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Abstract

It is generally envisaged that in the near future, personal assistance robots will
aid people in and around their homes. One of the requirements of these robots
it that they can are able to navigate autonomously such that it is safe and
comfortable for their users and at the same time efficient for the robot. Path
planning and obstacle avoidance are crucial in these contexts. Current obstacle
avoidance algorithms are not efficient when people cross the path of the robot. In
this thesis four types of obstacle avoidance are compared by efficiency and user
preference: static obstacle avoidance, two types of dynamic obstacle avoidance
and interactive collision prevention(ICP). The efficiency is measured in terms of
navigation time, amount of detour and the number of successful trials (without
collisions). The results suggest that both dynamic obstacle avoidance algorithms
are more efficient than static obstacle avoidance. Furthermore, first explorations
in ICP indicate that users can safely and comfortably guide the robot and that
ICP is preferred over the other algorithms.
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Chapter 1

Introduction

Robots come into our daily lives more and more, in particular personal service
robots [30, 58]. Examples are shown in Figure 1.1. These robots are being
developed to perform several household tasks, assist in care taking and to keep
the residents company. For instance, the Roomba robot (Figure 1.1a) is able
to vacuum a room [25]. The PR2 (Figure 1.1b), here baking pancakes [1], and
Asimo (Figure 1.1c) [70] are designed to operate in human living spaces, using
utilities optimized for humans. The distinctive characteristic is that the last
two robots have arms so they can use the same tools as we do. This human-
like functionality is a prerequisite for these robots to operate without requiring
major modifications to the homes they operate in. These robots can be deployed
to perform any number of different household tasks.

Twendy-One (Figure 1.1d) and RI-MAN (Figure 1.1e) are designed for assist-
ing people in care taking. One of their functions is to help elderly up (Twendy-
One) [35] or carry them (RI-MAN) [54]. An example of a companion robot is
Sil-Bot (Figure 1.1f) [92]. Sil-bot is designed to interact and play with people.

(a) Roomba (b) PR2 (c) Asimo

(d) Twendy-One (e) RI-MAN (f) Sil-Bot

Figure 1.1: Examples of personal service robots.

These personal service robots are often combined with the concept of Smart
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Homes [11]. Smart Homes are houses equipped with numerous sensors to mon-
itor the residents. Mobile robots can act as a mobile sensor and in return use
the sensors of the house to enhance their performance. The robots can also be
used as a telepresence device for family or medical staff [46].

In any case, the robots have to be able to move around in the homes without
bumping into furniture or people. In static worlds, this problem is solved. How-
ever, home environments are not static. The main problem with autonomous
navigation in home environments is the ability of the robot to avoid (moving)
people in its path in an efficient way, which is also comfortable and intuitive for
the people in the home. Most current day implementations make the robot stop
when someone crosses its path. The robot will then wait until that person is out
of sight before it resumes its path. Although this approach ensures collision free
situations, it is not always the most efficient method for the robot. Humans
have solved this problem though. Everyone wants to reach their goal as fast
as possible, without colliding with other people. When two (or more) people
do seem to be on a collision course, all parties will adjust their path to avoid
it. This phenomenon can be observed at all crowded (and less crowded) areas,
like train stations, shopping malls and hallways. Somehow, people cooperatively
adjust their paths to avoid collisions, while the paths remain efficient for all
parties.

There are many algorithms that try to navigate a robot from one point
to another in a safe way. Although these methods (try to) assure a collision
free path, the resulting paths may be unnecessary long or time consuming.
Furthermore, some paths may not be comfortable for the people the robot tries
to avoid, for instance by cutting them of. An optimal path P , from start position
A to goal position B, therefore has to comply with three requirements:

• P is collision free

• P is optimal in distance and time

• P is optimal in user comfort

As will be shown in Chapter 2, only first explorations are being done with
(cooperative) people avoidance in robotics. In this thesis we will research two
dynamic obstacle avoidance algorithms (see Section 3.1.2) which try to make the
robot to avoid people efficiently: namely Asteroid Avoidance (AA) and Human
Motion Model Avoidance (HMMA). Furthermore, we will extend an existing
(static) obstacle avoidance algorithm with human-robot interaction possibil-
ities to increase the efficiency of the robot and comfort for the human (see
Section 4.1). This new method of people avoidance will be called Interactive
Collision Prevention (ICP). The main difference between the proposed meth-
ods is the knowledge the robot has about the future movements of the user.
In this thesis will be investigated which method will provide the most efficient
and user friendly obstacle avoidance mechanism. It will be shown that using
knowledge about the most probable human movements, as exploited in the AA
and HMMA methods, results in significant improvements over the baseline con-
dition. Moreover, we will explore the usability of our new concept of ICP. This
is done through a Wizard of Oz experiment in which users move along collision
paths and indicate by gesturing to the robot the preferred direction the robot
should take.
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1.1 Interactive collision prevention

In this section, the concept of ICP is explained. ICP is inspired by the way
people avoid each other when they are on a collision course. By using subtle
body language, people signal to each other where they are going. When two
people are on a collision course, they use this information to avoid a collision in
an early stage. Robots could use this information too, to better predict the path
of people in their vicinity. They can then adjust their path such that a collision
is avoided while the amount of distance traveled and time lost is minimal.

Unfortunately, detecting this kind of body language is very hard, especially
on a moving robot. Therefore, the users’ intentions have to be signaled in
another, more explicit way that the robot can more easily detect. There are
many ways to interact with the robot, but the use of gestures is the most logical
choice. Gestures are a form of body language, like the subtle cues. However,
gestures are better detectable and easier to classify than the cues people give
to each other. Another argument is that gestures contain deictic information
that can be exploited in navigation. ‘Go there’ only has meaning when it is
known where ‘there’ is. The spatial nature of a gesture contains precisely this
information. Furthermore, people use gestures in their everyday lives too, to
communicate their intentions in extreme cases. We all know the situation where
we want to move out of the way of the oncoming person, but somehow end up
mirroring the other. When you move to your left, the other moves to his right
and vice versa. Sometimes this repeats several times before one party explicitly
signals which way he is going and waits for the other to react. This concept of
interactively solving the collision situation with the other party will be explored
in this thesis as ICP.

1.2 Approach

The work presented in this thesis is part of a large European research project
Florence [46]. Philips research is one of the prominent research partners in Flo-
rence and investigates novel assistive technologies and applications in the area
of home automation. A significant amount of work has been put in setting up
an appropriate laboratory environment and installing the technologies involved
(Roomba, Kinect, ROS, Openni, path planning, Gazebo). It should be noted
that these efforts are only briefly described in this thesis.

Using this new laboratory setting, first explorations are made to implement
ICP. Furthermore, two additional people avoidance algorithms are implemented.
These algorithms use knowledge about the user’s behavior and preferences. The
performances of the avoidance algorithms are compared to each other and to a
standard reactive obstacle avoidance algorithm. The main questions that will
be investigated are:

• Which avoidance algorithm is the most robust?

• Which avoidance algorithm is the most efficient, i.e., performs the best in
terms of amount of detour taken and time needed to reach the goal?

• Which avoidance algorithm do users prefer?
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• Does the new concept of gesture based ICP provide promising opportuni-
ties for interactive collision avoidance?

1.3 Outline

The outline of this thesis is as follows. First, state-of-the-art literature is pre-
sented in Chapter 2. The background literature contains information about the
used concepts in the algorithms. Section 2.2 presents the various parts needed
in navigation. Section 2.3 describes previous work in interactive navigation and
different types of gesture recognition.

As mentioned before, four different obstacle avoidance algorithms are com-
pared to each other in this thesis. First is the static obstacle avoidance algorithm
called the base algorithm . As the name suggests, all other obstacle avoidance
algorithms are based on this algorithm. Second and third are two dynamic ob-
stacle avoidance algorithms. They each use a different prediction method for
predicting the movement of the human. They are called Asteroid Avoidance
(AA) (using a linear prediction function) and Human Motion Model Avoidance
(HMMA) (using a priori path information). Finally, the Interactive Collision
Prevention(ICP) algorithm is explained. ICP allows the human to control and
guide the robot, instead of the robot making predictions of possible trajectories
of the human.

To verify the performances of the developed algorithms, three types of ex-
periments are designed and conducted. First are the simulation experiments,
as described in Chapter 3. Then, the algorithms are tested in the real world.
This is described in Chapter 4. Furthermore, the performance of two types of
gesture recognition systems is determined in Chapter 5. This thesis is concluded
in Chapter 6, with suggestions for future research in Chapter 7.
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Chapter 2

State-of-the-art overview

Researchers have been attempting to solve the problem of robot navigation
in the presence of people and people avoidance for a long time, with varying
approaches and results. A short overview of these approaches can be found in
Section 2.2. These methods of people avoidance make use of various sources
of knowledge about the movements of people. However, none of these people
avoidance methods have an interactive component.

However, there have been attempts to incorporate an interactive component
in navigation. For instance, Bergh et al. [86] made a robot that would explore
uncharted areas. When the robot had multiple areas to explore, people had to
point which area should be next. These pointers are not really precise, they only
indicate the rough direction where the robot should go, the robot had to reason
about the exact position of the goal. The user could choose one out of maximal
four directions at a time. Furthermore, the robot was not moving when it got
instructions.

Similar research has been done by Park et al. [59]. Here, the researchers
tried to estimate the position a user is pointing. This position can then be
used to set a goal for the navigation system. Although the first results look
promising there are still major constraints on their implementation. For one,
the robot is again not moving while it has to detect the pointing position. The
total navigation time is increased because the robot has to stop and is therefore
not optimal. Furthermore, the authors found a serious trade-off between the
accuracy of the position estimations and the time and training data needed for
an acceptable performance. Moreover, this interaction method acts more like a
controller for the robot than interactive navigation, where both the human and
the robot have their own navigation goal.

ICP depends on a mechanism of shared control. The robot will navigate au-
tonomously to its goal. If it gets a command from a user, it will find a temporary
goal reflecting that command. The robot is not controlled directly through the
interaction, like in the work of Uribe et al. [85]. The robot and the user each
have their own goal, not a shared one as can be seen in (semi)autonomous
wheelchairs [87]. The research done in this thesis in ICP is a first exploration.
ICP will be compared to other people avoidance algorithms. All algorithms
have the same navigation algorithm which is described in Section 2.1. Other
research in navigation is described in Section 2.2. The final section describes
the novel interactive navigation concepts and introduces our concept of using
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gestures for guiding the robot in cases where it needs additional information.

2.1 Basic navigation

There are many ways to implement a navigation system. However, most sys-
tems share the same basic components. The system used in this thesis is the
navigation system used by Marder-Eppstein et al. in [44]. This system is proven
to work in indoor environments. Furthermore, it is implemented for and freely
available in the ROS repository1. This navigation system is state-of-the-art and
set as a benchmark system. Moreover, the configuration of the robot available
for the experiments in this thesis (see Section 4.2.1) is supported by this system.

The basic navigation system has three main components, which cooperate
to provide velocity commands to control the robot. These are:

• Localization

• Global path planner

• Local path planner

Each component is explained below. However, first some terminology is
explained in Section 2.1.1. Finally, an overview is given of how the components
interact with each other to form a navigation system. Algorithm 1 shows a
pseudo code representation of the procedures used for navigation.

Algorithm 1 The basic navigation module

function Navigation
goal ← main goal
Plan global path
while goal not reached do

Read sensor data
Adapt cost map
Plan local path using DWA
if no local path possible then

Execute recovery behaviors
else

Generate velocity commands for local path
Move robot

end if
end while

end function

2.1.1 Terminology and sensing

To be able to understand navigation in robots, first some important terms have
to be explained. Readers that are already familiar with robotic navigation can
skip this section and continue reading at Section 2.1.2.

1http://ros.org/wiki/navigation/
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The robot is controlled by sending velocity commands to the driver compo-
nent. The driver translates the velocity commands to motor commands which
make the robot move. There are two types of motors, and thus two types of
velocity commands to control the robot. First there is a holonomic drive. A
drive is said to be holonomic if the number of controllable degrees of freedom is
equal to the total number of degrees of freedom. In practice this means that a
holonomic robot which can drive on a two-dimensional plane can move in any
direction without having to turn first, like a shopping cart. A non-holonomic
drive has less controllable degrees of freedom than the total number of degrees
of freedom. The motors of a non-holonomic drive can only move forward or
backward. The robot can in that case only turn by using a steering axis, like
a car, or using one side of wheels at a time (or reversing the opposite wheel),
like a wheelchair. The robot that is used in this thesis has a non-holonomic
drive. The velocity commands that are given to the robot therefore consist out
of a translational (forward/backward speed) and a rotational (turning speed)
component instead of a speed and direction.

In order for the robot to avoid obstacles, the robot should be able to sense
its environment. There are many types of sensors that are able to sense objects.
Below is a list of the most frequently used object detection sensors:

Laser range finder A laser range finder measures the distance to an object by
using the time of flight principle. It shoots out a laser beam and measures
the time it tasks the beam to be reflected back to the sensor. From there
the distance of the obstacle in the path of the laser beam can be calculated.
By aligning a lot of laser range finders a laser scanner is created which
can create a fairly detailed scan of the environment. The scan frequency
of such a scanner is usually high (about 100 ms per scan). Furthermore,
because a laser range finder uses a laser beam, the scans are not influenced
by lighting conditions.

Infrared An infrared sensor emits a beam of infrared (IR) light (not a laser
beam) and uses triangulation to determine the distance to an obstacle.
In the sensor the angle of the returning light is measured. With that in-
formation, the distance to the reflecting surface is calculated. The main
problems with IR sensing are that sunlight (or other IR sources) can in-
fluence the readings significantly. Second is that performance of the IR
sensor depends largely on how the light is reflected. Therefore and IR
sensor can return different values depending on surface texture and even
color of the object, even if the range is the same.

Sonar A SONAR (standing for SOund Navigation And Ranging) works the
similar to a laser range finder, but instead of using a laser beam, sound
waves are used. The time of flight is also used to determine the distance
to obstacles. Where the infrared beams from IR sensors can be influenced
by bright sunlight, the main issue with sonar sensors is the so-called ‘ghost
echo’. A ghost echo occurs when the sound waves that are emitted bounced
of walls back to the sensor. Figure 2.1 demonstrates this effect. Two
sonars cannot be used close together for the same reason: the sound waves
will interfere with each other. Nevertheless, sonar sensors are usually as
sensitive as laser range finders.
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Figure 2.1: The ‘ghost echo’ effect. The sound waves bounce of a wall and return to
the sensor, providing a false distance reading of an obstacle. This image is taken from
http: // www. societyofrobots. com/ member_ tutorials/ node/ 71

Camera Using visual processing techniques, obstacles and their distances can
be extrapolated from camera images. There are a lot of different tech-
niques, some of which are discussed in Section 2.3.3. Some of the most
used techniques in robotic obstacle avoidance are optic flow [14] and flow
field divergence [45]. These methods are used mostly in flying robots, be-
cause they are cheap and lightweight in relation to advanced sensors like
laser scanners.

Tactile sensors Although bumpers are usually saved as a last resort (since
when they are activated a collision has already occurred) they are obsta-
cle detection sensors, albeit with a very short range. Another form of
tactile sensors, with a slightly larger range, are antennas or whiskers. The
antennas can feel where obstacles are. Although the range and precision
is very limited they are cheap sensors to find obstacles.

Besides sensor data, a representation of the environment is vital for efficient
navigation. This representation is usually in the form of a map. On the map,
stationary obstacles (like walls, pillars and other objects that do not change
position) are marked. These obstacles can act as landmarks for the localization
module and provide information to the path planners where the robot can def-
initely not go. Each component of the navigation system uses the sensor data
and the map in its own way. For each component the workings are explained
below.

2.1.2 Localization

The localization component uses the adaptive (or KLD-sampling) Monte Carlo
Localization (AMCL) approach, as described in [83]. It is a probabilistic lo-
calization approach which combines laser scan and odometry data and uses a
particle filter to track the pose of the robot against a known map. Odometry
data is information from the wheels about how much they have rotated. From
this the displacement of the robot can be calculated. However, since the wheels
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slip, this information is not 100% accurate. The laser scan data is therefore
combined with the odometry to provide a more accurate location.

2.1.3 Global path planner

The global path planner calculates a path from the robot’s position to the goal,
by using a cost map. The cost map is built up from the map of the environment
(if provided) and sensory data. It is a grid representing the world around the
robot. Each cell in the grid can represent a free, occupied or unknown space.
Furthermore, each cell has a cost value assigned. The value is low (close to
zero) when sensors detect no obstacles at the position of the cell, and high if an
obstacle is detected. The costs are propagated to neighboring cells, decreasing
the cost value with increasing distance to the obstacle. This creates a buffer
zone, keeping the robot away from obstacles, but which is still traversable if nec-
essary. Once the cost map is created the global path is planned using Dijkstra’s
algorithm [16]. Dijkstra’s algorithm uses breadth-first search to find the optimal
path through the cost map, starting at the robot’s origin and radiating outward
until the goal is reached. The global path is re-planned regularly, though not
as frequent as the local path.

2.1.4 Local path planner

Once a global path has been found, it is sent to the local path planner. The
local path planner calculates the velocity commands to send to the robot using
the Dynamic Window Approach (DWA) [26]. The DWA first creates a search
space consisting out of velocities the robot can reach within a short time. Those
commands are safe such that the robot can stop before it reaches the closest
obstacle in that trajectory. For each velocity command, a forward simulation
is performed to predict the location of the robot in a short amount of time.
Then, the resulting trajectory is evaluated, taking the proximity to obstacles,
proximity to the goal, proximity to the global path and speed in to account.
Trajectories that result in a collision are automatically disregarded. The highest-
scoring trajectory is picked to generate velocity commands from to control the
robot. This is done continuously, enabling the robot to follow the global path
and locally avoid obstacles appearing in the sensory data.

2.1.5 Error and recovery

Sometimes the local and global path planners are not able to calculate a feasible
path. When a path planner perceives itself as stuck, a series of recovery behav-
iors2 can be executed to clear out the cost map and enable the planner to find a
feasible path. First a conservative reset is performed by clearing the obstacles3

outside a specified region. Next, if possible, the robot performs a clearing rota-
tion. The robot rotates in-place and uses sensory data to clear obstacles from
the cost map. If this fails too, an aggressive reset is performed. This removes

2 The recovery behaviors are as implemented in the standard move base stack in ROS at
http://www.ros.org/wiki/move_base#Expected_Robot_Behavior.

3 Obstacles are cleared from the cost map when sensory scans return a distance above a
certain threshold. If a scan does not return a value, i.e, there are no obstacles within the
range of the scanner, the cost map is not cleared.
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Figure 2.2: Overview of the recovery behaviors. This image is taken from http:

// www. ros. org/ wiki/ move_ base .

all the obstacles from the cost map outside of the rectangular area in which the
robot can rotate in-place. This is followed by another clearing rotation. If the
path planner still is not able to plan a path, the goal is aborted. Figure 2.2
shows an overviews of the recovery behaviors described above.

Another way to resolve navigation problems is by using interaction as a
recovery mechanism. When the robot perceives itself as stuck, it could call for
help. A human could than approach the robot and give a command for what it
should do. However, since interaction in this thesis is used as a means to predict
the user’s future position and not as an error recovery mechanism, this is not
further explored.

2.1.6 Global structure

The global structure of the complete navigation algorithm is depicted in Fig-
ure 2.3. The localization algorithm takes the sensory and odometry data from
the robot and a map of the environment and provides an estimated position
of the robot in the world. The global planner uses this position together with
the map and sensor data to calculate a global path. The local path planner,
which also uses the estimated position of the robot and sensor data, takes in
the global path and calculates velocity commands to steer the robot towards
the goal, while avoiding obstacles locally.

2.2 Related work in people avoidance

Previous work in path planning is summarized in [6]. Most algorithms men-
tioned in [6] focus on navigation without the presence of moving objects. The
biggest challenge for navigation is dealing with moving obstacles, like people.
Moving obstacles are also referred to as dynamic obstacles whereas obstacles
that remain stationary are called static obstacles.

There are three main approaches for handling dynamic obstacles [2]:

• Reduce the dynamic obstacle to a static obstacle. The planner does not
take any dynamic aspects of the obstacle, like speed and direction, into
account. It merely updates its representation of the surrounding space
every time step and changes its path accordingly. This approach has been
taken by [23, 44]. Since this is the most simple approach the algorithm
implementing this is called the base algorithm .
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Figure 2.3: Schematic overview of the components of the navigation system. The
localization compares the sensor data to the map and provides a position estimate on
the map. The global planner creates a globally optimal path using the map and the
robot’s estimated position. The local planner takes the sensor data as input and tries
to avoid obstacles and maintain close to the global path. The local planner generates
the commands to control the robot.

• Extrapolate the estimated velocity of the obstacle and use this to estimate
the future positions of the obstacle. This approach is called Asteroid
Avoidance (AA) [27]. It is assumed that the movement of the obstacle can
be predicted using a linear function. Once the future position is predicted,
the path planner can calculate which actions to undertake to prevent a
collision while maintaining an efficient path. In [2, 24] this approach was
implemented.

• The last approach is named reciprocal avoidance [2] or reflective navigation
[39]. This approach assumes that when an obstacle is moving, it is also able
to react to the world and the robot. It can make decisions and therefore it
is hard to predict the future position using any linear function. A mental
model has to be built to predict the future actions of the other robot.
Hennes et al. implemented reciprocal avoidance for multiple robots [33].

The reciprocal avoidance can be extended to be used to avoid humans. Ac-
cording to Sisbot et al. [76] the following points should be taken into consider-
ation for the motion planning of mobile robots:

• Safe motion, i.e., that does not harm the human;

• Reliable and effective motion, i.e, that achieves the task adequately con-
sidering the motion capabilities of the robot;
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• Socially acceptable motion, i.e, that takes into account a motion model of
the human as well as his preferences and needs. This means that the robot
should not cut off the human or move through areas the human cannot
perceive. An example is given in Figure 2.4, where the cost are displayed
for moving in the proximity of a standing and moving human.

Figure 2.4: An example of an implementation of socially acceptable motion. The
blue lines represent the cost of traveling in the proximity of the human. This figure is
taken from [41]. If the human is standing still (left) the area directly behind him has a
high cost, because that area is not perceivable. When the human is moving (right) the
area directly in front of him should be avoided.

Socially acceptable motion only provides a very local prediction of the move-
ments of the human. By adding a prediction of a more global path of the human
a model of where the robot should and should not travel can be made. This type
of dynamic obstacle avoidance will be called Human Motion Model Avoidance
(HMMA). Such a model can be made by combining the field of proxemics [31,57]
with path detection and/or prediction [34, 72]. Furthermore, a decent people
detection and tracking algorithm is needed to estimate where the users are and
where they are going. There exist many people detection and tracking algo-
rithms already. Many are used on a stationary camera [7] or for use in mobile
robots [84]. For interested readers, Dollar et al. [19] provide a good state-of-
the-art overview of people detection algorithms.

An example of HMMA is given in Figure 2.5. This approach, as described
in [82], assigns high cost directly in front of the human (using proxemics) and
slightly lower cost to areas where the human might travel to (using path pre-
diction).

Several groups have tried to implement HMMA in various circumstances.
In the work of Sisbot et al. [76] the humans stood still and the robot needed
to find a suitable path around them. Svenstrup et al. [79] implemented an
algorithm to determine whether or not to approach people for interaction (and
do so in a socially accepted manner). Also, Kruse et al. [41] and Lam et al. [42]
implemented HMMA successfully in a confined space like a hallway.
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Figure 2.5: An example of a HMMA implementation. Cost assignment for robot
navigation is done by combining proxemics with path prediction. This image is taken
from [82].

2.3 Interactive navigation using gesture recog-
nition

The main problem of AA and HMMA is predicting where the human is going.
The earlier this prediction is (accurately) made, the bigger the improvement of
the global path is in terms of amount of detour and amount of time needed.
Besides using different path detection algorithms that can learn general motion
patterns, as described above, cues from the human can be used to predict the
path he is going to take. For instance, Prévost et al. [64] showed that humans
turn their head before they take a turn in their path. This ‘go where we look
strategy’ can be exploited to solve pre-collision situations. However, these head
turning cues are not easy to pick up on using only sensors on a mobile robot.
Therefore, by making these interactions more explicit, it can help the robot
make decisions on where to pass the person and help the person trust the robot.
The interactions can take place using various media, including a touch interface,
speech, or gestures. Since performing gestures are closest to body language, arm
gestures are chosen as the interaction channel. To classify these arm gestures a
gesture recognition algorithm is needed.

One of the first prominent examples of a system which recognizes human
arm and hand gestures for controlling an application was Bolt’s put-that-there
concept [5]. Since then, many more research labs have investigated various as-
pects of gesture recognition. Gesture recognition has been explored from a wide
range of backgrounds, such as computer vision, computer graphics, pen com-
puting, human motion understanding, human computer interaction and human
robot interaction. For some excellent surveys on gesture recognition, the reader
is referred to, e.g., [32, 48,49,93].
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The next sections will introduce our approach to gesture recognition. After
a brief overview of the state of the art in gesture recognition, we will describe
the most prominent elements of a gesture recognition system and focus on the
approach that we have taken in our research.

2.3.1 The chalearn gesture recognition challenges

Although many inspiring results have been published, these have mainly been
developed and tested in controlled lab situations. Only very recently, demon-
strations of gesture recognition technology have become available for the larger
public. In particular, the introduction of the Microsoft Kinect and correspond-
ing software development kits has boosted the world-wide interest of com-
panies and universities in gesture recognition [88]. The state-of-the-art per-
formance in gesture recognition technology is currently challenged under the
auspices of chalearn.org, an organization which frequently hosts challeng-
ing benchmarks for the machine learning and pattern recognition communi-
ties. Four gesture recognition challenges will be held, the results from the
first round have recently been presented at CVPR2012 and are available via
http://gesture.chalearn.org/. In total 54 teams participated to the first
round challenge, which contained more than 30 small data sets comprising be-
tween 8-10 gesture classes. The best result of this challenge achieved a 10%
error rate, which is still significantly below human performance. The most ef-
ficient techniques used sequences of features processed by variants of Dynamic
Time Warping and graphical models, in particular Hidden Markov Models and
Conditional Random Fields. As we will outline in Section 4.1, one of our gesture
recognition techniques uses Dynamic Time Warping.

Each of the data sets was collected by a fixed Kinect camera, which recorded
a single user performing upper-body gestures. Data was easily segmentable, as
subjects initiated and finished each gesture from a specified resting position.

2.3.2 Our challenge: robust gesture recognition

The development of a robust and usable interactive system employing gesture
recognition requires (i) the design of a gesture repertoire which is easy to learn
and easy to produce by human subjects and (ii) the design of gesture recognition
technology which is capable of distinguishing the different gesture classes with
sufficiently high accuracy [89]. For our envisaged context, i.e., gesture recogni-
tion for human robot interaction in home environments, the 10% error rate as
achieved in the chalearn gesture recognition challenge is not sufficient. To ex-
plore the possibility of using gesture-based interaction for collision avoidance, we
therefore decided to reduce the number of gesture classes and design a gesture
repertoire which is easily distinguishable by AI techniques. As will be outlined
in Section 4.1, our studies will explore the feasibility of our concept of interac-
tive collission prevention, by designing three gestures representing, respectively,
a go left, go right, and stop command.
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2.3.3 Components of gesture recognition systems

A typical gesture recognition system consists out of three main components [91]:

• Sensor

• Feature-extraction (also called front-end)

• Analysis (also called back-end)

Each component is discussed separately.
Many different sensors can be used to track a person’s movement. Each type

of sensor has its own advantages and disadvantages. Below are some of the most
commonly used sensors:

Single camera A single camera is widely used in gesture recognition because
it is relatively cheap. No special equipment has to be bought. However,
extracting feature information from 2D images is relatively hard and com-
putationally expensive. A lot of research has been done using a single
camera for detecting hand gestures [20, 74], pointing gestures [10, 68] and
whole body gestures [75]. Some algorithms make use of visual markers to
simplify the feature extraction [9]. However, the markers have the disad-
vantage that the interaction is less spontaneous, because they first need
to be applied before the interaction can take place.

Controller By using controllers as an interface, several types of data can be
gathered. Examples of controllers are a mouse or pen [89] (acquiring 2D
trajectory data) and a Wii Remote4 [73] (acquiring 3D positions in space,
as well as accelerometer data). Wired gloves are also used to record hand
movements [37]. Controllers usually record only trajectories (2D or 3D)
of one or more points. Because of this, there is no need for intensive
preprocessing to acquire trajectories, as is with visual data. However, just
like using visual markers, interacting with a controller is less natural and
intuitive as interacting without them.

Stereo cameras By combining the images of multiple cameras, and using a
known distance relationship between the cameras, a rough depth image
can be constructed. A depth image, also known as depth map or 3D image,
is an image representing the distance of surfaces to the camera. They act
much like how our own visual system uses stereoscopic information to
infer the distance to objects. The resulting depth images can be used to
simplify feature extraction with relation to using only a single camera [77].
A downside is unfortunately that the calibration of the cameras has to be
precise, otherwise the depth images will be distorted. Furthermore, the
extra preprocessing step of combining the multiple images into one depth
image increases the total processing time significantly.

Depth aware cameras Instead of combining two 2D images, there are other
techniques to generate depth data. For instance, time-of-light cameras or
structured light cameras (like the Microsoft Kinect sensor). These cameras
are able to generate a depth map directly. For instance, the Kinect projects

4http://www.nintendo.com/wii
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(a) (b) (c) (d) (e)

Figure 2.6: Representation of a human hand (a) by using a volumetric
model(b), skeletal model(c), binary silhouette (appearance based)(d) and contour model
(appearance-based)(e). The images are taken from http: // en. wikipedia. org/

wiki/ Gesture_ recognition .

a grid of infrared dots and by measuring the distortions in the grid, the
distance to objects distorting the grid can be calculated. Especially the
Kinect is used very often for gesture recognition [4, 67, 94], since it is a
relatively cheap sensor with a lot of support software, like OpenNi5 and
Microsoft SDK for Kinect6.

In this thesis the Kinect will be used for gesture recognition. The Kinect is
already widely supported on ROS and is a cheap sensor. Furthermore, as said
before, it is used very often for gesture recognition.

2.3.4 Gesture representations and recognition

Depending on the sensor (and the type of data that is gathered) the gestures
can be represented using different types of models. Pavlovic et al. [60] classified
the models in two classes: 3D models and appearance-based models. However,
since skeletal models are so widely used nowadays, instead of listing it under 3D
models it gets a separate mention.

Figure 2.6 shows for each type of model a representation of a human hand. A
good survey that describes approaches to gain the above models is one written
by Moeslund et al. [49]. The different types of models are:

3D models A 3D model is a volumetric representation of the user’s body. This
type of model gives the most detailed representation to use, however, it
is computational very expensive. Therefore, 3D models have not yet been
used in real-time gesture recognition systems.

Skeletal models Although Pavlovic et al. classify this as a 3D model, skeletal
models are mentioned separately. A skeletal model consists not out of a
(large) collection of vertices an lines as in volumetric models, but out of a
collection of the positions of joints in space. This results in less variables
than a volumetric models and thus in faster processing times.

Appearance-based models Instead of using spatial representations, an ap-
pearance-based model uses the appearance of the body in the images to
extract features. Appearance-based models generally have real time per-
formances because of the use of 2D image features. There are several

5http://openni.org/
6http://www.microsoft.com/en-us/kinectforwindows/
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approaches like skin color detection, the use of eigenspace or using local
invariant features, like AdaBoost learning or Haar like features. However,
most appearance-based models are only feasible under specific lighting
circumstances and for small gesture sets [28].

Once the relevant features are selected the back-end component is responsible
for recognizing the poses (single frame7) and gestures (sequence of frames). The
most useful features for gesture recognition are usually the positions, velocities
and angles of the various relevant body parts. Other features could be the
smoothness of the movement (usually it goes the slower the movement, the less
smooth it is). In order to recognize a gesture, two things are required:

1. The classification results for the pose on a frame-by-frame basis.

2. The temporal structure of the frames.

The poses can be distinguished by comparing the input frame to the template
frame using one of many standard pattern recognition techniques, like cost func-
tions [63], template matching [17], geometric feature classification [3], neural
networks [55] or support vector machines [51]. For incorporating the temporal
structure of the gestures in the analysis, special techniques have been developed
and are also used in handwriting recognition and speech recognition. Exam-
ples are dynamic time warping [13], hidden markov models [22] and Bayesian
networks [78]. For a detailed survey about gesture recognition see the work of
Mitra & Acharya [48].

One of the big challenges in gesture recognition is determining when a gesture
is recognized. First of all, there is usually ac continuous input stream of poses.
There is no clear indication when a gesture starts and when it ends. The sliding
window approach is used to solve this problem. A sliding window is a set of
frames with a fixed width around the last received frame. For instance, every
new frame, the last x frames are also used in the gesture recognizer. Finally,
there are two methods which can be used with a sliding window to determine
whether a gesture is recognized.

First is incremental recognition. With this technique the frames are fed one
by one to the recognizer. After a certain amount of frames the recognizer is
forced to classify the gesture. This allows for the recognizer to classify a gesture
before it is completed. For this reason it is important that (especially the
initial phases of) the gestures are not too similar. An example of incremental
recognition is given by [80].

The second method is using confidence based recognition. For each stored
gesture, a confidence value is kept representing how much the current incoming
gesture resembles the templated gesture. Once the confidence rises above a
threshold value, that particular gesture is recognized.

In this thesis, a gesture recognition system is incorporated in in the standard
navigation system. This will allow users to give commands to the robot to ensure
an efficient, collision free path for both parties. The user can indicate with a
gesture on which side the robot can pass the user. This mechanism is called
ICP. ICP will be compared to the other (dynamic) obstacle avoidance methods
in Chapter 4.

7By frame is meant a single image
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Chapter 3

Non-interactive dynamic
obstacle avoidance

In this chapter the performance of the non-interactive obstacle avoidance algo-
rithms (the base algorithm, AA and HMMA) is tested. Each algorithm is first
described in Section 3.1. The performance is tested in a simulator. Section 3.2
describes the performed experiments. Then, in Section 3.3 the results of those
experiments are presented. Finally, Section 3.4 provides a discussion about the
results.

3.1 Dynamic obstacle avoidance algorithms

In this section the different avoidance algorithms that are used in this thesis
are described. First is the basic navigation, which is taken directly from the
ROS open source website1. Sections 3.1.3 and 3.1.4 describe two extensions of
the basic navigation algorithms for use in environments where people should be
avoided.

3.1.1 The base algorithm

The robot in this thesis is designed to navigate in an indoor home-like environ-
ment, where it can encounter people. The robot should adapt its navigation
plans to disturb those people as minimal as possible. For simplicity, it is as-
sumed that the robot only encounters a maximum of one person at a time. The
algorithms can be adapted to deal with multiple people however.

The basic navigation system as explained in Section 2.1 works well in a
static world. However in a world with moving objects (for instance people) this
approach has its drawbacks. Let’s take an example of a person crossing the
path of the robot, moving in from the right. If the robot does not take action a
collision will occur. This example is illustrated in Figure 3.1. At a certain time
t (before the collision) the person comes in the visual field of the robot. The
local path planner will mark the person as an obstacle on its cost map. The
local planner will re-plan its path a little to the left, because this is the path

1http://www.ros.org/wiki/navigation

22

http://www.ros.org/wiki/navigation


Figure 3.1: The problem of using the base algorithm with dynamic obstacles. When
an obstacle is coming in from the right, the local path planner will re-plan the local
path to the left. This way it will keep encountering the person in a collision loop until
it is shorter to pass the obstacle at the back. However, the robot has already made a
substantial detour.

with the lowest costs. At time t + 1 the robot starts to go left, but then the
person moves too. This results in another obstacle (i.e, at another location) in
the view of the robot. The path is re-planned as before. This will repeat several
times, causing the robot to get stuck in a collision loop and detour from an
efficient path. Eventually, the robot can break out of it, but then a substantial
detour has been made. Furthermore, because the person is continuously in the
visual field of the robot (like a long object, or wall), the localization module
gets confused as to where the robot could be. The localization module may not
recover from this, even though the person is already gone. In those cases the
goal will not be reached by the robot.

The navigation of robots in a dynamic world can be improved by using a
prediction of the movement of objects the robot can encounter. How this can
be done is explained in Section 3.1.2.

3.1.2 People aware navigation

As mentioned in the Introduction, two types of non-interactive people aware
navigation are investigated. One, called Asteroid Avoidance(AA) [66], assumes
a linear motion of the person. The other method, Human Motion Model Avoid-
ance(HMMA), assumes that people are following (predefined and known) paths.
How both algorithms work is explained in Section 3.1.3 and Section 3.1.4 re-
spectively.

Both methods will use the same path planners described above. The dif-
ference between the methods is in the data that is used to calculate the cost
map for both planners. Remember the algorithm described in Section 2.1 is
called the base algorithm. In the base algorithm the cost map is built directly
from the sensor data. The new algorithms, which implement AA and HMMA,
modify these sensor data in such a way, that the people are not displayed at the
position they are currently at, but in the position where they are predicted to
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be over an δt amount of time2. The people aware navigation algorithm is shown
in Algorithm 2. The cursive lines are the ones that differ from the original
algorithm (see Algorithm 1).

Algorithm 2 The people aware navigation module

function Navigation
goal ← main goal
Plan global path
while goal not reached do

Modify sensor data . See Algorithm 3
Read sensor data
Adapt cost map
Plan local path using DWA
if no local path possible then

Execute recovery behaviors
else

Generate velocity commands for local path
Move robot

end if
end while

end function

The sensor data is modified in two steps. A pseudo code representation of
this sensor data modification can be found in Algorithm 3:

1. First the user is removed from the sensor data. This is done by setting
the ranges in the laser scan, which is used for building the cost map, to
maximal at the current position of the person (plus and minus a prede-
fined width for the users personal space), unless the scan is reflected from
something closer than the person. Also, if the user is really close, the scan
data remain as they are. This acts as a failsafe for when the robot comes
too close to the user.

2. Then, at the predicted position, the calculated ranges are inserted, again
only if the user is further away than the closest object at that position.
Note that the predictions include a buffer, as shown in Figure 3.1 by the
hatched areas, to account for uncertainty in the predictions. This buffer
is also inserted in the sensor data, which in the current implementation is
represented by a rectangle with a predefined width and height.

Notice that the proposed algorithms only predict the next position of a
person for time t, instead of calculating a trajectory. The DWA which plans
the local trajectory, which was explained in Section 2.1 takes only the next
time step into account so it only needs the predicted position for the next time
step. Therefore it does not need (or can handle for that matter) any trajectory
information. This makes the algorithms a fast and computationally inexpensive
improvement on the base algorithm.

2 The amount of time depends on the time it takes for the local path planner to update
its cycle, allowing for an accurate plan per time step. However, finding this value is not easy.
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Algorithm 3 Modification of the sensor data for people aware navigation

function user avoidance
for each time step do

if user detected then
user position ← get user position
remove user from scan(user position)
future position ← predict future position
insert future position in sensor data(future position)

end if
plan new local path

end for
end function

function remove user from scan(user position)
index← find index of position in scan (user position)
for i = −user width→ user width do

if scan[index+ i] > close range and
scan[index+ i] ≥ user distance then
scan[index+ i]← MAX RANGE

end if
end for

end function

function insert future position in sensor data(futureposition)
init new sensor data
for x = −buffer width→ buffer width do

new point.x ← future position.x+ x
for x = −buffer width→ buffer width do

new point.y ← future position.y + y
new sensor data.Insert(new point)

end for
end for
Publish new sensor data

end function

The relations of the algorithms proposed in this thesis can be caught in
the subsumption architecture of Brooks [8]. If there is a moving obstacle, the
base algorithm is overridden by the human aware algorithms. If a gesture is re-
ceived, the ICP will subsume the human aware algorithms. Figure 3.2 shows the
proposed subsumption architecture. The implementations of AA and HMMA
are further described in Section 3.1.3 and Section 3.1.4. ICP is explained in
Section 4.1.

Human motion

In this thesis three categories of human movement are investigated. These
categories represent the vast majority of possible human motion patterns in
home environments. The categories are:
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Figure 3.2: The subsumption architecture of all algorithms. AA and HMMA override
the base algorithm (in case of a moving obstacle). ICP in turn subsumes everything
but the most basic algorithm. The base algorithm is always active as a failsafe.

• Users move in a linear fashion.

• Users follow a certain, predefined path.

• Users move about (seemingly) randomly.

Each of these assumptions is discussed below.
By assuming linear motion in users, it means that their movement can be

described by a linear function. In this thesis the function describes a straight line
(see Section 3.1.3)3 Although the movement of people is not always a straight
line, on short intervals it generally is. People prefer shorter paths over longer
ones, and straight paths are shorter than curvy ones. If there is a curve in the
path the predictions for that interval will be off. However, as said before, the
majority of the path is a straight line. The predictions will therefore be right
most of the time.

When there are a lot of obstacles in the navigation space people are forced
to follow a curvy path to avoid the obstacles. These movements are hard to
predict using a linear function. It can however be predicted using a human
motion model. This model has to perform two tasks:

• find the paths the user can follow

• classify which path the user is following currently.

The paths can be found by observing people using cameras placed in the envi-
ronment [43,72] or by using a mobile robot [34]. It is also possible to determine
the paths by hand, using common sense. An example is given in Figure 3.3.
Here a typical living room is displayed with a dining table and a television cor-
ner with a couch and coffee table. There are two doorways connecting it to
other rooms. By using common sense, it can be assumed that users travel from
one door to the other using an as straight as possible path. Furthermore, it is
likely the users will go to the television corner and dining table.

3The function can in fact be any linear function, however not all functions are reasonable
candidates to describe human movements.
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Figure 3.3: An example of frequently traveled paths in a living room. The dining
table in the top left and the TV corner at the bottom right are goals users travel to
frequently. The doors are important goals as well.

Besides detecting possible paths, the human motion model should contain
a classifier too to determine which path the user is taking at a certain time.
This classifier can be implemented using all kinds of techniques, ranging from
fairly simple (using only trajectory information [43]) to complex classifiers. An
example of a complex classifier is one that, besides using trajectory information,
also uses information from other devices. For instance the user was just now in
the kitchen and opened the refrigerator. By using a reasoning system, it can
be extrapolated that it is more likely the user will walk to a table than to the
bedroom. Furthermore, (user specific) information, like daily routines, can be
used as well. This information can be collected in the Smart Homes mentioned
in the Introduction and described in more detail in [12]. The human motion
model used in this thesis is described in Section 3.1.4.

Sometimes, the path of the user cannot be predicted or the user is not fol-
lowing any path. It may even seem he is just moving about randomly (and
maybe he is). Though the movements are unpredictable, the robot should still
stay clear of the user to avoid collisions. This is a real challenge for any colli-
sion avoidance technique. Most implementations solve this by falling back to a
reactive paradigm. If an obstacle is suddenly in front of the robot, it will stop
moving at once. All algorithms proposed in this thesis will fall back to this
mechanism to prevent collisions.

3.1.3 Asteroid avoidance

As mentioned before, AA assumes a linear motion of people. The algorithm
developed in this thesis is inspired on the work of Fulgenzi et al. [27]. The
movement of people is predicted by the following function:

(xt+1, yt+1) = (xt + ∆x, yt + ∆y) where

∆x =
1

n− 1
·
n−1∑
i=1

(xi+1 − xi)

∆y =
1

n− 1
·
n−1∑
i=1

(yi+1 − yi)

(3.1)

To predict the position of the user at time t+ 1 two things are needed. First
is the position (x, y) of the user at time t. Second is the average movement
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in both the x and y directions. n is the number of sample points, so if n = 2
the average movement equals the displacement between t and t − 1. Since
position measurements can be noisy it is better to take n bigger than two. The
optimal value of n depends on the frame rate of the measurements, the amount
of noise and/or missing frames and the speed of the robot. The bigger n is, the
better the algorithm can handle noise. However, the bigger n gets the slower
it will react to changes in the users movements. As mentioned before, it can
be assumed that the users have acceleration and deceleration constraints. So
if n gets too big, the predictions will lag behind the movements of the user.
Through experimentation a value of n = 50 was found to be optimal given a
frame rate of 25 to 30 Hertz.

In cases where wrong predictions are made the recovery time depends on
n and the distance between the predicted and actual position. If this distance
is small (assuming n remains constant), the robot could recover by adjusting
its path the next time step. However, when the predictions are way off, when
for instance the person is making a sharp turn, the robot needs to adjust its
path drastically. This usually results in a suboptimal path. Nonetheless, AA is
already an improvement on the base algorithm because the robot will not get
stuck in the collision loop described in Figure 3.1 as easily as the base algorithm.

3.1.4 Human motion model avoidance

HMMA predicts the position of people by using a priori information about
the environment and the user. It creates a model of the user’s movements.
Remember that the model consists of possible paths the user can take and a
classifier to determine which path the user is currently following. By providing
the path the user is following to the prediction algorithm the new position can
be estimated and passed on to the path planner, like in AA.

If the wrong path is provided by the classifier the predictions will be wrong
and the route the robot will take is suboptimal, no matter how well the path
planner performs. To fairly compare HMMA to the other obstacle avoidance
methods, it is assumed the path is always classified correctly, making the pre-
dictions accurate.

By using paths for predicting the movement of the user, HMMA can handle
more complex situations than AA. When the paths users take have many bends
and turns the HMMA will outperform AA. However, if the paths are straight,
there is no difference between the two algorithms since they both will predict
the same future position.

While the predictions of HMMA are more accurate, if the wrong path is
provided to the prediction algorithm or if the user is not following any (known)
path HMMA has a harder time to recover than AA. This trade-off should be kept
in mind in dealing with partially unknown environments, or in environments
where the user’s paths are not defined.

3.2 Simulation experiments

In this section the experiments used to determine the performance of the three
non-interactive obstacle avoidance algorithms are described. First the used
simulator and environments are described (Section 3.2.1 and Section 3.2.2).
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(a) Simple environment (b) Complex environment

Figure 3.4: The environments used in the experiments. The simple environment has
no obstacles (a). The red squares are landmarks the robot can use for localization. The
complex environment is decorated with furniture (b). The robot (marked with a circle)
always starts in the left bottom corner. The other robot (bottom right corner) is used
to represent a person. The goal is marked with an ‘X’.

Then, in Section 3.2.3 the conditions which represent different circumstances
that are tested are specified. Finally the measures to determine the performance
of the algorithms are defined in Section 3.2.4.

3.2.1 Simulator

The algorithms are first tested in a simulator. This is common practice in tests
involving robots. By running the algorithms in a simulator, there is no chance
of physical damage to the robot. Furthermore, the time to complete a run is
shortened because there is no set-up or clean-up time and the simulations can
run faster than real time.

The simulator used is Gazebo4 [40]. It is a simulator designed for robotic
simulations. It has a physics engine and provides 3D visualization. Furthermore,
it is designed such that every algorithm that can run on the robot (via ROS)
also can run on the simulated robot and vice versa.

In the simulated environment, the user is represented by another robot. This
robot follows preprogrammed paths to mimic the movements of a user in the
real world. However, it has no avoidance mechanisms so in case of a collision it
will keep trying to move along the path.

3.2.2 Simulated environment

The algorithms are tested in two different environments. An simple and a
complex environment. Both types are depicted in Figure 3.4.

In the simulator the simple environment (Figure 3.4a) is nothing more than
an empty room. There is a lot of space for the robot to escape to in case of

4More information about Gazebo can be found at http://www.ros.org/wiki/simulator_

gazebo
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(possible) collisions. The red boxes are landmarks and are purely added so
the robot can locate itself in the room. In the simulated complex environment
(Figure 3.4b) furniture is added such that it resembles a typical living room.
There is not much space for the robot to avoid the user so the obstacle avoidance
algorithms are really challenged in this environment.

3.2.3 Conditions

The conditions in which the algorithms are tested represent different circum-
stances in which a good system should be able to perform. Every condition has
the same global path. The robot has to travel 8 meters (straight line distance)
to its goal. The start and goal position of the robot are the same in every
condition. The global path planner can handle every obstacle that is already
on the map. Since every algorithm uses the same global path planner, the only
interesting conditions are the ones with obstacles which are not on the map.
To simplify testing, the global path is a straight line, i.e, there are no obstacles
directly between the start and goal positions, except for the ones introduced in
the conditions. The conditions range from simple (no obstacles) to very complex
(a person turning to the robot). The different conditions are as follows:

• [NONE] No obstacles.

• [STAT] A static obstacle.

• [DYNx] A moving person.

1 A person crossing the path of the robot.

2 A person coming right at the robot.

3 A person turning to the robot.

For each condition a possible (desired) path is displayed in Figure 3.5.

No obstacles (NONE)

This is the most basic and simple scenario. In this condition there are no obsta-
cles in the path of the robot, so the robot never has to adjust it (Figure 3.5a).
All algorithms should be able to handle this. This condition is performed to
establish a baseline comparison between the real world and the simulator.

A static obstacle (STAT)

In this condition a static (not moving) obstacle is placed in the path of the robot
(Figure 3.5b). Since this object is not on the map, the robot has to avoid this
obstacle using its local path planner. Again, all algorithms should perform well
since the basic local path planner is designed to handle this situation well.

A moving person (DYN )

There are several ways for a person to move into the planned path of the robot.
He can either cross the path of the robot (DYN1, Figure 3.5c) or come directly
at the robot (DYN2, Figure 3.5d). Also, the human can change his direction in
the middle of the path (DYN3, Figure 3.5e). The person will move at a speed
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(a) No obstacles (NONE) (b) Static obstacle (STAT)

(c) Person crossing the path of the
robot (DYN1)

(d) Person coming right at the robot
(DYN2)

(e) Person turning to the robot (DYN3)

Figure 3.5: The desired path of the robot in different conditions (in blue). The circle
with R represents the robot, the one with the H the human. The small triangles indicate
the heading of the robot and the human. The highlighted area around the human is the
buffer area which the robot should avoid as well.

of 0.3 m/s which resembles a slow walking pace. The robot can move slightly
faster (maximum speed is 0.5 m/s) so it can catch up and overtake the human
if necessary.
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3.2.4 Measurements

The performance of the algorithms is measured in several ways. To evaluate the
algorithms the following measures are used:

• number of successful trials

• time to get to the goal

• amount of detour (traveled distance - straight line distance)

A trial is one attempt of the robot to reach the goal. If the path planner
cannot plan a path (because it is blocked by obstacles) three times, the trial ends
as a failed trial. Furthermore if the robot has not reached its goal within three
minutes (in the NONE condition navigation takes approximately 15-20 seconds)
the trail fails as well.

One could also count the number of (near) collisions within a trial. However,
it is hard to determine when one (near) collision ends and the following begins.
Furthermore the amount of detour and time will reflect the number of near
collisions. If there are many near collisions the robot needs to adjust its path
often, or wait until the path is clear again. So either time or detour will increase
with an increasing number of near collisions. Furthermore, if there is a full
collision, the robot gets stuck and will not reach the goal. The number of failed
trials will therefore reflect the number of full collisions.

3.3 Simulation results

In the simulation experiments the three non-interactive algorithms (the base
algorithm, AA and HMMA) are compared on robustness and efficiency. The
robustness was measured by counting the number of successful trials, the ef-
ficiency by measuring the amount of time it takes for the robot to reach the
goal and the amount of detour it takes. First in Section 3.3.1 the results of the
simulations in the simple environment are described. Then in Section 3.3.2.

3.3.1 Simple environment

The simple environment in the simulator is just an empty room, shown in Fig-
ure 3.4a. The robot has a lot of space to escape to for avoiding a collision.
Below are the results of the experiments run in this environment.

Number of successes

Besides the comparison of time and detour on each of the conditions, the
number of successful trials in navigation were counted. The trial was successful
if the robot reached the goal within three minutes. Otherwise it was marked
as a failure. Each combination of algorithm and condition was run 20 times.
Figure 3.6 shows the trajectories of the robot in the first ten trials of each
algorithm tested in the simulation experiments in each condition.

Most trajectories are very similar. The variation in the behavior of the robot
is very small. In the conditions where the robot collides with the obstacle the
variation is larger. However, 20 runs gives a good reflection of the performance
of the algorithms, especially in collision free situations.
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NONE

STAT

DYN1

DYN2

DYN3

Figure 3.6: Trajectories of the robot in the simulations in the simple environment of
the various algorithms for each condition. From left to right are the base algorithm, AA
and HMMA. The robot had to travel from (1,1) to (6.65, 6.65). Each line represents
one trial, the red dotted line represents trajectory of the dynamic obstacle.
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Condition BASE AA HMA Average
NONE 100 100 100 100
STAT 100 95 100 98

DYN1 95 85 95 92
DYN2 80 85 95 87
DYN3 5 60 95 53
Total 60 77 95 77

Table 3.1: The percentage of successful trials per algorithm per condition. The to-
tal score of the algorithms represents the percentage of successful trials in the DYNx

conditions.

Table 3.1 shows for each condition the percentage of trials that were com-
pleted successfully.

For the NONE and STAT conditions, every algorithm managed to find the goal
(almost) every trial. The differences between the algorithms start to show in
the scenarios with moving obstacles. The HMMA had an almost perfect success
rate (19 out of 20 successes, 95%) for all three dynamic obstacle conditions.
AA performed on the DYN1 and DYN2 conditions 85% of the trials successfully.
However, the success rate dropped for the DYN3 condition to 60%. The same
drop, but more drastic, can be found for the base algorithm. The base algorithm
had a success rate of 95% and 80% respectively on the DYN1 and DYN2 conditions.
However, in the DYN3 condition, in only one out of the 20 trials (5%) the robot
reached its goal.

On the DYNx conditions, the HMMA had a higher success rate (95%) than
AA and the base algorithm. The base algorithm performed worst, with a success
rate of only 60%, AA follows with 77%.

Next, the data was analyzed to test which obstacle avoidance algorithm
performed best in terms of amount of time and amount of detour. The means
and standard deviations are plotted in Figure 3.7. First the performances of the
algorithms were compared to each other by performing a one-way ANOVA test
on time and detour. This was done for each condition separately. Then the
ANOVA was performed on all conditions combined.

Condition: NONE

Both the differences in time and detour were not significant across the three
algorithms, F (2,57) = .515, p = .600 respectively F (2,57) = .066, p = .937.

Condition: STAT

In the STAT condition, both the differences in time and detour were not sig-
nificant across the three algorithms, F (2,56) = 2.167, p = .124 respectively
F (2,56)=.053, p = .948.

Condition: DYN1

The difference in time was not significant in the DYN1 condition, F (2, 52) =
.734, p = .485, but the difference in detour was, F (2, 52)=4.625, p = .014.
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(a) Time

(b) Detour

Figure 3.7: Plots of the simulation results in the simple environment. (a) shows
the average time and (b) the average detour. The red lines above the bars indicate
significant differences between the algorithms.
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Condition Time Detour

NONE
F(2,57)= 0.515 F(2,57)= 0.066

p = .600 p=.937

STAT
F(2,56)= 2.167 F(2,56)=0.053

p= .124 p=.948

DYN1
F(2,52)= 0.734 F(2,52)=4.625

p=.485 p=.014*

DYN2
F(2,49)= 0.723 F(2,49)=0.391

p=.490 p=.679

DYN3
F(2,29)= 57.22 F(2,29)= 44.41

p=.000* .000*

ALL
F(2,255)= 0.240 F(2,255)= 1.239

p=.787 p=.292

Table 3.2: The significance results of the one-way ANOVA comparisons of the mea-
sured time and detour in the simulation experiments. Results marked with (*) are
significant.

Tukey post-hoc comparisons show that HMMA (M= 2.72) made a significantly
larger detour than the base algorithm (M= 1.00). The comparisons between
AA (M= 2.20) and the other two algorithms were not statistically significant
at p = .05.

Condition: DYN2

In the DYN2 condition, there was no significant difference for either time, F (2,
49)=.723, p =.490, or detour, F (2, 49)=.319, p = .679 between the algorithms.

Condition: DYN3

Both the differences in time and detour were significant across the three al-
gorithms, F (2,29) = 57.219, p = .000 resp. F (2,29) = 44.411, p = .000. Since
there were not enough completed trials of the base algorithm, a Tukey post-
hoc comparison could not be made. However, a t-test to compare the AA and
HMMA algorithms was performed. On the variable time the t-test showed that
HMMA (M=17.71) was significantly faster than AA (M=23.28), with p=.009.
Also, the amount of detour HMMA (M=1.30) took was significantly less than
the amount of detour AA (M=1.91) took, with p=.028.

All conditions combined

To measure the overall performance, the data of all conditions were combined
and a one-way ANOVA was used on the same variables (time and detour). Both
the differences in time, F (2,255)=.240, p=.787, and detour, F=1.239, p=.292,
were not significant.
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Condition BASE AA HMMA Average
DYN1 90 85 95 90
DYN2 95 95 80 90
DYN3 20 90 95 68

Total 68 90 90 83

Table 3.3: The percentage of successful trials per algorithm per condition in the hard
environment.

3.3.2 Complex environment

The complex environment in the simulator is an example of a typical living
room. There is a television corner, a reading section and a big dining table.
Figure 3.4 shows the used world. The robot has not a lot of space to escape to
for avoiding a collision. Because in the NONE and STAT conditions the limited
space has no influence on the performance of the algorithms, only the DYNx

conditions were tested. Below are the results of the experiments run in this
environment.

Number of successes

In the hard environment, the number of successful trials in navigation were also
counted. Again the trial was successful if the robot reached the goal within three
minutes. Otherwise it was marked as a failure. Each combination of algorithm
and condition was again run 20 times. Table 3.3 shows for each condition the
percentage of trials that were completed successfully.

The robustness of the algorithms in the hard environment is similar to their
robustness in the easy environment. The most robust is again the HMMA
algorithm. The worst is again the base algorithm, because the performance
drops significantly in the DYN3 condition. The main difference is here that
the AA algorithm is about as robust as the HMMA algorithm. In the easy
environment, the percentage of completed trials in the DYN3 condition was 60%.
Here this percentage lies at 90%.

The data was analyzed also using a one-way ANOVA test to compare the
difference in time and detour between the algorithms. Figure 3.8 shows the
means and standard deviations of the measured data. The one-way ANOVA
tests are performed for each condition separately.

The difference in time between the algorithms was significant in only
the DYN1 and DYN2 conditions. Table 3.4 shows all the significance results.
Tukey post-hoc comparisons showed that in the DYN1 condition, the base al-
gorithm (M=20.00) was significantly faster at the goal position than both the
AA (M=32.13) and HMMA (M=30.19) algorithms. The opposite is true in
the DYN2 condition. Here post-hoc comparisons showed that the base algo-
rithm (M=16.51) was significantly slower than the AA (M=15.63) and HMMA
(M=15.54) algorithms.

For all DYNx conditions the difference in detour between the algorithms is
significant. Tukey post-hoc tests show that in both the DYN1 and DYN3 con-
ditions, the base algorithm (M=1.73 and M=1.63 respectively) ) needed less
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(a) Time

(b) Detour

Figure 3.8: Plots of the simulation results of the trials done in the hard environment.
(a) shows the average time and (b) the average detour. The red lines above the bars
indicate significant differences between the algorithms.
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Condition Time Detour

DYN1
F(2,51)= 12.508 F(2,51)=4.957

p=.000* p=.011*

DYN2
F(2,53)=5.031 F(2,53)=5.574

p=.010* p=.006*

DYN3
F(2,38)= 2.717 F(2,38)= 4.332

p=.079 .020*

Table 3.4: The significance results of the one-way ANOVA comparisons of the mea-
sured time and detour of the trials run in the hard environment in the simulation
experiments. Results marked with (*) are significant.

detour than the AA algorithm (M=3.06 and M=2.70 respectively). For the
DYN2 condition was found that the base algorithm (M=1.76) was slower than
both AA (M=1.63) and HMMA (M=1.60).

3.4 Discussion of the simulation results

First the robustness of the three non-interactive algorithms (the base algorithm,
AA and HMMA) is discussed. This is measured by the percentage of completed
trials over each condition. Then, the difference in efficiency (measured by both
time and detour) is discussed. Finally, the overall performance of the algorithms
is discussed. This is done for both the simulations in the simple and the complex
environment.

3.4.1 Simple environment

As described in Section 3.2.2 the simple environment in the simulations was an
empty room where no obstacles, except for the one introduced in the different
conditions, were present. The robot had a lot of space to escape to if it needed
to avoid the dynamic obstacle. Below the results of the simulation are discussed.

Robustness

The HMMA algorithm is the most robust over all conditions. It fails only one out
of twenty trials. The reason for those failures was because the moving obstacle
collided with the robot. The robot detected the moving obstacle and paused
for a short amount of time to calculate a new path. Since the moving obstacle
has no obstacle avoidance mechanism, it ran into the robot. In the real world,
these collisions will most likely not occur, because humans (and other moving
obstacles) do posses an avoidance mechanism. However, it has to be noted that
the robot did not clear the path of the obstacle in time. Earlier detection of the
obstacle or faster processing time can solve this problem. Nevertheless, in most
trials the robot did not clear the path in time.

The worst performing algorithm was thebase algorithm. It performed very
bad on the DYN3 condition. This is again because the moving obstacle collides
with the robot. Because the base algorithm cannot predict where the obstacle is
going it remains in the path of the obstacle. When it finally notices the obstacle
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coming its way, the robot has not enough time to move out of the way. AA and
HMMA can make a prediction and therefore move out of the way in an earlier
stage. Furthermore, the prediction of HMMA is more accurate (especially in the
DYN3 condition) and is therefore more robust than AA. These results are in line
with the results found by Svenstrup et al. [79]. They found that their version of
HMMA could correctly identify when and how to avoid a human. The results
of the experiments conducted in this thesis conclude that both AA and HMMA
can handle the situations they are designed for, while the base algorithm is not
very well equipped to handle any situation containing moving obstacles.

Efficiency

First of all, in the conditions NONE and STAT no significant difference in effi-
ciency between the algorithms is present, for both time and detour. This is as
expected since the ability to predict the obstacle’s future position is superfluous
in these conditions, because the obstacle is absent or stationary. The baseline
performance of all three algorithms is thus similar.

For the efficiency measured by the time it took to reach the goal, in the DYN1
and DYN2 conditions there is no significant difference. This can have multiple
causes. The first possibility is that the distance between the start and goal
positions was too short to yield a significant result. However, since navigation in
indoor home-like environments is usually short distance, testing the algorithms
on larger distances is not recommended. A second explanation for the lack of
significant results could be that the robot and the moving obstacle are in each
others’ paths only a short amount of time. In the DYN1 condition especially, the
robot could wait a short amount of time and let the moving obstacle pass before
it. The HMMA algorithm predicted where the obstacle would be and planned
a path around it rather than to wait. Therefore, the amount of detour HMMA
took is larger than the amount of detour the base algorithm and AA took. With
the last algorithm the basic layer (see Figure 3.2) overrode the prediction layers
because the obstacle was too close. Fine tuning the parameters and sensors
could allow for earlier detection of the obstacle, such that the basic layer does
not inhibit the predictions. This could result in a more time efficient navigation
algorithm than the base algorithm.

The only condition that yielded significant differences in time was the DYN3

condition. Very clear distinctions between the algorithms arise. The average
time of the base algorithm5 in this condition is four times larger than in the other
conditions. This is because the robot collided with the moving obstacle. This
made the localization lose the (correct) estimated location of the robot. This
happened in all trials of the base algorithm but one. In that trial the robot
came (by accident) close to the goal. However, before the goal was reached,
the robot’s position was re-estimated (incorrectly) several times. This costs
relatively much time, since the robot needs to re-plan its global path with every
new location estimation. The collisions also happened with AA, although less
often. The average navigation time lies therefore between the average time of
the base algorithm and the average time of HMMA. The last algorithm managed
to avoid a collision in almost all cases. The HMMA did not have to go through
the time consuming behaviors for location estimation and path re-planning.

5Actually, only one trial ended successfully. Therefore, the average time equals the time
of that one trial.
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Kruse et al. [41] found similar results. They found that their version of
HMMA performed more efficient than a basic obstacle avoidance algorithm.
Furthermore, Fulgenzi et al. [27] found that their AA algorithm performed well
in partially occluded environments, although in some cases collision situations
could have been avoided.

Overall

As expected no significant differences can be found between the algorithms in
the two simplest conditions (NONE and STAT). Over all other conditions, the base
algorithm performs least consistent. The complexer the condition6, the more
(almost) collisions occur. AA performs more consistent than base algorithm.
It has less collisions than the base algorithm and is more efficient than the
base algorithm. However, it still has some trouble handling the most complex
condition (DYN3). HMMA is most consistent over the conditions. It performs
relatively well in all conditions. However, it seems that the HMMA algorithm
takes an unnecessarily large detour in the DYN1 condition. Nevertheless, since
the time is not significantly different, this might suggest the taken route is more
fluent and perhaps more human like.

All in all, the HMMA is most robust and thus most efficient over all con-
ditions combined. Then follows AA, which is in turn followed by the worst
performing algorithm, the base algorithm.

3.4.2 Complex environment

The complex environment in the simulations resembled a typical living room.
The furniture present in the room reduced the available space the robot can
move in to when it has to avoid the dynamic obstacle. Figure 3.4b shows the
setup of the room. The results of these simulations are discussed below. A com-
parison with the results obtained in the simulations in the simple environment
is made as well.

Robustness

The robustness results in the complex environment are about the same as in
the simple environment. All algorithms perform well in the DYN1 and DYN2

conditions. The main differences again start to show in the DYN3 condition.
The base algorithm fails in the majority of the trials, whereas the AA and
HMMA algorithms succeed in almost all trials.

A striking difference with the robustness of the algorithms is that the num-
ber of successful trials is higher in the complex environment than in the simpl
environment. The most logical explanation is that the localization is easier in
the complex environment, simply because there are more landmarks present.
The robot can recover more easily from a collision and therefore reaches its goal
more often. The number of collision is therefore not very well reflected by this
measure in the complex environment.

6DYN3 is complexer than DYN2, which is complexer than DYN1.
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Efficiency

The efficiency of the algorithms was again measured by comparing the amount
of detour and time the robot needed to avoid the dynamic obstacle and reach
the goal. Each condition is discussed separately.

First is the DYN1 condition. In both time and detour, the base algorithm
was the most efficient. This is reflected in the trajectories of the robot shown
in Figure 3.9. The base algorithm did not deviate much from the global path,
compared to the AA and HMMA algorithms. The last two algorithms tried to
avoid the obstacle in advance. Because of the furniture, these algorithms get
stuck locally for a moment and need to find their way back to the global path.
Since the only way back is the way the robot came this results in inefficient
paths. The base algorithm performs best here because it stops and ‘waits’ for
the obstacle to pass. It reacts to the fact that the obstacle is suddenly close and
stops. The robot remains out of the path of the obstacle and therefore a collision
is prevented. In a cluttered environment like the one simulated here, waiting
might be the best option. The AA and HMMA algorithms could therefore be
improved by incorporating a decision mechanism so the robot can decide to wait
instead of moving into an area that is hard to get out of and waste time and
resources.

In the DYN2 condition, the results are the other way around. Here the base
algorithm performs worse than the AA and HMMA algorithms. Both AA and
HMMA deviate very little from the global path. The difference is that the
base algorithm makes larger detours. These detours appear at three different
locations7 along the global path, in three different trials which are not at the
collision site. The only possible explanation for this is that the stochastic nature
of the simulator caused the two robots to encounter each other at different
areas than the intended collision area. Nevertheless, the amount of detour (and
consequently time) taken by the base algorithm is still bigger because the robot
did not efficiently avoid the dynamic obstacle.

For the DYN3 condition, only the difference in detour was significant8. The
base algorithm again needs the least amount of detour. However, since only the
completed trials are taken into account in these results, the outcome is skewed.
Figure 3.9 shows that the trajectories of the robot using the base algorithm
deviate very much from the global path. These are the cases where a collision
occurred and the robot lost its position in the room. When these unsuccessful
trials would be taken into account, the results would be different and the HMMA
would probably come out as the best.

Overall

The overall performance of the algorithms in the complex environment is similar
to the overall performance of the algorithms in the simple environment. The
HMMA algorithm is better capable to avoid moving obstacles than the base
algorithm and in the DYN3 condition better than AA. However, the predictions
by AA and HMMA can cause the robot to move into areas which are hard to
get out of. In these cases the robot should either escape to another area when

7Except for the one in the collision area, which is intended to happen.
8The difference in time was almost significant
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DYN1

DYN2

DYN3

Figure 3.9: Trajectories of the robot in the simulations in the complex environment of
the various algorithms for each condition. From left to right are the base algorithm, AA
and HMMA. The robot had to travel from (1,1) to (6.65, 6.65). Each line represents
one trial, the red dotted line represents trajectory of the dynamic obstacle.

an obstacle is coming its way, or wait until it has passed. Future research could
explore the possibilities for those approaches.
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Chapter 4

Interactive collision
prevention

The algorithms are also tested in the real world, in a Wizard of Oz experiment to
determine the usability of gesture based interaction in ICP. Section 4.2 describes
this experiment. Then, in Section 4.3 the results of the tests are presented.
Finally, Section 4.4 provides a discussion about the results.

4.1 Interactive collision prevention with gesture
recognition

When there are no paths present (or detected) and the users are not moving in a
(predictable) linear fashion none of the proposed obstacle avoidance algorithms
perform efficient. Our assumption is that in such cases ICP can be a good
solution. In order for ICP to work, a body language interpreter would be ideal.
As mentioned in the Introduction, people signal subtly were they are going to
prevent collisions with others. However, this type of body language is hard to
detect, especially when both the users and the robot are moving. Moreover,
as the results of the chalearn gesture recognition challenge indicate, only by
using a fixed camera position and non-moving subjects, reasonable recognition
accuracies are achieved.

Therefore, in this thesis explicit gestures produced by “stationary” subjects
are used to control the robot. If and when a suitable person tracker and body
language interpreter are available, a more natural interaction with moving sub-
jects can be incorporated. Because of this, the incoming laser scan data is not
modified as is in the AA and HMMA algorithms. There is no need to predict the
future position of the user and to remove the user at the current position. The
avoidance algorithm is thus the same as in the base algorithm. The difference is
in the ability of the robot to understand the gestures of the users. Algorithm 4
shows the modified algorithm for navigation. The cursive lines are the lines that
differ from the original algorithm as described in Algorithm 1.

44



Algorithm 4 The modified navigation algorithm for ICP

function Navigation
goal ← main goal
Plan global path
while goal not reached do

if user close then
STOP and WAIT for command
if command is STOP then WAIT for 5 seconds
else if command is LEFT or RIGHT then

goal ← new way point
Plan global path

end if
end if
Read sensor data
Adapt cost map
Plan local path using DWA
if no local path possible then

Execute recovery behaviors
else

Generate velocity commands for local path
Move robot

end if
if close to way point then

goal ← main goal
Plan global path

end if
end while

end function

4.1.1 ICP and gesture controls

We have designed three gesture categories as described below in Section 4.1.1.
How these three gesture classes are incorporated in our ICP framework is also
described in that section. Furthermore, two gesture recognition algorithms are
implemented. The first method is trajectory based gesture recognition, which is
a form of incremental gesture recognition that compares the current trajectory
frame by frame to the templated trajectory. Section 5.1.2 describes the algo-
rithm in more detail. The second method used is offline feature based gesture
recognition. This algorithm is described in Section 5.1.3.

The robot starts by navigating from the start point to the specified goal
point. When the robot comes close to a user, it stops and waits for a command
from the user. To explore the feasibility of our approach, three gesture classes
are defined: LEFT, RIGHT and STOP. If the STOP gesture is performed, the robot
will remain at its position for a short, predefined period of time. In this thesis
this delay is set to five seconds. This allows for the user to pass the robot as
he or she finds appropriate. After five seconds the robot resumes its path. One
can adapt the behavior of the robot such that it waits an t amount of time after
the user has gone out of the collision zone. Setting such a parameter is a typical
problem of shared autonomy, which determines when the robot is allowed to take
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over control. Shared autonomy in mobile robots is a research field on its own.
Examples of research in shared autonomy are provided in (semi)autonomous
wheelchairs [15], teleoperation [38] and interactive tasks [61]. Issues on shared
autonomy are not explored in this thesis, but are highlighted as possible future
research topics in the concluding chapter.

The LEFT or RIGHT commands indicate at which side of the user the robot
should pass. The speed of the gesture determines at which distance the robot
should pass. Figure 4.1 shows the way points for each command. The robot
should always keep a minimum distance dmin to the user. The field of prox-
emics indicates that humans prefer a larger distance in front and back of them
than to the sides. Therefore, the minimal distance indication is shaped like a
ellipse. Depending on the speed of the performed gesture, the way point may
be positioned further away from the user. In our data collection procedure,
subjects will be asked to perform a gesture in one out of three different speeds:
SLOW, NORMAL and FAST. The intuition behind this approach is that the slower
the user produces the gesture, the more relaxed he or she is. Therefore, the
robot can pass the user using a smaller distance. This distance is the minimum
distance to the user (dmin). On the other hand, if the user is hasty or stressed,
the gestures are performed faster and the robot should keep a larger distance.
If the gesture is performed at a normal pace, a distance dadd will be added to
the minimum distance. The minimum distance is increased again with dadd if
the gesture is performed fast. The robot has to pass through the way point
before it can continue its path to the goal. The same path planners are used to
calculate the path to the way point as to calculate a path to the goal.

A performed gesture, which is classified in a class with a certain speed, is
called a command. A total of seven commands can be given to the robot: both
the LEFT and RIGHT gestures can be performed at three different speeds (SLOW,
NORMAL and FAST), and the STOP command.

The LEFT and RIGHT gestures are the minimal amount of gesture types re-
quired for steering the robot off from a possible point of collision. The STOP

command is necessary if no escape route is possible and the best option for
the robot is to wait. The LEFT and RIGHT gestures are added to ensure the
efficiency of the robot. If only one directive gesture (LEFT or RIGHT) is chosen,
the user cannot intuitively control the robot. He has to remember which of the
two is available. When more than the three proposed gestures are available for
classification, it is harder to find a robust gesture set combined with a robust
classifier.

If one of these gestures is performed, a new (temporary) navigation goal is
given to the robot, called a way point. The direction of the way point will cor-
respond to the indicated left or right direction of the produced gesture. As will
be explored in the subsequent chapters, users may produce different variants of
a LEFT and RIGHT gesture. Typically the trajectory shape, velocity, and ampli-
tude are varied [62] when producing human movements in different conditions.
One of our explorations will consider whether the speed of movement may be
used as an additional control parameter.
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Figure 4.1: The way points with relation to the user (‘H’) for each of the seven
possible commands that can be given. The way points are represented by ‘X’. If the
STOP command is given, the robot (‘R’) remains at its position.

4.2 Usability explorations

The algorithms are tested in a laboratory at Philips. There a robot and a room
are provided. However, the gesture recognition module is not robust enough to
be used in the user tests. Therefore, a Wizard of Oz setup is created, wherein
the experimenter acts as the gesture recognition system and manually provides
input to the ICP algorithm. The distinction between gesture speeds is guessed
by the experimenter. The setup is further described below.

4.2.1 Robot platform

The robot used for testing is called Rafael. Rafael stands for Robot Assistant For
Aiding the ELderly and is based on Willow Garage’s Turtlebot1 [29]. Its base is
a non-holonomic drive which is controlled by sending velocity commands. These
commands consist out of a translational and rotational component. The base
has cliff sensors to prevent damage due to driving off a ledge and a bumper to
detect collisions. Rafael has a Hokuyo2 laser range finder for obstacle detection
and localization. A Kinect3 sensor is mounted on top so it has a clear line of
sight to detect people. Figure 4.2 shows a picture of Rafael.

A second Kinect is positioned such that it has an overview of the collision
site. A user tracker makes use of this Kinect’s data to detect the people in the
room. The separate Kinect is used because the user tracker does not function
properly on a moving platform.

1http://www.turtlebot.com
2http://www.hokuyo-aut.jp/02sensor/#scanner
3http://en.wikipedia.org/wiki/Kinect
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Figure 4.2: Picture of Rafael, the robot used in the experiments.

To facilitate communication between the different sensors and drivers a dis-
tributed computing environment is needed. ROS4 provides access to the hard-
ware and hides the complexities of transferring data between components [65].
Furthermore, as mentioned before ROS has a well integrated simulator. There-
fore it is used as a middleware platform for the robot.

4.2.2 Environment

The usability tests are conducted in a lab room at Philips. Figure 4.3a shows a
picture of the lab setting, including the robot. The robot has to travel from one
corner to the opposite diagonal corner (approximately 7 meters). Participants
will cross the robot’s path in different ways, which resemble the DYN1, DYN2

and DYN3 conditions described in Section 3.2.3. Figure 4.3b shows a top down
representation of the room. The start and end position are represented by
the letters ’s’ and ’e’ respectively. The approximate paths the participants
are instructed to take are drawn using different colors. The participants are
instructed to try and maintain a constant speed while crossing the path of the
robot. However, if they feel uncomfortable with the robot’s presence (e.g. they
think the robot is going to hit them), they are free to step aside.

4.2.3 Experimental design

This section describes the experimental procedures for the user tests. The flow
of the experiment is depicted in Figure 4.4.

4ROS (Robot Operating System - http://www.ros.org) is an open-source project to build
a meta-operating system for mobile manipulation systems
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(a) (b)

Figure 4.3: On the left is a photo of the room in which the experiments will take place.
Rafael is driving from his start position towards the goal (where the photographer is
standing. On the right is a top down map of the room. Black pixels represent obstacles,
white represents free space and grey represents unknown areas. The start and goal
positions are indicated with respectively ‘s’ and ‘e’. This map is used to calculate the
global path. The ‘k’ indicates the position of the extra Kinect. The blue lines are the
paths the participants have to walk for the various conditions.

After signing the consent form, the participants are introduced to the robot.
The experimenter explains that the robot will be used in a home-like environ-
ment and will therefore need to avoid people. Then, the participants are shown
which sensors are used and how the robot will detect them. Finally the exper-
imental flow, as depicted in Figure 4.4 is explained. After experiencing each
algorithm, the participants have to fill out a small questionnaire about the per-
formance of that algorithm. They are handed the questionnaire before the trials
begin so they know which aspects to focus on. On the questionnaire, there are
four five-point Likert items, ranging from “I don’t agree” to “I agree”, the par-
ticipants have to rate for each algorithm. The items in the questionnaire are as
follows:

1. The robot was acting smart.

2. I thought the robot was going to run into me.

3. I trust the robot.

4. I would allow this robot in my home.

At the end of the experiment, the participant has to answer two more questions:
“Which algorithm did you like the best?” and “Why?”.

Before beginning the experiments, the subjects are shown a demonstration
of the robot traveling from the start position to the goal. Then, several trials5

5A trial is one attempt of the robot to travel from the start to the end position.
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Figure 4.4: The flow chart of the user test procedure. The order of the algorithms is
randomized. The last block is always the ICP algorithm.

using the base algorithm are performed to make the participant more familiar
with the movements of the robot and prevent learning effects. During the trial
the participant will remain stationary, so he or she can observe the robot closely.

Each participant experiences every algorithm (the base algorithm, AA, HMMA
and ICP) once in every condition (4 × 3 = 12 trials). The order of the algorithms
is randomized, however for practical reasons the ICP is always last.

Once an algorithm is selected, all conditions within that algorithm are tested
sequentially. First is the DYN1 condition, then the DYN2 and finally the DYN3

condition. The conditions are always tested in this order. Each sequence of the
three conditions is called a block. After each block, the participant has to fill
in a small questionnaire about the likability of the robot and level of trust the
participant has in the robot.

Besides the questionnaires, the time and detour of the algorithm is again
measured. The results of the measurements and the questionnaire are described
in Section 4.3.1 and Section 4.3.3.

4.3 Usability results

The results of the usability tests are divided in three parts. First, in Section 4.3.1
the measured time and detour results are presented. In Section 4.3.2 a compar-
ison is made between the simulator and the real world. Finally, Section 4.3.3
contains the results of the conducted survey.

4.3.1 Efficiency measurements

The efficiency of the algorithm was measured in the usability tests. The results
are presented below. The robustness of the algorithms was not measured. The
robot could always reach its goal. When it could not, it was the results of a
technical failure. The trial was then reset and attempted again. On average,
this happened once with every participant.

Efficiency results

The algorithms are again compared on the time it took for the robot to reach
the goal and the amount of detour the robot made. However, in contrast to the
simulation experiments, the number of successful trials is not counted. Failed
trials in the simulator were a result of collisions of the robot with the second
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Condition Time Detour
STAT - -

p=.766 p=.736
DYN1 F(2,12)=1.127 F(2,12)=.039

p=.356 p=.961
DYN2 F(2,11)=5.445 F(2,11)=.273

p=.023 p=.766
DYN3 F(2,11)=2.136 F(2,11)=.377

p=.165 p=.695

Table 4.1: The significance results of the one-way ANOVA comparisons of the mea-
sured time and detour in the user tests.

robot. This is because the second robot, which represented the moving person
in the simulations, would continue to follow its path no matter what. However,
in the user test trials participants would avoid the robot if the robot does not
avoid them. Therefore, the only unsuccessful trials were a result of malfunction-
ing hardware or random initialization errors. These trials were excluded from
analysis and performed again. Plots of the mean and standard deviations of the
data can be found in Figure 4.5.

Condition: NONE

The simulation experiments yielded no significant differences in the performance
of the algorithms. Therefore, no experiments were ran testing the AA and
HMMA algorithms in the NONE condition. Consequently no comparisons can be
made.

Condition: STAT

The AA and HMMA algorithms are designed to act the same around a sta-
tionary person. Combined with the fact that in the simulations no significant
differences between the algorithms were found, only the base and AA algorithms
were tested in this condition. The results were compared using an independent
sample t-test. Both the differences in time and detour were not significant
across both algorithms, p = .766 respectively p = .736.

Condition: DYN1, DYN2 and DYN3

The dynamic obstacle conditions were tested by all three non-interactive ob-
stacle avoidance algorithms. A one-way ANOVA was performed to compare
the performances of the algorithms. For all three dynamic obstacle condi-
tions there were no significant differences in detour. However, there was a
significant difference in time between the algorithms in the DYN2 condition,
F (2,11)=5.445, p=.023. Tukey post-hoc comparisons showed that the base
algorithm (M=16.59) reached the goal significantly faster than the HMMA
(M=25.18). All significance results can be found in Table 4.1.
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(a) Time

(b) Detour

Figure 4.5: Plots of the usability tests. (a) shows the average time and (b) the
average detour. The red lines above the bars indicate significant differences between
the algorithms.
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4.3.2 Baseline comparison

To test whether the results gathered from the simulator tests are transferable
to the real world several additional analyses are performed. The performance
of the base algorithm in the NONE and STAT conditions in the simulator and the
real world are compared.

To compare the simulation results with the real world results, an independent
t-test was performed. Only the performance of the base algorithm is compared
to eliminate the influence of the user tracker on the results. Since the straight
line distance to the goal was not the same in the simulated and the real world,
the time and detour are corrected for this difference. Each variable is divided
by the straight line distance to the goal. Figure 4.6 shows the mean time and
detour.

For the NONE condition the difference in both time and detour was signif-
icant (respectively p=.003 and p=.000). In the STAT condition both variables
were significant too (respectively p=.018 and p=.000). The implications of these
results can be read in Section 4.4.2.

4.3.3 Survey results

In the usability tests the participants interacted with all four obstacle avoidance
algorithms. After interacting with each algorithm, they filled out a short survey
about the amount of trust they placed in the robot. Also, at the end of the
experiment the participants had to chose which algorithm they liked best. The
results are described below.

The performance of the gesture recognition system was not at an acceptable
level at the time of the user tests. The experimenter therefore acted as the
gesture recognition system and manually inputted the performed gesture by the
participants. The participants had no knowledge of this and thought the robot
could recognize their gestures.

Participants

For the final usability tests, five participants were recruited. They were all
interns working at Philips Research and studying a non computer science or
robotics related field. Their age ranged from 23 to 26 years. In the survey they
indicated how much experience they have interacting with a (mobile) robot. All
participants had at least some experience with interacting with robots. The
participants did not receive any compensation for participating in the experi-
ment.

Survey scores

The scores on the Likert scale can be analyzed as ordinal or interval data. There
is some debate about which is best [36,53]. However, I agree with Jamieson [36],
that Likert scales should be treated as ordinal data.

Figure 4.7 shows the medians of the given answers per question per algo-
rithm. A Kruskal-Wallis test showed that the differences in perceived trust are
not significant (χ2=4.120, p=.259).
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(a) Time

(b) Detour

Figure 4.6: Plots of the baseline comparison. (a) shows the average corrected time
and (b) the average corrected detour.
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Figure 4.7: Medians of the answers in the survey.

Final choice

At the end of the experiment, the participants had to choose which algorithm
they liked the best. Three out of five participants chose ICP. Some explanations
of why they chose ICP are:

“Number 4 came less close and had a better reaction. Because of
[the] interaction you know what the robot is going to do.”

“I liked to steer him.”

One participant preferred AA (“[The r]obot was reacting most smart on my
movement.”) and one chose HMMA (“It feels very natural when the robot turns
right/left. I didn’t see the trick of algorithm 4 [ICP]. It seems the robot just
stopped and waited for me, but it didn’t give any feedback about my gesture.”).
No participants preferred the base algorithm.

4.4 Discussion of the usability explorations

Each of the result sections is discussed below. First are the measured perfor-
mances in Section 4.4.1. Then the baseline comparison is discussed in Sec-
tion 4.4.2. Finally, the user preferences are discussed in Section 4.4.3

4.4.1 Discussion of the real world measurements

The robustness of the algorithms in the real world will not be discussed here,
because the number of samples is too small. However, the relations between the
performances of the algorithms will be discussed.

Efficiency

As expected there were no significant differences found between the algorithms
in the STAT condition. The robot should behave (approximately) the same for
every algorithm and it did.
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In the dynamic obstacle conditions there was no significant difference in
detour between the algorithms. Observations showed that the robot usually
was too slow to benefit from its detour. By the time the robot adjusted its
trajectory, the user had already done so and passed the robot. The robot then
had no need to detour, because there were no more obstacles in its way. This
also explains the difference in results between the trials in the simulated and
the real world. In the simulator, the moving obstacle would not react to the
robot in any way. In the real world the participants did.

Because the users (un)intentionally made way for the robot, the differences
in average time were also not significant, except in the DYN2 condition. In this
condition the base algorithm reached the goal position significantly faster than
the HMMA algorithm. There were quite some problems with using the user
tracker. The second Kinect (responsible for detecting the user) was positioned
such that it had a good view of the collision site. However, the area it could
see was quite limited. The user was therefore detected late. Earlier detection of
the user should result in better results. Furthermore, the robot was detected as
a user sometimes. This caused the robot to suddenly stop (there is an obstacle
detected at its position) and get stuck. Finally, there was a bug in the user
position detector in the HMMA algorithm. If there was no user detected, the
position would be set to (0,0) and the closest point in the path was presented
as the user’s position, which was in the middle of the room.

The points mentioned all contributed to the relatively bad performances
of the AA and HMMA algorithms. The base algorithm did not have these
problems, and thus performed as expected.

4.4.2 Comparison of the simulator to the real world

In this section the generalizability of the data gathered in the simulator to the
real world is discussed. First, the absolute results (described in Section 4.3.2) are
discussed. Finally, the comparison results of the analyses of both the simulations
(Section 3.3) and usability tests (Section 4.3.1) are compared.

Absolute results

The performance of the algorithms in the simulations differed significantly from
the performance in the real world on both time and detour. First possible expla-
nations for the difference in detour will be discussed, then possible explanations
for the difference in time.

The difference in the results in detour can be explained by the fact that the po-
sition estimations, and thereby the calculation of the detour is different in both
situations. In the simulator, the position of the robot is a precise measurement.
It is directly taken from the simulator and is therefore completely accurate. In
the real world, the positions of the robot were estimated by the localization
module. Because these are estimations, a certain amount of uncertainty is in-
troduced. This uncertainty in the position estimates is reflected in the larger
detour values. In order to more accurately test whether the simulated and the
real world are similar, a more precise position measurement for the robot has
to be used, for instance an tracker system or a top-down camera. This way,
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the detour measurements in the real world will be (almost) as accurate as the
measurements in the simulator and a proper comparison can be made.

A second explanation for the difference in detour could be that the robot
did make a larger detour in the real world experiments than in the simulations.
This was caused by the testing environment. In the simulator there were no
obstacles (except for the intended one). In the lab setting, there were desks,
chairs and other obstacles. Although the path is cleared as much as possible,
the robot sometimes came too close to a desk - mainly because the position
estimation was wrong - and had to adjust its path to avoid that desk. A lab
environment with no obstacles could thus yield other results.

The differences in the time measurements can be caused by a multitude of
possibilities. The first possibility could be that the computers on which the
robot and the simulator ran have different processing power. The computer
on which the simulations ran was very powerful. It could run the simulations
faster than real time. The laptop on the robot in the user tests was less powerful.
Furthermore, the input commands (setting a new goal) was done on a separate
computer. This separate computer was also used for the visualization of the
map and sensor data. Since this computer is not that powerful, it had some
trouble to keep up the frame rate. Furthermore, the data was sent back and
forth to the laptop and the computer via WiFi. The usage of WiFi is slower
than running everything on one computer, so this could explain the differences
as well.

Another explanation could be that the robot drove slower on some sections,
or made a detour. As with explained in the previous paragraph, the robot
sometimes encountered a desk in its path. When it comes close to an obstacle,
the robot will slow down or stop. This costs time. Also, the robot has to adjust
its path and travel a longer distance. This will also take up extra time.

The distance correction applied to compare the measured time between the
simulator and the real world might not be fair as well. Since the distance
traveled in the real world is shorter (approximately 6 to 7 meters instead of
8) the start-up (initial acceleration) and slow down (final deceleration to the
goal position) in each trial relatively large in relation to the total time traveled.
By applying the correction the proportions of the start-up and slow down time
become skewed. This is disadvantageous for the shorter distance and thus the
real world trials.

Ranking comparison

In this section the rankings of the algorithms in the simulated and the real world
are compared. Even when the absolute differences between the simulated and
the real world are significant (i.e. not comparable), the simulator can prove use-
ful to determine the ranking of the algorithms. The only comparisons that will
say anything about the ranking differences are the ones where both the simu-
lated and real world trials have significant differences between the performances
of the algorithms within the same condition. Otherwise, it is only established
that in both situations there is a lack of results.

Unfortunately, none of the conditions yielded significant differences on either
time or detour in both the simulated and the real world. Therefore, no con-
clusions about the generalizability of the ranking of the algorithms concerning
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time or detour can be made.

4.4.3 Discussion of the user preferences

ICP cannot be compared directly to the other algorithms with objective mea-
sures. Because the algorithm has to wait for input the time and detour measure-
ments will not say anything about the performance of the algorithm. Therefore,
the algorithms were compared to each other by the participants based on trust
and likability. The survey the participants had to fill in did not yield any signif-
icant results, however. This is probably because the participants did not have
a clear view on the differences in behavior between the algorithms. In order to
keep the observations objective, the workings of the algorithms were not fully
explained to the participants. Because of technical difficulties (already discussed
in Section 4.4.1) the AA and HMMA algorithms did not perform as intended.
Furthermore, each participant only had three trials (one in each DYNx condi-
tion) to form a representation of the behavior of the algorithms. This was not
sufficient to form a clear a idea of what the robot will do in certain situations.

When the participants had to choose the algorithm they preferred, the ma-
jority chose the ICP algorithm. All participants that chose ICP, said they liked
it best because it was interactive and most transparent. They knew where the
robot would go when they controlled it. This is a typical reaction for user
of perceptive systems. However, these results might be different if the par-
ticipants have a better understanding of how the robot will behave using the
other algorithms, because over time the behavior of the robot will become more
transparent to its users.

The participants who did not choose ICP said they thought it was not that
smart of the robot to just top and wait for a command. Since (initially) stopping
was necessary for the gesture recognition this objection will be nullified once the
original intention is implemented. Remember that the intention was to let the
robot read the body language of the users while driving. How this can be
approached is described in Section 6.
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Chapter 5

Explorations in gesture
recognition for ICP

In the envisaged scenarios of home assistance, ICP is equipped with an interac-
tion component via which the user can provide the robot with directional clues.
Several ways to implement the interaction interface exist, such as remote con-
trols [50], speech-based communication [81], and gesture-based interaction [71].
As recently underlined in [71], the use of gestures in socially interactive robotics
is crucial, but yet largely unexplored. Gestures provide a natural means to in-
dicate deictic signals. For specifying directions or locations, as in our context of
human-robot navigation, gestures are preferred over speech-based control [56].
In this chapter, the possibility of using gestures for providing directional con-
trols is examined. To further pursue our approach of gesture recognition for
ICP, we have designed three directional gestures (LEFT, RIGHT, and STOP).
A dataset has been acquired from seven users. Each user has performed each
of the gesture classes in three velocities. Based on this dataset, we will ex-
plore whether robust gesture recognition can be achieved. More specifically, the
following questions will be anwsered:

1. Using different classification methods known from the literature, what
accurracies can be achieved?

2. Is the velocity feature appropriate as a distinctive control dimension?

3. Is the concept of one-shot learning feasible for our purposes?

4. Can users consistently reproduce samples from this limited gesture reper-
toire?

As explained in Section 4.1, gesture interaction is assessed via a set up where
users stand still in front of a Kinect camera. In Section 5.2, the set ups for the
data acquisition and gesture recognition experiments are described. The results
are presented in Section 5.3 and discussed in Section 5.4.
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5.1 Gesture recognition algorithms

In this thesis, two types of gesture recognition (GR) are explored. The first is
trajectory-based gesture recognition using dynamic time warping (DTW), which
is described in Section 5.1.2. The second type of algorithms are based on feature-
based gesture recognition and concern a multi-layered perceptron (MLP) and a
k-nearest neighbor classifier (KNN). Section 5.1.1 first explains the representa-
tion used in this thesis of the gestures. Subsequently, in Sections 5.1.2 and 5.1.3,
the methods used for gesture recognition are described. The performance of the
DTW, MLP, and KNN classifiers is tested in several experiments, which are
described in Section 5.2.3.

5.1.1 Gesture recording and representation

As mentioned in Section 2.3 there are three main components in gesture recog-
nition: the sensor, feature extraction and analysis. For our data acquisition
process, a Kinect sensor is used to create a depth image of the scene. From this
image, the OpenNi body pose tracker1 can extract the positions of the joints
of the user2. A joint j is represented as a point at a certain time instance t in
the three-dimensional interaction space: xj(t), yj(t), zj(t). In our set up, users
are requested to perform each gesture in one second. Therefore, at a frame rate
of 25 Hz, each gesture is specified as a sequence of six joint coordinates, each
consisting out of n=25 frames:

{xj(t), yj(t), zj(t)} with t ∈ [1, n] and j ∈ [1, 6] (5.1)

Before data recording, the tracker needs to be calibrated. For calibration,
the user has to stand in the ‘psi-pose’ (see Figure 5.1). This calibration step
must be performed every time the user has left the view of the Kinect. After the
calibration, the position of every joint is available for processing. The current
gesture recognition implementation uses the shoulder, elbow and hand joints
from both the left and the right arm. Furthermore, in order to compensate for
the rotation and the relative position of the user to the Kinect, all the joints’
positions are taken relative from the position of the neck joint.

5.1.2 Trajectory based recognition

The implementation of the first gesture recognition system (which is explained
below) is ported from [91]3. Using one-shot learning [47], for each gesture a tem-
plate is recorded. This template consists out of 25 frames. Each frame contains
the relative positions the the six joints mentioned above. Once the templates
are recorded, the gestures can be compared to them. Each unknown input frame
is matched with the poses in every template. The poses are compared with each
other using the Euclidean distance measure. The Euclidean distance between

1http://ros.org/wiki/openni_tracker
2The joints defined by OpenNi are: head, neck, torso, left shoulder, left elbow, left hand,

right shoulder, right elbow, right hand, left hip, left knee, left foot, right hip, right knee and
right foot.

3Our code was ported from Processing (a language derived from Java) to C++.
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Figure 5.1: The psi pose needed to calibrate the body pose tracker.

two pose vectors x and y is defined as follows:

d(x,y) =
√

(x− y)T (x− y) (5.2)

The performance of this distance measure in pose recognition can be im-
proved by altering this equation slightly. For instance, some poses require only
one arm to be used. The location of the other arm is in such cases less or not
important. By multiplying the distance of the joints on the left (xleft) with a
weight (wl) and the joints on the right (xright)with another weight (wr), the im-
portance of each side can be varied. The weights can be set to a value between
zero and one. Furthermore, the sum of wl and wr has always to be two. This is
to ensure the costs are never zero. In this thesis there are gestures performed by
both a single arm (LEFT and RIGHT) or two arms (STOP). To reduce the number
of false positives the weights of both sides are set to one.

Besides setting weights to the left and right side of the users, weights can be
set for each of the three dimensions in space. These weights wdim can be used to
reduce the importance of one dimension. In this thesis all dimensional weights
are set to one, and thereby making every dimension equally important. This is
done because each participant can define his or her gesture themselves. Some
may prefer one direction, while others do not. By incorporating the weights in
the distance measure, the new distance measure will become:

d(x,y) =
√
wl((wdim(xleft − yleft))T (wdim ◦ (xleft − yleft))) . . .

. . .+wr((wdim(xright − yright))T (wdim ◦ (xright − yright)))
(5.3)

For the comparison of gestures (instead of poses) the temporal structure
needs to be taken into account as well. The speed in which the gesture is per-
formed is important for use in ICP. Dynamic Time Warping (DTW) is therefore
a suitable technique to use. DTW takes varying speed and/or acceleration into
account. The standard definition of DTW distance between two time series xm

and yn (with M and N elements respectively and m and n representing the
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frame indexes) is:

φ(m,n) = Φ(m,n) +min(φ(m− 1, n− 1), φ(m− 1, n), φ(m,n− 1)) (5.4)

where φ(m,n) is a (M + 1) × (N + 1) matrix with φ(0, n) and φ(m, 0) are
initialized as zero. The cost function Φ(m,n) is the distance measure defined
above in Equation 5.3 as Φ(m,n) = d′(xm,yn). The DTW distance between
two series is equal to φ(M + 1, N + 1).

Once the cost matrix is built, it is possible to find the optimal path using
backtracking. The cost matrix is traversed from the end point (M,N) to the
start point (1, 1). If the optimal path travels along the diagonal of the cost
matrix, the gesture is performed at the same speed as the stored gesture (normal
speed). If there are more vertical steps the gesture is performed faster than the
template. If there are more horizontal steps, the gesture is performed slower.
The gesture speed is discretized in three classes: SLOW, NORMAL and FAST. The
classified gesture together with the speed provides input for ICP.

5.1.3 Feature based recognition

The second type of gesture recognition employed in this thesis computes a set of
distinctive features from each gesture representation. These features have been
tested on various pen-based gesture recognition tasks [89]. The input represen-
tation contains features derived from a complete gesture trajectory, consisting
of a number of n (x,y,z) coordinates for each of the six joints measured. Each
feature vector contains the following elements:

dj0 − distance between start-end sample

djx − max horizontal distance between start and all other samples

(cjx, c
j
y, c

j
z) − the centroid of each of the six joints j

vj − the average velocity of each joint

Two common machine learning algorithms are trained and tested on the
recorded gesture samples: a multi-layered perceptron (MLP) and a k-nearest
neighbor (KNN) classifier (for a description of both classifiers, see, e.g., [21]).
These systems are explored in a within-user and between-user set up. The
first explores how well a trained gesture recognition system is able to recognize
data from one single user (as would be a typical task in our chosen application
scenarios). The latter explores how the system can distinguish between gestures
from a heterogeneous population of users.

5.2 Data acquisition

In this section the set up of the data acquisition is described. The recorded data
are used to train and test the gesture recognition algorithms.

5.2.1 Data acquisition guidelines

The participants are briefed about the intended application of the software.
They are instructed to imagine that the robot is standing in front of them. The
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template-based gesture recognizer is subsequently initialized by recording one
template gesture for each gesture class, STOP, LEFT and RIGHT. The participants
are allowed to create their own gesture shapes while keeping some guidelines in
mind:

1. The STOP gesture should be performed by lifting two arms simultaneously
in front of the user.

2. The LEFT and RIGHT gestures should be performed using only the respec-
tive arms.

3. The gestures should be easy to reproduce.

4. The user has to be able to perform each gesture at a slower pace and a
faster pace.

5. All gestures should feel natural to the user.

The first two guidelines ensure that the gestures are easy to distinguish from
each other. The third guideline is to make the users aware that they need to
perform the same gesture several times, and that they should therefore generate
a movement that can easily be remembered. The fourth guideline ensures that
within each of the three gesture classes, a distinction can be made between
different categories of velocity.

The fifth and final guideline requires special attention. In general, “natural”
interactions are one of the most challenging topics of human-computer interac-
tion [18,69]. In particular in contexts where users are instructed to generate an
unspecified intentional movement with a specific semantic connotation, the ques-
tions are: (i) to what extend users are able to generate consistent movements at
all and (ii) whether sufficient movement characteristics are shared across users.
These issues entail that it is uncertain whether recognition technology can be
designed which is robust for between-user variance in case of natural interac-
tions. In general, different users generate different movement characteristics if
they are not instructed properly [90]. On the other hand, if the instructions con-
tain precise directions as to how a movement should be produced, between-user
variability can be controlled [52].

In a scenario where a companion/assistance robot is introduced in a home
environment, the collection of a set of user-specific command gestures is part of
the process of tuning the robot for the task of assisting a human user. Using
the data collected in our experiment, we will be able to explore whether this
calibration phase can be performed with sufficient precision for different users.
For each of the three gesture classes and for each of the three speed categories,
each user is requested to generate one template gesture for each of the three
gesture classes and a further 10 corresponding gesture samples per command4.
So, in total each user will generate 93 gestures. The order of the nine commands
is randomized.

As an example of gesture set, the gesture trajectories of one participant for
each of the gestures are depicted in Figure 5.2. Note that the depth information
is not plotted here.

4A command is a combination of a gesture class and gesture speed. There are nine com-
mands, each a combination from three gesture classes and three gesture speeds.
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(a) STOP

(b) LEFT

(c) RIGHT

Figure 5.2: Example gestures made by one participant. The depth information is
removed. The data is shown for the position of the joints in the two dimensional
plane of the front of the user. (a) shows a STOP gesture, (b) a LEFT gesture and (c)
a RIGHT gesture. The skeleton does not represent the user, but is inserted for viewing
convenience.
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5.2.2 The data acquisition process

After the instruction phase and recording of a template gesture for each of
the gesture classes, the participants are allowed to practice with the gesture
recognizer. This practice phase is used to train users how to consistently produce
each gesture shape. Note that it is possible to record a template gesture again
if the gesture recognition has a lot of false positives or false negatives for that
gesture, or if the participant thinks another gesture would be better.

During each session the positions of the used joints (shoulder, elbow and
hand on both sides) are recorded at 25 frames per second. The participants
have no real-time feedback whether the gesture recognition system recognizes
their gestures. Afterward the data will be played back through the gesture
recognizer. The output of the gesture recognition is recorded together with the
label of the performed gesture. In Section 5.3 the results are described.

5.2.3 Gesture recognition experiments

As outlined above, three gesture recognition systems will be used for gesture
recognition. Using the acquired data, the following gesture recognition experi-
ments will be performed:

1. within-subject recognition: all three recognizers will be trained and tested
on data from each individual subject. A distinction will be made between
the three main gesture classes and the nine commands.

2. between-subject recognition: the same set up will be used, but all recog-
nizers will be trained on the data acquired for all subjects.

3. k-shot learning: whereas the DTW (trajectory-based) classifier uses one-
shot learning, it is known from machine learning that the more training
data is available, the better the performance of the classification system.
This holds in particular for the MLP classifier. To explore how much data
is required for achieving a certain recognition performance, the k-shot
learning experiments examine to what extent data availability influences
recognition. The results of these experiments provide insight into the
afore-mentioned tuning process of our ICP approach: how many templates
should a user produce before the robot is able to recognize gestures with
high accuracy?

The results of each of the gesture recognition systems are described below.

5.3 Gesture recognition performances

A dataset was collected for testing the gesture recognition (GR) software. For
seven participants, data was acquired as described in Section 5.2. This data
was later used to test (offline) both the trajectory based and feature based GR
systems. Below, the recognition results for the DTW, MLP, and KNN gesture
recognition systems are described. But first, a description of the acquired data
set will be given.
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5.3.1 The collected data set

Unfortunately, due to unforeseen circumstances, several recorded files appeared
to be empty after the data collection phase. The following distribution of col-
lected samples per subject was yielded:

class subj2 subj3 subj4 subj5 subj6 subj8 subj9 total

LF 10 10 10 0 10 0 0 40
LN 10 10 10 10 10 10 10 70
LS 10 10 10 9 10 7 10 66
RF 10 10 10 0 0 0 0 30
RN 10 10 10 10 10 10 10 70
RS 12 12 12 0 1 0 0 37
SF 10 10 10 0 0 0 0 30
SN 10 10 10 10 10 10 10 70
SS 0 0 0 11 11 11 11 44
total 82 82 82 50 62 48 51 457

Table 5.1: Distribution of collected samples per subject. L, R, S means, respectively
left, right, stop. F,N,S means, respectively, fast, normal, slow.

In total 457 gesture samples have been recored. As can be observed, only
three of the nine gesture classes was completely recorded for all subjects. A
post-hoc analysis of the recording software showed that one of the responsi-
ble ROS modules did not always close the data file correctly. Fortunately, for
all ”normal” speed conditions, all data was recorded. As a consequence, the
following experimental set ups were defined:

1. nine-class experiments: all available data was used for distinguishing be-
tween the 3x3 gesture classes

2. three-class experiments: only the data acquired in the ”normal” speed
condition was used

5.3.2 Performance of the trajectory based GR (DTW)

As is explained in Section 5.2.3 the performance of the trajectory based GR
system is compared on two levels: (i) within-subject and (ii) between-subject.

Within-subject, three classes

The recorded data was processed by the DTW system as follows: the recorded
template gesture (at normal speed) was used as prototypical training sample.
For each of the three classes c ∈ {RN,LN, SN}, all ten samples xc were clas-
sified by the closest match minidx(φ(TRN , xc), φ(TLN , xc), φ(TSN , xc)), where
minidx returns the index of the smallest DTW-distance between the unknown
input x and the templates T , as explained in Section 5.1.2. Figure 5.3 shows
the recognition rates for each participant.

For three out of seven participants, the recognition rate of the trajectory
based classifier was perfect (100%). This shows that it is very much possible for
DTW to be a robust method to classify the three defined classes.
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(a) Overall performance (b) Performance per gesture class

Figure 5.3: The recognition rate of the trajectory base GR system. (a) Each bar
represents the average recognition rate over all gesture classes, for each participant.
(b) The recognition rates per gesture class per participant.

For two participants, the recognition rate was far below 90%. In Figure 5.3b
are the recognition rates per participant per gesture class shown. The bad
performance of the classifier on participant two can be explained by the inability
of the classifier to recognize the STOP gesture. The gestures are not similar
enough to the template and are therefore never recognized. A new template
could have improved the performance. The same goes for participant four with
the LEFT gesture.

When the speed is involved, the recognition rate drops drastically. Figure 5.4
shows the recognition rate per participant. The DTW classifier is thus not good
at classifying the speed of a gesture within subjects.

Figure 5.4: The recognition rate of the trajectory base GR system. Each bar repre-
sents the average recognition rate over all gesture classes, for each participant. The
speed is also taken into account for the recognition rate.

Between-subject (for all classes and three classes)

The performance rate over all subjects was 86%. This results is when the speed
is not taken into account. When the speeds are counted as separate classes,
the performance rate drops to 33%. This is consistent with the findings in the
within-subject comparisons.
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5.3.3 Performance of the feature based MLP and KNN

The template-based approach of the DTW classifier is similar to k-nearest neigh-
bor. To make a similar comparison, experiments with k=1 are reported below.
Furthermore, to compare the one-shot learning approach of the DTW method,
classification results of the MLP also include learning based on 1 single example
only. However, since in particular MLPs are known to require relatively much
training data, a more elaborate experimental set up was employed, where the
number of training samples per class was varied in different ways. For each of
these conditions, the average performances for 100 random selections of training
and testing data are reported.

Similar to the previous section, results are reported below for within-subject
and between-subject settings.

Within subject (3 classes)

Table 5.2 shows the performance rate per test subject for different training set
size.

Number of training samples per class
user 1 2 3 4 5 6 7 8 9

u2 64.8 87.1 96.4 97.2 96.7 95.0 95.6 97.5 98.3
u3 70.2 92.3 98.8 99.7 100.0 99.2 100.0 100.0 100.0
u4 78.5 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
u5 61.9 89.6 97.4 98.3 98.7 97.9 100.0 100.0 100.0
u6 51.1 97.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
u8 67.4 92.3 92.9 93.3 93.3 90.4 95.0 94.2 93.3
u9 65.9 89.6 94.0 95.0 93.3 92.9 91.1 95.8 96.7
avg 65.7 92.5 97.1 97.7 97.4 96.5 97.4 98.2 98.3

Table 5.2: Performance of the MLP trained with a varied amount of training samples
per class.

Table 5.2 indicates that at least three training samples per class are required
to achieve a reasonable high recognition rate. However, the best recognition
rates are achieved for eight or nine samples per class.

Similarly to the MLP experiments, different training samples per class were
varied for the KNN. The results are shown in Table 5.3 below. As can be
observed, for eight or more training samples, zero error rates can be achieved.
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Number of training samples per class
user 1 2 3 4 5 6 7 8 9

u2 96.3 95.8 95.2 94.4 100.0 100.0 100.0 100.0 100.0
u3 96.3 95.8 95.2 94.4 93.3 100.0 100.0 100.0 100.0
u4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
u5 74.1 95.8 95.2 94.4 100.0 100.0 100.0 100.0 100.0
u6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
u8 92.6 91.7 90.5 94.4 100.0 100.0 100.0 100.0 100.0
u9 92.6 95.8 95.2 94.4 86.7 100.0 88.9 100.0 100.0
avg 93.1 96.4 95.9 96.0 97.1 100.0 98.4 100.0 100.0

Table 5.3: Performance of the 1-NN classifier trained with a varied amount of train-
ing samples per class.

Within subject (all classes)

Random sampling was used for different fractions of training and test data. The
average recognition results for 100 random configurations of train and test data
per fraction are reported below.

Fraction of training samples, lumped over all classes
user .1 .2 .3 .4 .5 .6 .7 .8 .9

u2 38.1 47.6 57.5 66.1 61.0 72.1 71.2 78.8 90.0
u3 30.3 48.8 64.2 64.5 75.6 77.0 79.2 82.5 80.0
u4 35.1 55.2 63.2 73.5 79.0 83.0 83.2 91.2 95.0
u5 45.3 52.0 68.0 68.0 74.4 81.0 76.0 74.0 92.0
u6 43.2 54.8 58.1 70.3 66.5 67.2 70.5 71.7 63.3
u8 54.4 67.9 77.6 83.5 79.2 82.1 84.3 78.0 92.0
u9 48.7 61.0 81.1 80.0 80.8 88.0 89.3 92.0 96.0
avg 42.2 55.3 67.1 72.3 73.8 78.6 79.1 81.2 86.9

Table 5.4: Within-subject performance of the MLP trained with a varying fraction of
training samples per class.

Compared to the results of the DTW classifier, the decrease in performance
when also distinguishing the three different speed categories (slow, normal, fast)
is much less dramatic. One explanation is that the former uses one single tem-
plate as prototypical example, whereas for this experiment, different sets of
randomly drawn samples are selected. For a total of 457 gestures, the amount
of training data ranges between approximately 46 (for fraction=0.1) to 411
(f=0.9).

Below, the results for this experiment with the KNN (k=1) classifier are
depicted.
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Fraction of training samples, lumped over all classes
user .1 .2 .3 .4 .5 .6 .7 .8 .9

u2 40.0 51.2 56.8 59.6 67.8 61.2 65.6 60.0 67.5
u3 44.1 56.1 64.6 62.9 73.7 74.5 70.4 73.8 80.0
u4 37.8 66.4 63.9 67.3 77.1 75.8 78.4 80.0 85.0
u5 49.3 59.5 64.6 66.7 64.8 67.0 68.0 68.0 72.0
u6 43.9 66.0 63.7 69.7 65.2 63.2 62.1 68.3 70.0
u8 60.5 64.2 84.1 86.2 85.8 80.0 88.6 86.0 96.0
u9 43.5 65.9 76.1 80.6 88.8 91.0 89.3 90.0 92.0
avg 45.6 61.3 67.7 70.4 74.7 73.2 74.6 75.2 80.4

Table 5.5: Within-subject performance of the 1-nn trained with a varying fraction of
training samples per class.

Between subject (3 classes and all classes)

Again, random sampling was used for different fractions of training and test
data. The average recognition results for 100 random configurations of train
and test data per fraction are reported below.

Fraction of training samples, lumped over all classes
# classes 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

three (MLP) 93.8 96.8 98.0 97.9 98.1 97.9 97.6 98.6 97.6
all (MLP) 48.3 59.5 65.3 68.1 70.9 73.7 74.2 75.9 77.6
three (KNN) 94.3 96.4 96.9 97.6 97.4 96.9 97.1 97.9 97.1
all (KNN) 50.0 57.2 64.9 66.7 70.1 71.5 72.7 75.1 76.7

Table 5.6: Performance of between subject classification for KNN and MLP

5.4 Discussion of the gesture recognition sys-
tems

The results from the gesture recognition experiments show that the performance
of the GR system is acceptable. In particular in the within-subject experiments,
which mimic the tuning phase of a classifier for one particular user, high perfor-
mances can be achieved. The DTW classifier uses one-shot learning, employing
just one single training template. This appears to be sufficient for three subjects,
but for other subjects apparently more (or other) data is required.

Experiments with “k-shot learning” have been performed for the two feature-
based classifiers (MLP and KNN). These show that for eight training samples
or more, no errors are achieved. This is an important finding from our study,
since: (i) it indicates that robust gesture recognition is indeed possible for this
limited gesture repertoire, but also (ii) that tuning a gesture recognition system
for a new subject requires more than one single sample. It should be noted
that the DTW classifier can also be equipped with more training samples, but
no empirical evaluation of this factor has been employed, which was due to the
particular implementation of this classifier.
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It is not clear why the performance of the DTW classifier drops so drastically
(compared to the MLP and KNN) when the speed categories have to be distin-
guished. However, recognition performances of the KNN and MLP classifiers
also indicate that the distinction in speed categories is difficult.

An analysis of the the consistency of velocity patterns of different users
showed that apparently, some participants experience trouble with replicating
the speed of the template gesture. As an example of the variability of the speed
with which users generate gestures, consider Figure 5.5 below.
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Figure 5.5: Example of the variability in which the speed of a gesture is produced.
Although a clear distinction in the main classes LEFT, RIGHT, and STOP can be
observed, within those classes a considerable overlap in speed is contained.

The average performance of some participants dropped drastically (in case
of the DTW classifier) because for one gesture class 0% recognition is achieved.
However, other participants showed that 100% recognition is possible if speed
is not taken into account. The users of the system should therefore be trained
better to replicate the templated gestures.

Nevertheless, our explorations show that it is possible to design a robust
gesture recognition system, albeit that the amount of gesture classes is restricted
to three.
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Chapter 6

Conclusion

In order to be safely deployed in the homes of people, mobile robots have to
avoid people in their path in a way that is both efficient for the robot and
comfortable for people. Several people avoidance methods were explored in this
thesis. The algorithms were:

• The base algorithm on which all other algorithms are based. The base
algorithms treats moving obstacles as if they are static.

• Two dynamic obstacle avoidance algorithms which predict the movement
of the obstacle (and the future position) using two different methods.
Asteroid Avoidance (AA) uses linear prediction and Human Motion Model
Avoidance (HMMA) uses known paths people can take to predict the
future position of a user.

• An interactive obstacle avoidance algorithm, called Interactive Collision
Prevention (ICP), which allows the users to indicate with a gesture where
the robot could pass them.

These algorithms were all tested in several situations in which a dynamic obsta-
cle (or person) would cross the path of the robot. The complexer the situation,
the more intelligent the obstacle avoidance algorithm has to be in order to main-
tain efficiency. We saw that the base algorithm performs well only in a static
environment. The AA algorithm can handle dynamic environments, but only if
the moving obstacles follow a path that can be described by a linear function.
When the paths of the moving obstacles can be detected (and are not linear),
HMMA is a better choice.

Remember the research questions posed at the beginning of this thesis. Be-
low are the answers to each of these questions:

• Which algorithm is the most robust?
The most robust algorithm tested is probably ICP, because of its interac-
tive nature. The user can decide where the robot should go. Collisions will
not occur and the robot can reach its goal without any trouble. However,
this is a responsibility of the user to give proper commands. Furthermore,
simulations show that HMMA is the most robust of the non-interactive
algorithms.
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• Which algorithm is the most efficient?
The efficiency of the algorithms depends on the environment. If there is
enough room for the robot to avoid the user, the HMMA is most efficient,
followed by AA. If there is not much room, the base algorithm is more
efficient. The efficiency of ICP is hard to measure, since the amount of
detour and time the robot needs to reach the goal depend on the command
it gets from the user.

• Which algorithm do users prefer?
The users prefer ICP the over the other algorithms. The main reasons were
because they could control the robot and the behavior of the robot was
more transparent using ICP than using the other avoidance algorithms.

• Does the new concept of gesture-based ICP provide promising
opportunities for interactive collision avoidance?
Since it is possible to robustly classify three gesture classes with the pro-
posed classifiers, there is a possibility to use gestures in ICP. Some research
is still needed about the user experiences with gesture based ICP however.
Nevertheless, the current implementation can be expanded for use in more
complex situations.

Further explorations are needed to reach the full potential of ICP however.
In the next chapter different possible directions for future work are summed
up.
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Chapter 7

Future Research

Future research concerning human avoidance algorithms could be pursued in
several directions. First of all, the conducted user tests were very short term.
User tests conducted over a longer period of time could yield different user
preferences. Furthermore, improvements on the current implementations of the
algorithms can be made. The user tracker had some problems detecting the
users. Also the online gesture recognition performance could be improved. An-
other improvement could be made by ‘smartening up’ the ICP. By creating
a module that can determine a good way point, the robustness of ICP will
improve. Finally, ICP itself can be implemented in ways other than the one
proposed in this thesis. Each of these research directions are explained in more
detail below.

7.1 Long term experiments

The user’s preferences for an algorithm are highly influenced by the represen-
tation the user has of the behavior of the robot. The survey showed that users
preferred ICP because it was the most transparent method. Since the users
could experience each algorithm only once per condition, the behavior of the
robot for each algorithm was not clear. A longer term test could improve the
understanding of the algorithms. Also, the lab setting could feel unnatural.
Furthermore, the nature of the tasks could bias the user towards ICP because
the only task of the participants was to watch (and control) the robot. Experi-
ments conducted in the users’ homes, over a longer period of time, could yield
different results than the results presented in this thesis.

These experiments could follow the same patterns as the user tests described
in Section 4.2. Each algorithm will be tested for a longer period of time, for
instance a week, in the home of the participant. After each period, the user
will fill in a survey about the performance of the robot. After all algorithms are
experienced by the user, a final survey about the relative performance of the
algorithms and the user’s preferences can be conducted.

Because the robot will be unsupervised for a longer period of time, the per-
formance of the algorithms should be at an acceptable level. Also, mechanisms
that enable recovery from a bad performance have to be present. The long term
test will enable the participants to make a fully informed decision about which
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algorithm they prefer.

7.2 User detection and tracking

As said before, the user detection and tracking modules did not perform as de-
sired. Although many algorithms for people tracking (on mobile robots) already
exist, none of them were available for the setup used in this thesis. And even
though an extra, stationary sensor can be deployed for detecting and tracking
people, this is not desirable. An important advantage of using only sensors
present on the robot is that the users know when they are being observed and
when not. If stationary sensors are used, users might feel violated in their pri-
vacy because they feel watched all the time. Especially when the sensors are
deployed in the home of people, they might object to them. A test using a
different setup, which could support the existing user trackers, or a decent user
tracker could be conducted in future work. If the user can be tracked accurately,
the predictions made by the AA and HMMA algorithms are more accurate and
the performance of these algorithms will be improved. Furthermore, the user
tracker and all algorithms that use it only can track one person at a time. The
algorithms could all be extended to handle multiple people in the view of the
robot. This will make the algorithms more robust in their intended deployment
areas, where it is very likely more than one person can be in view at a time.

7.3 Improved gesture recognition performance

The GR systems proposed in this thesis show it is possible to easily classify the
three gesture classes (LEFT, RIGHT and STOP) proposed in Section 4.1.1. Fur-
thermore, feature based GR shows that a within-subject classification of gesture
speed is possible too. However, the trajectory based GR could not classify the
speed of a gesture correctly. By increasing the amount of training samples the
recognition of the feature based classifiers improved, but this could also be the
result of overfitting due to the small number of classes. Future research could
therefore try to incrementally increase the interaction possibilities for ICP, start-
ing with distinguishing the different speeds of the gestures. Also, new gesture
classes can be added when ICP is extended towards a more teleoperation-like
mechanism (controlling the robot directly). New gestures to set a new goal by
pointing to an area could be added as well.

7.4 Shared autonomy

Another direction for further research is to improve the intelligence of the robot.
In ICP, the user can indicate which way the robot should pass. The way point
the user indicates could be set at an unreachable point. Currently, there is no
control mechanism that will prevent this from happening. The robot will try
to reach this point, and since it cannot be reached, get stuck until it receives
another command (or a timeout cue is given). The main problem that has to be
solved here is how the robot should handle these situations. There are several
possibilities that come to mind. The robot could pick a point that is close to the
intended way point and go there. Where this new way point should be relative
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to the commanded point should be the main focus. Another option is to indicate
to the user that the command given is invalid and that the user should give a
new one. However, this solution may become time-consuming and tedious. A
combination of both techniques could also be explored further.

The behavior of the robot when no command is given has to be explored
as well. The robot could stop, or deploy one of the other obstacle avoidance
mechanisms (but which one?). Figure 3.2 shows a possible hierarchy for this
situation. However, this setup is not implemented yet, because of the limitation
in the user tracker and gesture recognition modules. Once those module perform
at an acceptable level, this structure of module could be explored further as well.

7.5 Other implementations of ICP

In the Introduction, the original idea behind ICP is explained. ICP makes
use of subtle body language to predict the direction where the user is going.
However, because of the limitations in various necessary modules mentioned
earlier, this could not be implemented. Instead a more explicit interaction
method was chosen, namely arm gestures. However, this interaction method
can be implemented in different ways. For instance speech recognition could be
used, possibly in combination with the gestures, for ICP as well.

Also, a specific module to detect the body language can be built. It would
have to be able to detect the subtle cues while both the robot and the user are
moving. This will be a very challenging research direction to go into. However,
when it is accomplished this form of ICP will increase the user experience,
because the communication between the robot and the user will be as natural
as the communication between two people.

All in all, in a dynamic home-like environment, accurate prediction of the
movements of an object will increase the efficiency of navigation of a mobile
robot. First explorations in ICP show promising results and should therefore
be researched in more detail.

76



Acknowledgments

First of all I want to thank my supervisors Louis Vuurpijl and Dietwig Lowet
for helping me in my research and write my thesis. I want to thank Philips for
providing the necessary hardware for my experiments and Frank van Heesch for
repairing the robot on several occasions. Furthermore, I want to thank Mijke
Burger for being my pilot test subject to test the real world implementations of
my algorithms. Finally, I want to thank everyone who took the time to read and
give feedback on my thesis, with a special thank you for Martijn van Otterlo.

77



Bibliography

[1] M. Beetz, U. Klank, A. Maldonado, D. Pangercic, and T. Rühr. Robotic
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Appendix A

Data

A.1 Simulations

95% Conf. interval
N Mean Std. dev Lower bound Upper bound

NONE

BASE 20 15.36 0.02 15.35 15.37
AA 20 15.37 0.03 15.35 15.38
HMMA 20 15.36 0.02 15.35 15.37

STAT

BASE 20 16.69 1.52 15.98 17.40
AA 19 17.33 2.36 16.19 18.47
HMMA 20 16.21 0.84 15.82 16.61

DYN1

BASE 19 20.07 0.83 19.67 20.46
AA 17 21.27 6.51 17.92 24.61
HMMA 19 21.68 3.72 19.88 23.47

DYN2

BASE 16 15.79 0.29 15.64 15.94
AA 17 15.72 0.16 15.63 15.80
HMMA 19 17.27 7.23 13.78 20.76

DYN3

BASE 1 76.76 - - -
AA 12 23.28 8.80 17.69 28.87
HMMA 19 17.71 0.24 17.60 17.83

ALL

BASE 76 17.79 7.15 16.15 19.42
AA 85 18.17 5.32 17.02 19.32
HMMA 97 17.61 4.16 16.77 18.45

Table A.1: The results of the simulations of time.
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95% Conf. interval
N Mean Std. dev Lower bound Upper bound

NONE

BASE 20 0.87 0.72 0.53 1.20
AA 20 0.80 0.72 0.46 1.13
HMMA 20 0.87 0.71 0.53 1.20

STAT

BASE 20 1.03 0.56 0.77 1.30
AA 19 1.08 0.55 0.82 1.35
HMMA 20 1.08 0.55 0.83 1.34

DYN1

BASE 19 1.00 0.74 0.64 1.36
AA 17 2.20 2.90 0.71 3.69
HMMA 19 2.72 1.10 2.20 3.25

DYN2

BASE 16 1.11 0.72 0.73 1.49
AA 17 0.97 0.75 0.58 1.35
HMMA 19 0.89 0.71 0.55 1.23

DYN3

BASE 1 8.13 - - -
AA 12 1.91 0.69 1.47 2.34
HMMA 19 1.30 0.72 0.95 1.65

ALL

BASE 76 1.09 1.06 0.85 1.33
AA 85 1.33 1.50 1.01 1.66
HMMA 97 1.37 1.03 1.16 1.57

Table A.2: The results of the simulations of detour.
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95% Conf. interval
N Mean Std. dev Lower bound Upper bound

DYN1

BASE 18 20.00 0.36 19.82 20.18
AA 17 32.13 12.19 25.87 38.40
HMMA 19 30.19 6.28 27.16 33.22

DYN2

BASE 19 16.51 1.76 15.66 17.35
AA 19 15.63 0.08 15.60 15.67
HMMA 18 15.54 0.08 15.51 15.58

DYN3

BASE 4 15.89 0.49 15.11 16.68
AA 18 22.25 9.54 17.51 26.99
HMMA 19 18.12 0.71 17.77 18.46

(a) Time

95% Conf. interval
N Mean Std. dev Lower bound Upper bound

DYN1

BASE 19 1.73 0.12 1.67 1.79
AA 17 3.06 2.10 1.98 4.14
HMMA 19 2.42 0.70 2.08 2.75

DYN2

BASE 16 1.76 0.27 1.63 1.89
AA 17 1.63 0.02 1.62 1.64
HMMA 19 1.60 0.02 1.59 1.61

DYN3

BASE 1 1.63 0.07 1.51 1.74
AA 12 2.70 1.06 2.18 3.23
HMMA 19 2.25 0.21 2.15 2.34

(b) Detour

Table A.3: The results of the simulations of time (a) and detour (b) of the trial run
in the complex environment.
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A.2 Real-world experiments

95% Conf. interval
N Mean Std. dev Lower bound Upper bound

STAT
BASE 5 17.63 2.93 - -
AA 5 18.24 3.32 - -

DYN1

BASE 5 23.87 7.75 14.24 33.49
AA 5 18.34 2.21 15.60 21.08
HMMA 5 22.94 7.18 14.01 31.86

DYN2

BASE 5 16.59 0.67 15.76 17.42
AA 4 19.28 4.75 11.72 26.85
HMMA 5 25.18 5.57 18.26 32.09

DYN3

BASE 5 24.55 5.60 17.59 31.50
AA 5 30.11 11.30 16.08 44.14
HMMA 4 19.41 2.82 14.93 23.90

(a) Time

95% Conf. interval
N Mean Std. dev Lower bound Upper bound

STAT

BASE 5 2.21 0.21 - -
AA 5 2.25 0.13 - -

DYN1

BASE 5 2.54 0.27 2.20 2.88
AA 5 2.57 0.35 2.13 3.00
HMMA 5 2.59 0.18 2.37 2.82

DYN2

BASE 5 2.66 0.28 2.31 3.00
AA 4 2.51 0.59 1.57 3.45
HMMA 5 2.68 0.16 2.48 2.87

DYN3

BASE 5 2.60 0.24 2.30 2.90
AA 5 2.69 0.23 2.41 2.97
HMMA 4 2.58 0.19 2.47 2.70

(b) Detour

Table A.4: The results of the user tests of time (a) and detour (b).
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Condition Mode N Mean Std. dev

Corrected Time
NONE

Sim 9 1.92 .003
RW 5 2.61 .180

STAT
Sim 10 2.24 .164
RW 5 3.10 1.018

Corrected Detour
NONE

Sim 9 0.01 .001
RW 5 0.37 .036

STAT
Sim 10 0.06 .014
RW 5 0.38 .088

Table A.5: The means and standard deviation of both time and detour in both the
simulations and the user tests. The time and detour is corrected for the straight line
distance to the goal. Mode indicates whether the data is acquired in the simulations
(Sim) or in the real world (RW).
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