name to ((random number from 100 to 999) as text) & a file’s name
end repeat

end tell

Each pair was augmented in such a way that that there will be 3 correct, 1 incom-
plete and 1 wrong readbacks for each unique instruction. With that, there were 3750
samples in total after augmentation. There were 1,250 samples from each domain with
750 being correct, 250 incomplete and 250 wrong. All the samples were then shuffled
resulting in The Readback Dataset.

A portion of The Readback Dataset is shown in the following page. The dataframe
is structure with 4 columns ’Instruction’, ’Readback’, ’Label’ and ’Domain’. The full
dataframe has 3750 rows corresponding to each sample.
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B Pre-Processing Pipeline

In this research the corpus is made up of the items in the ’Instruction’ and ’Readback’
columns of the dataframe. The goal is the preprocessing module is to transform the
sentences into a format that can be manipulated by the CNNs in the next step. The
preprocessing can be broken down into corpus cleaning and word embedding. Corpus
Cleaning is handled by the ’dataset builder.py’ file and the word embedding is handled
by the ’w2v embedder.py’ file.

These are the functions of the ’dataset builder.py’ file: init (), build data(), get corpus(),
get instruction(), get readback(), get label(). The main function in this file is the
build data() function while the others were merely utility getter functions. The build data()
function is defined as follows:

def bu i ld da ta ( s e l f ) :
d f = pd . r ead c sv ( ’ datase t . csv ’ )
i n s t r u c t i o n = df [ ’ I n s t r u c t i o n ’ ] . va lue s . t o l i s t ( )
readback = df [ ’ Readback ’ ] . va lue s . t o l i s t ( )
l a b e l = df [ ’ Label ’ ] . va lue s . t o l i s t ( )
corpus = i n s t r u c t i o n + readback
corpus = [ word . r e p l a c e ( ’RWY’ , ’ runway ’ ) for word in corpus ]
corpus = [ word . r e p l a c e ( ’FL ’ , ’ f l i g h t l e v e l ’ ) for word in corpus ]
tok corp = [ n l tk . word token ize ( t ex t ) for t ex t in corpus ]
s l i ce = int ( len ( tok corp )/2)
return tok corp , tok corp [ : s l i ce ] , t ok corp [ s l i ce : ] , l a b e l

de f i n i t ( s e l f , tok corp ) :
s e l f . w2v data = tok corp
s e l f . atc model = gensim . models . Word2Vec( s e l f . w2v data ,

min count = 1 , s i z e = 32)
s e l f . max len = 25

de f v e c t o r i z e ( s e l f , data ) :
v e c t o r s = [ s e l f . v e c t o r i z e s e n ( sentence ) f o r sentence in data ]
r e turn ve c t o r s

de f v e c t o r i z e s e n ( s e l f , s entence ) :
s en t ence vec = np . z e r o s ( ( s e l f . max len , s e l f . atc model . v e c t o r s i z e ) )
f o r i , word in enumerate ( sentence ) :

s en t ence vec [ i ] = s e l f . atc model [ word ]
re turn s en t ence vec

C CNN Implementations
The Python code for each implementation is given under the corresponding subsections. The code for
evaluating each model was the same, and is shared uner the subsection ’Model Evaluation’.
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C.1 The Cheng & Jia Architecture

def bui ld model ( s e l f ) :
print ( ”\n−−− Create Cheng & Jia network −−−\n” )
i n s t r u c t i o n i n p u t = Input ( shape=( s e l f . num words , s e l f . embedding s ize , )

, dtype=’ f l o a t 3 2 ’ , name=’ i n s t r u c t i o n i n p u t ’ )
i n s t r u c t i o n = Conv1D(100 , 4 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n i n p u t )
i n s t r u c t i o n = Flat ten ( ) ( i n s t r u c t i o n )
i n s t r u c t i o n = Lambda(lambda x : t f . nn . top k (x , k=150 , sorted=True ) . va lue s ) ( i n s t r u c t i o n )

readback input = Input ( shape=( s e l f . num words , s e l f . embedding s ize , ) , dtype=’ f l o a t 3 2 ’ ,
name=’ readback input ’ )

readback = Conv1D(100 , 4 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,
s e l f . embedding s ize ) ) ( readback input )

readback = Flatten ( ) ( readback )
readback = Lambda(lambda x : t f . nn . top k (x , k=150 , sorted=True ) . va lue s ) ( readback )

cos s im = dot ( [ i n s t r u c t i o n , readback ] , axes =1, normal ize=True )
f i n a l = concatenate ( [ i n s t r u c t i o n , cos s im , readback ] )
f i n a l = Dense ( un i t s =128 , a c t i v a t i o n=” r e l u ” , k e r n e l c o n s t r a i n t=max norm ( 3 ) ) ( f i n a l )
f i n a l = Dropout ( 0 . 3 ) ( f i n a l )
output = Dense ( s e l f . num classes , a c t i v a t i o n=’ softmax ’ ) ( f i n a l )
c j mode l = Model ( inputs =[ i n s t r u c t i o n i n p u t , readback input ] , outputs=output )
print ( c j mode l . summary ( ) )

c j mode l . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ , met r i c s =[ ’ acc ’ ] )
return c j mode l

C.2 The Zhang & Wallace Architecture

def bui ld model ( s e l f ) :
print ( ”\n−−− Create Zhang & Wallace Network −−−\n” )
i n s t r u c t i o n i n p u t = Input ( shape=( s e l f . num words , s e l f . embedding s ize , )

, dtype=’ f l o a t 3 2 ’ , name=’ i n s t r u c t i o n i n p u t ’ )
i n s t r u c t i o n 2 = Conv1D(300 , 3 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n i n p u t )
i n s t r u c t i o n 3 = Conv1D(300 , 4 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n i n p u t )
i n s t r u c t i o n 4 = Conv1D(300 , 5 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n i n p u t )
i n s t r u c t i o n 2 = GlobalMaxPool1D ( ) ( i n s t r u c t i o n 2 )
i n s t r u c t i o n 3 = GlobalMaxPool1D ( ) ( i n s t r u c t i o n 3 )
i n s t r u c t i o n 4 = GlobalMaxPool1D ( ) ( i n s t r u c t i o n 4 )
i n s t r u c t i o n c o n c a t = concatenate ( [ i n s t r u c t i o n 2 , i n s t r u c t i o n 3 , i n s t r u c t i o n 4 ] )

readback input = Input ( shape=( s e l f . num words , s e l f . embedding s ize , )
, dtype=’ f l o a t 3 2 ’ , name=’ readback input ’ )

readback2 = Conv1D(300 , 3 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,
s e l f . embedding s ize ) ) ( readback input )

readback3 = Conv1D(300 , 4 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num word ,
s e l f . embedding s ize ) ) ( readback input )

readback4 = Conv1D(300 , 5 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,
s e l f . embedding s ize ) ) ( readback input )

readback2 = GlobalMaxPool1D ( ) ( readback2 )
readback3 = GlobalMaxPool1D ( ) ( readback3 )
readback4 = GlobalMaxPool1D ( ) ( readback4 )
readback concat = concatenate ( [ readback2 , readback3 , readback4 ] )

f i n a l = concatenate ( [ i n s t r u c t i o n c o n c a t , readback concat ] )
f i n a l = Dense ( un i t s =128 , a c t i v a t i o n=” r e l u ” , k e r n e l c o n s t r a i n t=max norm ( 3 ) ) ( f i n a l )
f i n a l = Dropout ( 0 . 3 ) ( f i n a l )
output = Dense ( s e l f . num classes , a c t i v a t i o n=’ softmax ’ ) ( f i n a l )
zw model = Model ( inputs =[ i n s t r u c t i o n i n p u t , readback input ] , outputs=output )
print ( zw model . summary ( ) )
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zw model . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ , met r i c s =[ ’ acc ’ ] )
return zw model

C.3 The Novel Architecture

def bui ld model ( s e l f ) :
print ( ”\n−−− Create Novel Network −−−\n” )
i n s t r u c t i o n i n p u t = Input ( shape=( s e l f . num words , s e l f . embedding s ize , ) ,

dtype=’ f l o a t 3 2 ’ , name=’ i n s t r u c t i o n i n p u t ’ )
i n s t r u c t i o n = Conv1D(300 , 2 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n i n p u t )
i n s t r u c t i o n = Conv1D(300 , 2 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n )
i n s t r u c t i o n = Conv1D(150 , 1 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,

s e l f . embedding s ize ) ) ( i n s t r u c t i o n )
i n s t r u c t i o n = GlobalMaxPool1D ( ) ( i n s t r u c t i o n )

readback input = Input ( shape=( s e l f . num words , s e l f . embedding s ize , ) ,
dtype=’ f l o a t 3 2 ’ , name=’ readback input ’ )

readback = Conv1D(300 , 2 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,
s e l f . embedding s ize ) ) ( readback input )

readback = Conv1D(300 , 2 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,
s e l f . embedding s ize ) ) ( readback )

readback = Conv1D(150 , 1 , a c t i v a t i o n=’ r e l u ’ , input shape=( s e l f . num words ,
s e l f . embedding s ize ) ) ( readback )

readback = GlobalMaxPool1D ( ) ( readback )

cos s im = dot ( [ i n s t r u c t i o n , readback ] , axes =1, normal ize=True )
f i n a l = concatenate ( [ i n s t r u c t i o n , cos s im , readback ] )
f i n a l = Dense ( un i t s =128 , a c t i v a t i o n=” r e l u ” , k e r n e l c o n s t r a i n t=max norm ( 3 ) ) ( f i n a l )
f i n a l = Dropout ( 0 . 3 ) ( f i n a l )
output = Dense ( s e l f . num classes , a c t i v a t i o n=’ softmax ’ ) ( f i n a l )
novel model = Model ( inputs =[ i n s t r u c t i o n i n p u t , readback input ] , outputs=output )
print ( novel model . summary ( ) )
novel model . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ , met r i c s =[ ’ acc ’ ] )
return novel model

C.4 Model Evaluation

def eva luate mode l ( s e l f , x1 t e s t , x2 t e s t , y t e s t ) :
s c o r e = s e l f . model . eva luate ( [ x1 t e s t , x 2 t e s t ] , y t e s t )
acc = sco r e [ 1 ] ∗ 100
l o s s = sco r e [ 0 ]
print ( ”Accuracy on t e s t data Novel Model : %0.1 f ” % acc + ”%” )
print ( ” Loss on t e s t data Novel Model : %0.2 f ” % l o s s )

l a b e l p r e d t e s t = s e l f . model . p r e d i c t ( [ x1 t e s t , x 2 t e s t ] )
max y pred tes t = np . argmax ( l a b e l p r e d t e s t , a x i s =1)
max y test = np . argmax ( y t e s t , a x i s =1)

print ( ’ Novel Model Scores ’ )
p r e c i s i o n , r e c a l l , f s c o r e , support =
p r e c i s i o n r e c a l l f s c o r e s u p p o r t ( max y test , max y pred tes t )
print ( ’ P r e c i s i o n : {} ’ . format ( p r e c i s i o n ) )
print ( ’ Reca l l : {} ’ . format ( r e c a l l ) )
print ( ’F s co r e : {} ’ . format ( f s c o r e ) )
print ( ’ Novel Model Confusion Matrix ’ )
print ( con fu s i on mat r ix ( max y test , max y pred tes t ) )

m = m u l t i l a b e l c o n f u s i o n m a t r i x ( max y test , max y pred test , l a b e l s =[0 , 1 , 2 ] ) [ 0 ]
print (m)
print ( ’ Erroneous Reca l l : ’ )
print (m[ 0 , 0 ] / (m[ 0 , 0 ] + m[ 0 , 1 ] ) )
return ( acc , l o s s )
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D Experimental Results
In this part of the appendix, the raw results from the experiments were consolidated and presented.
Each model was run 15 times on different training and test splits. From the confusion matrices the
precision, recall and f-score were tabulated for each class label. The bolded values are averages across
the 15 runs. Macro and weighted averages were computed to inspect significance of class imbalance.
Additionally, from the second confusion matrix the binarized recall score for the ’erroneous’ class was
derived and tabulated. This binarized recall is the statistic used to make a comparison against human
error rates.

Table 9: Cheng & Jia Results
Precision Recall F-Score Binarized Recall

Correct Incomplete Wrong Correct Incomplete Wrong Correct Incomplete Wrong Erroneous Class

0.763 0.567 0.208 0.838 0.767 0.073 0.799 0.652 0.108 0.547
0.717 0.771 0.462 0.980 0.560 0.080 0.828 0.649 0.136 0.537
0.738 0.741 0.533 0.960 0.667 0.107 0.835 0.702 0.178 0.450
0.745 0.713 0.667 0.967 0.747 0.040 0.841 0.730 0.075 0.530
0.746 0.730 0.605 0.929 0.740 0.153 0.828 0.735 0.245 0.507
0.736 0.824 0.448 0.956 0.593 0.173 0.832 0.690 0.250 0.587
0.746 0.671 0.769 0.940 0.760 0.067 0.832 0.713 0.123 0.490
0.727 0.731 0.346 0.953 0.653 0.060 0.825 0.690 0.102 0.483
0.734 0.627 0.692 0.940 0.673 0.060 0.825 0.650 0.110 0.560
0.728 0.630 0.417 0.944 0.647 0.033 0.822 0.638 0.062 0.480
0.742 0.624 0.286 0.940 0.720 0.013 0.829 0.669 0.025 0.507
0.771 0.692 0.323 0.911 0.720 0.133 0.835 0.706 0.189 0.527
0.717 0.784 0.625 0.958 0.653 0.100 0.820 0.713 0.172 0.533
0.766 0.659 0.294 0.924 0.760 0.067 0.838 0.706 0.109 0.513
0.709 0.722 0.154 0.951 0.640 0.013 0.812 0.678 0.025 0.520

0.739 0.699 0.455 0.939 0.687 0.078 0.827 0.688 0.127 0.518

Macro: 0.631 Macro: 0.568 Macro 0.547
Weighted: 0.674 Weighted: 0.717 Weighted: 0.659
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Table 10: Zhang & Wallace Results
Precision Recall F-Score Binarized Recall

Correct Incomplete Wrong Correct Incomplete Wrong Correct Incomplete Wrong Erroneous Class

0.808 0.863 0.556 0.909 0.587 0.527 0.856 0.698 0.541 0.750
0.844 0.754 0.539 0.864 0.613 0.600 0.854 0.676 0.568 0.693
0.788 0.786 0.675 0.944 0.687 0.360 0.859 0.733 0.470 0.670
0.803 0.815 0.688 0.940 0.707 0.427 0.866 0.757 0.527 0.680
0.777 0.809 0.712 0.958 0.733 0.280 0.858 0.769 0.402 0.720
0.813 0.810 0.700 0.947 0.680 0.467 0.875 0.739 0.560 0.670
0.810 0.793 0.677 0.940 0.713 0.420 0.870 0.751 0.519 0.717
0.798 0.770 0.701 0.942 0.780 0.313 0.864 0.775 0.433 0.663
0.819 0.861 0.595 0.942 0.580 0.520 0.876 0.693 0.555 0.693
0.807 0.759 0.592 0.909 0.733 0.387 0.855 0.746 0.468 0.673
0.848 0.747 0.588 0.882 0.727 0.533 0.865 0.736 0.559 0.747
0.770 0.865 0.608 0.953 0.553 0.393 0.852 0.675 0.478 0.700
0.815 0.858 0.680 0.947 0.727 0.453 0.876 0.787 0.544 0.663
0.824 0.829 0.619 0.907 0.713 0.520 0.863 0.767 0.565 0.723
0.782 0.798 0.671 0.951 0.660 0.353 0.859 0.723 0.463 0.717

0.807 0.808 0.640 0.929 0.680 0.437 0.863 0.735 0.510 0.699

Macro: 0.752 Macro: 0.682 Macro 0.703
Weighted: 0.774 Weighted: 0.781 Weighted: 0.767

Table 11:
Precision Recall F-Score Binarized Recall
Correct Incomplete Wrong Correct Incomplete Wrong Correct Incomplete Wrong Erroneous Class

0.862 0.853 0.841 0.947 0.813 0.633 0.903 0.833 0.722 0.773
0.878 0.813 0.852 0.927 0.867 0.653 0.902 0.839 0.740 0.813
0.872 0.793 0.773 0.904 0.867 0.613 0.888 0.828 0.684 0.800
0.866 0.781 0.690 0.889 0.760 0.653 0.877 0.770 0.671 0.793
0.857 0.785 0.897 0.942 0.827 0.580 0.897 0.805 0.704 0.763
0.872 0.691 0.789 0.862 0.880 0.600 0.867 0.774 0.682 0.810
0.859 0.855 0.855 0.944 0.827 0.627 0.899 0.841 0.723 0.767
0.850 0.850 0.760 0.933 0.720 0.653 0.890 0.780 0.703 0.753
0.869 0.800 0.707 0.902 0.800 0.627 0.885 0.800 0.664 0.797
0.861 0.744 0.784 0.909 0.813 0.580 0.884 0.777 0.667 0.780
0.863 0.787 0.822 0.920 0.887 0.553 0.890 0.834 0.661 0.780
0.862 0.836 0.802 0.956 0.780 0.593 0.906 0.807 0.682 0.770
0.853 0.921 0.746 0.944 0.700 0.687 0.897 0.795 0.715 0.757
0.873 0.796 0.732 0.913 0.807 0.620 0.893 0.801 0.671 0.800
0.854 0.750 0.658 0.858 0.760 0.640 0.856 0.755 0.649 0.780

0.863 0.804 0.780 0.917 0.807 0.621 0.889 0.803 0.689 0.782

Macro: 0.816 Macro: 0.782 Macro 0.794
Weighted: 0.835 Weighted: 0.836 Weighted: 0.832
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