
Adaptive Stimulus Selection in Estimating Vestibular

Model Parameters in the Rod-and-Frame Task

Bachelor Thesis in Artificial Intelligence

Radboud University

Nijmegen, the Netherlands

June 18th, 2018

Author:

A. M. Ernest (Anneloes)

Student number: s4579259

Supervisor:

L. P. J. Selen (Luc)1

1 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the

Netherlands.

2

Abstract

The perception of upright can be biased by the visual context. The extent of the bias is linked

to the functioning of the vestibular organ. The rod-in-frame task is an excellent method to test

this biasing effect. The response to the task can be fitted by a 4-parameter Bayesian model. In

this thesis project, an algorithm that adaptively selects stimuli based on entropy was

implemented (in Python) to speed up the convergence of the model’s parameters. Tests with a

generative agent showed convergence of some of the parameters after only 500 trials (in

comparison with ±1600 trials). Experimental tests with real subjects show similar results.

Although there are many aspects that could be improved, the results indicate that adaptive

stimulus selection can indeed significantly reduce the number of trials needed for convergence

of the model’s parameters. With further research, there might be a possibility to use the model

with adaptive stimulus selection as a clinical tool to help patients with vestibular deficiencies.

3

Introduction

The vestibular system has two well-known main functions. Firstly, the receptors give

information about the position of the body in relation to gravity. Secondly, the receptors signal

changes in the direction and speed of head movements. The vestibular system enables our sense

of spatial orientation and subserves balance (Kolb, Whishaw, & Teskey, 2014). Other studies

have also found evidence for the involvement of the vestibular system in arterial blood pressure

(Tanaka, Abe, Awazu, & Morita, 2009) and cerebral blood flow (Serrador, Schlegel, Black, &

Wood, 2009).

Many researchers have proven that with age, the functioning of the vestibular organ

decreases (Agrawal, Carey, Della Santina, Schubert, & Minor, 2009; Zalewski, 2015). There

are multiple therapies available that have proven to be effective in compensating for e.g. the

loss in balance due to vestibular deficiencies (Gillespie et al., 2003; Macias, Massingale, &

Gerkin, 2005). To help coping with the consequences of the decline in functioning, the patients

must first be tested to what extent the functioning of vestibular organ has decreased and

particularly for what kind of situations, in order to optimize the help needed.

The testing of the functioning of the vestibular organ can be done with a rod-and-frame

task. In this task, the participant is asked whether the direction of a briefly flashed rod was

observed to be clockwise (right) from upright. The rod itself is contained within a frame, of

which the orientation is altered every trial. The frame is used to bias the observation of the rod.

Although every subject will show a biasing effect, the magnitude of the effect depends on the

vestibular functioning. When the frame highly biases the observation, it can be deduced that

the functioning of the visual-vestibular interaction has weakened. Subsequently, the participant

relies more on the visual context (frame) to infer whether the object is upright, rather than using

the information from the vestibular organ (Alberts et al., 2016).

4

In the paper by (Alberts et al., 2016), a Bayesian model is described in which the

responses to the rod-and-frame tasks are explained in terms of six parameters. The six

parameters consist of noise in the signal of the otoliths (𝜎𝑜𝑡𝑜𝑙𝑖𝑡ℎ𝑠), prior knowledge of the head-

in-space orientation, the rate at which the otoliths’ noise is increased by the head-in-space

orientation, the visual contextual vertical (𝜅𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙), the visual contextual horizontal

(𝜅ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), and the way 𝜅𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 and 𝜅ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 change with frame orientation (𝜏).

Figure 1 shows how the cumulative response density distribution changes with the

frame orientation. In the first frame orientation of -¼π, all sides of the frame equally contribute

to the probability of seeing an upright rod. The cumulative response density distribution is

nicely in the middle of the otoliths’ peak and thus can be concluded here that the frame hardly

has any effect on the perception of upright. If you look at the graph with frame orientation of -

0.1π, we see that the probability density of the frame has shifted more towards the otoliths’

peak. There is also a notable difference in the peaks of the frame as either the vertical sides or

the horizontal sides now have a larger impact on the perception of upright. The cumulative

response density distribution has become steeper and has also slightly shifted towards the first

high peak of the frame. When the frame is not altered in orientation, and thus is displayed as a

perfect square on top of the rod, the peak of the frame is lined up the peak of the otoliths. We

see a nice cumulative response density distribution which is steeper than the cumulative

response density distribution of the first frame orientation of -¼π. As the frame orientation is

even further increased, the peak of the frame moves away from the peak of the otoliths and the

cumulative response density distribution shifts slightly with the move of the peak of the frame.

5

In earlier studies, independent psychometric curves were built for every frame

orientation (Cadieux, Barnett-Cowan, & Shore, 2010; Lopez, Mercier, Halje, & Blanke, 2011;

Magnussen, Landrø, & Johnsen, 1985). This psychometric function expresses the bias and

variability of a participant on a rod-and-frame task (Wichmann & Hill, 2003). The responses to

different frame-and-rod stimuli are used to update the psychometric function for the

corresponding frame.

To accurately estimate parameters for such a model, one would need to test a lot of

stimuli (Alberts et al., 2016, used 1620 combinations of rod and frame stimuli per condition).

Using this number of stimuli to estimate the functioning of the vestibular organ (as for example

in a clinical setting) is not as quick as one would like. There is a need for reducing the number

of stimuli, which can be done by adaptively selecting the stimuli. Adaptive sampling for

stimulus selection is a means of determining the best next stimuli, based on the current stimulus

and response, which will give the most expected information for some parameter(s) (in this case

Figure 1: Influence of frame orientation on the clockwise cumulative response density

distribution, depicted by the green line. The blue line represents the information from

the frame and the orange line represents the information by the otoliths.

6

of the Bayesian model). There have been many applications of adaptive sampling in research,

each having a slightly differing algorithm but all based on Bayesian principles: (Kontsevich &

Tyler, 1999) propose a Bayesian adaptive method for estimating the slope (variability) and

threshold (bias) of a psychometric function; (Kujala & Lukka, 2006) built further on this and

adaptively sampled 2D stimuli for a 2D psychometric model; in a slightly other research domain

(Pillow & Park, 2016) used adaptive stimulus selection in neurophysiology experiments,

namely neuron tuning.

In this paper, I will describe whether it is possible to reduce the number of presented

stimuli to estimate a subject’s parameters of the Bayesian model using adaptive sampling in the

rod-and-frame task. I will build further on the algorithm described by (Kontsevich & Tyler,

1999), which will be described in depth, and see whether we can extend this particular algorithm

to estimate four parameters of the Bayesian model as described by (Alberts et al., 2016).

This thesis aims to offer a proof of principle: is it possible to adaptively select stimuli

in a rod-and-frame task that enables us to fit a Bayesian model explaining the data of the subject

within a reasonable time frame?

The corresponding research questions are:

1. Is it possible to quickly estimate the four parameters of a Bayesian Model that fit the

responses of a subject on a Rod-and-frame task where the stimuli are adaptively

selected?

2. And specifically, is this much faster than the classical approaches as used in (Alberts

et al., 2016)?

7

Methods

The Algorithm

Parameters

The Bayesian model by (Alberts et al., 2016) has been slightly modified to meet this

thesis’ criteria of four parameters. The original model of (Alberts et al., 2016) contained six

parameters that were inferred not only on different frame and rod orientations, but also based

on different head orientations. In this thesis I reduced the model to four parameters, thereby

excluding the effects of head orientation. The parameters that remain are 𝜅𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝜅ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙,

𝜎𝑜𝑡𝑜𝑙𝑖𝑡ℎ𝑠. and 𝜏. The model already uses a von Mises distribution instead of a Gauss distribution

for the visual contextual vertical and horizontal. This is why I decided to also transform 𝜎𝑜𝑡𝑜𝑙𝑖𝑡ℎ𝑠

to a value that corresponds to the same standard deviation in the von Mises distribution,

𝜅𝑜𝑡𝑜𝑙𝑖𝑡ℎ𝑠. Therefore, an approximation formula is used that transforms the 𝜎-values of a Gauss

distribution to the 𝜅-values of a von Mises distribution. Using a von Mises distribution instead

of a Gauss distribution allows the integration interval to be unchanged while still having the

exact same surface underneath the curve with differing standard deviations. The names I will

be using for the parameters in the remainder of this thesis will be 𝜅𝑣𝑒𝑟, 𝜅ℎ𝑜𝑟, 𝜏, 𝜅𝑜𝑡𝑜,

respectively.

Parameter ranges

For each of the parameters described above, I determined a range in which the values

vary based on the average results and standard deviations in (Alberts et al., 2016). The ranges

that were used in the different tests are further discussed under Results.

The number of frame orientations was set to 11, ranging from -¼π rad (-45°) to ¼π rad

(45°). The number of rod orientations was set to 30, ranging from -10° to 10°. These ranges

were used to infer the stimulus pairs in the rod-and-frame task.

8

Lookup

I need to make a table in which we can find the probability of giving a clockwise (CW)

response (=1 response) for every parameter set and rod-frame stimulus pair. I decided to do this

with multiple for-loops that loop over the multiple parameter ranges. The first thing is

determining the 𝜅’s: 𝜅1 and 𝜅2. The 𝜅’s determine the way that 𝜅𝑣𝑒𝑟 and 𝜅ℎ𝑜𝑟 change over the

frame orientations, influenced by 𝜏 (also see Figure 1). The next step is to compute the

contextual prior provided by each frame. This is done by computing the priors of each side of

the frame with a von Mises and taking the average of the resulting four probabilities. Also, I

need to compute the probability distribution of the otoliths over the rod orientations, with a von

Mises as well. The last crucial step is to compute the cumulative density of all these

distributions.

This table becomes very large, very quickly, and takes a lot of time making. Therefore

the table is only made once for every parameter range configuration. The table is then saved

and loaded into the code, which makes running orders of magnitude faster.

Priors

The probability of a particular parameter set to be the true set is called the prior

probability. Initially, these prior probabilities, or priors as I shall continue to call them, are

evenly distributed over all possible parameter sets. After each trial, the priors are updated in

order to determine which parameter set is most likely to be the true parameter based on the

current responses to the presented stimuli.

Generative agent

A generative agent is made in order to give responses based on a predefined parameter

set. Using a generative agent gives the opportunity to analyse the accuracy of the algorithm’s

9

estimates since the to-be-estimated parameters are known. The responses of this agent are used

to update the prior. The agent is built using the model described by (Alberts et al., 2016). The

agent is built once, and has an inbuilt probability distribution of giving a CW response for every

rod-and-frame orientation. During each trial, the agent is asked to give a response based on the

current rod-and-frame stimulus. This probability is taken out of the predefined probability

distribution and used to give a response. For checking the accuracy of the estimates by the

algorithm, I initialized multiple agents with differing parameters. This will give a better idea

about the performance of the algorithm. The parameter sets of the agents are further discussed

under Results.

Algorithm for selecting stimuli

The algorithm by (Kontsevich & Tyler, 1999) is an algorithm that chooses the stimulus

to be presented on the next trial. This particular stimulus is chosen such that it maximizes the

gain of information about the Bayesian model parameters. The gain of information is a measure

by means of entropy, i.e. the algorithm tries to find the stimulus that minimizes the expected

entropy. There is a total of eight steps that have to be done during each trial. Note: All of these

steps are done for both getting a clockwise (CW) response and counter-clockwise (CCW)

response.

The first step is to calculate the probability of getting a particular response (𝑟) after

presenting a particular stimulus pair (𝑥 = (𝑓𝑟𝑎𝑚𝑒, 𝑟𝑜𝑑)) at the next trial. Here, we calculate the

conditional probability at a certain trial (𝑡) of response r given that stimulus 𝑥 was shown. This

is done by computing the conditional probability over all possible parameter sets (𝜆) and

weighing each of those conditional probabilities by the probability of that parameter set 𝜆 to be

the true one. We calculate this probability for every response and stimulus combination.

10

𝑝𝑡(𝑟|𝑥) = ∑𝑝(𝑟|𝜆, 𝑥) ∙ 𝑝𝑡(𝜆)

𝜆

The second step is to estimate the posterior probabilities of each parameter set 𝜆, given

that at the next trial the participant will give response 𝑟 after presenting stimulus pair 𝑥. Here,

we calculate the conditional probability of parameter set 𝜆 given that stimulus pair 𝑥 gave

response 𝑟 at trial 𝑡.

𝑝𝑡(𝜆|𝑥, 𝑟) =
𝑝(𝑟|𝜆, 𝑥) ∙ 𝑝𝑡(𝜆)

∑ 𝑝(𝑟|𝜆, 𝑥) ∙ 𝑝𝑡(𝜆)𝜆

This calculation is done with an Einstein summation over the prior probabilities and the

lookup table. These values are then standardized by 1/the sum of the resulted Einstein sum. The

Einstein summation convention transforms all quantities in the expression into scalars which

allows easy computation.

The third step is to estimate the entropy of the posterior probabilities, given that at the

next trial 𝑡 stimulus 𝑥 will give response 𝑟.

𝐻𝑡(𝑥, 𝑟) = −∑𝑝𝑡(𝜆|𝑥, 𝑟) ∙ log(𝑝𝑡(𝜆|𝑥, 𝑟)

𝜆

)

The fourth step is to estimate the expected entropy for each stimulus 𝑥.

𝐸(𝐻𝑡(𝑥)) = 𝐻𝑡(𝑥, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) ∙ 𝑝𝑡(𝑠𝑢𝑐𝑐𝑒𝑠𝑠|𝑥) + 𝐻𝑡(𝑥, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) ∙ 𝑝𝑡(𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑥)

The fifth step is to find stimulus x that minimizes the expected entropy.

𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐸[𝐻𝑡]

11

The sixth step is to run the next trial with the stimulus that was selected at step five

(𝑥𝑡+1). This trial will give response 𝑟𝑡+1.

The seventh step is to update the prior probability distribution. If the response of the

subject is CW, the priors are updated by the CW table and if the response of the subject is CCW,

the priors are updated by the CCW table.

𝑝𝑡+1(𝜆) = 𝑝𝑡(𝜆|𝑥𝑡+1, 𝑟𝑡+1)

Finally, in the eighth step, the algorithm determines the new estimate of the model

parameters based on the new priors. This estimate is the weighted average of all parameter

probabilities, also known as the expected value estimate. In the formula below, 𝜆𝑡+1 denotes

the new expected value estimate and 𝑝𝑡+1(𝜆) denotes the updated prior probability (see step

seven) of the parameter sets 𝜆.

𝜆𝑡+1 = 𝜆 ∙ 𝑝𝑡+1(𝜆)

All of these steps are executed for a fixed number of trials, in most cases 500 trials. This

number is based on the convergence of some of the parameters.

The final estimate of the parameter set could either be based on the expected value

estimate or the maximum a priori (MAP) estimate. As described above (see step eight), the

expected value estimate is the weighted average of the parameter probabilities. The MAP

estimate is the parameter value with the highest probability.

Testing the Algorithm

Initially, the algorithm is tested with a generative agent. During each trial, the stimuli

and their response is saved. Having only this information, the algorithm is able to recreate the

estimates that it had calculated before. Since each test was conducted 10 times in a row, I also

12

kept the estimated parameters from the last trial in each test such that I was able to plot the

results after the 10-fold run rapidly. Next, experimental tests were done with two subjects. Here,

we conducted the rod-in-frame task for 500 trials where each stimulus pair was selected

adaptively using the algorithm described above. In these experiments, the real values of the

parameters are not known.

Results

Estimates with the Generative Agents

Beneath in Table 1 is listed which parameters the different agents had. The parameter

set of agent 3 and 4 is based on the exact averages of the subject data as found in (Alberts et al.,

2016). The parameter sets of agent 1 and 2 are based on their ranges, where the parameters of

agent 1 are in the middle of the range and the parameters of agent 2 deviate a bit from the middle

to show the accuracy of the algorithm when the to-be-estimated parameters are not in the middle

of the range.

Table 1: Parameters of the generative agents.

 𝜅𝑣𝑒𝑟 (°) 𝜅ℎ𝑜𝑟 (°) 𝜏 𝜅𝑜𝑡𝑜 (°)

Agent 1 4 40 0.8 2.2

Agent 2 5 35 0.85 2.3

Agent 3 4.87 52.26 0.80 2.21

Agent 4 4.87 52.26 0.80 2.21

In Tables 2-4, the used parameter ranges for the different agents is described. Agent 1

and agent 2 have a smaller parameter range that is loosely based on the averages and standard

deviations of the findings in (Alberts et al., 2016). The parameter ranges for agent 3 and 4 are

a bit larger and offer more room for the convergence of the parameters. The parameter range

13

for agent 4 differs from the parameter range of agent 3. Here, the range of 𝜅ℎ𝑜𝑟 is set to a smaller

range to see whether that affects the convergence of 𝜏.

Table 2: Parameter ranges for both agent 1 and agent 2. These ranges are strictly based on the averages and standard deviations

of the findings by (Alberts et al., 2016).

 𝜅𝑣𝑒𝑟 (°) 𝜅ℎ𝑜𝑟 (°) 𝜏 𝜅𝑜𝑡𝑜 (°)

start 2 30 0.70 1.95

end 7 75 0.95 2.50

nr of samples 15 15 10 10

Table 3: Parameter ranges for agent 3. These ranges are larger than the ones for agent 1 and 2.

 𝜅𝑣𝑒𝑟 (°) 𝜅ℎ𝑜𝑟 (°) 𝜏 𝜅𝑜𝑡𝑜 (°)

start 2.5 22 0.6 1.4

end 7.5 80 1.0 3.0

nr of samples 15 15 10 10

Table 4: Parameter ranges for agent 4. These ranges are the same as for agent 3, except for the range of κhor .

 𝜅𝑣𝑒𝑟 (°) 𝜅ℎ𝑜𝑟 (°) 𝜏 𝜅𝑜𝑡𝑜 (°)

start 2.5 30 0.6 1.4

end 7.5 75 1.0 3.0

nr of samples 15 15 10 10

Convergence

In Figure 2, the convergence of two out of four parameters is shown. Already after

100 trials (c), the probabilities for both 𝜅𝑣𝑒𝑟 and 𝜏 are closing in on a more specific value. The

ideal convergence of a parameter would be one peak at the actual parameter value, with all

others at zero. This would mean that this one parameter is the true one, with high confidence.

14

Figure 3: Estimates of the parameters of agent 1. The left panels show the expected value (EV) estimate, and the right

panels show the maximum a priori (MAP) estimate.

Figure 4: Estimates of the parameters of agent 2.

Figure 2: This is what the marginal prior distributions (the blue line with dots) look like during certain trials. The red dotted

lines indicate the value of the actual parameters. You can clearly see convergence for both κver and τ.

a: Initial equal distribution.

b: Distribution after 10 trials.

c: Distribution after 100 trials.

d: Distribution after 300 trials

e: Distribution after 500 trials

15

Figures 3-6 show the estimates of each test and agent. Each picture contains estimates

from 10 tests of a single agent. The estimates are indicated by the height of the blue bars. The

red line indicates the agent’s true parameter value. In every figure, the graphs on the left side

are the expected value estimates and the graphs on the right side are the MAP estimates. The

values on the y-axis are limited to the respective parameter ranges that were used. This means

that the tests with no bars in the graph have an estimated parameter value that is equal to the

lowest bound of the range.

The expected value estimates of the first agent are very promising (see Figure 3). There

is hardly any difference with the actual parameters of the agent. However, if one would look to

the MAP estimates for the same agent, we see that the estimates for only 𝜅𝑣𝑒𝑟 and 𝜏 are accurate.

The MAP estimates of 𝜅ℎ𝑜𝑟 and 𝜅𝑜𝑡𝑜 are off. Although the MAP estimate of 𝜅ℎ𝑜𝑟 does indicate

that there are some probability peaks in the convergence of the estimate which are not at the

bounds of the range, there is no such evidence for the parameter 𝜅𝑜𝑡𝑜. The MAP estimate of

𝜅𝑜𝑡𝑜 is either at the lowest or the highest bound of the parameter range. If the expected value

estimate would also be at the bound, this would indicate convergence at the bound. If the

expected value estimate is not at the bound, it can be deduced that there is no convergence at

all.

By adjusting the to-be-estimated parameters slightly from the middle in agent 2, it can

be seen that the estimates for both κ_ver and τ change with the adjustments in the parameters

(see Figure 4). There does seem to be a bit more variability in the estimates. The parameter

estimates of κ_hor and κ_oto do not alter with the adjustments in the agent’s parameter set. This

confirms the previously mentioned notion that κ_hor and κ_oto are difficult to estimate.

a: Initial equal distribution.

b: Distribution after 10 trials.

c: Distribution after 100 trials.

d: Distribution after 300 trials.

e: Distribution after 500 trials.

16

For the estimates of the parameters of agent 3 and agent 4 (see Figure 5 and Figure 6

respectively), there seems to be more difficulty with accurately estimating 𝜅𝑣𝑒𝑟. However, both

the expected value estimate as the MAP estimate give almost identical values, proving

convergence of 𝜅𝑣𝑒𝑟. The parameter 𝜏 seems to be overestimated in both agents and also by

both estimate measures. There is great overestimation of 𝜅ℎ𝑜𝑟 too, but it is already known from

the previous two agents that this parameter was more difficult to estimate. Since the estimates

for 𝜅ℎ𝑜𝑟 are mostly around the middle of the range, and the MAP values are either very high or

low, it can be concluded that there is no convergence of 𝜅ℎ𝑜𝑟. The same goes for the parameter

𝜅𝑜𝑡𝑜. There was only one trial in total that had a good MAP estimate of 𝜅𝑜𝑡𝑜 (agent 3, trial 1,

Figure 5).

Figure 5: Estimates of the parameters of agent 3.

Figure 6: Estimates of the parameters of agent 4.

17

Furthermore, the parameters 𝜅𝑣𝑒𝑟 and 𝜏 already showed an obvious convergence shape

after only 40 trials during tests with the generative agents.

Estimates with Real Subjects

Since the true parameters of the subjects in the experimental setting are unknown, the

parameter ranges need to be chosen as wide as possible. Since there is some information about

the ranges in which the parameters occur based on the results in (Alberts et al., 2016), and it is

desired to have some comparison with the generative agents, it was decided that the parameter

ranges for agent 3 (see Table 3) will be used for the experiment. These ranges will offer the

most flexibility within reasonable bounds.

Figure 7 shows that for both subjects there is convergence for some of the parameters.

We can clearly see convergence of 𝜅𝑣𝑒𝑟 and 𝜏 for both subjects since the EV and MAP estimates

of each parameter are similar. In subject 1, there is also some evidence for the convergence of

𝜅ℎ𝑜𝑟. The estimates of 𝜅𝑜𝑡𝑜 for both subjects did not show convergence as the EV estimates are

averaged out by the rest of the parameter probabilities.

Figure 7: Estimates of the trials with subjects. The blue bars show the expected value estimates and the green bars show the

MAP estimates. The estimates of subject 1 and subject 2 are shown on the left and right respectively.

18

Stimuli Selection

The stimulus pair selections during the two subjects’ tests and two of the agents’ tests

are shown in Figure 8. From the agents’ tests, I chose to show the stimulus pair selections for

agent 2 and agent 3 during run number 2. A test with agent 2 was chosen because the true

parameter set is not in the middle of the range. Therefore this agent’s parameter set will

probably resemble the unknown parameter set of the subjects more since these are not likely to

be in the middle either. In particular, a test with agent 3 was chosen because the parameter

ranges for this agent are the exact same as for the subjects. Figure 8 shows which frame and

rod orientation was presented during each trial of a single test for the two subjects and two

agents described above. The frame orientations are shown in the graphs with the blue dots, and

the rod orientations are shown in the graphs with the red dots.

Figure 8: Examples of stimuli selections by the algorithm for both subjects and two generative agents’ tests.

19

Comparing the graphs of the subjects in Figure 8, it is clear that both the frame and rod

orientations for subject 1 were much more alternating than those for subject 2. It is especially

notable that subject 2 mostly got very large negative frame orientations with very small negative

rod orientations.

The stimulus pair selections for both the subjects and the agents are mostly negative.

This is explained by the fact that the Bayesian model by (Alberts et al., 2016) is symmetric.

This means that it is very likely for the negative and positive stimulus pair to have the same

expected entropy (as calculated in step five of the stimulus selection algorithm). If both of these

stimulus pairs have the highest entropy, the algorithm will select the first occurrence, being the

negative one.

To give a better overview of which stimulus pairs were chosen during the entire test, all

unique pairs were selected and the frequency of each was calculated. The frequency graphs in

Figure 9, based on the stimuli selections depicted in Figure 8, show that for most of the chosen

stimulus pair selections the rod and frame orientations are either both positive or both negative.

There are not many cases where one of the stimuli is positive and the other negative, except for

the stimulus pair selections for subject 1.

Figure 9: Number of stimulus pair selections in each test. These frequencies correspond to the stimuli selections depicted in

the figure above, Figure 8.

20

The two stimulus pairs with the highest frequency for both of the depicted agents were

exactly the same, only the number of occurrences are slightly different. This shows that,

although their ranges and true parameter set were very different, there is some consistency to

the responses and therefore the stimulus pair selections.

Discussion

Estimates

The results are very promising: for two out of four parameters there is convergence.

𝜅𝑣𝑒𝑟 and 𝜏 have proven to be easier to estimate than 𝜅ℎ𝑜𝑟 and 𝜅𝑜𝑡𝑜. The convergence of 𝜅ℎ𝑜𝑟

and 𝜅𝑜𝑡𝑜 seem to be much more difficult. During some of the trials within tests, there was a

rough convergence shape that shifted into more of a diagonal line later on during certain tests.

To answer the research questions, thus far it is possible to use adaptive sampling in the rod-

and-frame task to estimate two out of four parameters accurately. And the number of trials

needed for convergence can definitely be reduced significantly in comparison to 1620 trials as

reported by (Alberts et al., 2016).

Dependencies

The results indicated that when the parameter range of 𝜅ℎ𝑜𝑟 was extended too far (from

22° instead of from 30°), 𝜏 was no longer easy to estimate. It in fact shown that the second part

of the curve of 𝜏 would stay up instead of going down. However, that phenomenon was not

always visible in every test with the larger range. There were many tests where the second part

of the curve of 𝜏 would go down, but much slower in comparison with the smaller range. This

indicates a dependency between 𝜏 and 𝜅ℎ𝑜𝑟.

21

Future Directions

Since all of the data is easily saved and replicable later on, there are more ways to find

the final estimates if not only on the last trial of a test. The results have already shown that for

the harder to estimate parameters there was rough convergence at some point. That fact has

great implications for exploiting all estimates in a test, rather than only of the last trial. A search

algorithm could be designed which will be able to find these best estimates in the trials of a

single test, and maybe combine them for the most optimal one.

Looking at the results of the generative agents, there is clearly a possibility to estimate

parameters based on adaptive stimulus selection. Using adaptive sampling, it surely does open

up the possibility to use the Bayesian model described in (Alberts et al., 2016) as a clinical tool.

However, due to the exponential growth of the lookup table with every addition of another data

point in the range of one of the parameters, the results are not as accurate as they could be.

There needs be more research in finding a way to make the construction of the lookup table and

updating the priors much faster before the algorithm could be used as a clinical tool.

In this paper, it was briefly mentioned that the Bayesian model by (Alberts et al., 2016)

assumes the responses to the rod-and frame task to be symmetric, meaning that the response to

a negative frame orientation and negative rod orientation is the exact opposite of the response

to the same frame and rod orientations but then positive. Using this notion of symmetry, the

presented stimulus pairs could alternate a lot more between positive and negative orientations

in order to keep the stimulus pairs interesting for the subjects. It would also allow the ranges of

the orientations to only contain positive values that can be transformed into a negative one if

desired for a certain trial. The range would then contain less values as well which would

increase the speed of the algorithm. One could also opt to let the length of the range as it was

and let it contain more detailed values than it previously was able to, offering more potential

22

orientations to be presented and possibly giving a more accurate estimation of the parameter

set.

The full Bayesian model by (Alberts et al., 2016), including differing head orientations,

could make the parameters involved in the perception of upright better identifiable. Having

head orientation as an additional stimulus allows the model to separate the contribution of the

otoliths and the head-in-space prior. This head-in-space prior represents the prior knowledge

that our head is usually positioned upright in space (Alberts et al., 2016). Thus, extending the

stimuli frame orientation and rod orientation with head orientation would offer more precise

information about the contribution of the model’s parameters in verticality perception.

Conclusion

In this thesis, I have presented a way to adaptively select the rod and frame orientations

for the rod-and-frame task. Using the responses to update a Bayesian model that explains the

responses in terms of four parameters. The results show convergence of two out of four

parameters, namely 𝜅𝑣𝑒𝑟 and 𝜏. There are many parts that could be significantly improved,

however, the aim of this thesis has been achieved. Adaptive stimulus selection offers great

possibilities for speeding up the convergence process. The number of trials needed to have

convergence of 𝜅𝑣𝑒𝑟 and 𝜏 is very small in comparison to the numbers of trials as stated in the

literature.

References

Agrawal, Y., Carey, J. P., Della Santina, C. C., Schubert, M. C., & Minor, L. B. (2009).

Disorders of balance and vestibular function in US adults: Data from the National Health

and Nutrition Examination Survey, 2001-2004. Archives of Internal Medicine, 169(10),

23

938–944. http://doi.org/10.1001/archinternmed.2009.66

Alberts, B. B. G. T., de Brouwer, A. J., Selen, L. P. J., & Medendorp, W. P. (2016). A

Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.

ENeuro, 3(5). http://doi.org/10.1523/ENEURO.0093-16.2016

Cadieux, M. L., Barnett-Cowan, M., & Shore, D. I. (2010). Crossing the hands is more

confusing for females than males. Experimental Brain Research, 204(3), 431–446.

http://doi.org/10.1007/s00221-010-2268-5

Gillespie, L. D., Gillespie, W. J., Robertson, M. C., Lamb, S. E., Cumming, R. G., & Rowe,

B. H. (2003). Interventions for preventing falls in elderly people. Cochrane Database of

Systematic Reviews, (4). http://doi.org/10.1002/14651858.CD000340

Kolb, B., Whishaw, I. Q., & Teskey, G. C. (2014). An Introduction to Brain and Behavior

(4th ed.). New York: Worth Publishers.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope

and threshold. Vision Research, 39(16), 2729–2737. http://doi.org/10.1016/S0042-

6989(98)00285-5

Kujala, J. V, & Lukka, T. J. (2006). Bayesian adaptive estimation : The next dimension.

Journal of Mathematical Psychology, 50, 369–389.

http://doi.org/10.1016/j.jmp.2005.12.005

Lopez, C., Mercier, M. R., Halje, P., & Blanke, O. (2011). Spatiotemporal dynamics of visual

vertical judgments: Early and late brain mechanisms as revealed by high-density

electrical neuroimaging. Neuroscience, 181, 134–149.

http://doi.org/10.1016/j.neuroscience.2011.02.009

24

Macias, J. D., Massingale, S., & Gerkin, R. D. (2005). Efficacy of vestibular rehabilitation

therapy in reducing falls. Otolaryngology - Head and Neck Surgery, 133(3), 323–325.

http://doi.org/10.1016/j.otohns.2005.04.024

Magnussen, S., Landrø, N. I., & Johnsen, T. (1985). Visual half-field symmetry in orientation

perception. Perception, 14(3), 265–273. http://doi.org/10.1068/p140265

Pillow, J. W., & Park, M. (2016). Adaptive Bayesian methods for closed-loop

neurophysiology. In Closed Loop Neuroscience (pp. 1–28).

Serrador, J. M., Schlegel, T. T., Black, F. O., & Wood, S. J. (2009). Vestibular effects on

cerebral blood flow. BMC Neuroscience, 10(Article ID 119).

http://doi.org/10.1186/1471-2202-10-119

Tanaka, K., Abe, C., Awazu, C., & Morita, H. (2009). Vestibular system plays a significant

role in arterial pressure control during head-up tilt in young subjects. Autonomic

Neuroscience: Basic and Clinical, 148(1–2), 90–96.

http://doi.org/10.1016/j.autneu.2009.03.007

Wichmann, F. A., & Hill, N. J. (2003). The psychometric function: I. Fitting, sampling, and

goodness of fit. Perception & Psychophysics, 63(8), 1293–1313.

Zalewski, C. K. (2015). Aging of the Human Vestibular System. Seminars in Hearing, 36(3),

175–196. http://doi.org/10.1055/s-0035-1555120

25

Appendix

A: PSI class

1. import numpy as np

2. from scipy.stats import vonmises

3. from GenerativeAgent import GenerativeAgent

4.

5.

6. class PSIfor:

7.

8. def __init__(self, kappa_ver, kappa_hor, tau, kappa_oto, theta_frame, theta_rod):

9. self.kappa_ver=kappa_ver

10. self.kappa_hor=kappa_hor

11. self.tau=tau

12. self.kappa_oto=kappa_oto

13. self.theta_frame=theta_frame

14. self.theta_rod=theta_rod

15. self.stim1_index=-1

16. self.stim2_index=-1

17.

18.

19. #dimensions of 2Dstimulus space

20. self.nframes=len(self.theta_frame)

21. self.nrods=len(self.theta_rod)

22.

23. #dimensions of 2D parameter space

24. nkappa_ver=len(self.kappa_ver)

25. nkappa_hor=len(self.kappa_hor)

26. nkappa_oto=len(self.kappa_oto)

27. ntau=len(self.tau)

28.

29. #initialize and compute the two kappas

30. kappa1=np.zeros((nkappa_ver,nkappa_hor,ntau,self.nframes))

31. kappa2=np.zeros((nkappa_ver,nkappa_hor,ntau,self.nframes))

32.

26

33. for kv in range(0,nkappa_ver):

34. for kh in range(0,nkappa_hor):

35. for t in range(0,ntau):

36. kappa1[kv,kh,t,:] = kappa_ver[kv]-(1-

np.cos(np.abs(2*self.theta_frame)))*tau[t]*(kappa_ver[kv]-kappa_hor[kh])

37. kappa2[kv,kh,t,:] = kappa_hor[kh]+(1-np.cos(np.abs(2*self.theta_frame)))*(1-

tau[t])*(kappa_ver[kv]-kappa_hor[kh])

38.

39. #initialize cumulitative distribution for every kappa_ver,kappa_hor,tau,sigma_oto combinati

on per frame and rod orientation.

40. cdf=np.zeros((nkappa_ver,nkappa_hor,ntau,nkappa_oto,self.nframes,self.nrods))

41.

42. for kv in range(0,nkappa_ver):

43. for kh in range(0,nkappa_hor):

44. for t in range(0,ntau):

45. # for all frames compute the contextual prior (four von mises), the otolith dis

tribution (and the head-in-space prior)

46. for f in range(0,self.nframes):

47.

48. # the context provided by the frame

49. p_frame1 = vonmises.pdf(self.theta_rod-

self.theta_frame[f],kappa1[kv,kh,t,f])

50. p_frame2 = vonmises.pdf(self.theta_rod-np.pi/2-

self.theta_frame[f],kappa2[kv,kh,t,f])

51. p_frame3 = vonmises.pdf(self.theta_rod-np.pi-

self.theta_frame[f],kappa1[kv,kh,t,f])

52. p_frame4 = vonmises.pdf(self.theta_rod-3*np.pi/2-

self.theta_frame[f],kappa2[kv,kh,t,f])

53.

54. p_frame = (p_frame1+p_frame2+p_frame3+p_frame4)/4.0

55.

56. # the otoliths

57. for so in range(0,nkappa_oto):

58. ko=kappa_oto[so]

59. p_oto = vonmises.pdf(theta_rod,ko)

60. # the upright prior

61. #p_hsp = vonmises.pdf(theta_rod,kappa_hsp)

27

62.

63. # compute the cumulative density of all distributions convolved

64. cdf[kv,kh,t,so,f,:]=np.cumsum(np.multiply(p_oto, p_frame))/np.sum(np.mu

ltiply(p_oto, p_frame))

65.

66. cdf=np.nan_to_num(cdf)

67. cdf[cdf==0]=1e-10

68. cdf[cdf>1.0]=1.0

69.

70. self.lookup=np.reshape(cdf,(nkappa_ver*nkappa_hor*nkappa_oto*ntau,self.nframes,self.nrods),

order="F")

71. # self.lookup=np.load('lookup.npy')

72. self.prior=np.ones(nkappa_hor*nkappa_ver*nkappa_oto*ntau)/(nkappa_hor*nkappa_ver*nkappa_oto

*ntau)

73.

74. self.makeG2()

75.

76. self.calcNextStim()

77.

78. def calcNextStim(self):

79. # Compute posterior

80. self.paxs = np.zeros([self.lookup.shape[0], self.lookup.shape[1], self.lookup.shape[2]])

81. self.paxf = np.zeros([self.lookup.shape[0], self.lookup.shape[1], self.lookup.shape[2]])

82. #h = np.zeros([self.nframes, self.nrods])

83.

84. self.paxs = np.einsum('i,ijk->ijk', self.prior, self.lookup)

85. self.paxf = np.einsum('i,ijk->ijk', self.prior, 1.0 - self.lookup)

86.

87. ps = np.sum(self.paxs,0)

88. pf = np.sum(self.paxf,0)

89.

90. self.paxs = np.einsum('jk,ijk->ijk', 1/ps, self.paxs)

91. self.paxf = np.einsum('jk,ijk->ijk', 1/pf, self.paxf)

92.

93. # Compute entropy

94. hs = np.sum(-self.paxs * np.log(self.paxs + 1e-10),0)

95. hf = np.sum(-self.paxf * np.log(self.paxf + 1e-10),0)

28

96.

97. # Compute expected entropy

98. h = hs*ps + hf*pf

99. h = h.flatten('F')

100.

101. # Find stimulus with smallest expected entropy

102. idx=np.argmin(h)

103.

104. frame_f = np.expand_dims(self.theta_frame,axis=1)

105. frame_f = np.tile(frame_f,(1,self.nrods))

106. frame_f = frame_f.flatten('F')

107. rod_f = np.expand_dims(self.theta_rod,axis=0)

108. rod_f = np.tile(rod_f,(self.nframes,1))

109. rod_f = rod_f.flatten('F')

110.

111. # Find stimulus that minimizes expected entropy

112. self.stim = ([frame_f[idx],rod_f[idx]])

113. self.stim1_index = np.argmin(np.abs(self.theta_frame - self.stim[0]))

114. self.stim2_index = np.argmin(np.abs(self.theta_rod - self.stim[1]))

115.

116. def addData(self,response):

117. self.stim=None

118.

119. # Update prior based on response

120. if response == 1:

121. self.prior = self.paxs[:,self.stim1_index,self.stim2_index]

122. elif response == 0:

123. self.prior = self.paxf[:,self.stim1_index,self.stim2_index]

124. else:

125. self.prior = self.prior

126.

127. self.theta=np.array([self.kappa_ver_g2.flatten('F'),self.kappa_hor_g2.flatten('F'),self.tau

_g2.flatten('F'),self.kappa_oto_g2.flatten('F')])

128. self.params=np.matmul(self.theta,self.prior)

129.

130. self.calcNextStim()

131.

29

132. return self.params

133.

134. def makeG2(self):

135. nkappa_ver=len(self.kappa_ver)

136. nkappa_hor=len(self.kappa_hor)

137. nkappa_oto=len(self.kappa_oto)

138. ntau=len(self.tau)

139.

140. kappa_ver_g2 = np.expand_dims(self.kappa_ver,axis=1)

141. kappa_ver_g2 = np.expand_dims(kappa_ver_g2,axis=2)

142. kappa_ver_g2 = np.expand_dims(kappa_ver_g2,axis=3)

143. self.kappa_ver_g2 = np.tile(kappa_ver_g2,(1,nkappa_hor,ntau,nkappa_oto))

144.

145. kappa_hor_g2 = np.expand_dims(self.kappa_hor,axis=0)

146. kappa_hor_g2 = np.expand_dims(kappa_hor_g2,axis=2)

147. kappa_hor_g2 = np.expand_dims(kappa_hor_g2,axis=3)

148. self.kappa_hor_g2 = np.tile(kappa_hor_g2,(nkappa_ver,1,ntau,nkappa_oto))

149.

150. tau_g2 = np.expand_dims(self.tau,axis=0)

151. tau_g2 = np.expand_dims(tau_g2,axis=1)

152. tau_g2 = np.expand_dims(tau_g2,axis=3)

153. self.tau_g2 = np.tile(tau_g2,(nkappa_ver,nkappa_hor,1,nkappa_oto))

154.

155. kappa_oto_g2 = np.expand_dims(self.kappa_oto,axis=0)

156. kappa_oto_g2 = np.expand_dims(kappa_oto_g2,axis=1)

157. kappa_oto_g2 = np.expand_dims(kappa_oto_g2,axis=2)

158. self.kappa_oto_g2 = np.tile(kappa_oto_g2,(nkappa_ver,nkappa_hor,ntau,1))

B: Generative Agent

1. import numpy as np

2. from scipy.stats import vonmises

3. from random import random

4.

5.

6. class GenerativeAgent:

30

7. def __init__(self, kappa_ver, kappa_hor, tau, kappa_oto, theta_frame, theta_rod):

8. self.kappa_ver=kappa_ver

9. self.kappa_hor=kappa_hor

10. self.tau=tau

11. self.kappa_oto=kappa_oto

12. self.theta_frame=theta_frame

13. self.theta_rod=theta_rod

14.

15. self.makeProbTable()

16.

17.

18. def makeProbTable(self):

19. nFrames = np.size(self.theta_frame,0)

20. nRods = np.size(self.theta_rod,0)

21. cdf=np.zeros((nFrames,nRods))

22.

23. #compute kappas

24. kappa1 = self.kappa_ver-(1-np.cos(np.abs(2*self.theta_frame)))*self.tau*(self.kappa_ver-

self.kappa_hor)

25. kappa2 = self.kappa_hor+(1-np.cos(np.abs(2*self.theta_frame)))*(1-self.tau)*(self.kappa_ver-

self.kappa_hor)

26.

27. #for every frame orientation, compute:

28. for i in range(0,np.size(self.theta_frame,0)):

29.

30. # the context provided by the frame

31. P_frame1 = vonmises.pdf(self.theta_rod-self.theta_frame[i],kappa1[i])

32. P_frame2 = vonmises.pdf(self.theta_rod-np.pi/2-self.theta_frame[i],kappa2[i])

33. P_frame3 = vonmises.pdf(self.theta_rod-np.pi-self.theta_frame[i],kappa1[i])

34. P_frame4 = vonmises.pdf(self.theta_rod-3*np.pi/2-self.theta_frame[i],kappa2[i])

35.

36. P_frame = (P_frame1+P_frame2+P_frame3+P_frame4)/4

37.

38. # the otoliths

39. P_oto = vonmises.pdf(self.theta_rod,self.kappa_oto)

40.

41. # cumulatitve response distribution per frame

31

42. cdf[i,:]=np.cumsum(np.multiply(P_oto, P_frame))/np.sum(np.multiply(P_oto, P_frame))

43.

44. #save cdf as lookup table

45. self.prob_table=cdf

46.

47. #Determine the response of agent on particular frame and rod combination

48. def getResponse(self,stim_frame,stim_rod):

49.

50. #Find index of stimulus

51. idx_frame=np.where(self.theta_frame==stim_frame)[0]

52. idx_rod=np.where(self.theta_rod==stim_rod)[0]

53.

54. #lookup probability of responding 1

55. PCW=self.prob_table[idx_frame, idx_rod][0]

56.

57. #Determine response

58. if random()<=PCW:

59. return 1

60. else:

61. return 0

C: Rod-and-Frame task experiment

1. # Anouk de Brouwer & Bart Alberts, March 2015. Adapted by Anneloes Ernest, June 2018.

2. # Sensorimotorlab, Nijmegen

3. # Rod-and-frame experiment

4.

5. import numpy, os

6. from psychopy import visual, core, data, event, gui, sys

7. from rusocsci import buttonbox

8.

9. from PSIRiF import PSIfor

10.

11. boolButtonBox = False

12.

13. cwd = os.getcwd()

14.

32

15. if boolButtonBox:

16. bb = buttonbox.Buttonbox(port='COM2')

17.

18. def waitResponse():

19. global response

20. key = ['']

21. while key[0] not in ['z', 'm','escape']:

22. key = event.waitKeys()

23. if key[0] == 'z':

24. response = 0

25. elif key[0] == 'm':

26. response = 1

27. elif key[0] == 'escape':

28. exit()

29.

30. # transforms sigma values into kappa values

31. def sig2kap(sig): #in degrees

32. sig2=numpy.square(sig)

33. return 3.9945e3/(sig2+0.0226e3)

34.

35.

36. # experiment info

37. print('Possible conditions: practice, frame \nPossible locations: v(isionLab), a(noukTest)')

38. #expInfo = {'dayofbirth':'','expDate':data.getDateStr(),'subjectNr':'','nRepetitions':''}

39. expInfo = {'Subject Code':'','Year of Birth':''}

40.

41. expInfoDlg = gui.DlgFromDict(dictionary=expInfo, title='Experiment details', fixed='expDate')

42. for key in expInfo.keys():

43. assert not expInfo[key]=='', "Forgot to enter %s!"% key

44.

45.

46. # setup info

47. setupInfo = {'monitorResolution':[1920,1080],'monitorFrameRate':60,'monitorSize_cm':[122,67.5],'vi

ewDistance_cm':57,'screenNr':1}

48. fileDir = cwd

49. fileName = 'RIF_{!s}_{!s}.txt'.format(expInfo['Year of Birth'],expInfo['Subject Code'])

50.

33

51. # open a textfile and write the experiment and setup details to it

52. dataFile = open('{}'.format(fileName),'w')

53. dataFile.write('Rod-and-

frame experiment by Anneloes Ernest and Luc Selen, Sensorimotorlab Nijmegen \n')

54. dataFile.write('Rod-and-frame task: a rod-and-

frame stimulus is presented, and the participant has to indicate whether the rod is tilted counter

clockwise (left arrow key, response=-

1) or clockwise (right arrow key, response=1) with respect to the gravitational vertical.\n\n')

55.

56. for key,value in expInfo.iteritems():

57. dataFile.write('{} = {};\n'.format(key,value))

58.

59. for key,value in setupInfo.iteritems():

60. dataFile.write('{} = {};\n'.format(key,value))

61.

62. dataFile.write('\n') # new line

63. dataFile.write('frameOri rodOri response reactionTime \n')

64. dataFile.close()

65.

66. # create the window to draw in

67. resolution = setupInfo['monitorResolution']

68.

69. #win = visual.Window(monitor="Philips", fullscr=True, units="cm", winType='pyglet', screen=1, colo

r = 'black')

70. win=visual.Window(monitor="testMonitor", fullscr=True, units="cm", winType='pyglet', screen=0, col

or = 'black')

71.

72. # stimulus colors

73. frameColor = (-.8,-.8,-.8)

74. rodColor = (-.8,-.8,-.8)

75.

76. #frameColor = (0.0,0.0,0.0)

77. #rodColor = (0.0,0.0,0.0)

78.

79.

80. frame_size = 15

81. line_length = 6

34

82.

83. # create a rod-and-frame stimulus

84. frame = visual.Rect(win,width=frame_size,height=frame_size,lineColor=frameColor,lineColorSpace='rg

b',lineWidth=1,units = 'cm')

85. rod = visual.Line(win,start=(0, -

line_length),end=(0,line_length),lineColor=rodColor,lineColorSpace='rgb',lineWidth=1,units = 'cm')

86.

87. vert_center = -2

88. horz_center = +15.0

89.

90.

91. frame.pos = (horz_center, vert_center)

92. rod.pos = (horz_center, vert_center)

93.

94. # stimulus orientations

95. # frameOri = range(-45,45,5)

96. frameOri = numpy.linspace(-45,45,11)

97. rodOri = numpy.linspace(-10,10,30)

98.

99.

100. # wait for a key press to start the experiment

101.

102. startText1 = visual.TextStim(win,text='Press the left arrow if you believe that\n the line is tilt

ed counterclockwise.\nPress the right arrow if you believe the that\n the line is tilted clockwise

.',pos=(horz_center,vert_center+2),alignHoriz='center',color=rodColor,wrapWidth=25, height =1)

103. startText2 = visual.TextStim(win,text='Ready?\n Press a button to start.',alignHoriz ='center',pos

=(horz_center,vert_center-5),color=rodColor, height = 1)

104.

105.

106. startText1.draw()

107. startText2.draw()

108. win.flip()

109.

110.

111. if boolButtonBox:

112. b = bb.waitButtons()

35

113. else:

114. event.waitKeys(maxWait=60)

115. core.wait(1.0)

116.

117. # experiment: present stimulus and wait for keyboard response

118. n = 0

119. t0=core.getTime

120.

121. #init parameter ranges

122. #lookup9

123. kappa_oto = numpy.linspace(sig2kap(1.4),sig2kap(3.0),10)

124. kappa_ver = numpy.linspace(sig2kap(2.5),sig2kap(7.5),15)

125. kappa_hor = numpy.linspace(sig2kap(22),sig2kap(80),15)

126. tau = numpy.linspace(0.6,1.0,10);

127.

128. #init algorithm

129. psi=PSIfor(kappa_ver,kappa_hor,tau,kappa_oto,frameOri,rodOri)

130.

131. for trial in range(0,500):

132. while psi.stim == None:

133. pass

134.

135. # set rod and frame orientations

136. stim_frame=psi.stim[0]

137. stim_rod=psi.stim[1]

138.

139. frame.setOri(stim_frame)

140. rod.setOri(stim_rod)

141.

142. # draw and flip only the frame

143. frame.draw()

144. win.flip()

145. core.wait(.25) # time that the frame is visible

146.

147. # add the rod for 1 frame

148. frame.draw()

149. rod.draw()

36

150. win.flip()

151. # add the rod for a 2nd frame

152. frame.draw()

153. rod.draw()

154. win.flip()

155.

156. # draw and flip only the frame

157. frame.draw()

158.

159. win.flip()

160. timer1 = core.getTime()

161.

162. # wait for a key press and then remove the frame

163. if boolButtonBox:

164. b = bb.waitButtons()

165. key = b[0]

166. else:

167. waitResponse()

168.

169. #roughRT = keypress[0][1] - timer1

170. if 'escape' in event.getKeys():

171. exit()

172. else:

173. # get response from buttonbox

174. if boolButtonBox:

175. if 'A' == key:

176. response = 0

177. elif 'B' == key:

178. response = 1

179. else:

180. response = 99

181. roughRT = core.getTime()-timer1

182. #write data to text file

183. with open('{}'.format(fileName),'a') as dataFile:

184. dataFile.write('{:1.1f} {:1.1f} {:1.1f} {:1.2f}\n'.format(stim_frame,stim_rod,response

,roughRT))

185. win.flip()

37

186. #update priors

187. params = psi.addData(response)

188. print trial, stim_frame, stim_rod, response

189. psi.print_expected_value()

190. core.wait(0.2) # intertrial interval, black screen

191.

192.

193. ExpDur = core.getTime()-t0

194. event.waitKeys(maxWait=60)

195. # close

196. win.close()

197. core.quit()

