BACHELOR THESIS

Depth perception for augmented
reality using parallel Mean Shift
segmentation

Author: Supervisor:
Remi ALKEMADE Franc GROOTJEN

RADBOUD UNIVERSITY NIJMEGEN

April 27,2011

Contents

(I__Introduction| 3
1.1 Augmented realityanddepth| 3
|-1.2 Applications| oL o 3

[21 Games 4
[1.2.2 Drverassistl 4
1.2.3 Practical assistancel 5
124 Information| 5
11.2.5 Telecommunicationl.« v v v v v v e 5
[L.3 Methods for depth perception| 5
[[3.1 Stereoscopy| 6
[[.32 Focusl 6
6

7

7

8

[Stereoscopic matching 9
R1 Principlel 9
2.2 Constraints on stereoscopic matching for augmented reality| . . 9
2.3 Advantages| L oL o 11
2.4 Computational difficulties| 12
2.5 Basic Techniques| 12

2.5.1 Local Matching| 12
2.5.2 Segmentation| L 0L 13
253 Refinementl 13
[2.6 Cooperative algorithm by Zitnick and Kanade| 14
2.6.1 Thealgorithmexplained|. 14
2.62 Speed|. o oo 15
2.6.3 Reproducibility| 16
2.7 ang and Zheng’s algorithm| 17
2.7.1 Thealgorithm|. 17
2.7.2 Comparison to Zitnick and Kanade| 18
2.73 Speed|. oo 18
2.74 Reproducibility| 19
2.8 Reproducibilityingeneral 19

CONTENTS

[3 Mean Shift segmentation algorithm|

3.1 Mean Shift segmentation principles|.

3.2 Parallelcomputingf

3.3 Parallel Mean Shift segmentation|

3.1 Basic sof

S

[3.3.2 Adaptations for parallel implementation|

3.4 Experimentalresults|,

3.4.1 Implementation: processing time consistency|.

3.4.2 Implementation: quality consistency|.

3.4.3 Multithreading: speedup|

3.44 Multithreading: quality consistency|

4__Conclusions|

1 Parallel n Shif
4.1.1 Speedup| .

4.1.2 Outputquality]

4.2 Reproducibility| .

4.3 Stereoscopic depth perception for augmented reality|.

4.4 Future r I .

4.4.1 GPU implementation|.

442 Pixelevaluationorderl

443 Full optimization|

4.4.4 Alternative segmentation algorithms|

4.4.5 Alternative depth perception|

Bibliographyi

AS i bufions

|A.3 MultiThreadLoop|

A.1 MSImageProcessor|

21
21
23
24
25
26
26
26
27
30
32

34
34
34
35
35
36
36
36
36
37
37
37

38

Chapter 1

Introduction

1.1 Augmented reality and depth

Augmented reality (AR) is the augmented (modified) perception of a real-
world environment. This modification is usually realized by adding digital
information (e.g., sound, graphics) to the perceptive window (e.g., a screen,
glasses, earphones) through which the environment is perceived. For example,
in sports broadcasts on television, lines can be added to the field to indicate dis-
tances or alignments of players. For fighter pilots an overlay can be displayed
to indicate enemy planes and targets.

Especially visual augmented reality is widely researched these days. Typ-
ically, visual AR applications consist of three stages: 1) capturing real world
images, 2) editing the images, often overlaying parts of the images by virtual
objects and 3) displaying the altered images to the user. A difficult step in this
process is the second, where a virtual object is rendered into the input image.
In order to create a realistic augmented scene, information about the physical
world is needed: while lighting, shadows and positions are part of this prob-
lem, maybe the most important aspect for the program to know is the depth
information of the image. What size should the virtual object have in the im-
age? Which parts should and which parts should not be displayed in the im-
age, considering possible occlusions by physical objects? Depth information
can also be used to let the virtual object respond to real world objects (e.g.,
obstacle avoidance or human-computer interaction). Because of the real-time
nature of AR, any program obtaining depth information for an AR application
should be light-weight and able to produce depth maps at least 10 to 50 times
per second, depending on the application (for applications working with fast-
moving objects, the depth map should be updated more frequently than with
slow-moving objects).

1.2 Applications
The field in which augmented reality can be applied is diverse and with the im-

provement and development of new techniques that can be used in augmented
reality, these possibilities grow further. In this paragraph, some examples of

CHAPTER 1. INTRODUCTION 4

applications are illustrated, of which some already exist and others are still in
development.

1.2.1 Games

One of the types of applications for which AR brings new possibilities is games.
Up until now the most (popular) games have been developed for personal
computers or gaming consoles, which all have an input device (e.g., a key-
board, or a controller) and a display monitor. The actions the virtual character
in the game can perform are not realized by the player performing them, but
by a simplified action (e.g., pressing a button) corresponding to the desired
action. This limits the player’s freedom of movement to a predefined set of
motions. The development of AR renders the virtual character unnecessary
and the player can perform the same motions as in the physical world.

ARQuake [15] is a an AR derivative of the original first-person shooter
game Quake, that was developed in 1996 for the personal computer. ARQuake
features the same interface and virtual monsters as the original game, but it is
controlled by a wearable computer and a head-mounted display (HMD) and
can be played both indoors and outdoors. Instead of using the arrow keys
to walk, climb or jump, the player can perform any movement constrained by
physical limitations. For actions such as shooting, the game still needs an input
device connected to the computer.

Another AR game is ARhrrrr! [6], which is played on a special game map,
which displays a top-down image of a town, and a mobile camera phone with
the ARhrrrr software running. When pointing the phone camera towards the
game map, a 3D town is rendered on top of the game map. When the game
starts, zombies and civilians start walking through the town and the goal is to
save the civilians by shooting the zombies with the crosshair in the middle of
the screen.

Most games (including the above) are in experimental stages and not ready
for commercial purposes.

1.2.2 Driver assist

Another, more practical application of augmented reality can be found in vehi-
cles. For example, the increasingly popular GPS system for vehicles is typically
implemented with a touch screen for display and interaction, and is mounted
on on the wind shield or built into the dashboard. This requires the driver
to watch a screen to obtain information about the road that is not spoken out
loud, instead of watching the road. Using augmented reality, this kind of in-
formation can be displayed where it is applicable, i.e. the road. For example, a
translucent line can mark the roads that are on the shortest route to a defined
destination in the driver’s head-up display (HUD) [22].

Apart from GPS, there are several other driver assisting systems that can
improve safety, and can be enforced using augmented reality[13]. Pedestrians
can be identified by cameras in bad lighting or weather conditions and marked
in the HUD, as well as highlight the road’s boundaries in the dark.

CHAPTER 1. INTRODUCTION 5

1.2.3 Practical assistance

Augmented reality can be excellent for pointing out or visualizing informa-
tion, which makes it ideal for human tasks or jobs that require large amounts
of knowledge about the subject. AR can relieve the executor of a task from
memorizing all required knowledge, or support the memory and thereby re-
ducing the probability of errors.

An example of this kind of tasks is repairing a car’s engine. Knowledge
about the engine’s parts, how they work and how they can be replaced, is
needed to complete this task. BMW [1]] is researching the use of AR to assist
a mechanic in whatever maintenance or repair task is needed, by displaying
a virtual highlight of important engine components and animations of actions
that should be taken at the corresponding location.

Not very different from this principle is the use of AR in surgery [33]. In-
stead of engine components, important organs of the patient can be displayed.
This can help the surgeon locating the organs without cutting open the patient,
which may especially be useful for training purposes.

1.2.4 Information

Apart from highlighting specific objects as part of an instruction, as explained
in the previous paragraph, AR can also be effective in connecting information
from data banks to the physical world.

This has already been proven by the mobile phone application Layar [7],
which uses the cell phone’s location (obtained by GPS) and the phone’s cam-
era to label locations around the user with information from a wide variety of
data banks (so-called ‘layers’). Examples include several real estate layers that
display information about houses for sale on the screen, when the phone is
pointed in the direction where the house can be found.

Unlike the applications above, Layar has already been commercialized.

1.2.5 Telecommunication

For telecommunication, augmented reality can provide a new form of image
transmission. Using a green room with multiple cameras, anyone or anything
inside the room can be reconstructed into a 3D model [30]. The model can be
transmitted to the receiving end(s), which use an AR application to render the
model live in front of a person wearing AR glasses.

1.3 Methods for depth perception

Most AR applications today can render graphics on top of images of the phys-
ical world, but cannot let the virtual objects be occluded by physical objects.
A depth map of the camera image can provide the necessary information to
select which pixels should be visible in the image and which should not. There
are several depth finding methods, some of which are stereoscopy, focus, per-
spective, knowledge about the world and active illumination. These will be
discussed in this section.

CHAPTER 1. INTRODUCTION 6

1.3.1 Stereoscopy

Humans have two eyes that, at each moment, have an overlapping view of the
same scene. Seeing the world from two viewpoints simultaneously helps these
animals determine the distance to objects in their sight. Objects far away are
perceived at approximately the same coordinates in both views, while objects
nearby can be found on different horizontal locations. The distance between
the location of an object in two views of the same scene is called (stereoscopic)
disparity.

Using two cameras, a dense depth map can be constructed by relating each
pixel in one image to a pixel in the other image and computing its depth ac-
cording to its disparity and the distance between the cameras. This method of
depth perception will be discussed in more detail in chapter

1.3.2 Focus

Every lens has a certain focus, which is the distance from the camera at which
objects can be captured completely sharp. Any deviation from that distance
results in blurring of the object in the image, greater deviation effecting in more
defocus.

Knowing the focal distance of a camera, a depth map of an image can be
constructed by measuring the amount of blur of features in the image [21].
This process requires a blur measure (e.g., based on the second derivative of
the image [14]) and a set of primitives of the image (e.g., edges). With the blur
measure obtained for a primitive, the distance of the primitive to the focused
plane can be computed.

To find the distance of the primitive from the camera, one first needs to
know the direction in which the primitive deviates from the focused plane.
With the information of other images, captured with different focal distances
or different camera distances from the object (as described by A. Berres et al.
[14]), this direction can be determined.

This method requires at least two images differing only in focal distance.
One option is to capture these images using one camera with a variable lens
focus at two moments in time, but this is very sensitive to movement in the
scene. The other option is to have two cameras with different focal distances
capture the same scene, though this may be very difficult to accomplish.

Among the main difficulties for this method of depth perception are tex-
tureless areas, since different amounts of focus cannot be distinguished in these
areas. The distances to sharp edges are easiest to estimate and this information
could be used to fill in the distance labels for less certain points.

1.3.3 Perspective

A less concrete depth cue but nevertheless available is perspective. In [18] two
types of perspectives are named: aerial perspective and motion perspective.
Aerial perspective refers to the phenomenon of objects being perceived in
decreased contrast with respect to objects in the foreground, often showing
more color of the atmosphere. The effect is caused by and proportional to the
amount of particles in the atmosphere of the scene (e.g., fog, water or smoke).

CHAPTER 1. INTRODUCTION 7

Unfortunately this is a weak depth cue only visible at great distances or great
densities of particles in the atmosphere.

Motion perspective consists of the motions of stationary objects relative to
the observer during observer movement to estimate their distance. The rela-
tive displacement of objects during observer movement is referred to as motion
parallax. Objects at closer distances have greater motion parallax than objects
at greater distances. This is why motion perspective, in contrast to aerial per-
spective, is more accurate at close distances than at great distances.

The motion perspective depth cue is actually quite similar to stereoscopy,
the greatest difference being that only one view point at a point in time is
needed for motion perspective, but requires multiple images to be captured
in different points in time. Because of this, the method suffers from the addi-
tional assumption that all objects in the scene are stationary.

Of the perspective depth cues, motion perspective is the more suitable cue
for use in computer vision, as it is more accurate and measurable. However,
since it is based roughly on the same principle as stereoscopy but requires an
additional assumption, stereoscopy seems more suitable.

1.3.4 Familiarity and prior knowledge

Humans can obtain a lot of depth information using knowledge about the
world. They know the ‘normal’ size of a objects (e.g., a person, tree, or house)
and can estimate their distance by the size in the image. They also know the
usual shape of objects and so they can determine the ordinal distances if one
object occludes a part of the other.

Like humans, computers could use knowledge about the objects in the
scene to estimate depth. If the size of an object is known by the computer,
its distance can be computed and if the shape of an object is known, occluding
objects can be found. For the Nintendo 3DS [10], a known-size, recognizable
print helps determine the size and position virtual objects should have.

Depth perception based on knowledge about objects does not produce dense
depth maps, but can be very useful for locating specific objects or the camera
itself in 3D space. For example, MonoSLAM [19] is an algorithm that tracks the
camera’s position relative to a so-called initialization target, which is an object
of known size to be recognized by the system before tracking begins. While
the camera moves, landmarks are chosen, their depth is estimated by camera
movement and they are inserted into a 3D map with their location relative to
the initialization target. This is especially useful for placement of virtual ob-
jects, but less suitable for occlusion of virtual renderings.

1.3.5 Active illumination

Boats can perceive distances using radar, bats can perceive distances using
sonar, which are both based on the same principle: transmission and recep-
tion. A signal is transmitted and depth information can be gained from the
reception of the same signal bouncing back against objects. In the cases of
radar and sonar, the traveling time of respectively radio waves and sound is
used to compute the distance towards the objects it reflected against. Using
this principle, some high accuracy depth scanners have been developed using
active illumination.

CHAPTER 1. INTRODUCTION 8

In the HDTV Axi-Vision camera [24], near-IR light is emitted in increasing
and decreasing intensities, so at any point in time distances of objects can be
determined by the intensity of the reflected light. This system can produce
accurate depth maps of 920,000 pixels at 30 frames per second and is therefore
very suitable for rendering occlusions in augmented reality. However, the cam-
era needed for this is too large and expensive for use in consumer augmented
reality products.

Another depth perception method using the transmission and reception
principle was found by Scharstein and Szeliski [31]. Their system emits struc-
tured light to label each pixel with a unique color code. A stereo matching
algorithm can then find pixel correspondences between images by finding the
same color code. Like the HDTV Axi-Vision camera, this is a large setup and
even emits visible light. It can therefore not easily be used for any light-weight
AR system. However, this system provides very accurate depth maps of any
scene presented (up to a limited distance) and is used to provide ground-truth
depth maps for rating the performance of stereo correspondence algorithms
[32].

Recently, a new consumer product for computer depth perception has en-
tered the market. Microsoft’s Kinect [9] is capable of producing depth maps of
640480 pixels at 30 frames per second [2]. This device uses a infrared laser
projector combined with a monochrome CMOS sensor to find distances. Due
to its relatively small size and inexpensive technology, the Kinect could be a
useful device for integration of occlusions in augmented reality scenes.

1.4 Research question

In this paper, the focus will be on the use of stereoscopic disparity for depth
perception with regard to Augmented Reality. The computation of disparity
values for all pixels inside a stereo image is a complex problem, for which
many algorithms have been designed [32]. Some of these algorithms focus on
computation speed, others on the quality of the produced disparity map.

The aim of this research is to investigate whether it is possible to produce
real-time, high quality depth maps suitable for augmented reality, using a a
stereoscopic matching algorithm.

I will analyze some high quality stereo disparity algorithms and their po-
tential for application in AR, evaluating their quality and speed as well as their
reproducibility and suitability for parallelization. Part of this analysis will in-
clude a description of some frequently used techniques in stereo disparity al-
gorithms.

Finally, I will present an accelerated, parallel implementation of one of these
techniques: the Mean Shift color segmentation algorithm [16]. Experimental re-
sults will demonstrate whether this algorithm can be properly parallelized, i.e.
parallelization will not affect the quality of the output (the segmented image),
and how much speed can be gained by running the algorithm in parallel.

Chapter 2

Stereoscopic matching

2.1 Principle

The basic principle in stereoscopic matching is to find for each pixel in one im-
age, the pixel in the other image that represents the same point in the physical
world. This is called the stereo correspondence problem. The distance between
the coordinates of these pixels (or disparity) and is inversely proportional to
the distance to the point they represent (see Figure[2.T). The basic operation to
find corresponding pixels is to compare each pixel in one image to each possi-
ble pixel in the other image. When stereoscopic cameras are aligned vertically
(and most are), only pixels lying on the same horizontal line are evaluated. Ide-
ally, the physical world point is represented by the same color in both images,
so the goal is to find for each pixel a pixel in the other image with the same
color.

Later in this chapter, I will evaluate two algorithms that try to solve the
stereo correspondence problem. As selection criteria for these algorithms I
used the quality of their output, measured by the Middlebury Stereo Vision
test bed [32], together with the likeliness of it executing in real-time. For the
latter, not only the initial execution time of the algorithm was an important
factor, but also the possibilities for speedup, like parallel implementation.

2.2 Constraints on stereoscopic matching for aug-
mented reality

The suitability of a stereoscopic algorithm for augmented reality depends on a
few criteria, including processing speed, accuracy and resolution of the output
and the depth range that can be computed.

Because of the high desired frame rate, any stereoscopic depth finding al-
gorithm used in augmented reality should be able to produce about 10 to 50
depth maps per second, depending on the application. Since this is not the
only step in the augmentation process, it should be faster to allow other pro-
cesses like graphical rendering to take place within the time frame. A separate,
hardware-based implementation may be desirable to preserve computational
power and enable execution of the algorithm parallel to the other processes.

CHAPTER 2. STEREOSCOPIC MATCHING 10

Carnera 1

Carnera 2

Camera 1 Carmnera 2

Dizparities

Figure 2.1: Illustration of stereoscopic depth perception and disparity. The
distance between the cameras and the blue square is greater than the distance
between the red circle and the cameras. Therefore the stereoscopic disparity
of the circle is greater than that of the square. The striped black area is the
occlusion of the circle over the square.

Figure 2.2: Tsukuba stereo image, used as a benchmark on the Middlebury
Stereo Vision website [32] and throughout this research for stereo matching.

CHAPTER 2. STEREOSCOPIC MATCHING 11

The output of the algorithm (the depth map) has a certain accuracy. Ac-
curacy refers to the percentage of pixels labeled with the correct depth. The
importance of the accuracy increases with the portion of the augmented real-
ity that is virtual. Incorrect labeling may lead to incorrect visibility of physical
objects, which may cause unwanted or dangerous situations due to loss of in-
formation about the physical world. If a virtual background is rendered behind
a table, but, due to an error, the background also overlaps the table, the AR user
may not see the table and bump into it. Similar situations in traffic could even
be more dangerous.

Resolution is important for correct display of edges and small objects in the
physical world. A depth map that is too coarse will cause edges to be perceived
inaccurately and small objects not to be seen at all, when virtual objects are
rendered at the same position. Even though the objects in question are small,
this kind of errors may cause severe information loss, for example when in
surgery the surgeon cannot see the needle or scalpel due to a graphical overlay
[33].

Finally, range is a criterion for evaluation of suitability for augmented re-
ality applications, but the requirement may vary. While some applications fo-
cus on AR on a card or tabletop (1 to 2 meters) (e.g., [6], [33]), others focus
on medium distance (2 to 10 meters) (e.g., [15]), some integrate virtual objects
at distances up to 200 meters (e.g., [13]) and in military applications such as
fighter pilot assistance, distances may have to be computed at a thousand me-
ters or more. Although it may be desirable to have an AR system working for
all distances, computational power and the distance between the cameras in-
fluence the range limits (lower limit as well as upper limit) in which depth per-
ception is accurate. The more possible ranges for objects have to be evaluated,
the longer the computation times. Moreover, increasing the distance between
the two cameras will increase the disparities of perceived objects and increase
the maximum distance (where disparity is zero). However, this will also in-
crease occluded areas for nearby objects due to large positional displacement
between the two views. Therefore, the desired distance range for an applica-
tion depends on the expected distances of physical objects while running the
application.

2.3 Advantages

Stereoscopic matching has some advantages over other depth perception meth-
ods with regard to augmented reality.

As mentioned before, some highly accurate depth perception systems use
active illumination to enhance the perceived image, from which depth infor-
mation can be extracted (sometimes even with a stereoscopic algorithm [31]).
However, stereoscopic algorithms do not require active illumination to pro-
duce reasonably accurate depth maps, which makes the principle suitable for
long range, where illumination fades. It is also less expensive and does not
require an extra device to be mounted on AR glasses.

Since two cameras are already required for a 3D view inside the AR glasses,
these two cameras can additionally be used for depth estimation, which means
that the only addition to a system without occluded virtual objects is software.

Finally, in contrast to various other range finding techniques, stereoscopic

CHAPTER 2. STEREOSCOPIC MATCHING 12

matching can produce a dense depth map, which is required for virtual occlu-
sion.

2.4 Computational difficulties

Although stereoscopic matching has its advantages, it is not an easy process.
Some major difficulties arise when finding stereo correspondence.

The first is ambiguity. This refers to the fact that, among all possible matches
for a pixel, there are often many pixels of nearly the same color. Due to camera
noise and positional lighting differences between the two cameras, the correct
match is not always the match with the least difference to the target pixel, es-
pecially when there are multiple areas with approximately the same color.

Ambiguity can often be solved partly by increasing the number of features
used for matching, for example by including a window around the pixels in the
similarity calculation. However, large textureless areas still remain a problem,
even with this approach. These are areas of many pixels of approximately the
same color, where the algorithm matches all pixels of the same area in the other
image to be very similar. Errors often occur, usually resulting in the entire area
being matched in the infinite distance (disparity zero). Also repeating patterns
are problematic ambiguous areas, which can be matched at several locations.

Another difficulty is caused by occlusion. Occlusion occurs when a point
in the world is visible in first image, but not in the second. This is due to
changes in perspective between the two camera positions. In stereoscopy, no
correct match is then possible. However, pixels can still be found resembling
the representation of this point, and therefore incorrectly be labeled as a match.

If an AR application requires to work with objects at a large range of dis-
tances, this can be computationally cumbersome. It means that each possible
distance has to be evaluated while matching. For images of Hx W pixels, where
H is height and W is width, the complexity of matching is O(Hx W x D), where
D is the number of disparities to be checked. If the disparity range consists of
all possible disparities, D equals W.

2.5 Basic Techniques

Various techniques are used in different algorithms for stereoscopic matching.
Three of the most important techniques, which were also used in the studied
algorithms of sections[2.6/and 2.7} are described in this section.

2.5.1 Local Matching

Local matching is the basic form of finding pixel correspondences. It is often
used as the first step in an algorithm, to find initial disparity estimates for all
pixels. These can be used for further disparity optimization. The procedure

is basically as follows: for each pixel Igo,y , find x7 for which sim([ﬂo,y, I;ly)

is maximal, where " is the first image, I' the second image and sim(p,q) a
similarity measure of pixels p and g (e.g., based on Euclidean distance). Note
that only horizontal disparities are checked, assuming the used cameras are
aligned vertically.

CHAPTER 2. STEREOSCOPIC MATCHING 13

To increase the dimensionality of each pixel to decrease ambiguous match-
ing, a window can be included around the pixels, incorporating contextual
information from each pixel’s neighbors. This is called aggregated matching.

2.5.2 Segmentation

Since different objects can very often be distinguished by color, color segmen-
tation can provide information which is very helpful in stereo matching. If the
image is segmented properly, pixels within a segment will generally not be-
long to very different disparity levels. Therefore segments can be matched as a
whole, which reduces ambiguity.

Segmentation is actually a preprocessing technique that can be used to im-
prove the results of subsequent processing stages. In local matching, for ex-
ample, the window size and shape can be adapted based on image segmen-
tation [20]. This decreases the influence of pixels inside the window that do
not belong to the same segment and increases the influence of pixels inside the
segment.

Using segmentation in matching techniques can, however, cause problems
when surfaces are slanted. Although in both images the entire object may be
visible, the size of the segments representing the object differs in the horizontal
direction. Because of this distortion, correct matching can be difficult.

2.5.3 Refinement

When an initial match has been produced, the disparity values can be further
refined. Two widely used assumptions of stereo matching can form constraints
to which the problem can be optimized. These assumptions, formulated by
Marr and Poggio in 1979 [25] are the uniqueness assumption and the continuity
assumption.

The uniqueness assumption states that each pixel in any image can be as-
signed to only one pixel in the other. In some cases, two pixels in the first
image are matched to the same pixel in the second image, because they are
both more similar to that pixel than to any other. According to the uniqueness
assumption, this must be corrected.

The continuity assumption states that disparity values vary little between
almost all neighboring pixels. Only at borders of objects, disparity may be
discontinuous, however borders normally comprise little of the surface of an
image. According to this assumption, most algorithms pull dispersed single
pixels at different disparities towards each other, forming larger groups of solid
objects and removing noise.

An example of disparity refinement based on the continuity assumption
is plane fitting [37], which is executed after image segmentation and initial
matching. A disparity plane is described by the formula d = ax + by + ¢,
where d is the disparity of a pixel located at (x,y). 4, b and c can be estimated
by a voting system. For each pixel, a can be computed as 6d/6x (the difference
between disparity value of the pixel with the next). All pixel’s a-values are
inserted into a histogram and, after Gaussian convolution, the value with the
greatest number of votes is elected as the a-value of the entire segment. Next,
b can be computed for each pixel as 8d/8y and, again by voting, the b-value for

CHAPTER 2. STEREOSCOPIC MATCHING 14

25 %

Figure 2.3: Disparity map of the Tsukuba stereo image reported by Zitnick and
Kanade as the product of their stereo matching algorithm.

the entire segment. Finally, ¢ can be computed for each pixel by filling in 4 and
b into the plane formula and the segment’s c-value once again by voting.

More complex optimization algorithms incorporating more of these assump-
tions include those by Zitnick and Kanade [39] (Section and Wang and
Zheng [37] (Section[2.7), which will be explained later this chapter.

2.6 Cooperative algorithm by Zitnick and Kanade

The first algorithm I selected for evaluation with regard to application in aug-
mented reality is one developed by C. Lawrence Zitnick and Takeo Kanade
[39]. It is derived from the computational theory of human stereo vision by D.
Marr and T. Poggio and consists of two steps, initial matching and optimiza-
tion; no segmentation is used. Since segmentation is a costly process, quite
some time can be saved by not depending on it. In their paper, they reported
their results: 1.44% disparity error (meaning 98.56% of the non-occluded and
non-border pixels were labeled within an error margin of 1 pixel), which would
currently put them at the 32" rank (out of 100) at the Middlebury Stereo Vision
ranking list. This was the best result they had obtained (after 80 iterations of
optimization); after 15 iterations, they found an error of 1.98% (48Mrank).

Since quality-speed trade-offs are inevitable and the top ranking algorithms
take a lot of time, this algorithm seemed like a good trade-off and a good choice
for evaluation, especially because of the source code the authors made avail-
able [38] and the algorithm’s excellent parallelization potential.

2.6.1 The algorithm explained

The algorithm by Zitnick and Kanade can be summarized as follows:

1. Store matching scores between pixels (x,y) and (x,y +d) in a 3-
dimensional (x,y,d) array.

2. Iteratively update the matching scores in the array, using inhibition from
conflicting matches and excitation from neighboring matches.

CHAPTER 2. STEREOSCOPIC MATCHING 15
These steps will be further explained in the next two paragraphs.

Local matching

The first step of Zitnick and Kanade’s algorithm does not differ much from
most other algorithms and consists of local matching. However, instead of
finding the best match and discarding the rest of the data, all similarities are
stored in a three-dimensional array with x-coordinate, y-coordinate and dis-
parity as its dimensions. For computational purposes, similarities are first
computed using single pixels, without neighboring pixels. Subsequently, ag-
gregation is performed: for each disparity, all pixels are averaged with a two-
dimensional window (x and y), meaning their similarity score is replaced by
the average similarity score of the window.

Zitnick and Kanade use an efficient method for the aggregation of scores,
with a time complexity of just O(H x W), H being the height of the image and
W being the width. Aggregation is split up into two steps: 1) using a horizontal
window to average over rows and 2) using a vertical window to average over
columns. A window average is maintained and updated as the window slides
along its line, so no pixel is evaluated twice for neighboring windows.

Cooperative optimization

The algorithm by Zitnick and Kanade is called a cooperative algorithm, which
refers to the second part of the algorithm. In this part the initial disparities are
optimized iteratively until convergence, using the three-dimensional array, de-
scribed in the previous paragraph, as a network with excitatory and inhibitory
connections. These connections are derived from Marr and Poggio’s assump-
tions of uniqueness and continuity: all neighboring nodes at the same disparity
level excite each other (continuity), called local support, while the uniqueness
assumption is enforced through inhibition between all nodes at the same x,y-
coordinates (nodes in one line of sight from the left camera) and coordinates
(x —d,y), where d is the difference in disparity between the nodes (nodes in
one line of sight from the right camera). At each iteration, the activations of the
nodes are updated through local support and inhibition. This can be repeated
until convergence or a set limit. A disparity map can then be extracted by find-
ing, for each pixel and corresponding x,y-coordinate, the maximum activation
value. The disparity value belonging to the most active node is then assigned
as final disparity of the pixel.

2.6.2 Speed

Both time and space complexity of this algorithm are O(H x W x D), where H
is the height of the image, W is the width of the image and D is the number of
disparities to be evaluated. For speedup, it would therefore be very desirable
to know the range of disparities beforehand. For example, in the 384 pixel-
wide Tsukuba stereo image [32], disparity values range from 1 to 16 pixels. If
this range is known, a maximum of 16 disparity values needs to be evaluated
per pixel. Otherwise, evaluation will have to run up to 383 disparity values per
pixel.

CHAPTER 2. STEREOSCOPIC MATCHING 16

Both steps are well suited for parallel implementation. In the first step, ini-
tial disparity estimates for all pixels are computed independently from each
other, so they can all be computed in parallel. Then, in the aggregation part,
the easiest parallelization dimension is the disparity level. This is the outer-
most loop in the program and for each level the corresponding x,y-plane of
values must be averaged. Since each plane is averaged first over rows and
then over columns (order not important), another choice as parallelization di-
mension may be the rows, and later the columns. This means that for each
disparity level, a number of threads are started in parallel, each moving an
averaging window over one column and, when all threads are finished, over
rows.

The only actual computing time reported by Zitnick and Kanade was 8 sec-
onds per iteration with 256x256 images. Since this was about 10 years ago,
computation should now be much faster (looking at the increase in FLOPS of
processors [11} 5] possibly about 130 times), even without adaptations to the
software.

2.6.3 Reproducibility

One advantage of this algorithm over others seemed that the authors provided
the source code of their program, as well as an executable that could find a
disparity map for any stereo image provided [38]. Unfortunately, there are
some difficulties getting the same result as reported in the article.

First of all, the executable program did not produce the desired results.
Some required parameters for the executable were unreported in the article,
so I used either default values or common sense to set them. I tested with
MinDisparity set to 0 and MaxDisparity to 16 (disparity range). The window
dimensions were specified in the article as 5x5x3, so I set WinRadL0, WinRadRC
and WinRadD (window radiuses) to 2, 2 and 1 respectively. The paper states the
disparity values were allowed to completely converge, using 80 iterations. I
therefore set NumIterations to 80. The parameter MaxScaler was not specified
in the article, so I left it unchanged at 0.96. USE_SAD refers to the similarity
score, either being squared absolute differences (1), or normalized correlation
(0). I tried both values.

The Middlebury Stereo Vision (MSV) website provides an online evaluation
tool for disparity maps of, among others, the Tsukuba stereo image. However,
the Tsukuba dataset contains 5 images of the same scene from different angles,
and Zitnick and Kanade have apparently used two different input images than
the MSV test bed. Since no ground truth is provided of the input images used
by Zitnick and Kanade, I used the input images from MSV. The MSV evaluation
tool reports an error of 17.2% with USE_SAD set to 0 and 15.7% with USE_SAD set
to 1, which is far from near the reported results. Although we cannot know
which evaluation tool was used by Zitnick and Kanade and evaluate it in the
same manner, but we can see from the disparity map, even with the eye, that
this is not the (complete) program described in their paper.

Besides the executable, Zitnick and Kanade provide the source code imple-
menting their algorithm. Unfortunately, after testing, my conclusion is that
this source code is neither the complete implementation of the algorithm as
described in the paper, nor the source code used to make the executable. Us-
ing the same parameters as with the executable, the output image contains an

CHAPTER 2. STEREOSCOPIC MATCHING 17

Figure 2.4: Disparity map from the report of Wang and Zheng’s stereo match-
ing algorithm.

error of 16.9% with USE_SAD set to 1, and a completely black disparity map is
produced with USE_SAD set to 0, evaluated by the MSV test bed.

Due to the incompleteness of the description of the algorithm, unspecified
parameters and malfunctioning source code, the conclusion is that I could not
reproduce the results of Zitnick and Kanade’s paper. Together with the fact that
one disparity map took about 39 seconds and 80 iterations to be computed, this
makes the cooperative algorithm unsuitable for real-time augmented reality.

2.7 Wang and Zheng’s algorithm

A conceptually more complicated algorithm, but also third (until very recently,
second) on the list of the Middlebury Stereo Vision ranking list, is the region
based stereo matching algorithm by Zheng-Fu Wang and Zhi-Gang Zheng [37].
They report experimental results taking about 20 seconds and producing a dis-
parity map of the Tsukuba data set containing a 0.89% disparity error. Al-
though, in contrast to Zitnick and Kanade’s algorithm, no source code or ex-
ecutable program was provided by the authors, this seemed like a promising
algorithm for a high quality-speed ratio.

2.7.1 The algorithm
Wang and Zheng's algorithm consists of four stages:
1. The Mean Shift algorithm [16] is employed to segment the image.

2. An initial disparity map is computed by a local matching variant that
incorporates segmentation [20]. It is based on the same principle as other
local matching algorithms: similarities are computed and these values
are aggregated using a window. This algorithm adapts its window to the
image’s segmentation in a way that all pixels within a set radius and of
the same region are weighed more than those pixels within the radius but
of another region.

CHAPTER 2. STEREOSCOPIC MATCHING 18

3. Through disparity plane fitting (as explained in Section[2.5.3), outliers are
removed.

4. Disparities are cooperatively optimized, minimizing the energy function
Ei = Ejuta + Eocciude + Esmootn- Ei is the total energy at iteration i and
E jatais the total matching cost, based on the similarity of corresponding
pixels. E,ccjyqe is based on the uniqueness assumption described in Sec-
tion and is computed by the number of pixels that are occluded
with the current disparity assignment and Eg,,,s; is based on the conti-
nuity assumption and computed by the number of pixels where the dis-
parity derivative is more than 1. In order to find disparity assignment
that produces the global minimum of this function, the same problem is
optimized locally for each region. Each iteration, each region is locally
optimized, which causes the total energy to converge towards a global
minimum.

2.7.2 Comparison to Zitnick and Kanade

Interestingly, strong similarity can be observed between the algorithm by Zit-
nick and Kanade and that by Wang and Zheng, although the latter was written
9 years later and is quite more complex. Both employ initial local matching,
but where Zitnick and Kanade used a static window size, Wang and Zheng
base the window size and shape upon image segmentation, performed earlier.

The disparity plane fitting outlier removal step of Wang and Zheng does
not exist in Zitnick and Kanade’s algorithm, but the optimization after that
contain some similar principles once again. Zitnick and Kanade optimize a
large three-dimensional network with inhibition to enforce uniqueness and lo-
cal support to enforce continuity. The individual pixel matching costs are set
as initial values of the network. Wang and Zheng enforce uniqueness and con-
tinuity through the number of occluded pixels and the derivatives respectively
and compute pixel matching costs for every disparity assignment.

2.7.3 Speed

Because this algorithm optimizes the problem globally by optimizing sub-
problems locally, no large network is necessary of which all nodes have to be
updated. Not all disparity values are considered, but a smart optimization al-
gorithm should, according to Wang and Zheng, be able to find a path through
the solution space towards a good minimum and this should save some time.
Unfortunately, for the algorithm to work, an adequate segmentation of the
input image is necessary and segmentation is a costly process. The Mean Shift
algorithm employed in the first step is a popular one, providing color segmen-
tation with preserved edge information, but, according to Wang and Zheng,
takes about 8 seconds to complete. Optimizing the segmentation speed should
therefore speed up a large portion of the overall algorithm execution time. It
should also be possible to implement the Mean Shift algorithm in parallel [34].
Of the remaining steps of the algorithm, it should at least be possible least
be possible to create a parallel implementation of local matching and plane fit-
ting. Plane fitting can be done for each region independently; for aggregation
step in the local matching, other than described in Section a non-global

CHAPTER 2. STEREOSCOPIC MATCHING 19

data structure must be chosen to store region’s window sums. This window
sum can not be stored inside each region the window passes, for multiple win-
dows may be passing the same region at the same time. Each window should
therefore have its own representation of the regions currently inside it.

The parallelization potential of the optimization step may depend on the
algorithm used. However, since this can be a complex step, it may also be
worth investigating the impact of leaving this step out. The article describing
the algorithm shows that, after 3 out of the optimal 4 iterations, the disparity
error drops by 10%. This may be a quality-speed trade-off to consider.

2.7.4 Reproducibility

Wang and Zheng did not provide any (pseudo-)code or executable program
implementing their algorithm and therefore the algorithm must be reconstructed
from the article for any further research.

Although many procedures are elaborately specified in the paper, others
were described only briefly and, like in Zitnick and Kanade’s article, incom-
plete regarding parameters.

The first step, segmentation, is described only as the employment of the
Mean Shift algorithm [16] to segment the left input image; no used parame-
ters are given, nor how the algorithm was implemented. As we look into the
Mean Shift algorithm, we find that many variations are possible. As disparity
planes are assigned per segment, the quality of the output and therefore the
parameters of the Mean Shift algorithm may be very important.

Next, the authors refer to five high-speed stereo matching algorithms as
possible choices of implementation of the second step: local matching. Again,
no parameters are given, nor the algorithm of their choice for the reported
results.

The third step, plane fitting, was explained quite elaborately, although no
parameters were given for the Gaussian convolution.

Finally, in the optimization step, the function to be minimized is clearly
defined (including experimental parameters), but for the optimization method
we are referred to Powell’s method [28] as an example, while then still many
implementations exist.

Eventually, I had to conclude that I could not reproduce the results reported
by Wang and Zheng.

2.8 Reproducibility in general

Reproducibility is important in science. If research cannot be replicated, it can
be very difficult to make use of the found knowledge. Although it should
be and mostly is the aim of researchers to provide usable knowledge, many
researches in the past have been unreproducible. While this is often due to
statistical mistakes, research bias or randomness [8], it can also be because of
incomplete reporting.

During this project, I have discovered that many articles in the field of re-
search regarding stereoscopy are difficult or impossible to reproduce, due to
incomplete experimental descriptions. When sub-algorithms are used, the au-
thors often refer to the original article describing it, in which many new pa-

CHAPTER 2. STEREOSCOPIC MATCHING 20

rameters emerge without specification by the authors of the main article. Fur-
thermore, some authors were unclear in their evaluation methods, data sets or
what exactly their results meant.

While providing pseudo-code would resolve the problem of implementa-
tion uncertainties, complete (working) source code would be preferable, since
all parameters then have to be specified. A problem may be that some code
(e.g., C++) cannot run on all platforms, although in many cases the code im-
plementing the main algorithm could still be provided, possibly leaving out
any input/output procedures that are specific to the running environment.

Since the main goal of publications should be scientific advancement, re-
search papers should provide the possibility to use the presented research for
further investigation. I will therefore provide the complete source code used
in this research to contribute an easily reproducible implementation of an al-
gorithm that can be used or adapted for further research. I hope that, in the
future, more researchers will do the same.

Chapter 3

Mean Shift segmentation
algorithm

The Mean Shift segmentation algorithm is used in many computer vision al-
gorithms and applications. Due to its complexity, it cannot yet be executed in
real-time in its original form, which is a problem for real-time computer vision
applications such as augmented reality.

In this chapter, I will present a parallel implementation of the Mean Shift al-
gorithm and report test results of the program running in parallel on a 24-core
processor, with a variable number of threads. The goal is to evaluate how ef-
fective its parallelization is and whether this implementation of the Mean Shift
algorithm can potentially run in real-time. In order to validate the paralleliza-
tion, the segmented output of the parallel program is compared to that of the
single-threading program for any differences.

All source code used for these experiments can be found online, at [12].

3.1 Mean Shift segmentation principles

The Mean Shift algorithm [16] is an iterative, density-based segmentation al-
gorithm that preserves edge information and is therefore widely used as pre-
processing algorithm in computer vision (including stereoscopy).

Mean Shift segmentation can be applied to many problem spaces in any
number of dimensions and many different configurations are possible. Below,
a simple procedure of Mean Shift image color segmentation is explained in
steps:

For each pixel x;:

1. Assign an initial Mean Shift point M(x;) to the pixel, for example the 5-
dimensional vector containing the pixel’s position (x- and y-coordinates)
and color (RGB values).

2. Determine the neighbors of M(x;), located in a 5-dimensional neighbor-
hood around M(x;), the size of which is defined by spatial and color
bandwidth parameters. To avoid distance evaluation of all pixels in the
image, first select pixels within the spatial neighborhood and then deter-
mine which of these pixels are also close enough in the color domain.

21

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 22

Figure 3.1: Left image of the Tsukuba stereo set, filtered by the EDISON imple-
mentation of the Mean Shift segmentation algorithm (spatial bandwidth = 7,
color bandwidth = 6.5, minimum region size = 20 pixels).

3. Find vector My (x;), which is the vector by which M(x;) should be shifted
to reach the point of local maximum density of vectors within the neigh-
borhood determined in step 2. This vector can be found using a density
estimator described in [16], further specified for image segmentation in
[36]. This estimator basically finds the mean of all neighboring vectors,
weighted by a kernel function.

4. Shift M(x;) by My(x;).

5. Repeat steps 2 to 4 until convergence of M(x;), meaning M, (x;) is below
a threshold parameter.

After multiple iterations, the vectors converge at local density maxima, which
causes groups of vectors to be more clearly distinguishable. Therefore, in the
next step, the pixels can be clustered. An easy and effective way to do this is by
starting at a random pixel and adding all pixels within a defined 5-dimensional
sphere to its cluster [3]. From the newly added pixels, the same is done, until
no further pixels are within range. The next pixel without cluster assignment
is chosen and the previous clustering steps are repeated. If all pixels have been
assigned to a cluster, an optional final step of pruning may be executed, elim-
inating all segments smaller than a defined threshold. Image segmentation is
now finished.

This Mean Shift procedure (including a density estimator), specialized for
image color segmentation, is explained in more detail in [36]. In Figure[3.2] the
Mean Shift process for a single point in a 2-dimensional space is illustrated.

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 23

Figure 3.2: Image from [17], illustrating the Mean Shift processing of one point
in a 2-dimensional space. The starting Mean Shift point is the center of the
circle, each of the stars (forming a path) are the Mean Shift points after each
iteration of finding the local maximum density within the neighborhood. The
end point is where the cluster’s density is considered at its maximum, and any
point belonging to that cluster will converge at that point.

3.2 Parallel computing

Parallel computing is an efficient way to speed up programs executing sin-
gle tasks multiple times. All similar tasks are divided over multiple so-called
threads, which can work on different tasks at the same time. There are, however,
some restrictions to parallel implementation, due to which some algorithms
cannot be parallelized or become inefficient.

For this project, the multithreading capabilities of the Java virtual machine
were used to parallelize the EDISON implementation of the Mean Shift algo-
rithm (see Section B.3). Although there are more fundamental principles of
parallel computing, the problems described in this section are the problems
most encountered in the project of parallelizing the EDISON software.

In many processes the order of execution of tasks is important. For example,
the function f(x) = x% + 1 can be rewritten as f(x) = h(g(x)), where g(x) =
x?> and h(x) = x + 1. The order in which to execute the functions ¢ and h
influences the outcome of function f (e.g., 3> + 1 = 10 whereas (3 + 1) =
16). Serial functions like f cannot be parallelized because of the dependency
of tasks on the output of a previous task. If the order of task execution is not
important (i.e. all tasks are independent), parallelization is possible.

Dependency or influence between tasks is sometimes a result of the use of
global variables: if different tasks in the process use a global system or data
structure, some functions should not be executed by different threads at the
same time. This can, for example, relate to file writing, where two threads
writing at the same time can result in two lines of text mixed up letter by letter.
Interference between threads can be prevented by by creating a separate data
structure for each thread, or by using locks that will allow only one thread to
use a function at a time (see Figure 3.4). Since the order in which threads are
executed is uncertain, the state of the global system can be uncertain upon
execution of a thread. In that case, the latter solution only prevents interference

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 24

Serial implementation Parallel implementation
(order important) (order not important)
Original State
Original State
Task 1 Task 2
l Task 1

State 1 Part 1 Part 2

l Task 2 combine

Final State
Final State

Figure 3.3: The main difference between serial and parallel processes. If, in
the serial implementation, Task 2 depends on the output of Task 1 to behave
properly (i.e. cannot be executed from the Original State without altering the
final result), the process cannot be correctly parallelized. In the right diagram
both tasks can be executed from the Original State and produce independent
output. These outputs can then be combined to create the Final State.

in writing by threads, not when thread processes are influenced by the global
system.

If all restrictions are met, parallelization can be achieved using different
approaches. Some are more efficient than others, depending on the process to
be parallelized. In solving the problem of interference between threads due to
global data structures, both solutions described above have their differences
in efficiency. Using locks will force threads to wait while the function to be
executed is used by another thread, slowing the process. Alternatively, using
separate data structures for each thread will increase the amount of memory
required for the process.

Another factor in efficiency is how tasks are divided. If the program con-
sists of nested loops, each of these loops can be parallelized. However, in the
outermost loop threads have to be started only once, whereas a nested loop
has to start threads each iteration of the outer loop. Parallelizing the outermost
loop will effect in the least overhead and is therefore often the most efficient.
It may occur that the outer loop consists of only a small number of iterations,
while the nested loop contains many iterations, in which case parallelizing the
inner loop may accomplish the fastest result.

3.3 Parallel Mean Shift segmentation

Since the Mean Shift algorithm is often used in stereo matching algorithms and
takes quite some processing time, I have adapted a working implementation

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 25

a) Queue Lock b) Thread — Local system
Thread —»
Thread —p
Thread ea Local system
Thread =————¥ Clobal system Thread —% Local system

Figure 3.4: Two solutions for interference between threads due to the use of
global systems. In a) a lock is used to prevent access to the global system by
multiple threads simultaneously. A queue is used and threads wait for the
system to be available again. In b) each thread is given a (copy of) the global
system to use locally, without interference.

for parallel processing in order to speed it up.

3.3.1 Basic software

For the parallel implementation of the Mean Shift algorithm, I used the open-
source Java-port of the C++ program EDISON [3] 26]. Although in other stud-
ies [27, 35] alternative parallel implementations of the Mean Shift algorithm
have been presented, I could not find working source code of these implemen-
tations. I chose the Java-port of the EDISON program, because Java allows for
development and execution on different platforms and contains some proper
multithreading classes. In the software six methods of Mean Shift are imple-
mented, with different speed optimization techniques.

One dimension of speed optimization is the port version of EDISON, of
which there are two. These versions differ in the way neighboring pixels within
the window are found for the calculation of the Mean Shift vector. Version 0
uses the original image to select pixels within the (x,y)-part of the 5-dimensional
window. Then, for each of the included pixels, their distance in 5-dimensional
space is computed and, if within a threshold distance, their weighted vector is
added to the mean. Version 1 first divides all pixels into 3-dimensional buck-
ets, according to their (x,y)-coordinates and one of the color dimensions. This
makes the initial selection of neighboring pixels smaller, so fewer vector dis-
tances have to be evaluated for addition to the mean.

The other dimension of speed optimization is the speedup level and con-
sists of three levels (low, medium, high). Low speedup is the default value
and contributes no speedup. With the medium speedup setting, the algorithm
reutilizes previously computed convergence paths of feature vectors and the
high speedup setting enables neighborhood inclusion. This means that not
only vectors at the same coordinates in the spatial domain are merged to the
same convergence point, but also neighbors within a defined distance. More
information about the optimization methods of the EDISON software can be
read in [23].

All six combinations of optimization methods were tested for paralleliza-

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 26
tion (henceforth these combinations will be called optimizations)ﬂ

3.3.2 Adaptations for parallel implementation

The methods executing the main part of the Mean Shift algorithm, in which
local density maxima are found, account for the largest part of the processing
time of the segmentation. In order to parallelize and thereby speed up these
methods, some adaptations had to be made.

Some global variables were used to pass information to called methods and
to retrieve data these methods produced. These globals had to be changed
into local variables, to prevent conflicts between threads accessing the same
variables. Other variables that were instantiated before the parallelizable part
had to be either declared final (Java procedure), for use by all future threads,
or defined within each thread.

The adaptations that had to be made before the methods could be paral-
lelized, are stored as a separate version of the progranﬂ in order to compare
computing times to the original version before parallelization was applied. The
final parallelized version can be found in the package meanshift. I will further
refer to the original and final version as original and parallel implementations.

3.4 Experimental results

In order to test the correctness and effectiveness of the implemented paral-
lelization, the following tests were run on a Super Micro A+ Server 1122GG-TE,
with two 12-core AMD Opteron 6168 processors (1.9GHz per core).

3.4.1 Implementation: processing time consistency

Before testing the speedup that can be gained through multithreading in this
program, a test was run to measure the influence of the made adaptations
on the processing time. The processing times of the original implementation
(which is single-threaded) were compared to those of the parallel implemen-
tation, which, for this test, also used a single thread. Ideally, the parallel im-
plementation should be equally as fast as, or possibly faster than the original
implementation.

In order to test the consistency in processing time of the different imple-
mentations, each implementation of the program was run 10 times for each of
the six combinations of the two optimization methods (Section [8.3.1), using a
downscaled (1024x1024 pixel) version of an image of a satellite (Figure [4]
as input. The parallel implementation was run only with one thread.

In the EDISON software, all six optimizations are within the MSImageProcessor
class. For port version 0, the three speedup levels are implemented as the methods
NonOptimizedFilter, OptimizedFilterl and OptimizedFilter2 for low, medium and high, re-
spectively. For port version 1, the methods are NewNonOptimizedFilter, NewOptimizedFilterl
and NewOptimizedFilter2.

%In the Mean Shift Java project, package msoriginal contains the original implementation, as
downloaded from the aforementioned website. Package msadapted contains the adaptations made
before the program could be parallelized. Package parallel contains the final, parallelized ver-
sion.

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 27

Figure 3.5: Picture of a satellite [4] used for measurement of processing time
and its segmented output. Due to the relatively long segmentation times (up to
1.5 minutes) on this 1024 x 1024 pixel image, the tests should produce accurate
results with little deviation. Both spatial and color bandwidths were set to 6
and a minimum segment size of 20 was maintained.

Each combination of optimization methods (further referred to simply as
optimization), would be efficiently altered for parallelization if the parallel im-
plementation’s processing time was equal or less than that of the original.

For each optimization, the difference between the means per implemen-
tation were measured. The average processing times over the 10 runs of each
implementation-optimization combination are displayed in Figure[3.6] The op-
timization names (e.g., ‘PortlSpeed?2’) refer to the optimization levels, where
‘Port0Speed(’ means no optimization and ‘Port1Speed2’ stands for the highest
optimization levels for both methods.

Although Port1Speed? is the highest optimization possible in this software,
it seems that it is not the fastest. In fact, it nearly ties Port1Speed0 for second
slowest in the original implementation. Since the obtained software was not a
final version, I assume the Port1Speed2 optimization does not work correctly
and I will therefore not discuss its results any further.

The processing times of most optimizations significantly varied between
implementations (p < 0.01), except for PortOSpeed0 (p = 0.14) and
PortOSpeed2 (p = 0.84); the eta’-values were 0.251, 0.999 and 0.313 for
Port0Speed1, Port1Speed0 and Port1Speed1, respectively. However, only with
PortOSpeed1 the parallel implementation was slower than the original. The
other two optimizations were faster in the parallel implementation (see Figure

3.6).

3.4.2 Implementation: quality consistency

Apart from the processing time of the program, the output of the altered im-
plementations of the program was also checked against that of the original, in
order to verify that these were actually the same.

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 28

100,000 .00 Optimization
—— Port0Speedld
Port0Speedt
Port0Speed2
— Port1 Speedl
50,000.00
O —— PortiSpesdi
E
=
1]
E
— 60,000.00+ .
=] G
= "———______
= s
i
(1]
8 4000000
1
o
=
[
@
= 20000004
G —
0.00-]
I |
Original Parallel

Implementation

Figure 3.6: Differences of processing times of optimizations between both im-
plementations. Since the original implementation is single-threaded, the num-
ber of threads in the parallel implementation was also set to 1.

The output quality was measured with regard to stereoscopic depth per-
ception, using a simple stereo matching algorithm consisting of two steps:

1. Local window-based stereo matching, as in [39], with a maximum dis-
parity of 16 and a window radius of 5. Disparity values were scaled by a
factor of 16 to create a disparity grayscale map.

2. Plane fitting, as in [37], using the regions computed by the Mean Shift
algorithm, the initial disparities computed by 1), a maximum depth of
16 and a disparity resolution of 4. The disparity resolution refers to the
number of histogram bins used for quantizing disparity levels, before
Gaussian convolution. The Gaussian convolution was performed with a
standard deviation of 1.

Since step 2) assigns values to entire regions instead of single pixels, the quality
of the segmentation is important. Any segments covering objects in multiple
depth levels will reduce the accuracy of the resulting depth map.

The program was run 10 times for each implementation with each opti-
mization, with the left image of the Tsukuba stereo set as input. The output of
the program was evaluated by a program generating results similar to those
of the Middlebury Stereo Vision website, using the ground-truth provided and
the map of occluded and border pixels that should not be evaluated. The com-
puted error score is the percentage of evaluated pixels labeled with a disparity
error greater than the threshold of 1, with regard to the ground-truth.

For each optimization, error scores were similar over both implementa-
tions. In Table[3.1|a comparison between the optimizations can be seen.

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 29

Optimization |Segmentation Depth map Error (%)
Port0Speed0 | I ' i 1 |

Port0Speedl

Port0Speed?

PortlSpeed0

PortlSpeedl

Table 3.1: Comparison of each optimization’s segmentation output, the dispar-
ity map produced by the stereo algorithm based on the segmentation and its
error score.

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 30

Optimization

2.000,004 = Port0Speed0
— Port0Speec

Port0Spesd2
— Port1Speedd
— Part1Speedi
4.000,00

3.000,00

2,000,00

1.000,005

Mean Speed (x1000 pixels per second)

DIDD I | I I I 1
o 10 20 30 T .

Number of threads

Figure 3.7: Graph illustrating the acceleration of the parallel implementation
with the number of threads used (up to 50). Measured is the mean number of
pixels processed per second on the Satellite image (Figure [3.5), shifting their
initial Mean Shift points to their convergence point.

3.4.3 Multithreading: speedup

The speedup achieved by multithreading was evaluated for each optimization,
by segmenting the aforementioned 1024x1024 pixel satellite image using 1 to
100 threads.

The significant increase (p < 0.01) in processing speed with the number
of threads is shown in Figure As can be seen in the graph, until about
24 threads, the speed increases almost linearly with the number of threads,
although 7 threads does not result in n times the single-threaded speed. This
could be due to the overhead of setting up threads and starting their processes,
or the shared memory (e.g., the image).

When the number of threads exceeds the number of cores (24), there seems
to be much variance in speed. While it is to be expected that running multiple
threads on each core decreases the efficiency per thread, the variance may be
caused by underlying processes of the Java virtual machine, such as garbage
collection and the assignment of threads to different cores.

In Table the greatest difference between original processing time and
multi-threaded processing time is shown for each optimization. Whereas, by
multithreading, the greatest decrease in processing time is reached using the
Port0Speed0 optimization, Port0Speed2 remains the fastest optimization.

The times reported so far have only been the processing times for the par-
allelized part of the process. However, not the entire segmentation has been
parallelized; only the part where for each pixel its Mean Shift convergence

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 31
Optimization Original Best time Speedup Optimal # of
time (ms) (ms) Threads
Port0Speed0 92977 4350 21.4 91-100
PortOSpeed1 26294 1483 17.7 71-80
Port0Speed?2 2603.7 246.4 10.6 31-40
Port1Speed0 54940 2120 25.9 91-100
Port1Speed1 14874 978.4 15.2 81-90

Table 3.2: Speedup of only the parallelized part of the program, which consists
of searching for the Mean Shift convergence points for each pixel. Processing
times are averaged over the bin of threads reported in the last column.

Optimization Original Best time Speedup Optimal # of
time (ms) (ms) Threads
Port0Speed0 96091 7241 12.9 91-100
PortOSpeed1 29054 4106 7.7 81-90
Port0Speed?2 4563.2 2179 2.1 61-70
Port1Speed0 57291 4543 12.6 91-100
Port1Speed1 17238 3220 54 81-90

Table 3.3: Greatest process speedup achieved for each optimization. Processing
times are the times taken for the entire segmentation, averaged over the bin of
threads reported in the last column.

point is found. Table illustrates the effect the parallelization has on the
entire Mean Shift segmentation processing times. The total time needed for the
segmentation to complete using Port0Speed?2 is only reduced to roughly 48%
(from 4563.2 to 2179 ms). Comparing the data with Table[3.2} it can be seen that
the parallelized process of PortOSpeed2 takes only 11% (246.4 of 2179 ms) of its
best time, meaning 1932.6 ms is taken by unparallelized processes.

As a reference for stereo matching algorithms, all optimizations were also
tested for speed on the Tsukuba stereo image and displayed in Table to-
gether with the corresponding number of threads and the error score.

Optimization Original Best time Speedup Optimal # Error (%)
time (ms) (ms) of Threads

Port0Speed0 9790 667 14.7 91-100 2.91 (+0.00)

Port0Speed1 2768 354 7.8 51-60 2.97 (+0.06)

Port0Speed?2 499.6 221 2.3 21-30 3.22 (+0.25)

Port1Speed0 4867 402 12.1 71-80 2.89 (+0.00)

Port1Speed1 1542 262 5.9 21-30 3.32 (+0.01)

Table 3.4: Maximum speedup of the Mean Shift algorithm on the Tsukuba
stereo image and the optimal number of threads, as well as the error scores
of the stereo matches found based on the segmentations and the mutation of
the original error scores.

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 32

Optimization
= Port0Speedld
Port0Speesd]
3.40 Port0Speed2
— Port1 Speedl
= Port1 Speedi

3.20

Mean Error (%)

3.00 A

280+

] I] I T
==10 | 21-30 I 41 -50 | 61-70 | &1 -850 |
11-20 31-40 51 - 60 71-80 91+

Threads (Binned)

Figure 3.8: Graph of how the error scores change with the number of threads,
for each optimization.

3.4.4 Multithreading: quality consistency

Apart from the speedup achieved by multithreading, the output quality was
measured for each number of threads. For each optimization, the left image
from the Tsukuba stereo image was segmented using 1 to 100 threads (of course
only with the parallel implementation) and their outputs evaluated in the same
manner as in Section The number of threads used in the segmentation
with any optimization would not be important for the output quality if the
scores were equal for each number of threads.

Only the error scores of Port0Speed0 and Port1Speed(remained unchanged
over the number of threads. For the other three working optimizations there
was a significant correlation (p < 0.01) between the number of threads and the
error scores, with larger error scores for larger number of threads (see Figure
3-8)-

The variance in quality could be explained by the importance of the order
in which pixels are evaluated, as the optimizations medium and high speedup
store global information about earlier computed information in order to re-use
it for following computations. Basically, convergence paths are stored for each
location in the spatial domain that has been evaluated. If, at a later time, an-
other pixel’s Mean Shift path crosses such a location, its path is merged with
the earlier computed path. However, the path that is stored in the spatial do-
main, can differ for each RGB-value combination of the first vector by which
the spatial location was evaluated. Therefore, the eventual resulting conver-
gence points may differ, depending on which pixels were evaluated first, which
can vary when using multiple threads.

When using only one processing thread, the order is predetermined (left to

CHAPTER 3. MEAN SHIFT SEGMENTATION ALGORITHM 33

right, top to bottom), but when multiple threads are running simultaneously
on the same image, the order in which paths are constructed can differ from
time to time and so will its output. However, since the left-to-right, top-to-
bottom order does not seem to have a theoretical importance, this reasoning
does not explain why the original implementation produced the output with
the highest quality.

Chapter 4

Conclusions

The aim of this research was to investigate whether it is possible to produce
real-time high quality depth maps for augmented reality, using a stereoscopic
matching algorithm. Two high quality stereoscopic matching algorithms were
evaluated and their potential for application in augmented reality.

Finally, an implementation of the Mean Shift algorithm, an often used tech-
nique for color segmentation in stereoscopic matching, was parallelized. Ex-
periments were run to test whether these adaptations would speed up the pro-
cess without altering the quality of its output.

4.1 Parallel Mean Shift

The processing times of most of the Mean Shift optimizations are influenced by
the multithreading setup, even with a single thread. Regarding computational
power, the parallel implementation is therefore not the same as the original
in three out of five optimizations, but for two out of these three it results in
a speedup (both Portl optimizations). Only Port0Speed1 has become slightly
slower. The cause of this slight deceleration is difficult to determine, since the
problem is confined neither to the Port Version nor the Speedup Level settings
of the program: Port0Speed0 and Port0Speed2 show no difference between
implementations and Port1Speed]1 is slightly faster in the parallel implementa-
tion.

4.1.1 Speedup

In all optimizations there was linear speedup as long as there enough cores.
However, increasing the number of threads beyond the number of cores causes
less speedup and more variance in speed. A possible cause of this variance may
be extra overhead created by underlying processes of the Java virtual machine,
such as the assignment of threads to different cores and garbage collection.
However, more research is required to find the exact cause.

The greatest speedup through multithreading was achieved by the slow-
est optimization, PortOSpeed0 (from 96 to 7.2 seconds for a 1024x1024 image),
however it remained the slowest optimization. The fastest optimization was
Port0Speed?2, although it was only accelerated from 4.5 to 2.1 seconds on the

34

CHAPTER 4. CONCLUSIONS 35

same image. The little acceleration is probably due to the fact that, in the en-
tire segmentation, the parallelized part eventually accounted for only 246 ms
of the total processing time of 2.17 seconds. In contrast, the parallelized part of
Port0Speed0 accounted for 4.35 seconds of the total 7.2 seconds of processing
time.

However, whereas the parallelized part of Port0Speed0 was accelerated 25
times compared to the original time, PortOSpeed2 again received a smaller
speedup (10 times). The limitation of speedup of PortOSpeed2 may be due
to its high original speed. Setting up more threads will create overhead that is
less compensated by the speed of parallel computing, since the tasks are too
small.

Although the greatest multithreading acceleration was achieved in the
Port0Speed0 optimization, the fastest Mean Shift implementation is optimized
with PortOSpeed?2. This optimization uses no buckets, and reuses much of the
earlier computed data, as explained in Section [3.3.1} Since all of the optimiza-
tions are far from being executed in real-time, the fastest taking 221 ms on the
Tsukuba left image (384 x 288 pixels), I conclude that Port0Speed2 may be the
most promising optimization for the future, despite its greater error score, be-
cause of its great advantage in processing time.

4.1.2 Output quality

The error scores resulting from the stereo matching performed on the segmen-
tation output of all optimizations are equal in both the original and the parallel
implementation working on a single thread. It can therefore be concluded that
the error scores are not influenced by the adaptations preceding parallelization.
However, the error scores were, in all optimizations except the two of Speed0,
influenced by the number of threads used in segmentation. It could be that
the order in which pixels are evaluated is important. However, more research
would be required in order to find the reason why the default serial order (left-
to-right, top-to-bottom) produces the best results.

4.2 Reproducibility

I was unable to reproduce the high-quality stereo algorithms, due to the incom-
pleteness of the reports. Therefore no conclusions can be drawn with regard to
their usefulness for augmented reality applications.

Many articles can be found with presentations of promising algorithms to a
problem, including experimental results proving their quality. However, often
there are difficulties in reproducing these results, making them unuseful for
future research.

For each described algorithm many different implementations can be pos-
sible. Failing to provide used parameters for experimental results leaves many
or sometimes infinite possibilities for anyone to try before being able to re-
produce the results. Also the exact dataset and evaluation method is needed
in order to gain results comparable to the described algorithm. Especially if
processing speed is important, even data structures and functions should be
precisely defined for reproducibility.

CHAPTER 4. CONCLUSIONS 36

The best way to ensure a presented algorithm is reproducible, is to provide
the source code. Unfortunately, most articles contain no such reference nor
even elaborate pseudo-code. Authors regularly even simply refer to another al-
gorithm as part of their algorithm, without specifying which parameters were
used or how it was implemented. In order to stimulate scientific progress, au-
thors should keep in mind whether their readers can actually use their research
or that it can only be read.

4.3 Future research

Aside from the questions answered in this research, there are some matters that
could be further investigated.

4.3.1 GPU implementation

In this project, the Mean Shift algorithm was accelerated significantly by mul-
tithreading. Although the most important part has been accelerated to a real-
time speed for a 384 x 288 pixel image, the entire segmentation was still too
slow to be called real-time. However, since the presented parallel implemen-
tation works correctly and can be executed on any number of threads (up to a
maximum of the image’s number of pixels), the parallelism can be extended to
GPU execution, which could possibly reach real-time speeds.

4.3.2 Pixel evaluation order

In the parallel Mean Shift algorithm, the number of used threads negatively
influenced the quality of the segmentation. Since the order in which pixels are
evaluated is altered by the parallelization, compared to the single-threaded im-
plementation, the evaluation order might be an important factor for the quality
of the segmentation. If this is the case, possibly a better division of labor by dif-
ferent threads could be invented for parallel Mean Shift segmentation.

4.3.3 Full optimization

The Port0Speed?2 optimization was the fastest among the tested optimizations
in this research. However, the Port1Speed2 optimization did not seem to work
correctly. The corrected code of this optimization may still be worth paral-
lelizing and testing, since this should be the most optimized version of the
algorithm.

4.3.4 Alternative segmentation algorithms

While GPU-implementation may allow the Mean Shift segmentation proce-
dure to be run in real-time, it may cost too much processing power for merely
one step in the entire process, which also should be able to run at least 50 times
per second. It could very well be worth investigating other segmentation al-
gorithms that are faster (e.g., [29]). Of course the quality of the output should
be tested with regard to stereo vision to evaluate the quality-speed trade-off of
the algorithm compared to Mean Shift.

CHAPTER 4. CONCLUSIONS 37

4.3.5 Alternative depth perception

This project focused on stereo vision as a means to depth perception. However,
as explained in Section other depth cues exist besides stereoscopy. Find-
ing depth by camera focus, for example, eliminates the stereo correspondence
problem, which is computationally expensive. Image blur can be calculated
locally for each pixel, without searching another image for similar pixels.

4.4 Stereoscopic depth perception for augmented re-
ality

The fastest segmentation by the parallelized Mean Shift algorithm on a 384 x
288 pixel image was still a factor 10 short of being real-time. Mean Shift seg-
mentation being only a part of algorithms based on it, these algorithms are
even further from real-time execution. I have stated the importance of real-
time execution of a stereo matching algorithm for augmented reality. How-
ever, for augmented reality, depth perception is only a part of all that needs to
be computed and should not drain all processing power. For now, stereoscopic
depth perception seems unsuitable for depth perception in augmented reality.
Fortunately, there are other methods of depth perception to be explored and
possibly in the future, when more processing power can be obtained at less
cost, the last conclusion may be re-evaluated.

Bibliography

[1] Bmw augmented reality. http://www.bmw.com/com/en/owners/
service/augmented_reality_introduction_1.html. [Online; last
accessed 2 March 2011].

[2] Kinect - wikipedia, the free encyclopedia. http://en.wikipedia.org/
wiki/Kinectl [Online; last accessed 2 March 2011].

[3] Mean shift based image segmenter. http://coewww.rutgers.edu/riul/
research/code/EDISON/doc/segm.htmll

[4] Nasa - stereo solar panel deployment. http://www.nasa.gov/mission_
pages/stereo/multimedia/deploy.html. [Online; last accessed 2 March
2011].

[5] Sgi indigo2 product guide, 1993. Document code: INDIGO2-TM-GD.

[6] Arhrrrr! http://www.augmentedenvironments.org/lab/research/
handheld-ar/arhrrrr/, 2009. [Online; last accessed 2 March 2011].

[7] Augmented reality - layar reality browser. http://www.layar.com, 2010.
[Online; last accessed 2 March 2011].

[8] The decline effect and the scientific method. http://www.newyorker.
com/reporting/2010/12/13/101213fa_fact_lehrer?currentPage=all,
2010. [Online; last accessed 2 March 2011].

[9] Kinect - xbox.com. http://www.xbox.com/en-US/kinect, 2010. [Online;
last accessed 2 March 2011].

[10] Nintendo 3ds - official website. http://www.nintendo.com/3ds| 2011.
[Online; last accessed 25 April 2011].

[11] Processors - intel microprocessors export compliance metrics. http://
www.intel.com/support/processors/sb/cs-023143.htm, 2011. [Online;
last accessed 25 April 2011].

[12] R. Alkemade. Sourceforge - parallel edison mean shift segmentation.
https://sourceforge.net/projects/paralleledison/|

[13] U.Bergmeier. Augmented reality in vehicle - technical realisation of a con-
tact analogue head-up display under automotive capable aspects; useful-
ness exemplified through night vision systems. 2008.

38

http://www.bmw.com/com/en/owners/service/augmented_reality_introduction_1.html
http://www.bmw.com/com/en/owners/service/augmented_reality_introduction_1.html
http://en.wikipedia.org/wiki/Kinect
http://en.wikipedia.org/wiki/Kinect
http://coewww.rutgers.edu/riul/research/code/EDISON/doc/segm.html
http://coewww.rutgers.edu/riul/research/code/EDISON/doc/segm.html
http://www.nasa.gov/mission_pages/stereo/multimedia/deploy.html
http://www.nasa.gov/mission_pages/stereo/multimedia/deploy.html
http://www.augmentedenvironments.org/lab/research/handheld-ar/arhrrrr/
http://www.augmentedenvironments.org/lab/research/handheld-ar/arhrrrr/
http://www.layar.com
http://www.newyorker.com/reporting/2010/12/13/101213fa_fact_lehrer?currentPage=all
http://www.newyorker.com/reporting/2010/12/13/101213fa_fact_lehrer?currentPage=all
http://www.xbox.com/en-US/kinect
http://www.nintendo.com/3ds
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.intel.com/support/processors/sb/cs-023143.htm
https://sourceforge.net/projects/paralleledison/

BIBLIOGRAPHY 39

[14] A. Berres, B. Lietzow, P. Salz, and Y. Schelske. Depth from focus. Unpub-
lished article.

[15] B. Close, J. Donoghue, J. Squires, P. De Bondi, M. Morris, W. Piekarski,
and B. Thomas. Arquake: An outdoor/indoor augmented reality first
person application. In In 4th Int’l Symposium on Wearable Computers, pages
139-146, 2000.

[16] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(5):603-619, 2002.

[17] D. Comaniciu and P. Meer. Mean shift analysis and applications. In The
Proceedings of the Seventh IEEE International Conference on Computer Vision,
1999, volume 17, pages 790-799. IEEE, 2002.

[18] J.E. Cutting and P.M. Vishton. Perceiving layout and knowing distances:
The integration, relative potency, and contextual use of different informa-
tion about depth. Perception of space and motion, 5:69-117, 1995.

[19] A.]. Davison, I.D. Reid, N.D. Molton, and O. Stasse. Monoslam: Real-
time single camera slam. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1052-1067, 2007.

[20] M. Gerrits and P. Bekaert. Local stereo matching with segmentation-based
outlier rejection. In Computer and Robot Vision, 2006. The 3rd Canadian Con-
ference on, page 66. IEEE, 2006.

[21] P. Grossmann. Depth from focus. Pattern Recognition Letters, 5:63-69, 1987.

[22] K.Imaiand I. Nomura. Method and apparatus for displaying information
for vehicle, and computer product, May 6 2008. US Patent 7,369,939.

[23] J.N. Kaftan, A.A. Bell, and T. Aach. Mean shift segmentation evaluation of
optimization techniques. In Proceedings of the Third International Conference
on Computer Vision Theory and Applications, VISAPP 2008, pages 365-374,
Funchal, Madeira - Portugal, January 22-25 2008. INSTICC - Institute for
Systems and Technologies of Information, Control and Communication.

[24] M. Kawakita, T. Kurita, H. Kikuchi, and S. Inoue. Hdtv axi-vision camera.
In Proc. of International Broadcasting Conference, pages 397-404, 2002.

[25] D. Marr and T. Poggio. A computational theory of human stereo vi-
sion. Proceedings of the Royal Society of London. Series B, Biological Sciences,
204(1156):301-328, 1979.

[26] B.E. Pangburn and J.P. Ayo. Koders - source code search en-
gine. http://www.koders.com/info.aspx?c=ProjectInfo&pid=
1ZLCBNBRKBWSX9KL1VF3ZA989H&s=Region, 2002. [Online; last accessed 2
March 2011].

[27] S. Park, Y. Ha, and H. Jeong. A parallel and memory-efficient mean shift
filter on a regular graph. In Proceedings of the The 2007 International Confer-
ence on Intelligent Pervasive Computing, IPC '07, pages 254-259, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

http://www.koders.com/info.aspx?c=ProjectInfo&pid=1ZLCBNBRKBWSX9KL1VF3ZA989H&s=Region
http://www.koders.com/info.aspx?c=ProjectInfo&pid=1ZLCBNBRKBWSX9KL1VF3ZA989H&s=Region

BIBLIOGRAPHY 40

[28] M.].D. Powell. An efficient method for finding the minimum of a function
of several variables without calculating derivatives. The Computer Journal,
7(2):155, 1964.

[29] F. Precioso, M. Barlaud, T. Blu, and M. Unser. Robust real-time segmenta-
tion of images and videos using a smooth-spline snake-based algorithm.
IEEE Transactions on Image Processing, 14(7):910-924, 2005.

[30] S. Prince, A.D. Cheok, F. Farbiz, T. Williamson, N. Johnson,
M. Billinghurst, and H. Kato. 3d live: Real time captured content for
mixed reality. In In International Symposium on Mixed and Augmented Real-
ity, pages 7-13. IEEE Press, 2002.

[31] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using
structured light. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003, volume 1. IEEE, 2003.

[32] D. Scharstein and R. Szeliski. Middlebury stereo vision. http://vision.
middlebury.edu/stereo/, 2007. [Online; last accessed 2 March 2011].

[33] J.H.Shuhaiber. Augmented reality in surgery. Archives of Surgery, 139:170-
174, 2004.

[34] H. Wang, J. Zhao, H. Li, and J. Wang. Parallel clustering algorithms for im-
age processing on multi-core cpus. In International Conference on Computer
Science and Software Engineering, volume 3, pages 450—-453. IEEE, 2008.

[35] H. Wang, J. Zhao, H. Li, and J. Wang. Parallel clustering algorithms for
image processing on multi-core cpus. International Conference on Computer
Science and Software Engineering, 3:450-453, 2008.

[36] J. Wang, Y. Xu, H.Y. Shum, and M.F. Cohen. Video tooning. In ACM
SIGGRAPH 2004 Papers, pages 574-583. ACM, 2004.

[37] Z.F. Wang and Z.G. Zheng. A region based stereo matching algorithm
using cooperative optimization. In IEEE Transactions on Computer Vision
and Pattern Recognition, pages 1-8. IEEE, 2008.

[38] C.L. Zitnick and T. Kanade. Cooperative stereo vision. http://www.cs.
cmu.edu/~clz/stereo.html. [Online; last accessed 2 March 2011].

[39] C.L. Zitnick and T. Kanade. A cooperative algorithm for stereo matching
and occlusion detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(7):675-684, 2002.

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://www.cs.cmu.edu/~clz/stereo.html
http://www.cs.cmu.edu/~clz/stereo.html

Appendix A

Source code contributions

This appendix contains the documentation (JavaDoc) of the adapted methods
in the EDISON Java Port [26]. Changes were made in the MSImageProcessor
class and the MeanShift class. Also, the code of the class used for quick and
modular multithreading can be found in this appendix.

A.1 MSImageProcessor

In the MSImageProcessor class six methods were adapted: NonOptimizedFil-
ter, OptimizedFilterl, OptimizedFilter2, NewNonOptimizedFilter, NewOpti-
mizedFilterl, NewOptimizedFilter2. Each of these methods executes one of
the optimization combinations (explained in Section [3.3.1). The general func-
tionality of these methods is about the same, since they each filter using the
same parameters. Since OptimizedFilter2 is one of the methods that required
most different types of adaptations for parallelization, only this method’s def-
inition is displayed here. The others can be found in the source code [12].

OptimizedFilter2

/* ok

EDITED BY REMI ALKEMADE

Edited:

o Added timers.

0 Made several wvariables ’final’, so they can be used by all

threads.

* o Created a MultiThreadLoop from the original loop where for
each pizel the Mean-Shift conwvergence point ts found.

* o Several wvariables are now defined within the main loop, to
avotid interference between threads.

* o Re-defined class properties to local wartiables to avoid
interference between threads.

* % %X %

* <pre>

* Performs mean shift filtering on the specified input image
using a user defined

* kernel. Previous mode information is wused to avoid re-applying
mean shift on

* certain data points to improve performance. To further improve
performance (during

* segmentation) points within h of a window center during the
window center’s

41

APPENDIX A. SOURCE CODE CONTRIBUTIONS 42

* traversal to a mode are associated with the mode that the
window converges to.

- mean shift filtering has been applied to the
input image using a user defined kernel

- the filtered image is stored in the private
data members of the msImageProcessor class.

@param float sigmaS Spatial bandwidth in pizels
@param float sigmaR Range bandwidth in the wunit of the data
*/
private void OptimizedFilter2(float sigmaS, float sigmaR)

*
* Usage: OptimizedFilter2(sigmaS, sigmaR)

*

* Pre:

* - the user defined kernel used to apply mean

* shift filtering to the defimed <input image

* has spatial bandwidth sigmaS and Tange band
* width sigmaR

* - a data set has been defined

* - the height and width of the lattice has been
* specified using method DefineLattice ()

* Post:

*

*

*

*

*

*

*

A.2 MeanShift

The superclass of MSImageProcessor, MeanShift, also required some changes
to four of its methods: LatticeMSVector, OptLatticeMSVector, uniformLSearch
and optUniformLSearch. OptLatticeMSVector is the optimized (Portl) ver-
sion of LatticeMSVector. The first uses optUniformLSearch, the latter uni-
formLSearch. The changes made to all of these methods are of the same nature:
anti-globalization of variables. Some values generated in (opt)UniformLSearch
were required in (Opt)LatticeMSVector, initially, class properties were used for
the communication of these values. A single object of this class is used by
multiple threads at a time, which causes interference between this threads re-
garding these properties. Therefore, in the adapted version of the program,
the values are propagated by return statements and passing parameters by ref-
erence. Since, of the two pairs of methods, OptLatticeMSVector and optUni-
formLSearch required most adaptations, their definitions are listed below.

OptLatticeMSVector
/% %
* EDITED BY REMI ALKEMADE
* Edited:
* o Use of return wariables of altered method optUniformLSearch,
* instead of global ’wsum’- and

’pointCount ’-properties.

* %

<pre>

* Computes the mean shift wector at a specfied window yk using
the lattice data

* structure. Also the points that lie within the window are
stored into the basin

* of attraction structure used by the optimized mean shift

algorithms.

APPENDIX A. SOURCE CODE CONTRIBUTIONS 43

* %

*

*/

Usage: OptLatticeMSVector (Mh_ptr, yk_ptr)
Pre:

- Mh_ptr and yh_ptr are arrays of doubles containing N+2
elements, where N is the number of feature (mo spatial)
dimensions.

- Mh_ptr is the mean shift wector calculated at window center
yk_ptr

Post:

- the mean shift wector at the window center pointed to by

yk_ptr has been
calculated and stored in the memory location pointed to by

Mh_ptr

- the data points lying within h of of yk_ptr have been stored
into the basin

of attraction data structure.
@param double[] Mh_ptr The Mean-Shift wvector will be stored in

this parameter.

@param double[] yk_ptr The current Mean-Shift point.

@param int[] pointList A list to keep track of visited points
(use empty list when starting the process).

@param int pointCount The number of points wvisited (use O when
starting the process).

protected int OptLatticeMSVector (double[] Mh_ptr, double[] yk_ptr,

* % % %

* %X %X % X %X %

int [] pointList, int pointCount)

optUniformLSearch

EDITED BY REMI ALKEMADE

Edited:

0 Redefined class property ’wsum’ as local wariable to avoid
interference between threads.

o Pass-on ’wsum’ and ’pointCount’ wvariables as return wvalues,
instead of globally.

<pre>

Performs search on data set for all points lying within the
search window

defined using a untform kernel. Their point-wise sum and count
is computed

and returned. Also the points that lie within thewindow are
stored into

the basin of attraction structure used by the optimized mean
shift algorithms.

Usage: optUnifromLsearch (My_ptr, yk_ptr)
NOTE: This method is the only method in the MeanShift class
that uses the weight

map asside from wuniformLSearch.

Pre:
- Mh_ptr is a length N array of doubles

- yk_ptr is a length N array of doubles

O OO UTHWN -~

=
WNR=RO

14

15
16
17
18
19

APPENDIX A. SOURCE CODE CONTRIBUTIONS 44

* - Mh_ptr is the sum of the data points found within search
window having

* center yk_ptr

*

* Post:

* - a search on the data set using the latice has been
performed, and all

* points found to lie within the search window defined using
a uniform

* kernel are summed and counted.

*

* - their point wise sum is pointed to by Mh_ptr and their
count s stored

* by wsum.

*

* - the data points lying within h of of yk_ptr have been
stored into the basin of

* attraction data structure.

*

* @param
this
* @param
* @param
(use
* @param

double[] Mh_ptr The Mean-Shift wvector will be stored in
parameter.

double[] yk_ptr The current Mean-Shift point.

int [] pointList A list to keep track of wisited points
empty list when starting the process).

int pointCount The number of points visited (use O when

starting the process).

*/

private double[] optUniformLSearch(double[] Mh_ptr, double[]
yk_ptr, int[] pointList, int pointCount)

A.3 MultiThreadLoop

The MultiThreadLoop class provides an easy way to transform regular for-
loops into parallel for-loops, running on any number of threads. The tasks will
automatically be split up and divided among the threads. The entire class is
shown below.

MultiThreadLoop.java

package multithreading;

import java.util.Arraylist;

import java.util.Iterator;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

/

*

* %X % %X %

Qauthor Remi Alkemade

This s the main multi-threading class of the program. It

provides an easy

* way to

convert a mormal for-loop into a multi-threaded

for-loop, dividing the

* domain

*/

over the avatilable threads.

public abstract class MultiThreadLoop

{

// The EzecutorService to run threads

APPENDIX A. SOURCE CODE CONTRIBUTIONS 45

20 protected ExecutorService executorService;
21
22 /**
23 * Creates a mnew instance of MultiThreadLoop
24 * @param ExzecutorService e The desired EzecutorService to run
all threads on.
25 */
26 public MultiThreadLoop (ExecutorService e)
27 {
28 executorService = e;
29 }
30
31 /o *
32 * This method should contain the for-loop to be parallelized.
Instead of the
33 * numbers in the for-definition, iMin and iMaz should be
used. These indicate the
34 * borders of the domain for each single thread.
35 * @param iMin The minimum value of the loop
36 * @param iMaxz The mazimum value of the loop
37 */
38 protected abstract void loop(int iMin, int iMax);
39
40 /*x
41 * This method is used to run the for-loop. The domain (iMin
to iMaz) is divided
42 * over the specified number of threads and each thread calls
the loop-method with
43 * 4ts own domain as parameters.
44 * @param iMin The minimum wvalue of the complete domain.
45 * @param iMaxz The mazimum wvalue of the complete domain.
46 * @param numThreads The number of threads to use.
47 */
48 public void run(int iMin, int iMax, int numThreads)
49 {
50 // Compute the size of the divisions of the total domain.
51 final int iSlice = (int)Math.ceil (1.0*(iMax-iMin) /
numThreads) ;
52
53 // Keep a list of Futures, obtained from the started
threads.
54 ArrayList <Future<?>> runningFutures = new
ArrayList <Future<?>>();
55
56 // Start the specified number of threads (as Runnables)
57 for (int t=0; t<numThreads; t++)
58 {
59 // Define lower and upper bounds of domain
60 final int min = t * iSlice;
61 final int max = Math.min(iMax, (t+1) * iSlice);
62 // Create new Runnable, looping through its own domain
63 Runnable task = new Runnable() {
64 public void run() {
65 loop (min,max) ;
66 }
67 }
68 // and submit to EzecutorService
69 Future<?> f = executorService.submit (task);
70 runningFutures.add (f);
71 }
72

73 // Wait for all Runnables to complete

APPENDIX A. SOURCE CODE CONTRIBUTIONS 46

for(Iterator<Future<?>> i=runningFutures.iterator();
i.hasNext ();)

{
Future<?> f = i.next();
try {
f.get();
} catch (InterruptedException e) {
e.printStackTrace ();
} catch (ExecutionException e) {
e.printStackTrace () ;
}
}

	Introduction
	Augmented reality and depth
	Applications
	Games
	Driver assist
	Practical assistance
	Information
	Telecommunication

	Methods for depth perception
	Stereoscopy
	Focus
	Perspective
	Familiarity and prior knowledge
	Active illumination

	Research question

	Stereoscopic matching
	Principle
	Constraints on stereoscopic matching for augmented reality
	Advantages
	Computational difficulties
	Basic Techniques
	Local Matching
	Segmentation
	Refinement

	Cooperative algorithm by Zitnick and Kanade
	The algorithm explained
	Speed
	Reproducibility

	Wang and Zheng's algorithm
	The algorithm
	Comparison to Zitnick and Kanade
	Speed
	Reproducibility

	Reproducibility in general

	Mean Shift segmentation algorithm
	Mean Shift segmentation principles
	Parallel computing
	Parallel Mean Shift segmentation
	Basic software
	Adaptations for parallel implementation

	Experimental results
	Implementation: processing time consistency
	Implementation: quality consistency
	Multithreading: speedup
	Multithreading: quality consistency

	Conclusions
	Parallel Mean Shift
	Speedup
	Output quality

	Reproducibility
	Stereoscopic depth perception for augmented reality
	Future research
	GPU implementation
	Pixel evaluation order
	Full optimization
	Alternative segmentation algorithms
	Alternative depth perception

	Bibliography
	Source code contributions
	MSImageProcessor
	MeanShift
	MultiThreadLoop

