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Abstract: The default mode network (DMN) is one of the resting state networks (RSNs) in the 

brain that have been identified by investigating temporal correlations of spontaneous activity 

fluctuations in resting state fMRI (rsfMRI). The DMN is crucial for efficient cognitive 

functioning, although evidently decreasing in activity during many cognitive tasks. Even 

though the DMN is typically identified by independent component analysis (ICA), other 

methods have been used to extract and analyze the network as well and their relation to ICA 

has been explored. However, no comparison of  ICA and eigenvector centrality mapping, 

another data-driven, but graph-theory based method has been reported yet. Here, we used 100 

rsfMRI data sets to show that the medial visual network, rather than the DMN, was the most 

central network during rest and that its eigenvector centrality correlated negatively with the 

centrality of the DMN. Accordingly, the most central areas during rest did not conform with 

the DMN extracted by ICA. Our results suggest that the visual RSNs play a more versatile and 

not strictly modular function during rest and that the investigation of their individual variations 

is more important than previously believed. 
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Introduction 

Neuroscientific literature on the default mode network (DMN) has evolved and expanded 

considerably within the past 20 years (Raichle et al., 2001; Raichle, 2015). The DMN is 

comprised of the ventral and dorsal medial prefrontal cortex (v/d MPFC), precuneus/posterior 

cingulate cortex (PCC), retrosplenial cortex, inferior parietal lobe, and lateral temporal cortex 

– areas, which were shown to decrease activation in response to goal-directed tasks (Shulman 

et al., 1997) and which were therefore assumed to correspond to a baseline of neural activity in 

the brain (Raichle et al., 2001). The DMN particularly appears to contribute to internally 

focused processes such as theory of mind, self-referential thought, and autobiographical 

memory (see Buckner, Andrews-Hanna, & Schacter, 2008 for a review), while aberrances of 

its intra- and inter-network connectivity are associated with e.g. depression (Greicius et al., 

2007), autism spectrum disorder (Kennedy, Redcay, & Courchesne, 2006), disorders of 

consciousness (Soddu et al., 2012), attention deficit hyperactivity disorder (ADHD) (Tian et 

al., 2006), and Alzheimer’s disease (AD) (Filippini et al., 2009; Binnewijzend et al., 2012; 

Hafkemeijer, Grond, & Rombouts, 2012; Broyd et al., 2009; Andrews-Hanna, Smallwood, & 

Spreng, 2014). Recent studies have further focused on potential roles of the network’s 

subcomponents (e.g. Andrews-Hanna et al., 2010; Kernbach et al., 2018) and more defined 

activation patterns of its most important hubs, like the PCC (Leech, Kamouriek, Beckmann, & 

Sharp, 2011).  

The DMN, along with other resting state networks (RSNs), is typically identified by the 

investigation of temporal correlations of activity fluctuations in resting state fMRI (i.e. resting 

state functional connectivity) and the ensuing extraction of coherent connectivity patterns with 

e.g. seed based connectivity analysis (SCA) (Biswal et al., 1995; Fox et al., 2005) or 

independent component analysis (ICA) (Comon, 1994; McKeown et al., 1998; Pruim et al., 

2015). In SCA, the functional relationship between a region of interest (ROI) and the remaining 

brain is defined by correlating its timeseries to the timeseries of every other voxel. In contrast, 
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ICA is a multivariate and explorative approach, in which the data is decomposed into a number 

of statistically independent components by maximizing the negative entropy and thereby 

optimizing non-Gaussianity in the data (Hyvärinen & Oja, 1997; Beckmann & Smith, 2004; 

Beckmann, DeLuca, Devlin, & Smith, 2005). Recently, ICA has gained significant importance 

in network modelling (e.g. Zuo et al., 2010; van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 

2009; Damoiseaux et al., 2006; see Beckmann, 2012 for an overview), as it is able to identify 

coherent connectivity patterns without an a priori hypothesis about their spatial or temporal 

layout.  

Along with the prominent application of ICA for functional connectivity analyses, its 

relation to other methods has been explored. For example, several studies compared the 

sensitivity of ICA and SCA with regard to age related changes in DMN connectivity (Koch et 

al., 2010; Bluhm et al., 2008). Results showed that reductions of co-activation magnitude in the 

DMN could only be detected with ICA. Also, evidence suggests that ICA has lower diagnostical 

power compared to volume of interest analysis regarding the classification of AD patients and 

healthy controls (Koch et al., 2012). Nevertheless, overall, ICA, SCA, and regional 

homogeneity analysis have been shown to derive a concordant spatial map of the DMN and 

task-positive network in healthy participants (see e.g. Long et al., 2008 for a direct comparison). 

Therefore, advantages and disadvantages of the respective methods have been further discussed 

(Cole, Smith, & Beckmann, 2010; Li et al., 2009). It has been emphasized that SCA is 

particularly sensitive to confounds like structural noise and RSNs that are not of interest, and 

that its interpretation is restricted to and biased by the selected ROIs. In contrast, ICA appears 

to account better for noise and avoids prior assumptions of ROIs. Yet, the iterative nature of 

the decomposition leads to variability across runs (e.g. multiple runs of ICA on the same 

dataset) and there is no ideal model order selection possible based on neurophysiology. 

Consequently, the number of extracted components is somewhat arbitrary and their 
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interpretation and classification can be difficult, specifically in high order decompositions (Cole 

et al., 2010; Li et al., 2009). 

A method that addresses the challenges of both SCA and ICA is eigenvector centrality 

mapping (ECM). ECM is completely data-driven and operates without any a priori defined 

parameters, such as specifying the dimensionality in ICA, or ROIs in SCA. Beyond that, ECM 

considers the interregional connectivity of the entire brain, rather than parcellating the brain 

into distinct networks, or only considering specific ROIs. ECM is a graph-theory based method 

(Lohmann et al., 2010; Bonacich, 1972) which has recently been introduced and applied to 

fMRI data in the context of AD and its biomarkers (Binnewijzend et al., 2014; Skouras et al., 

2019; Skouras et al., 2020), DMN connectivity (Taruffi, Pehrs, Skouras, & Koelsch, 2017), 

attentive object tracking (Alnæs et al., 2015), emotional network modeling (Koelsch & Skouras, 

2014), and others (Hadriche, Jmail, Blanc, & Pezard, 2019; Hove et al., 2015; Markett et al., 

2015; Wink et al., 2012). The method derives a 3D spatial map of the most influential areas in 

the brain by identifying voxels that are most connected to other voxels that are themselves 

highly central. The eigenvector centrality of a voxel is thus not only determined by the degree 

of the voxel (meaning the number of voxels each voxel is connected to), but also by the 

importance of each respective connection, thereby considering the entire network hierarchy. 

Theoretically, this is achieved by 1) determining a correlation matrix of the time series of all 

possible voxel pairs, 2) defining each voxels’ first order centrality measure by the sum of the 

correlation coefficients of all its connections (i.e. degree centrality), 3) iteratively updating the 

centrality measure of each voxel with the sum of all its connections, but weighted by each 

connections’ centrality measure from the previous iteration. Eventually, with a proportionality 

factor of 1/𝜆, where 𝜆 is the largest eigenvalue of the similarity matrix, this process would 

converge to an eigenvector of the biggest eigenvalue of that matrix. The i-th entry of the 

eigenvector then describes the eigenvector centrality of the i-th voxel. In ECM, the respective 

eigenvector is determined by the power iteration method (Golub & Loan, 1996; see Lohmann 
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et al., 2010 for further mathematical details about ECM). Like other centrality measures, 

eigenvector centrality has been evidenced to be valuable in identifying networks and their most 

influential nodes in a parsimonious manner (Joyce, Laurienti, Burdette, & Hayasaka, 2010; Zuo 

et al., 2012; Bullmore & Sporns, 2009). Thus, similar to ICA, ECM is a state-of-the-art voxel-

wise and data driven connectivity analysis method. Yet, to our knowledge, up to date no 

systematic comparison has been reported between the two. 

In the present study, we investigate how ICA and ECM relate to and complement each 

other when it comes to the interpretation of functional connectivity during resting state, with 

particular focus on the DMN. We explore whether the most central regions during rest, as 

indicated by their eigenvector centrality (EC), overlap with the regions that are to date 

considered to constitute the DMN. In other words, we ask the question: To what extent are the 

core areas of the temporally most coherent task-negative network also the most influential areas 

during resting state? To answer this question, we use 100 independent resting state fMRI 

(rsfMRI) datasets from the ‘Human Connectome Project 1200 Subject release’ (van Essen et 

al., 2013) and we compare the DMN, derived by probabilistic ICA, to the most influential areas 

during rest, derived by ECM. Importantly, different results are premised on the computational 

bases for the two methods1. Yet, with this study, we want to specifically establish the 

differences in the main clusters and show how both methods can complement each other with 

regard to the interpretation of functional connectivity during rest. Previous studies investigating 

the brain’s network structure with a variety of methods have consistently reported the 

precuneus/PCC, MPFC, inferior parietal lobe, and lateral temporal cortex as intrinsic 

connectivity hubs during rest (e.g. Yeo et al. (2011) and Lee et al. (2012) using clustering 

algorithms; Tomasi and Volkow (2011a), Power et al. (2011), and Sporns (2013) using graph-

 
1Probabilistic ICA (PICA) assumes that the data, a p x n matrix with p = time points and n = voxels, is composed of multiple 
independent spatial components and their timeseries plus noise. To decompose that data, an unmixing matrix is approximated 
and optimized in a way that derives maximally independent components (Hyvärinen & Oja, 1997; Beckmann & Smith, 2004). 
In contrast, ECM (Lohmann et al., 2010) operates by approximating the principal eigenvector of the data’s similarity matrix. 
This is similar to principal component analysis, which approximates orthogonal components. Thus, while ICA is based on 
statistical independence, ECM is based on orthogonality (McKeown et al., 1998). 
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theory; Smith et al. (2009) using ICA on task- and resting state fMRI; Long et al. (2008) using 

SCA, ICA and ReHo; Andrews-Hanna et al. (2010) using correlation- and cluster based 

analysis). Therefore, we expected to find high EC in those areas as well. Secondly, we expected 

that areas comprising the DMN, rather than other RSNs, would show the highest EC during 

rest. 

Methods 

Dataset 

In this study, rsfMRI data of the WU-Minn Human Connectome Project (HCP) 1200 

Subject release was used (https://www.humanconnectome.org; van Essen et al., 2013). 

Specifically, 100 unrelated, healthy subjects (Mage = 29.41, SDage = 3.56, 54 females and 46 

males) were assessed to provide independent measures and evade controlling for the HCP 

family structure. Under the HCP protocol, all subjects gave written consent and data acquisition 

was approved by the institutional review board of Washington University, St. Louis. 

Image acquisition 

Acquisition methods of anatomical and functional images are described in detail 

elsewhere (van Essen et al., 2012; van Essen et al., 2013; Glasser et al., 2013). T1 weighted 

anatomical, as well as functional MR images were acquired on a customized Siemens 3T 

Connectome Skyra scanner using a 32-channel head coil. A 3D MPRAGE T1-weighted 

sequence (TR = 2400ms, TE = 2.14ms, TI = 1000ms, FA = 8°, field of view (FOV) = 

224x224mm, bandwidth = 210Hz/Px) was used to acquire structural images with a 0.7mm 

isotropic resolution. Multiband multislice gradient-echo echo planar imaging (GE-EPI; Moeller 

et al., 2010; Xu et al., 2012) was used for blood oxygen dependent (BOLD) contrast based 

functional acquisitions (TR = 720ms, TE = 33.1ms, FA = 52°, slice thickness = 2mm, 72 slices, 

2mm isotropic resolution, multiband factor = 8, time points = 1200, bandwidth = 2290Hz/Px) 

and phase encoding was applied in left-right/right-left (L-R/R-L) direction using an asymmetric 

acquisition matrix (104x90) with a 208x180mm FOV. A total of one hour resting state 
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acquisition was split into two imaging sessions, with two 15-minute runs each. In every session, 

one run was acquired with L-R phase encoding, one with R-L, the order of which was 

counterbalanced. During resting state data acquisition, participants kept their eyes open, relaxed 

and fixated on a bright fixation cross superimposed over a dark background. They were 

instructed to stay awake, look at the fixation cross, and think of nothing in particular.  

Preprocessing 

Images in volumetric space had been preprocessed by the HCP minimal preprocessing 

and ICA-FIX pipeline (for full details see Glasser et al., 2013 and Smith et al., 2013). Briefly, 

these pipelines were built using tools of the FMRIB Software Library (FSL; Jenkinson et al., 

2012), FreeSurfer (Fischl, 2012), and Connectome Workbench (Marcus et al., 2013). The 

functional data of every participant underwent correction for gradient distortion, subject 

motion, as well as EPI distortion, registration to the subject’s high-resolution T1-weighted 

structural image and MNI-152 standard space. All correction and registration transforms were 

combined into one nonlinear transformation for a single spline interpolation. All images were 

brain masked and their 4D whole brain mean intensity was normalized to 10,000. Temporal 

preprocessing included a high pass filter (2000s cut-off) and every 15-minute run was denoised 

using the FIX method (FMRIB’s ICA-based X-noisifier; Smith et al., 2013). Additionally, all 

images were smoothed by a Gaussian kernel of 6mm full width at half maximum (FWHM) and 

resampled to 3mm isotropic resolution.  

Independent component analysis 

Spatial group-ICA was carried out on the concatenated timeseries data of 100 subjects 

(four runs each) by means of PICA (Beckmann & Smith, 2004), which is implemented in FSL’s 

MELODIC (Multivariate Exploratory Linear Optimized Decomposition, version 3.15; 

www.fmrib.ox.ac.uk/fsl). Inherent preprocessing included masking of non-brain voxels, 

temporal demeaning, variance normalization, and data reduction using principal component 

analysis. The dimensionality was set to 20 (d = 20), based on previous literature indicating that 
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20-25 components reliably show the most anatomically relevant RSNs (e.g. Smith et al., 2009; 

Damoiseaux et al., 2006; Laird et al., 2011). Raw IC maps were transformed to Z-maps based 

on the estimated voxel-wise standard deviation of the noise. Finally, spatial maps were 

thresholded with alternative hypothesis testing by fitting a Gaussian/gamma mixture model to 

the voxel intensity distribution of the spatial maps with a threshold of P > 0.5 (Beckmann et al., 

2005; Hartvig & Jensen, 2000). Given the loss function associated with the estimation process, 

this threshold assigns equal concern to false-positives and false-negatives (Hartvig & Jensen, 

2000). Voxels surviving this thresholding had a modelled relative probability of being ‘active’ 

that was higher than their probability of being ‘noise’. Spatial cross correlation (P < .005, 

corrected for multiple pairings) of all components against previously defined RSNs (Smith et 

al., 2009) was used to define nine RSNs of interest, including the default mode, medial visual, 

lateral visual, auditory, left and right frontoparietal, sensory motor, occipital pole, and executive 

control network. 

Eigenvector centrality mapping 

 ECM as described in Lohmann et al. (2010) was applied to all subjects’ preprocessed 

whole-brain data using LIPSIA v3.1.0 (released May 13, 2019; Lohmann et al., 2001). 

Eigenvector centrality measures were derived by approximating the principal eigenvector of 

the temporal correlation matrix of every dataset, using the power iteration method (Golub & 

Loan, 1996). The EC of each voxel then corresponded to the weighted sum of ECs of that 

voxel’s direct neighbors, scaled by a proportionality factor of 1/λ. To maximize interpretability 

and comparability with our previous ECM studies (Koelsch & Skouras, 2014; Taruffi et al., 

2017; Koelsch, Skouras, & Lohmann, 2016; Skouras et al., 2019; Skouras et al., 2020), EC 

values were based on positive correlations, meaning that negative correlations in the correlation 

matrix (also known as beta-centrality) were set to zero (see Skouras et al., 2019 for a detailed 

justification). This analysis resulted in four EC maps per subject, one map for every dataset 

(coming from two acquisition sessions with two runs in each session).  
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Statistical Inference 

 To ensure that centrality measures were comparable across runs and subjects, every EC 

map was standardized to an ECz-map, with ECzi = (ECi - μ)/σ, 1 ≤ i ≤ N, where μ and σ are 

mean and standard deviation of the EC across all N voxels in the brain (Zuo et al., 2012; 

Buckner et al., 2009). The respective four ECz-maps were averaged per subject, resulting in 

100 standardized EC maps. To identify voxels with significant EC in the brain, a nonparametric 

one-sample t-test was performed on the 100 ECz-maps using FSL randomise (1,000,000 

permutations). Multiple comparisons were FWE corrected using TFCE (threshold free cluster 

enhancement; Smith & Nichols, 2009) and thresholded at Pcorrected < .000005. To investigate 

and compare EC values across RSNs, every subject’s weighted average ECz was computed for 

each relevant component (i.e. default mode, medial visual, lateral visual, auditory, left and right 

frontoparietal, sensory motor, occipital pole, and salience/executive control network) using 

FSL (fslmeants routine). Then, the computed network-specific ECz’s were entered as the 

dependent variable in a repeated measures MANOVA with RSN as the within subjects factor2.  

Results 

Independent component analysis 

 Nine independent components corresponding to the most consistently reported RSNs 

(Beckmann et al., 2005; Smith et al., 2009; Laird et al., 2011; Cole et al., 2010) were identified 

by means of spatial cross-correlation to the 10 components reported by Smith et al. (2009) 

(mean r = .59 (0.31; 0.77), Pcorrected < .005). None of the components in the present study 

correlated significantly with the component comprising only the cerebellum (“RSN 5” from 

Smith et al., 2009). As there were no explicit hypotheses about the connectivity of that area, we 

did not further consider the cerebellum as an RSN. Accordingly, the following nine networks 

 
2A repeated measures ANOVA assumes sphericity, i.e. equal variance of the differences between within-subject pairs. In cases 
where that assumption is violated, a repeated measures MANOVA, which uses difference scores as dependent variable, has 
higher power than available corrections for a repeated measures ANOVA, if the sample size is relatively large (N ≥ K+30, 
where K = number of conditions) and epsilon is low (< .85) (O’Brien & Kaiser, 1985; Algina & Keselman, 1997). Both methods 
are implemented in SPSS (IBM Statistical Package for Social Sciences; version 25). Here, given the strong violation of 
sphericity (indicated by Huyn-Feldt epsilon = 0.334) and a large sample, a MANOVA was conducted.  
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were assessed from the data (reported in the order of variance explained by the respective 

component; see Figure 1): 

(1) Default mode: This component comprised the ventral precuneus, PCC, MPFC, superior 

frontal gyrus, and middle, superior temporal lobe. Furthermore, the angular gyrus, 

hippocampus, and parts of the cerebellum (including Crus I and Crus II) belonged to 

this component. 

(2) Medial Visual: The medial visual component comprised primary visual areas, including 

the intra calcarine cortex and superior occipital gyrus, the cuneus, and lingual gyrus. 

(3) Lateral Visual: This component mainly comprised extrastriate visual areas in the lateral 

occipital cortex, including the middle and inferior occipital gyrus.  

(4) Auditory: The auditory component comprised areas in the primary and secondary 

auditory cortices, among which the temporal pole, planum temporale and planum 

polare, Heschl’s gyrus, and anterior supramarginal gyrus. The anterior cingulate was 

also part of this network.  

(5) Frontoparietal left lateralized: This component spanned frontal and parietal areas, 

including the angular gyrus, inferior frontal gyrus, medial frontal lobe, and superior 

parietal lobe, as well as parts of the temporal gyrus. Its mirrored counterpart, component 

(6), which comprised the frontoparietal right lateralized network, covered homotopic 

areas in the right hemisphere. 

(7) Sensory Motor: Above threshold areas in this component were the pre- and postcentral 

gyrus, supplementary motor area, and anterior supramarginal gyrus. 

(8) Occipital Pole: This component comprised the occipital pole, i.e. primary visual areas. 

(9) Executive Control/Salience: Here, lateral and medial frontal areas (including middle 

frontal gyrus, superior frontal lobe), as well as the paracingulate gyrus, temporal pole, 

and anterior cingulate gyrus were covered. 

Eigenvector centrality mapping  
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The nonparametric one-sample t-test on the standardized EC maps showed that most 

voxels were significant (FWE corrected P < .000005). Further, due to the exceedingly high 

significance observed, combined with the unfeasible amount of permutations needed for a more 

precise significance estimate, the range of p-values was limited and the corrected p-values 

reached a ceiling value (corresponding to Z = 4.75). Therefore, the local maxima of the most 

central areas (mean ECz > 1.6) within all significant voxels were identified to enable a 

meaningful interpretation. These included primary and secondary visual areas in the intra- and 

supra-calcarine cortex (BA17), the medial occipital cortex, particularly the cuneus 

(BA18/BA19), as well as the superior lateral occipital lobe (BA19). Also, the supramarginal 

gyrus (BA40), the superior parietal lobe/posterior dorsal precuneus (BA7), and postcentral 

gyrus/parietal operculum (BA1, 2 & 3) were significant and highly central (Table 1, Figure 2).  

Comparison 

To investigate which RSN had the highest EC, a repeated measures MANOVA (using 

the multivariate approach following O’Brien & Kaiser, 1985) with average ECz as dependent 

variable and RSN (default mode/medial visual/lateral visual/auditory/left frontoparietal/right 

frontoparietal/sensory motor/occipital pole/executive control) as within subjects factor was 

conducted (N = 100). With a significant multivariate test (F(8,92) = 273.120, p = 1.28E-60), 

the univariate contrasts showed that the mean ECz of the DMN was significantly lower than 

the mean ECz of both the medial and lateral visual network (F(1,99) = 93.707, p = 5.45E-16, 

eta2 = . 486 and F(1,99) = 66.035, p = 1.29E-12, eta2 = .400, respectively). Also, the mean ECz 

of the auditory, sensory motor, and occipital pole network was significantly higher than the 

mean ECz of areas in the DMN (F(1,99) = 67.539,  p = 8.16E-13, eta2 = .406; F(1,99) = 34.315, 

p = 6.15E-8, eta2 = .257; F(1,99) = 18.437, p = 4.99E-5, eta2 = .157 respectively). The mean 

ECz in the executive control network was significantly lower than the mean ECz of the DMN 

(F(1,99) = 56.863, p = 2.28E-11, eta2 = .365). See Table 2 (and Table A1, Appendix) for 

pairwise comparisons and corrected p-values. To further explore the relation between the 
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centrality of the different networks, Pearson’s correlations between the average ECz of all nine 

RSNs were calculated (Table 3). In line with the results of the MANOVA, it appeared that EC 

in the medial and lateral visual network correlated negatively with EC in the DMN (r = -.466, 

pcorr = 8.10E-5 and r = -.537, pcorr = 6.61E-7; p-values are Bonferroni corrected for multiple 

comparisons) (Figure 3). In contrast, EC of the frontoparietal networks correlated positively 

with EC in the DMN (r = .373, pcorr = 0.011 and r = .438, pcorr = 4.05E-4).  

Discussion 

 In this study, we used probabilistic ICA and ECM to investigate whether the core areas 

of the DMN (the temporally most coherent task-negative network) are also the most influential 

brain areas during resting state. Our results show that the areas identified as most central do not 

coincide with the areas that constitute the DMN that is typically extracted by ICA. In fact, the 

medial and lateral occipital cortices, as well as the posterior dorsal precuneus, supramarginal 

gyrus (SMG), and postcentral gyrus were identified to have the highest EC during rest. 

Consistent with that, we showed that the medial and lateral visual network, rather than the 

DMN, were on average the most central RSNs and that their mean EC correlated negatively 

with the EC of the DMN.  

Independent component analysis 

 The networks identified by group-ICA matched results of existing studies using either 

ICA or other methods to investigate connectivity patterns during rest. The DMN was composed 

of the PCC, MPFC, lateral temporal cortex, angular gyrus, ventral precuneus (central precuneus 

in Margulies et al., 2009, or L/R5 and L/R6 as described in Luo et al., 2019), as well as the 

hippocampus and parts of the cerebellum, which is in concordance with our hypothesis and the 

typically reported DMN (Raichle et al., 2001; Buckner et al., 2008; Andrews-Hanna et al., 

2014). Among the other 19 independent components, eight RSNs were identified (medial 

visual, lateral visual, auditory, left and right frontoparietal, sensory motor, occipital pole, 

executive control/salience network) that corresponded to networks described in other studies as 
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well (e.g. Beckmann et al., 2005; Daimoiseaux et al., 2006; Smith et al., 2009; Laird et al., 

2011). The remaining components were classified to be either noise or components that spanned 

small subregions of sensory cortices and were not further analyzed.  

 While the DMN corresponded closely to earlier reports of existing RSNs, other 

components were less consistent with the literature. For example, in our results, the occipital 

pole is a separate RSN, which is not reported consistently (see e.g. Laird et al., 2011 and Smith 

et al., 2009 vs. Beckmann et al., 2005 and Yeo et al., 2011). Also, the current decomposition 

did not identify the cerebellum as one RSN, which is in line with a few (e.g. Beckmann et al., 

2005; Yeo et al., 2011; Daimoiseaux et al., 2006), but not all studies (e.g. Laird et al., 2011; 

Smith et al., 2009). The absence of one coherent RSN in the cerebellum might be due to the 

distinct connectivity patterns of its subregions (Ren, Guo, & Guo, 2019), but this should be 

further investigated in future works. Finally, although the ninth RSN reported here, the 

executive control/salience network, spatially correlated significantly with the executive control 

network reported in Smith et al. (2009), its pattern corresponds less clearly to known RSNs 

than the other networks identified in the current study. Usually, the executive control network 

is composed of dorsolateral and -medial prefrontal areas, as well as the frontal eye field 

(Beckmann et al., 2005; Smith et al., 2009), while the salience network is described to comprise 

the insular cortex, dorsal anterior cingulate cortex, temporal pole, and amygdala (e.g. Seeley et 

al., 2007; Menon, 2011). The ninth RSN found here comprised areas of both, the salience and 

executive control network, which makes its interpretation somewhat ambiguous. Areas similar 

to the ones comprised in RSN 9 are sometimes referred to as one “task-positive network”, 

associated with top-down attention modulation and working memory (e.g. Fox et al., 2005). 

However, the notion of only one task-positive network is debated (see e.g. Di & Biswal, 2014; 

Vincent et al., 2008; Smallwood, Brown, Baird, & Schooler, 2012) and RSN 9 does not entirely 

conform to that network. Thus, further investigation of the network would be needed to fully 

understand its interpretation and functional associations.  
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Eigenvector centrality mapping 

 The overall spatial layout of the ECM results differed considerably from the DMN 

identified by ICA. The highest EC was found in the precuneus, an area that is often referred to 

as centrality- and connectivity hub in the brain (e.g. van den Heuvel & Sporns, 2011; Hagmann 

et al., 2008; Tomasi & Volkow, 2011a; Bullmore & Sporns, 2009), and which is also frequently 

reported as part of the DMN, along with the neighboring PCC. However, it has been argued 

that the precuneus is in fact not part of the DMN (Buckner et al., 2008; Margulies et al., 2009) 

and recent studies exploring the functional parcellation of the area identified a more complex 

classification of the three (Margulies et al., 2009; Zhang & Li, 2012), or up to six (Luo et al., 

2019) subparts of the precuneus. Specifically, only the ventral precuneus (Zhang & Li, 2012; 

or L/R5, L/R6 in Luo et al., 2019; central precuneus in Margulies et al., 2009) is functionally 

connected to areas of the DMN and other association areas, and corresponds to the division that 

is mostly reported, and here identified, as part of the DMN. In contrast, the division of the 

precuneus with the highest EC corresponds to the dorsal (posterior) precuneus (Zhang & Li, 

2012; respectively L/R4 and L/R2 in Luo et al., 2019), which in turn shows functional 

connections to the adjacent visual network (Luo et al., 2019), negative connectivity to temporal 

gyri and parts of the cerebellum, and, when compared to the ventral precuneus, increased 

connections to occipital and parietal cortices (Zhang & Li, 2012). Thus, the most central part 

of the precuneus, as identified in our study, does not conform with the division of the precuneus 

associated with the DMN.  

 Another area that showed high EC during rest was the SMG of the inferior parietal lobe. 

This area has been evidenced as centrality hub before (e.g. Liu et al., 2012; Tomasi & Volkow, 

2011a; Tomasi & Volkow, 2011b) and generally appears to be involved in semantic processing 

(Chou et al., 2006), executive control of motor behavior (Kübler, Dixon, & Garavan, 2006), as 

well as somatosensory discrimination (Akatsuka et al., 2008). Beyond that, the SMG is 

sometimes referred to as part of the “temporo-parietal junction” (TPJ; a converging point of the 
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angular gyrus, SMG, and superior temporal gyrus), which in turn is related to bottom-up 

reorienting of attention, perception of the self, mind wandering, social cognition, and 

autobiographical memory retrieval (Igelström & Graziano, 2017). More specifically though, 

the SMG corresponds to the anterior subdivision of the TPJ (Igelström & Graziano, 2017) and 

is functionally connected to the anterior cingulate, anterior insular, inferior parietal lobe, and 

the thalamus (Zuo et al., 2012; Igelström & Graziano, 2017; Mars et al., 2011) – areas, which 

are referred to as attention control- (e.g. Zuo et al., 2012) or cingulo-opercular network (e.g. 

Sadaghiani & D’Esposito, 2014). In contrast, the angular gyrus or posterior subdivision of the 

TPJ (Igelström & Graziano, 2017) is functionally connected to areas of the DMN (Igelström & 

Graziano, 2017; Igelström, Webb, & Graziano, 2015; Mars et al., 2011; Zuo et al., 2012) and 

in turn did not appear as one of the most central areas in ECM.  

 The largest cluster with high EC was found in primary and secondary visual cortices 

(the cuneus, calcarine sulcus, and lateral occipital lobe), which was not expected based on the 

existing DMN literature. Still, high centrality in visual areas during rest has been reported 

before, albeit mostly incidentally and therefore not thoroughly discussed. For example, Tomasi 

and Volkow (2011a) identified the primary visual cortex along with the precuneus as global 

functional connectivity density hub, and the cuneus has been reported as cortical connectivity 

hub as well (Tomasi & Volkow, 2011b). A study comparing different centrality measures 

further showed that EC during rest was the highest in lateral and medial visual areas, the parieto-

occipital sulcus, and around the TPJ (Zuo et al., 2012). Also, EC, when compared to degree 

centrality (DC), was higher in the medial visual cortex, while DC was higher in the PCC (Zuo 

et al., 2012). Finally, Cole and colleagues reported the visual regions among the globally most 

connected ones, and the cuneus and precuneus were mentioned as structural core regions in the 

brain (Cole, Pathak, & Schneider, 2010; Hagmann et al., 2008). Importantly, the 

aforementioned studies include both, “eyes open” and “eyes closed” rsfMRI acquisitions, 

which rules out the possibility that findings of high centrality in the visual cortex are simply 
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due to incoming visual information during “eyes open” data acquisition. Beyond research 

demonstrating high global centrality of occipital areas, studies have evidenced that the primary 

visual cortex shows significant fluctuations during rest, which were associated with activity in 

a network comprised of the middle occipital gyrus, cuneus, lingual gyrus, precuneus, pre- and 

postcentral gyrus (Wang et al., 2008; Nir et al., 2006), as well as parts of the temporal lobe 

(Wang et al., 2008). These task-free activation patterns, which widely overlap with the 

centrality hubs found in the current study, were associated with memory-related mental imagery 

and replaying information for visual memory consolidation (Wang et al., 2008). Lastly, a study 

showed that alcohol induction in healthy participants induced increases in functional 

connectivity and rsfMRI signal fluctuations in the visual network, and no other RSN (Esposito 

et al., 2010). This not only confirms the importance of the visual network during rest, but also 

suggests that it serves a more versatile and not strictly modular function. 

Network centrality correlations  

Reconfirming and broadening the aforementioned findings, we for the first time 

compared the EC of different RSNs and showed that the medial and lateral visual network were 

on average significantly more central than the DMN. More specifically, the weighted average 

of the EC in areas defined by every RSN’s thresholded spatial ICA map indicated that the 

medial visual network was the most central network (and significantly more central than all 

other RSNs), while the DMN was significantly less central than all visual networks, the auditory 

network, and the sensory motor network. Furthermore, the average EC of the DMN was 

negatively correlated to the EC in the medial and lateral visual, sensory motor, and auditory 

network, while it correlated positively with the left and right frontoparietal network. At first 

glance, the positive correlation between the DMN and the frontoparietal networks might seem 

counterintuitive, as correlations between task-positive networks and the DMN are usually 

reported to be negative (e.g. Fox et al., 2005; see Anticevic et al., 2012 for a review). However, 

the relation between the DMN and the frontoparietal network (FPN) in particular has been 
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demonstrated to be more complex, by studies showing their positive functional coupling 

(Spreng et al., 2010) and their cooperation to manage external and internal trains of thoughts 

(Smallwood et al., 2012). Importantly, functional coupling, i.e. the temporal internetwork 

correlation, is not equivalent to the correlation between centralities of different networks shown 

here. While the former directly reflects joint fluctuations of BOLD activity at a particular point 

in time, the latter indicates how the average centralities across time relate to each other. Thus, 

although our results might support the assumption of cooperation between DMN and FPN 

during rest by showing that high centrality of the former is generally accompanied by high 

centrality of the latter, future work is needed to confirm this. Specifically, dynamic EC 

correlations between the different RSNs should be investigated to understand how their 

importance behaves and relates to each other at specific points in time.  

The negative correlation between the DMN and medial and lateral visual network (VN) 

shows that their centrality during rest was reversed – overall low centrality in the DMN was 

accompanied by high centrality in the VNs, and vice versa. Negative correlations between the 

primary visual cortex and the DMN during rest have been shown before (Scheeringa et al., 

2012) and there is more evidence for functional coupling of primary visual areas and the DMN 

in association to visual mental imagery (Zhang et al., 2018). Also, both the DMN and VNs have 

been shown to be at the highest level of the hierarchical modular organization of the brain 

during rest (Meunier et al., 2009). Together with our finding that the medial VN is the most 

central, this evidence might suggest that the negative centrality correlation points to an interplay 

between the DMN and VN, in which the latter plays a dominant role. We further propose a 

functional interpretation of the appearing predominance of the VNs, in which the VNs are 

involved in the monitoring of incoming stimuli and internal processing during rest. Relevant 

evidence for this interpretation comes from (i) research showing VN aberrancies in clinical 

conditions associated with increased levels of trait impulsivity (“the tendency to act quickly 

without considering the broader […] consequences of one’s actions”, Davis et al., 2012), (ii) 
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research suggesting that trait impulsivity is related to anomalies in VN activity and 

connectivity, and (iii) the existing notion that neural alpha oscillations (8-12 Hz) in the occipital 

cortex facilitate internal processing by gating incoming stimuli during rest. The three aspects 

are elaborated in the following. 

Firstly, AD, ASD, bipolar disorder, schizophrenia, and ADHD have been associated 

with deviant connectivity of the VNs during rest. For example, decreased functional 

connectivity (Lehmann et al., 2015; Binnewijzend et al., 2012; Sanz-Arigita et al., 2010), 

regional homogeneity (ReHo) (Cui et al., 2016), and EC (Binnewijzend et al., 2014; Adriaanse 

et al., 2016) of the lateral and medial VN have been found in AD and bipolar disorder. Reduced 

nodal efficiency and increased ReHo in the medial occipital cortex during rest have been 

associated to ADHD (Wang et al., 2009; Cao et al., 2006) and medial VN connectivity, as well 

as connections of the VN to the DMN were found to be essential for the diagnostic classification 

and symptom severity of ASD (Chen et al., 2015; Keown et al., 2013). The connectivity 

between VN and DMN has also been associated to positive symptoms in schizophrenia 

(disorganized thought and behavior; Meda et al., 2012). Importantly, all aforementioned 

conditions are also commonly associated with increased trait impulsivity (Najt et al., 2007; 

Rochat et al., 2008; Mayes, Calhoun, Mayes, & Molitoris, 2012; Wistanley, Eagle, & Robbins, 

2006; Ouzir, 2013), which ties in with the second line of evidence: Research suggests that 

impulsivity is associated with anomalies of VN connectivity. High trait impulsivity has been 

related to changes in resting state connectivity of the medial and lateral VN in healthy 

participants (Davis et al., 2012) and to connectivity of lateral visual areas to the amygdala in 

abstinent heroin dependent subjects (Xie et al., 2011). Better inhibitory control was further 

related to increased ReHo in the medial VN (Tian, Ren, & Zang, 2012) and reduced gray matter 

volume in the parieto-occipital sulcus was shown in subjects with high trait impulsivity (Ide et 

al., 2017). Also, inhibitory control in children with ADHD has been related to connections of 

the VN to the cingulo-opercular network and connectivity between the DMN and cuneal cortex 
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was related to impulsivity in typical developing children (Mennes et al., 2011; Inuggi et al., 

2014). Lastly, a review of the phenotypic associations of different RSNs has emphasized the 

relation of the VN to affective states and emotional functioning, specifically to impulsive 

behavior and inhibitory control (Vaidya & Gordon, 2013).  

 At last, all abovementioned conditions associated with VN anomalies (ADHD, AD, 

ASD, schizophrenia, and bipolar disorder) also show decreased occipital alpha activity during 

rest (Woltering, Jung, Liu, & Tannock, 2012; Başar et al., 2012; Osipova et al., 2005; Wang et 

al., 2013; Goldstein et al., 2015). Power in the occipital alpha frequency band during rest is 

suggested to facilitate internal processing by gating incoming stimuli (e.g. Mo, Liu, Huang, & 

Ding, 2013; Klimesch, Sauseng, & Hanslmayr, 2007), which is based on the link between alpha 

oscillations and decreased cortical excitability, inhibition of task irrelevant cortical regions, and 

attention modulation (Mayhew, Ostwald, Porcaro, & Bagshaw, 2013; Capotosto, Babiloni, 

Romani, & Corbetta, 2009; Klimesch et al., 2007; Palva & Palva, 2007). Evidence for positive 

correlations between occipital alpha oscillations and DMN BOLD activity further corroborates 

the notion that they facilitate internal processing during rest (Jann et al., 2010; Knyazev, 

Slobodskoj-Plusnin, Bocharov, & Pylkova, 2011; Mo et al., 2013). Importantly, alpha 

oscillations have been shown to mainly source in the occipital cortex (e.g. Hari et al., 1997; 

Moosman et al., 2003). 

 All in all, given that evidence strongly suggests the relation between connectivity of the 

VNs and trait impulsivity, their predominance shown in the current study might point to a role 

of the VNs in regulating impulsivity and premeditation during rest, i.e. balancing incoming 

stimuli and internal processing. In other words, our findings might be another manifestation of 

the mechanism proposed for occipital alpha oscillations, where high EC of the VNs would 

indicate enhanced occipital alpha power, i.e. efficient dampening of external stimuli, decreased 

impulsivity, and accompanied BOLD activity in the DMN (note here that activity is not equal 

to centrality). In contrast, low EC of the VNs would indicate lower alpha power, i.e. increased 
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cortical excitability and decreased DMN activity. The negative correlation between the EC of 

VN and DMN might thus point to a cooperation, in which global connectivity of the VNs (rather 

than the DMN) is maintained to facilitate appropriate regulation of higher order network 

activity via global connections. 

Other research is in line with this interpretation. For example, evidence suggests that 

during rest, the occipital gyrus modulates interactions between DMN and dorsal attention 

network, as well as interactions between anterior and posterior DMN (Di & Biswal, 2014). 

Also, there is evidence for the link between occipital alpha power and resting state connectivity 

in general, within the visual system, and between visual and ventral medial prefrontal areas 

(Tagliazucchi et al., 2012; Scheeringa et al., 2012). However, the current results are not 

sufficient to develop a thorough model and it should be noted that the aforementioned studies 

show decreased rather than increased connectivity of occipital regions in response to high 

alpha-power. Also, whether there is an association between alpha power and EC (of the VN) in 

particular is unanswered. Generally, future work should further investigate the role of the 

medial and lateral VN during rest. Considering that typically, the FPN is reported with regard 

to attention modulation and inhibitory control (e.g. Marek & Dosenbach, 2018; Chadick & 

Gazzaley, 2011), and the salience network (specifically the insula) with regard to network 

switching (e.g. Sridharan, Levitin, & Menon, 2008), their relation to the VN should be 

researched as well. Finally, dynamic EC and the according changes in (effective) connectivity 

of the two visual RSNs should be explored to identify their separate roles, and the relation 

between EC, metabolic activity, and local connectivity should be analyzed to further 

incorporate the current results into the existing literature. 

Functional connectivity in ECM and ICA 

Our study demonstrates that ECM and ICA extract different aspects of intrinsic 

functional connectivity in the brain and that the two methods can be meaningfully combined 

with the here explored analyses. We showed that ECM derives a different resting state 
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connectivity pattern than the DMN extracted by ICA and we thereby highlighted the aspects of 

resting state connectivity that these methods distinguish: ICA enables to understand the entire 

data at once and extracts multiple independent, temporally coherent networks from the brain, 

among which the DMN. In contrast, ECM considers the whole brain as a network, and derives 

one global description of its intra-connectivity. Therefore, the most central regions extracted 

by ECM can be less understood as one coherent neurobiological entity, like the RSNs extracted 

by ICA, but rather as an independent description of the most influential areas across space and 

time, i.e. across networks (see similarly also McKeown et al. (1998) and Cole et al. (2010) for 

a discussion and comparison of PCA as opposed to ICA for fMRI analyses). All in all, ECM is 

an analysis technique which provides a global perspective and straightforward interpretation of 

the brain’s connectivity organization during any cognitive state. By comparing the average 

centrality of RSNs identified by ICA, ECM can be combined with ICA and the two methods 

can be interpreted cohesively. 

Limitations 

The spatial smoothing applied to the rsfMRI data, as well as the interpolation during 

resampling could have led to artificially increased temporal correlations between neighboring 

voxels. However, the same resampling and smoothing has been applied to the data used in both 

analysis methods, which rules out that it had an impact on the difference between the results of 

the two. Secondly, the inherent preprocessing of ICA included temporal demeaning and 

variance normalization. These steps are not required for ECM, but the lack of application to the 

data used for ECM could have potentially led to differences between the respective results, 

although unlikely. Thirdly, we only included a limited amount of the components extracted by 

ICA in our analyses. In the future, a more extensive comparison of EC in various networks 

could be addressed to enable a more overarching understanding of their interactions. Fourthly, 

the current ECM results exceeded conventional significance levels, which available tools were 

unable to capture. Although a higher than traditionally used number of permutations 
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(1,000,000) in a nonparametric t-test was applied, the range of significance was restricted, as 

an overall ceiling p-value was reached in most voxels. Future studies should consider increasing 

computational power to enable a higher number of permutations and hence a more precise 

estimate of significance. Lastly, we did not further explore the functional connectivity of the 

most central areas during rest, which should be done in future works to better understand the 

connectivity organization of those regions. 

Conclusion 

To conclude, this study shows that ICA and ECM, when applied to the same rsfMRI 

data with the same pre-processing, reveal different spatial maps of the most prominent areas 

during resting state. The DMN does not conform with the most central areas during rest, which 

demonstrates that ECM and ICA reveal distinct aspects of resting state connectivity. We show 

that the medial and lateral VN are the most central RSNs during rest and propose a mechanistic 

explanation, in which the VNs are involved in monitoring incoming stimuli and internal 

processing. Altogether, our results suggest that the investigation of individual variation in VNs 

is more important than previously believed and they further motivate future work exploring the 

relative EC of different RSNs as a potential neuromarker for diagnostic applications. The 

exceedingly high significance and large effect sizes of the current findings are particularly 

promising for personalized applications. 
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