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Abstract 
 

Predictive processing is a theory that models how the human brain tries to predict sensory input from 

the environment. How generative models are being shaped in infancy is still a new, but very 

interesting topic. In my thesis, I focus on developmental predictive processing by investigating the 

conceptual and behavioural consequences of infant development on generative models. In this project, 

I specifically look at the development of colour vision in new-borns. I modelled two different 

scenarios, one in which intensities are learned based on movement and where colour perception is 

added afterwards, and one in which the model immediately learns intensity and colour based on 

movement. My research question is based on both scenarios: “What is the difference in the size of the 

prediction error between step-wise learning intensity and colour perception based on movement 

(Scenario 1), and immediately learning intensity and colour perception based on motor movement 

(Scenario 2)?”. Based on the fact that children start by only perceiving intensities, and later learn to 

discriminate between colours, my expectation was that the first scenario results in a lower total size of 

prediction error. I compared both scenarios based on the total size of the prediction error computed by 

the Kullback-Leibler divergence. K-means clustering resulted in two divisions. In the first division, 

both prediction errors were similar, so no scenario performed better. For the second division, learning 

intensity and colour directly from motor movement resulted in a lower prediction error.   

 

Keywords: predictive processing, generative models, child development, colour vision 

 

 

Introduction  
 
Predictive processing is nowadays seen as a leading theory on how the human brain processes sensory 

inputs from the environment, by predicting the inputs based on generative models and processing only 

that part of the input that could not be predicted (Clark, 2013). Predictive processing offers a possible 

explanation of how the brain is organized (Clark, 2013). For example, Seth (2014) describes a 

predictive processing theory of sensorimotor contingencies. The theory provides explanation for the 

occurrence of  perceptual presence in normal perception, just as its absence in synaesthesia (Seth, 

2014). Similarly, Perfors and colleagues (2011) use Hierarchical Bayesian models that offer an 

alternative computational level explanation of the development of learning object names and 

categories. Predictive processing is a good explanation of how low level perception is implemented in 

the infant brain. Now, the challenge is to provide a theory that it is also able to explain how higher 

cognitive functions are developed in infancy.  

 
Predictive processing 
 
In predictive processing, a hierarchical generative model is used to minimize the prediction error 

(Clark, 2013). Every layer of the hierarchical model can be represented as a causal Bayesian network 
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(Kwisthout, Bekkering, & Rooij, 2017). Those networks are probabilistic graphical models that 

represent stochastic dependencies between variables. Every layer has three kinds of variables: 

hypothesis variables (Hyp), prediction variables (Pred) and intermediate variables (Int) (Kwisthout, 

Bekkering, & Rooij, 2017). The arcs between the variables depict causal relations (Kwisthout, 

Bekkering, & Rooij, 2017).  

Generative models are initially low in detail. This means that predictions based on these models are 

very global, resulting in low prediction errors and almost no informational content. The next step is to 

fine-grain the model, which will induce more prediction errors, because the prediction will be more 

detailed. Training the models results in the fact that the model is refined, so the predictions will be 

more fine-grained and the prediction errors will decrease (Kwisthout et al., 2016). Kwisthout and 

colleagues (2017) discuss the example of a die. When the model is low in detail, the number of a die is 

classified as ‘odd’ or ‘even’. The probability of being in one of the categories is 1/2, which is quite 

high, but there is little information about the outcome of a rolled die. When the model is more precise, 

the result of a die can be classified by number of dots on the die. The probability for a fair die is 1/6 

for side of a die. There is more information, but this will result in more prediction errors. This trade-

off between precision and information gain is an important topic in predictive processing, but will not 

be discussed in this research.  

 

The model tries to predict sensory inputs, to compare these predictions to the actual observation. This 

comparison is performed at each level of the hierarchy (Kwisthout, Bekkering, & Rooij, 2017). The 

error is the difference between the prediction and the observation. The size of the prediction error is 

computed by the Kullback-Leibler divergence between the two distributions. The goal is to make the 

prediction as close to the actual observation as possible. If the models were perfect, the predicted input 

would be the same as the actual observation. To get the prediction as close as possible to the actual 

outcome, the prediction error should be lowered. Prior knowledge is combined with new observations 

to update the existing model. There are two ways to lower the prediction error: by improving the 

generative model, or by intervention in the world (Kwisthout, Bekkering, & Rooij, 2017).  

 

In her BSc thesis, Ter Borg (2017) proposed a generative model of predictive processing by individual 

experience. She used a LEGO Mindstorms NXT robot. The robot was put at a certain spot in a dark 

environment with a light source, facing the dark side of the environment. The wheels of the robot 

rotated based on motor commands, resulting in a change of light intensity. She clustered the motor and 

sensory input of the robot to make a probability distribution based on these experiences, see Figure 1. 

The generative model predicted the light intensity based on the motor commands, using k-means 

clustering. She used a binary causal Bayesian network with two variables, namely a prior (P[a] and 

P[b]) and a conditional probability distribution.  
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Figure 1 Generative model of predictive processing by individual experience; clustering based on motor movement and 
intensity measurement (Ter Borg, 2017). The left figure shows the expected clustering of the motor movement, plotting 
wheel 2 to wheel 1. The right figure shows the expected intensity clusters, plotting intensity 2 on intensity 1. Cluster A is 
the motor cluster for turning left, cluster B for turning right. Cluster C labels the high intensity trials and cluster D 
contains the low intensity trials.  

 
The main idea of her thesis is very interesting, so I decided I wanted to expand on her thesis. I used 

her work as the starting point of my own. There are a couple of options to enlarge her research, based 

on the possibilities of lowering prediction error (as discussed earlier) and contributing to the predictive 

processing theory. The first one is relearning the clusters, by adding a third cluster and to see how the 

model reacts to this change. Another expansion is to learn contextual modulation, for example by 

adding a wall that blocks the light, which results in different light intensity inputs. A third way of 

building on Ter Borg’s research would be to explore the developmental aspect of her research and thus 

provide a developmental account of the predictive processing theory. One way of studying 

developmental consequences is by examining physical changes in the robot. Examples of these 

physical changes in the robot are adding sensors or motors or making the robot heavier or taller. I 

chose the third option of contributing to the theory, by adding a colour sensor to the robot. This 

addition is equivalent to the development of colour vision in infants, which I will discuss in the next 

section.  

 

  
Colour vision development in infants 

In the ongoing literature, it is commonly accepted that new-borns are only capable of differentiating 

between the brightness of an object. However, there is some disagreement about when they start to 

develop colour visions. There are some studies that show that infants do have colour vision, which 

means they can differentiate between chromas
1
. Wilton (1937) showed that infants between 15 and 70 

days do have the ability to discriminate between colour combinations. More specifically, they found a 

significant difference between colour and brightness for the combinations of red, yellow-green, green, 

                                                           
1
 Chroma : the quality of a colour’s purity, intensity or saturation 
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and blue-green. Peeles and Teller (1975) showed that two-month-old human infants do have some 

form of colour vision. Children were able to discriminate between a red and a white bar, suggesting 

that infants of two months of age are at least dichromatic. A study showing the opposite results is the 

research of Clavadetscher and colleagues (1988). They tested 3- and 7-week-old infants for their 

chromatic discrimination. The 3-week-old children were not able to make chromatic discriminations. 

The 7-month-old children did show a difference between chromas, but this was still far from perfect. 

Adams and colleagues (1987) showed that infants with the age under three months show a different 

response to different chromas than adults. Adults have a different response, since they can 

discriminate between colours and chromas, while three-month-old infants cannot.  

For this thesis, the exact age at which children have fully developed colour perception does not really 

matter. It is enough to know that new-borns only perceive the differences in brightness of a colour and 

that they develop colour perception while growing older (Adams, 1987). Because there is no research 

that showed colour vision in infants under the age of 15 days, I will use this threshold when talking 

about mimicking colour vision in robots. 

 
Developmental robotics 

 
Developmental robotics is a recent domain that lays the link between behavioural research and robotic 

modelling. It combines the theory, robot programming and behavioural explanations in one research 

program. This combination is made to identify the ambiguities in the real world, exactly the ones for 

which computer simulations would make an assumption about the environment  (Deák, Fasel, & 

Movellan, 2001). Robotic modelling allows the comparison of computational theories. Working with 

robots allows one to study internal representations and processes. This is in contrast with behavioural 

researches, who only look at the behaviour of people while trying to study internal states (Deák, Fasel, 

& Movellan, 2001). The robotic aspect helps to explain behaviour, instead of only observing it.  

Cognitive developmental robotics is one step further than developmental robotics. It focuses on higher 

cognitive functions. Other agents and the interaction between agents are the central point of this 

domain. Body representation and social behaviour are hypothesized, meaning that artificial systems try 

to mimic higher order processes and interaction between robots  (Asada et al., 2009). This is what will 

be possible in the future and adds to the background of developmental robotics, but is too complicated 

for this thesis. 

 

A new theory in this field is the robo-havioural methodology by Otworowska and colleagues (2015), 

which is the intermediate step between theoretical and empirical investigation. The FOES 

methodology is an example of a concrete way to lay a link between behavioural research and robotics 

modelling. FOES is the abbreviation of Formalize, Operationalize, Explore and Study (Otworowska et 
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al., 2015). F stands for formalizing verbal theories into computational models which is implemented 

(O) for a working robot. The consequences of various design choices and parameter settings are 

explored (E) to generate empirically testable hypotheses. These hypotheses are studied (S) in 

behavioural or imaging experiments. The goal of this method is not to build smart robots, but to see 

where the gaps and ambiguities of the theories are and what the consequences of assumptions and/or 

design choices are (Otworowska et al., 2015).  

 

In this thesis, I will combine the developmental robotics account together with the robo-havioural 

methodology and use the robot to test the theory of colour vision development in infants. The goal of 

this thesis is to expand the existing theory and to research developmental predictive processing by 

investigating the consequences of colour vision development in new-borns on generative models. 

There is a lot of literature about predictive processing, just like infant development is a widely 

discussed topic. When combining these two domains, there is still a gap, which I will partly try to 

close, using the robo-havioural methodology and a LEGO Mindstorms robot. 

 
15 days old new-borns only react to brightness and light intensity of objects, which means that they 

only see the difference in light intensity. This can be modelled in a robot by solely using a light 

intensity sensor, building up the model by using just the limited sensory information. Children will 

start learning about the world, just like the robot will learn about its environment. While the children 

grow, they start to develop perception of colours. The child has to adjust the perceptual model that she 

has learned in the past days, to include the colour sensation. The development of vision from 

light/dark to colour is mimicked by adding a colour sensor to the existing model. Now, there are two 

different ways of adding this colour sensor. The first approach aims to imitate how new-borns learn 

the world: by originally starting with the model of the light sensor and afterwards adding the data 

obtained by the  colour sensor to refine the model (Scenario 1, Figure 2). The second way is to train 

the model by immediately using the light sensor data and the colour sensor data, based on the motor 

movement (Scenario 2, Figure 3). The algorithm of this scenario is smaller and is easier to implement. 

Still, the state space to be learned will be larger and can have an influence on the size of the prediction 

error. Therefore, my research question is:  “What is the difference in the size of the prediction error 

between step-wise learning intensity and colour perception based on movement (Scenario 1), and 

immediately learning intensity and colour perception based on motor movement (Scenario 2)?”. Based 

on the developmental research, I expect the first scenario to have lower total size of prediction error. 
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Scenario1: 

 
Figure 1 Scenario 1: developing the model by first learning the intensity clusters based on the motor movement clusters, 
and afterwards adding the data of the colour sensor to cluster the data. The first coordinate system plots the rotation of 
wheel one to the rotation of wheel two in a 2D-space. The second coordinate system plots the intensities of the sensors 
in a 2D-space. The third coordinate system shows the same clusters as coordinate system 2, but it shows the 3D data. 
The last coordinate system shows the clusters based on colour measurement and intensities in a 3D space. M1 and m2 
are the inputs of the model, namely the rotation of the wheels. S1 is the input from the first light intensity sensor. S2 is 
the input from the second light intensity sensory. S3 is the input from the colour sensor. 

 

 
 Scenario2: 
  

 
Figure 2 Scenario 2: developing the model by immediately clustering the intensity and colour data based on the motor 
movement clusters. The first coordinate system plots the rotation of wheel one to the rotation of wheel two in a 2D-
space. The second (which is the same as the third) coordinate system shows the data clustered based on the intensities 
and the colour measurement in a 3D space. M1 and m2 are the inputs of the model, namely the rotation of the wheels. 
S1 is the input from the first light intensity sensor. S2 is the input from the second light intensity sensory. S3 is the input 
from the colour sensor. 

 

 

Methods 
 
Robot 

 
For this research, I use a Lego Mindstorms EV3 robot. My robot needs to move and has to measure 

colour and intensity. Therefore, my robot has two motors and two sensors, see Figure 4. Each motor is 

connected with a wheel. Motor A is connected with the right wheel and Motor D is connected with the 

left wheel. To mimic the vision of infants, the first sensor (port S1) is placed on top of the robot. In 

this way, it imitates the eyes an infant best. This sensor measures ambient light, which corresponds to 

the intensity of the environment. The second sensor (port S2) is able to measure both intensity of the 

environment and the colour of the floor. The colour sensor is not very sensitive: it only detects the 

colour of an object when it is within two centimetres. Because of this, the sensor is placed in front of 

the robot, facing down, about one centimetre of the ground. In this way, it is able to measure colours 

painted on the floor.  
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Figure 3 Robot Design: the Lego Mindstorms EV3 robot has two motors, each connected to a corresponding wheel, and 
two sensors. The first sensor only measures intensity, while the second sensor measures both intensity and colour. The 
left wheel is connected to motor port D, and the right wheel is connected to motor port A.  

 

Environment 

The environment of the robot consists of a light source and a plate to rotate on, see Figure 5. The light 

source is placed a bit higher than the robot, see Figure 6. When the light was placed on the same level 

as the robot, the sensors gave a very low intensity value until the robot was almost facing the light. 

This resulted in the same value for almost half a round, so I placed the light source higher, resulting in 

a more variable light intensity. The size of the plate is 30cm×30cm to create enough space for the 

robot to completely turn around without falling off.  
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An EV3 robot is able to discriminate between colour and no colour. It can distinguish between seven 

different colours: black, blue, green, yellow, red, white and brown. Therefore, the plate on which the 

robot is turning is divided in six different colours, in the shape of a pie chart. The colours are six of the 

seven colours the EV3 sensor can recognize, namely black, green, blue, brown, red, and yellow. Every 

colour has the same surface, with an angle of 60°. The colours are divided based on intensity: the left 

ones (blue, green, black) have a low intensity, the right ones (brown, yellow, red)  have a high 

intensity, see Figure 5. Because of this division, every colour corresponds to a different movement and 

a different light intensity. The intensities measured by sensor 2 do not depend much on the light 

intensity: they depend mostly on the intensity of the colour. The mean intensity of a colour depends on 

the brightness of the colour, see Table 1. Every colour has a colour ID, which is used in the Results 

section. Since white (colour ID number 6)  is not in the pie chart, only ID 1,2,3,4,5 and 7 are used, see 

Table 1. 

 

 Colour Intensity 

Sensor2 
Colour ID 

 

turn right  

black 0.03 1 

green 0.03 3 

Figure 4 Schematic picture of the robot’s environment. The pie-
shaped plate is divided in 6 parts, showing the low intensity 
colours (black, green, blue) left and the high intensity colours  
(yellow, red, brown) right.  

Figure 5 Picture of the environment of the robot, with the 
light source and the plate the robot turns on.  
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blue 0.05 2 

 

turn left 

brown 0.18 7 

red 0.23 5 

yellow 0.46 4 

Table 1 Colour Intensity & ID 

 

Pilot study 

 
A pilot study was performed to see what the environment should look like to make the best possible 

use of the colour sensor. There were three options: a coloured light, coloured tape, and paint. The 

coloured light did not work, since the sensor measures the actual colour of an object and not the colour 

of the reflected light. For the tape and paint, there was no exceeding method based on colour 

recognition. Their colours were both measured quite flawlessly, yet blue was a struggle for both. 

Eventually, the paint gives the best accuracy. One disadvantage of the tape is that it can come off. 

Also, it is relatively hard to apply the tape smoothly on the ground without bubbles of air underneath 

it. The paint is easy to apply and assures that it will stay like it should. Because of this and the higher 

accuracy of the blue colour, the environment of the robot consists of a  painted, wooden board on 

which the robot can turn. 

 
One possible struggle was that the colours would not be recognized when the robot was facing away 

from the light. Fortunately, the sensor did not have a problem with recognizing the colours in a dark 

environment, since it has a light in the sensor itself. The light in the sensor makes the robot able to 

recognize the colours.  

 

 

Experiment 

 
The goal of the robot is driving towards the light. Therefore, it starts each time at the same point, 

facing away from the light source. The robot turns left or right for a random amount of degrees. It 

never turns more than half a circle, because if it would rotate more, it would turn away from the light 

source again.  

 

Calculations of rotations 

 

The distance between the wheels is 151mm (including the wheels) (see Figure 7), which means that 

the circumference is 948.76mm, when the robot would turn only one wheel.  
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c1=2 × π × 151 ≈ 948.76 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The diameter of the wheel of the robot (see Figure 8) is 43mm, resulting in a circumference of 

135.1mm.  

c2= π × 43 ≈135.1 

 

The number of degrees one wheel has to turn to rotate a full circle is 2528° 

d = 𝑐1
𝑐2⁄  × 360 = 

2 × 𝜋 ×151

𝜋 ×43
 360 ≈ 2528 

 

Because the robot only has to turn half a round and both wheels are going in the opposite direction, the 

maximum amount of degrees each wheel may rotate is 2528°/4 = 632° . This means the random value 

is a value between 0 and 632 . 

 

After the rotation, the colour of the ground, intensity of sensor 1 and intensity of sensor 2 are 

measured respectively.  

 

Analysing the data 

 
I used k-means to cluster my data resulting from the robot experiment. The motor input, intensity 

output and colour output are all divided in different clusters.  

Figure 7 Diameter of the robot itself.  Figure 6 Wheel Diameter of the robot.  
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First, I will explain what k-means is, why I used it in my research, and how I implemented it in 

MATLAB. Next, I will explain the conceptual model of my clusters.  

 

Cluster analysis is an unsupervised learning algorithm, because there are no labels. Data without labels 

means that the data does not have defined categories or groups (Kumar, 2014). The algorithm is used 

for exploratory data analysis, to find hidden patterns or grouping in data. K-means is one of the most 

popular clustering algorithms (Kumar, 2014). The K-means algorithm performs as follows: Select k 

points as initial centroids. Then, form two clusters by assigning each point to its closest centroid. 

When you have k centroids, re-compute the centroid of each cluster. Repeat this until the centroids do 

not change. The algorithm used in this cluster uses k =2, resulting in two clusters, since the motor 

movement is divided in two (turning left and turning right), and the intensity is based on low and high.  

 
Because the goal is to find groups in the data while there are no labels available, clustering is the best 

method to use here. One of the reasons I used k-means is because it is a simple technique. Also, the 

number of clusters is fixed, so the algorithm should not choose the number of clusters itself. The value 

of k  is in this research always two, because there is one binary cause variable and one binary effect 

variable. 

 

MATLAB has a predefined k-means algorithm, which I used to perform the computations of clusters. 

The kmeans(X, k) algorithm in MATLAB performs k-means clustering to partition the observations of 

the n-by-p data matrix X into k clusters, and returns an n-by-1 vector containing cluster indices of each 

observation. It uses the k-means++ algorithm for cluster centre initialization, which uses a heuristic to 

find centroid seeds for k-means clustering. This centre initialization, proposed by Arthur and 

Vassilvitskii, is faster and gives a  better output than the original k-means algorithm of Lloyd.  

 
Clusters 
 
Motor Clusters 

 
Since the input of both scenarios is the same, the same motor clusters can be used. The wheels always 

rotate contrary, which means that if the left wheel is turning forward, the right wheel is turning 

backward and vice versa. To plot this, the rotation of the Motor A, so the right wheel is plotted on the 

horizontal axis and the rotation of the left wheel is plotted on the vertical axis, see Figure 9.  
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Figure 8 Expected motor clusters. Both wheels rotate in contrary direction. The degree of rotation of the right wheel is 
plotted on the x-axis. The degree of rotation of the left wheel is plotted on the y-axis.  

 
Intensity Clusters 
 

The intensity clusters are different from the motor clusters, due to the fact that intensity cannot have a 

negative value. There will be both high and low intensities, depending on the amount of rotation the 

robot is turning. So my expectation is that there is a cluster for high intensity values and a cluster for 

low intensity values, see Figure 10.  

 
Figure 9 Expected intensity clusters. Sensor 1 is plotted on the x-axis, while sensor 2 is plotted on the y-axis. Cluster C 
represents trials with low intensity, cluster D contains trials with high intensity. 

 

Colour Clusters 

 
The colour clusters are two clusters in a three-dimensional space. This is because there are three 

variables plotted: the intensity of sensor 1, the intensity of sensor 2, and the colour ID. As explained in 

the environment part above, the colours are represented as numbers ranging from one till seven. These 

numbers are used to plot the clusters later on in this thesis. I expect to have two clusters that are 

clearly separated from each other, see Figure 11. This is based on the fact that the colours black, blue 

and green have low brightness, so the intensity of sensor 2 will be low too. The colours yellow, red, 

and brown have a high brightness, resulting in a high intensity for sensor 2. 
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Figure 10 Expected colour clusters. The intensity measurement of sensor 1 is plotted on the x-axis, sensor 2 on the y-axis 
and the colour ID is plotted on the z-axis. Cluster E contains the samples with low intensity and low colour brightness. 
Cluster F clusters the trials with high intensity and high colour intensity.  

 
For scenario 1, there are three steps: the first step is clustering the random motor inputs, the second 

step is clustering the intensity of sensor 1 and sensor 2, and the last one is clustering the intensities of 

sensor 1 and 2 and the colour sensor data, see Figure 12. All these clusters are used later to make up 

the model. For scenario 2, the second step of scenario 1 is left out. It only clusters the motor inputs and 

the intensities of sensors 1 and 2 together with the colour sensor data. Both scenarios are plotted in 

Figure 12.  

 

Scenario 1:

 
Scenario 2: 
 

 
Figure 11 Model Scenario 1 & 2. Scenario 1: developing the model by first learning the intensity clusters based on the 
motor movement clusters, and afterwards adding the data of the colour sensor to cluster the data. Scenario 2: 
developing the model by immediately cluster the intensity data and colour data based on the motor movement clusters.   
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Results 
 
In this section, I will give an overview of the data I collected in my robot experiment. Then, I will give 

the results of the clustering in some plots. Next, the predictive processing part is computed, starting by 

giving a short explanation of the Kullback-Leibler divergence. Afterwards, I will present the derived 

probability distributions and prediction errors based on that KL-divergence.  

 
Data collection 
 
Table 2 shows the final data. The full tables can be found in Appendix 1 and Appendix 2. For every 

trial, my robot gets two values: a value for the left wheel and a value for the right wheel. This value is 

the number of degrees that a wheel rotates. In the first 50 trials, the left wheel has a negative amount 

of degrees, resulting in a backward movement of that wheel, so the robot turns right. In the last 50 

trials, the right wheel gets a negative amount of degrees, resulting in a turn to the left.  

After the robot has finished turning, the robot’s sensors measure both the intensity of sensor 1 and 

sensor 2, and sensor 2 measures the colour that it is facing. Colour ID is the number of the colour, 

which is discussed before in environment. Intensity 1 is the intensity measured by sensor 1. Intensity 2 

is the intensity measured by sensor 2. 

 
When all trials are completed, the data is clustered in MATLAB. By performing the k-means 

algorithm on the different subparts of the data, every trial is part of three clusters: a motor cluster, an 

intensity cluster and a colour cluster. The “1” stands for first cluster and “2” stands for the second 

cluster. The number of the cluster is irrelevant, it just shows that all trials with cluster number 1 are 

grouped together and that all trials with cluster number 2 are grouped together. The entire table with 

the data can be found in Appendix 1 and Appendix 2.  

 

Trial Degrees 

Left 

Wheel 

Degrees 

Right 

Wheel 

Colour 

ID 
Intensity 

1 
Intensity 

2 
Motor 

Cluster 
Intensity 

Cluster 
Colour 

Cluster 

1 -331 307 5 0,28986 0,26 1 1 2 

2 -567 505 4 0,5379 0,45 1 2 2 

… … … … … … … … … 

50 -415 215 5 0,2899 0,28 1 1 2 

51 119 -444 6 0,2733 0,09 2 1 2 
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… … … … … … … … … 

100 167 -385 2 0,2791 0,05 2 1 1 

Table 2 Final data. The rows contain the results per trial of the robot. The columns contain the degrees that the wheels 
rotate, the intensities and colours that are measured and the clusters (Motor, Intensity and Colour) each trial is in.  

 
Data Cluster Plot 

The clusters that result from the MATLAB k-means function can be plotted to give a clear overview 

of how the data looks like when it is clustered.  

 

As discussed earlier, the motor cluster part can be used for both scenarios. The random values of both 

motors are plotted against each other, see Figure 13. The degrees of rotation of motor A are plotted on 

the x-axis, the degrees of rotation of motor D are plotted on the y-axis. Cluster A is given by the blue 

‘x’ and cluster B is marked as a red dot. 

 

 
Figure 12 Plot Motor Clusters. Blue crosses are cluster A and red dots are cluster B. The rotations of motor A are on the x-

axis, the rotations of motor D are on the y-axis. 
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For scenario 1, first the sensor values are plotted against each other, see Figure 14. The intensity 

values of sensor 1 are plotted on the x-axis. The intensity measurements of sensor 2 are plotted on the 

y-axis. Cluster C is given by the blue crosses, cluster D is given by the red dots.  

 

 
Figure 13 Plot Intensity Clusters. Blue is cluster C and red is cluster D. The intensities of sensor 1 are on the x-axis, the 

intensities of sensor 2 are on the y-axis. 

The second step is to plot both intensity values against the colour ID. This was different per run, 

resulting in two different divisions. The first division is visible in Figure 15. The intensity of sensor 1 

is plotted on the y-axis (right axis), the intensity of sensor 2 is shown on the x-axis (left axis) and the 

colour ID is plotted on the z-axis (vertical axis). Cluster E contains the samples with high 

intensity/high colour intensity with a blue ‘x’ and cluster F marks the trials with low intensity with a 

red dot.  
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Figure 14 Plot Colour Clusters Scenario 1, Division 1. The intensity of sensor 1 is plotted on the y-axis (right axis), the 
intensity of sensor 2 is shown on the x-axis (left axis) and the colour ID is plotted on the z-axis (vertical axis). Cluster E 
contains the samples with high intensity/high colour intensity with a blue ‘x’ and cluster F marks the trials with low 
intensity with a red dot.  

 

 
The second division is visible in Figure 16. The intensity of sensor 1 is plotted on the y-axis (right 

axis), the intensity of sensor 2 is shown on the x-axis (left axis) and the colour ID is plotted on the z-

axis (vertical axis). Cluster E contains the samples with high (colour) intensity with  a red dot and 

cluster F marks the trials with low intensity with a blue ‘x’.  
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Figure 15 Plot Colour Cluster Scenario 1, Division 2. The intensity of sensor 1 is plotted on the y-axis (bottom right axis), 
the intensity of sensor 2 is shown on the x-axis (bottom left axis) and the colour ID is plotted on the z-axis (vertical axis). 
Cluster E contains the samples with high (colour) intensity with a red dot and cluster F marks the trials with low intensity 
with a blue ‘x’. 

  

In scenario 2, there were two different outcomes when running the algorithm multiple times.  

The first clustering division is visible in Figure 17. The intensity of sensor 1 is plotted on the y-axis 

(right axis), the intensity of sensor 2 is shown on the x-axis (left axis) and the colour ID is plotted on 

the z-axis (vertical axis). Cluster E contains the samples with high (colour) intensity with a blue ‘x’ 

and cluster F marks the trials with low intensity with a red dot.  
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Figure 16 Plot Colour Cluster Scenario 2, Division 1. The intensity of sensor 1 is plotted on the y-axis (right axis), the 
intensity of sensor 2 is shown on the x-axis (left axis) and the colour ID is plotted on the z-axis (vertical axis). Cluster E 
contains the samples with high (colour) intensity with a blue ‘x’ and cluster F marks the trials with low intensity with a 
red dot.  
 

 
The second clustering division can be seen in Figure 18. The intensity of sensor 1 is plotted on the y-

axis (right axis), the intensity of sensor 2 is shown on the x-axis (left axis) and the colour ID is plotted 

on the z-axis (vertical axis). Cluster E contains the samples with high (colour) intensity with a blue ‘x’ 

and cluster F marks the trials with low intensity with a red dot.  
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Figure 17 Plot Colour Cluster Scenario 2, Division 2. The intensity of sensor 1 is plotted on the y-axis (right axis), the 
intensity of sensor 2 is shown on the x-axis (left axis) and the colour ID is plotted on the z-axis (vertical axis). Cluster E 
contains the samples with high (colour) intensity with a blue ‘x’ and cluster F marks the trials with low intensity with a 
red dot.  
 

 

Probabilities and Size of Prediction Error  

 
Kullback-Leibler Divergence 

 
The model is based on the chances that a data point is in a combined cluster. For scenario 1, these 

combined clusters are different than for scenario 2. In the first part of scenario 1, the combined clusters 

are (A,C), (A,D), (B,C), and (B,D). This categorization is based on the motor rotation clustering  and 

the intensity clustering. The second part of scenario 1 is based on the categorization of intensity 

clustering and colour clustering. The combined clusters are (C,E), (C,F), (D,E), and (D,F). For 

scenario 2, the combined clusters are (A,E), (A,F), (B,E), and (B,F). These categorisations will result 

for every part of both scenarios in two probability distributions. These distributions are the generative 

model. The Kullback-Leibler divergence will be used to calculate the size of the prediction error.  

 

𝐷𝐾𝐿( 𝑃𝑟𝑜𝑏𝑠||𝑃𝑟𝑝𝑟𝑒𝑑) =  ∑ 𝑃𝑟𝑜𝑏𝑠(𝑝)  × 𝑙𝑜𝑔2 (
𝑃𝑟𝑜𝑏𝑠(𝑝)

𝑃𝑟𝑝𝑟𝑒𝑑(𝑝)
)

𝑝 ∊ Ω (𝑜𝑏𝑠)

 

 

Table 3 and Table 4 show the structure of the following tables, with the expectation of the 

probabilities. The difference between the tables is that in the first tables, there is a column with 
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clusters, where in the following tables, the size of the prediction error will be showed in those 

columns. Every table will be followed by two plots: one plotting the probabilities and one plotting the 

sizes of the prediction error (PE). 

 

 
Scenario 1 

turn right turn left 

probability clusters probability clusters 

 

intensity 
low P = high (A,C) P = low (B,C) 

high P = low (A,D) P = high (B,D) 

 

 intensity 

low high 

probability clusters probability clusters 

colour intensity low P = high (C,E) P = low (D,E) 

high P = low (C,F) P = high (D,F) 

Table 3 Structure of Probability Tables Scenario 1, given the motor movement of the robot and the measured intensity 
and colour. The expected probability and the cluster that value is in are given. 

 

 
Scenario 2 

turn right turn left 

probability clusters probability clusters 

 

colour intensity 
low P = high (A,E) P = low (B,E) 

high P = low (A,F) P = high (B,F) 

Table 4 Structure of Probability Tables Scenario 2. It shows the clusters in which a trial can be classified and the expected 
probability of being in those clusters. 
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Scenario 1 : first division  
 
When turning right (cluster A), there are 50 trials in cluster C and no trials in cluster D. 32 trials are in 

cluster C, when turning left (cluster B) , which means that there are 18 trials in cluster D when turning 

left. In cluster C, there are 82 trials, of which 32 are in cluster E and 50 are in cluster F. The resulting 

trials are all 18 in cluster D and F. The probability distribution and the size of the prediction errors 

based on this classification are shown in Table 5 and plotted in Figure 19 and Figure 20.  

 

 
Scenario 1 

turn right turn left 

probability prediction error probability prediction error 

 

intensity 
low 1 0 0.64 0.6439 

high 0 ∞ 0.36 1.4739 

 

 intensity 

low high 

probability prediction error probability prediction error 

colour intensity low 0.3902 1.3577 0 ∞ 

high 0.6098 0.7136 1 0 

Table 5 Probabilities & Size of PE Scenario 1, Division 1 

 

 
Figure 18 Probabilities Scenario 1, Division 1 
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Figure 19 Sizes of PE Scenario 1, Division 1 

 
Scenario 2 : first division 
 
In scenario 2, half of the trials where the robot is turning right (cluster A) are in cluster E and the other 

half is in cluster F. When turning left (cluster B), there are 7 trials in cluster E and 43 trials in cluster 

F. The probability distribution and the size of the prediction errors based on this classification are 

shown in Table 6 and plotted in Figure 21 and Figure 22.  

 

 
Scenario 2 

turn right turn left 

probability prediction error probability prediction error 

 

colour intensity 
low 0.5 1 0.14 2.8365 

high 0.5 1 0.86 0.2176 

Table 6 Probabilities & size PE Scenario 2, Division 1 

 

 
Figure 20 Probabilities Scenario 2, Division 1 
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Figure 21 Sizes of PE Scenario 2, Division 1 

 
Scenario 1: second division 

 
For the first part, every trial that is divided in cluster A, also belongs to cluster C. When turning left 

(cluster B), 32 trials are clustered in cluster C, and 18 trials are in cluster D. In the second part, all the 

18 trials of cluster D also belong to cluster F. 54 trials belong to cluster C and E, so 28 trials are in 

cluster C and F. The probability distribution and the size of the prediction errors based on this 

classification are shown in Table 7 and plotted in Figure 23 and Figure 24.  

 

 
Scenario 1 

turn right turn left 

probability prediction error probability prediction error 

 

intensity 
low 1 0 0.64 0.6439 

high 0 ∞ 0.34 1.4739 

 

 intensity 

low high 

probability prediction error probability prediction error 

colour intensity low 0.6585 0.6027 0 ∞ 

high 0.3415 1.55 1 0 
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Table 7 Probabilities & size PE Scenario 1, Division 2 

 
Figure 22 Probabilities Scenario 1, Division 2 

 
Figure 23 Sizes of PE Scenario 1, Division 2 

 
Scenario 2 : second division 
 
When turning right (cluster A), 47 trials are in cluster E, while 3 trials are in cluster F. For turning left 

(cluster B), 7 trials are in cluster E, and 43 trials are in cluster F. The probability distribution and the 

size of the prediction errors based on this classification are shown in Table 8 and plotted in Figure 25 

and Figure 26. 

 

 
Scenario 2 

turn right turn left 

probability prediction error probability prediction error 

 

colour intensity 
low 0.94 0.0893 0.14 2.8365 

high 0.06 4.0589 0.86 0.2176 

Table 8 Probabilities & size of PE Scenario 2, Division 2 
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Figure 24 Probabilities Scenario 2, Division 2 

 
Figure 25 Sizes of PE Scenario 2, Division 2 
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Total size of prediction error 
 
The total size of prediction error per scenario and per division are computed below and plotted in 

Figure 27.  
 
Scenario 1 & division 1 : 32 × 1.3577 + 50 × 0.716 = 79.1264 
 
Scenario 2 & division 1 : 25 × 1 + 25 × 1 + 7 × 2.8365 + 43 × 0.2176 = 79.2123 
 
Scenario 1 & division 2 : 54 × 0.6027 + 28 × 1.55 = 75.9458 
 
Scenario 2 & division 2 : 47 × 0.0893 + 3 × 4.0589 + 7 × 2.8365 + 43 × 0.2176 = 45.5861 
 

 
Figure 26 Total Size of Prediction Errors 
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Discussion 

 
In this section, I will first give a short overview of my research question and the proposed hypotheses. 

Then, I will answer my research question for both the divisions I found. Afterwards, I will discuss 

possible explanations of these results, which I will relate to the empirical developmental literature. I 

conclude this section by giving some possible research questions for future research. 

New-borns start without colour vision, meaning that they are only able to distinguish between 

brightness of colours. After fifteen days, they gradually start to learn different colours, showed by 

Adams and colleagues (1987), and Clavadetscher and colleagues (1988). Based on their research, I 

opted for two different scenarios to implement in my robot research. One scenario is that the robot 

step-wise learns to distinguish between intensity and colour. First it learns intensities based on motor 

movement, afterwards it adjusts the model to the colour perception. In the second scenario, the model 

immediately learns intensity and colour based on motor movement. The first scenario is based on how 

children’s vision develops, so my expectation was that the total prediction error of this scenario would 

be lower than the total prediction error of scenario 2. Therefore, my research question is: “What is the 

difference in the size of the prediction error between the two different scenarios?”. My results showed 

two divergent divisions, so I will answer the research question separately for both divisions.  

 

Division 1 

 

For division 1, there is no real difference in total size of the prediction error between the two distinct 

scenarios. The total size of the prediction error of scenario 1 is 79.1264, while the total size of the 

prediction error of scenario 2 is 79.2123. The difference between the sizes of the prediction error is 

0.0859, which is very small. To answer my research question on this part of the results: there is no 

difference in the size of the prediction error between the different scenarios for division one.  

 
Division 2 

 
The total size of the prediction error in scenario 1 is 75.9458, while the total size of the prediction 

error in scenario 2 is 45.5861. The difference in size of prediction error between scenario 1 and 

scenario 2 is 30.3597, which is a lot higher than the difference in division 1. For this division scenario 

2 gives the best model with the lowest size of prediction error.   

 
There exist many possible explanations for the missing difference in division 1 and the difference 

contrary to my expectation in scenario 2. First of all, the measurements of the robot were not optimal. 

There were nine wrong colour measurements (green was not perceived correct for four times, red was 

not recognized correct in five trials). There were also unexpected values, but these cannot be proven to 

be caused by external circumstances, so I kept my data intact. If I deleted the outliers (based on the 
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outlier function in MATLAB), I would have cancelled 28 trials of the 100, resulting in unreliable 

remaining data. Another reason is that sensor 1 gives low intensity for bright colours, because it is not 

turned to the light. In this way, the value of intensity 1 and the value of intensity 2 are opposite, 

resulting in a potentially wrong cluster division.  

 

The size of the prediction error depends on the clustering algorithm (because of this, the two divisions 

gave a different size of prediction error). Since the clustering algorithm can result in varying divisions 

per run and the probabilities and the prediction errors depend on the division, the total size of the 

prediction error varies per run. If the clustering algorithm resulted in a perfect division, there could 

possibly be a bigger difference, or even a difference in the opposite direction. Another possible reason 

is that the total amount of samples is small, just as the domain. The difference could possibly be bigger 

if additional information and an environment with more context were provided, because of a larger 

amount of samples could result in a better learned model.  

 
To conclude, I did not find the difference that was expected based on the literature about colour vision 

development in infants, (Adams at al., 1987, Clavadetscher at al., 1988) for the reasons mentioned 

above. However, the question of how PE is dealt with during infancy is an important question in 

understanding the development of the generative models and hence needs to be further explored. A 

few possible future research questions are discussed next.  

 

Infants in development continuously perceive new samples to classify, where a robot only samples 

discrete values in a limited range of time. The environment of a child is richer than the environment of 

my robot. Based on this, I think that the need for gradual development is necessary and can be proven 

by experimenting with a robot in a richer environment and more samples, mimicking the child 

development better. If the robot had the same amount of information and samples, the need for gradual 

development would possibly be higher than in this research.  

 

The robot that I used only has two wheels, two sensors, and took 100 trials. Humans, however, have a 

much richer environment, with more senses and more samples. Because of this, the research could be 

expanded with a bigger environment, more sensors, and more samples. When using more actuators, 

what would this mean for the clustering algorithm? Is it necessary to take a different value for k, or is 

adding a dimension good enough? If the robot takes more samples, would it be better to update the 

clusters after each trial, to see if online updating results in better clusters? Besides this, the movement 

and placement of the robot were simplified in this study. It would be interesting to see how the model 

reacts when the robot is programmed to move in all directions, instead of only circular movement. 

How would variation in the starting position of the robot change the model? What effect would 
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starting the next trials where the previous one ended, or moving completely randomly have on the 

clusters?  

 Conclusion 

 
New-borns start by perceiving only the intensity of objects and they gradually develop colour vision. I 

modelled this development by first learning intensities based on motor movement, and afterwards 

adding colour perception. A second scenario was modelled, by immediately learning intensities and 

colours based on motor movement. This resulted in my research question : “What is the difference in 

the size of the prediction error between step-wise learning intensity and colour perception based on 

movement (Scenario 1), and immediately learning intensity and colour perception based on motor 

movement (Scenario 2)?”. I tested both scenarios and compared the scenarios based on the total size of 

prediction errors computed by using the Kullback-Leibler divergence. Different clustering resulted in 

two distinct divisions. For division one, there was no difference between total size of prediction errors. 

In the second division, the immediate learning of intensities and colours based on motor movement 

gave a lower error than the step-wise learning of intensities and colours respectively, based on motor 

movement.. I did not find the difference in total size of prediction error that we expected based on the 

literature about colour vision development in infants.  
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Appendix 
 

Appendix 1 : robot data and clustering division 1 

 

Degrees 

Left 

Wheel 

Degrees 

Right 

Wheel 

Colour 

ID 

Intensity 

1 

Intensity 

2 

Motor 

Cluster 

Intensity 

Cluster 

Colour 

Cluster 

-331 307 5 0,2899 0,26 1 1 2 

-567 505 4 0,5379 0,45 1 2 2 

-618 146 4 0,3035 0,4 1 2 2 

-560 375 4 0,4315 0,43 1 2 2 

-384 482 4 0,4334 0,39 1 2 2 

-402 17 5 0,2811 0,19 1 1 2 

-160 312 1 0,285 0,17 1 1 1 

-371 420 5 0,3778 0,22 1 1 2 

-243 444 1 0,3182 0,17 1 1 1 

-454 72 5 0,2879 0,18 1 1 2 

-481 299 5 0,364 0,19 1 1 2 

-79 266 7 0,2723 0,09 1 1 2 

-435 107 1 0,2879 0,15 1 1 1 

-207 310 1 0,2977 0,16 1 1 1 

-401 542 4 0,5067 0,35 1 2 2 

-209 434 1 0,3156 0,18 1 1 1 

-353 115 7 0,2791 0,23 1 1 2 

-464 382 5 0,4256 0,42 1 2 2 

-329 415 5 0,3407 0,39 1 2 2 

-177 169 7 0,2713 0,24 1 1 2 

-290 299 5 0,2987 0,41 1 2 2 

-287 506 5 0,3534 0,39 1 2 2 

-349 512 5 0,4256 0,39 1 2 2 

-610 54 4 0,284 0,91 1 2 2 

-184 278 5 0,283 0,34 1 2 2 

-119 477 5 0,2889 0,27 1 1 2 

-247 98 7 0,2742 0,24 1 1 2 

-557 298 4 0,367 0,9 1 2 2 

-118 482 5 0,2967 0,38 1 2 2 

-316 359 5 0,3104 0,4 1 2 2 

-421 501 5 0,4852 0,33 1 2 2 

-300 86 7 0,2882 0,17 1 1 2 

-430 43 5 0,2781 0,21 1 1 2 

-256 112 7 0,2733 0,17 1 1 2 

-506 96 5 0,2801 0,27 1 1 2 

-331 42 5 0,2752 0,23 1 1 2 

-436 232 5 0,2957 0,23 1 1 2 

-199 530 5 0,3045 0,2 1 1 2 

-217 498 5 0,3045 0,22 1 1 2 
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-618 243 4 0,3729 0,52 1 2 2 

-241 200 5 0,2762 0,27 1 1 2 

-138 456 5 0,2899 0,22 1 1 2 

-614 528 4 0,5194 0,5 1 2 2 

-343 296 5 0,3006 0,19 1 1 2 

-210 524 1 0,3054 0,16 1 1 1 

-79 598 5 0,2957 0,24 1 1 2 

-147 318 7 0,2742 0,14 1 1 2 

-63 282 1 0,2694 0,14 1 1 1 

-54 471 5 0,284 0,26 1 1 2 

-415 215 5 0,2899 0,28 1 1 2 

119 -444 6 0,2733 0,09 2 1 2 

385 -552 1 0,4803 0,02 2 1 1 

471 -141 3 0,2814 0,02 2 1 2 

24 -623 3 0,2723 0,05 2 1 2 

309 -592 1 0,3827 0,03 2 1 1 

38 -561 2 0,2703 0,05 2 1 1 

338 -426 3 0,3182 0,04 2 1 2 

547 -533 1 0,5302 0,03 2 1 1 

610 -90 0 0,2742 0,15 2 1 1 

199 -436 2 0,2694 0,06 2 1 1 

391 -278 3 0,2908 0,03 2 1 2 

155 -2 2 0,2811 0,03 2 1 1 

363 -459 3 0,367 0,04 2 1 2 

156 -435 3 0,2664 0,05 2 1 2 

630 -223 3 0,3631 0,03 2 1 2 

125 -8 2 0,2772 0,04 2 1 1 

526 -266 3 0,329 0,03 2 1 2 

131 -125 2 0,2694 0,05 2 1 1 

478 -629 7 0,5214 0,1 2 1 2 

475 -195 3 0,286 0,04 2 1 2 

330 -323 3 0,283 0,05 2 1 2 

285 -316 3 0,2869 0,06 2 1 2 

495 -330 1 0,4022 0,03 2 1 1 

346 -33 2 0,2645 0,05 2 1 1 

69 -570 3 0,2752 0,08 2 1 2 

380 -179 3 0,2645 0,04 2 1 2 

426 -249 3 0,2938 0,04 2 1 2 

46 -75 2 0,283 0,06 2 1 1 

316 -507 1 0,3368 0,05 2 1 1 

361 -412 3 0,3221 0,07 2 1 2 

171 -356 6 0,2673 0,07 2 1 2 

420 -317 3 0,3612 0,02 2 1 2 

603 -618 1 0,5233 0,06 2 1 1 

459 -89 3 0,2684 0,03 2 1 2 
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579 -338 1 0,4825 0,01 2 1 1 

284 -204 2 0,2732 0,03 2 1 1 

603 -289 3 0,4432 0,02 2 1 2 

126 -568 1 0,285 0,04 2 1 1 

191 -258 2 0,2704 0,05 2 1 1 

443 -408 3 0,4168 0,03 2 1 2 

89 -389 2 0,2791 0,05 2 1 1 

328 -449 3 0,3709 0,03 2 1 2 

297 -53 2 0,2723 0,04 2 1 1 

11 -21 2 0,2859 0,04 2 1 1 

619 -158 3 0,3074 0,03 2 1 2 

177 -552 2 0,284 0,05 2 1 1 

538 -485 1 0,5151 0,01 2 1 1 

339 -548 3 0,37 0,05 2 1 2 

535 -612 1 0,5128 0,2 2 1 1 

167 -385 2 0,2791 0,05 2 1 1 

 

 

Appendix 2 : robot data and clustering division 2 

 

Degrees Left 

Wheel 

Degrees 

Right Wheel 

Colour 

ID 

Intensity 

1 

Intensity 

2 

Motor 

Cluster 

Intensity 

Cluster 

Colour 

Cluster 

-331 307 5 0,28986 0,26 2 2 2 

-567 505 4 0,5379 0,45 2 1 2 

-618 146 4 0,3035 0,4 2 1 2 

-560 375 4 0,4315 0,43 2 1 2 

-384 482 4 0,4334 0,39 2 1 2 

-402 17 5 0,2811 0,19 2 2 2 

-160 312 1 0,285 0,17 2 2 1 

-371 420 5 0,3778 0,22 2 2 2 

-243 444 1 0,3182 0,17 2 2 1 

-454 72 5 0,2879 0,18 2 2 2 

-481 299 5 0,364 0,19 2 2 2 

-79 266 7 0,2723 0,09 2 2 2 

-435 107 1 0,2879 0,15 2 2 1 

-207 310 1 0,2977 0,16 2 2 1 

-401 542 4 0,5067 0,35 2 1 2 

-209 434 1 0,3156 0,18 2 2 1 

-353 115 7 0,2791 0,23 2 2 2 

-464 382 5 0,4256 0,42 2 1 2 

-329 415 5 0,3407 0,39 2 1 2 

-177 169 7 0,2713 0,24 2 2 2 

-290 299 5 0,2987 0,41 2 1 2 

-287 506 5 0,3534 0,39 2 1 2 

-349 512 5 0,4256 0,39 2 1 2 
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-610 54 4 0,284 0,91 2 1 2 

-184 278 5 0,283 0,34 2 1 2 

-119 477 5 0,2889 0,27 2 2 2 

-247 98 7 0,2742 0,24 2 2 2 

-557 298 4 0,367 0,9 2 1 2 

-118 482 5 0,2967 0,38 2 1 2 

-316 359 5 0,3104 0,4 2 1 2 

-421 501 5 0,4852 0,33 2 1 2 

-300 86 7 0,2882 0,17 2 2 2 

-430 43 5 0,2781 0,21 2 2 2 

-256 112 7 0,2733 0,17 2 2 2 

-506 96 5 0,2801 0,27 2 2 2 

-331 42 5 0,2752 0,23 2 2 2 

-436 232 5 0,2957 0,23 2 2 2 

-199 530 5 0,3045 0,2 2 2 2 

-217 498 5 0,3045 0,22 2 2 2 

-618 243 4 0,3729 0,52 2 1 2 

-241 200 5 0,2762 0,27 2 2 2 

-138 456 5 0,2899 0,22 2 2 2 

-614 528 4 0,5194 0,5 2 1 2 

-343 296 5 0,3006 0,19 2 2 2 

-210 524 1 0,3054 0,16 2 2 1 

-79 598 5 0,2957 0,24 2 2 2 

-147 318 7 0,2742 0,14 2 2 2 

-63 282 1 0,2694 0,14 2 2 1 

-54 471 5 0,284 0,26 2 2 2 

-415 215 5 0,2899 0,28 2 2 2 

119 -444 6 0,2733 0,09 1 2 2 

385 -552 1 0,4803 0,02 1 2 1 

471 -141 3 0,2814 0,02 1 2 1 

24 -623 3 0,2723 0,05 1 2 1 

309 -592 1 0,3827 0,03 1 2 1 

38 -561 2 0,2703 0,05 1 2 1 

338 -426 3 0,3182 0,04 1 2 1 

547 -533 1 0,5302 0,03 1 2 1 

610 -90 0 0,2742 0,15 1 2 1 

199 -436 2 0,2694 0,06 1 2 1 

391 -278 3 0,2908 0,03 1 2 1 

155 -2 2 0,2811 0,03 1 2 1 

363 -459 3 0,367 0,04 1 2 1 

156 -435 3 0,2664 0,05 1 2 1 

630 -223 3 0,3631 0,03 1 2 1 

125 -8 2 0,2772 0,04 1 2 1 

526 -266 3 0,329 0,03 1 2 1 

131 -125 2 0,2694 0,05 1 2 1 
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478 -629 7 0,5214 0,1 1 2 2 

475 -195 3 0,286 0,04 1 2 1 

330 -323 3 0,283 0,05 1 2 1 

285 -316 3 0,2869 0,06 1 2 1 

495 -330 1 0,4022 0,03 1 2 1 

346 -33 2 0,2645 0,05 1 2 1 

69 -570 3 0,2752 0,08 1 2 1 

380 -179 3 0,2645 0,04 1 2 1 

426 -249 3 0,2938 0,04 1 2 1 

46 -75 2 0,283 0,06 1 2 1 

316 -507 1 0,3368 0,05 1 2 1 

361 -412 3 0,3221 0,07 1 2 1 

171 -356 6 0,2673 0,07 1 2 2 

420 -317 3 0,3612 0,02 1 2 1 

603 -618 1 0,5233 0,06 1 2 1 

459 -89 3 0,2684 0,03 1 2 1 

579 -338 1 0,4825 0,01 1 2 1 

284 -204 2 0,2732 0,03 1 2 1 

603 -289 3 0,4432 0,02 1 2 1 

126 -568 1 0,285 0,04 1 2 1 

191 -258 2 0,2704 0,05 1 2 1 

443 -408 3 0,4168 0,03 1 2 1 

89 -389 2 0,2791 0,05 1 2 1 

328 -449 3 0,3709 0,03 1 2 1 

297 -53 2 0,2723 0,04 1 2 1 

11 -21 2 0,2859 0,04 1 2 1 

619 -158 3 0,3074 0,03 1 2 1 

177 -552 2 0,284 0,05 1 2 1 

538 -485 1 0,5151 0,01 1 2 1 

339 -548 3 0,37 0,05 1 2 1 

535 -612 1 0,5128 0,2 1 2 1 

167 -385 2 0,2791 0,05 1 2 1 

 

Appendix 3 : group proposal  

 

Group Project Proposal for BSc AI Thesis Research “PREDICT”  

Group constellation 

Supervisor:  Johan Kwisthout, Danaja Rutar 

Students: Bea Waelbers, Jet van Dijk, Borislav Sabev, Casper van Aarle 

Project description 

1. Group project title 

PREDICT: Predictive Robots Empirically Determine Influential Cognitive Theories 
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2. Abstract: (max 100 words) include a word count: 100 

Predictive Processing claims to be a unifying account that describes all of cognition. However, the 

account has been fleshed out only at the level of low-level perception. For higher cognition, e.g., 

action understanding, communication, and problem solving, it is sketchy at the best. In our 

experience, theoretical gaps, under-defined concepts, and ambiguities in a verbal theory become 

manifest when explicating the theory into computational models and implement them. We propose 

to implement and test parts of the predictive processing principle, partially using experiments with 

Mindstorms robots. We focus on conceptual and computational aspects of the development of 

generative models in PP. 

3. Brief Project description: (max. 400 words) 

Background and motivation 

The predictive processing account has gained considerable interest in contemporary cognitive 

neuroscience. Its key idea is that the brain is in essence a hierarchically organized hypothesis-testing 

mechanism, continuously attempting to minimize the error of its predictions. More precisely, the 

account assumes a hierarchy of increasingly abstract (probabilistic) predictions, and the hypothesized 

causes that drive the predictions. At each level of the hierarchy, the predictions about the inputs are 

compared with the actual inputs, and possible prediction errors are minimized. A crucial aspect of 

the theory – how are the generative models actually developed and how are they shaped by 

prediction errors– is yet overlooked. In this project we focus on various aspects of this foundational 

issue. 

Main aims and research questions of the project 

We aim to study an important open problem in the predictive processing account (how are 

generative models developed and revised) by means of conceptual analysis, computational and 

formal modeling, and robot experimentation and exploration. Here we build on previous bachelor 

projects within this theme, in particular the projects of Maaike ten Borg, Djamari Oetringer, Erwin de 

Wolff and Dennis Verheijden. In this group project we study: 

a. How developmental aspects, such as the emergence of color vision and the integration of 

auditory and visual cues, can affect the learning of generative models; 

b. How exploration strategies can be guided by characteristics of the generative model; 

c. How the trade-off between level-of-detail and prediction error can be resolved for a specific 

action requirement. 

 

Research plan (approach, methods, design, analyses) 

The research approach consists of conceptual analysis, computational and formal modeling, robot-

construction and exploration, and programming, in particular further development of the Predictive 

Processing Toolbox. Bea and Jet will focus on research question a, Caspar on research question b, 

and Borislav on research question c.  

The group members are invited to attend the Predictive Processing Research Seminar 

(http://www.socsci.ru.nl/johank/seminar.html) and the Donders Predictive Processing PI group at a 

regular basis. 

4. Schedule: (max. 1 page) 

See individual projects. 

5. Backup plan: 
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Name the backup supervisor who takes over in emergency cases 

Johan and Danaja are each other’s backup. 

6. Main References: (max. 10)  

Johan Kwisthout, Harold Bekkering, and Iris van Rooij (2017). To be precise, the details don't matter: 

On predictive processing, precision, and level of detail of predictions. Brain and Cognition, 112 

(special issue Perspectives on Human Probabilistic Inference), 84-91.  

Johan Kwisthout and Iris van Rooij (2015). Free energy minimization and information gain: The devil 

is in the details. Commentary on Friston, K., Rigoli, F., Ognibene, D., Mathys, C., FitzGerald, T., and 

Pezzulo, G. (2015). Active Inference and epistemic value. Cognitive Neuroscience, 6(4), 216-218. 

Maria Otworowska, Jordi Riemens, Chris Kamphuis, Pieter Wolfert, Louis Vuurpijl, and Johan 

Kwisthout (2015). The Robo-havioral Methodology: Developing Neuroscience Theories with FOES. 

Proceedings of the 27th Benelux Conference on AI (BNAIC'15), November 5-6, Hasselt, Belgium. 

 


