
Computational modelling of human spoken­
word recognition: the effects of pre­lexical
representation quality on Fine­Tracker’s

modelling performance

Author: Danny Merkx, s0813400

Supervisor: dr. Odette Scharenborg

October 20th 2017

Master thesis
Artificial Intelligence ­ Computation in Artificial and Neural Systems

Faculty of Social Sciences

Abstract

Fine-Tracker is a model of human speech recognition that is able to model
the use of durational cues for the disambiguation of temporarily ambiguous
speech. While previous Fine-Tracker simulations were successful at modelling
human behavioural data on the use of durational cues, Fine-Tracker is not a
very good recogniser of speech. This study proposes to improve the quality
of Fine-Tracker’s pre-lexical representations by using deep convolutional neural
networks for extracting the pre-lexical representations from the speech signal.
The convolutional neural networks resulted in large increases in the classifica-
tion accuracy of the pre-lexical level features. The improvement in the quality
of the pre-lexical representations resulted in better word recognition for Fine-
Tracker simulations. However, the improved word recognition did not improve
Fine-Tracker’s simulations of the use of durational information compared to
simulations reported in previous studies.

1

Contents

1 Introduction 4
1.1 Speech recognition . 4
1.2 Computational modelling of speech recognition 4
1.3 Fine-Tracker . 5
1.4 Research goals . 7
1.5 Outline . 8

2 Background 8
2.1 Articulatory features . 8

2.1.1 Phonemes and allophones 10
2.1.2 Voicing . 11
2.1.3 Manner and place of articulation 12
2.1.4 Vowel backness and height 13
2.1.5 Rounding . 13
2.1.6 Duration-diphthong . 13
2.1.7 Silence . 14

2.2 Neural networks . 14
2.2.1 Multi-layer perceptrons 14
2.2.2 Neural network training 16
2.2.3 Learning rate . 17
2.2.4 Convolutional neural networks 18
2.2.5 Pooling . 20
2.2.6 Regularisation . 21

3 Methods 23
3.1 Data . 23

3.1.1 Corpus Spoken Dutch . 23
3.1.2 Read speech component 23
3.1.3 Data split . 23

3.2 Acoustic features . 24
3.3 Transcriptions . 25

3.3.1 Forced Alignment . 26
3.4 Networks . 28

3.4.1 Multi-layer perceptron architecture 28
3.4.2 Convolutional neural network architecture 29
3.4.3 Trainable filter-bank architecture 32

3.5 Fine-Tracker materials . 33
3.6 Word activation and competition process 34
3.7 Fine-Tracker simulation setup . 36

4 Results 37
4.1 Baseline performance . 37
4.2 Comparison of MLPs and CNNs 37
4.3 Fine-Tracker simulation results 42

2

5 Discussion 45

6 Acknowledgements 47

7 references 47

8 Appendix A 51
8.1 Offset compensation . 51
8.2 Framing . 52
8.3 Log energy . 52
8.4 Pre-emphasis . 52
8.5 Hamming windowing . 52
8.6 Fast Fourier transform . 54
8.7 Mel filter-banks . 54
8.8 Non-linear transform . 56
8.9 Discrete cosine transform . 56
8.10 Delta and double delta features 56

9 Appendix B 57

3

1 Introduction

1.1 Speech recognition

Speech recognition is a complex process and yet most of us are capable of un-
derstanding speech with little difficulty. Yet there is much that we do not know
about how the process of speech recognition is organised in the brain. As we
cannot look directly into the brain and observe this process, research resorts
to indirect methods. Most evidence today comes from behavioural psychology,
neuro-science and computational modelling.

One of the difficulties in speech recognition is the fact that the speech signal
is highly variable. Even two pronunciations of the same word will never be
completely the same even when spoken by the same person [1]. Other sources
of variability include gender, dialect, age, social status and language background
[2][3]. Not only are we able to understand each other despite this variability,
we are able to identify these speaker characteristics from the speech signal and
use this information to aid in recognition and interpretation [3]. Now this may
not seem so extraordinary because it comes so natural to us but keep in mind
that such variability can quickly throw off even the most advanced automatic
speech recognition systems. Take for example Alexa by Amazon, a top-of-
the-line system able to recognise spoken commands and act on them. One
user noticed that suddenly the performance of his new smart home system
was degrading badly [4]. It turned out he bought his system during winter
and when it became summer he started using his air-conditioning again. The
drop in Alexa’s performance was caused by the ambient noise made by the AC.
Certainly it would take a very loud AC to have this effect on human speech
recognition.

1.2 Computational modelling of speech recognition

Computational level theories of speech recognition try to explain how humans
are able to map the highly variable speech input to the invariant representations
of a lexicon. One such theory on which many influential computational models
are based is the abstract theory of speech recognition [1]. This theory assumes
that speech recognition is a two staged process. In the first stage the acoustic
signal is mapped to a set of limited ’abstract’ representations called the pre-
lexical level. The pre-lexical units are then mapped to words, or the lexical level
[1]. Computational level theories are implemented in computational models in
order to simulate human speech recognition (HSR). By trying to reproduce
human behavioural data with computational models, researchers explore the
various possible implementations of a computational theory and provide data
allowing for the evaluation of the theory.

Computational models based on the abstract theory of speech recognition
have been successful at reproducing phenomena found in psycho-linguistic ex-
periments. When we hear a speech signal it can initially match more than one
word. There is evidence that as the speech signal enfolds, several matching

4

Figure 1: An example of a simulation in Trace. The input sequence is ’bald’,
several words compete for recognition but are inhibited when they no longer
match the input sequence.

lexical representations in the brain get activated and compete for recognition
[5][6][7]. As more information becomes available the problem of choosing be-
tween these word hypotheses is resolved and a word is recognised. This is called
the disambiguation process. For example when hearing the word ’catnip’, words
sharing initial sounds such as ’catapult’ will also become activated, but as the
speech signal enfolds ’catapult’ will no longer match the signal. Computational
models of the abstract theory such as Trace and Shortlist form lexical hypothe-
ses as the input (i.e. an abstract pre-lexical representation) comes in and words
consistent with the input get activated and compete [8][9]. An example of the
word activation process in Trace is shown in figure 1. The target word in the
example is ’bald’ and the other words compete with the target until they no
longer match the input. In order to solve the disambiguation of the activated
lexical hypotheses Trace has activation levels for the words in the lexicon and a
lexical decision can be made by using an activation threshold [8]. Trace consid-
ers all words in its lexicon as possible word candidates and can therefore only
use a relatively small lexicon [1][9]. Shortlist first compares the pre-lexical and
lexical representations through an exhaustive search of its entire lexicon. Only
a relatively small shortlist of the best candidate words is then considered in the
disambiguation process, allowing Shortlist to work with a large lexicon [9].

1.3 Fine-Tracker

Research has shown that humans are able to use subtle details in the speech
signal to disambiguate the speech signal in ways that are not predicted by the
aforementioned models. Davis et al. and Salverda et al. (2003) showed that
listeners were able to distinguish between a monosyllabic word and a longer
word in which it is embedded such as ’ham’ and ’hamster’ before the end of
the first syllable [10][11][12]. Salverda et al. (2003) tracked participants’ eye

5

movements as they listened to sentences and were presented with objects on a
screen. When participants listened to a word like ’hamster’ in which the first
syllable was replaced with a recording of the monosyllabic word ’ham’ a picture
of the monosyllabic word (e.g. a ham) attracted more fixations than when
they listened to a recording of ’hamster’ [10]. They found that this effect was
modulated by the length of the sequence rather than its origin (from a mono
or multi-syllabic word) so that longer sequences are more often interpreted as a
monosyllabic word. This suggests that durational information contained in the
speech signal is an important cue that can be used for word disambiguation.

Both the monosyllabic word and the embedded word are phonemically the
same however, and computational models such as Trace and Shortlist are only
be able to disambiguate the sequence at the offset of the first syllable which
is when the speech signal no longer matches one of the hypotheses. As the
example in figure 1 shows, the word hypotheses are equally activated until a
hypothesis no longer matches the input sequence. Trace and Shortlist use this
so-called post-offset mismatch to disambiguate the sequence. However, research
suggests that the identification of the correct sequence can happen earlier then
these models predict [10][11].

Fine-Tracker is a model of speech recognition that was built in order to in-
vestigate the role of durational information in speech recognition [13][14]. Most
existing computational models of speech recognition, including Trace and Short-
list, do not have an explicit pre-lexical level. That is, they avoid the complexity
of mapping the speech signal to a finite set of pre-lexical representations and
assume that it can somehow be computed and instead use an artificial, often
hand-crafted representation of the speech signal [1]. Fine-Tracker incorporates
the extraction of the pre-lexical representations from the acoustic signal as an
explicit step, allowing it to capture subtle phonetic detail such as durational
information and use it for word recognition [13][14]. The units of representation
in the pre-lexical level are articulatory features (AFs), which are acoustic cor-
relates of articulatory properties of the speech signal. The AFs are estimated
from the speech signal using neural network classifiers. Fine-Tracker is allowed
to use the durational information by encoding durational differences into Fine-
Tracker’s lexical representation, meaning the lexical representation for ’ham’ is
different from the representation of the first syllable in ’hamster’. This allows
for the enabling and disabling of the use of durational information so that the
two conditions can be compared.

An additional advantage of using the acoustic signal as input to the model
is that the actual stimulus materials from behavioural studies can be used.
Scharenborg (2010) used the same materials as those used by Salverda et al.
(2003) in order to investigate Fine-Trackers’ ability to model the use of dura-
tional information [13]. Fine-Tracker was presented recordings of multi-syllabic
words where the first syllable was replaced by a recording of an embedded
monosyllabic word. When Fine-tracker was allowed to use durational informa-
tion (i.e. durational information was included in the lexical representations) the
word activations for the monosyllabic words were significantly higher than when
Fine-tracker was not allowed to use durational information. Furthermore, there

6

was a positive correlation between the durational difference of the monosyllabic
words and the embedded syllables and the modelling results of Fine-Trackers
[13]. This is in line with the results of Salverda et al. (2003) that longer se-
quences are more often interpreted as a monosyllabic word [10].

Fine-Tracker can successfully simulate the disambiguation of ambiguous speech
signals as found in humans by making use of durational cues in the speech sig-
nal [13]. While it is the first computational model that is able to do this,
Fine-Tracker is still a relatively poor speech recognition system. Though Fine-
Tracker was able to recognise all the words used in the experiment the correct
target word was not always Fine-Tracker’s top prediction. The pre-lexical to
lexical mapping is dependant on the quality of the pre-lexical representations
and Fine-Tracker could benefit from improved AF classification.

1.4 Research goals

The first implementation of Fine-Tracker used multi-layer perceptrons (MLP)
with a single hidden layer to map the speech signal to AFs. Advances in the field
of neural networks have since made it possible to train much deeper networks
and deep convolutional neural networks (CNNs) have been applied to automatic
speech recognition (ASR) with much success (e.g. [15][16][17]). Povey et al.
(2013) achieved a reduction in relative word error rate of around 15% (various
setups were tested) compared to their best Gaussian mixture model approaches
[16]. In research comparing MLPs to CNNs Siniscalchi et al. (2012) showed a
reduction in relative word error rate of 8.7% [15]. This is promising because
it could improve the quality of the AFs that Fine-Tracker uses for the pre-
lexical level. The expectation is that Fine-Tracker can benefit from replacing
the shallow MLP front-end with CNNs.

In order to improve the quality of the AFs and investigate the effects on
Fine-Tracker’s simulations, new AF classifiers will be trained. There are seven
AFs and a separate classifier will be trained for each AF. The current study
uses more data to train the classifiers than used in [13]. In comparing the
CNN results directly to the results reported in [13] it would not be clear if
any improvement (or deterioration) is caused by the network architecture or
simply because different training data was used. New baseline MLP models
will be created in order to account for the effects of using different training
data. These MLPs will use the architecture described in [13]. Next the CNNs
are trained using the architecture described in [18]. In this study Qian and
Woodland (2016) compared several CNN architectures for ASR of which the
best performing architecture is implemented in this study. Furthermore, an
extension of the architecture described in [18] is proposed.

After training the classifiers, the Fine-Tracker simulations reported in [13]
are replicated in order to investigate the effects of improved AF classification
on Fine-Tracker’s performance. The pre-lexical representations of the stimulus
materials are made using the newly created classifiers and used in word recog-
nition simulations. The best performing CNN architecture is chosen for the
Fine-Tracker experiments and compared to the baseline MLPs.

7

In summary the goals of this study are:

- Using convolutional neural networks for articulatory feature classification
in order to improve the quality of articulatory feature vectors.

- Replicate the experiments reported in [13] using the new articula-
tory feature vectors in order to investigate the effects of articulatory
feature quality on Fine-Tracker’s word recognition and modelling power.

1.5 Outline

The rest of this thesis presents the methods and materials used to improve the
AF classification and an analysis of the effects on Fine-Tracker’s explanatory
power. The next chapter gives a review of AFs and their role in ASR. The
basics behind MLPs and CNNs are explained as well as the regularisation and
learning rate schemes used in this study. Lastly the Fine-Tracker’s word acti-
vation and competition process is discussed in more detail. Chapter 3 details
the training and experiment materials and their pre-processing. Furthermore,
the neural network architectures are outlined and the setup of the Fine-Tracker
experiments is discussed. Chapter 4 will outline the results of the neural net-
work training and the replication of the Fine-Tracker experiments. We end with
a discussion of the implications of the experimental results and suggestions for
future work.

2 Background

2.1 Articulatory features

This section will describe in more detail what articulatory features (AFs) are
and how they are used in automatic speech recognition (ASR).

AFs are abstract classes that describe speech sounds in terms of proper-
ties of speech production (articulation) rather than acoustic properties of the
speech signal [19]. The articulatory system consists of all organs used in pro-
ducing speech (see table 1 for an overview). The active, or moving articulators
are indicated with arrows indicating the direction of their movement. We dis-
tinguish several areas where the tongue can be pressed to the palate (roof of
the mouth). AFs describe the configuration of the articulatory system during
speech production, for example whether the vocal cords are vibrating or not
[19].

Research has shown that the use of articulatory information can improve
the performance of ASR systems. The speech signal is highly variable and it
is hard for speech recognition models to capture this variability, AFs can help
account for this variability [20][21]. Furthermore, including multiple streams of
information in the ASR system can improve the noise robustness of the system

8

[22]. Research shows that combining a model trained on acoustic features with
a model trained on AFs improves phoneme recognition rate of ASR systems.
This approach is nowadays being used with convolutional neural networks and
research shows word error rate improvements on well-known data sets such as
Wall street journal and TIMIT [20][23].

There is a lot of diversity in how AFs are measured or estimated. AFs can
be grouped into four categories; features derived by direct measurement, artic-
ulatory inversion, landmark detection based features or AF recognition [22][24].

AFs can be directly measured by physical measurement of the articulators.
Examples of direct measuring techniques include X-ray, electromagnetic artic-
ulography (EMA) and the electroglottograph (EGG) [25][26][27]. While these
techniques are useful for studying speech production, few corpora exist that
are big enough for training an ASR system [24]. This is because it is very
expensive and labour intensive to gather this kind of data. Furthermore, some
techniques are invasive, limiting the potential for gathering large databases from
large numbers of speakers (e.g. photoglottography [28]).

The speech signal is a product of the speech production process. That is,
the movements and configuration of the articulators [29]. In articulatory inver-
sion, the goal is to reverse this process in order to determine the configuration
of articulators that produced the speech signal. This requires the creation of
speaker specific articulatory-to-aucoustic mappings. Such mappings are trained
on simultaneous acoustic and articulatory data for each speaker, thus the limi-
tations of measuring the articulators apply here. To deal with this issue, recent
work has focused on ways of combining the articulatory-to-acoustic mappings
from multiple speakers into a speaker independent mapping [29][30].

The third approach is based on landmark detection. The goal is to detect
where important acoustic events called landmarks occur in the speech signal. An
example of a full ASR system is developed by Hasegawa-Johnson et al. (2005)
and uses support vector machines to detect manner-change landmarks which
correspond to the manner of articulation [31]. Using this approach you only get
articulatory information on the speech signal near the landmarks however, and
this approach must be combined with other methods to get articulatory data
for sections of the speech signal where such landmarks are absent.

The approach taken in the current study is to use classification scores for
AFs. In this approach a classifier is trained to recognise AFs given a small
frame of speech. This method allows the estimation of AFs directly from the
acoustic signal without needing any parallel measurements of articulatory data.
Unlike with the landmark approach the AFs can be estimated at any temporal
resolution. That is, rather than being dependent on the occurrence of land-
marks the AFs are estimated at set intervals so that AFs can be created for
the entire speech signal. While this classification approach does not require any
knowledge about the speech production system, supervised learning techniques
do require labelled training data. Typically this labelling can be acquired from
phoneme labels [24]. The advantage of AF estimation is that it allows the use
of AFs for corpora for which no articulatory data was measured, broadening the
possibilities of using articulatory data in ASR systems.

9

Figure 2: The human articulatory system. The roof of the mouth is divided
into the various places of articulation. The arrows indicate the movement of
the active articulators. 1. Lips (bilabial, labiodental), 2. teeth (labiodental), 3.
alveolar ridge (alveolar), 4. hard palate (palatal), 5. velum (velar), 6. uvula,
7. nasal cavity, 8. tongue, 9. oral cavity, 10. pharynx, 11. glottis (glottal), 12.
epiglottis

2.1.1 Phonemes and allophones

Before going into detail about the various AFs a short explanation of allophones
and phonemes is in order. Phonemes are the smallest distinctive units of speech
sounds and are divided into vowels and consonants [32][33]. Phonemes are the
set of sounds that can cause a difference in the meaning of words [32][33]. That
is, changing a phoneme in a word changes the meaning of the word, such as in
’bat’ and ’hat’ (respectively /bæt/ and /hæt/ in phonetic transcription). As
the /h/ and /b/ change the meaning of the word they are phonemes. However,
phonemes can vary in their surface form or realisation without changing the
meaning of what is being said [2][32][33]. An example of surface form varia-
tion is caused by reduction, a phenomenon in natural speech where as someone
starts to speak faster, sounds become shortened and reduced [2]. These varia-
tions are called allophones and while there are technically infinite variations in
allophones or the surface forms of a phoneme, each language only has a small
set of phonemes [2][32].

As phonemes are a unit of speech sounds they can be described in terms of
AFs. This allows us to convert phonetic transcriptions of data into articula-
tory feature transcriptions. An advantage of using AFs is that they can vary
asynchronously allowing them to capture the variability in the surface forms of
phonemes. The set of Dutch phonemes and their canonical AF vectors is shown
in table 1 and is the same feature set used in [13]. The canonical AFs in the
figure below are used to label the training data.

10

phone manner place voicing backness height rounding duration-diphthong Corpus
@ vowel nil voiced central middle -round short ”@”
a vowel nil voiced back low +round long ”a”

A vowel nil voiced central low +round short ”A”, ”A:”, ”A”̃
A+ vowel nil voiced back low +round diphthong ”A+”
e vowel nil voiced front middle -round long ”e”

E vowel nil voiced front low -round short ”E”, ”E:”, ”E”̃
E+ vowel nil voiced front low -round diphthong ”E+”
2 vowel nil voiced central middle +round long ”2”
i vowel nil voiced front high -round long ”i”
I vowel nil voiced front middle -round short ”I”
o vowel nil voiced back middle +round long ”o”

O vowel nil voiced back middle +round short ”O”, ”O:”, ”O”̃
u vowel nil voiced back high +round short ”u”
Y+ vowel nil voiced central low +round diphthong ”Y+”
y vowel nil voiced central high +round long ”y”

Y vowel nil voiced central middle +round short ”Y”, ”9:”, ”Y”̃
b plosive bilabial voiced nil nil nil nil ”b”
d plosive alveolar voiced nil nil nil nil ”d”
f fricative labiodental unvoiced nil nil nil nil ”f”
g plosive velar voiced nil nil nil nil ”g”
G fricative velar unvoiced nil nil nil nil ”G”
h glide glottal unvoiced nil nil nil nil ”h”
j glide palatal voiced nil nil nil nil ”j”, ”J”
k plosive velar unvoiced nil nil nil nil ”k”
l liquid alveolar voiced nil nil nil nil ”l”
m nasal bilabial voiced nil nil nil nil ”m”
n nasal alveolar voiced nil nil nil nil ”n”
N nasal velar voiced nil nil nil nil ”N”
p plosive bilabial unvoiced nil nil nil nil ”p”
r retroflex alveolar voiced nil nil nil nil ”r”
s fricative alveolar unvoiced nil nil nil nil ”s”
S fricative palatal unvoiced nil nil nil nil ”S”
t plosive alveolar unvoiced nil nil nil nil ”t”
v fricative labiodental voiced nil nil nil nil ”v”
w glide labiodental voiced nil nil nil nil ”w”
x fricative velar unvoiced nil nil nil nil ”x”
z fricative alveolar voiced nil nil nil nil ”z”, ”Z”
sil silence silence unvoiced nil nil nil nil ””

Table 1: AF-to-phoneme mapping. The first column indicates the phonemes
used in the current study, the last column is the phoneme notation used in the
data corpus. The data corpus uses a different phoneme notation and in some
cases multiple phonemes may map to one phoneme. The remaining columns
indicate each phoneme’s canonical AFs.

2.1.2 Voicing

The voicing feature distinguishes two types of speech sounds; voiced and un-
voiced sounds. Voiced sounds are produced by vibration of the vocal cords
whereas unvoiced sounds involve no vibration of the vocal cords [2][34]. In

11

Dutch all vowels are voiced, consonants can be realised with and without vi-
brating the vocal cords [32].

2.1.3 Manner and place of articulation

The place of articulation features applies only to consonants. This is because
consonants are produced by constricting the airflow which is not the case for
vowels [32][34][35]. There are various degrees of constriction from full to almost
none. The manner of articulation feature describes the type of constriction, the
point of maximum constriction along the vocal tract determines the place of
articulation [2][32].

The constriction is made using the passive and active articulators. Active or
moving articulators are the tongue, lips and glottis, the passive articulators are
the upper teeth and the roof of the mouth [32][35]. See figure 2 for a schematic of
the human articulatory system; the various places of articulation are indicated
and the movement of the active articulators is indicated using arrows.

There are six places of articulation: velar, palatal, alveolar, bilabial, labio-
dental and glottal. The velar, palatal and alveolar consonants are made by
restricting the flow of air by pressing the tongue to the roof of the mouth
[2][32]. Velar consonants are made with the back of the tongue raised to the
velum (the back part of the roof of the mouth). The palatal consonants are
made with the tongue raised to the hard palate (the middle part of the roof
the mouth). Alveolar consonants are made with the tip of the tongue pressed
to the alveolar ridge (the ridge behind the upper teeth). Bilabial sounds are
created by bringing both lips together. Labiodentals are articulated with the
lower lip pressed to the upper teeth [2][32][34]. Lastly the glottal consonants
are articulated using the glottis; that is, closing the vocal folds, to obstruct the
airflow [2].

There are seven manners of articulation: Plosive, nasal, fricative, glide, liq-
uid, retroflex and vowels. Plosives are created with a full obstruction of the
airflow so that no air escapes the mouth or nose [2][32]. The airflow can be
blocked with either the tongue, lips or glottis. This causes pressure to build
up behind the constriction which upon release produces an audible plosion or
’popping’ sound. An example of a bilabial plosive is the /p/ made with the lips
pressed together. The /d/ is made by pressing the tongue to the roof of the
mouth. There are no glottal plosive phonemes in Dutch though they do occur
for instance in English where it is better known as the glottal stop [34].

In nasal sounds, the airflow is also fully constricted in the oral tract but air
is still allowed to flow through the nasal tract [33][34]. Again we can use either
the lips, as in the bilabial /m/, or the tongue, as in /n/ for example. There is
no glottal nasal phoneme in Dutch.

Fricatives are created with only a partial constriction, forcing a constant
flow of air around the place of articulation. The constriction of the airflow
causes an audible turbulence, a characteristic ’hissing’ sound, in the airflow
called frication [2][32]. An example is the /f/ where air is forced through the
upper teeth (labiodental) [2].

12

In glides or semi-vowels the tongue constricts the airflow such that the airflow
is not unimpeded as in vowels, but there is too little obstruction for frication
[32][34]. The glides contain the /h/, which is the only glottal phoneme in Dutch.

A liquid consonant is made with very little obstruction of the airflow and
like the glides they have similarities to vowels. The liquid /l/ is articulated by
allowing air to pass by the sides of the tongue [32].

Sometimes the retroflex /r/ is classified as a liquid meaning there is minimal
obstruction of airflow [32][33]. However, it is useful to consider the retroflex as
a separate class considering the large range of surface forms that the Dutch /r/
has depending on dialect, co-articulation and style [32][36]. According to [36]
the voiced alveolar /r/, which is the canonical form used in this study, is among
the most common Dutch surface forms.

Lastly the vowels are pronounced without constriction of the vocal tract and
the vowels are treated as a separate class in the manner of articulation feature.
As there is no constriction the place of articulation is undefined.

2.1.4 Vowel backness and height

The remaining features all concern the articulation of vowels. Vowels are pro-
nounced with an open vocal tract meaning air is allowed to flow unimpeded
unlike during the pronunciation of consonants. During the articulation of vow-
els, the tongue is used change the shape of the space between the oral cavity
and the pharynx. This constriction can be characterised by the height of the
tongue and its position relative to the back of the mouth [32][34].

The height feature indicates the position of the tongue relative to the roof
of the mouth and thus the amount of space between the oral cavity and the
pharynx [32]. We distinguish three degrees of tongue height which are high,
middle or low. The ’backness’ of vowels indicates the position where the tongue
is at its highest point relative to the back of the mouth [33][34]. Again we
distinguish three degrees; front, central and back.

2.1.5 Rounding

The rounding feature indicates whether the lips are rounded or un-rounded
during vowel articulation [2].

2.1.6 Duration-diphthong

The duration-diphthong feature has three classes. The short and long vowels
concern the duration of the vowel sounds. Short vowels are around 100ms on
average in duration and long vowels around 200ms on average [32]. A diphthong
is a sequence of two vowel sounds within the same syllable where the tongue
moves from the first vowel to the second vowel during articulation [2][33][34].
Dutch has three diphthongs; /A+/, /E+/ and /Y+/ [32].

13

2.1.7 Silence

In order to account for the silence in the speech files it is modelled by the clas-
sifiers. Without explicitly having the networks model the silence, the networks
will try to classify the silence as phonemes. Therefore silence will be treated as
a separate ’phoneme’ during training with its own canonical AFs.

2.2 Neural networks

This section will explain the basics behind MLPs and DNNs, and the learning
rate schedules and regularisation techniques used in this study.

2.2.1 Multi-layer perceptrons

An artificial neural network or ANN is a type of classifier inspired by the neu-
ronal activity of the brain [37]. Such networks can learn to recognise patterns
in data given training examples. In the current study, networks are trained to
estimate the AFs of a segment of speech by training them on a large amount of
labelled speech samples. The goal of training such networks is for the networks
to then classify previously unseen data. The basic unit in an ANN is the neuron,
a unit which receives some input and sends an output based on the inputs and
some activation function. Mathematically this is given by the following formula:

aj = g(Σni=0wi,jai + b) (1)

Where aj is the output of unit j, ai is the ith input unit, wi,j is the connection
strength or weight of the connection between i and j, b is the bias and g is the
activation function. As you can see the unit’s activation is determined by a
weighted sum of its inputs and some activation function. The collection of all
connection weights wi,j is also called a weight matrix. There are different types
of activation functions, for instance the step function, which is 1 if the activation
exceeds some threshold or 0 otherwise. Another example is the so-called rectified
linear unit (ReLU), which is 0 if the activation is below 0 or simply the activation
if it exceeds 0. While every input has its own connection weight, the neuron has
only one bias term. The bias can be thought of as shifting the threshold of the
activation function [38]. Take the aforementioned ReLU, where a negative bias
makes it harder for the combined inputs to exceed zero. Conversely, a positive
bias makes this easier. Below is a schematic representation of a simple artificial
neuron.

14

Figure 3: The neuron receives input activations which are multiplied by the
weight of their respective connections. These are then summed and a bias term
is added, after which the activation function (in this case the step function)
determines the final output activation.

The strength of neural networks lies in combining multiple neurons into a
network and combining more and more neurons allows the network to learn
more complex functions [37]. Neurons are combined into so-called layers, where
the output of one layer’s neurons is the input of a next layer of neurons. If
the neuron in figure 3 is entered into a network, a1 through an would be the
outputs of the n neurons in a previous layer and aj will be fed as input into
a next layer. This is called a multi-layer perceptron (MLP) which is a name
for any network with more layers than just an input and an output layer. The
shallowest MLP is thus a network with an input layer, one hidden layer and an
output layer. The hidden layer is called hidden because unlike the input and
output, the hidden layers’ activations are not directly observed [38]. Figure 4
shows the architecture of a three layer MLP with an input layer, hidden layer
and an output layer with two outputs. The layer structure shown below is called
a fully connected layer because there is a connection between each pair of nodes
in two connecting layers. The size of the weight matrix for such a layer is m
by n, which are the number of incoming nodes and the number of connecting
nodes respectively.

15

Figure 4: Example of an MLP architecture with a single hidden layer.

2.2.2 Neural network training

A network learns by adjusting the bias and the connection strengths in order to
change the output of the network [38]. The network is trained by providing it
with training examples for which it is known what the network’s output should
be and the weights are adjusted if the output is incorrect. A full pass over the
training data is called an epoch and a network is typically trained for several
epochs considering each training example multiple times.

In order to optimise the networks for solving a particular problem, a loss
function is introduced. The loss or cost function allows for evaluation of the
network performance in terms of a cost. This cost is a measure of distance
between the current solution and the optimal solution, so that 0 cost indicates
the optimal solution is found. The goal of training is to minimise the loss
function: that is, finding a set of weights and biases with the lowest possible
cost [38]. Take for example the quadratic cost function shown below:

C(w, b) =
1

2n

∑
x

(y(x)− a)2 (2)

Where C is the cost with respect to the weights w and biases b, n is the

16

number of training examples, y(x) is the correct output for training example x
and a is the actual network output. Unfortunately, for networks with a lot of
weights the minimum of this function cannot be determined analytically [38].
Instead a technique called gradient descent is used in order to search the solution
space and try to find weights and biases with as low a cost as possible. Using
gradient descent, systematic updates are applied to the weights rather than
randomly searching the space of possible weight sets. Each weight is changed
only slightly using the following update rule:

∆(wj,i) = −η δE

δwj,i
(3)

Where ∆(wj,i) is the weight update to be applied to wj,i, η is the learning
rate which can be used to control the size of the weight updates and δE

δwi,j
is

the partial derivative of the loss function with respect to wj,i. The biases are
updated in a similar fashion by taking the partial derivative of the loss function
with respect to the biases. For the full derivation of the loss function see [37], for
now it suffices to say that it is used to determine how the cost changes when the
weights and biases are changed by determining the slope of the cost function.
Moving down this slope by adjusting the weights and biases decreases the cost.
The learning rate η from equation 3 is used to control the size of the weight
updates and can have a large influence on the training of a network.

2.2.3 Learning rate

There are a few limitations to gradient descent: for one it is not guaranteed to
find the optimal solution [37][38]. As said before it is practically impossible to
define the global minimum for all but toy examples. Secondly the learning rate
is a hyper-parameter that can have a large influence on the parameter updates
and therefore a large influence on finding a decent local minimum. It is not
possible to analytically determine the optimal value for the learning rate. A low
learning rate slows down convergence and makes the network prone to getting
stuck in a local minimum early on during training. On the other hand a high
learning rate can prevent the network from converging to a minimum (i.e. by
taking large steps it is possible to skip over a minimum). However, it is not
obvious what learning rate is ’too high’ or ’too low’. It is common practice
to train networks with a learning rate schedule that adjusts the learning rate
during training [38][39][40].

While testing various learning rates can be a solution, several alternatives to
the fixed learning rate have been developed. The techniques used in the current
study are learning rate decay and Nesterov momentum. Learning rate decay
decreases the learning rate during training as given by the following equation:

ηn+1 = ηn × d (4)

Where the learning rate in epoch n+1 is the previous learning rate multiplied
by the decay factor d. A higher learning rate prevents the network from getting

17

stuck in a local minimum during the first epochs and this promotes exploration
of the solution space. The learning rate decreases with every epoch which allows
the weights to converge to a minimum.

Another schema for adjusting the learning rate is Nesterov momentum given
by:

vn+1 = m× vn − η∇(θ + vn) (5)

Where v is the velocity at update step n, m is a new hyper-parameter called
momentum (where 0 ≤ m ≤ 1) and ∇ is the gradient with respect to θ+vn and
θ is any learnable parameter such as a weight or bias [60] [39].

The update is given by:

θt+1 = θt + vt+1 (6)

The momentum technique tends to update the parameters along the previous
update direction (building up velocity in the direction of previous updates),
preventing the so-called zig-zag pattern along the gradient that gradient descent
is prone to and promoting quicker convergence [39]. The downside is of course
the introduction of the new hyper-parameter momentum which has to be chosen.
These learning rate schedules can be combined so that weight decay decreases
the base learning rate after every epoch and the Nesterov technique allows the
update steps to gather momentum (momentum is added to the learning rate
based on the past few training examples, it does not adjust the base learning
rate).

2.2.4 Convolutional neural networks

Many types of data such as images and speech data are highly spatially or
temporally correlated [41][42]. A downside of MLPs is that they ignore the
topology of the input data. The order of the inputs to an MLP does not make a
difference even though the pixel order in an image certainly contains information
(e.g. randomly scrambling the pixels of an image would not matter to an MLP).
The same goes for instance for the temporal order of a speech signal. When
an MLP is presented with a segment of speech, it ignores the order of the
sequence thus not exploiting any information contained in the temporal order
of the signal.

Convolutional neural networks (CNNs) are able to extract and exploit such
local features by looking at a small receptive field (i.e. activations are calculated
over a small patch of the input) [41][43]. An example of a convolutional layer
is shown in figure 5. CNNs use something called a filter or kernel, shown in the
middle of figure 5, which slides over the input features [38][44]. The receptive
field in this case is 3 by 3 and its movement across the input space is indicated
by the coloured outlines. When a filter is applied to a receptive field, the input
features are multiplied with the filter weights and summed after which a bias
and activation function are applied. The resulting activations are then collected
in a feature map, shown on the right with colours matching the receptive fields.
As indicated in the example this procedure retains the topology of the feature

18

space. Each convolutional layer has a configurable number of such filters, with
each filter in a layer resulting in its own output feature map. The step size of
the receptive field is called the stride, in the example the stride is 1 on both
dimensions. It is common practice to use convolutional layers in order to extract
the local features from the data after which one or more fully connected layers
are applied before the output layer. CNNs are often used in image classifica-
tion for tasks such as face recognition, object detection and automatic image
annotation but lately is also seeing increased use in ASR [15][18][45][46][47].

Figure 5: A schematic of a convolutional layer with two dimensional input. The
filter slides over the input in both directions. The activations of the receptive
fields are collected in a feature map shown on the right side.

The convolution results in output feature maps that are smaller than the
original input. In order to prevent the feature maps from decreasing in size and
to better take advantage of the information on the borders of the input, zero
padding can be applied [17]. When using zero padding, a border of zero values
is added to the input. Zero padding is shown in figure 5 where a border of zeros
is applied along both axes of the input. The original un-padded input size was
four by four and without padding the resulting feature maps would have been
two by two. By using zero padding, the feature map retains the same size as
the un-padded input.

Besides being able to exploit the local properties of speech and image data,
the CNN has the advantage of being able to deal with larger input sizes. In a
fully connected layer, each input has a unique connection weight to each neuron
in the next layer. The size of the weight matrix is thus n by m where n is

19

the number of inputs and m the number of neurons in the connecting layer.
The number of weights thus increases quickly with the size of the input. One
of the advantages of the convolutional layer is that the filter weights and bias
are shared by the entire input [38]. As seen in figure 5, the same 9 weights
are applied to the entire input. In convolutional neural networks the number of
weights is determined by the size of the receptive fields and the number of filters.
For filters of size 3 by 3, each filter added to the convolutional layer would only
add another 9 weights and an extra bias no matter the size of the input. This
allows for larger input sizes without increasing the number of parameters to be
learned [41].

2.2.5 Pooling

It is common practice in CNNs to perform down-sampling after a few convo-
lutional layers which is implemented in a so-called pooling layer. Pooling can
be thought of as a feature selection procedure where only the most useful in-
formation is retained [48]. There are several options for pooling layers such as
max-pooling and mean pooling [49]. The max-pooling operation outputs the
maximum value in the receptive field, the mean-pooling outputs the average of
its receptive field. Figure 6 shows how max-pooling works. The input shown on
the left is divided into non-overlapping receptive fields of size 2 by 2 and of each
field only the maximum value is retained in the output. Not only does down-
sampling drastically reduce the input size (a pooling size of two by two reduces
the amount of data points by 75%) and thus the computational burden, it also
makes the network more robust to translational variance in the input (e.g. a
rotation of the input features)[48][49]. Take for example the red receptive field
in figure 6, no matter how features in this field are rotated, the result of the
max-pooling remains 3.

Figure 6: Max pooling of size two by two; the input is divided into four receptive
fields. Only the maximum value of each receptive field is retained in the output
feature map.

20

2.2.6 Regularisation

Overfitting is what happens when a model is trained so that it starts to adapt
to the training data rather than learning to solve the classification problem [38].
That is, the network may ’memorise’ the training data-set gaining near perfect
classification scores on that data but terrible scores on an unseen set [40]. As
the labels to the training data are already known, from a practical view it is
only interesting to use the network to classify an unseen data set. As such the
network should be able generalise well to unseen data [38]. Regularisation is a
term for a set of techniques that are meant to reduce overfitting.

In order to reduce overfitting, the following techniques are used in this study.
Dropout is a relatively simple but powerful technique [38][44][43]. The basic
principle of dropout is to ’drop’ a percentage of randomly chosen neurons by
fixing their output to be 0 during training. The training data is passed through
the network, the weights are updated and in the next iteration a new random set
of neurons is dropped. This means a different network architecture is trained at
each iteration. When applying the network to unseen data all neurons are kept
in the network, acting rather like an ensemble of classifiers [38][44]. Furthermore,
dropout prevents neurons from co-adapting too much [43][50]. In other words,
because of the dropout the network cannot rely on the connection to a neuron
or piece of the input features to be present and should not be completely thrown
off if such as feature is missing or its value is not what is expected.

For CNNs, dropout can be applied as described above by randomly dropping
activations in the feature maps. However, in [50] the authors implement a
new type of dropout for CNNs called spatial dropout. The input to a CNN is
usually locally correlated, for instance in the pixels of an image or the frequency
spectrum of speech signals. They found that dropping a small amount of features
in the receptive field of the kernel did not work because the remaining activations
are correlated with those that were dropped. In spatial dropout, entire feature
maps are dropped so that feature maps are either fully active or fully fixed to
zero and they found this to improve the performance of their CNNs [50]. In the
current study, spatial dropout is used in the convolutional layers and regular
dropout is applied to fully connected layers.

A relatively new method is batch normalisation. It acts both as a regulariser
and allows for higher learning rates to be used during training [48]. During
training, networks experience a change in the distribution of the inputs to the
internal nodes called internal covariate shift [42][51]. This means that small
changes in the lower layers can have large effects on the distribution of the
inputs to the higher layers and these effects become larger in the higher layers.
The higher layers are not only dependent on their own connections and biases
but also on those of all the layers below them and they will have to adapt to
changes in the distribution of their inputs. In practice this problem is countered
by setting a low learning rate, allowing only small changes to the weights to be
made, but this slows down learning.

In [51] Arpit et al. (2016) propose a technique to normalise the input to
each layer in order to keep the distribution of the inputs more stable during

21

training. Of course normalisation does not work on a single training example
and therefore they use mini-batch training where a ’batch’ of inputs is fed to
network rather than one input at a time (hence the name batch normalisation).
The training samples in each batch are normalised after each layer so that the
inputs to the next layer have zero mean and unit variance.

The downside is that normalisation affects what information a layer can
represent and as such it would limit the network in what it can learn [51]. Take
for instance the sigmoid activation function shown below in figure 7. If the
inputs to this function all have zero mean and unit variance most of them will
be in the (near) linear part of the activation function indicated by the vertical
lines and almost never reaching the tails of this function.

Figure 7: Plot of the sigmoid activation function. Normalised input will be
mostly within the indicated range.

Therefore they add two parameters to the batch normalisation operation so
that the output of the normalisation is given by:

yk = γkxk + βk (7)

Where xk is the kth normalised value. γ and β are two parameters that
are introduced in to counter the representational restrictions mentioned before.
These parameters are updated along with the other network weights and biases.
Note that these parameters even allow the normalised value to be restored to
the original value if γ and β are the standard deviation and average respectively.
The network could theoretically learn to do this if it were the optimal thing to
do [51]. The authors found that batch normalisation allows for larger learning
rates to be used. Furthermore, dropout could be eliminated or at least the
dropout rate could be drastically lowered [51].

22

3 Methods

3.1 Data

3.1.1 Corpus Spoken Dutch

Neural network models perform best on data that is as close as possible to the
data they were trained on. The speech data for the Fine-Tracker experiments
consists of high quality recordings of read speech by a Dutch speaker. Therefore,
the MLPs and CNNs used in this study are trained on the read speech compo-
nent of the Corpus Spoken Dutch (CGN, Corpus Gesproken Nederlands) which
was released in 2004. The CGN is a large corpus of recordings of Dutch and
Flemish speech, roughly two thirds and one third of the data respectively, com-
prising over 9 million words. The database has several components besides the
read speech component covering different types of speech such as spontaneous
conversation, telephone dialogue, lectures and news-bulletins.

3.1.2 Read speech component

The read speech component of the corpus contains relatively clean and high
quality recordings, as the speech consists of non-spontaneous monologues. This
type of speech most closely resembles the speech that will be used for the ex-
periments.

This component contains 903.043 words of which 551.624 come from Dutch
speakers and 351.419 from Flemish speakers. The networks will only be trained
on the set of Dutch speakers consisting of 561 recordings for a total of about
64 hours of speech. The Dutch part of the read speech component contains
recordings from 324 unique speakers which means some of the speakers appear
in multiple recordings. Note that each file only ever contains speech from one
speaker.

3.1.3 Data split

It is standard practice to split the training data into three distinct sets; a train-
ing, validation and a test set. The classifiers will be trained on the training
set. The validation set can be used to see if a model is still improving during
training and not over-fitting on the training data. Furthermore, the validation
set is used to tune the model’s hyper-parameters such as the drop-out rate and
the learning rate. The performance of the final model will be evaluated on a
held out test set.

The data set was split into a training (79.5%), validation (10.58%) and test
set (9.92%) while keeping the characteristics of the speakers in each set roughly
equal. The split is roughly 80/10/10 but not exactly because the audio files all
have a different length. The speaker characteristics taken into account are sex,
level of education and age. Age was binned into four bins; 24-50, 51-59, 60-69
and 70-891. Each speaker appeared in only one of the sets. The table below

1The bins were created according to the 25th, 50th, 75th and 100th percentile.

23

shows the speaker characteristics of the training, validation and test sets.

Speakers Sex (%) Education (%) Age %
Male Female High Middle Low Unknown 24-50 51-59 60-69 70-89

Training 259 44.4 55.6 81.85 16.22 0.77 1.16 24.71 25.48 27.41 22.39
Test 33 45.46 54.54 78.78 18.18 0 3.03 30.30 21.21 24.24 24.24

Validation 32 43.75 56.25 78.12 18.75 0 3.12 25 28.12 25 21.87

Table 2: The distribution of the speaker characteristics for the data split used
for training the neural networks.

3.2 Acoustic features

The audio files in the database contain raw speech signals. The raw speech
signal is converted into acoustic feature vectors with each vector representing
the acoustic features of a small segment of speech. In order to do this, the speech
signal is framed using 25ms analysis windows with a 5ms shift. The acoustic
features are computed and labelled at the frame level.

One of the most commonly used acoustic feature is the Mel-frequency cep-
stral coefficient or MFCC [2]. Similar to Scharenborg (2010), the baseline MLPs
use MFCCs augmented with first and second temporal derivatives (also known
as delta and double delta coefficients) [13]. The MFCCs are created using the
standards described by the European Telecommunications Standards Institute
(ETSI) in [52]. The delta and double delta coefficients were created as described
in [2]. The block diagram in figure 8 shows the pre-processing pipeline as it was
implemented for this study. See appendix A for a detailed description of the
pre-processing steps and acoustic features in figure 8.

24

Figure 8: Block diagram of the pre-processing pipeline. The coloured blocks
indicate the acoustic features. FFT stands for fast Fourier transform, DCT
stands for discrete cosine transform.

The CNN architecture as described by Qian and Woodland in [18] are trained
using Mel filter-bank features. This is because MFCCs are not well suited for
use with CNNs. As discussed in section 2.2.4, the receptive field of CNNs allows
the network to extract information from the topology of the data. Running the
pipeline up to the DCT conversion results in Mel filter-bank features, indicated
in red in figure 10. The Mel filter-bank features are correlated filterbank energies
which are ordered on the Hz scale. MFCCs are created by applying the discrete
cosine transform (DCT) to the Mel filter-bank features. One of the effects of the
discrete cosine transform (DCT) is that it de-correlates the filter-bank energies
and as such the receptive field can not derive information from the order of the
MFCC coefficients.

The Mel filter-bank features are created by applying Mel filters to the fre-
quency spectral features (indicated in purple in figure 10). These frequency
spectral features, or FFT bins, are the result of applying the fast Fourier trans-
form (FFT) to the speech signal. An extension to the architecture described in
[18] is proposed where the Mel filtering operation is implemented as a layer in
the CNNs. These CNNs take the frequency spectral features as input and the
Mel filters are optimised as part of the network training.

3.3 Transcriptions

In order to train NNs for AF recognition a ground truth labelling is required
in conjunction with the speech data. AF transcriptions of the speech data are
required to label the data but these are not provided for CGN. However, hand-
verified orthographic transcriptions and a lexicon with phonetic transcriptions of

25

Figure 9: Alignment of transcripts to speech signal in Praat. Multiple levels are
shown here from the full sentence level to word and phoneme level alignments.

all the words are available. Given the hand-verified orthographic transcripts and
a lexicon which maps orthographic representation to phonetic representation,
it is possible to perform a so-called forced alignment and create automatically
generated phonetic transcriptions. AF transcriptions can then be made using
the canonical AFs in table 2. Automatically generated phonetic transcriptions
of the CGN material are available but these are not used because advances in
ASR have since made it possible to create better forced alignments.

3.3.1 Forced Alignment

Forced alignment takes in a speech signal and an orthographic transcript, and
tries to assign phoneme boundaries that best match the speech signal based on
a lexicon and an acoustic model. For example, from the existing orthographic
transcript we know which part of the speech signal contains the word hamster.
From the lexicon we know the phonetic form of hamster is hAmst@r. Now the
alignment is a matter of assigning phoneme boundaries within a small segment
of the speech signal. Figure 9 shows an example of a speech signal with aligned
transcriptions. Line 3 shows the orthographic transcription aligned on the word
level with the phonetic transcriptions of the words on line 2. Line 1 shows the
phonetic transcription aligned at the level of the individual phonemes. Creating
such a transcription is the goal of forced alignment.

Forced alignments were made using Kaldi, a toolkit for speech recognition
[16]. An existing lexicon was used, however, approximately 200 words in the
transcriptions (all mispronunciations) did not appear in the lexicon. The CGN
automatic phonetic transcriptions were used to complete the lexicon.

The alignments were made using GMM-HMMs (Gaussian mixture model-
hidden Markov models) which are a component of many state of the art ASR
systems (e.g. [17]). Figure 10 shows an example of a GMM-HMM for the word
ham. Each phone is modelled by three states, one for the beginning, one for the
middle and one for the final part of the phone (indicated by b, m, f in figure

26

Figure 10: GMM-HMM for the word ham.

10). Each state has two transition probabilities; one for remaining in the current
state and one for the transition to the next state. Acoustic features computed
from the speech signal are the observations. The states of the model are ’hidden’
but each HMM state emits an observation in the form of the acoustic features.
The probabilities for each state to emit a particular observation are determined
by the GMMs. Each observation sequence is modelled by a separate GMM-
HMM with its own transition probabilities, the GMMs for the phone states are
shared by all GMM-HMMs. The goal of forced alignment is to find the sequence
of hidden states that is most likely to have emitted the observed signal, this is
process is called decoding [2]. Rather than evaluating every possible hidden
state sequence this is done using the Viterbi algorithm (see [2] ch. 6 for a full
explanation of Viterbi).

Training a GMM-HMM model is the task of determining state transition
probabilities and emission probabilities that maximise the likelihood of the ob-
served data given a hidden state sequence [2]. This is done using the Baum-
Welch algorithm (see [2] ch. 6 for a full explanation of Baum-Welch). The
hidden state sequence and the transition and emission probabilities are un-
known so the algorithm starts with an estimation. This initial estimation is an
equally spaced alignment, transition probabilities of 0.5 and GMMs with the
mean and variance for each Gaussian set to the global mean and variance for
the entire data-set [2]. The estimations are then iteratively improved using the
Baum-Welch algorithm.

First a monophone model, in which no context of the phonemes is consid-

27

ered, is trained on MFCCs. Trained models are to bootstrap the training of a
new model. That is, the alignment, emission probabilities and transition prob-
abilities of the monophone model can be used as the initial estimation for more
complex models.

Subsequently various triphone models are trained. Triphone models model
the phones’ left and right context as such taking into account the pronuncia-
tion variability of the phones due to coarticulation [22][24]. First delta-based
triphones are trained, then delta + delta-delta based triphones, LDA-MLLT
based triphones and SAT triphones. Each new model is bootstrapped using the
previous model.

Delta and delta-delta are the first and second temporal derivatives of the
MFCCs respectively. First a model is trained only on MFCCs with delta fea-
tures and in the next model delta-delta features are added. LDA-MLLT stands
for linear discriminant analysis - maximum likelihood linear transform [53][54].
LDA is used to reduce the dimensionality of the input, MLLT decorrelates the
input. LDA-MLLT transformed MFCC features are shown to improve word er-
ror rates for GMM-HMM-based ASR systems [16][55]. SAT stands for speaker
adaptive training [56] which adapts the GMM-HMMs for speaker variation.
SAT is shown to improve word error rates for GMM-HMM-based ASR systems
in [16].

3.4 Networks

This section describes the architecture, input data and parameter settings of
the neural networks that were trained.

3.4.1 Multi-layer perceptron architecture

The baseline MLPs were implemented as described in [13] and consisted of
an input layer, a fully connected hidden layer and a soft-max output layer.
A total of seven networks were trained, one for each AF. The hidden layer
has a hyperbolic tangent non-linearity. Scharenborg (2010) based the number
of hidden nodes for each MLP on tuning experiments [13]. The number of
output nodes is equal to the number of classes of each AF. No drop-out or
batch normalisation was used. Table 3 shows the number of hidden nodes and
output nodes for each AF as used in [13].

28

Articulatory feature #hidden nodes #output nodes
Manner 300 8
Place 200 8
Voicing 100 2
Backness 200 4
Height 250 4
Rounding 200 3
Duration-diphthong 200 4

Table 3: The number of hidden nodes and output nodes per AF.

The MLPs were trained on MFCC acoustic features; 12 cepstral coefficients
plus log energy and delta and double delta features for a vector of 39 features.
The network receives 11 consecutive frames as input with the middle frame
being the frame to classify [13]. This brings the networks’ input size to 11 by
39.

The networks are trained using Nesterov momentum with a learning rate
of 0.01 and momentum of 0.9, a learning rate decay of 0.5 per epoch and a
batch size of 512. After each epoch the network performance is evaluated on
the validation set and training is stopped when the validation accuracy starts
to drop.

3.4.2 Convolutional neural network architecture

The CNN architecture is implemented as described in [18]. The input feature
vectors consisted of the Mel filtered signal. As with the MLPs, the network
were fed 11 consecutive frames, with the middle frame being classified. Seven
networks were trained, one for each AF.

The filter-bank features were created using 64 Mel filters resulting in an
equal number of filter-bank energies. The input was chosen to be an exponent
of two which means the input can be neatly down-sampled by max-pooling,
without having to either apply zero padding or discard the border. This brings
the input size to 11 by 64.

Figure 11 shows an overview of the CNN architecture. The architecture
consists of six blocks. The first five each consist of two convolutional layers
with ReLU non-linearity followed by a max-pooling layer. Padding is applied
to the borders of the convolutions so that the layers’ output size is equal to
its input size. Spatial dropout of 20% is applied to the convolutional layers.
Furthermore, batch normalisation is applied in between the convolution and
the non-linearity.

The size of the convolutional filters is three by three throughout the network
with a stride of one in both directions. The number of feature maps increases
with depth. The first two convolutional layers have 64 feature maps, the next
four have 128 and the last four layers have 256. The first two max-pooling layers
are of size one by two as pooling is only applied in the frequency dimension.
The next three pooling layers are of size two by two now being applied in both

29

the time and the frequency dimension2. The stride of the pooling layers is equal
to the pooling size in both directions. The first two pooling layers in the time
dimension (the third and fourth pooling layers) apply zero padding on the time
axis to make the size of the time dimension appropriate for max-pooling of size
two. This is because sub-sampling along a dimension whose size is not divisible
by the size of the pooling filter means that the border will be discarded.

After the convolutional layers, a block of four fully connected layers is ap-
plied. Each of these layers has 2048 hidden nodes, a drop-out of 40% and batch
normalisation before the ReLU non-linearity is applied. The output layer is a
soft-max layer with the number of output nodes varying per network depending
on the AF.

2Because the time dimension is only size 11 it can not be sub-sampled five times.

30

Figure 11: Overview of the DNN architecture used in this project.

31

The networks are trained using Nesterov momentum with a learning rate
of 0.01 and momentum of 0.9 a learning rate decay of 0.5 and a batch size
of 512. A pilot test showed that the networks were very close to their final
performance even after a single epoch. The first epochs resulted in some small
improvements with only marginal improvements in the order of 0.1% after four
epochs. Considering that the networks perform well after a small amount of
epochs and the long training time for each epoch, the maximum amount of
epochs was set to five. The validation set accuracy is still used as an early
stopping criterion.

3.4.3 Trainable filter-bank architecture

The second CNN architecture is a proposed extension of the architecture de-
scribed in the previous section. The Mel filters used to extract the Mel filter-
bank energies from the frequency spectral features were implemented as a convo-
lutional network layer that was inserted right after the input layer. By including
the Mel filters in the CNNs and updating their weights along with the rest of the
network, the networks can potentially optimise the filters for the classification
of a particular AF.

The Mel filters consist of filter coefficients forming a configurable number
of triangular filters. These half overlapping filters cover the entire frequency
spectrum and each filter collects energy from its own part of the spectrum.
The application of the Mel filters is done by multiplying the frequency spectral
features with the filter coefficients and summing the results over the entire filter.

This is exactly what a convolutional filter does and as such the Mel filtering
operation can be implemented as a convolutional network layer. This layer has
64 filters so that the result of the layer will be 64 Mel filter-bank features as
used in the previous section. The weights of the filters are preset to the Mel
filter-bank coefficients (see appendix A for the creation of these coefficients).
The convolution is basically the same as explained in section 2.2.4 except that
they have a stride of 0 in the frequency dimension because the filter size is equal
to size of the frequency spectral features. The filters slide only over the 11 input
frames. Figure 12 shows how this layer is slightly different from that shown in
figure 5.

32

Figure 12: Schematic of the Mel-filtering operation implemented as a convolu-
tion network layer. The convolutional filters are as wide as the FFT size and
slide over the time dimension.

After taking the natural logarithm of this layers’ output, the result is equal
to the Mel filter-bank features. However, the filters are now incorporated into
the CNN and their weights will be trained along with the rest of the network.

The size of the input is 257 frequency spectral features by 11 frames. The
output size of the new layer is 11 by 1 with 64 feature maps, which is reshaped
to 11 by 64 corresponding to the number of frames and filter-banks. The result
can now be used as input to the network shown in figure 14.

The networks were trained using Nesterov momentum with a learning rate
of 0.01 and momentum of 0.9 a learning rate decay of 0.5 and a batch size of
512. The maximum number of epochs was set to five while using the validation
set accuracy as an early stopping criterion.

3.5 Fine-Tracker materials

The acoustic stimuli used in the Fine-Tracker simulations were provided by O.
Scharenborg and are the same as those used in [13]. These stimuli came from
the spoken sentences from the experiments by Salverda et al. (2003) and were
cut manually so that they only contain the target word [10][13]. The stimuli
consist of 28 multi-syllabic target words of which the first syllable is also a
an embedded monosyllabic word, such as ’ham’ in ’hamster’. There are two
conditions for every word: the first is the MONO condition in which the first
syllable is cross-spliced from a recording of the embedded word (e.g. ’ham’). In
the CARRIER condition the first syllable is cross-spliced from another recording
of the target word.

Acoustic features were computed for the stimuli as described in section 3.2.
The acoustic features were then passed through the trained networks resulting

33

in 33 posterior probabilities, one for each class of each AF, for every 5 ms of
speech. These AF vectors serve as the pre-lexical level representations of the
speech signal. These AF vectors are the input materials for Fine-Tracker. The
inputs are mapped onto the lexical representations according to the activation
and competition process described in more detail section 3.6.

The durational information is hard-coded in Fine-Tracker’s lexicon. There
are two lexicons, one with and one without durational information (the ’canoni-
cal’ and the ’duration’ lexicon respectively). In the canonical lexicon the lexical
feature representations for the embedded words and the first syllable of the
target words are identical. The phonemes of the lexical representations are rep-
resented by each phoneme’s canonical AF vector (see table 1 for the phoneme
to AF mapping). In the duration lexicon the lexical representations for the
embedded word and the first syllable of the target word are different. To ac-
commodate the use of durational information each phoneme in the embedded
words was represented by two identical AF vectors in the duration lexicon. An
example of how durational information is encoded in the lexicon is shown in
figure 13. The lexicon used in this study contained only the target words and
the embedded words for a total lexicon size of 56.

Canonical lexicon
ham AF vector

h 100101...
A 010111...
m 101000...

hamster AF vector
h 100101...
A 010111...
m 101000...
s 001100...
t 111001...
@ 101010...
r 101001...

Duration lexicon
ham AF vector

h 100101...
h 100101...
A 010111...
A 010111...
m 101000...
m 101000...

hamster AF vector
h 100101...
A 010111...
m 101000...
s 001100...
t 111001...
@ 101010...
r 101001...

Figure 13: Lexical representations of ham and hamster in the canonical lexicon
(left) and the duration lexicon (right). In the duration lexicon the embedded
word is represented by two identical AF vectors for each phoneme.

3.6 Word activation and competition process

Fine-Tracker’s word activation and competition process is implemented as a
probabilistic word search [13]. This process maps the pre-lexical representa-
tions (i.e. the AF vectors derived from the acoustic signal) onto the lexical
representations (i.e. canonical AF representations of words). The lexicon is

34

represented as a tree of feature vectors. When a node in the lexicon is accessed
all words starting with the same sequence of feature vectors become equally
activated. The word search algorithm is a breadth first search of the lexical
tree.

The word search starts at the root of the lexical tree and child nodes are
created by two mechanisms [13]. The first is to take a step in the input but
not in the lexical tree. This results in multiple pre-lexical feature vectors being
mapped to one lexical feature vector. The word search can also take a step in
both the input and the lexical tree. Once the end of a word has been reached,
the search starts over at the root of the lexical tree. This loop is repeated until
the end of the input sequence has been reached.

The goal of the word search is to find the cheapest path through the search
space. The cost of each node is given by a distance measure that indicates the
goodness-of-fit between the pre-lexical and lexical feature vectors. The distance
measure used by Fine-Tracker is the averaged squared distance (ASD) given by:

ASD =
∑

AdmComp(Lexval−Preval)
2

#Admissible

Where Lexval and Preval are the lexical and pre-lexical feature vectors.
The distance is only calculated over the ’admissible’ AFs. For example for a
lexical representation of a consonant, the vowel height features ’low’, ’mid’ and
’high’ are inadmissible and not included in computing the distance.

The word score it then calculated by:

word score =
∑
prelex feature vectors SV + αASD

Where ASD is the averaged squared distance, α is a weight for the distance
measure, and SV can be either SI (step-in-input) or SIL (step-in-input-and-
lexicon) a value indicating the cost of these two actions.

Furthermore, Fine-Tracker has a word entrance penalty (the cost of starting
a new word) and a word-not-finished penalty. The word-not-finished penalty is
a penalty applied at the end of the input sequence to any search paths ending
in an unfinished word. Fine-Tracker outputs an N-best list of predictions after
every frame of the input sequence. This allows for the evaluation of the word
activations over time. At the end of the input sequence a list of final predictions
is made where any word-not-finished penalties are applied. The table below lists
the settings for the parameters discussed above. These parameter settings were
taken from [13] in order to allow for a fair comparison with previous results.

35

word entrance penalty .5
word-not-finished penalty 10

α 1
step-in-input 0.2

step-in-input-and-lexicon 0.0

Table 4: Fine-Tracker parameter settings

3.7 Fine-Tracker simulation setup

The goal of the Fine-tracker simulations is to model the findings by Salverda
et al. (2003) that pictures representing an embedded word attracted relatively
more eye fixations from listeners in the MONO condition than in the CARRIER
condition [10]. They claimed that this effect was governed by the duration
of stimulus sequence so that longer sequences are more often interpreted as a
monosyllabic word.

Fine-Tracker was tested in two conditions, that is, with and without the
ability to use durational information. This is done by letting Fine-Tracker use
the canonical lexicon (without durational information) or the adapted duration
lexicon. Considering the behavioural results by Salverda et al. (2003) and
the results of the previous Fine-Tracker simulations by Scharenborg (2010), the
expectation is that word activations for the embedded words are higher in the
MONO condition than the word activations for the embedded words in the
CARRIER condition [10][13].

Firstly Fine-Tracker’s word recognition performance is evaluated. In previ-
ous Fine-Tracker simulations reported by Scharenborg (2010) the correct target
word was not always Fine-Tracker’s top prediction. The expectation is that
improving the quality of the AF vectors that are input to Fine-Tracker will im-
prove improve Fine-Tracker’s word recognition performance such that the target
word is more often Fine-Tracker’s top prediction.

In order to evaluate Fine-Tracker’s simulation performance, the word ac-
tivations of the embedded words over time are compared on the MONO and
CARRIER conditions. In a correct simulation, the word activation of the em-
bedded word is higher in the MONO condition than in the CARRIER condi-
tion. The effect of using durational information is investigated by comparing
the number of correct simulations with and without durational information. If
durational information can indeed be used to disambiguate the embedded and
target words, using the duration lexicon should result in more correct simula-
tions than using the canonical lexicon. The results for the MLPs and CNNs are
compared in order to investigate the effects of better AF classification on the
simulation performance of Fine-Tracker. As Fine-Tracker was made in order to
model human speech recognition, the simulation results are then compared to
the human behavioural data reported by Salverda et. al. (2003) [10].

36

4 Results

This chapter starts with the analysis of the different DNN architectures. First
the new baseline MLPs are compared to the results reported by Scharenborg
(2010) [13]. Next the performance of the three DNN architectures outlined in the
previous chapter is compared. Lastly the Fine-Tracker simulations made with
the baseline MLPs and the best performing CNN architecture are analysed.

4.1 Baseline performance

The new baseline MLPs were created in order to account for any effects caused
by the differences in training data used in the current study and in the training
data used in [13]. The AF classification scores for the new baseline MLPs and
the results reported by Scharenborg (2010) are shown in table 5 [13].

Articulatory feature baseline MLP accuracy (%) Scharenborg 2010 accuracy (%)
Manner 73.98 76.6
Place 72.74 76.2
Voicing 90.18 89.3
Backness 81.10 77
Height 81.82 82.5
Rounding 83.68 79.6
Duration-diphthong 80.33 79

Table 5: Classification accuracy on the test set of the MLPs trained on MFFCs.
The left column are the results of the new baseline MLPs, the right column
shows the results reported by Scharenborg (2010) [13].

As you can see in the table above, the performance of the new MLPs is
similar to results reported in [13]. The newly trained baseline MLPs perform
better on backness and rounding, worse on manner and place of articulation
with minor differences on the other features. So simply using more data by
itself did not improve AF classification.

4.2 Comparison of MLPs and CNNs

Next the baseline results are compared to the results of the two CNN archi-
tectures. First the relative size of each class label per AF is analysed. The
relative size of the majority class can be thought of as the performance of a
naive classifier which assigns the majority label to all the data (a chance level
performance). Furthermore, large class imbalances can cause a classifier to be-
come biased towards the majority class. The relative size of each class label
per AF is shown below in table 6. The largest class for each AF is indicated in
boldface. It is notable that every AF except voicing has a clear majority class
that is much larger than the other classes.

37

Articulatory feature Class size (%)

Manner
vowel plosive fricative glide liquid nasal retroflex silence
29.81 13.28 11.38 3.44 2.68 8.06 4.01 27.32

Place
nil bilabial alveolar labiodental velar glottal palatal silence
29.81 4.19 26.29 3.80 6.24 1.49 0.83 27.32

Voicing
voiced unvoiced
53.50 46.50

Backness
central back front nil
11.12 8.48 10.21 70.19

Height
mid low high nil
15.55 11.54 2,72 70.19

Rounding
unrounded rounded nil
16.75 13.06 70.19

Duration-diphthong
short long diphthong nil
16.11 10.46 3.24 70.19

Table 6: Relative sizes of the classes within each AF.

Table 7 shows the classification results per AF for the baseline and the two
CNN architectures. The first row indicates the chance level performance based
on the size of the majority class for each AF and the second row indicates the
performance of the baseline MLPs. CNN indicates the CNN architecture de-
scribed in [18], CNN Mf indicates the architecture extended with the Mel filter
layer. The classification results of all models were well above chance level per-
formance. Furthermore, both CNN architectures are a clear improvement over
the MLPs on every AF. The CNN architecture had the best performance on
all AFs. The bottom rows of the table show the absolute and relative improve-
ment of the best results over the baseline MLPs, with the biggest improvements
on manner and place of articulation and the smallest improvement on voicing.
As the CNN architecture outperformed the CNN Mf architecture on every AF,
further analyses and the Fine-Tracker simulations were done for the baseline
MLPs and the CNN architecture only (an analysis and discussion of the CNN
Mf architecture and the trained Mel filter-banks can be found in appendix B).

38

Metric Articulatory feature
manner place voicing backness height rounding duration-diphthong

chance level % 29.81 29.81 53.50 70.19 70.19 70.19 70.19
MLP baseline accuracy (%) 73.98 72.74 90.18 81.10 81.82 83.68 80.33

CNN accuracy (%) 86.90 86.28 93.52 89.20 89.17 90.63 88.18
CNN Mf accuracy (%) 84.58 84.89 92.87 86.57 86.88 88.55 86.53

abs improvement (%) 12.92 13.54 3.34 8.10 7.35 6.95 7.85
rel improvement (%) 17.46 18.61 3.70 9.99 8.98 8.30 9.77

Table 7: Table of classification results per AF for the baseline MLPs, CNNs
and the CNNs extended with trainable Mel-filters. The last two rows indicate
the absolute and relative improvements of the best results (printed in boldface)
over the MLP baseline results.

Next we look at the classification performance for each class label per AF,
in order to see whether the classification performance is biased towards the
majority class. Figure 14 and 15 show the normalised confusion matrices for
the baseline MLPs and CNNs respectively. The scores on the diagonals indicate
the classification performance for each individual class label. The scores off the
diagonal indicate the confusion, that is, the percentage of examples that were
miss-classified as another class.

39

Figure 14: Normalised confusion matrices for the MLPs. The diagonal corre-
sponds to the per class accuracy.

40

Figure 15: Normalised confusion matrices for the CNNs. The diagonal corre-
sponds to the per class accuracy

The bias towards majority classes is biggest in the baseline MLPs, where
10 out of 33 labels are more often miss-classified than correctly classified. The
most extreme cases are in the manner and place classifiers. Over 40% of the
occurrences of the glide and retroflex for manner and the glottal and palatal for
place are miss-classified as the majority label.

The CNNs are an improvement over the baseline on every single class,
with larger relative improvements on the minority classes than on the majority
classes. For example, classification accuracy of the glottal increased from 13%
to 66% and the confusion with the majority class decreased from 44% to 22%
compared to the baseline. For the CNNs all 33 class labels were more often
correctly classified than miss-classified.

41

4.3 Fine-Tracker simulation results

In order to simulate speech recognition, Fine-Tracker has to be able to correctly
identify the target and embedded words. The table below lists the number of
words that were correctly recognised by Fine-Tracker for each condition and
DNN architecture.

Model condition lexicon embedded words correct target words correct

Scharenborg 2010
MONO

canonical 28 28
duration 28 28

CARRIER
canonical 28 28
duration 28 28

MLP
MONO

canonical 28 28
duration 28 28

CARRIER
canonical 27 27
duration 27 27

CNN
MONO

canonical 28 28
duration 28 28

CARRIER
canonical 28 28
duration 28 28

Table 8: Table listing Fine-Tracker’s word recognition results. The first column
indicates the models used to create the AF vectors, the second column lists the
stimulus condition and the third column indicates which lexicon was used.

Using the CNN AF vectors all 28 target and 28 embedded words were cor-
rectly recognised for both conditions and lexicons. For the MLP AF vectors,
all 28 target and 28 embedded words were correctly recognised only in the
MONO conditions for both lexicons. In the CARRIER condition, 27 words
were correctly recognised. For both lexicons, the embedded word ’ham’ was not
recognised and the target word ’lampekap’ was not recognised. Note that these
results indicate whether a word was recognised at all at some point during the
acoustic input.

The word recognition performance is further evaluated by looking at the list
of final predictions at the end of the acoustic input. The table below lists the
number of simulations for which the target word was in the final 50 best list of
predictions for each condition and lexicon. The number between brackets is the
number of times the target word was the top prediction.

42

condition Scharenborg 2010 MLP CNN
canonical duration canonical duration canonical duration

MONO 27 (20) 25 (15) 24 (16) 19 (11) 28 (23) 23 (19)
CARRIER 23 (21) 22 (16) 22 (19) 22 (16) 28 (23) 21 (18)

Table 9: Table listing the number of simulations where the target word was
among the final predictions for each condition and lexicon. The number between
brackets indicates how many times the target word was the top prediction.

The word recognition was worst for the MLPs both in terms of words that
were not in the final 50 best list and the number of words that were the top
prediction. Furthermore, the word recognition of the CNNs is an improvement
over the results reported by Scharenborg (2010) [13]. For the canonical lexicon
all words appeared in the final predictions and 23 out of 28 words were the top
prediction. However, for the durational lexicon the number of words appearing
in the final results is slightly lower than the results reported by Scharenborg
(2010) [13]. The CNN still performs better in terms of words that appeared in
the final results as the top prediction.

In order to investigate the modelling ability of Fine-Tracker, the word ac-
tivations are compared over time for the MONO and the CARRIER condition
using the canonical lexicon and the duration lexicon. Table 10 shows in which
condition (MONO or CARRIER) the embedded word had the highest activation
over time. The decision is based on a comparison of the word activations over
time; the ’winning’ condition had the highest activation for the largest part of
the stimulus.

43

embedded / target Scharenborg 2010 MLP CNN
Effect size
human data

canonical duration canonical duration canonical duration

bij / beitel CARRIER MONO MONO MONO CARRIER MONO .19
blik / bliksem CARRIER CARRIER MONO MONO MONO MONO .01
bok / bokser MONO MONO MONO MONO MONO MONO .12
ei / eikel CARRIER CARRIER CARRIER CARRIER CARRIER CARRIER .01
ham / hamster CARRIER CARRIER X X MONO MONO .01
hen / hendel CARRIER MONO CARRIER MONO CARRIER CARRIER -.30
kan / kandelaar CARRIER MONO MONO MONO CARRIER CARRIER .22
kei / kijker CARRIER MONO MONO MONO CARRIER MONO -.01
knip / knipsel MONO MONO CARRIER MONO MONO MONO -.03
koe / koekepan CARRIER CARRIER MONO MONO CARRIER CARRIER .23
kok / cocktail CARRIER CARRIER CARRIER CARRIER MONO MONO .07
kom / compact-disc MONO MONO MONO MONO MONO MONO .08
la / lama CARRIER MONO CARRIER CARRIER CARRIER CARRIER .05
lam / lampekap MONO MONO CARRIER CARRIER CARRIER CARRIER -.08
lei / leiding CARRIER CARRIER MONO MONO CARRIER CARRIER -.02
man / mantel MONO MONO CARRIER CARRIER CARRIER MONO .09
pan / panda CARRIER CARRIER CARRIER MONO CARRIER CARRIER .03
pen / panty MONO MONO MONO CARRIER CARRIER CARRIER -.03
pin / pinda MONO MONO CARRIER MONO CARRIER MONO -.10
ree / regenton CARRIER MONO CARRIER CARRIER CARRIER MONO .14
roos / rooster MONO MONO MONO MONO MONO CARRIER -.01
schil / schilder MONO MONO CARRIER MONO CARRIER CARRIER .20
sla / slager CARRIER CARRIER MONO MONO CARRIER CARRIER .10
snor / snorker CARRIER MONO MONO CARRIER CARRIER MONO .00
tak / taxi CARRIER CARRIER CARRIER CARRIER CARRIER MONO .26
thee /tegel CARRIER CARRIER CARRIER CARRIER CARRIER MONO .13
tor / torso CARRIER MONO CARRIER MONO MONO MONO -.02
zee / zebra CARRIER CARRIER CARRIER CARRIER MONO CARRIER .12

MONO total 9 17 12 16 9 15 18

Table 10: The results of the Fine-Tracker simulations. The first column lists
the embedded and target words. The next three columns list the results by
Scharenborg (2010) and the results of the current study using the MLP and
DNN AF vectors respectively [13]. The last column indicates the effect size of
the human data which is the difference between the two conditions in average
proportions of eye fixations to the embedded words. The bottom row shows the
total number of times that the MONO condition had the highest word activation
over time.

The table above show the results for both the MLPs and CNNs along with
the results reported by Scharenborg in [13]. Canonical and duration refer to the
use of the canonical lexicon (i.e. Fine-Tracker cannot use durational informa-

44

tion) and the duration lexicon (Fine-Tracker can use durational information).
MONO and CARRIER indicate in which condition the embedded word had the
highest activation over time. As noted earlier the word ’ham’ was not com-
pletely recognised by Fine-Tracker using the MLP AF vector and as such this
word is excluded for the MLPs. For the canonical lexicon, the MONO condition
won 12 times for the MLPs and 10 times for the CNNs. When the duration
lexicon was used, these numbers increased to 16 for both the MLPs and CNNs.
These numbers are similar to those reported by Scharenborg (2010) (9 and 17
for the canonical and duration lexicon respectively). A one-tailed McNemar for
paired samples (without continuity correction) was done in order to see if the
effect of durational information is significant. The stimuli are paired for the
canonical and duration condition with a 1 indicating when MONO won and a
0 for CARRIER. The test for the MLP results was not significant (χ2 = 2.0, p
= 0.0786). The test for the CNN results was significant (χ2 = 3.6, p = 0.0288
). However the results for the more conservative McNemar test with continuity
correction was not significant for the CNNs (χ2 = 2.5, p = 0.0569).

In line with the results of Salverda et al. (2003) the effect of durational in-
formation was not equal for all stimuli [10]. The last column of the table shows
the effect size on the human data as a difference in the average proportion of eye
fixations to the image representing the embedded word. A positive number indi-
cates more fixations on the embedded word in the MONO condition. The effect
was positive for 18 of the stimuli. While there are some similarities between the
Fine-Tracker simulations and the human data the Fine-Tracker results do not
agree with the human data on every stimulus. The Fine-Tracker results agree
with the human data on 10 out of 18 cases for the CNNs and 9 out of 18 times
for the MLPs and 8 out of 18 times for the results reported by Scharenborg
(2010) [13].

5 Discussion

The goal of this study was to improve the classification of articulatory features
and investigate the effects of articulatory feature quality on Fine-Tracker’s word
recognition and simulation performance. To this end three types of neural net-
works were trained. Firstly new MLP baselines were trained according to the
architecture described in [13]. The baseline was created in order to account for
the fact that this study used more data to train the models. However, simply
using more training data did not increase the AF classification performance.
There were only minor differences in the classification accuracy but if anything
the new baselines performed slightly worse than the MLPs reported in [13].
This result is unexpected as using more training data typically increases the
performance and generalisability of DNNs. A possible explanation is that the
number of hidden nodes for each AF was optimised for the data-set used in [13]
by tuning experiments. The optimal number of hidden nodes may be different
for the data-set used in the current study.

In order to improve the AF classification two CNN architectures were in-

45

vestigated. The first architecture was implemented as described in [18]. Fur-
thermore, an extension to this network, where part of the pre-processing is
integrated as a convolutional layer was implemented. Both CNN architectures
were a clear improvement over the baseline MLPs. The basic CNN architecture
gave the best classification results for all AFs with relative improvements of up
to 18.61% over the baseline. While the basic CNN architecture outperformed
the extended CNN architecture the differences were only minor. Research shows
that the random initialisation of the network weights can have a large effect on
the performance of DNNs, especially when they are trained with momentum
[57]. It is possible that the CNN Mf architecture would have performed better
with a different initialisation of the network weights.

Further investigation of the baseline MLPs and the best performing CNNs
showed that the improvements in classification accuracy were bigger for the
minority classes than for the majority classes. There were clear majority classes
for six of the seven AFs and an investigation of the confusion matrices showed
that the classifiers were biased towards the majority class. This bias was so large
for the MLPs that some classes were more often miss-classified as the majority
label than they were correctly classified.

This bias decreased for the CNNs where all classes were more often correctly
classified than miss-classified. Confusion with the majority class decreased on
all AFs. This is an important improvement of the quality of the AF vectors.
For instance the majority class for backness, height, rounding and duration-
diphthong is ’nil’, a label assigned to all consonants and silence. While distin-
guishing between vowels on the one hand and consonants and silence on the
other is necessary in order to be able to distinguish between the different char-
acteristics of vowels, the interesting information such as vowel height is actually
captured by the minority labels. If these classifiers are biased towards the ma-
jority class they are all fairly accurate at detecting consonants but they provide
less accurate information on the characteristics of the vowels. In this sense
the CNNs are even more of an improvement than the overall accuracy would
suggest.

Speech recognition simulations were carried in order to investigate the effects
of improved AF classification on Fine-Tracker’s word recognition and modelling
performance. The simulations used the acoustic material from the original be-
havioural studies by Salverda et al. (2003) [10]. As expected, the higher quality
of the AF vectors resulted in improved word recognition performance. For the
canonical lexicon, all of the target words appeared in Fine-Tracker’s final predic-
tions with 23 words appearing as the top prediction which is the best recognition
performance reported so far.

The simulations also showed that using durational information allows Fine-
Tracker to distinguish the embedded words from their respective target words.
For both the MLPS and CNNs, the use of durational information resulted in
more correct simulations than without durational information. This is in line
with results reported by Scharenborg (2010). However, this difference was not
significant for the MLPs and only significant for the CNNs when using the
less conservative mcNemar test without continuity correction. The simulations

46

were also compared to the human behavioural data in order to investigate Fine-
Tracker’s ability to model the behavioural data. This showed that the both the
MLPs and CNNs agreed with the human data more often than the simulations
reported by Scharenborg (2010), the differences were very small however [13].

The results suggest that to some degree Fine-Tracker’s modelling perfor-
mance is dependant on the quality of the AF vectors. The MLPs, which showed
the worst AF classification and word recognition results, also showed the worst
modelling results. However, even though the CNNs showed large improvements
on the classification of the AFs and the best word recognition results, they did
not increase Fine-Tracker’s ability to model human behavioural data compared
to the results by Scharenborg (2010) [13]. It is not clear why the improved AF
classification and word recognition does not result in better modelling of the
use of durational information. In order to make a fair comparison to previous
Fine-Tracker results the simulations setting as used by Scharenborg (2010) were
used [13]. Perhaps these parameters need to be tuned to the new AF vectors in
order to allow Fine-Tracker to make better use of the increased quality of the
AF vectors.

In conclusion the convolutional neural networks gave a remarkable improve-
ment in the classification of articulatory features over both the baseline and
previously reported results. While this led to better word recognition for Fine-
Tracker simulations, it did not improve Fine-Trackers modelling capabilities re-
garding the use of durational information. A possible avenue for future research
is to investigate whether Fine-Tracker is sensitive to the simulation parameter
settings and whether these settings need to be tuned to the input.

6 Acknowledgements

I would like to thank my supervisor dr. Odette Scharenborg for including me
into her research group and for all her help with this thesis. I have had more
questions than I can remember and the door to your office was literally always
open. I would also like to thank dr. Martha Larson and dr. Elena Marchiori
for their advice and feedback.

Training all these neural networks on my laptop would have been impossible,
so a special thanks to the SURF corporation for giving me access to their GPUs.

7 references

[1] Scharenborg, O., & Boves, L. (2010). Computational modelling of spoken-
word recognition processes. Design choices and evaluation. Pragmatics& Cog-
nition 18:1 (2010), 136–164.
[2] Jurafsky, D. & Martin, J. H. (2009). Speech and language processing (2nd
ed.). Upper Saddle River, NJ: Pearson Education.
[3]Bent, T. & Holt, Ra. (2017). Representation of speech variability: Speech
variability. Wiley Interdisciplinary Reviews: Cognitive Science. e01434. 10.1002/wcs.1434.

47

[4] https://www.cnet.com/how-to/common-amazon-alexa-problems-and-how-to-
fix-them/ Retrieved on 26/09/2017
[5] Vroomen, J., de Gelder, B. (1997). Activation of Embedded Words in Spoken
Word Recognition, 23(3), 710–720.
[6] Gow, D. & Gordon, P. C. (1995). Lexical and prelexical influences on word
segmentation: Evidence from priming. Journal of experimental psychology.
Human perception and performance. 21. 344-59. 10.1037//0096-1523.21.2.344.
[7] Allopenna, P., Magnuson, J. & Tanenhaus, Michael. (1998). Tracking the
Time Course of Spoken Word Recognition Using Eye Movements: Evidence for
Continuous Mapping Models. Journal of Memory and Language. 38. 419-439.
10.1006/jmla.1997.2558.
[8] McClellan, J. L. & Elman, J. L. (1986). The Trace Model of Speech Percep-
tion. Cognitive Psychology, 18, 1-86.
[9] Norris, D. G. (1994). Shortlist: A connectionist model of continuous speech
recognition. Cognition, 52, 189-234.
[10] Salverda, A. P., Dahan, D., and McQueen, J. M. (2003). The role of
prosodic boundaries in the resolution of lexical embedding in speech compre-
hension. Cognition 90, 51–89.
[11] Davis, M., Marslen-Wilson, W. & Gaskell, G. (2002). Leading up the
lexical garden path: Segmentation and ambiguity in spoken word recognition.
Journal of Experimental Psychology: Human Perception and Performance. 28.
. 10.1037//0096-1523.28.1.218-244.
[12] Salverda, A. P., Dahan, D., Tanenhaus, M., Crosswhite, K., Masharov, M.
& McDonough, J.. (2007). Effects of prosodically modulated subphonetic varia-
tion on lexical competition. Cognition. 105. 466-76. 10.1016/j.cognition.2006.10.008.
[13] Scharenborg, O. (2010). Modeling the use of durational information in
human spoken-word recognition. J Acoust Soc Am, 127(6), 3758–3770.
[14] Weber, A., & Scharenborg, O. (2012). Models of spoken-word recognition.
Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 387–401.
[15] Siniscalchi, S. M., Yu, D., Deng, L., & Lee, H. (2012). Exploiting Deep
Neural Networks for Detection-Based Speech Recognition, 106, 148–157.
[16] Rath, S. P., Povey, D., Vesely K., & Cernock, C. (2013). Improved feature
processing for Deep Neural Networks
[17] Abdel-Hamid, O., Mohamed, A., Jiang, H. & Penn, G. (2012). Applying
Convolutional Neural Networks concepts to hybrid NN-HMM model for speech
recognition. Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988
International Conference on. 4277-4280. 10.1109/ICASSP.2012.6288864.
[18] Qian, Y. & Woodland, P. (2016). Very Deep Convolutional Neural Networks
for Robust Speech Recognition.
[19] Kirchoff, K. (1999). Robust Speech Recognition Using Articulatory Infor-
mation. Dissertation. Faculty of Technology, University of Bielefeld.
[20] Mitra, V., Sivaraman, G., Nam, H., Espy-Wilson, C., Saltzman, E. & Tiede,
M. (2017). Hybrid convolutional neural networks for articulatory and acoustic
information based speech recognition. Speech Communication. 89. 103-112.
10.1016/j.specom.2017.03.003.

48

[21] Mitra, V., Wang, W., Stolcke, A., Nam, H., Richey, C., Yuan, J. & Liber-
man, M. (2013). Articulatory trajectories for large-vocabulary speech recog-
nition. Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988
International Conference on. 7145-7149. 10.1109/ICASSP.2013.6639049.
[22] Kirchhoff, K., Fink, G. A. & Sagerer, G. (2002). Combining acoustic and
articulatory feature information for robust speech recognition. Speech Commu-
nication. 37. 303-319. 10.1016/S0167-6393(01)00020-6.
[23] Badino, L., Canevari, C., Fadiga, L. & Metta, G. (2015). Integrating Ar-
ticulatory Data in Deep Neural Network-based Acoustic Modeling. Computer
Speech & Language. 36. . 10.1016/j.csl.2015.05.005.
[24] King, S., Frankel, J., Livescu, K., McDermott, E., Richmond, K. & Wester,
M. (2007). Speech production knowledge in automatic speech recognition. The
Journal of the Acoustical Society of America. 121. 723-42.
[25] Westbury, J. R., (1994). X-ray Microbeam Speech Production Database
User’s Handbook. Waisman Center on Mental Retardation and Human Devel-
opment. University of Wisconsin, Madison, WI, USA, version 1.0 edition.
[26] Wrench, A. A., (2000). Multi-channel/multi-speaker articulatory database
for continuous speech recognition research. Phonus 5, 1–13.
[27] Chen, L., Mao, X., Wei, P. & Compare, A. (2013). Speech Emotional
Features Extraction Based on Electroglottograph. Neural computation. 25.
10.1162/NECO a 00523.
[28] Yoshioka, H., Löfqvist, A., & Hirose, H. (2008) Laryngeal adjustments in the
production of consonant clusters and geminates in American English. Journal
of the Acoustical Society of America 70: 1615-1623, 1981.
[29] Ji, A. (2014). Speaker Independent Acoustic-to-Articulatory Inversion. Dis-
sertation. Marquette University.
[30] Ghosh, P. & Narayanan, S. (2011). Automatic speech recognition us-
ing articulatory features from subject-independent acoustic-to-articulatory in-
version. The Journal of the Acoustical Society of America. 130. EL251-7.
10.1121/1.3634122.
[31] Hasegawa-Johnson, M., Baker, J., Borys, S., Chen, K., Coogan, E., Green-
berg, S., Juneja, A., Kirchhoff, K., Livescu, K., Mohan, S., Muller, J., Sönmez,
M. & Wang, T. (2005). Landmark-based speech recognition: Report of the 2004
Johns Hopkins summer workshop. Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing / sponsored by the Institute
of Electrical and Electronics Engineers Signal Processing Society. ICASSP. 1.
1213-1216. 10.1109/ICASSP.2005.1415088.
[32] Rietveld, A. C. M. & van Heuven, V. J. (1997). Algemene fonetiek (1st
ed.). Bussum, Nederland: Coutinho.
[33] Ladefoged, P. (1975). A course in Phonetics. Hartcourt Brace Jovanovich
International Edition.
[34] Catford, J. C. (1977). Fundamental problems in phonetics (1st ed.). Edin-
burgh, Scotland: Edinburgh University Press.
[35] Mazharul Islam, A. K. M. (2015). Speaking: A Review. International
Journal of Humanities and Cultural Studies. 2. 3. 423-435.

49

[36] Sebregts, K. (2014). The Sociophonetics and Phonology of Dutch r. Dis-
sertation. University of Utrecht
[37] Russel, S. & Norvig, P. (2010). Artificial intelligence: a modern approac.
Upper Saddle River, NJ: Pearson Education.
[38] Nielsen, M. (2017). Neural networks and deep learning. Only (and freely)
available on: http://neuralnetworksanddeeplearning.com
[39] Botev, A., Lever, G. & Barber, D. (2016). Nesterov’s Accelerated Gradient
and Momentum as approximations to Regularised Update Descent.
[40] Svozil, D., Kvasnicka, V. & Posṕıchal, J. (1997). Introduction to multi-
layer feed-forward neural networks. Chemometrics and Intelligent Laboratory
Systems. 39. 43-62. 10.1016/S0169-7439(97)00061-0.
[41] Bengio, Y. & Lecun, Y. (1997). Convolutional Networks for Images, Speech,
and Time-Series.
[42] Sainath, T. N., Mohamed, A., Kingsbury, B. & Ramabhadran, B. (2013).
Deep convolutional neural networks for LVCSR. Acoustics, Speech, and Signal
Processing, 1988. ICASSP-88., 1988 International Conference on. 8614-8618.
10.1109/ICASSP.2013.6639347.
[43] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov,
R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research. 15. 1929-1958.
[44] Krizhevsky, A., Sutskever, I. & Hinton, G. (2012). Imagenet classification
with deep convolutional neural networks. 1097-1105.
[45] Jalali, A., Mallipeddi, R. & Lee, M. (2017). Sensitive Deep Convolutional
Neural Network for Face Recognition at Large Standoffs with Small Dataset.
Expert Systems with Applications. 87. . 10.1016/j.eswa.2017.06.025.
[46] Adeel Waris, M., Iosifidis, A. & Gabbouj, M. (2017). CNN-based Edge Fil-
tering for Object Proposals. Neurocomputing. . 10.1016/j.neucom.2017.05.071.
[47] Jenisha, T. & Swarnalatha, P. (2016). A survey of neural network algo-
rithms used for image annotation. 7. 236-252.
[48] Manli, S., Song, Z., Jiang, X., Pan, J. & Pang, Y. (2016). Learning Pooling
for Convolutional Neural Network. Neurocomputing. 224. . 10.1016/j.neucom.2016.10.049.
[49] Li, J., Deng, L., Haeb-Umbach, R. & Gong, Y. (2015). Robust automatic
speech recognition: A bridge to practical applications.
[50] Tompson, J., Goroshin, R., Jain, A., Lecun, Y. & Bregler, C. (2014). Effi-
cient Object Localization Using Convolutional Networks.
[51] Arpit, D., Zhou, Y., Kota, B. U. & Govindaraju, V. (2016). Normalization
Propagation: A Parametric Technique for Removing Internal Covariate Shift in
Deep Networks.
[52] European Telecommunications Standards Institute. (2003). ETSI ES 201
108 V1.1.3. Available on www.etsi.org, retrieved on 23/11/2016.
[53] Duda, R. O., Hart, P. E. and Stork, D. G. (2000). Pattern classification.
Wiley, November 2000.
[54] Gopinath, R. (1998). Maximum likelihood modeling with Gaussian distri-
butions for classification. Proc. IEEE ICASSP, 1998, vol. 2, pp. 661–664.
[55] Psutka, J. V. (2007). Benefit of Maximum Likelihood Linear Transform
(MLLT) Used at Different Levels of Covariance Matrices Clustering in ASR

50

Systems.
[56] Matsoukas, S., Schwartz, R., Jin, H. and Nguyen, L. (1997). Practical im-
plementations of speaker-adaptive training. DARPA Speech Recognition Work-
shop, 1997.
[57] Sutskever, I., Martens, J., Dahl, G. & Hinton, G. (2013). On the importance
of initialization and momentum in deep learning. 30th International Conference
on Machine Learning, ICML 2013. 1139-1147.
[58] McClellan, J. H., Schafer, R.W. & Yoder. M. A. (2003). Signal processing
first (1st ed.). Upper Saddle River, NJ: Pearson

8 Appendix A

This appendix describes in more detail the pre-processing pipeline for the cre-
ation of the acoustic features. The pipeline is implemented as described by the
ETSI protocol in [2]. The computation of the delta and double delta features is
implemented as described in [52]. The block diagram below gives an overview
of the pipeline. The pipeline is available on https://github.com/DannyMerkx
/CGN speech recognition

Figure 16: Block diagram of the pre-processing pipeline. The coloured blocks
indicate the acoustic features. FFT stands for fast Fourier transform, DCT
stands for discrete cosine transform.

8.1 Offset compensation

The first step is to apply a notch filter to remove the signal’s DC offset. The
notch filter is given by:

sof (n) = s(n)− s(n− 1) + 0.999× sof (n− 1) (8)

51

Where sof is offset free signal and s(n) is input signal.

8.2 Framing

The offset free signal is then segmented into 25ms frames with 5ms frame shift
(400 and 160 samples respectively at a sampling rate of 16kHz). The frame shift
indicates the offset in start times of consecutive frames, and a shift lower than
the frame size means that frames will partly overlap. The signal is padded with
zeros if the last frame does not have enough samples left for a full frame.

8.3 Log energy

The next step is to take the natural logarithm of the frame energy as given by:

LogE = ln(

N∑
i=1

sof (i)2) (9)

N is the number of samples in each frame and sof is the offset free input
signal. The log frame energy is later added to the MFCC feature vector.

In exceptional cases it is possible for the frame energy to be zero in which
case we would take the natural logarithm of zero. This results in negative infi-
nite, which causes problems for the cross entropy loss function during network
training. Instead, the zero value will be replaced by 1e-22, a value very close to
zero, the log of which results in approximately -50.

8.4 Pre-emphasis

After extracting the log energy feature, pre-emphasis is applied. The pre-
emphasis filter is given by:

spe(n) = sof (n)− 0.97× sof (n− 1) (10)

Where n is the nth sample, spe is the pre-emphasised signal and sof is the offset
free input signal.

8.5 Hamming windowing

As the data is cut into 25ms frames, the signal is abruptly cut at the boundaries
causing discontinuities in the signal. The FFT assumes that the finite frame of
data it is given is a full period of a periodic series. What happens when the
signal is discontinuous is called spectral leakage, causing artefacts looking like
low amplitude peaks in the frequency domain that did not exist in the original
signal [58].

52

Below is an example of the frequency spectrum for two different cuts of
a 100Hz sine-wave, one at 1s (a full 10 periods) and the other at 0.78s (7.8
periods).

(a) (b)

(c) (d)

Figure 17: a) FFT of a 100Hz sine-wave without spectral leakage. b) FFT
of a 100Hz sine-wave with spectral leakage due to discontinuities in the FFT
input signal. c) The same signal with spectral leakage, but after applying the
Hamming window. d) The Hamming window for a window of 400 samples.

As you can see in the figure above, the FFT without spectral leakage shows
a large peak at 100Hz as is to be expected. figure 17b shows the artefacts
introduced by taking a frame of the 100Hz signal which does not contain an
integer number of periods.

A Hamming window is applied to counter the issue of spectral leakage. The
Hamming window is given by:

shw(n) = (0.54× 0.46 cos(
2πn

N − 1
))× spe(n) (11)

Where N is the length of the frame in number of samples, shw is the Hamming
windowed signal and spe(n) is the pre-emphasised signal.

As opposed to the so-called square window described in section 3.2.2, the
Hamming window compresses the values near the boundaries of the frames to-

53

wards 0. As you can see in figure 2c, applying the Hamming window does not
solve the issue of spectral leakage, but it does reduce the artefacts.

8.6 Fast Fourier transform

After applying the Hamming window, the signal is converted to the frequency
domain using a fast Fourier transform (FFT). The FFT is faster when the num-
ber of samples in each frame is a power of two; therefore each frame is zero
padded at the end of the frame to the nearest power of two which is 512 for
25ms frames at a sampling rate of 16kHz.

The FFT transform is given by:

sfft(k) =

N−1∑
n=0

shw(n)e−j2πnk/N (12)

Where sfft(k) is frequency bin k of the transformed signal, shw(n) is the Ham-
ming windowed signal, N is the number of samples in each (padded) frame and
k = 0, ..., N − 1 .

Next the two sided amplitude spectrum is computed as given by:

Amp(k) =
1

N
|sfft(k)| × 2 (13)

where Amp(k) is the amplitude of bin k and N is the number of samples in
each (padded) frame. This takes the absolute value of the FFT and normalises
it for the length of the input signal. Furthermore, it is multiplied by two to
account for the fact that we only retain the positive part of the FFT.

Because the FFT is computed on a discrete-time signal, the bins are sym-
metrical or ’mirrored’ around the Nyquist frequency [24] [58]. The first bin
(the DC component) and the Nyquist frequency3 bin are both unique; of the
mirrored bins we only retain the first half. In a setup with 25ms frames and a
16kHz sampling rate this leaves us with 257 bins. Because the DC component
and Nyquist frequency are unique FFT bins, they should not be multiplied by
two in equation 6. The resulting FFT bins are the frequency spectral features
used as input features for the extended CNN architecture.

8.7 Mel filter-banks

Next, Mel-spaced filter-banks are created and applied to the FFT amplitudes.
Frequencies that are judged to be equal in perceptual distance are all equidistant

3The Nyquist frequency is defined as the sampling frequency divided by two. According
to the Nyquist-Shannon theorem, only frequencies up to the Nyquist frequency can be recon-
structed with perfect fidelity. CGN is recorded at 16kHz meaning we can reconstruct signals
up to 8Khz.

54

on the Mel scale [2]. The Mel scale is used because it more closely resembles
human sensitivity to sound than a linear scale.

The Hz to Mel conversion formula is given by:

m = 2595× log10(1 + f/700) (14)

The filter-banks are created so that they are equally spaced along the Mel
scale. The figure below displays the filters both on the Mel and Hz scale to
highlight the difference.

Figure 18: Upper: 23 filter-bank coefficients equally spaced on the Mel scale.
Filters are half overlapping. Lower: The same filters on the Hz scale, no longer
equally spaced

As you can see in figure 18, the Mel spaced filter-banks have a high resolution
at low frequencies while at the higher frequencies, the filter-banks start to cover
a larger range of the spectrum.

The filter-banks consist of weights, each filter has a weight for each of the
FFT bins created in the previous steps. The filters weights are calculated on
the Mel scale and then converted back to the frequency scale before applying
them to the signal. Each filter is sensitive to its own frequency band and has

55

257 values, one for each of our FFT bins, of which most are zero. Applying
the filters is simply a matter taking the dot product of each filter with the
signal. This results in a single filter-bank energy per filter-bank. The resulting
filter-bank energies are the Mel filter-bank features used as input to the CNN
architecture described in [18].

8.8 Non-linear transform

We take the natural logarithm of the Mel-filtered signal because the human
response to signal amplitude is roughly logarithmic [2]. As with the log energy
feature calculated in section 5.3 the natural logarithm is used:

log fbanki = ln(fbanki) (15)

Where i = 1,..., 23
Again the input values are clipped at a lower bound of 1e-22 on the off

chance of taking the log of zero.

8.9 Discrete cosine transform

The next step in creating the MFCC features is to compute the cepstrum. This
is done by applying the discrete cosine transform (DCT) to the log filter-bank
features.

The ETSI protocol uses the type 2 DCT4 which is given by:

MFCCi =

N−1∑
n=0

log fbankn × cos(
π

n
(n+

1

2
)i) (16)

MFCCi is the ith cepstral coefficient and N is the number of filter-banks
created in section 5.7.

As described in [52] only the first 13 cepstral coefficients are kept. Further-
more, the first cepstral coefficient is replaced by the log energy computed in 5.3
[52].

8.10 Delta and double delta features

It is common in speech recognition to add so-called delta and double delta
features to the MFCCs. The delta is the velocity and the double delta the
acceleration. These are calculated for each of 12 MFCCs and the log energy
feature and result in a feature vector of 39 features.

The delta features are calculated using the following formula:

di,t =

∑N
n=1 n(ci,t+n − ci,t−n)

2
∑N
n=1 n

2
(17)

4DCT type 2 is often what is meant by the DCT. It is also the default DCT in many
implementations such as those for Python and Matlab

56

Where di,t is delta coefficient i at time t for i = 1,...,13 for coefficients ci,t−n
through ci,t+n. N is the parameter that determines how many frames of context
are used in calculating the delta features, this parameter was set to two. The
procedure for the double deltas is the same, except now the delta features are
used instead of the MFCCs:

ddi,t =

∑N
n=1 n(di,t+n − di,t−n)

2
∑N
n=1 n

2
(18)

Looking back and ahead two frames will run into trouble at the edges of the
signal. The signal is therefore padded with the first frame at the front and with
the last frame at the back. The resulting MFCCs and delta and double delta
features are the input features used as input to the baseline MLPs.

9 Appendix B

This appendix contains a more in depth analysis and discussion of the results
of the CNN architecture extended with the Mel filter-bank layer (CNN Mf).
Figure 19 shows the normalised confusion matrices for these networks. The
scores on the diagonals indicate the classification performance for each class
label, the scores off the diagonal indicate each label’s confusion with other class
labels.

57

Figure 19: Normalised confusion matrices for the CNN Mf architecture. The
diagonal corresponds to the per class accuracy.

While the extended networks did not outperform the basic architecture,
they were not far behind with differences of only 0.6% to 2.6%. Furthermore,
as the confusion matrices show these CNNs also reduced the bias towards the
majority class compared to the MLPs. One possible explanation for the lower
classification accuracy is that increasing the network depth can cause the net-
work training to converge slower. The CNNs were trained for five epochs only
based on pilot tests that showed that the CNNs made very little improvement
beyond 4 epochs. However, this was not tested separately for the CNN Mf
architecture and further investigation showed that these networks still made
improvements between 0.5% to 1% in the fifth epoch. Training these networks
beyond five epochs might (partly) close the gap between the CNN and CNN Mf
architectures. Furthermore, the differences could simply be caused by the ran-

58

dom initialisation of the network weights. The differences are relatively small
and it is possible that the performance of the CNN Mf architecture is closer to
or higher than that of the CNN architecture under a different initialisation.

The idea beyond this architecture was that the Mel filter-banks are inte-
grated into the network so that the filters can be optimised for the classification
of the different AFs. The figure below shows the filter-banks that were learned,
averaged for all classifiers.

Figure 20: The learned filters averaged for all AFs.

All the filters were initialised to have on peak with a weight of one. As
you can see the peaks increased most for the filters covering the low end of the
amplitude spectrum increasing the relative importance of the low frequencies.
This is in line with human sensitivity to sound and could indicate that the low
end of the spectrum contains more valuable information about the speech signal.

However, the initialisation of the filters is already biased towards the low
end of the frequency spectrum. By using Mel spaced filters, the filters have a
better resolution at the low end than at the high end of the spectrum. Further
testing with equally spaced filters could show whether the low end of the spec-
trum really contains more information that can be used for the classification
of AFs or whether this is caused by a bias in the initialisation. In conclusion,
frequency spectral filters are viable input features for AF classification, allowing
the network to optimise the Mel filtering operation. While this approach did
not outperform the basic CNN architecture, different hyper-parameter settings
or more training epochs could improve the recognition results.

59

