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Identifying Attended Speech from Electrocorticographic Signals in a
‘Cocktail Party’ Setting

Abstract

People affected by severe neuro-degenerative diseases
(e.g., late-stage amyotrophic lateral sclerosis (ALS) or
locked-in syndrome) eventually lose all muscular con-
trol. These people are unable to use traditional assistive
communication devices that depend on residual muscle
control, or brain-computer interfaces (BCIs) that rely on
the ability to control gaze. Auditory and tactile BCIs
are considered as some of the few remaining communi-
cation options for such individuals.

In this study we aimed to determine the viability of au-
ditory attention to speech as a paradigm for BCI. We
analyzed data from an experiment in which subjects at-
tended to one of two speakers, to determine if the at-
tended speech can be identified with better than chance
performance in single trials.

Our results show that we can correctly identify the at-
tended speech in 7 out of 12 subjects, with an accuracy
of 80% over segments of data between 4-6 seconds in
length, using a regularized logistic regression. Addi-
tionally, with segments as short as 2 seconds, the av-
erage accuracy for these subjects was 70%, commonly
regarded as sufficient accuracy for BCI communication.
When only a single ECoG channel (i.e., cortical loca-
tion) was used for classification, the attended speech
could be identified in 5/12 subjects, averaging to 77%
accuracy across segments 4-6 segments in length.

Even though we were unable to determine why this ap-
proach failed to produce results for 5 participants, we
believe that these results demonstrate the potential of
this paradigm for BCI. Obvious next steps for this re-
search include a further investigation of the large sub-
ject variability observed, the development of an online
implementation of this paradigm and/or an expansion
of the current experimental set up to determine how the
obtained classification accuracy scales with an increased
number of simultaneously presented speech stimuli.

Introduction
Communication is an essential part of being human, al-
lowing us to interact with each other, establish relation-
ships and express needs and desires.

This fundamental human ability can become compro-
mised in people affected by paralysis, as they are no
longer able to gesture or speak. Conventional assis-
tive devices (e.g., eye trackers or tongue/cheek switches)
reestablish communication but generally rely on some
residual muscle control (eye or mouth movements). In
contrast, Brain-Computer Interfaces (BCIs) translate
brain signals directly into communication output, effec-
tively circumventing the otherwise necessary muscular
pathways (Wolpaw et al., 2002). However, BCIs still de-
pend on perceptual modalities, such as auditory, tactile
or, most frequently, visual perception, for stimulation or
feedback.

This visual modality is popular as the resulting BCIs
are generally most usable and intuitive. However, recent

studies have shown that visual BCIs, such as the popular
‘P300’ matrix speller, still depend on eye-gaze (Brunner
et al., 2010; Treder and Blankertz, 2010), which is lost
in people affected by severe neuro-degenerative diseases
(e.g., late-stage ALS or locked-in syndrome).

This has led to an increased interest in BCI paradigms
that use non-visual sensory modalities, such as auditory
(Hill and Scholkopf, 2012; Belitski et al., 2011; Furdea
et al., 2009; Klobassa et al., 2009; Halder et al., 2010;
Schreuder et al., 2010) or tactile stimulation (Brouwer
and van Erp 2010; van der Waal et al. 2012; see Riccio
et al. 2012 for review). A successful paradigm for these
auditory BCI’s allows users to make a binary decision
by attending to one out of two simultaneously presented
streams of tones (Hill and Scholkopf, 2012). From the
brain activity the stream that was attended is inferred,
allowing the user to encode their intention by attending
to a specific stream.

Drawbacks of this approach are the fact that the stim-
uli streams used for this BCI are artificial, requiring
cognitive effort to continiously attend to the streams,
and the application is limited in the number of streams
that can be presented simultaneously. To address this
first issue, there have been attempts to develop audi-
tory BCIs that use speech stimuli instead of artificial
tones (Lopez-Gordo et al., 2012). However in this ap-
proach, the speech stimuli (i.e., words or phonemes) are
presented in a specific temporal pattern, to elicit brain
responses in a predictable pattern. Following speech is
a natural human ability and attending to one speaker
while there are speakers or other noise in the background
is a task we perform almost daily (known as the cocktail
party effect). Yet, if this speech structure is altered, the
intuitiveness of this approach is likely reduced. Ideally,
we would want to use natural speech as stimulation for
such a BCI.

Recent advancements in the neuroscience of speech
perception lead us to believe that it should be possi-
ble to identify which speech was attended out of mul-
tiple, simultaneously presented speech stimuli. Specif-
ically, these advancements have shown that the neural
tracking of speech can be measured with electrocorticog-
raphy (ECoG) (Martin et al., 2014; Potes et al., 2012,
2014; Pasley et al., 2012; Kubanek et al., 2013), and that
this neural tracking is selective to the attended speech
(Zion Golumbic et al., 2013; Kerlin et al., 2010; Mes-
garani and Chang, 2012). However, whether the at-
tended speech can be identified in single trials and to
what extent this effect may support BCI communication
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remains to be determined. To answer these questions
we analyzed a dataset from an auditory attention ex-
periment, in which subjects attended to one out of two
speakers, while their brain activity was measured with
ECoG.

Organization of this thesis

In the next section, the topics relevant to this thesis will
be described in more detail. These topics include the
research on the neural tracking of speech that prompted
this research and the measuring of brain activity using
ECoG. At the end of this background section I will state
the questions we aimed to answer with this research. In
the subsequent section I will describe the auditory atten-
tion experiment that was performed to obtain the data
we analyzed. The section ‘Data analysis’ will then de-
scribe the analysis we used to obtain our results. These
results will then be detailed in the following section. Fi-
nally, in the ‘Discussion’, the research questions will be
addressed on the basis of these results, together with the
conclusion that the results show that auditory attention
to speech indeed has potential as a paradigm for BCI.
Additionally some remaining questions will be discussed,
together with suggestions for follow-up research.

Background

Neural tracking of speech

Perception of speech is a task people perform daily with
relatively little effort. However, speech perception is not
a trivial task, evidenced by the fact that the first steps in
automated speech recognition were taken in the 1950s,
but even now, more than 60 years later, speech recog-
nition only plays a limited role in our interaction with
computers (e.g., SIRI; Apple Inc. Cupertino, CA).

For human speech perception, the integrity of the tem-
poral structure of speech is crucial to the understanding
of speech. If this temporal structure is altered by slow-
ing or increasing the speed, speech can become unintel-
ligible (Ahissar et al., 2001). On the other hand, when
non-temporal properties are removed, and only modu-
lation of the speech amplitude over time is maintained,
speech remains intelligible (Shannon et al., 1995). This
specific spectro-temporal structure of speech is a result
of the combination of linguistic elements at different lev-
els (e.g., phonemes, syllables, words and phrases) that
give speech a variation in sound intensity over time.

Recent studies have shown that the neural response to
speech is reflective of this spectro-temporal structure of
the perceived speech. This has been demonstrated by re-
constructing speech from a multitude of neural features
and by showing that the envelope of specific frequency
bands (e.g., high gamma), at specific cortical locations
(e.g. Superior Temporal Gyrus, STG), track the enve-
lope of perceived speech (Martin et al., 2014; Potes et al.,
2012, 2014; Pasley et al., 2012; Kubanek et al., 2013).

On top of that, these findings have recently been ex-
tended to simultaneously presented streams of speech
(Zion Golumbic et al., 2013; Kerlin et al., 2010; Mes-
garani and Chang, 2012). This is of interest for neuro-
science as the precise mechanism that allows us to per-
form this task where we attend to a single speaker in
a multi-speaker environment is unknown. This ability
is called the ‘cocktail party’ effect, and it is this abil-
ity that makes attention to speech a promising approach
for BCIs. These studies shown, that in such a cock-
tail party situation the neural tracking is stronger for
attended than for the unattended speech.

These findings form the basis for the research in this
thesis, as they indicate that these measures of neural
tracking could allow for the identification of the attended
speech in single trials. Note that the majority of the
cited research on speech perception in this section was
obtained from ECoG experiments, similar to the exper-
iment analysed in this study.

Electrocorticography (ECoG) ECoG is a method
of measuring brain activity, in which electrodes are
placed directly on the surface of the brain. Compared
to regular EEG, in which electrodes are placed on the
scalp, this has the advantage that the measured activity
has not yet passed through the skull. Ths is relevant,
as the skull is not very conductive, which reduces the
strength of the signal and makes it more difficult to de-
termine the original source of the activity in EEG. ECoG
therefore has much higher spatial resolution than EEG,
though it is limited in its spatial resolution to those ar-
eas of the cortex on which the grids were placed. This
high spatial resolution, combined with the high temporal
resolution that is inherent to electrical measurements of
brain activity, makes ECoG particularly interesting for
BCI.

However, ECoG is highly invasive, as it requires a part
of the skull to be removed surgically (a craniotomy), to
place the electrodes on the cortex. For this reason, ECoG
research is performed only in cases of medical necessity.
This is, for instance, the case for epilepsy patients who
suffer from severe epileptic seizures and do not respond
sufficiently to medication. For these patients, ECoG
electrodes are used to localize the epileptogenic zones,
and to identify important functional cortical areas, prior
to surgical resection.

Research has shown that BCI’s using ECoG per-
form much better than their EEG counterparts (Brunner
et al., 2011). While ECoG is highly invasive, and is cur-
rently not widely used for BCIs, for people that have
few to no remaining options for communication, such an
invasive method might be an acceptable trade off.

Research Questions

In this thesis, we analyzed a dataset from a previously
conducted auditory attention experiment, in which sub-
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jects attended to one of two speakers in a cocktail party
setting. The goal of this research was to analyze the
data to answer the following research questions. The
main question for this thesis:

Q1: Can the attended speech be identified from
the brain activity, in single trials, with better than
chance performance?

While better than chance performance is in theory suf-
ficient to extract information from a persons brain activ-
ity, in practice it does not necessarily lead to a useable
BCI. Commonly, for a binary BCI, classification accu-
racy of 70% is considered sufficient for communication
(Kübler et al., 2001). Furthermore, the accuracy is not
the only relevant factor, which leads to the following ad-
ditional questions.

Q1a: Is this performance sufficient for communica-
tion (>=70%)?

Q1b: What is the minimum length of stimulation
required for this performance?

An additional factor that is relevant for a potential
BCI application is the invasiveness of ECoG. The cor-
tical electrodes implanted in the epilepsy patients that
participated in this experiment consisted of grids of a
few up to a few dozed of electrodes, covering a range of
cortical areas. The size of the craniotomy for the place-
ment of these electrodes, depends to a degree on the size
of the grid that is placed. Notably, if only a single elec-
trode would be required, a single drill hole in the skull
could suffice. This leads to an additional question:

Q1c: How well can the attended speech be
predicted, when only a single ECoG channel
(i.e.,cortical location) is taken into account?

Auditory Attention Experiment

Subjects

Twelve subjects participated in this auditory attention
experiment. Each of them underwent temporary place-
ment of subdural electrodes as part of their clinical treat-
ment for epilepsy. These electrodes were implanted for
a duration of 5–7 days. During this period, subjects vol-
untarily participated in our study. Grid placement and
duration of clinical monitoring were based solely on the
requirements of the clinical evaluation.

The twelve subjects (7 males, 5 females) were between
15–60 years old (median 45), each with an IQ higher than
75 (median 95). None of the subjects had a history of
hearing impairment. A Wada test was performed to de-
termine the language dominance of the subjects (Wada
and Rasmussen, 1960). In the Wada test, the hemisphere
that is responsible for language is determined by alterna-
tively shutting down one of the hemispheres by injecting

a sedative. The degree to which this degrades language
abilities in the patients signifies the importance of this
hemisphere in language function. This is used in the clin-
ical treatment of these epilepsy patients, to determine
whether language function is present in the hemisphere
targeted for surgical intervention.

As language dominance may be relevant for this study,
the results of this Wada test are summarized in Table 1,
together with other relevant subject information. All
subjects provided informed consent, and the study was
approved by the institutional review board of Albany
Medical College.

The subjects had between 57 and 133 subdural elec-
trodes implanted over their left or right hemisphere.
These electrodes consisted of platinum-iridium discs (4
mm in diameter, 2.3 mm exposed), embedded in sili-
con and spaced 6–10 mm apart (Ad-Tech Medical In-
strument Corp., Racine, WI). The cortical locations of
these electrodes were verified using post-operative radio-
graphs (anterior-posterior and lateral) and computed to-
mography (CT) scans. Subject-specific 3D cortical brain
models were created from high-resolution pre-operative
magnetic resonance imaging (MRI) scans, using Curry
software (Neuroscan Inc, El Paso, TX). The MRIs were
co-registered by means of the post-operative CT and the
electrode coordinates were extracted according to the
Talairach Atlas (Talairach and Tournoux, 1988). These
electrode coordinates are depicted on Talairach template
brains in Figure 1. Across all subjects, electrode cov-
erage included frontal, temporal, parietal and occipital
cortical areas.

Data Collection

ECoG signals were recorded from the implanted elec-
trodes using g.USBamp or g.HIamp (g.tec, Graz, Aus-
tria), at a sampling rate of 1200 Hz. Data acquisi-
tion and stimulus presentation were accomplished us-
ing the BCI2000 software platform (Schalk et al., 2004;
Mellinger and Schalk, 2007; Schalk and Mellinger, 2010).
Clinical monitoring occurred simultaneously with data
acquisition for this experiment by using a connector that
split the cables coming from the patient into two sets,
one that was connected to the clinical monitoring system
and another set that was connected to the g.tec ampli-
fiers. This ensured that clinical care or clinical data col-
lection was not compromised at any time. Two electro-
corticographically silent electrodes (i.e., locations that
were not identified as eloquent cortex by electrocortical
stimulation mapping) served as ground and reference.

Stimuli and Task

Auditory stimuli were created from fragments of
speeches from two speakers (John F. Kennedy and
Barack Obama; each delivering their inauguration ad-
dress). For a given stimulus, a fragment from John
F. Kennedy was paired with a fragment from Barack
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Table 1: Subject information including age, sex, handedness, hemispheric language dominance, hemisphere of the
implanted grid and the total number of electrodes. The corresponding electrode locations are depicted in Figure 1.

Subject Age Sex Handedness Language dominance Grid hemisphere Number of electrodes

1 49 F Left Left Left 72
2 28 F Right Bilateral Left 120
3 45 M Right Left Left 58
4 54 M Left Left Right 75
5 60 M Right Left Lef 59
6 25 F Right Left Left 98
7 15 F Right N/A Right 71
8 45 M Right N/A Left 81
9 45 M Left Left Left 61
10 28 M Right Left Left 133
11 52 M Left Left Left 64
12 24 F Right Bilateral Left 128

Figure 2: Experimental setup and method. Sub-
jects selectively directed auditory attention to one of two
speakers (John F. Kennedy and Barack Obama) in a
cocktail party setting.

Obama. Fragments consisted of up to a few sentences of
speech, between 15 and 25 seconds in length, with each
fragment pair matched in length (10 fragment pairs in
total). To simulate a cocktail party setting the paired
fragments were mixed into a binaural presentation. This
binaural presentation consisted of two auditory streams,
one presented to the left ear and one presented to the
right ear. A given stimulus contained 20% of the volume
of one speaker and 80% of the other speaker for one ear,
with the opposite volume configuration for the other ear.
From each pair of fragments, two different stimuli were
created, so that each fragment was once presented pre-
dominantly left and once predominantly right, resulting
in 20 different stimuli.

The subjects’ task consisted of selectively directing au-
ditory attention to one of the two speakers in the stimuli.
These stimuli were presented through in-ear earphones.
Each trial started with an auditory and visual cue indi-

cating the target speaker and side, followed by a stimulus
and ending in a rest period of 5 s. This experimental set
up is depicted in Figure 2

In the experiment each stimulus was presented two
times, once with Obama as the target speaker and once
with John F. Kennedy. Over these four presentations,
the aural location (left and right) and the identity of
the attended speaker (JFK and Obama) were permuted.
In other words, over these four trials, the subjects were
required to attend to each of the two speakers at each of
the two aural locations.

This resulted in a total of 40 trials (i.e., 10 segments,
each presented 4 times) of 12.5 min total length that
were presented in a counter-balanced order. These 40
trials were divided into 5 blocks of 8 trials each with a 3
min break between each block.

Data analysis

The data from the experiment consisted of the ECoG
data for each of the subjects, the auditory stimuli
(left and right) and the original audio fragments of
each speaker from which the auditory stimuli were con-
structed.

The goal of the analysis was to determine whether
it is possible to identify which speech was attended on
the basis of the ECoG data and the auditory data. we
measured the neural tracking of each of the individual
fragments (from which the stimuli for a given trial had
been composed) rather than measuring the tracking of
the presented stimuli, as the audio fragments had been
mixed together for this. From these audio fragments
we created two data vectors, one labeled attended and
one labeled unattended, that contained for each trial the
fragment that was attended or unattended, respectively.

The main steps taken in this data analysis consisted of
the pre-processing of the ECoG data, the extraction of
features from the ECoG data and the auditory data, and
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Figure 1: Electrode coverage. Electrode coverage and density varied across subjects. Electrode locations (in black)
included frontal, temporal, parietal and occipital cortical areas. Four subjects (2, 6, 10 and 12) were implanted with
high-density grids (electrodes spaced 6 mm apart).

the classification procedure in which the predictiveness
of these features was measured.

Preprocessing

The ECoG data from each subject was preprocessed to
remove noise. The data was first high-pass filtered at 0.5
Hz to remove drift. We then re-referenced all channels,
using a common average reference, to remove the noise
common across channels. This reference was composed
from only those channels for which the 60 Hz line noise
was within 1.5 standard deviations of the average. In
other words, the amount of 60 Hz line noise was used as
an indicator of the quality of the data from that channel
and channels that were considered noisy by this indi-
cator were excluded from the common average, to avoid
spreading this noise to other channels. Finally, we used a
notch filter to remove any 60 Hz line noise that remained
after the common average reference.

Feature extraction

For the purpose of this research, neural tracking is de-
fined as the correlation between a speech envelope and a
high-gamma ECoG envelope that was measured during
the presentation of this speech envelope. This was cho-
sen based on existing studies that used this as a measure
of neural tracking (Potes et al., 2012; Kubanek et al.,
2013).

To compute this correlation between the ECoG enve-
lope and the speech envelope, specific frequency bands
needed to be extracted from the ECoG signals and the
speech data, followed by an envelope extraction and a
resampling to the same sampling rate.

For this correlation analysis there are three factors

that are relevant: the frequencies represented in neural
signal, the temporal relationship between the neural
signal and the speech envelope and the spatial distribu-
tion of the neural signal across the cortex . Therefore
there are three relevant dimensions to this correlation
analysis: frequency, time and space.

Exploratory research on feature dimensions To
determine which of those dimensions were relevant for
our analysis we performed some exploratory research.

With regard to the frequency band, the previous
studies used a high-gamma frequency band: 70-150 Hz
Kubanek et al. and 70-170 Hz Potes et al.. To deter-
mine the frequency band that was optimal for the mea-
suring of neural tracking we extracted frequency bands,
in bins of 5 Hz, from 0 to 250 Hz, and correlated the
envelopes of these frequency bands with the attended
and unattended speech envelopes. The results of this
analysis, across different ECoG channels (i.e.,cortical lo-
cations), can be found in Figure 5, for subject 1. Inspec-
tion of these channel x frequency plots across subjects,
showed that generally the highest correlations were ob-
tained somewhere in the range of 70-170 Hz, with addi-
tional positive correlations around the edges of this band,
in some cases. Additionally, this analysis showed a neg-
ative correlation, between the attended speech envelope
and the ECoG envelopes in the lower frequencies ( 5-
30Hz). However, these lower frequencies did not appear
to encode additional information in preliminary classifi-
cation analyses and were therefore not included in our
final analysis pipeline. Note that to perform this analy-
sis, we already corrected for the temporal delay between
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the speech envelope and the ECoG envelope.

The temporal relationship between the presented
speech envelope and the ECoG envelope is relevant, be-
cause there is a delay between this presentation and the
cortical processing of this stimulus. To get an estimate
of the delay between the presentation of speech and the
cortical processing of this speech, we crosscorrelated the
two signals with each other. This crosscorrelation cal-
culates the correlation between the two signals, while
one signal is shifted repeatedly in relation to the other.
Where this crosscorrelation is the highest, the speech and
the ECoG signal are optimally aligned, and from this the
optimal shift can be identified. The existing research in-
dicated that this delay can vary both per subject, and
per channel within a subject. We therefore analyzed
the crosscorrelations for the different EcoG channels, for
each subject. The results of this analysis can be found,
in Figure 3, for 2 of our subjects. These results show
that while there is a variation in the delay across corti-
cal locations and subjects, the peaks of this correlation
are relatively wide (in the order of 100ms), and the cor-
relation with the attended speech is on average larger
than with the unattended speech, even if the crosscor-
relations are not measure at their peak. From this we
concluded that it would most likely be sufficient to cor-
rect for this delay across subjects and channels, rather
than adding this as a parameter or additional feature
dimension to our classification. This delay was set as a
shift of 100ms of the ECoG signals for each subject and
channel, relative to the speech envelope (see Figure 4.

For each subject, the brain acitivity was measured
with multiple ECoG electrodes, distributed across the
cortex. By calculating the correlation between the
speech envelopes and the ECoG envelopes for each ECoG
channel, we obtained a spatial distribution of neural
tracking across the cortex. These results can be found in
Figure 6, for each of the subjects. We included the differ-
ent ECoG channels as a dimension in the classification
features, so that the classifier could take advantage of
the spatial patterns of neural tracking for identification
of the attended speech.

Classification features Based on the exploratory re-
search we analyzed the preprocessed ECoG data and the
auditory data as follows:

From the preprocessed ECoG signals, we extracted
the high gamma frequency by applying an 18th order
70–170 Hz Butterworth filter. We obtained the envelope
of the filtered signals by taking the absolute values of
the Hilbert transform of the filtered signal. Finally, we
low-pass filtered the envelopes at 6 Hz and downsampled
them from their original sampling rate of 1200 Hz to 120
Hz.

From the audio of the two speakers we extracted the
envelope of the speech band (approximately 80–6000 Hz)
by applying a 10th order 0.08–6 kHz Butterworth filter

to the two audio signals. The envelope of the speech
in this frequency band was obtained from the Hilbert
transform of the filtered signal. We then also low-pass
filtered these at 6 Hz and downsampled them from their
original sampling rate of 44100 Hz to 120 Hz.

At this point, we corrected for the delay between the
speech envelope and the audio envelope, by shifting the
speech envelopes 12 samples (100 ms at 120 Hz), relative
to the ECoG envelopes.

Because data from the experiment was obtained in tri-
als of 15-25 seconds of length, and we were interested in
analyzing the data at much shorter timescales, we seg-
mented the data into trial segments, excluding the first
2 s of each trial. The first 2 seconds were excluded from
this analysis to exclude any onset effects from tuning
in to the target speaker. To be able to determine the
relationship between stimulation length and the classifi-
cation performance, we repeatedly applied segmentation
process to obtain trial segments sets that varied in seg-
ment length from 100 ms to 10 s. For each trial seg-
ment, we have two speech envelopes A and B. For each
speech envelope A, B, we have an assignment ` ∈ {0, 1},
that denotes whether an envelope was attended (1) or
unattended (0). For each speech envelope we extract a
feature vector by calculating the spearman’s rank corre-
lation. This spearman’s rank correlation was chosen over
the standard Pearsons correlation as it is robust against
outliers and was previously used in this context (Potes
et al., 2012). The correlation for a speech envelope P
and an ECoG envelope Q, is then defined as:

Corr(P,Q) =
σ(p, q)

σ(p, p)σ(q, q)
(1)

where
p = rank(P ), q = rank(Q), and rank(x), is a function
that ranks the samples in x from large to small.

σ(x, y) calculates the covariance between variables x
and y:

σ(x, y) =

∑n
i=1(xn − n̄)(yn − ȳ)

N − 1
(2)

with N as the number of samples in x (and y).

By taking the correlation for each trial segment and
each ECoG channel, we obtain two feature matrices (RA
and RB) of size T x C, where T is the total number of
trials and C the number of ECoG channels. A feature
matrix RP with P ∈ {A,B} is thus formally defined as:

RP =

Corr(P1, Q1,1) · · · Corr(P1, Q1,C)
...

...
Corr(PT , QT,1) · · · Corr(PT , QT,C)

 (3)

Each of these feature matrices has a corresponding vector
L of length T, that denotes for each trial segment if the
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correlations in the feature matrix from this trial segment
were obtained from the attended (`t = 1) or unattended
speech envelope (`t = 0).

Classification

The extracted features were used to predict which of
the two speech envelopes was attended in a given trial.
Because the number of channels used for classification
would be relevant for future applications of this approach
for BCI, we performed two classification analyses: one in
which all channels were passed to the classifier, and one
where only a single channel was used to predict which
speech envelope the subject attended (a multivariate and
a univariate classifier respectively).

Multivariate classification For the multivariate
classification we used regularized (elastic net) logistic re-
gression.

Given a vector of class labels y with y ∈ {1, 0}, and
a matrix of features x, logistic regression estimates a
vector of weights β, such that the following formula can
be used to predict the probability that yi = 1, for some
an instance i out of all instances N .

p(Y = 1|xi, β) =
1

1 + exp−βT xi
(4)

The β-weights are estimated during training of the
classifier, in which they are chosen such that the differ-
ence between the predicted class p(Y = 1|xi, β) and the
actual class label yi is minimized.

min
β

N∑
n=1

− log p(y(n)|x(n), β) (5)

Regularization of a classifier means to impose restric-
tions on the classifier weights, by including a penalty
term on the size of the weights during estimation. For
elastic net regularization this involves the combination
of two other regularization approaches, a lasso regular-
ization and ridge regression regularization. This elastic
net regularization is defined as follows:

Fa(β) =
(1− α)

2
||β||22 + α||β||1 (6)

Here the ||β||22 term is designed to encourage the
weights to be 0 (lasso), while the ||β||1 encourages
weights to be small (ridge regression). The α param-
eter controls to which degree these regularization terms
individually affect the β weights. If α = 0 this regular-
ization method approaches ridge regression regulariza-
tion, while if α = 1, this regularization is effectively a
lasso regularization. The degree of regularization is con-
trolled by a λ parameter. In our elastic net regularized
logistic regression this leads to the following estimation
of weights.

min
β

N∑
i=1

− log p(y(n)|x(n), β) + λ(
(1− α)

2
||β||22 + α||β||1)

(7)

For our purposes, the logistic regression was used to
predict, for a given trial segment t, whether or not fea-
ture vector Rt was obtained from correlation with the
attended speech of a given trial. We used regulariza-
tion with this logistic regression, as the number of ECoG
channels was larger than the number of channels that we
expected to contribute to the prediction. Regularization
effectively encourages the classifier to exclude channels
from the classification, thereby reducing the chance that
the logistic regression will produce an overfitted model.
To estimate the β weights, a subset of the trials was
assigned to training (train ⊂ T ). The training set R,
was then obtained by vertically concatenating RA,train
and RB,train. Analogously, the corresponding class la-
bel vector L was obtained by concatenating LA,train and
LB,train. The β weights were then estimated as follows:

min
β

N∑
i=1

− log p(`(n)|R(n), β) + λ(
(1− α)

2
||β||22 + α||β||1)

(8)

Where N is the number of instances in R (= 2 * the
total number of trials in train). α was set to 0.5, and λ
was a hyperparameter that was estimated using a 5-fold
crossvalidation across a range of λ-values (as the classi-
fication procedure includes a crossvalidation this was es-
sentially the inner loop of a nested crossvalidation). This
weight estimation was performed by a matlab implemen-
tation of regularized logistic regression (glmlasso, with
a ‘logit’ link function).

The β weights obtained from this optimization, effec-
tively weighted the contribution of each channel (i.e.,
cortical location) to the prediction. For testing, the two
instances from the same trial segment t, RAt and RBt
were paired. A prediction for each was obtained using
the equation from (4):

p(yt = 1|Rt, β) =
1

1 + exp−βTRt
(9)

If the p(yt = 1|Rt, β) that corresponded to the attended
speech envelope was larger than the p(yt = 1|Rt, β) that
corresponded to the unattended speech envelope, then-
the trial segment t was considered classified correctly (if
p(yt = 1|RAt, β) = p(yt = 1|RBt, β), the trial segment
would be considered classified correctly with probability
0.5).

Univariate classification For the univariate classifi-
cation, the prediction of the attended and unattended
stream relied on the assumption that the correlation of
the ECoG envelopes with the attended speech envelope

7



Figure 3: Temporal relationship between speech envelope and neural signal. The graphs show the crosscor-
relation between the speech envelope and a subset of the ECoG envelopes, for two different subjects: (A) subject 1
and (B) subject 2. The brain models show the corresponding cortical locations. For these subjects the delay ranges
between 100 to 200 ms.

would be higher than with the unattended speech enve-
lope. The training of this classification consisted of the
identification of the best channel c (i.e., the channel for
which this assumption was most consistently true). As
with the multivariate classification, the two instances (A
and B) from the same trial segment t, for the channel c,
RAtc and RBtc were paired. If the Rtc that corresponded
to the attended speech envelope was larger than the Rtc
that corresponded to the unattended speech envelope,
the trial segment t was considered classified correctly (if
RAtc = RBtc, the trial segment was considered classified
correctly with probablity 0.5).

Classification procedure These two classification
methods were applied to each of the sets of trial seg-
ments (varying in length from 100 ms to 10 s). The
classification procedure consisted of 10 iterations of a
10-fold crossvalidation, resulting in 100 cross-validated
performance values for each subject for each of the seg-
mentation lengths. Note that the partitioning of the
training and test set for the different crossvalidation folds
ensured that two feature vectors for each trial segment,
were either both in the training set or both in the test
set.

To determine the significance of this performance, a
randomization test was performed on the overall anal-
ysis for the 5 s segmentation length. The goal of such
a randomization test is to verify that the ability of the
classifier to predict the correct class is a result of the in-
tended property of the data, and not some other factor in
the data or property of the classification procedure. For
the randomization test, the speech envelope vectors were
reversed, effectively removing the temporal relationship
between the speech and the neural envelopes, while keep-

ing other properties intact (e.g., autocorrelation between
the signals). To determine a distribution of random per-
formance, we repeated this analysis 100 times on data
for which the reversed envelope was shifted by random
amounts of time. We then determined the likelihood
(i.e., the p-value) that our cross-validated performance
was different from random performance.

Results

Temporal relationship between speech
presentation and neural response

As described in the ‘feature extraction’ section, to get an
accurate measure of the neural tracking of the speech, it
was necessary to correct for the delay between the pre-
sentation of the speech and the neural tracking. The ex-
tent of this delay was determined by calculating, for each
subject and each channel, the cross-correlation between
the ECoG envelopes and the attended and unattended
speech envelope. Figure 3 shows these results for two
different subjects, and a few selected channels. This fig-
ure shows that the delay is in the order of 100 to 200 ms
and can vary per cortical location. For these subjects
and the selected channels, the correlation with the unat-
tended speech is generally smaller than the correlation
with the attended speech, even when not correcting for
the delay optimally.

For our classification analysis we opted for selecting
a single delay correction across subjects and channels,
as explained in the feature extraction section of ‘Data
Analysis’. The results in Figure 4 (blue trace) shows
the correlation with the attended, averaged across all
subjects. The results from a univariate classification for
each subject (red trace), also peak at 100 ms.
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Figure 4: Lag between speech presentation and
neural response. The correlation with the attended
speech (blue) and classification accuracy (red) is shown,
averaged across subjects, for latencies between 0 and 250
ms. Both correlation and univariate accuracy peak at
100 ms.

Frequency response for neural tracking of
speech

To determine the frequencies in which neural tracking
took place, we correlated the attended and unattended
speech envelopes with the ECoG envelopes in different
frequency bands (bands of 5 Hz between 0 and 250 Hz).
Figure 5 shows the correlation with the attended and
unattended speech envelopes for the different channels
or cortical locations for each of the frequency bins, for
subject 1. This figure shows a few different effects: First,
there are only a number of channels for which a response
can be identified (with the 3 main channels correspond-
ing to those from Figure 3). Secondly, there appear to
be two different responses across frequencies: one, a neg-
ative correlation with the speech envelope in the low fre-
quencies (approximately 5-30 Hz), which is stronger and
distributed across more channels for the attended speech,
and two, a positive correlation in the high frequencies,
that is similarly more prominent for the attended speech.
The strongest correlations in this frequency range, for
the responsive channels, correspond roughly to the cho-
sen frequency band of 70-170 Hz, surrounded by some
additional frequencies, especially for channel 56.

Spatial distribution of neural tracking of
speech

To get an insight on the cortical locations that track
speech, we displayed the correlations for each of the cor-
tical locations onto the 3D template brain model (previ-
ously shown in Figure 1). For this we used an existing
matlab package that, instead of simply plotting a value
for each electrode, projects these values back onto the
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Figure 5: Frequency response of neural tracking
The correlation of the ECoG envelopes with the at-
tended and unattended speech envelopes is displayed in
frequency bins of 5 Hz, from 0 to 200, for each of the
ECoG channels of subject 1. The higher frequencies
correlate positively with the attended speech, while the
lower frequencies show a negative correlation. This ef-
fect is stronger for the attended speech, than it is for the
unattended speech.

cortical surface as an estimation of the original corti-
cal areas that contributed to the activity measured by a
given electrode (Kubanek et al., 2013).

The results in Figure 6 show the neural tracking of
the attended (•) and unattended speech (◦), for each
subject. This neural tracking is represented as an acti-
vation index that expresses the correlation between the
high gamma ECoG envelope and the speech envelope, for
each cortical location. For this analysis the correlations
were determined across all trials.

These projections show that the neural tracking is fo-
cused around two cortical areas. The first cortical area is
the Superior Temporal Gyrus (STG), which shows acti-
vation in all 12 subjects. An additional cortical area, the
superior pre-motor cortex, is activated in only a number
of subjects (i.e., in subjects 2, 3, 4 and 8).

A comparison between the attended and unattended
activation indices indicates that neural tracking is selec-
tive to the attended speech envelope, as the activation
index is generally stronger and more widely distributed
for the attended speech.
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Figure 6: Neural tracking of attended (•) and unattended (◦) speech. Neural tracking is measured as the
correlation between the high gamma ECoG envelope and the attended or unattended speech envelope. An activation
index that expresses the −log(p) of this correlation is projected on the brain model for each subject. The comparison
between the attended and unattended activation indices shows that neural tracking is selective to the attended speech
envelope, as the activation index is generally stronger and more widely distributed in this case.

Identification of attended speech

The main question of this thesis concerns the identifica-
tion of the attended speech in single trials. Figure 7A
shows results from the classification of single trials seg-
ments. Here, the classification accuracy is shown for
each subject, for both the univariate (blue) and the mul-
tivariate (orange) classification method. This accuracy
was obtained from averaging over 4, 5, and 6 second
trial segments, to give a stable estimate of performance.
The subjects are presented in the order of their average
classification accuracy. Performance significantly better
than chance is indicated with an asterisk (determined
through the randomization test, adjusted for multiple
comparisons by using a false discovery rate with q =
0.05).

For 5 subjects, both methods could predict the at-
tended speech better than chance, and for 2 other
subjects only the univariate performance performed at
chance level. For the remaining 5 subjects neither
method achieved significant performance. From here on,
those first 7 subjects will be referred to as ‘significant
subjects’, while the latter will be referred to as ‘non-
significant subjects’. It is useful to make a distinction
between these two groups, not to simply ignore these
non-significant subjects, but to draw comparisons across
results for these two groups.

Figure 7B shows the average classification accuracy
across significant subjects only. For these subjects, a

comparison between the two methods shows an 11%
higher classification accuracy for multivariate regression
compared to univariate regression (70% vs. 81%, paired
t-test: p < 0.0003).

To tie these results to the results from the previous
section, we averaged the activation index topographies
across significant and non-significant subjects. These
topographies are shown in Figure 8. In these results,
the significant subjects (Figure 8A) show a stronger and
more distributed response to the attended (•) than to
the unattended speech (◦). In contrast, non-significant
subjects (Figure 8B) show only a marginal difference in
their response to the attended (•) compared to the unat-
tended speech (◦).

Relationship between trial segment length
and classification accuracy

The classification analysis was performed on trial seg-
ments ranging in length from 100 ms to 10 s, to deter-
mine the relationship between the trial segment length
and the classification accuracy. The results in Fig-
ure 9 show the classification accuracy for the differ-
ent trial lengths for significant subjects (Figure 9A)
and non-significant subjects (Figure 9B). For the sig-
nificant subjects, the univariate (blue) and multivari-
ate (orange) accuracy rises steadily, and for the mul-
tivariate classfier the performance reaches 86.5% for 10
s segments. Throughout the investigated trial length,
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Figure 7: Classification accuracy using a univariate (blue) or multivariate (orange) classification
method, for trial segments 4-6 s in length. (A) Accuracy per subject, sorted by average performance. For
subjects 1-7 (‘significant subjects’) the accuracy is significant for at least one classification method (adjusted for
multiple comparisons using a false discovery rate with q = 0.05). Significance is marked with an asterisk. (B) Aver-
age accuracy across subjects, for subjects with statistically significant performance. A comparison between the two
methods shows an 11% higher classification accuracy for multivariate regression compared to univariate regression
(70% vs. 81%, paired t-test: p < 0.0003).
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Figure 8: Cortical tracking of attended (•) and unattended (◦) speech. Two averages are displayed: (A)
Subjects for which performance was significantly better than chance for at least one classification method and (B)
subjects for which performance was at chance level. For the significant subjects, the tracking of the attended speech
is both stronger and more widely distributed than the tracking of the unattended speech. For the non-significant
subjects, the overall activation index is smaller. In addition, there is only a marginal difference in spatial distribution.

the ∼10% advantage of the multivariate over the uni-
variate classification method persists. Classification for
the non-significant subjects stays around chance level
for both classification methods, indicating that the non-
significant results obtained on the 5 s segments are not
specific to that segment length.

The results show a clear relationship between trial seg-
ment length and accuracy, where for longer trial seg-
ments it is easier to predict the attended speech. How-
ever, while classification accuracy is important for a BCI
application, there is usually a trade-off in the amount of
information transferred between the classification accu-
racy and the length of the stimulation.

The Information Transfer Rate (ITR) of a BCI mea-
sures the amount of information (measured in bits) that
is transferred by the user to the system. A frequently
used definition is that by WolpawWolpaw et al. (1998).

ITR = log2N + P log2 P + (1− P )log2
1− P
N − 1

(10)

Where N is the number of classes (here, N = 2) and
P is the probability of an intended class being classified
correctly (i.e., accuracy).

This ITR is measured in bits per trial, which we nor-
malized by the length of the segment, so that we can
compare the amount of information transferred per time
unit.

From this formula we can identify three factors that
affect the ITR: the probability of identifying the correct
class, the number of classes and the length of the stim-
ulus.

The results in Figure 10 show the bit rate across seg-
ment lengths for the two different classifiers. For the
multivariate classifier, ITR reaches 6.2 bits/min for 1.5 s
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Figure 10: Relationship between segment length
and the Information Transfer Rate (ITR). For the
multivariate classifier, ITR reaches 6.2 bits/min for 1.5 s
long segments. The the univariate classifier achieves its
maximum ITR at 4 s segments, for an ITR of less than
3 bits/min.

long segments. These results illustrate that from a BCI
perspective, a longer stimulus is not always better. The
univariate classifier achieves less than half of this ITR
and requires it requires segments twice as long to obtain
its maximum (maximum at 2.6 bits/min at 4 s segment
length).

Effect of ‘tuning in’ on correlation and
classification accuracy

For the classification analysis we excluded the first 2s
of each trial to avoid any effects of a ‘tuning-in’ period.
Such a ‘tuning in’ period would be relevant for deter-
mining the overall ITR of a specific BCI. To estimate
the actual ‘tuning in’ period we analyzed the trials from
the experiment with a sliding window of 1 s, overlapping

by 900 ms, from one second before the start to 10 s into
the trial.

The results in Figure 11 show the difference in corre-
lation of the neural signal with the attended and unat-
tended speech, (11A) and classification accuracy (11B;
non crossvalidated). Each data point reflects the correla-
tion or accuracy of the preceding second of data. For this
analysis, only those subjects for which we had previously
established a significant performance for the univariate
method (i.e., subjects 1-5), were taken into account.

This figure shows that at the onset of the trial, there
is no difference in correlation, and the accuracy is at
chance level. After about a second the correlation dif-
ference and the accuracy rise sharply, indicating that it
takes on average about a second after onset of speech
for the neural tracking of the attended speech to be-
come detectable. An unexpected effect is the variation
in correlation and accuracy across the trial, as we would
expect these measures to become stable as the trial goes
on.

Effect of laterality on classification accuracy

In our analysis, we did not consider any potential ef-
fects that the aural location of presentation may have
on the neural response and the ability to identify the at-
tended speech. Such an effect could potentially exist, as
we recorded data from only a single hemisphere in each
subject, and there are known lateralization effects in au-
ditory processing. For example, stimuli are processed
more strongly in the hemisphere contra-lateral to their
presentation (Woldorff et al., 1999). For that reason, we
determined whether trials presented ipsi-laterally to the
implant could be classified as well, as trials presented
contra-laterally to the implant.

The results in Figure 12 show the classification ac-
curacy for univariate (top) and multivariate (bottom)
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Figure 11: Effect of ‘tuning in’ on correlation and
classification accuracy. The development of mea-
surements of neural tracking during a trial measured as,
(A) the difference in correlation of the neural signal with
the attended and unattended speech, and (B) the cor-
responding univariate classification accuracy.

classification. For each subject, this figure shows the
accuracy for ipsi-lateral (left) and contra-lateral trials
(right). The results indicate that, on average, there is
no statistically significant difference between ipsi- and
contra-lateral classification accuracy, for the two classi-
fication methods (paired t-test: p = 0.5 and p = 0.8, re-
spectively). Additionally, we performed a within-subject
analysis to determine if there was a significant differ-
ence between these for any subjects. To analyze this we
partitioned the data repeatedly into two random sets,
to which we applied our classifiers and recorded the
performance difference between the sets. The distribu-
tion of these classification differences was compared to
the difference in performance obtained for the ipsi ver-
sus contra-lateral classification accuracy. This resulted
in one statistically significant difference for one subject
(subject 3), for the univariate analysis. While there
are observable differences in the univariate classification
rates for other subjects (e.g. subjects 1, 4 and 5), and
these results were significantly different in a paired t-test,
these results were not significant in this randomization
test. This indicates that these differences are a result
of the variability in the data samples. This is poten-
tially due to the low number of training examples that

are available to the classifier after dividing the available
data into two sets.

Discussion

With these results we can now answer the research ques-
tions stated at the start of this thesis.

Q1: Can the attended speech be identified from
the brain activity, in single trials, with better
than chance performance? For 7 out of 12 partici-
pants we can correctly identify the attended speech with
better than chance accuracy. For the 5 remaining par-
ticipants, the attended speech could not be identified,
regardless of the length of the trial segments. For these
subjects there was also little difference in the correla-
tions of the ECoG with the attended and unattended
speech (see Figure 8. This indicates that this is not just
a failure of our classification method to pick up on any
effects.

There are two explanations we offer for this effect:
Firstly, it is possible that subjects were not able or did
not perform the task consistently. We cannot exclude
this possibility, as the experiment contained no behav-
ioral measure to ascertain that subjects attended the
target speaker and understood the content. A similar
study by Mesgarani and Chang (2012), did use a be-
havioral verification and reported that across subjects
∼25% of the trials were not attended. Subsequent anal-
yses across these trials only showed that these did not
exhibit a neural tracking of the attended speech. Sec-
ondly, there is a variation in electrode coverage between
subjects. While it is unlikely that the neural tracking
is so sensitive that, given that all subjects had cortical
coverage of the STG, the electrodes for these 5 subjects
did not capture the neural tracking, it is possible that
this was a factor that played a role.

Q1a: Is this performance sufficient for commu-
nication (>=70%)? Across the 7 subjects for whom
the attended speech could be identified, the average per-
formance across 4-6 s trial segments was 81%. This
would qualify as performance sufficient for communica-
tion. However, the performance obtained in our ECoG
study did not reach the communication performance re-
ported in some other auditory attention (EEG) BCI
studies. For example, the previously discussed BCI
by Hill and Scholkopf (2012) achieved an online per-
formance of 84.8% for 5 s trials, with an ITR of 4.98
bits/min (± 2.3). In our study, we obtained a perfor-
mance of 81% and an ITR of 4.2 bits/min (± 2.7) for the
significant subjects. However, Hill and Scholkopf did not
exclude any subjects from their analysis. Results across
all of our subjects were lower, with a performance of 70%
at 5 s and an ITR of 2.5 bits/min (± 2.9).

While there are advantages to using natural speech
instead of the artificial stimuli streams from their ex-
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Figure 12: Classification accuracy for auditory attention to the ear ipsi- and contra-lateral to the
cortical implant. The results from Figure 7 are shown for trials in which the attended speech stimulus was
presented either ipsi- or contra-laterally to the cortical implant. (A) For a univariate approach, the aural location
affects the classification accuracy for some subjects. (B) A multivariate regression is less susceptible to this effect.
(C) On average, there is no clear relationship between the laterality of the aural location and the cortical implant
(p = 0.5 and p = 0.8, respectively).

periment, it remains a question whether this approach
should be pursued if it reaches lower communication per-
formances, even when using a more sensitive measure of
brain activity (ECoG). At the same time, it is important
to note that their study was performed with healthy sub-
jects. In contrast, the only subjects eligible for this type
of ECoG research are those under medical care. This
has the consequence, for instance, that subjects are fre-
quently on medication during the experiment. To ex-
clude the possibility that this method performs poorly
in comparison due to difficulty with performing the task,
the study should be repeated with a behavioral verifica-
tion.

Additionally, the approach from Hill and Scholkopf
does not scale easily beyond two simultaneous stimuli,
as the tones between two streams should not overlap.
As the variability across different speech stimuli is fairly
uncorrelated, it is easier to increase the number of
simultaneous stimuli for natural speech stimuli than it
is for structured or altered stimuli that are correlated
with each other. However, it remains to be determined
how communication performance would scale with this
increase.

Finally, in our study, subjects did not receive feedback
on how well they performed the task. This is relevant, as
many BCI studies have shown that providing feedback
ensures that the subjects remain attentive to the task
and that their performance improves over time (McFar-
land et al., 1998; Miller et al., 2010). This indicates that
performance may increase with an online implementa-
tion.

Q1b: What is the minimum length of stimulation
required for this performance? For the ‘significant’
subjects, the multivariate classifier obtains an average
accuracy of 70% with 2 s long segments. This shows
that, even with very short segments, it is possible to
identify the attended speech reliably. Additionally, the
analysis of the ITR across trial segment lengths showed
that the optimal trade-off between segment length and
classification accuracy, was with segments shorter than 2
seconds ( 1.8 s). It should be noted that with the ‘tuning
in’ effects, that we determined to be in the order of 1 s,
this would require a total stimulation of 2.8 s.

Q1c: How well can the attended speech be
predicted, when only a single ECoG channel
(i.e.,cortical location) is taken into account?
Univariately, the attended speech could be identified cor-
rectly with better than chance performance for only 5
out of the 7 ‘significant’ subjects. The accuracy across
these subjects, for trial segments 4-6 s in length, was
approximately 77% (70%, with the two other ‘signifi-
cant’ subjects included). For comparison the average
multivariate performance for these 5 subjects alone, was
approximately 90%. The results between the univariate
and multivariate method were thus relatively small. This
indicates that a single electrode might be a viable option
for this approach. The location of this electrode could be
determined using pre-operative fMRI (Vansteensel et al.,
2010).

Another note relevant to the invasiveness of this ap-
proach: the electrodes in this study were placed sub-
durally (i.e., electrodes placed underneath the dura).
Penetration of the dura increases the risk of bacterial
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infection (Davson, 1976; Hamer et al., 2002; Fountas
and Smith, 2007; Van Gompel et al., 2008; Wong et al.,
2009). Epidural electrodes (i.e., electrodes placed on top
of the dura) provide signals of approximately compara-
ble fidelity (Torres Valderrama et al., 2010). A single
electrode placed epidurally could reduce risk and cost,
making this approach more realistic despite its invasive
nature.

Consistency with existing neuroscience

In our study, we found that neural tracking of the at-
tended speech is stronger and more widely distributed
across the cortex, than that of unattended speech. This
confirms findings by Zion Golumbic et al. (2013), who
investigated auditory attention in ECoG. We further
found locations over the STG and the pre-motor cor-
tex to be informative of the attended speech. The role
of the pre-motor cortex in speech perception confirms
similar findings from Wilson and Iacoboni (2006); Potes
et al. (2012, 2014), who investigated the neural track-
ing of non-simultaneous speech. Although speech track-
ing of the pre-motor cortex was only visible in 4 out
of 12 subjects (see Figure 6, it is of specific interest,
as this pre-motor tracking was especially selective of the
attended speech, with only very limited tracking of unat-
tended speech detected in these areas. This would make
it a good target for single electrode applications, if this
pre-motor area could be determined beforehand in pre-
operative fMRIs.

In our study, we determined the delay between the
speech stimuli and the elicited neural signal, across all
subjects and all electrodes. However, an analysis of the
individual traces that were averaged (see Figure 4) re-
vealed a standard deviation of 72 ms in this delay for
univariate performance and a standard deviation of 58
ms for the correlation across subjects. In addition, our
exploratory results (see Figure 3, indicated that there is
a variance between subjects and across subjects. This is
confirmed by results, shown by Potes et al. 2012, who re-
ported a 110 ms delay between the neural tracking over
the STG and the pre-motor cortex. For our study we
did not include this information during classification, as
we expected small returns. Subsequent studies could ex-
plore whether correcting the delay per ECoG electrode,
for each subject, could improve communication perfor-
mance.

Other research has suggested that low-frequency phase
information might encode additional information about
selective auditory attention (Zion Golumbic et al., 2013).
Future studies could explore whether combining gamma-
band and low-frequency features can improve classifica-
tion accuracy. As low-frequency features can be observed
in EEG, this could eventually lead to a non-invasive
cocktail party BCI.

Future Research

A number of avenues for follow up research have been dis-
cussed above. To reiterate, the main follow-up-questions
we identified are:

• Do we find this subject variability (failure to identify
the attended speech for 40% of the subjects) in future
instances of this experiment. And if so, can this be
explained by a lack of attention to the target speaker
(verified with a behavioral measure)?

• How does the classification performance scale, when
the number of simultaneously presented speakers is
increased?

• Can this approach be extended to an online applica-
tion?

• Does the inclusion of additional information for the
classifier (e.g. low-frequency phase information or de-
lays optimized for each ECoG channel) lead to better
classification accuracy?

Summary

To summarize, our study shows that an auditory atten-
tion based BCI that uses natural speech stimuli in a
cocktail party setting could provide reasonable commu-
nication performance. While our results compare un-
favorably with results obtained from existing auditory
attention paradigms, this is mainly due to the large num-
ber of subjects for whom the attended speech could not
be identified. Future research should investigate the pos-
sible causes of this, in order to derive a more concrete
conclusion regarding the viability of natural language at-
tention as a BCI pardigm. In other words, this provides
the groundwork for future studies that would explore the
usability of this approach for BCI applications in people
affected by severe neuro-degenerative diseases.
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