
1

Kinetic online trajectory recovery from static
images of handwriting

Paul Konstantin Gerke - 0616427

Abstract—In this Bachelor thesis I propose two new ap-
proaches for extracting online handwriting data from scanned
images of handwriting (offline data) using the mechanical concept
of the momentum. The momentum describes the movement of
a body and can only be changed by exerting forces, as first
described by Sir I. Newton [1].

The first approach extracts pen strokes directly from an offline
handwriting by tracing lines with a tracing point that uses a
momentum. The second approach tries to sequence pen strokes
to whole pen trajectories by using a kinetic cost function that is
based on concepts derived from the definition of the momentum.

An exploration of the limits of the first approach shows that
it is not capable of dealing with noise that occurs in normal
handwriting. The kinetic cost function of the second approach is
compared to a traditional Euclidean distance based cost function
for stroke sequencing. Using the kinetic cost function for stroke
sequencing leads to significantly better pen trajectories than using
the Euclidean distance cost function. Using a momentum based
cost function for sequencing pen strokes can improve the quality
of extracted pen trajectories.

I. INTRODUCTION

The increasing performance of modern handwriting recog-
nition systems has led to many useful applications, such
as automatic form processing or forensic applications like
signature verification. Applications as automated form pro-
cessing often require the user to write block letters because
automated processing of images of cursive handwriting does
not work reliably. In this Bachelor thesis, I investigate a
method to improve information extraction from scans of
cursive handwriting. My approach is based on the fact that
online handwriting recognition performs better than offline
handwriting recognition [2].

In online handwriting recognition, data about the writing
process itself is used. This is usually done when a user writes
with a stylus onto a tablet PC with a touch screen interface that
translates the writing into digital text. The online data consists
of a list of subsequent pen tip coordinates that are recorded
at a constant sample rate. From this data the sequence and
velocities of pen movements can be derived. Such dynamic
pen information is valuable, for example, to guide character
recognition within words [2]. Optionally, information about
writing pressure and pen tilt can be recorded in online data, too
[3]. These additional information can improve the recognition
rates of online recognition systems.

Systems that do not use online data are called offline
recognition systems. Offline recognition systems cannot use
online data because they process scanned images, which are
usually saved as pixel rasters. An example of a handwritten
signature is shown in figure 1.a). A common technique that
is used to recognize such offline handwritings is to try to

Fig. 2. Typical noise sources that can interfere with an online trajectory
recovery system or an offline handwriting recognition system.

recalculate the related online data (i.e., the related pen trajec-
tory). Systems that recalculate online data from offline data
are called trajectory recovery or trajectory extraction systems.

Online systems work better than offline recognition systems.
Online recognition systems have been reported to achieve
a 80% correct recognition rate using a lexicon of 21000
recognizable words. The lexicon is used to limit the amount of
words that the system has to distinguish. Offline handwriting
recognition systems using a lexicon size of 1000 words only
achieve a recognition performance of 78% [2].

The most important reason for the performance difference
is that the recovery of online data from offline data is hard.
There is no system which is capable of recomputing online
data from offline data and some researchers doubt if all aspects
of online data are in fact reconstructible [4]. Present trajectory
recovery systems usually first try to extract basic pen strokes
from a scanned image (see figure 1b). These basic pen strokes
are parts of original pen strokes and describe parts of pen
movements that were executed during writing. The extraction
of basic pen strokes is complicated by noise in the scanned
image, as illustrated in figure 2.

After the extraction of basic pen strokes, the following step
is to sequence the basic pen strokes in a way that replicates
the most probable writing order to obtain a full pen trajectory.
This sequencing problem is a combinatorial problem: Usually
the fitness of a given candidate pen trajectory can be judged on

2

Fig. 1. a) A scanned image of a handwritten signature. b) basic pen strokes extracted from the signature in a). The beginning and end of pen strokes are
marked with crosses.

the basis of a defined cost function. To find the pen trajectory
with the optimal fitness all possible combinations of strokes
have to be considered. Such a problem is a typical problem
of classical artificial intelligence and can be solved by search
algorithms [5]. However, for guiding the search only the basic
strokes and sub-stroke data like, for example, striations in the
ink are available. Until today there is no known effective way
to sequence pen strokes to obtain original pen trajectories.

Both basic pen stroke extraction and stroke sequencing
present large challenges for current trajectory recovery sys-
tems and do not work well enough to build reliable offline
handwriting recognitions systems. In this Bachelor thesis, I
explore new methods for extracting basic pen strokes from
offline data and to sequence pen strokes in such a way that
they resemble the correct writing order.

A. Standard online data recovery systems

In the past, several attempts have been made for building
such a pen trajectory extraction system. Most of them follow Fig. 3. Processing stages a typical trajectory recovery system consists of.

3

a standard design principle, which consists of three different
stages (figure 3).

The first stage is the preprocessing stage. During preprocess-
ing, noises may be filtered out or image processing techniques
like gray scaling or image smoothing may be applied. These
actions stabilize the quality of the input image to improve
the final recovery results. In addition, a thinning or contour
extraction algorithm is applied in order to extract basic pen
strokes from the offline image. As previously explained, the
basic strokes are usually the first line representation using co-
ordinates. They are used by extraction systems for describing
parts of the final pen trajectory.

The second stage is the local examination stage. At this
stage an image of handwriting is analyzed thoroughly in
order to extract clues on the sub-stroke level on how the
handwriting sample was written. Clues may be, for example,
detection of double traces [6], feathers, or striations in the ink
[7]. The extracted clues are later on used during the global
reconstruction stage.

At the third and final stage, global reconstruction, the pen
strokes are sequenced to build a full pen trajectory. The
sequencing is achieved with a classical artificial intelligence
search algorithm that tries to minimize a certain global cost.
The global cost is defined in such a way that the built pen
trajectory resembles the correct writing order of the original
handwriting as well as possible. The global cost is computed
by a cost function that depends on stroke properties and clues
extracted during the local examination stage.

In this Bachelor thesis, I propose two different ways of
extracting pen trajectories from offline images of handwrit-
ing. Both approaches are based on the idea that a pen-tip’s
movement can be described by the mechanical concept of the
momentum. In the following, I will explain the mechanical
concept of the momentum. Then I will describe how both
approaches employ the momentum for online pen trajectory
recovery.

B. Mechanical concepts

I was inspired by the mechanical notion of a body’s mo-
mentum and how the momentum is influenced by forces, to
apply the same principles to online data recovery. The relation
between force ~F and a body’s momentum ~p = m~v is given
by Newton’s second law [1]:

~F =
d

dt
(m~v) (1)

m refers to a body’s mass and and ~v to a body’s velocity.
From equation 1 it can be derived that the momentum of a
body changes as a force is applied to it over time:∫

~Fdt = m~v (2)

If the momentum changes, the velocity and/or the movement
direction of the body changes, due to the relation ~p = m~v. To
alter a body’s momentum by a applying a force to it, a certain

amount of energy is necessary. The energy E needed to change
the momentum is:

E =

∫
C

~Fd~s (3)

The vector ~s and limit C describe the movement the body
during exertion of force ~F .

C. Application of mechanics to trajectory recovery

In this thesis I investigate if a pen movement can be
reconstructed from offline images using the given physical
equations. I propose two different approaches based on the
principle of momentum.

For the first approach, low-level kinetic simulation, it is
assumed that a pen movement follows the basic principle
of momentum. In this case, the pen trajectory could be
extracted by simulating a moving ball with a momentum that
follows the lines of an image of handwriting. This way strokes
could be extracted from an image that continue at crossings.
Normal thinning-based stroke extraction algorithms are not
capable of deciding immediately how to continue a stroke
at a crossing. The simulated ball would simply roll over the
crossing favoring a straight way and be able to extract longer
strokes from handwriting images.

For the second approach, high-level kinetic reconstruction,
a standard trajectory recovery system is used (as introduced in
section I-A). At the global reconstruction stage, the sequence
of strokes is obtained by defining a kinetic cost function. The
kinetic cost function computes a cost for a given pair of stroke
ends. A curve is fitted from one end of a stroke to the other.
The fitted curve is defined by the same type of function that
describes the movement of objects that underly a momentum.
Such a movement is described by a quadratic equation. This
equation follows from Newton’s second law (equation 1) and
the definition of speed, which is d~x

dt = ~v:

~x(t) =

∫∫
~F dt2 +

∫
~p dt

m
+ ~x(0) (4)

Assuming that the force ~F and the momentum ~p of an object
stay constant over time, it is possible to derive the second order
polynomial from equation 4:

~x(t) =
~F · t

2

2 + ~p · t
m

+ ~x(0) (5)

If a pen’s trajectory underlies a momentum, it should be
possible to describe the pen movement between strokes with
a function as ~x(t). The kinetic cost function fits the polynomial
~x(t) (equation 5) to a transition from one stroke to another by
calculating ~F and ~p. Then equation 3 is applied to compute the
energy that is needed to make the transition. This energy is the
cost computed by the kinetic cost function. When the global
reconstruction stage minimizes the global cost, it minimizes
the sum of stroke transition energies. This method assumes that
people write cursive hand writing in a way that minimizes the
over-all cost of stroke transitions.

4

Fig. 4. A line crossing in a scanned image. If the lines are traced by a
program using a simulated momentum it should be likely that it traces the
lines as illustrated by the black arrows because the momentum does not allow
abrupt changes of direction during tracing.

The structure of this Bachelor thesis is as follows: In section
II, I will describe the general concepts of kinetic path ex-
traction and explain how the low-level kinetic simulation and
high-level kinetic reconstruction make use of a momentum. In
section III, I will describe how I tested the low-level kinetic
simulation and discuss the results of these exploratory tests.
In section IV, I describe the experiment design for testing the
cost function of the high-level kinetic reconstruction and the
results of the corresponding experiments. In the last section
(V), I discuss the implications of my findings and make some
suggestions for further research.

II. KINETIC PATH EXTRACTION

I explore two different trajectory extraction algorithms
based on the principle of using a pen momentum to retrieve
sequential and temporal trajectory data from offline images.
I assume that the momentum helps solving ambiguities that
occur during the trajectory extraction as, for example, how
to continue a stroke at crossings in the image (Figure 4).
During a basic thinning-based pen stroke extraction such a
crossing would be saved as an ambiguous point because it
is not clear which lines belong to each other. The ambiguity
would later be solved during the global reconstruction stage.
However, when using low-level kinetic reconstruction the used
tracing ball would roll straight across such a crossing due
to its momentum. This way, it would immediately solve the
ambiguity during the basic stroke extraction process. When
using high-level kinetic reconstruction, the ambiguity is solved
more traditionally during the global reconstruction phase. The
used kinetic cost function computes the lowest over-all cost
when connecting the crossing trajectories as straight lines.
Therefore, both approaches would favor straight lines across
the crossing like illustrated by the arrows in figure 4. This
solves the ambiguity that arises at normal stroke crossings.

However, there are also cases where two pen strokes only
touch each other. In this case the usage of the momentum
does not always lead to correct results. Figure 5 illustrates
such a problematic handwriting sample that is traced by the
low-level kinetic simulation: The tracing point is forced by its
momentum to stay on the outside stroke, which leads to an
infinite loop.

The high-level approach could prove more valuable in
the two strokes touch each other. The search function used

Fig. 5. a) The original pen trajectory used to produce the handwriting. b)
The resulting offline image. c) The trajectory as expected to be extracted by
the low-level kinetic simulation. Notice that the line end in the middle would
not be traced and extracted because the momentum pushes the tracing-point
to the outside.

during the global reconstruction stage can consider multiple
combinations of pen strokes and favor the one with the least
over-all cost. However, locally, the momentum-based kinetic
cost function would still favor connecting the inner curve to
the outer curve in the touching point: The function depends
on the energy necessary for a transition from one stroke to
another and a stroke transition curve with slight bend (like the
outer loop curve of figure 5) needs less energy than one with
a large bend (like the inner loop curve of figure 5).

Both examples illustrate that the idea of using a momentum
for solving ambiguities at crossing-like points of a handwriting
might have advantages and disadvantages. I expect that there
are more ”normal crossings” than touching strokes in normal
handwriting. Therefore, I expect that both proposed ways of
using a momentum for online trajectory recovery are valuable.
However, this needs to be tested. In the following I will
describe in detail how low-level kinetic simulation and high-
level kinetic reconstruction work.

A. Low-level kinetic simulation

The low level approach is supposed to work directly with
preprocessed image data. It is a replacement for thinning-based
pen stroke extraction. It is designed to directly extract pen
strokes from offline handwriting data, which are longer than
pen strokes that can be extracted by thinning-based extraction
techniques.

In order to derive a path directly from an image of hand-
writing, the image is reinterpreted as a height map. Dark pixels
represent deep places in the height map and bright pixels
represent high places in the landscape. This way the ink of
a handwritten piece of text resembles a canyon in the derived
height map. Height values between pixels are interpolated
using a linear mixing function of the surrounding pixels.
Values outside the image’s area of the image are extruded
from the edges of the image. This way the height map is
continuously defined.

5

Fig. 6. Situation where a coordinate (xi + xr, yi + yr) lies between four
pixels (xi, yi), (xi +1, yi), (xi, yi +1), and (xi +1, yi +1). The naming
is the same as used in equation 6 for inter-pixel height value interpolation.

The linear mixing function calculates for a given coordinate
(x, y) = (xi +xr, yi + yr) with x, y ∈ R a height value using
the function h(x, y). If a point (x, y) lies between integer pixel
coordinates (see figure 6), the height value is calculated as
follows:

xi, yi ∈ N
xr, yr ∈ [0; 1[
c(x, y) ∈ [0; 1[

h(xi + xr, yi + yr) =
(c(xi, yi)xr +(1−xr)c(xi+1, yi)) yr+
(c(xi, yi+1)xr +(1−xr)c(xi+1, yi+1)) (1−yr)

(6)

The function c(x, y) returns a gray-scale color value for the
pixel at coordinate (x, y).

Using the height map that results from the given function, it
is possible to simulate a ball that runs through the handwriting-
canyon. The tracing ball has a simulated momentum. Its
behavior is not accurately simulated but it is approximated by
moving a point that has a certain impulse through the canyon.
This simplification avoids some complications that would arise
from the simulation of a ball with a volume. Most importantly,
the simulation of multi-point collisions as illustrated in figure
7 is avoided when only simulating a point.

The simulated ball is placed inside the canyon and given
a certain impulse. While the ball moves along the canyon,
the ball coordinates (ballx(t) and bally(t) with t as time) are
recorded. The sequence of coordinates is used as extracted
pen stroke. Thereby, the slant of the canyon is pushing the
ball back into the canyon using a simulated gravity (see figure
8). This should prevent the ball from leaving the handwriting.
In order to prevent the ball from stopping after being pushed
back by a wall of the canyon, the law of conservation of energy
is used. The height of the ball (ballz(t)) gives its potential
energy and the velocity of the ball (ballv) its kinetic energy.
The potential energy of a body is defined by its height times

Fig. 7. An example of a multi-point collision of a two dimensional
circle touching two lines at once as indicated by the gray crosses. In three
dimensions a sphere could touch three planes at once; in special cases even
more. These kinds of collisions do require more complex calculations.

Fig. 8. Cross section of a handwriting canyon with a tracing point in it.
The shown parallelogram of forces illustrates how the tracing point is pushed
back into the canyon by and the slant of the canyon.

the local acceleration times the body’s mass. In the case of the
ball it is Epotential = ballz(t) · gravity · ballm. The kinetic
energy of a body is defined by the body’s speed (ballv) and its
mass (ballm) which is for the ball Ekinetic =

ball2v
2 · ballmass.

The sum of both energies is assumed to stay constant during
the movement simulation. It is assumed that the ball or tracing-
point never bounces and has no friction. It is always attached
to the surface of the handwriting canyon. The constant relation
is defined by:

Epotential︷ ︸︸ ︷
ballz · gravity · ballm +

Ekinetic︷ ︸︸ ︷
ball2v
2
· ballm = constant (7)

The mass-factor can be contained in the constant by dividing
both sides by ballm. The resulting relation is:

ballz · gravity +
ball2v
2

= constant (8)

This relation does not require a value for the mass of the
ball. The influence of gravity on the tracing ball can therefore
be computed without defining a mass for the tracing point. The

6

influence of gravity includes the deflections from the canyon
walls like illustrated by the parallelogram of forces in figure
8.

Equation 8 should also allow the algorithm to extract pen
speed information from a trajectory. The narrower a curve is,
the more a ball is pressed into the curve by its momentum.
It will climb up the slant and thereby get slower. This would
cover the fact that narrow curves are drawn more slowly than
wide curves [8].

After every line of the image has been traced using this
technique the pen strokes must be sequenced to form a whole
pen trajectory. This is done in a final global reconstruction
stage.

Low-level kinetic simulation presents a new way of extrac-
tion pen strokes from offline images. In section III I test if
the algorithm works as expected. In the next section I present
the different approach of high-level kinetic reconstruction for
online data recovery.

B. High-level kinetic reconstruction

The high-level approach uses standard design for an online
trajectory recovery system. It consists of the same three stages
as described earlier in section I-A (see also figure 3).

The idea is to define a cost function for the global recon-
struction stage that is based on the physical principle of the
momentum. The cost function calculates the cost (i.e., the
energy needed) for moving the pen from the end of one stroke
to the beginning of another stroke. This pen-up trajectory is
modeled with the function ~x(t) from equation 4. The function
~x(t) uses the mechanical model that describes the movement
of a body to which a constant force ~F is applied. By fitting
the function ~x(t) to a stroke transition, a value is assigned
to the force component ~F . Using this force component ~F in
equation 3 it is possible to calculate an energy value for the
given translation. I assume that the higher the energy for a
transition, the less likely it is to be made.

In the following I will describe in detail how the transition
energy is computed.

1) Deriving the stroke transition energy: Handwritten pen
trajectories consist of curves that are created by varying forces.
Therefore, the definition of ~x(t) from equation 4 is insufficient.
The most simple model to describe forces that change over
time t is a linear function:

~F (t) = ~c · t+ ~F (0) (9)

The new model of changing forces as a function of time t
has to be embedded in the function ~x(t) of equation 4:

~x(t) =

∫∫
~c · t+ ~F (0) dt2 +

∫
~p dt

m
+ ~x(0) (10)

⇒ ~x(t) = ~c · t3

6 ·m
+ ~F (0) · t2

2 ·m
+ ~p · t

m
+ ~x(0) (11)

The function ~x(t) of equation 11 is used to interpolate
pen coordinates between strokes. The general layout of the

Fig. 9. Values that need to be fit by the third-order polynomial in order to
describe the pen-up transition from one pen stroke to the next.

new definition of ~x(t) matches the layout of a third-order
polynomial:

~f(t) = ~a0 + ~a1t+ ~a2
t2

2
+ ~a3

t3

6
(12)

The following definitions give the relation between ~f(t) and
~x(t):

~a0 = ~x(0)

~a1 = ~p
m

~a2 =
~F (0)
m

~a3 = ~c
m

(13)

These relations give that ~f(t) = ~x(t). To compute the tran-
sition energy, the function ~f(t) is fit to the stroke transition.
There are four values that need to be fit by the function. Figure
9 illustrates the role of each of the values:

~s and ~sd describe the end point of the stroke that the poly-
nomial is fitted from and the direction of the tangent in that
point.
~e and ~ed describe the starting point of the stroke that the
polynomial is fitted to and the direction of the tangent in that
point.

The time parameter t of the fit polynomial ~f(t) is defined
to be of the domain t ∈ [0; 1]. The values a0 to a3 must be
fit so that for the function ~f(t) holds that:

f(0) = ~s
df
dt (0) = ~sd
f(1) = ~e
df
dt (1) = ~ed

(14)

Solving the resulting system of linear equations gives:

~a0 = ~s
~a1 = ~sd
~a2 = 5~e− 7~s+ 3~ed + 2~sd

~a3 = −12
(
~e− ~s+ ~ed− ~sd

2

) (15)

The transition energy is computed using the energy-force
relation from (3) and the force function from (9):

E =

∫
C

~c · t+ ~F (0) d~s (16)

7

Applying the ~x(t)-~f(t) relations from (13) gives:

E = m ·
∫
C

~a3 · t+ ~a2 d~s (17)

From this equation the first important inference can be
made: The mass m is only a scaling factor for the final energy
value E. Since only energy values produced by this function
are compared with each other the mass does not serve an
important purpose for the given energy function. Therefore,
I will leave out the mass from any following calculations by
defining it as m = 1.

In the integral part of equation 17, the movement defined by
~s and C is dependent on the curve described by ~f(t) (or ~x(t)
since ~x(t)=~f(t)). This specifically means that d~s is dependent
on t because the pen speed given by d~f

dt depends on t. This
relation between ~s and t makes the integral in (17) hard to
solve. However, it can still be solved iteratively by a computer
program. The following pseudo-code defines a function, which
computes the integral (note that t ∈ [0; 1]):

// During computation a_2, a_3, s and oldS
// contain vectors

function integrateEnergy(a_2, a_3)
res = 0.0

for i = 0 to nIntegrationSteps
t = i / nIntegrationSteps
s = a_2 * tˆ2 / 2 + a_3 * xˆ3 / 6

if i > 0 then
ds = s.distanceTo(oldS)
res += (a_2 + (a_3 * t)).len() * ds

endif

oldS = s
endfor

return res
end

This function is used to compute the transition energy
used as cost during the global reconstruction stage. The cost
function is tested in section IV.

III. EXPERIMENT 1: LOW-LEVEL KINETIC SIMULATION

In this section, I will first describe the testing platform
for testing the low-level kinetic simulation which makes use
of a tracing point to extract pen strokes. Then I discuss the
problems I found with this approach.

A. The testing platform

I programmed a small testing platform to assess the basic
capabilities and problems of the low-level kinetic simulation.
It loads offline images and tries to trace a single pen stroke
somewhere in the image. The constant which relates the height

Fig. 10. A part of a height map as it is constructed directly by converting
dark points of a scanned signature into depth values. The resulting canyon is
relatively rough and has no smooth ground.

of the tracing point to its speed (equation 8) is adjustable. A
starting point for beginning the tracing is searched automati-
cally by looking for a point that lies on the handwriting. The
stopping condition for the tracing point simulation is a hard-
coded limit of simulation update cycles.

Since I early on encountered severe problems with the low-
level approach, the testing platform is not capable of extracting
all pen strokes of a handwriting image automatically. Due
to the problems I canceled the further development of this
algorithm. The problems I encountered are discussed in the
following section.

B. Problems with the low-level approach

I encountered different problems with the low-level kinetic
simulation. In the following, I will describe the two most
problematic ones: oscillations and chaotic deflections.

1) Oscillation: Sometimes, when the tracing point moves
along the canyon, it seems to loose momentum and stop
moving. However, the tracing point should not slow down
like this while it is in the canyon. Per definition, the speed
of the ball depends on its height in the height map (ballz) as
formalized in equation 8, but as long as the ball remains in the
canyon, the height should not change enough to cause such a
deceleration.

A further analysis of the problem showed that the movement
direction of the tracing point slowly changes from moving
along the canyon to oscillating between two facing canyon
walls. This behavior occurred especially at double traced parts
of a handwriting image where the image was very dark and
therefore the canyon was very deep.

I found no reliable way of solving this problem. I found
a way of damping the oscillations by applying techniques I
found in computer-game physics engines. The fix reduced the
number of occurrences of oscillations between canyon walls
but did not solve the problem. Therefore, I will not further
elaborate on the fix.

2) Chaotic deflections at crossings: The biggest problem
of the low-level approach is that is does not produce stable

8

Fig. 11. Chaotic behavior of the proposed low-level trajectory extraction
technique. The green line is the original offline data. The black line is the
trace of the tracing point. In 1) the tracing point is launched into a certain
direction. For 2) the same handwriting image is used as for 1) and the tracing
point is launched from the same point as for 1), but in a by one degree
different direction. You can see that the small change of direction has a major
effect on the resulting trace.

Fig. 12. Two close lines are blurred into each other by the Gaussian
smoothing function that is applied to prevent the chaotic deflection of the
tracing point by unsmooth landscape. This can lead to problems since the
tracing point now has a bridge to the other line which is not a desired effect.

results. The ink of scanned handwriting is not smooth. Scanned
ink is textured, which does not lead to a smooth landscape
when translated to a height map (see figure 10). The rough
ground of the landscape makes the kinetic tracing point deflect
chaotically. This leads to problems at crossings. The expected
advantage of using a momentum to encourage the tracing point
to extract straight lines is not observable. Instead, the tracing
point regularly takes erratic turns. Figure 11 illustrates another
example of the chaotic behavior of the ball. A small change
of the ball’s starting direction results in a large change of its
resulting trace.

I was expecting this behavior and I had two ideas to deal
with this problem. The first idea was to increase the influence
of the momentum by decreasing the simulated gravity, which
leads to less deflections by the terrain (compare figure 8). This
would make the effects of a rough terrain less severe. The other
idea was to apply a Gaussian smooth function to the offline
images, before starting to trace the lines of the image. This
would smooth the landscape creating a plainer ground for the
canyon. However, both attempts did not solve the problem.

Increasing the effect of the momentum by decreasing the
simulated gravity works well for avoiding the influence of
small irregularities in the landscape. However, large irregular-
ities like the ”hill” shown in figure 10 still have a major effect
on the movement direction of the tracing point. As the tracing
point climbs up a large irregularity in the landscape, it gets
slower. This means that the tracing point stays longer at the
slant of such an irregularity and therefore is deflected even
with the low gravity.

Smoothing the handwriting image has the advantage that it

smears out irregularities in the image and thereby helps to keep
the tracing point at the middle of a pen stroke. The smoothing
helps to prevent chaotic deflections from irregularities in the
terrain, but also introduces new problems. Figure 12 shows
how two theoretically distinct lines are blurred into each other
after the application of the smoothing function. This reduces
the height of the terrain between canyons, which allows the
tracing point to crossover to other strokes, even if pen strokes
do not touch in the original handwriting. In order to avoid
chaotic deflections, so much blurring is necessary that there
are severe problems with lines blurring into each other.

C. Conclusion

In the end, I dropped this approach because there were too
many problems, mainly because of the chaotic behavior. Small
changes of the starting position of the tracing point could
result in completely different extracted strokes. Without having
solved this problem, some questions about the algorithm
design remain open, for example, how to prevent the re-tracing
of already traced strokes. These challenges seemed to be not
solvable as part of this Bachelor thesis so I dropped this
approach.

IV. EXPERIMENT 2: HIGH-LEVEL KINETIC
RECONSTRUCTION

In this section, I will describe how I tested the kinetic cost
function and present the results of these tests. In the first
section I will describe the testing platform that was used for
testing the kinetic cost function. In the next section, I will
describe how I used the testing platform to test the pen stroke
sequencing performance of the kinetic cost function. In the
following section, I present the results of the tests and discuss
them in the final section.

A. Extraction system

The extraction system is the testing platform for the cost
function that has been presented for the high-level approach.
In order to test whether the proposed cost function works for
pen trajectory recovery, it is most logical to test it in a real
trajectory extraction environment. Therefore, I implemented a
trajectory extraction system that provides for easy exchange
of different cost functions. The extraction system is built as a
processing pipeline that consists of the five processing steps
shown in figure 13. You will notice that the system does not
include any noise removal step unlike other extraction systems
[4], [9]. Therefore, images that are used with the trajectory
extraction system need to be pre-filtered by a background
removal algorithm, which was the case for the test set in this
experiment.

In the following five sections I will describe every step of the
extraction system pipeline shown in figure 13. In an additional
section (IV-A6) I will summarize parameters the extraction
system uses for online data recovery.

9

Fig. 13. Processing steps the used extraction system is built of.

Fig. 14. Thinned image of a handwritten l. The little loops at the line crossing
of the l, the additional line piece at the top (called feathering) and the fact that
the loop itself is torn apart are typical artifacts that are created by thinning
algorithms.

1) Thinning: The thinning processing step of the pipeline
incrementally thins lines of a given image until only a one
pixel wide lines are left. Thinned images are easy to convert to
a line list that describes the skeleton of a given pen trajectory.
This technique is widely used in different trajectory recovery
systems [10]–[13]. I use a thinning algorithm that is based on
the approach described in [14].

Thinning techniques are known to be very sensitive to
irregularities in the ink and introduce large scale artifacts in
the resulting images [4]. This is illustrated in figure 14. I try
to filter out those artifacts in the following graph building
processing step.

2) Graph building: The graph building process takes the
thinned image as input and turns the lines that are still
represented as color in a pixel raster into line representations
on the basis of coordinate lists. The graph builder first looks
for a starting point in the thinned image that lies on a thinned
line. Then builds a graph by beginning to grow branches to
all adjacent, colored pixels that are not yet added to any other
graph-branch. This is repeated until all colored pixels of the
handwriting are covered by the resulting graph. If there are
multiple unconnected pen strokes in the handwriting multiple
graphs are used to cover all pixels. The following pseudo-code
illustrates how this works:

GRAPHS = []

for START in getAllInkPixels(thinnedImg)
if not isUsed(START) then
markUsed(START)
GRAPH = new Graph(START)

ACTIVE_BRANCHES = []

NEIGHBORS = getAdjacentInkPixels(START)
for N in NEIGHBORS
if not isUsed(N) then
NEW_BRANCH = new Branch(N)
GRAPH.branches.add(NEW_BRANCH)
ACTIVE_BRANCHES.add(NEW_BRANCH)
endif

endfor

while ACTIVE_BRANCHES.length > 0
for BRANCH in ACTIVE_BRANCHES
NEXT_PIXELS = getAdjecantInkPixels

(BRANCH.endpoint)

if NEXT_PIXELS.length = 0 then
ACTIVE_BRANCHES.remove(BRANCH)

if NEXT_PIXELS.length = 1 then
BRANCH.addPixel(NEXT_PIXELS)
markUsed(NEXT_PIXELS)

endif
if NEXT_PIXELS.length > 1 then
ACTIVE_BRANCHES.remove(BRANCH)
for P in NEXT_PIXELS
NEW_BRANCH = new Branch(BRANCH, P)

10

Fig. 15. Part of a thinned handwriting. The circles mark the most common
artifact that occurs during thinning which is feathering.

ACTIVE_BRANCHES.add(NEW_BRANCH)
markUsed(P)

endfor
endif

endfor
endwhile

GRAPHS.add(GRAPH)
endif

endfor

return GRAPHS

This way all pixels of the thinned image are translated
into multiple graph representations. The graphs describe pen
strokes pixel-wise as a list of coordinates. Adjacent pixels are
connected by chains to form rudimentary line representations.
However, the graph representations can still contain different
artifacts described in the previous section ”Thinning” (see also
figure 14).

The thinning artifacts are removed by a filter process that
is also applied during this phase. The filter function takes a
hard coded parameter which is the ink width (ink width)
measured in pixels. In stead of trying to determine the ink
width automatically, this parameter is set beforehand to the
specifics of the used scanned handwriting images. The value
can be measured manually by using appropriate graphics
software given that the ink width of the given handwriting
sample is homogeneous. If it is not, the handwriting sample
cannot be used with this extraction system.

The ink width is necessary to filter out artifacts that are
created during the thinning process, especially feathers like
shown in figure 15. The filtering process checks for every
branch of the extracted list of graphs whether the line from the
root to the given branch-leaf is more distant than ”ink width”
from every other branch over its whole length. If all points
of such a root-leaf line are closer than ”ink width” to another
branch the checked branch is erased. Image 16 shows the same
part of a scanned handwriting as 15 but after the filtering has
taken place. All feather artifacts have been removed by the
filter process.

Fig. 16. The same piece of a thinned handwriting as figure 15 after filtering.
Comparing to image, 15 you see that this image does not contain any feathers.

3) Graph slicing: The graph slicing processing step cuts the
previously derived graph in stroke pieces. The used algorithm
cuts the graph derived in the graph building step in every of its
branching points. This way only stroke pieces with one start-
and end-point remain when this processing step finishes. The
coordinates of previous branching points are saved in an array
of coordinates of possible line crossings in the handwriting.
This array will be used in the following processing step (see
section IV-A4) which tries to rejoin continuous strokes at
crossings that were sliced during the graph slicing process.

Subsequently, the algorithm re-samples the extracted stroke
pieces to abstract from the pixel-wise representation that
the graph representation of the previous processing step still
encodes. It uses a value k to replace every successive k pixel
coordinates of a stroke piece by a single line. The single lines
replicate the translations of every k pixel coordinates they do
replace. The value k that describes the amount of coordinates
that are replaced by single lines thereby is determined dynami-
cally to fit to different stroke piece lengths. To determine k the
number of coordinates a path piece consists of N COORDS
and the extraction system parameter n resample are used.
n resample determines the reference value for the amount of
coordinates that are re-samples to lines. Given these values, k
is defined as:

k = min

N COORDS,
N COORDS

ceil
(

N COORDS
n resample

)
 (18)

The function ceil(x) rounds a given value x up, the func-
tion min(x, y) returns the smaller one of the two values
x and y. Using this definition for k also pixel-wise stroke
pieces shorter than n samples are re-sampled correctly by
replacing all coordinates they consist of by a single line
from starting point to end point. For longer stroke pieces,
the reference value n resample is used to re-sample a given
stroke piece. In this case, it is guaranteed that for k holds
that k ∈]n samples/2, n samples]. This way the extraction
system parameter n samples determines the maximum line
element length a stroke piece consists of after re-sampling.

After the graph slicing processing step has been applied,
extracted stroke pieces look like illustrated in figure 17. The
figure shows the same piece of handwriting as 16. You can see

11

Fig. 17. Stroke pieces as they are represented after the graph slicing
processing step. The crosses mark previous branching points used for rejoining
continuous strokes during ”Stroke joining” phase.

comparing the two figures how the jagged graphs are replaced
by stroke pieces consisting of longer, smoother line elements.

4) Stroke joining: During the path joining processing step,
stroke pieces that are close to each other are rejoined to
reconstruct connected strokes that have been cut during the
graph slicing step. The calculation uses the cost function
c(endpoint1, endpoint2) that must be specified for running
the extraction system. It collects for every crossing that has
been found during the path slicing step all ends of stroke pieces
that are closer than the ink width ink width to the given
crossing. As long as there are more than two found ends for a
crossing, two of the associated strokes are joined together. The
joining is different from the stroke sequencing that is done in
the following stroke sequencing step. Two stroke pieces that
are joined together will be replaced by a continuous new stroke
piece. During stroke sequencing processing only the sequence
in which stroke pieces are being drawn is determined.

The two strokes that are joined together are determined by
choosing the stroke pair with the minimal stroke transition cost
at the crossing. If all stroke piece ends that are candidates for
a stroke joining are given by the set P , this function can be
formalized as follows:

(i, j) ∈ {(u, v) ∈ P × P |u 6= v} : argmin
i,j

c(i, j) (19)

The two strokes belonging to the two found end-points with
minimal distance to each other (i, j) are combined to a new
stroke piece. The new stroke piece has an added line between
stroke i to stroke j. The original stroke pieces are removed.
This is repeated until for every crossing there are less than two
ends of stroke pieces that can be considered for path joining.

5) Stroke sequencing: The stroke sequencing step is the
final part of the processing pipeline. It sequences the extracted
stroke pieces to a complete pen trajectory. It is assumed
that the stroke pieces that have been found by the previous
processing steps resemble the strokes a given handwriting
sample consists of.

The sequencing algorithm sequences strokes by using the
extraction system’s cost function c(endpoint1, endpoint2)
and the set of extracted stroke pieces. It tries to find a good
pen trajectory by minimizing the over-all costs between strokes
that is determined by the function c(endpoint1, endpoint2).

Fig. 18. The initial transition of which the cost is calculated to determine
the initial cost for a candidate trajectory starting with the letter h. The gray
arrows show all other transitions that are made during the initialization phase
of the greedy sequencing algorithm to determine the initial costs of different
starting points for the final trajectory.

Finding the optimal solution would require to consider all
possible combinations of strokes. This is intractable due to
the combinatorial explosion caused by multiple available pen
strokes (compare [5]). To avoid this problem a greedy search
algorithm is used which does not find optimal paths, but
probably good ones [5].

The greedy search uses c(endpoint1, endpoint2) as cost
function for calculating the cost of connecting a stroke to
another stroke. The set of strokes used for sequencing contains
two versions for every previously found stroke: one describes
a certain stroke in one direction, the other in the opposite
direction. A full reconstructed trajectory may contain, inde-
pendently of its direction, every stroke only once.

The greedy search algorithm is initialized by using all
available strokes as a starting points for candidate trajectories.
The candidate trajectories are initialized with an initial cost.
That is the cost for the transition from the lower left of the
bounding box of collection of strokes to a candidate the start
point (figure 18). The cost is calculated using the cost function
c(endpoint1, endpoint2). The idea of the initial cost is to
embed the knowledge in the system that words in Latin words
are usually written from left to right. Therefore, giving lower
costs to trajectories starting at the left of the baseline of a
handwriting seems to be a decent decision for reconstructing
a trajectory.

After the initialization phase, strokes are appended to the
candidate trajectory that has currently the lowest overall-cost.
A stroke is selected for being appended by calculating the
transition costs from the end of the candidate trajectory to
every start point of all available strokes. The stroke with the
lowest transition cost is appended to the candidate trajectory
and the trajectory’s overall-cost is increment by the transition
cost. Then all versions of the given stroke (back and forth
versions) are removed from the list of available strokes for
the candidate trajectory.

If the candidate trajectory with the lowest overall-cost has
no more strokes left that can be appended, the trajectory is
completed and returned as the extracted pen trajectory. An
example of a extracted trajectory can be seen in the results
section of this Bachelor thesis.

12

6) Extraction system parameters: For the presented ex-
traction system several parameters have to be set. The three
parameters that the system depends on are:

1) The definition of the cost function
c(endpoint1, endpoint2) used for sequencing stroke
pieces.

2) ink width that describes the ink width of the used
handwriting images in pixels.

3) n samples that describes the reference value for the
line lengths that stroke representations are re-sampled
to (see section IV-A3).

Note that when using a parameter like int width, this
restricts the domain of offline data that can be used with
the system to data with a constant ink width. This means
that no handwriting images that were written with different
pens and no stretched images where the horizontal ink-width
differs from the vertical ink-width can be processed by the
system. However, if these restrictions are acceptable the ink-
width determination could be automatized in a future version
of the recovery system, for example, as described by K. Franke
[15].

B. Method for testing the kinetic cost function

The proposed kinetic cost function is tested by comparing
extracted pen trajectories to online data that describe the
same handwriting samples. By defining a similarity measure
between online trajectories and extracted trajectories, different
cost function performances can be tested against by analyzing
the similarity values.

In the next sections, I will describe in detail how the
kinetic cost function is tested. In section IV-B1, I describe
the data set I extract pen trajectories from using the proposed
extraction system together with the the kinetic cost function.
In section IV-B2, I define the quantitative measure I use for
comparing extracted pen trajectories to corresponding online
data (ground truth). In section IV-B3, I define the cost function
that the kinetic cost function is compared to. In the final
section (IV-B4), I formalize the hypotheses I have about the
distributions of the ground truth comparison values (as defined
in IV-B2) for both tested cost functions.

1) Testing samples: The handwriting samples that are used
for the experiment are handwriting images of signatures taken
from the ICDAR Signature Verification Competition 2009
[16]. For each signature corresponding online data are avail-
able. The 1823 used signatures have been recorded by writing
with an electronic, pressure-sensitive pen on a paper that was
lying on a digital graphics board. This way, online and offline
data were recorded at the same time. The online data were
recorded at a constant sample rate of 200 Hertz. They consist
of a sequence of data-points that are split into pen-up and
pen-down chunks. Every data-point consists of X and Y data
as position data and Z data that give the pressure that was
exerted on the paper.

The offline images are preprocessed, so that it was guar-
anteed that they only contain pixels that are part of the ink
(background-filtering). All other pixels are set to perfect white
(RGB = (255, 255, 255)).

Fig. 19. Pipeline of the algorithm that computes the ground truth distance
measure

The online data for a given handwriting image are used as
ground truth for extracted trajectories. An extracted trajectory
is compared to this ground truth using a similarity measure.

2) Ground truth distance measure: To compare the qualita-
tive performance of different cost functions for path sequenc-
ing, a quantitative measure is useful that encodes the similarity
between an extracted trajectory and the ground truth. With this
measure it can be determined how good a trajectory is, by
comparing it to the ground truth.

The similarity value I use is describes the distance between
two trajectories. Thus the similarity is optimal if the distance is
zero. The trajectory distance is computed by a three step algo-
rithm (see figure 19). First the ground truth and the extracted
trajectory are normalized. Then they are re-sampled so that
the pen-down chunks of both trajectories are represented by
the same amount of lines. The final comparison step computes
the average distance between every line pair of extracted pen
trajectory and ground truth.

The normalization of the trajectories is done to make their
coordinates use the same scales. During normalization, the
aspect ratio of the original trajectory needs to be preserved.
To achieve this, the coordinates of the lines that describe a
trajectory are first recomputed to fit in the rectangular space
given by the point (−0.5,−0.5) and (0.5, 0.5). Then, the y-
coordinates are multiplied with the aspect ratio (heightwidth) of the
original image.

During the re-sampling step, the line elements that describe
the pen-down parts of a trajectory are collected. All pen-down
parts are re-sampled to a representation that consists of 10000
line parts of even length. The direction and sequence of single
strokes is encoded in the sequence of the 10000 lines. The re-
sampling step thereby removes dynamic information from the
ground truth data like, for example, encoded pen-speeds. This
is a desired effect because the extraction system does not try
to reconstruct this type of data.

The final comparison step calculates the distance value
between the normalized ground truth and the normalized
extracted trajectory. The 10000 lines of both trajectories are
paired by pairing the first line of ground truth with the first
line of the extracted trajectory, the second line of the ground
truth with the second line of the extracted trajectory, and so

13

on. The ground truth distance value is defined as the average
distance between all these line pairs. The distance between the
two lines of one pair is calculated as the sum of the distances
between their starting-points and between their end-points.

3) Reference cost function: The reference cost function I
am using is the Euclidean distance between two stroke piece
end-points. It is a simple cost function that can be found as
a part of many other extraction systems [12], [13], [17]. As a
a very basic cost function it is used as a baseline test to test
the capabilities of the kinetic cost function. Using the notion
of the vectors from figure 9, the cost cEuclidean is given by:

cEuclidean = |~s− ~e| (20)

This very simple cost function still captures the intuition
that close points should be connected to each other because
they were probably drawn after each other. However, this cost
function does not take any pen direction changes into account
for its calculations. Therefore, transitions from stroke pieces
that describe harsh changes of a pen’s movement direction
should more likely be given a low cost than when using the
kinetic cost function (equation 17). A major advantage of the
kinetic cost function over the Euclidean cost function should
therefore be that it not only considers transitions distances but
also direction changes of the pen movement.

4) Hypotheses and testing: As discussed it is assumed that
the kinetic cost function (equation 17) performs better than
the Euclidean-distance based cost function (equation 20). This
can be tested by extracting pen trajectories using both cost
functions and calculating their ground truth distances using
the distance function d(t, g) described in the previous section.
t gives a trajectory and g a ground truth trajectory. The
computed ground truth distance values for both cost functions
can then be compared with each other by using a paired t-test.
e(i, f) is the extraction algorithm that extracts from a certain

handwriting image i using cost function f a trajectory. The
set of all available test data is set A with (i, gt) ∈ A: i
designates a handwriting image and gt is the associated ground
truth. kinetic and Euclidean refer to the corresponding cost
functions. Using these definitions it is possible to define the
experiment’s hypothesis as follows:

Dkinetic = {(i, gt) ∈ A : d(e(i,kinetic), gt)}
DEuclidean = {(i, gt) ∈ A : d(e(i,Euclidean), gt)}

H0 : µ(Dkinetic) >= µ(DEuclidean)
Ha : µ(Dkinetic) < µ(DEuclidean)

(21)

C. Results

In this section, I will present the results of the pen trajectory
extraction performances of the two different cost function I
test. In section IV-C1, I show the parameters settings for the
pen trajectory extraction system that are used for extracting
pen trajectories with the two different cost functions. In section
IV-C2, I list the observed running times of different parts of the
trajectory extraction system’s processing pipeline. In section
IV-C3, I analyze the histograms of ground truth distances

TABLE I
TEST PARAMETER SETTINGS FOR THE EXTRACTION SYSTEM

Parameter Value
ink width 10 pixels
n samples 30
c(endpoint1, endpoint2) Kinetic cost function or

Euclidean-distance based cost function

TABLE II
MEAN AND STANDARD DEVIATIONS OF THE SIMILARITY MEASURE FOR

THE DIFFERENT COST FUNCTIONS

Cost Function Euclidean kinetic kinetic - Euclidean
Mean 0.409 0.371 -0.037
Standard Deviation 0.212 0.227 0.173

for both tested cost functions. The test results for testing
the hypothesis defined in section IV-B4 can be found in
section IV-C4. In section IV-C5, three examples of extracted
trajectories are shown.

1) Parameter settings: Prior to running the tests to compare
the two defined cost functions with each other, the extrac-
tion system parameters have to be set (see section IV-A6).
To determine the ink width ink width of the used offline
images I used the graphics program GIMP and measured
the ink width at different spots in different offline images.
This way, I obtained an ink width of 10 pixels. Furthermore,
I set the value of n samples to 30. For the cost function
c(endpoint1, endpoint2) I used the kinetic cost function and
the Euclidean-distance based cost function to obtain different
ground-truth similarity values for the extracted pen trajecto-
ries. The parameters settings are summarized in table I.

2) Running time: Running the path extraction on the 1823
signature image took about 52 hours on a single PC, partly
using dual-core features. Since the extraction program was
split up into different parts that were responsible for different
stages of the extraction process, the different stages of the
extraction process can partly be characterized by their running
time:

1) The thinning process including initial graph building and
filtering was implemented in a C++ program and took
about three hours to run single threadedly on a 2 GHz
PC.

2) The path slicing process was implemented in a python-
script. The python script was single threadedly on a dual
core 2 GHz PC. The process took about 25 hours to
finish for all 1823 signatures.

3) The trajectory sequencing and ground truth comparison
was also realized with a python-script. It was run single-
threadedly on a different 2 GHz machine than for tests
before and took a full day to complete. Later on it has
been reprogrammed so that it could be distributed across
a computer cluster all consisting of the same type of 2
GHz dual core machines. With 26 processes distributed
across 13 machines the process of calculating trajectory
similarities only took one hour to complete.

3) Dataset analysis: The histograms in figure 20 show
the ground truth distance distributions for both tested cost
functions. In table II, statistical information about the distance

14

Fig. 20. Histograms showing the distributions of ground truth distance values
for the pen trajectories extracted using the given cost function.

values are shown. The mean and standard deviation are cal-
culated using all 1823 signature samples. Also data for the
difference between the results of the kinetic cost function and
the Euclidean cost function are shown (kinetic−Euclidean).

The ground truth distance histograms in figure 20 show
homogeneous gamma-like distributions for both used cost
functions. Neither of the used cost functions seem to have
performed exceptionally bad on a distinct subset of the data
samples. Therefore, the data set can be analyzed as a whole.

The trajectories created using the kinetic cost function
are less distant from the ground truth than the ones created
with the Euclidean cost function. However, compared to the
standard deviation, the difference between the means is rather
small: The standard deviation is more than five times larger
than the difference between the means.

4) Hypothesis testing: The paired t-test on the results of
the Euclidean cost function and the kinetic cost functions
shows with a t-value of −9.189 that p < 0.001. However,

TABLE III
RESULTS OF WILCOXON PAIRED-RANK TEST USING kinetic−Euclidean

AS COMPARISON FUNCTION

N Mean Rank Sum of Ranks
Negative Ranks 1102 948.03 1044726.0
Positive Ranks 720 855.59 616027.0
Ties 1
Total 1823

Fig. 21. Histogram of the difference between the ground truth distances of the
trajectories generated with the kinetic and with the Euclidean cost function.
The used value comparison function is kinetic−Euclidean. Compared to
the Gaussian distribution (black curve) there is a pile-up of cases around zero.

figure 21 shows that the paired values may not be distributed
according to a normal distribution. Therefore, I also applied a
non-parametric test for paired samples: the Wilcoxon paired-
rank test.

Table III shows data of the Wilcoxon paired-rank test. The
resulting z-value for the test is −9.54 that gives that p < 0.001.
This means that the null hypothesis H0 (see section IV-B4)
is rejected. There is a significant difference between using
the kinetic cost function or the Euclidean cost function for
trajectory extraction. The kinetic cost function produces on
average trajectories which are less distant from the ground
truth than the Euclidean cost function, according to the defined
ground truth distance measure.

However, compared to the standard deviation of the data
the found effect is rather small. When using the t-test we can
compute the effect size by computing t√

N
= 9.189√

1823
= 0.215.

This is a small effect.
5) Sample examinations: In this section I will present

general results derived from sample examinations as well as
two concrete examples of extracted pen trajectories for both
cost functions. One example shows a signature that has better
been retrieved by the kinetic cost function, and the other
example a signature of the same writer that has better been
retrieved by the Euclidean cost function.

By inspecting several samples of reconstructed pen trajecto-
ries it appeared that basic pen strokes were retrieved correctly
from the offline data by the online extraction algorithm (see
figure 22).

Furthermore, it seems that the kinetic cost function and

15

Fig. 22. Extracted pen trajectory superimposed on its offline signature. The online trajectory has been extracted by the described extraction system using
the kinetic cost function. The writing order of the strokes is given by the numbers. Even numbers (including zero) determine the starting point of a stroke
and uneven numbers the endpoint of a stroke. Note that in the visualization the numbers 3, 4 and 11, 12 are overlapping.
The extracted strokes describe the original offline signature well: All handwriting is covered by extracted strokes. The sequence of the strokes is also
reconstructed relatively well but with some exceptions: The recovered pen trajectory writes the letter ”u” (on the right) from right to left which is not the
natural writing order and does not match the original pen trajectory.

Fig. 24. A closeup of the left crossing of the signature of figure 23. The
pen trajectory extracted by using the kinetic cost function is shown. The gray
arrows show how strokes would have been connected by the Euclidean cost
function.

the Euclidean cost function both connected strokes the same
way when stoke transitions are relatively unambiguous. Those
unambiguous spots are places where only two isolated stroke
ends lie close to each other. In those cases the two stroke
pieces were reliably chained after each other as expected.
However, there were cases where the kinetic cost function did
perform a lot better than the Euclidean cost function and the
other way around, even on different signature samples of the
same writer.

Figure 23 shows an example where the kinetic cost function
performed better than the Euclidean cost function. A closeup
of the crossing on the left of the signature shown in 23 can be
seen in figure 24. The figure shows a close up of the trajectory
extracted using the kinetic cost function and shows how lines
are continued due to their orientation. The gray arrows mark
how different strokes are connected when the Euclidean cost
function is used. For this sample the kinetic cost function
works better with a ground-truth distance of 0.020 compared
to the ground-truth distance of 0.325 for the Euclidean cost
function.

There are also samples of the same signatures for that
the kinetic cost function does not compute advantageous

Fig. 26. A closeup of the left crossing of the signature of figure 25. The
pen trajectory extracted by using the kinetic cost function is shown. The gray
arrows show how strokes would have been connected by the Euclidean cost
function.

costs for the pen trajectory extraction. Figure 25 shows the
trajectories for such a sample. The trajectories have a ground-
truth distance of 0.723 for the kinetic cost function and a
ground-truth distance value of 0.025 for the Euclidean cost
function. Figure 26 shows a closeup of the stroke crossing at
the left of the signature. The gray arrows show how strokes
are connected when using the Euclidean cost function for
reconstruction. The Euclidean cost function produces in this
case a much better result than the kinetic cost function.

D. Conclusion

There are several conclusions that can be made based
on the data presented in the previous section. In the first
section (IV-D1), I will compare the general trajectory recovery
performance of the kinetic cost function to the performance of
the Euclidean cost function. In the second section (IV-D2), I
will discuss conclusions that can be made on the basis of the
example pen trajectories presented in section IV-C5. In section
IV-D3, the testing methods are discussed and in section IV-D4,
problems of the used extraction system are discussed.

16

Fig. 23. Original pen trajectory, pen trajectory reconstruction using kinetic cost function and pen trajectory reconstruction using the Euclidean cost function
of one handwriting sample. The reconstructed pen trajectory of the kinetic cost function has a ground-truth distance of 0.020 while the reconstructed pen
trajectory using the Euclidean cost function has ground-truth distance of 0.325.

Fig. 25. Original pen trajectory, pen trajectory reconstruction using kinetic cost function and pen trajectory reconstruction using the Euclidean cost function
of one handwriting sample. The reconstructed pen trajectory of the kinetic cost function has a ground-truth distance of 0.723 while the reconstructed pen
trajectory using the Euclidean cost function has ground-truth distance of 0.025.

1) General cost function performances: Using the kinetic
cost function for connecting pen strokes to reconstruct pen
trajectories leads to better results than using a simple Eu-
clidean distance based cost function. To consider the change
of movement direction at stroke transitions seems to lead to a
little improvement of the quality of the final reconstructed full
trajectories. Considering the combinatorial problem of finding
an optimal sequence for pen strokes and the simplification
of using a greedy search to circumvent the problem (see
section IV-A5), the little improvement of the quality of the
extracted paths is promising result. If the principle of using
a momentum-based cost function is used as part of a more
sophisticated trajectory extraction system, the quality improve-
ment of extracted pen trajectories could be even higher.

2) Conclusions from sample examinations: Trajectory ex-
traction using the kinetic cost function leads to better pen
trajectories than trajectory extraction using the Euclidean cost
function. However, the sample examinations of section IV-C5
show that using the kinetic cost function is not advantageous
for the extracted trajectories of all signatures. For one of the
examples the kinetic cost function performs much better than
the Euclidean cost function according to the ground truth
distance measure. The other example shows a signature sample
where the Euclidean cost function performs much better than
the kinetic cost function.

The large difference between the two examples comes from
the different choice of trajectory starting points made by the

two different cost functions. The stroke sequencing algorithm
uses as initial costs of a candidate trajectory the transition
cost from the bottom left corner of a signature to the starting
point of a candidate trajectory. This means that the kinetic
cost function, due to its consideration of the pen movement
direction change, favors starting points for pen trajectories that
face the lower left corner of a signature’s bounding box.

The fact that the algorithm selects a wrong starting point
due to stroke-end orientations can be seen in samples of other
signatures as well. Reviewing a few samples of the tested
handwriting samples suggests that the wrong choice of the
starting points of a trajectory has led to many sub-optimal
trajectories. The pure spatial distance from the lower left
corner of a trajectory’s bounding box to the starting point of
a trajectory is large compared to distances between strokes.
This means that the initial cost of a candidate trajectory has
a heavy impact on the over-all cost of a candidate trajectory.
Therefore, it is unlikely for a trajectory to get the lowest over-
all cost during the greedy search, when it starts with a sub
optimal stroke, according to the used cost function. This means
that pen trajectories might have been extracted that have an
unreasonably high sum of transition costs between paths just
because they had a low-cost starting point.

Since I found that the selection of wrong starting points
occurs very often, I assume that it also has caused a large part
of the variations found in the ground truth distances for both
cost functions.

17

3) Testing methods: It is to note that the comparison of the
kinetic cost function to the Euclidean cost function serves as a
baseline test for using a kinetic cost function. There are much
more advanced cost functions that have been tested in the
literature that the kinetic cost function should be tested against.
R. Niels and L. Vuurpijl for example used a curvature measure
that also uses directional information for path extraction [17].

Another point is that only one quantitative measure was
used to assess the quality of the extracted trajectories. This
gives only limited insights in how the kinetic cost function
outperforms the Euclidean cost function. By using differ-
ent quantitative values like, for example, the percentage of
correctly sequenced trajectories it is possible to explore the
strengths and weaknesses of the different cost functions more
precisely.

Therefore, it would be desirable to test the kinetic cost
function again, but not only comparing it to more advanced
cost functions but also using different measures like the
percentage if correctly sequenced trajectories to assess the
qualities of extracted pen trajectories.

4) Testing platform development: Besides the pure cost-
function related results, a further product of this Bachelor
thesis is the testing platform which allows to quickly test
new cost functions for pen trajectory reconstruction. The cost
functions themselves can be easily exchanged as they are
implemented in the scripting language Python. However, there
are three problems with the system that should be fixed in the
future. The problems are:
• The long running time
• The manual setting of the extraction system’s parameters
• The bad choice of trajectory starting points
It took one day and nine hours to process 1823 signature

samples. Distributing the computations of the extraction sys-
tem helps to heavily reduce the computation time. Increasing
the processing speed would be a desirable improvement for
the system since it would allow more test runs in less time.

Furthermore, parameters must be set manually to work with
a given set of signatures (The parameters are listed in section
IV-A6). Those parameters should be set in a data driven way to
make the extraction system more general. For example, the pa-
rameter ink width can be derived as described by K. Franke
[15], assumed only offline images with a homogeneous ink-
width are used (see section IV-A6). I assume that the reference
value for the re-sampling stage n samples could also be set
automatically depending on the parameter ink width. The
correct relation between the two parameters must be found
by further experiments. The extraction system should also be
supplemented by an extra noise filter layer to make it work
with unfiltered images.

A large problem of the extraction system, as already dis-
cussed, is the current way of selecting trajectory starting
points. The wrong selection of trajectory starting points might
have had a major impact on the data variances. A more reliable
way of selecting trajectory starting points needs to be imple-
mented. It could, for example, be tested if the initialization
costs for candidate trajectories during global reconstruction
can be improved by calculating them from the top-left of a
trajectory’s bounding box. This could lead to improvements

because Latin handwriting is usually written from the top-left
to the bottom right [4].

Another way of improving the selection of trajectory starting
points is to use the starting points of the ground truth. If
only cost functions are compared with each other, it does not
matter if the starting point of a trajectory can be determined
automatically. Such a system, however, could not be used for
offline handwriting recognition anymore because it would rely
on online data. Nevertheless, using the ground truth’s starting
point for a trajectory during global reconstruction should be
valid for the purpose of comparing cost functions with each
other.

V. FUTURE OF THE KINETIC COST FUNCTION

The low-level kinetic simulation showed major problems
during the implementation phase. To make it work, a solution
has to be found to deal with the irregularities in the used
handwriting-landscape. Since there are so many open question
about how to implement this algorithm to make it work
reliably, I do not think that it will be of help for online data
recovery in the near future.

The high-level kinetic reconstruction system is built on the
basis of a standard design for online data recovery systems.
The proposed kinetic cost function leads to better pen trajecto-
ries than the very simple Euclidean cost function that is used as
a baseline test. This is a very promising result due to the simple
construction system that has been used for testing. However,
in future research the kinetic cost function should be compared
to the performance of more advanced cost functions. It should
also be embedded in more advanced trajectory systems to test
the quality of its sequenced paths more thoroughly.

To conclude, the kinetic cost function worked better than the
Euclidean cost function. Future studies need to show to which
extent the proposed method can be used to improve existing
trajectory extraction systems. This Bachelor thesis showed that
using the physical principle of the momentum to describe
pen movements might help to improve offline handwriting
recognition systems.

REFERENCES

[1] R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers.
Brooks Cole, 2010, ch. 5.

[2] R. Plamondon and S. N. Srihari, “On-line and off-line handwriting
recognition: A comprehensive survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, no. 1, pp. 63–84, 2000.

[3] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet,
“Unipen project of on-line data exchange and recognizer benchmarks,”
in In Proceedings of International Conference on Pattern Recognition,
1994, pp. 29–33.

[4] V. Nguyen and M. Blumenstein, “Techniques for static handwriting
trajectory recovery: a survey,” in DAS ’10: Proceedings of the 9th IAPR
International Workshop on Document Analysis Systems. New York,
NY, USA: ACM, 2010, pp. 463–470.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education Inc., 2003, ch. 2.

[6] Y. Kato and M. Yasuhara, “Recovery of drawing order from single-stroke
handwriting images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 9, pp. 938–949, 2000.

[7] D. S. Doermann and A. Rosenfeld, “Recovery of temporal information
from static images of handwriting,” International Journal of Computer-
Vision, vol. 15, pp. 143–164, 1995.

18

[8] P. Viviani and T. Flash, “Minimum-jerk, two-thirds power law, and
isochrony: converging approaches to movement planning,” J Exp Psy-
chol Hum Percept Perform, vol. 21, no. 1, pp. 32–53, 1995.

[9] S. Jaeger, “Recovering dynamic information from static, handwritten
word images,” Ph.D. dissertation, Albert-Ludwigs University Freiburg -
Faculty of Applied Sciences, 1998.

[10] V. Govindaraju and R. K. Krishnamurthy, “Holistic handwritten word
recognition using temporal features derived from off-line images,”
Pattern Recogn. Lett., vol. 17, no. 5, pp. 537–540, 1996.

[11] H. Bunke, R. Ammann, G. Kaufmann, T. M. Ha, M. Schenkel, R. Seiler,
and F. Eggimann, “Recovery of temporal information of cursively hand-
written words for on-line recognition,” in ICDAR ’97: Proceedings of the
4th International Conference on Document Analysis and Recognition.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 931–935.

[12] Y. Qiao and M. Yasuhara, “Recovering dynamic information from static
handwritten images,” in Frontiers in Handwriting Recognition, 2004.
IWFHR-9 2004. Ninth International Workshop. Graduate School of
Information Systems, University of Electro-Communications, Tokyo,
Japan, 12 2004, pp. 118–123.

[13] M. Y. Chen, A. Kundu, and J. Zhou, “Off-line handwritten word
recognition using a hidden markov model type stochastic network,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 481–496,
1994.

[14] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper
Saddle River, New Jersey 07458: Pearson Prentice Hall, 2008, ch. 9.

[15] K. Franke, “The influence of physical and biomechanical processes on
the ink trace,” Ph.D. dissertation, Rijksuniversiteit Groningen, 11 2005.

[16] V. L. Blankers, C. E. van den Heuvel, K. Y. Franke, and L. G. Vuurpijl,
“Icdar 2009 signature verification competition,” Document Analysis and
Recognition, International Conference on, vol. 0, pp. 1403–1407, 2009.

[17] R. Niels and L. Vuurpijl, “Automatic trajectory extraction and validation
of scanned handwritten characters,” in 10th International Workshop on
Frontiers In Handwriting Recognition, 10 2006, pp. 343–348.

	Introduction
	Standard online data recovery systems
	Mechanical concepts
	Application of mechanics to trajectory recovery

	Kinetic path extraction
	Low-level kinetic simulation
	High-level kinetic reconstruction
	Deriving the stroke transition energy

	Experiment 1: Low-level kinetic simulation
	The testing platform
	Problems with the low-level approach
	Oscillation
	Chaotic deflections at crossings

	Conclusion

	Experiment 2: High-level kinetic reconstruction
	Extraction system
	Thinning
	Graph building
	Graph slicing
	Stroke joining
	Stroke sequencing
	Extraction system parameters

	Method for testing the kinetic cost function
	Testing samples
	Ground truth distance measure
	Reference cost function
	Hypotheses and testing

	Results
	Parameter settings
	Running time
	Dataset analysis
	Hypothesis testing
	Sample examinations

	Conclusion
	General cost function performances
	Conclusions from sample examinations
	Testing methods
	Testing platform development

	Future of the kinetic cost function
	References

