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Abstract 

Objects that frequently co-occur in the real-world appear to have canonical size relations. For 
example, a milk carton should be twice the size of the glass next to it. Similarly, a chair next to 
a table needs to be appropriately sized to form a functional group. Although the real-world size 
of objects has been identified as an integral property of object processing and search, little is 
known about how canonical size relations between objects influence recognition for 
semantically congruent object groups. Here, we used electroencephalography (EEG) and 
behavioural measures to test whether real-world size consistency between familiar object pairs 
facilitates grouping and recognition. We constructed silhouette object pairs containing 
semantically associated objects drawn from two possible real-world scale categories (eg., large 
objects – desk and chair, small objects – a bottle and a glass). We perturbed size consistency 
by rescaling one of the two items by 1:2 ratio. In Experiment 1 we validated the stimulus set 
through behavioural testing. In Experiment 2 brain activity was recorded using EEG while 
participants performed a one-back task during which size consistent and inconsistent targets 
were viewed. We tested whether event related potential (ERP) magnitudes differed as a function 
of size consistency. We found differences between mean amplitudes for size consistent and 
inconsistent trials specific to scale category. That is, for targets that appear large in the real-
world responses significantly differ as a function of consistency earlier (P200) as opposed to 
small targets (P300, P600). We further hypothesized that scene understanding, measured by 
scale decodability, should be better for consistent as opposed to inconsistent pairs. However, 
multivariate classification analysis found no evidence that those underlying representations 
differ significantly. 
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During our everyday experience with the visual world we do not encounter objects in 
isolation but embedded within the context of broader complex scenes and object groups. 
Relationships between individual objects can be defined by a variety of parameters such as their 
absolute locations in space, positional associations, and size relations (Biederman, Mezzanotte 
& Rabinowitz 1982). For objects that frequently tend to occur in everyday vision, as observers 
we can easily establish canonical associations for those parameters. For example, when bringing 
to mind the familiar pair of a bathroom mirror and sink we can clearly picture their canonical 
positional associations both in relation to location in space and each other, but we also have an 
inherent understanding and expectations about their size relations.  

Thus far, existing literature has identified neural and cognitive mechanisms which 
utilize positional properties to optimize object perception and recognition in the real world 
(Kaiser, Quek, Cichy & Peelen 2019; Stein, Kaiser & Peelen 2015; Kaiser & Peelen 2018). 
However, despite the intuitive nature of size relations between objects that appear on the same 
depth plane, whether similar mechanisms apply to facilitate grouping and recognition of objects 
based on their relative size remains unknown. Here, considering relative size as an integral 
physical property defining relations between visual objects, we aim to investigate its role in 
object and scene understanding.  

Scene to object contextual congruency on recognition and processing  

Much of the classic research on the effect of context on object processing has centered 
on object-scene congruency – that is, the ‘match’ between an object and the scene surrounding 
it. Scene to object congruency has been known to influence perceptual processing. Early 
computational models have identified low-level features defined by scene statistical properties 
to prime object recognition within scenes (Torralba 2003; Oliva & Torralba 2007). In addition 
to low-level properties, early work has shown that semantic consistency between objects and 
scenes facilitates recognition of relevant targets. In an early study by Palmer (1975), when 
showing participants pictures of scenes that could be semantically congruent, incongruent or 
neutral to an object following scene presentation, participants were more likely to correctly 
name an object for the congruent scene condition. However, scene to object contextual 
facilitation is not one directional. In the task described by Davenport and Potter (2004), 
participants were asked to identify backgrounds and foreground objects for consistent and 
inconsistent targets (e.g., a priest in a church as opposed to a priest on a football field). Beyond 
increased accuracy when reporting either the background or foreground object in consistent 
conditions, when asked to report both, participants underperformed in identifying the 
backgrounds with foreground objects in comparison to naming isolated backgrounds. This 
serves as evidence of integrative processing of scene and object context for optimal perceptual 
facilitation for scene to object context. 

Given the behavioural evidence of the effects of scene context on object recognition, 
focus has shifted to uncovering the underlying neural mechanisms of contextual facilitation 
effects. In an EEG study where participants had to identify an object appearing within a 
contextually congruent or incongruent scene, neural responses differed as a function of whether 
the semantic context of the scene matches the object (Ganis & Kutas, 2003). This difference 
was reflected in the N390 ERP component emerging around 300ms post stimulus presentation 



(peaking at 390ms). This modulation of the late N390 component points to contextual 
facilitation resulting from high level semantic associations rather than low-level visual features. 
Later behavioural evidence showed that contextual facilitation occurs by extracting the overall 
scene gist and not based on matching of low-level feature similarities between the object and 
the scene or as a result of the modulation of spatial attention (Munneke, Brentari & Peelen, 
2013). In support of scene-enabled object processing, evidence from decoding of neural signals 
from functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) 
data, identified enhanced decoding of object category when presented in the appropriate scene 
context in the object selective cortex (Brandman & Peelen, 2017). Decoding of MEG signals 
revealed scene-facilitated classification of objects to arise 100ms after peak decoding for single 
objects, providing evidence for the backpropagation of contextual scene information updating 
object representations.  

Typical absolute location of objects in scenes facilitates processing  

Semantic congruency between scenes and objects, might inform observers about what 
objects to expect in a given scene. However, objects also tend to occupy canonical absolute 
locations which help observers form expectations about where certain objects should be located. 
For example, certain objects in indoor scenes reliably occupy different parts of the visual field 
- we rarely encounter chairs in the upper visual field, or lamps in the lower visual field. The 
visual system appears to exploit these regularities in object positions, and has developed 
mechanisms that facilitate processing for objects appearing in their expected location (Kaiser 
et al., 2019). For example, behavioural evidence indicates that objects appearing in their typical 
absolute positions in space enter perceptual awareness faster than atypically positioned objects 
during continuous flash suppression tasks (CFS) (Kaiser & Cichy, 2018a). On a neural 
processing level, object identity representations in object selective regions are more robust for 
objects appearing in their typical locations (Kaiser & Cichy, 2018b). Based on their temporal 
profiles, those representational differences seem to emerge at the early stages of visual 
processing indicated by reliable decoding for the regular positioned items emerging at 140ms 
post stimulus presentation (Kaiser, Moeskops & Cichy, 2018). 

Relations between individual objects matter for perceptual processing  

Beyond associations between an object and the surrounding scene, the positional and 
semantic relationships between individual object units affect how viewers interact with and 
process the visual world. Larger objects are often indicative of the overall semantics, have been 
described to function as ‘anchors’ guiding attention and search based on their canonical spatial 
and semantic relations to other smaller objects (Boettcher, Draschkow, Dienhart, & Võ 2018; 
Boettcher, Dienhart, & Võ, 2017; Draschkow & Võ, 2017).  

Furthermore, those kinds of top-down prediction guiding object-to-object associations 
also seem to impact processing on a more fundamental level. Evidence from behavioural work 
has indicated that semantically congruent objects interacting in meaningful manner form 
coherent groups that gain an advantage in perceptual processing. In an object matching task, 
participants were presented with a target object and a distractor and were asked to match the 
target object to a label. Naming accuracy for target objects was higher when the target and 



distractor were positioned in a way to imply the objects could meaningfully interact, suggesting 
that those objects can be perceptually grouped (Green & Hummel, 2006) 

In addition, familiar objects that frequently co-occur (e.g., A table and a chair), have 
been shown to enter conscious awareness sooner (e.g., break through continuous flash 
suppression sooner) when appearing in their regular relative positions (Stein et al., 2015). These 
perceptual facilitations have been proposed to arise from a reduction in visual competition 
mediated by the grouping of objects in typical meaningful configurations. Instead of processing 
each object individually it has been proposed that the visual system integrates objects into 
meaningful groups taking advantage of previous knowledge about scene structure. This 
proposed mechanism serves to efficiently cope with the complexity of real-world scenes and 
limit attentional competition (Kaiser et al., 2019). 

Contextual integration signatures have also been observed on the neural processing 
level. In a study by Kaiser and Peelen (2018) a neural contextual integration index was 
identified in the lateral occipital cortex. When modeling responses from individual objects from 
a semantically congruent object pairs, the reflected mean activity in the region was more similar 
to objects that were irregularly positioned, signifying that those objects could not be 
perceptually grouped effectively. On the temporal domain a contextual integration response 
supporting the extraction of relevant features from meaningful sets, has been shown to emerge 
approximately 300ms post target presentation over right temporal channels (Quek & Peelen, 
2020). Taken together those findings provide evidence for object grouping based on positional 
regularities between familiar objects as a key factor aiding object processing in naturalistic 
conditions. 

The size of objects matters for perceptual processing 

In addition to positional regularities what other factors might determine whether 
frequently co-occurring objects are grouped by the visual system? On possibility is size 
relations between related objects. When two objects appear on the same depth plane, they 
display highly predictable size relations. For example, we can think of an egg and an eggcup. 
The strict size relation between the two objects in this case is not just apparent but also has 
significant functional implications. A disproportionately large egg in relation to the cup would 
disrupt the functional relationship between the objects indicating that the two do not exist on 
the same depth plane and therefore do not form a meaningful group. Grouping objects based on 
real-world size can have real life implications. Think of a car approaching a traffic sign from 
afar. When the car is further away in depth there is no reason to group the two objects. This 
way observers can assume there is enough time for them to get across safely. Failing to group 
the two objects when the car approaches the traffic sign could have disastrous real-life 
consequences, yet as human observers we are not prone to such perceptual miscalculations.  

Although intuitive, to date no existing work has examined whether real world size 
consistency mediates the degree to which the visual system groups objects to facilitate 
recognition. This is somewhat surprising given the substantial literature that has investigated 
how real-world size of individual objects matters to the visual system. Real world size 
selectivity has been demonstrated across the visual processing hierarchy in the ventral stream, 



irrespective of the retinal image the objects appear on the screen (Konkle & Oliva, 2012a). 
Moreover, real-world size appears to be an automatic and essential property of object 
processing, such that in a size judgement task familiar objects appearing consistent with their 
real-world size during experimental presentation are processed and categorized more efficiently 
(Konkle & Oliva, 2012b).   

The relative size of objects has also been shown to impact visual search strategies (Wolf, 
2017; Collegio, Nah, Scotti, & Shomstein, 2019). In the context of visual search, in comparison 
to artificial deep neural networks (DNNs), human observers tend to employ attentional 
strategies utilizing templates tuned to the real-world size of target objects when searching in 
naturalistic displays. Template-based strategies might cause observers to miss size-inconsistent 
targets in relation to scene context, even when those manipulations are as extreme as a giant 
toothbrush on a sink (Eckstein, Koehler, Welbourne & Akbas, 2017). In the study by Eckstein 
et al. (2017), objects were presented in canonical locations, indicating that spatial regularities 
between objects alone cannot be held accountable for template-based search efficiency in 
naturalistic settings. Therefore, in addition to attentional guidance based on semantic 
associations or positional regularities, the expected relative size of objects seems to influence 
search.  

Present study  

Where the above findings suggest that observers are sensitive to the relative size of co-
occurring objects (Collegio et al., 2019; Eckstein et al., 2017; Konkle & Oliva, 2012a; Konkle 
& Oliva, 2012b), to the best of our knowledge, there is no existing paradigm investigating 
whether the relative sizing of semantically-related objects affects object recognition itself. 
Specifically, it could be the case that when two related objects are appropriately sized (e.g., a 
proportional egg + eggcup), the visual system is able to ‘group’ the units in a way that facilitates 
recognition. Here we examined how the neural response to pairs of related objects (eg., desk + 
chair) varies as a function of their relative sizing. For the purposes of this study, relative object 
size refers to the proportional size of associated real-world objects appearing on the same depth 
plane. Since associated objects typically have a canonical size relationship (e.g., a milk carton 
would normally be 2-3 times taller than a glass), scaling either object up or down serves to 
disrupt the size consistency of the pair. We hypothesize that disrupting size relations between 
semantically congruent object pairs will inhibit efficient grouping and as a result affect 
recognition of the pair. We tested our hypothesis by investigating differences in the underlying 
neural representations and emerging temporal dynamics of objects pairs that display consistent 
or inconsistent size relations. To achieve this, we constructed a novel stimulus set of assorted 
pairs of two distinct real-world size categories in order to probe ensemble recognition of a 
semantic template when presented in their size-consistent configuration (see figure 1B for 
stimulus examples).  

As our stimulus set is novel, in Experiment 1, we attempted to validate it by behavioural 
testing to ultimately select the exemplars that drive a size-consistency effect. We characterize 
this effect of interest as degraded recognition for size inconsistent pairs compared to facilitated 
perceptual processing for their size-consistent counterparts. Such an observation for individual 



exemplars was used as an inclusion criterion for stimuli to be included in the following EEG 
paradigm for Experiment 2. 

We used ERP and multivariate decoding methods of EEG signals to compare responses 
to size consistent as opposed to inconsistent pairs. Target pairs were of two distinct real-world 
scale categories, objects that appear large in the real world (e.g., a chair and a desk) or small 
(e.g., a spoon and a bowl). We trained a linear discriminate classifier (LDA) to distinguish 
between real-world scale categories of targets for size consistent and inconsistent pairs. If 
relative size is a factor which enables recognition and grouping, we expect lower classification 
accuracy for size inconsistent as opposed to consistent targets. By observing differences 
between conditions through ERPs we expect differences for size consistent and inconsistent 
pairs in later components associated with indexing semantic congruency around 300ms post 
stimulus presentation (Gannis & Kutas, 2003). Differences are also expected later in the time 
course for components previously linked to structural inconsistencies in scenes after 600ms (Vo 
& Wolf, 2013).  

Experiment 1 

Methods 

Participants 

Data from 24 (20 female) healthy individuals with an age range of 19 – 28 (Mage = 23.2 
± 3.09) were collected and included in the final analysis. Participants were recruited on a 
voluntary basis using the online research recruitment system at Radboud University in return 
for monetary compensation. All participants reported no neurological history and had normal 
or corrected-to-normal vision. Prior to their participation, all participants were briefed, read, 
and signed written informed consent forms. The study received approval from the Radboud 
University Faculty of Social Sciences Ethics Committee. Collected data was stored using 
pseudorandomized codes according to the European General Data Protection Regulation (EU 
GDPR).   

Stimuli  

The stimuli used for the behavioural paradigm consisted of 48 silhouettes of familiar 
object pairs drawn from two distinct real-world scale categories. Half the object pairs (24 pairs) 
contained ‘small’ scale  objects, i.e., objects that are manipulable, easily grasped, found on 
indoor surfaces and are typically no larger than a computer monitor (e.g., A teapot and a cup). 
The remaining half (24 pairs) contained ‘large’ scale objects, i.e., objects that cannot be easily 
grasped or manipulated and typically convey the gist of a larger indoor scene observers operate 
within (e.g., A sofa and a floor lamp). We chose these specific real-world scale categories since 
there is both behavioural and neural evidence to suggest they are processed differently (Konkle 
& Oliva, 2012b; Josephs & Konkle, 2019).  

Since our aim was to examine whether size-consistent object pairs would be 
recognised/processed more efficiently than size-inconsistent pairs, we presented objects in a 
Silhouette form that maintained high-level semantic and relative size information while losing 
other low and mid-level visual features that could trigger recognition (e.g., texture, within-



object contour variance and colour). By isolating objects pairs from the overall scene, we 
prohibit recognition based on scene-driven contextual cues and attentional guidance, 
constituting the size and semantic relations between the items as the only form of contextual 
information.  

To introduce the central manipulation of relative size consistency, we created four 
versions of each object pair (e.g., plate + spoon). We began by creating a size-consistent version 
in which the objects were scaled proportionally (i.e., as you would encounter them at the same 
depth plane, see Figure 1A). We then created an identical, larger version of this pair (1:2 size 
increase). For the size-inconsistent exemplars, the objects from the two different size-consistent 
versions were recombined to yield the two different size-inconsistent pairs (Fig. 1B).   

We attempted to limit the interference of mid and low-level confounds interacting with 
size-consistency induced effects, by taking low-level differences into consideration when 
constructing size inconsistent pairs. Namely, we ensured the distance between the two objects 
in the size-inconsistent pairs was be equal to the distance to between their size consistent 
counterparts. To achieve this, we randomly labelled the objects in each pair as object 1 and 
object 2. We then utilized the smaller distance whenever object 1 was the small object in the 
pair and the large distance when it was the larger object. For the small real-world scale category, 
the small mean distance in pixels between objects in the pair was MsmallDist = 59.17 (SD = 25.75) 
and the large average distance MlargeDist = 117.14 (SD = 51.51). Similarly, for the large real-
world scale category, MsmallDist = 61.94 (SD = 38.19) and MlargeDist = 117.02 (SD = 74.77). 

An additional possible low-level confound is alignment, in that large-scale objects tend 
to be aligned when viewed from the same viewpoint as opposed to smaller objects appearing 
on surfaces. For example, a bookcase and desk are aligned horizontally along the floor; an oven 
is vertically aligned under a rangehood, etc. To control for such alignment-related confounds, 
we tried to maintain any alignments between objects across conditions (see Fig. 1B for 
examples of stimulus subsets).   

 

Fig 1. Stimulus construction overview and example subsets. A.  Stimulus construction overview. Size 
inconsistent object pairs were constructed by recombining the objects from the two versions of size consistent 
pairs. The two distances between objects in the size-inconsistent versions were the same as in the size consistent 
condition. For each version for the size consistent and inconsistent pairs the distance between the two objects in 
the pair are the same. B. Examples of stimulus subsets. All displayed exemplars were both included in experiments 
1 and 2. 

 

Procedure & Design  

The task was performed on a 1920x1080 pixel desktop computer monitor with a 120Hz 
refresh rate. All participants were seated approximately 65 cm away from the screen. All targets 
were presented on a uniform grey background on as 14x14cm squares. The experimental 
sequence presentation was programmed and controlled using MATLAB 2013b (MathWorks, 
Natick, MA) and the Psychophysics Toolbox (Brainard, 1997).   



We used a 2 x 2 x 2 design with the factors Size Consistency (consistent/inconsistent), Real 
World Scale (Desk/Room), and Rotation (upright, inverted). 

Participants were asked to perform a two-part computerized task consisting of ten 
experimental blocks, of 170 trials each and a 20-trial practice block. Trials were presented 
pseudo randomly as we implemented a counterbalancing procedure to ensure each stimulus was 
presented in one condition only for each participant. That is, for a given participant, a given 
object pair (e.g., plate + spoon) could appear only in one condition, and not in any of the 
remaining 7 conditions This way, we attempted to prevent carry-over learning of exemplar 
identity from one condition to another (i.e., seeing an object in the consistent condition first 
might make it more recognisable in the inconsistent condition later) 

Each experimental trial started with a 75ms central fixation cross followed by a phase-
scrambled mask presented for a variable interval between 300 to 800ms. The target was then 
centrally presented within the phase-scrambled mask for 150ms at 40% opacity. Following the 
target presentation, a second (different) phase-scrambled mask appeared prompting participants 
to provide a speeded response about the real-world spatial-scale identity of the stimulus pair by 
pressing the ‘M’ or ‘Z’ key for ‘large’ and ‘small’ scales. Response keys were counterbalanced 
across participants. After categorising the objects’ real-world scale, participants were prompted 
to type the individual object identities they saw (see Figure 2). Order of entry for each object 
was emphasized as irrelevant since object configurations varied and items were not labelled 
upon presentation. We explicitly asked them to indicate the identities of individual objects and 
not a general scene category. For example, given the target stimulus was a bathtub and a shower 
curtain, accepted responses would be, ‘object 1: bathtub, shower, tub’ and ‘object 2: shower 
curtain, curtain, towel’. An example of an undesirable response for the task would be ‘object 1: 
shower, bathroom’ while leaving the second object prompt blank. In addition, we encouraged 
observers to type in each object prompt with their best guess, only leaving one or both prompts 
blank if they were completely unaware of object identities. Everyone was encouraged to provide 
their answers in English. Exceptions were made when participants knew how to identify objects 
only in their native language, especially for Dutch natives. Due to the self-paced nature of the 
second part of each trial sequence, experimental presentation time varied with an average run 
of one and a half to two hours. 

Fig 2. Behavioural task overview. Typical trial procedure. Participants for each trial performed a scale 
categorization and a following object naming task during which they were requested to type in the blank spaces 
the individual object names.   

Analysis 

We had three metrics of interest in Experiment 1: categorization accuracy and response 
time on the real-world scale categorization task, and naming accuracy on the object naming 
task. For the latter, object identification performance scores were measured based on the 
number of items named correctly (0 for no responses or no correct responses, 1 for one correct 
response and 2 for two correct responses). We evaluated the typed responses against a pre-
generated list of possible correct labels for both objects within the pair. To minimise bias, the 
experimenter evaluating responses was blind to the rotation and size-consistency of the 
presented exemplar but was aware of exemplar number and spatial scale category. Responses 



that were not on the pre-generated list of object names, but semantically related to the object in 
the pair and coincided with the real-world size were also considered correct (e.g., a kitchen 
cupboard being referred to as ‘piece of furniture’).  

For each metric, we performed a three-way repeated measure analysis of variance 
(ANOVA) to access effects of real-world scale category, size consistency and rotation. In 
addition, we also calculated a standardised score (i.e., z-score) by subtracting the grand average 
of all items from the mean average of each item, and dividing by the standard deviation of the 
grand average !!"#$"	!%&'()'*	

$%%&'()'*
. We then used these standardised z-scores to compute difference 

scores between size consistent and inconsistent pairs of the same exemplar based on z-score 
values. It was important to use standardised scores for this difference calculation since each 
subject saw each item in only one consistency condition, the difference scores are between 
participants. For all three metrics, a positive difference value indicates a size consistency effect 
in the expected direction (e.g., higher classification accuracy, faster RTs, and more accuracy 
naming for consistent vs. inconsistent pairs).  

Results 

Group analysis 

Scale categorization task. Scale categorization accuracy showed main effects of real-
world scale, F(1,23) = 22.62, p < 0.01, and image rotation, F(1,23) = 60.10, p  < 0.001. As can 
be seen in Figure 3A, observers classified the scale of object pairs more accurately overall when 
the stimuli appeared on their upright as opposed to inverted condition. Overall small scale 
targets were more often accurately classified. There was a marginal interaction between scale 
and size consistency (F(1,23) = 3.86, p = 0.061). No other main effects or interactions reached 
significance (Fig. 3A).  

Concerning reaction times, main effect of all three factors of scale F(1,23) = 8.69, p = 
0.007, rotation F(1,23) = 16.15, p < 0.001 and size consistency (F(1,23) = 4.62, p = 0.042) were 
observed for the response time measure. With overall upright and consistent targets being 
categorized faster. In terms of scale, small targets demonstrate faster reaction times as seen on 
Figure 3B. However no significant interactions between any factors were noted. 

Object-naming task. We observed a main effect of scale on the number of objects 
named correctly F(1,23) = 120.59, p < 0.001, such that observers were better at naming objects 
from the small scale. There was also a significant main effect of rotation F(1,23) = 248.54, p = 
0.000, with upright objects producing higher naming scores than inverted ones (see Fig. 3C). 
Size consistency effects were not statistically significant (F(1,23) = 1.80, p = 0.191) as was also 
the case for interactions. 

Fig 3. Group level results from behavioural Experiment 1. A. Scale classification accuracy scores. B. Scale 
classification reaction times C. Object naming performance.  

Individual item analysis  

Since a primary goal of behavioural Experiment 1 was to identify a subset of stimuli 
capable of driving strong size-consistency effects to be used in the subsequent EEG paradigm 



of Experiment 2, we also inspected the data at the individual stimulus level. To be selected, a 
given object pair had to express consistency effects for at least two or more metrics. Based on 
this criterion, ten items for each spatial scale category qualified to be included in the EEG 
paradigm of Experiment 2.  

Figure 4 shows the group performance on each metric of interest for each individual 
item. Here we ranked the object pairs by the magnitude of the consistency effect in the upright 
condition. On all measures of interest, a positive difference score for a given target indicates 
the expected effect of size consistency for this item. Based on this ranking, we identified ten 
targets of each spatial scale to serve as stimuli in the subsequent EEG Experiment 2 (Fig. 4D). 
Figure 1B shows examples of selected targets in all eight different versions.  

Fig 4. Individual item analysis. The difference scores based on size consistency for Experiment 1 for A. Scale 
classification accuracy. B. Scale classification reaction times. C. Object naming performance. Positive values 
denote a size consistency effect in the expected direction (better performance for size-consistent pairs). Each label 
corresponds to an individual stimulus number. The items are ranked by effect magnitude in the Upright condition, 
with objects displaying the highest effect magnitude for the upright condition in favour of a consistency effect. 
Selected items are noted by a green number label. D. Size consistent versions of the final stimuli selected for 
inclusion in Experiment 2. Ten for each distinct scale category 

Interim discussion 

In Experiment 1, we used a behavioural paradigm to test whether relative size 
consistency affects object recognition as operationalized through scale categorization accuracy, 
scale categorization reaction time, and object naming performance. We then performed an 
individual item analysis to select the stimulus exemplars driving a size consistency effect, by 
ranking difference scores for the upright versions of the pairs. In terms of a group level analysis 
for all targets, we identified a significant main effect of the size consistency manipulation only 
for reaction times in the scale categorization task. Inconsistently sized targets displayed slower 
reaction times than their size consistent counterparts. Observing an effect of size consistency 
for only one out of three metrics of interest, provides little evidence that size consistency affects 
recognition on the behavioural level for the entire stimulus set used. Overall, a main effect of 
scale was found for all three tasks. Small scale targets seem to display increased performance 
in all three measures. This indicates that targets which belong in the small-scale category are 
better recognized than larger objects. However, the primary goal of this experiment was to 
validate the stimulus set and select targets for which the size inconsistent versions produce 
lower categorization accuracy, slower reaction times and lower naming performance. We 
therefore further performed an individual item analysis to select the stimulus exemplars driving 
an effect in the expected direction by ranking differences score for the size consistent and 
inconsistent pairs based on standardized z-scores for each target subset. This approach selected 
a subset of ten stimuli for each real-world scale category to include for EEG testing which 
display an effect of consistency for two or three metrics of interest (Fig. 4). 

Experiment 2 

Methods 

Participants 



Participants were recruited on a voluntary basis using the online research recruitment 
system at Radboud University in return for monetary compensation. Data from 24 (15 female) 
healthy individuals with an age range of 19 – 31 (M = 23.3 ± 3.03) were collected and included 
in the final analysis. All participants reported no neurological history and had normal or 
corrected-to-normal vision. Prior to their participation everyone was briefed, read and signed 
written informed consent forms. The study received approval from the Radboud University 
Faculty of Social Sciences Ethics Committee. Data was stored using pseudorandomized codes 
according to the European General Data Protection Regulation (EU GDPR).   

Stimuli  

Based on the behavioural data obtained in Experiment 1, we selected a subset of ten 
stimuli from each real-world scale category (Fig. 4D). The exemplars were chosen for their 
demonstrated capacity to elicit size consistency effects on two or more measures of interest (see 
Experiment 1). Unlike for the behavioural Experiment 1, here we further included the objects 
from every selected pair as singleton exemplars during experimental blocks (see Figure 1A for 
single object examples). Singletons were located between their original position as a part of the 
consistent and inconsistent version. The single objects were presented in both their large and 
small versions, segmented from the consistent silhouette pairs of each size respectively (see 
Fig. 1A).    

Procedure & Design  

The beginning of each trial was indicated by a central fixation cross appearing for a 200-
500ms randomly asynchronous intertrial interval (ITI), followed by phase-scrambled noise 
mask, for a 400ms duration. Within the mask one of the chosen exemplars was shown briefly 
for 100ms at 40% opacity followed by a second mask with a duration of 200ms (see Figure 5 
for the experimental presentation sequence).  

Each participant performed 10 experimental blocks of 80 trials preceded by one practice 
block of 20 trials with a slower presentation sequence speed. None of the exemplars in the 
practice block appeared during the experimental presentation blocks. Unlike the behavioural 
Experiment 1, here all participants saw all targets in all conditions across the course of the 
experiment. Counterbalancing of targets was done by presenting each target in only one version 
within each block to minimise learning of object identities. We asked participants to perform a 
simple one-back task (press the button when a target repeated across trials). This task was 
orthogonal to the size consistency manipulation as size differences within object pairs were not 
task relevant. The main function of the task was to enforce participants to sustain their attention 
to the presentation sequence. Accuracy scores were provided as feedback at the end of each 
block; calculated by considering both correct rejections of non-repeat targets and hits for repeat 
targets. Each experimental block lasted for approximately five minutes with an optional short 
break half-way through each block and a longer break before initiating the next block. 

  

Fig 5. Experimental presentation sequence for Experiment 2. Participants were asked to perform a one-ack 
task whenever they detect an exact repeat target. This is an example of two discrete experimental trials including 
a one-back target.  



Experimental setup  

The task was performed on 1920x1080 pixel desktop computer monitor with a 120Hz 
refresh rate. All participants were seated approximately 65 cm away from the screen, targets 
were presented on a uniform grey background on as 14x14cm squares. The experimental 
sequence presentation was programmed and controlled using Presentation software (Version 
18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

EEG acquisition 

Scalp EEG was recorded using a 64-channel active electrode actiCap system at a 
sampling rate of 500Hz. Eye movement artifacts were measured using external passive 
electrodes situated at the outer canthus of each eye (to monitor horizontal eye-movements) and 
above and under the right eye (to monitor blinks). The ground electrode for these passive ocular 
channels was placed on the tip of the nose. Before initiating recording, impedances for all 
individual scalp channels were confirmed to be below 40 kOhm. The left mastoid acted as an 
online reference in BrainVision recorder. The experimenter monitored the EEG trace 
throughout recording. Each experimental block was initiated manually after following visual 
inspection of the EEG trace ensuring that there were no high amplitude deflections resulting 
from ocular or other muscle artefacts.  

Analysis 

ERP Analysis 

Pre-processing  

EEG pre-processing was carried out using the FieldTrip toolbox (Oostenveld, Fries, 
Maris & Schoffelen, 2011; http://fieldtriptoolbox.org) in MATLAB 2018a. Data were re-
referenced to the left and right linked mastoid channels. A fourth order Butterworth bandpass 
filter (0.05-120 Hz) was applied to the raw data for 64 scalp channels. We also used a multi-
notch filter to remove electrical line noise at 50, 100 and 150Hz. Following filtering, we down 
sampled the continuous EEG trace to 250Hz for easier processing and storage. We then 
proceeded to perform blink-related artifact rejection using independent component analysis 
(ICA) with a square mixing matrix, by visually inspecting the emergent components. By 
visually inspecting the results of the ICA we replaced artefact ridden channels with the weighted 
average of their neighbouring electrodes. The maximum number of channels replaced per 
participant was three.  

We used a custom MATLAB function in conjunction with existing Fieldtrip functions 
to segment individual epochs around each target presentation (-200 to 1000ms). The targets 
were initially separated by two trial types, single and paired item targets, resulting to 800 trials 
of each type. One-back targets were identified and excluded from the final analysis. By visually 
inspecting the resulting trials, we identified 1.5% of total trials as artifact-ridden and excluded 
them from the final analysis. Segmented trials were split into consistent and inconsistent pairs 
according to the consistency condition of the presented target. As we were also interested in 
possible scale-specific consistency effects, further segmentation categorized trials based on 
consistency for each of the two real world scale categories. 



ERP component selection 

Since we did not have a priori assumptions about relevant time windows for our effects 
of interest, time windows for ERP analysis were identifyied by averaging trials across all 
conditions and observing the resulting peaks in the grand-averaged waveform independent of 
condition. This procedure identified four component windows of interest, namely an N170 
(105-195ms), P200 (160-240ms), P300 (250-400ms) and a late P600 (560-750ms) (See Figure 
6A).  

 

 

 

ROI selection 

Similar to time-window selection, regions of interest (ROIs) were identified by 
observing the emerging scalp topography of the grand-averaged waveform across the duration 
of the trial blind to condition. We identified three ROIs, including frontal (Fp1, Fp2, AF7, AF3, 
AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8) and midcentral (FC3, FC1, FCz, FC2, FC4, C3, C1, 
Cz, C2, C4, CP3, CP1, CPz, CP2, CP4) and posterior electrodes (P7, P5, PO9, PO7, PO3, O1, 
P6, P8, PO4, PO8, PO10, O2). 

Fig 6. Averaged responses across conditions. A. Averaged waveform. The averaged waveform independent of 
condition was plotted for ERP time window selection. B. Average scalp topography per component. The average 
scalp topography per component was used for ROI selection. C. Selected ROIs.  

Statistical analysis of ERPs 

Cluster based permutation statistics. To evaluate whether the evoked responses differ 
significantly for the two conditions of interest, size consistent and size inconsistent pairs for all 
pairs and for trials segmented by scale category (large and small), we performed a non-
parametric clustered based permutation test using the FieldTrip toolbox in MATLAB 2018b 
(Maris & Oostenveld, 2007). We tested for differences between the two conditions both across 
the entire trial time window (-200 to 1000ms) and within the individual pre-defined component 
windows. To evaluate whether our two conditions differ significantly using the cluster-based 
permutation test, the larger clusters in the data are sampled by performing an independent 
samples t-test at each individual sample. The permutation distribution for the selected t-test 
statistic was created by drawing 10000 random permutations from the observed data. Finally, 
by using a Monte Carlo estimate we computed the p-value under the permutation distribution 
for an alpha level of 0.05. 

Amplitude per component window. In addition to the timepoint-wise analysis above, 
we also computed conditional subject means within specific component windows (indicated in 
Figure 6). For each component, we subjected the means to a three-way analysis of variance 
(ANOVA) using the factors ROI (posterior, midcentral, frontal), scale category (large, small) 
and consistency (size consistent, size inconsistent). Furthermore, we also performed a two-way 
repeated measures ANOVA using factors consistency and scale for a priori selected 



combinations of ROI and component. We focused on the posterior ROI for the N170 component 
to investigate possible differences at the early stages of visual processing. Statistical testing for 
the P200 component was restricted to midcentral regions due to increased positivity in those 
regions for the averaged responses (Fig. 1B). Finally, for later components (P600, P300) we 
focused on the midcentral and frontal regions, given prior evidence for the differentiation of 
responses over such channels for semantic and structural violation in visual scenes (Vo & Wolf, 
2013). When we observed significant interactions between consistency and scale, we performed 
follow-up paired sampled t-tests between the means of the consistent and inconsistent 
conditions for each real-world scale category, using Bonferroni to correct for multiple 
comparisons.  

Multivariate pattern analysis of EEG waveforms  

In addition to the above univariate quantifications, we further employed a neural 
decoding approach using Multivariate Pattern Analysis (MVPA) to assess whether our size 
consistency manipulation affected perceptual processing and recognition at the representational 
level. MVPA is understood to have higher sensitivity for distinguishing differences between 
experimental conditions than univariate analysis methods such as ERPs (Carlson, Grootswagers 
& Robinson, 2019). 

We performed MVPA decoding for the electrophysiological data using segmented trials 
that were subject to the same pre-processing pipeline described above, except that  here we did 
not perform ICA for artifact rejection and channel correction, nor were any trials excluded (As 
suggested by Carlson et al. 2019). We performed two different types of analysis:  

First, we were interested in identifying representational differences between targets 
based on their real-world scale. To achieve this, we trained a classifier using linear discriminant 
analysis (LDA) to distinguish between trials containing small-scale vs. large-scale object pairs. 
By using a decoding parameter orthogonal to our central size consistency manipulation, we 
hoped to use this analysis as an indirect measure of scene understanding/recognition. We 
hypothesize that in the case size consistency is a factor affecting recognition and grouping of 
familiar object pairs, by disrupting relative size relations the objects will no longer form a 
coherent recognizable group. Therefore, information about the semantic context of real-world 
scale category of the pair should not be as accessible for size inconsistent targets. This way 
higher and earlier classification accuracy for scale for size consistent as opposed to inconsistent 
pairs would indicate facilitated recognition of target category for the former and degraded 
recognition for the later. 

We applied a 10-fold cross validation procedure in which we trained and tested the 
classifier on independent trials, by training on 90% of the total trials and testing on the 
remaining 10%. This procedure was performed ten times for each participants data, ensuring 
that all trials served in the training and testing set. To statistically assess whether classifier 
performance was higher than chance for specific timepoints while controlling for false 
discovery rates (FDR), we used a threshold-free cluster enhancement approach (TFCE) (Smith 
& Nichols, 2009). For TFCE, the grand average of the real classification accuracy scores are 



tested against a null distribution of the data based on 100 permutations of the decoding analysis 
where targets are randomly re-assigned.  

In a subsequent separate analysis, we employed the same decoding approach to examine 
size consistency representations directly. Here we trained the classifier to distinguish size-
consistent or inconsistent object pairs, again training and testing on independent data following 
the procedures outlined above.  

Results 

ERP results 

Cluster based statistics.  

Size consistency effect averaged across Scale. Cluster based permutation statistics did 
not reveal any significant clusters between the size-consistent and inconsistent pairs when 
testing over the entire trial window (-200 to 1000ms around stimulus presentation). For the 
specific component windows, we identified a marginally significant cluster for size consistent 
and inconsistent pairs at the N170 latency between 140 to 175ms (p = 0.065) that was most 
prominent over frontal channels. No other component windows showed significant clusters.  

Next, we split consistent and inconsistent trials by real world scale category and 
examined the effect of size consistency within each scale separately.  

Size consistency effect for large scale pairs. No significant differences between size-
consistent and inconsistent pairs were revealed by the permutation test for the entire epoch time 
window for large scale object pairs. When restricting statistical analysis to our components of 
interest a significant cluster was observed for the P200 time window (p = 0.020). This difference 
between consistency conditions was more prominent over frontal channels spreading towards 
posterior channels throughout the component window. 

Size consistency effect for small scale pairs. The permutation test did not identify any 
statistically significant differences between consistency conditions for the entire trial window. 
For the small real-world scale category, the permutation test within the specific component time 
windows revealed a significant difference between size consistent and inconsistent pairs during 
the P300 window over posterior channels (p = 0. 007) and a marginal significant difference for 
the P600 latency over frontal and midcentral channels (p = 0. 055) 

Amplitude differences per component.  

Overall, three-way ANOVAs did not yield any significant interaction effects between 
ROI, size consistency and real world-scale category for any of the four pre-defined components. 
However, given a priori assumptions about the site and latency of the effect, we nevertheless 
performed two-way ANOVAs containing the factors scale category (large scale, small scale) 
and consistency (size consistent, size inconsistent) for the posterior ROI for the N170 window, 
midcentral ROI for the P200 and midcentral and frontal ROIs both for the P300 and P600 
window. 



Early N170 time window. For the N170 component, we were specifically interested in 
the posterior ROI over visual cortex, where we expected early differences between conditions 
should manifest. Here we identified a significant main effect of scale F(1,23) = 58.01, p < 0.001 
and an interaction between size consistency and scale F(1,23) = 5.75, p = 0.024. For the main 
effect of scale, large targets displayed a stronger negative mean amplitude that small targets. In 
terms of the interaction effect, the large real-world scale category displayed stronger negative 
mean amplitudes for the consistent as opposed to the inconsistent condition while small real-
world scale targets showed the reverse pattern (see Figure 7A). However, follow up paired 
sample t-tests of the consistency effect at each scale failed to reach significance in either case 
(small scale t(23) = -1.57, p = 0.1595, t(23) = 1.24, p = 0.1279).  

P200 time window. For the P200 time window, we focused on the midcentral ROI. Here 
the two-away ANOVA revealed a significant interaction between scale and size consistency 
F(1,23) = 4.38, p = 0.047. We followed up this interaction by performing a paired sample t-test 
between the consistent and inconsistent conditions at each level of scale individually. For large 
targets, there was a marginally statistically significant difference between the consistent and 
inconsistent conditions, t(23) = 2.77, p = 0.064, with inconsistent pairs displaying a higher mean 
amplitude (see Figure 7B). The size consistency effect for small targets did not reach 
significance (t(23) = 5.51, p = 1.000).  

P300 time window. Here a two way ANOVA for the midcentral channels revealed a 
significant main effect of scale, F(1,23) = 20.15, p = 0.000, with large scale targets yielding 
overall larger mean amplitudes than small scale targets. There was also a marginally significant 
interaction between scale and consistency F(1,23) = 3.18, p = 0.087, which we followed up by 
conducting a paired samples t-test of the consistency effect in each scale category individually. 
For small scale targets, we observed stronger positive mean amplitudes for the size consistent 
vs. inconsistent condition, t(24) = -3.273, p = 0.006 (see Fig. 7C). For large targets the paired 
samples t-test did not yield statistically significant results (t(23) = 0.22, p = 0.720). In contrast, 
large targets displayed the opposite effect.  For the frontal ROI the two way ANOVA showed 
only a significant main effect of scale, F(1,23) = 14.439, p < 0.001, with large scale pairs overall 
displaying larger positive amplitudes than small pairs.  

Late P600 time window. For the late P600 time window, a two-way ANOVA over 
midcentral channels displayed only a marginally significant main effect of size consistency 
F(1,23) = 3.69, p = 0.067. Over frontal channels, we identified a significant main effect of size 
consistency F(1,23) = 4.267, p = 0.050 where small scale targets show an overall larger mean 
amplitude and a marginally significant interaction between scale and consistency F(1,23) = 
4.06, p = 0.055. A grater positive mean amplitude is reported for the consistent pairs for the 
small scale category while the opposite effect is present for large scale targets with size 
consistent pairs yielding a slightly greater positive mean amplitude. Following up this 
interaction using paired samples t-test we identified significant differences in mean amplitudes 
between small scale targets t(24) = -2.39, p = 0.050, where inconsistent targets display higher 
positive amplitudes. 



Fig 7. Evoked responses within the three ROIs according toas a function of size consistency for large (left 
column) and small (right column) scale categories. The zero timepoint marks stimulus onset. Each column 
reflects a scale category (left – large scale, right – small scale) and each row one of the three ROIs. 

Fig 8. Mean amplitudes per component/ROI as a function of scale and size consistency.  Mean amplitudes for 
all three ROIs for components N170 (A), P200 (B), P300 (C), and P600 (D). See Figure 6 for component windows.  

MVPA results 

Decoding real-world scale category 

Here we began by training a classifier to distinguish between trials containing small 
scale and large scale object pairs. We used decoding of scale category as a proxy for 
recognition. If consistent size relations play a significant role for recognition and grouping of 
the object pairs, then this should be reflected by decreased decoding of the semantic content of 
scale/scene category for size inconsistent as opposed to consistent pairs. Collapsing across size-
consistent and inconsistent targets, we observed that real-world scale was decodable from 135 
to 450. This above chance performance seems to be sustained over that time-window and peaks 
at 210ms. This confirms that information about the real-world scale of the targets is contained 
in the signal. As a sanity check analysis, we also conducted the same type of decoding of real-
world scale category for single targets assess the validity of the pair decoding performance. No 
above chance accuracy was found for single targets at any time point, suggesting that the 
representation of real-world scale elicited by the object pairs resulted from the two objects 
forming a sparse or basic scene (Fig. 8A). 

Since we were most interested in whether scale decoding, reflecting the semantic 
content of the pair, would vary with the objects’ size relations, we next separated the data by 
the two conditions and trained and tested on scale category. This analysis revealed above chance 
accuracies for both types of targets (see Fig. 8B). Here we observed above-chance decoding of 
scale for both size consistent and inconsistent pairs, with decoding emerging sooner in the 
former condition (160ms vs. 190ms). Decoding also persisted for slightly longer in the size-
consistent condition (250ms vs. 210ms). Scale decoding in both conditions peaked around the 
200ms mark. To access whether the two scores significantly differ from one another, we 
performed a two-tailed t-test at every timepoint from -100ms to 700ms post stimulus onset. 
However, there was no significant difference in decoding accuracy between the consistent and 
inconsistent pairs at any timepoint. A secondary analysis by averaging accuracy means across 
participants and consistency conditions was performed using a one-tailed t-test within the 170 
to 230 ms time-window. This window of interest was chosen since both size consistent and 
inconsistent targets display above chance classification accuracies in order to test for effects of 
consistency for the average of the two. Analysis of the averaged classifier performance within 
the 170-230 time window did generate statistically significant results (t(23) = 1.406, p = 0.173, 
CI [-0.004 0.021]). 

 

 

Fig 9. Decoding real world scale category for independent trials. Decoding scale category implementing 10-
fold cross validation for independent trials. The 50 percent line denotes chance classification performance and the 



zero-time point notes the stimulus onset. Coloured stars below the 50 percent line indicate timepoints where 
classification accuracy for the given condition is significantly above chance. Black stars above the 50 percent line 
indicate the results of a two-tailed t-test, testing differences between classification accuracies for two conditions. 
A. Decoding real-world scale category independently for all pairs and single targets. Significant above chance 
classification performance is reported from 140 to 450ms only for pair targets. Classification performance differs 
significantly for pair and single targets within the 170 to 240ms time window B. Decoding real-world scale 
category independently for consistent and inconsistent targets. Above chance classification accuracy is reported 
for both size consistent and inconsistent pairs peaking at 200ms. Difference between performance for the two 
consistency conditions did not reach statistical significance. 

Decoding size consistency 

In a secondary analysis, we trained a new classifier to distinguish between size 
consistent and inconsistent pairs, separately for large and small scale object pairs. Here we 
observed no above chance decoding of size consistency at any timepoint, for either scale 
category (Fig. 9). That is, we found no evidence that the neural response to object pairs 
contained information about their relative size appropriateness.  

Fig 10. Decoding size consistency by scale category for independent trials for small and large real-world 
scale targets. No above chance classification accuracy for decoding of size-consistency was reported at any time 
point.  

 

Discussion 

In this study, we sought to investigate the question of whether size consistency 
facilitates neural processing of object pairs. We suspected that semantically associated object 
pairs may be recognized better when they display canonical size relations (eg. a carton of milk 
being twice the size of a glass). We tested our hypothesis recording brain activity using EEG 
while observers saw object pairs of either consistent or inconsistent size proportions. Object 
pairs could be drawn from either a small or large real-world scale (ex. large objects – desk and 
chair, small objects – a bottle and a glass). The selected stimulus set used for EEG testing was 
pre-validated through behavioural testing (see Experiment 1). Through EEG testing we 
explored the underlying temporal dynamics using ERP and MVPA classification methods. We 
were primarily interested in whether the neural response to object pairs would differ as a 
function of the objects’ size-consistency and if those effects are specific to scale category.  

Using ERP methods, we were interested in identifying differences within pre-selected 
components between evoked responses for size consistent and inconsistent pairs. Based on the 
mean amplitude of responses over the entire trial window blind to condition we pre-defined 
four component windows (N170, P200, P300, P600) and three ROIs (posterior, midcentral, 
frontal). For the early N170 component window we considered to focus statistical testing on 
the posterior ROI to identify differences for early visually evoked potentials. For the P200 
component we focused testing on midcentral channels based on observations of the averaged 
evoked responses independent of condition (see Fig. 5B). Finally, for later components P300 
and P600, we focused statistical testing on the frontal and midcentral ROIs based on previous 
accounts in the literature concerning semantic and structural congruency in visual scenes 
(Gannis & Kutas, 2004, Vo & Wolf 2013).  



At the P200 latency over midcentral channels large scale targets displayed higher 
positive mean amplitudes for the inconsistent condition (see Fig. 7B). For the P300 latency we 
tested mean amplitude differences over the midcentral ROI. For small scale targets, we report 
that consistent pairs display higher positive amplitudes (see Fig. 7C). Finally, for the P600 
latency we investigated differences between scale and consistency relations within for frontal 
and midcentral channels. A significant difference in mean amplitude for size consistent and 
inconsistent pairs was identified only for small targets in frontal channels, with consistent pairs 
demonstrating higher positive amplitudes (Fig. 7D). 

Following the analysis of ERP data, we performed MVPA decoding to identify 
representational differences between size consistency conditions not evident in ERP 
differences. We first trained an LDA classifier to distinguish between real-world scale category 
for size consistent and inconsistent pairs of objects. The two distinct scale categories (large and 
small) were chosen as there is evidence for differences in cortical processing (Konkle & Oliva, 
2012b; Josephs & Konkle, 2019). We therefore treated scale category classification as an 
indirect measure of recognition. Following this rational, higher classification accuracy for real-
world scale would indicate that high level semantic information about the pair is present in the 
neural signal. In terms of our size consistency manipulation, lower classification performance 
for inconsistent pairs, would indicate that the object pair is less recognizable and therefore 
semantic information about the scale of the objects in the real-world less accessible. In this 
study, we observed above chance sustained classification accuracy for all pairs independent of 
size-consistency from 135 to 450ms peaking at 200ms post stimulus presentation. When 
splitting the data into consistent and inconsistent pairs, the neural response contained decodable 
information about the real-world scale of the object pairs regardless of the size consistency of 
the target. That is, we observed comparable scale-decoding for size-consistent and size 
inconsistent object pairs peaking at 200ms. 

On a second type of analysis to further understand whether representations differ 
between size consistent and inconsistent pairs we trained the classifier to distinguish between 
consistency conditions for all pairs and on a consecutive analysis, pairs separated by real-world 
scale category. This analysis did not yield significant results at any time point. 

Size inconsistencies modulate early P200 and P300 components specific to scale category 

In this experiment we report a higher positive mean amplitude for size inconsistent as 
opposed to consistent pairs within the P200 latency (160-240ms). This effect was evident only 
for targets belonging in the large real-world scale category. Previous literature does not provide 
evidence for a similar effect to the one we report in the present study. A study investigating 
hemispheric differences for meaning processing Federmeier and Kutas (2002) presented 
observers sentences followed by pictures that could either be expected or unexpected in terms 
of semantic content. They observed amplitude differences at a 150-250ms latency were larger 
as a response to expected pictures when targets were presented on the right visual field. Earlier 
accounts report higher P200 amplitudes during pop-out detection tasks when pop-out search 
targets display distinct low-level visual features such as colour and orientation (Luck & 
Hillyard, 1994). If we consider the size-inconsistent targets as unexpected/surprising and harder 
to interpret, then given those previous findings we would expect an effect in the opposite 



direction where size-inconsistent targets display higher mean amplitudes. However, as large 
real-world scale targets display more rectilinearity and alignment between the two objects, 
modulation of the P200 component could possibly result from an enhancement of those low-
level features during the size inconsistent condition as opposed to differences in semantic 
interpretations.  

We further identified modulations in the P300 time window, however here the influence 
of size consistency was constrained to small-scale object pairs. Specifically, we found that over 
midcentral channels consistently sized small scale objects drove higher positive amplitudes than 
inconsistently sized objects. Importantly, these effects were somewhat weaker than those 
identified for the P200 latency (i.e., the interaction between real world scale and size 
consistency was only marginally significant, p = 0.087). Nevertheless, previous work has 
identified modulations of the P300 component as a function of semantic inconsistencies. In 
their 2013 paper Vo & Wolf during a one back task where observers viewed real world scenes 
with objects that had undergone semantic (ex. A bar of soap next to a laptop computer) or 
syntactic (ex. A mouse on top of a computer) violations, they observed a negative peak 
associated with structural and semantic violations within the 300ms latency. Negativity peaking 
around 300ms for anterior regions driven by semantic incongruencies between objects 
presented sequentially has been previously established in the literature (Eddy, Schmid & 
Holcomb 2006, McPherson & Holcomb 1999). Based on those previous accounts we can infer 
that the dissociation of responses driven by size-consistency conditions could result from a 
disruption of semantic content elicited by a disruption of relative size. This way constituting 
size-inconsistent targets as lacking semantic content. However, given our marginal statistical 
finds and the qualitative difference between the stimuli and tasks used in previous studies we 
must make interpretations with caution. 

P600 modulated by size consistency only for small scale targets 

Analyses within the P600 time range identified that the late positivity over frontal 
channels was stronger for consistent than inconsistent pairs, but only when the objects belonged 
to the small real-world scale category. Late ongoing positive potentials from 600 to 1000ms 
over midcentral have been attributed structural violations in scenes (Vo & Wolf, 2013). Similar 
findings where the P600 reflects mild syntactic inconsistencies was first reported in the 
language domain (Osterhout & Holcomb, 1992). Here we identified significant differences 
between size-consistent and inconsistent potentials within the P600 latency. Our effect differs 
to the one reported by Vo & Wolf (2013) for mild structural violations in real world scenes 
displaying a larger positive amplitude than for structurally consistent scenes in the sense that 
we observe grater positivity for size-consistent pairs. Despite those differences we could argue 
that a disruption between size-relations for a semantically congruent pair of objects resembles 
a structural inconsistency. If that is the case, then as it is suggested for structural irregularities 
participants might need to employ additional cognitive resources to re-evaluate this disruption 
between size relations after initial recognition later in the time course.  

Consistency effects specific to scale category per component 



Based on the results from our analysis of ERP data we identified significant differences 
between size consistency conditions specific to scale category. In addition, those differences 
seem to be relevant for large scale targets early on in the time course and for targets that are 
small in terms of real-world size later, but effects do not seem to overlap. A possible explanation 
could stem from differences in terms of low-level and mid-level confounds between the two 
scale categories (see section on low level differences). Large scale targets are often vertically 
and horizontally aligned and appear to have more edges that their small-scale counterparts (Fig. 
1B). Distinguishing between those low-level differences between the size consistent and 
inconsistent pairs for the large scale category could emerge earlier in the time course. On the 
contrary, small scale objects that are not defined by such differences might contain more 
semantic information about the pair. Therefore, viewers identifying a disruption of semantic 
content might need additional time and resources to re-evaluate the given target later in the time 
course.  

As it is evident from the behavioural data of Experiment 1 (Fig. 3), small scale targets 
were easier for observers to recognise (faster/more accurate categorisation and displayed higher 
naming scores). As a result, it might be the case that if observers are indeed better at recognizing 
small, handheld objects they can better identify inconsistencies within such pairs and need 
additional time and resources to re-evaluate them. Conversely, if observers struggled to 
recognise the large scale objects, they might not have perceived their size inconsistency.  

Representation of real-world scale is not modulated by size-consistency  

We initially hypothesized that if relative size is a vital aspect of object recognition for 
semantically associated pairs, then by disrupting size relations we would also degrade the 
semantic content. By choosing two distinct real-world scale categories and training and testing 
an LDA classifier to distinguish between them, disruption of semantic content would be 
reflected by lower classification performance for inconsistent pairs. Our results do not support 
our initial hypothesis as scale category was equally decodable both for size consistent and 
inconsistent targets. That is, observers appeared to represent the real-world scale of the objects 
to an equal extent regardless of the objects’ size consistency. Those results imply that there is 
no evidence that the neural representation of real-world scale is depended on whether the 
objects’ relative size was appropriate or not. What might account for this lack of an effect? One 
possibility is that our manipulation of relative size was not sufficiently extreme to elicit 
differential neural responses. Further investigation of the stimulus set and potentially increasing 
the ratio between the two objects from 1:2 to 1:3 could possibly uncover representational 
differences. 

In addition to pairs we also performed decoding of scale category for single targets as a 
validation procedure. We expected that isolated silhouettes of objects would be less 
recognizable for participants in the absence of contextual information of the second object. The 
results from this analysis confirms this hypothesis that inferences on the real-world size identity 
of the object are not available without a semantically associated object to inform scale identity. 

Does size consistency affect recognition after all? 



We set out to understand whether size consistency plays a significant role on object 
recognition and grouping. There is sufficient evidence to think of the size of objects in relation 
to one another as an essential property of object processing in the real world (Konkle & Oliva, 
2012a, Konkle & Oliva, 2012b). As human observers we can extract and learn positional 
properties between arbitrary shapes on artificial displays within a small amount of time (Fiser 
& Aslin, 2001, 2005, Yu & Zhao, 2018). It is therefore reasonable to assume that through a 
lifetime of exposure to the regularities of the visual world around us we can learn the canonical 
size relations between objects we frequently encounter and interact with. However, despite size 
constancy being an inherent property defining object relations, our manipulation did not elicit 
significant differences in the neural responses to consistent and inconsistent objects pairs. 
Decoding analysis found no evidence that the neural response to object pairs contains 
information about their relative size consistency. Nevertheless, we did find some more local 
differences in ERP magnitudes between size consistent and inconsistent pairs. This could imply 
that even if size consistency might not be an inherent aspect of recognition within the context 
of this study, it still affects the underlying neural responses. Nonetheless, as this is the first 
study to our knowledge investigating size consistency in the context of recognition further 
assessment of the current paradigm is necessary. 

The absence of significant findings in favour of our main hypothesis through the 
decoding analysis could be a results of an insufficient size manipulation to elicit the effects of 
interest. By implementing a more radical disruption of size consistency we could gain a better 
understanding of the effect of the manipulation.  

Low-level differences between scale categories for target pairs  

Although the size consistency of the object pairs was not represented in the neural 
response, we did manage to observe strong decoding of scale category – that is, whether the 
object pairs were drawn from a large or small real world scale. It is interesting to consider 
whether this reflects a high-level representation of real world size, or more low level visual 
differences between categories. For example, large scale objects thend to display overall more 
alignment, rectilinearity and edges than smaller hand-held objects. This results from the fact 
that those larger objects consistently appear on the same plane and viewpoints aligned on the 
floor or vertically (ex. An oven and a rangehood). It has been previously reported that large and 
small objects in the real world differ in terms of mid-level features such as shape information 
and junctions, both of which are maintained throughout our manipulation (Long, Yu & Konkle, 
2018, Long, Konkle, Cohen & Alvarez, 2016). 

To disentangle whether low-level features affect processing between the two categories 
we could perform a complementary decoding analysis to consider would be to train and test on 
the parameters of interest leaving one stimulus set out per run. For example, when decoding for 
real-world scale category train on exemplar sets 1-9 for each scale and then test classifier 
performance on the remaining one for each scale. Forcing the classifier to generalise to novel 
object pairs like this will reduce (but not eliminate) the degree to which above chance classifier 
performance can be driven by low-level visual differences between categories. If it is the case 
that decoding performance is driven overall target visual features as opposed to semantic 
content, then through this analysis classification accuracy should decrease. 



It is worth noting that so far, to our knowledge, only one study has investigated the 
effects of size constancy between parts within individual objects. Electrophysiological evidence 
from neuronal populations in the monkey inferior temporal cortex (IT), revealed a 
subpopulation that codes for relative size consistency within single objects, by demonstrating 
selective tuning for proportionally scaled parts, providing a potential neural mechanism for 
relative size constancy (Vighneshvel & Sripati Arun, 2015). However, even though those 
findings suggest a possible substrate size constancy, given the study population and the nature 
of single stimuli with proportionally and disproportionally scaled parts, no inferences about 
higher level semantics and associations can be drawn.  

 

Future directions  

In addition to identifying the contribution of low-level confounds, to identify 
representational differences we could perform a pair approximation analysis akin to the analysis 
described in the paper Kaiser and Peelen (2018). As we presented single targets during the EEG 
paradigm of Experiment 2 that appeared on the intermediate locations between their position is 
size consistent and inconsistent pairs, we could perform linear addition of those signals. This 
type of analysis can be implemented by averaging the signals across time points of the single 
targets that belong to a specific pair both for the size consistent and size inconsistent conditions. 
This will result in eight different types of targets, the size consistent and inconsistent pairs in 
their two versions and their pair approximations formed by linear addition of single targets. By 
comparing the pair approximated targets with single and pair temporal responses we could 
establish perceptual grouping effects. If pair approximations are more similar to consistent than 
inconsistent pairs we can infer that the size inconsistency manipulation inhibits grouping 
between objects in the pair and therefore relative size of objects constitutes a factor that plays 
a significant role for object grouping and perceptual facilitation. 

 

Conclusion 

In this study we sought to determine the pending question of whether size relations 
between contextually associated objects facilitates recognition by efficiently grouping objects 
proportionate in size into a meaningful pair. Our results from decoding of EEG waveforms 
suggest that relative size consistency is not represented strongly in the neural response to object 
pairs. However, we identified differences in the underlying neural responses though the analysis 
of evoked potentials. Those differences seem to be specific to real-world scale category with 
objects that appear large in the real-world displaying differences early on as opposed to small 
objects where we identify differences later in processing.  
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