
1

HASHTAG ADOPTION ON TWITTER
The effect of network size on hashtag malleability

Submitted in partial ful�lment of
the requirements for the award of the degree of

Master of Science
in

Arti�cial Intelligence

Submitted by:

Iris Monster, BSc s4061381

Supervisors:

Dr. Shiri Lev-Ari Max Planck Institute for Psycholinguistics
Dr. Max Hinne Donders Centre for Cognition
Prof. Dr. Boris De Ruyter Donders Centre for Cognition

ABSTRACT

Propagation of novel language is key in studying language change. Previous studies
on linguistic representation malleability show that people with smaller networks
tend to adopt changes more. This thesis studies the e�ect of network size on changes
in language production, speci�cally: adoption of hashtags on Twitter. Results show
that indeed network size signi�cantly predicts likelihood of adoption. These �ndings
contribute to understanding how rare novelties are propagated among the population
and cause language to evolve.

fleek fleek

2

CONTENTS

Abstract 2

Contents 3

List of Figures 5

List of Tables 6

1 Introduction 7
1.1 Language Change . 7
1.2 Malleable Linguistic Representations 9
1.3 Language malleability on Twitter 10
1.4 Competiveness of hashtags . 11
1.5 Dual role a�ects hashtag adoption 12
1.6 Hashtag propagation . 12
1.7 The current study . 13

2 Methods 14
2.1 Preliminaries . 14
2.2 Data processing and storage . 15
2.3 Code to write code . 15
2.4 Exploratory phase . 18
2.5 Data harvesting . 21
2.6 Data processing . 29
2.7 Analyses . 33

3 Results 39
3.1 Results mixed model . 39
3.2 Linear regression model . 40

4 Discussion 41
4.1 Time window data analysis . 41
4.2 Collapsed data analysis . 41
4.3 Generalizability to language change 42
4.4 Conclusion . 43

A Options for data collection 44

3

CONTENTS 4

A.1 Authentication . 44
A.2 Returned data structure . 44
A.3 REST API . 45
A.4 Harvesting lists and timelines with the REST API 46
A.5 Streaming API . 46

B Description �le syntax 48

C MySQL database 50
C.1 Java types to SQL . 50

D Sample Generated Twitter Class 54

E Unique hashtags 60

F CSV table 62

G Code 66

References 67

LIST OF FIGURES

1.1 Twitter hashtag use during 911 memorial 11

2.1 An example description �le . 17
2.2 Distribution of dominant language of Twitter users 27
2.3 Distribution of in�uencer count . 27
2.4 Hashtag adoption and data points . 30

A.1 A small example of a TweetArray . 45

C.1 Example generated table by TwiApiGen 51
C.2 EER diagram of database . 53

5

LIST OF TABLES

2.1 Highest ranked hashtag using term relevance weighting 25

E.1 Unique hashtags . 61

F.1 CSV table . 65

6

INTRODUCTION

1Inspiration for this project comes from my supervisor Shiri Lev-Ari’s �ndings on
the in�uence of social network size on linguistic representation malleability (Lev-
Ari, 2016). The study by Lev-Ari focuses on the malleability of internal linguistic
representations, but did not test the in�uence of network size on language production.
As linguistic changes also need to be propagated in order to speak of language change,
studying what in�uences language production to change could provide insight in
how language changes. With this Master thesis I wish to contribute to the �ndings
of Lev-Ari’s study. The research question that will be answered in this thesis is:
What is the e�ect social network size has on language production malleability?

I speci�cally study language malleability on Twitter. In this thesis social network
size is de�ned as the number of people someone follows on Twitter (from here on –
in�uencers). Language malleability can be described as the degree someone copies
(adopts) hashtags that his in�uencers tweeted. This phenomenon is studied with
Twitter data, as this gives the possibility to study language malleability with real
world data and not in a controlled experiment. Also, social media could contribute
to language change as it gives people a lot more reach. One person invents the new
term “on �eek” and it can be read all over the world.

In the following sections I will provide some background literature starting at
language change in general, followed by the study by Lev-Ari. Then I will explain
why I chose Twitter as the source of data and why hashtags in particular are studied.
After that I will describe some previous relevant studies on hashtag adoption on
Twitter. The last section of this chapter describes how these relevant previous studies
come together in this current research project.

The chapter following this chapter is the Methods chapter. This second chapter
contains an explanation of the steps taken to answer the research question that
is asked. Chapter 2 �nishes with a description of the analyses used to test the
hypotheses and chapter 3 lists the results of the analyses and their interpretation.
The last chapter of this thesis is the Discussion chapter. In this �nal chapter I will
connect the results of this thesis with the literature that is described in this �rst
chapter and what can be concluded from this study.

1.1 language change

When studying language change there are roughly two main components of the
process: creation and propagation (Croft, 2000). Creating a new word, pronouncing
something di�erently or coming up with another language novelty is not di�cult.

7

CHAPTER 1. INTRODUCTION 8

Perhaps someone is not be able to pronounce the /th/ sound correctly in /teeth/
and a novel pronunciation is born. However, not every novelty leads to language
change. Only when the novelty is propagated among a population we can speak of
language evolution. This type of de�nition (that I do not speak of language change
once a linguistic novelty is invented, because the novelty has to be used by a large
number of people to earn the term language change) also applies to other areas
where novelties arise. For example, a new invention is not considered an innovation,
unless it is used by a large group of people (Baregheh, Rowley, & Sambrook, 2009).
We all view Thomas Edison as the inventor of the light bulb. However, John W.
Starr already patented the light bulb twenty years earlier in 1845 (Hargadon, 2003).
Edison was the person who had the publicity that caused people to start using it.
So although Edison did not create the �rst light bulb, he caused it to propagate
leading to technological innovation. Ergo, propagation is at least as important as the
creation.

When a new use of language or pronunciation emerges, only one person or a
few people are using it. So how can something that is rare actually become adopted
by a larger population? Let us assume that people assign the same weight to every
piece of input they receive and learn language according to this input, i.e. they
adopt a change as a function of their weighted exposure to the novel phenomenon.
An invention usually starts with one person or a small group of people, so if our
assumption is true novelties would never become popular, as nobody will become
su�ciently exposed to it. Yet we already see language change within one lifetime.
Even the British Queen does not speak the Queen’s English anymore, according to a
study by Harrington et al. (Harrington, Palethorpe, & Watson, 2000).

When we assume that people tend to produce language according to the norm
of their input we should not see language change as novelties are always rare at �rst.
Sapir mentioned this problem of how rare changes are propagated almost a century
ago (Sapir, 1921): How can individual changes within a dialect ever become common
if it is rare at �rst and levelled out by the norm? Sapir speci�cally asked how one
language could evolve into distinct dialects when people would only learn from the
norm. An explanation he gives is that dialects can form when two or more groups
using the same language drift apart and become disconnected. This will cause the
language the di�erent groups speak to independently drift apart. This explanation by
Sapir still does not explain how language drifts. If people tend to produce according
to what is common in their input, the norm should wash all small changes out.

Keller refers to conformity to the norm as the Humboldt’s law (after a nineteenth-
century linguist) and states that if a speaker learns the norm of his input, after a
few generations the result is “homogeneity if the starting point is heterogeneous
and stasis if the starting point is homogeneous” (Keller, 1995). To rephrase Keller’s
words: even if the starting point is very diverse, output will converge to something

CHAPTER 1. INTRODUCTION 9

less diverse. Yet, this assumption cannot be completely true as we do see language
evolve all around us.

Nettle also studied the problem coined by Sapir and refers to it as the threshold
problem (Nettle, 1999). Nettle proposed three di�erent ways for a novelty to over-
come the threshold problem. The �rst is that some speakers are more in�uential than
others (so their novelties are more likely to be propagated). Another explanation
could be that an increase in parochialism also facilitates di�erentiation. When people
are more parochialistic they assign more weight to input of a small group instead
of that of the broader community. Take for example a small group of high school
friends that come up with a new word for cool. The whole group will start using
that word, even though no one else does. Nettle’s third possible explanation is that
functional biases (for example that a new linguistic change is easier to learn than
the norm) also have a small in�uence on the likelihood of propagation.

Nettle’s theories explain why some speci�c novelties become popular or why
novelties from one person tend to �nd adopters more easily. However, Nettle’s
theories do not explain why some people adopt some phenomena more quickly than
others. Here I hypothesize that the susceptibility of language adoption is a function
of the social network a person is exposed to. It makes sense that someone with
only two input sources assigns more weight to a new utterance from one of his
sources than someone with a much larger group of input sources. This hypothesis is
corroborated by the work of Lev-Ari (Lev-Ari, 2016), which is described in the next
section.

1.2 malleable linguistic representations

Lev-Ari studied the degree by which participants generalize what they have learnt
from one speaker to a novel speaker in relation to their social network size (Lev-Ari,
2016). Participants were asked questions about their social network1 in order to
know with how many people they regularly converse. The participants were then
exposed to non-normative input in a picture selection task and tested to see if they
had changed their internal threshold with a phoneme categorization task.

Lev-Ari used the distinct Voice Onset Time of /d/ and /t/ tokens for her study. A
/t/ has a longer VOT, but aside from that the two phonemes resemble each other. Due
to this property it is possible to manipulate the VOT of a /t/ token in such a manner
that it is ambiguous whether it is a /t/ or /d/ token. During the picture selection task
participants had to select pictures from sets of two pictures based on an auditory

1Which was speci�ed as the number of the people the participants orally converse with in a typical
week, which are not necessarily their friends.

CHAPTER 1. INTRODUCTION 10

instruction (like “The yellow toy”). Some of the trials had a noun that contained a
/d/ and other trials had a noun that contained a /t/.

Participants were divided in two groups: one group that listened to manipulated
/t/’s and normal /d/’s and the other group vice versa. After that they had to do a
categorization task. In this task participants either listened to the same speaker or a
new one. For both speakers a continuum was created with di�erent VOTs between
/dean/ and /teen/. The continuum consisted of good examples of /t/ and /d/ and
several ambiguous VOTs.

The results of this study showed that social network size a�ects how participants
generalize their shifted internal boundary between /d/ and /t/ to a new speaker when
exposed to a new speaker in the categorization task. There was no signi�cant e�ect
of social network size on categorization when a separate analysis was ran with only
the participants who listened to the same speaker. In the same speaker condition
participants with small and large networks both learnt the patterns of the speaker
and categorized utterances of the same speaker according to what they had just been
exposed to. The fact that in the new speaker condition there is a signi�cant e�ect of
social network size indicates that people with smaller networks generalize the new
patterns to a new speaker more. So people with smaller social networks are more
likely to generalize learnt non-normative input to new speakers, which suggests
that these people might also propagate linguistic innovations more. In this Master
thesis research project, I study whether this phenomenon can also be observed in
language production malleability on Twitter.

1.3 language malleability on twitter

In order to study the e�ect of social network size on changes in language production
input and output needs to be gathered. Unfortunately, people interact with one
another via many di�erent channels, like meetings with co-workers, chatting with
friends, checking social media or watching movies. People may also share informa-
tion from one channel with the other. For example, after reading a news article and
words used in that article can be shared wit a co-worker. Since there are so many
di�erent ways people can be in�uenced with regard to language use, it is not a trivial
task to collect data to study language adoption.

However, when limited to only one medium-speci�c input and output, it is
possible to minimize in�uence from other channels. Hashtags are an example of
a medium-speci�c use, as it is less common to mention hashtags outside of social
media. Therefore people also only receive input from hashtag usage via social media.
The people someone follows on social media are his sole input of hashtags, since
normal written or spoken texts usually do not contain any hashtags that are used
as such. People use hashtags on almost every social media platform, like Twitter,

CHAPTER 1. INTRODUCTION 11

Instagram, Facebook et cet. Since it is di�cult to combine data from di�erent social
media websites, one platform was chosen for this study. I chose to use Twitter data,
because users usually allow everybody to see their posts (many Facebook accounts
are private) and because people use hashtags on Twitter 2. Another important
advantage is that Twitter allows data to be harvested for research purposes.

1.4 competiveness of hashtags

An important property of hashtags is their competiveness, i.e. the ranking (based
on how often they are used) of a group of similar hashtags changes. Pontoriero and
Gillie (Pontoriero & Gillie, 2012) found that for an event like the memorial of the
9/11 attack there were several competing hashtags. An early observation (when
the memorial was not yet tweeted about very often) showed that the most popular
hashtags were #neverforget, #9/11, #september11th, #911 and #11september. A
few hours later #neverforget was the most popular tag (see Figure 1.1, source:
(Pontoriero & Gillie, 2012)). More interestingly, #remember911 was the second most
popular hashtag, which did not even occur in the top 5 a couple of hours earlier.
People’s choice of using a certain hashtag changed over time. But what in�uences
people’s decision to start using a di�erent hashtag with almost the same meaning?

Figure 1.1: Twitter hashtag use during 911 memorial

2People might think that hashtags originated at Twitter, but this is not the case. Hashtags were
used before Twitter on Internet Relay Chats to indicate channels. When Twitter was created hashtags
were not used yet, until in 2007 Chris Messina tweeted: how do you feel about using # (pound) for
groups. As in #barcamp Twitter began to group topics by hashtags, but found that people were skeptical
towards using hashtags and did not develop the idea further. In 2009 Twitter launched the use of
hashtags and people could now simply click on a hashtag to �nd more tweets containing the same tag.
source: http://www.link-assistant.com/blog/the-history-of-hashtag/

CHAPTER 1. INTRODUCTION 12

1.5 dual role affects hashtag adoption

Many studies have researched hashtag adoption on Twitter. One of the more elabo-
rate studies was conducted by Yang et al. (Yang, Sun, Zhang, & Mei, 2012). According
to them hashtags serve two functions: indicating group membership and �nding
tweets about the same topic. They studied to what degree people are driven by
these two possible reasons. Yang et al. also studied to what degree the role of the
user changes his motivation to adopt a new hashtag. They collected tweets from
politicians, people with a shared interest and a control group. Adoption behaviour
of these three groups was analysed separately so that the results could be compared.

First Yang et al. did a regression analysis to compute per group what the regres-
sion coe�cients for a large set of predictors are. Then a support vector machine
was used to test the accuracy of the regression analysis on a test set of data. The
results from both models showed that there were several predictors that signi�cantly
in�uenced adoption; popularity of a hashtag, relevance of the hashtag for that user,
how many users in the user’s network used the hashtag, popularity of the user, how
many unique hashtags the user had used and how many characters the hashtag
contained. Yang et al found that politicians were not signi�cantly in�uenced by their
own popularity or by the number of unique hashtags they had used.

Politicians also tend to retweet less than the shared-interest and control group.
Another di�erence in likelihood to adopt a certain hashtag between the three groups
was that the shared-interest group and control group are less likely to be in�uenced
by the prestige of others who used that hashtag than politicians.

According to Yang et al. the in�uence of factors like popularity of a hashtag,
how many users in the user’s network use the hashtag can be attributed to a user’s
wish to be part of a group. The in�uence of relevance of the hashtag for that user
shows that topic description is also a motivation to adopt a hashtag.

1.6 hashtag propagation

Romero, Meeder and Kleinberg also studied hashtag adoption and compared di�erent
topics with one another (Romero, Meeder, & Kleinberg, 2011). Using the Twitter
API they harvested more than three billion tweets of more than 60 million users.
The 500 most used hashtags were annotated by hand to divide them into eight
categories: celebrity news, games, idiom (#cantlivewithout, #musicmonday), movies
/ TV, politics, sports and technology.

Romero, Meeder and Kleinberg measured the stickiness and persistence of hash-
tags. Stickiness was de�ned as the probability of adopting the hashtag based on one
or more exposures. Persistence is de�ned as the degree of which repeated exposures
still have signi�cant marginal e�ects on adoption after the highest adoption prob-

CHAPTER 1. INTRODUCTION 13

ability. According to their results some hashtags appear to be more sticky whilst
others are more persistent.

They found that, in general, topics that are politically controversial or sports-
related topics show more persistence compared to idioms and music topics. Music,
celebrity news and idioms are more sticky than technology, movies and sports.

1.7 the current study

Previous studies have described that it is remarkable that language changes (Keller,
1995; Sapir, 1921). If people would learn language according to what the norm
prescribes, how can rare novelties can never overcome threshold problem (Nettle,
1999). Nettle has given possible explanations for language change, but these do not
explain how some people tend to propagate novelties more easily than others. A
possible explanation could also be that people with less input sources assign more
weights to non-normative input of one of their input sources. Lev-Ari found that
people with smaller networks are more likely to shift their internal representation
of certain sounds (Lev-Ari, 2016).

Since social media can contribute to changes in language, it is interesting to
research how for instance hashtags are propagated on Twitter. Several hypotheses
have been studied, like in�uence of the prestige a user has on likelihood of adoption
(Yang et al., 2012) or whether adoption behavior di�ers among di�erent topics
(Romero et al., 2011). In this thesis research project I wish to test Lev-Ari’s theory on
adoption behaviour on Twitter. The hypothesis is that Twitter users who follow fewer
users tend to be more malleable and are more likely to adopt a hashtag compared to
users who follow more people. This hypothesis could explain why some people do
not adopt some hashtag even though they have been exposed to it and others do
adopt that same hashtag.

METHODS

2This chapter comprises of several parts. First the possibilities for data collection are
explained, followed by a description of the exploratory phase. Subsequently the data
harvesting, storing and processing pipeline are described. Lastly I specify which
analyses were conducted, the results of which are listed and interpreted in the next
chapter Results.

2.1 preliminaries

To avoid ambiguity and confusion I wish to explain some of the terms that will be
used throughout this thesis:

Users, friends, followers and in�uencers

A Twitter user can have di�erent roles. Suppose User A follows user B. In this
situation, Twitter will call A a follower of B.

De�nition 2.1. (Following)
Let A and B be users, when A follows B: A→ B

Since this study is about the (possible) in�uence one user has on another, talking
about the inverse relation is useful: when A→ B we also say that B in�uences A.
So B is called an in�uencer of A.

When viewing an account on Twitter the followers are labelled as ‘followers’,
however the in�uencers are listed under the tab ‘following’1.

Posts

On Twitter, people post tweets. Sometimes they are referred to as a status, a post or
a tweet, which are considered synonyms. A tweet can be one of these things:

• A regular tweet
Here the tweet is original text from the person who posted the tweet.

• A retweet
When person A posts something, person B can retweet the tweet. This means
that nothing is added to the original text and the post is now also visible on

1In the Twitter API documentation, B is called a friend of A. I will not use this term, since it
suggests a symmetrical relation (that A and B follow each other)

14

CHAPTER 2. METHODS 15

the timeline of person B. This means that followers of person B now also see
the tweet (they can see that it is a retweet).

• A quote
This resembles the retweet, but person B has now also added something to
the original tweet.

• A reply
People can reply to a tweet from another user by pressing the reply button.
The user who is being replied to will be mentioned in the tweet automatically.
Replies are shown under the ‘Mentions’ tab and if the user who is replied to
follows the person who replied, it will also be seen on his homeline. Other
people that follow both users will also see the reply.

Unless a particular category is speci�ed, a ‘tweet’ may refer to any of these categories.

2.2 data processing and storage

Both the REST API and Streaming API yield JSON objects that need to be processed
and stored. In order to manipulate JSON objects in Java, the JSON String representation
should be parsed. There are multiple open-source JSON libraries to perform this task.
However these libraries generate ‘untyped’ Java objects.

Apart from parsing and representing JSON objects as typed Java Classes it would
be nice to have methods to store (and read in) these Java objects in a MySQL database.

To solve these problems I created a program that generates Java code that can
parse and manipulate Twitter objects. The program would also generate the structure
of a MySQL database and the generated Java code contained methods that could store
objects in the database. Unfortunately, in the �nal setup the database was not used,
because adding large quantities of data to the database slowed down data collection
too much. The data was stored in compressed JSON �les (json.gz). Information about
how the database was generated can be found in Appendix C.

2.3 code to write code

2.3.1 TwiApiGen version 1

While handcrafting a Java program for parsing the Twitter User object I realized
that a large amount of similar work has to be done for all other Twitter objects.
So the idea arose to create a Java program that writes a Java program that parses
the JSON objects that Twitter returns. This program is called TwiApiGen and it was
programmed to generate code to parse the Twitter JSON objects and o�ers access

CHAPTER 2. METHODS 16

routines to process the parsed data. Using TwiApiGen has a number of advantages
compared to hand crafted Java code. First of all: creating the code by hand would
have taken a lot of time and was prone to mistakes, due to the size and complexity
of the JSON data objects. Secondly, quite often Twitter adds or changes something to
the data that it returns. Whenever this happens, new code can easily be generated.
Code used for this project will be uploaded to GitLab, see Appendix G.

2.3.2 Twitter essentials: Description �les

TwiApiGen uses description �les to know the structure of the JSON objects it can
expect. These description �les are easy to write, since they only capture the essential
information needed to generate the Java Code. The syntax of the description �le
looks like a type (structure) de�nition. To parse a description �le I used a tool called
ANTLR (Parr, 2013). Instead of writing Java code to parse description �les myself, I
wrote a grammar that de�nes the description �le language (see Appendix B) and let
ANTRL generate a parser for it.

The description �le (see Figure 2.1) contains a list of all �elds the object can have
2. The type of the �eld can be any Java native data type (like a String or Integer),
a new object type (like Tweet or User) or a list of any of these data types (a list of
Tweets, or a list of integers). The names of the �elds or classes mostly correspond
to the names Twitter gives these �elds, but sometimes I had to name a structure
myself. The comments from the description �le (which are copied from the Twitter
API documentation) will be automatically transferred to Java code as JavaDoc (for
example to add comments to the getters and setters). This way the Twitter API
documentation is directly available for programmers using the API.

The example description �le (Figure 2.1) shows that the style resembles Java

code; the comments are indicated in Java style, the �elds are structured like Java

�elds (type name;) and arrays are indicated by two square brackets preceding the
variable name.

2.3.3 Types in TwiApiGen

When the type of a �eld is a Java native object like String, Long, Boolean or Integer,
TwiApiGen simply uses the Java native class as the type indicator for that �eld. In all
other cases TwiApiGen creates a custom class.

Although Java has data structures for arrays, it was not possible to directly use
these as the type indicator for an array. In the example of UserIDArray there is a
Long[] called ids. Ideally, a �eld Long[] ids would be generated in the generated
Java class for UserIDArray. That is not possible, because custom methods need to

2Note that not all �elds are always present for every object returned by Twitter.

CHAPTER 2. METHODS 17

UserIDArray

{

/*

** Id of the previous cursor

*/

Long previous_cursor;

/*

** An array of user IDs

*/

Long [] ids;

/*

** String representation of the previous cursor

*/

String previous_cursor_str;

/*

** Id of the previous cursor

*/

Long next_cursor;

/*

** String representation of the previous cursor

*/

String next_cursor_str;

}

Figure 2.1: An example description �le

be added to the object class and these can only be placed in a custom class. For all
arrays TwiApiGen created a class named after the type that the array holds (in this
example a LongArray class). This class does contain a �eld with the Java native array
type.

There were also a lot of new classes that were generated speci�cally for Twitter
data. There is a class called Tweet, but there are also cases where an object contains
an object of a generated class. Every tweet data object for example contains a
Hashtag array that contains Hashtag objects (or is empty). A Hashtag contains the
text of the hashtag (the #-sign is removed) and a list of indices to indicate where in
the 140 characters long tweet the hashtag was. TwiApiGen generates a class called
HashtagArray that contains a list of Hashtag instances.

CHAPTER 2. METHODS 18

2.3.4 Generated methods and name giving

Every generated class contains methods that parse the String representation of the
JSON object (which is what Twitter returns) to Java objects. TwiApiGen also generates
a method that converts the Java object back to a JSON object (the original JSON object
is not kept in working memory as that would require too much memory space). The
conversions from or to JSON are done with the help of a package called JSON Simple
(Fang, 2016). TwiApiGen creates methods for getting or setting a certain �eld (like
getPreviousCursor()).

Methods are generated in a hierarchical structure. When a JSON string is read and
the parse method is called of appropriate data structure (for example Tweet.parse()),
objects that are nested within that structure are also created automatically. In other
words, the parse method of Tweet calls the parse methods of the objects that are
nested within the Tweet object. This hierarchy also applies to the access of informa-
tion. For example, a Tweet contains a User object and that contains the username of
the user, the username can be accessed with tweet.getUser().getScreenName().

The names that are written in the description �le correspond roughly with the
names that Twitter gives for these JSON �elds. The shape of these names is not
always appropriate for generated Java code. In order to comply with the standard
Java coding conventions, my Java code uses lowerCamelCase format for identi�ers
(�eld and method names). Again, conforming the Java conventions, generated class
names are written in UpperCamelCase format.

2.4 exploratory phase

Before harvesting the data needed for our study, the following questions needed to
be answered:

1. Is it possible to collect all tweets from speci�c users?

2. Which Twitter-enforced limitations constrain harvesting?

3. Which time/space limitations constrain harvesting?

4. What are the requirements for an appropriate topic for our study?

5. Is it possible to �nd a list of ‘competing’ hashtags given such a topic?

In order to answer these questions, I conducted an exploratory data study, which led
to the following conclusions:

ad 1. There are three methods we can use to collect tweets from a user: using the
REST API with a query, using the Streaming API and using the web interface

CHAPTER 2. METHODS 19

https://twitter.com/. A more elaborate explanation of the REST API and
Streaming API can be found in Appendix A

ad 2. The di�erent harvesting methods have di�erent limitations. The REST API
has bandwidth limitations (�xed number of requests per time interval). For
example, it is only capable of returning the last 3200 tweets of a user. The
Streaming API can be used to harvest tweets, but it only yields a fraction of all
tweets and harvesting must be done in real time (cannot be done afterwards).
Finally the web interface can be used to harvest queries. Although there seems
to be no limit to the number of tweets that can be gathered this way, Twitter
put in a lot of e�ort to prevent automatic harvesting.

ad 3. There are no real raw space limitations for current hardware. Storing the
Streaming API result for one single day costs about 2GB of data (compressed).
While gathering, CPU performance is not a real issue as network latency and
Twitter time restrictions are signi�cantly dominant.

ad 4. A good topic for this study should:

• Be trending (or popular) enough to generate enough Twitter tra�c.
• Be speci�c enough to be distinguishable from other events.
• Have di�erent competing hashtags, with more or less the same meaning

in order to be enable to detection of hashtag adoption.

ad 5. It is possible to obtain a list of competing hashtags using only the REST API.
Using the GET statuses/lookup method it is possible to request tweets with
a search query. Tweets that are returned often also contain other relevant
hashtags that can be �ltered out manually. Unfortunately, just using the REST
API is not very reliable as tweets that do not satisfy the search query could
contain relevant hashtags that are now never found.

2.4.1 Initial pipeline

At �rst I used the REST API to get more familiar with the data and I worked out
a possible pipeline for harvesting the data if I would only use the REST API. The
pipeline was as follows:

• Choose a keyword or set of keywords

• Request recent posts with these keywords using the GET statuses/lookup

method.

https://twitter.com/

CHAPTER 2. METHODS 20

• Search these recent posts for tweets that contain hashtags. Because these
hashtags were used with one of our keywords, the hashtag probably has
something to do with this topic. Manually create a list of relevant hashtags.

• Select users who used one or more relevant hashtags in the recent posts.

• Harvest full tweet history of these selected users with the GET statuses/user_timeline

method.

• Request in�uencer id’s from the users with the GET friends/ids method.

• Harvest full tweet history of the in�uencers using the user ID’s.

During the exploratory phase tweets mentioning the campaign of Bernie Sanders
(who was at the time running for president in the United States of America) were
harvested. This topic had a few competing hashtags and appeared usable. However,
once the requirements for a good dataset were clear, this topic could not be used.
The three requirements are explained more elaborately below.

First of all, selecting di�erent keywords to start with could lead to di�erent
hashtags and therefore di�erent users. It is possible that some hashtags are not used
along one of the keywords and are therefore never found. It would be best to �nd
the most complete possible list of hashtags about a topic, but this cannot be assured
when manually selecting keywords.

Secondly, Twitter’s documentation is unclear regarding which tweets are re-
turned when using the GET statuses/lookup method. It is likely that Twitter uses
an algorithm to compute how relevant a tweet is. Obviously, a random sample is
preferred. The two issues above were solved by using data from the Streaming API.
The Streaming API does return a random sample of tweets and a term relevance
weighting based algorithm was used to �nd hashtags that are competing for a certain
topic. More details on this algorithm can be found in Section 2.5.2.

Lastly, at the time data about Bernie Sanders was harvested. people were tweeting
about him for about half a year (since he announced his candidacy in April 2015).
Most users had already converged to using a particular hashtag, unless something
happened that caused the invention of a few new hashtags. It would be best to start
tracking adoption behaviour right from the start, especially since Twitter allows us
only to retrieve the last 3200 tweets. Therefore, I sampled a few users from a large
group of users who tweeted about Bernie Sanders in the �rst week of November
2015. This sample was drawn according to the distribution of in�uencer counts.
Tweets of all in�uencers of this sample of users were harvested and the date of the
oldest tweet Twitter would return was checked. Almost every user followed a few
in�uencers, for whom it was not possible to go back further than a few weeks. Since

CHAPTER 2. METHODS 21

it would be best to obtain tweets from all in�uencers, it was not possible to study
adoption since people started tweeting about Sanders’ candidacy.

A good topic would be concerning something that happens without knowledge
beforehand. Movie premiers cannot be used, because they are long anticipated and
people will have already tweeted about the movie before the actual release. The
other criterion is that people use di�erent hashtags that have the same meaning.
For example, organized events usually promote one single hashtag for people to use
so they can monitor what has been tweeted about the event and are also known
beforehand. The third criterion is that it is best that the meaning of the hastags is
more or less the same, because even though people are tweeting about the same
topic, it could be that there are two sides (like in a political debate). It could happen
that a user does not adopt a hashtag and uses another, simply because the �rst does
not re�ect his opinion.

Once the system for data harvesting was �nished I started searching for a new
topic again.

2.5 data harvesting

The data-harvesting phase consists of the following steps:

1. Find an appropriate topic (the terrorist attack in Brussels in March 2016)

2. Find all relevant hashtags for that topic (by using a tf-idf based algorithm).

3. Find users who used at least one of these hashtags.

Using the Streaming API we found 76, 211 users who used any of a list of 177
hashtags that were marked ‘relevant’ for this topic. Due to the rate limits it was
not possible to harvest tweets for these 76, 211 users and all of their in�uencers.
Therefore I �rst �ltered based on use of the same language (Dutch) and then I took
a random sample that was feasible to harvest. This left around 979 users. In the
following subsections I will explain the harvesting steps in more detail.

2.5.1 Finding a topic

As described in section 2 of this chapter not every topic can be used for this study.
In order to collect all possible instances of hashtag adoption for a particular topic,
tweets must be collected starting at the �rst usage of a relevant hashtag. Furthermore
people have to use several competing hashtags. Tweets regarding the tragic terrorist
attack that happened in Brussels on March 22 2016 did �t these criteria. I was able

CHAPTER 2. METHODS 22

to start harvesting data right after it happened and people used many di�erent, com-
petitive. Some example hashtags include: #brussels, #prayforbelgium, #zaventem,
#jesuisbruxelles. For a full list of hashtag see Appendix E.

2.5.2 Finding all relevant hashtags

At the time a server was running the Streaming API which gathered a sample of
tweets from around the world. This was our �rst source of data. I developed two
algorithms for �nding relevant hashtags, both based on the notion of term relevance
weighting (Robertson & Jones, 1976). The �rst algorithm uses co-occurrence to
de�ne relevance; the second algorithm uses timing to de�ne relevance. These two
approaches were chosen as The output of both algorithms was used to hand-pick a
set of relevant hashtags. But �rst, lemmas had to be retrieved from the tweet texts
to use for the term relevance weighting.

Lemma extraction

In order to get closer to the meaning of words (compared to their word form) I
annotated tweets with the Stanford parser (Klein & Manning, 2003; Manning et
al., 2014). This way word lemmas were contained, which are better suited for the
frequency counts that were used. Only the English parser was used on tweets that
were labelled ‘English’ by Twitter. It would have been better to use di�erent parsers
for more languages, but time restricted this possibility. The decision to only use
Dutch users 3 was made later, so in hindsight it would also have been better to use
a Dutch parser. Many tweets were labelled ‘English’, therefore using the English
parser seemed the best option.

Parsing the gigantic amount of tweets with the Stanford parser turned out to
be a challenge, but the process was accelerated by parsing in parallel. I created
a Server/Client model using Java RMI (Remote Method Invocation), which was
able to divide the work for this task to 20 computers/CPUs at the same time. The
resulting speed-up was almost linear: 15 million tweets were analysed in 8 hours
which otherwise would have cost almost a week.

To collect all lemmas a program was created that reads the stored tweets from
the Streaming API and searches for tweets that were labelled “English” by Twitter.
This program is called the Stanford Client. The Stanford Client then sends the tweet
text to the Stanford Server. The Stanford Server keeps track of a list of connected
remote Stanford Workers that do the actual parsing. The Server sends the text to

3Users that, according to a frequency count of the language-labels Twitter gives tweets, mostly
tweet in Dutch. Although these users might not live in The Netherlands, for abbreviations purposes
these users will now be referred to as ‘Dutch’ users.

CHAPTER 2. METHODS 23

a Worker that is available, i.e. did not have a full waiting queue. Once the Worker
parsed the text, it sends the information back to the Server that in its turn sends the
parsed information back to the Client.

Relevance based algorithm, co-occurrence

In this version of the algorithm, tweets are considered relevant if the lemma ‘brussels’
occurs in the tweet, otherwise the tweet is considered non-relevant. Lemmas used in
relevant tweets are counted as relevant (note I only count lemmas once per Tweet). If
a lemma is used in a non-relevant tweet, the occurrence is labelled as ‘non-relevant’.

Relevance based algorithm, time-based

When a lemma occurs in a tweet written before the actual time of the event (between
Mon Mar 21 08:00:00 CET 2016 and Tue Mar 22 08:00:00 CET 2016) its use is counted
as ‘non-relevant’. When a lemma occurs in a tweet after the time of the event
(between Tue Mar 22 08:00:00 CET 2016 and Wed Mar 23 08:00:00 CET 2016) its use
is labelled ‘relevant’. Again, lemmas are counted once per tweet.

Term relevance weighting

For both algorithms I calculated a lemma weighting score, based on traditional term
relevance weighting (Yu & Salton, 1976; Robertson & Jones, 1976). Consider for each
lemma the following values:

r - the number of times a lemma is used in a relevant tweet
n - the number of times a lemma is used
R - the number of relevant tweets (independent of the lemma)
N - the total number of tweets (independent of the lemma)

The goal is to �nd a formula that scores a lemma. A high scores suggests a good
(relevant) lemma and a low score should suggest a less good lemma.

score =
r

R
(2.1)

The score formula 2.1 calculates the fraction of occurrences of the lemma in relevant
tweets. For good lemmas this value is close to 1, for bad lemmas this value is close
to 0.

score =
r

R− r
(2.2)

Formula 2.2 shows the same behaviour, but its e�ect is ampli�ed a little.

CHAPTER 2. METHODS 24

Only the ratio of the lemma’s occurence in relevant tweets is not enough: for
example the lemma ‘the’ occurs in many relevant tweets, but is not really a relevant
lemma since it occurs in a lot of non-relevant tweets as well. Realize that:

n-r - the number of times a lemma is used in a non-relevant tweet
N-R - the number of non-relevant tweets

n− r
N −R

(2.3)

Formula 2.3 describes the fraction of occurrences of the lemma in non-relevant tweets.
For good lemmas this value is close to 0, for bad lemmas this value is close to 1.

n− r
N −R− (n− r)

=
n− r

N −R− n+ r)
(2.4)

Like explained before, the formula 2.4 shows the same behaviour, but its e�ect is
ampli�ed. Combining formula 2.2 with 2.4 leads to:

score =

r

R− r
n− r

N −R− n+ r

Usually a log-transform is used when comparing relevance between lemmas (this is
not needed when only ranking lemmas). To prevent division by zero the ranking is
smoothed, resulting in the �nal scoring function:

score = log


r

R− r + 0.5
n− r

N −R− n+ r + 0.5


The co-occurrence algorithm labels hashtags ‘relevant’ that occur in tweets that
contain the lemma ‘brussels’. Probably all hashtags collected this way are relevant
for this topic. However, it is possible that there are hashtags and keywords that
never co-occurred with the lemma brussels. For example, when people from another
language tweet about Brussels they may use another name (like Bruselas in Spanish).
This is why I implemented the second algorithm.

Results

Table 2.1 shows the ten hashtags that had the highest ranking according to the
algorithms. I manually went over the two lists of weight values for both the time-
based algorithm as related based algorithm to select hashtags that were concerning

CHAPTER 2. METHODS 25

Co-occurence Time Based
Rank Hashtag Score Hashtag Score

1 #zaventem 9.43 #ebgodgavemeyou 6.98
2 #belgium 9.31 #brusselsattacks 6.92
3 #breaking 9.24 #brusselsattack 6.91
4 #brusselsattack 9.03 #prayfortheworld 6.89
5 #bruxelles 8.98 #prayforbrussels 6.88
6 #prayfortheworld 8.97 #prayforbelgium 6.88
7 #maalbeek 8.86 #zaventem 6.87
8 #maelbeek 8.82 #jesuisbruxelles 6.86
9 #isis 8.78 #brussels 6.84
10 #prayforbelgium 8.77 #brusselsairport 6.84

Table 2.1: Highest ranked hashtag using term relevance weighting

the Brussels attacks. It was not possible to select an automatic threshold (for example
the #ebgodgavemeyou or #breaking are not considered a competitive hashtag). The
co-occurrence algorithm yielded 95 relevant hashtags and the time-based one 131.
There were duplicate hashtags in these two lists, so after these were removed I had
obtained a list of 177 relevant hashtags.

2.5.3 User selection

The next step is to �nd users who used one or more of these hashtags. I searched
seven days of Streaming data for users who tweeted or retweeted with a relevant
hashtag and made a list of their userids. The resulting list contained 76, 211 unique
users and I harvested their tweets and network information (the userids of the
in�uencers they follow). I did not intend to harvest their full tweet history of the
latest 3200 posts, but only tweets posted after the Brussels attacks happened. Since I
cannot tell the GET statuses/user_timeline method to only give me tweets since a
given timestamp, I simply asked for 200 tweets in every request. If the last tweet in
that tweet list had a timestamp of before March 22 2016, I could stop harvesting for
that user. The full tweet objects (including the last array that contains at least one
tweet posted before the attacks) were stored in a compressed JSON �le.

As I was harvesting tweets for this amount of people I realized that, even though
I often did not need to request 3200 tweets, it took a lot of time to harvest tweets due
to the restrictions of the REST API. The harvesting program could harvest tweets
of 21 users per minute on average, so I had to estimate how much time it would

CHAPTER 2. METHODS 26

take to harvest the tweets of all the in�uencers: The sum of the in�uencer counts of
the 76, 211 users is 101, 455, 590. Let us assume there are some duplicate in�uencer
user IDs in this list and that removing duplicates reduces the amount of in�uencers
by twenty percent. This would mean 81, 164, 472 unique in�uencers whose tweet
history needs to be harvested. Due to the rate limits of the REST API retrieving the
tweet history of that many people would take more than seven years, even with six
authentication keys.

Needless to say this is not feasible, so a sample was taken from the original
76, 211 users based on language, which reduced the number of users to 2575. To
reduce the harvesting time even further a distributed sample was taken of these
2575 users, which reduced the number of users to 979.

Language �ltering

With the �rst �lter I wanted to increase our chances of �nding users with overlapping
networks (i.e. share in�uencers). This would decrease the amount of in�uencers
to harvest, but would not lead to less users to study. I thought that a summary of
the language and geo location information of the users would provide some helpful
insights.

To create such a summary I took the harvested tweets of the 76, 211 users. For
every user I computed a frequency count of the language �eld in his tweets. I left
out retweets, because retweets say less about the tongue of the user than his own
tweets. For every user I selected the language that had the highest frequency and
called it the user’s dominant language. I also collected geo location when present
in the tweet, but this �eld was empty far more often than �lled, so could not be
used. A user object also contains a language �eld, but this remains the same and
Twitter does not document what exactly is described with this user-language �eld,
so I preferred counting language frequencies of the tweets.

The �gure 2.2 shows a histogram of the ten languages that were most often the
dominant language of a user.

I was looking for a group of users whose tweets I could understand, that probably
live close to Brussels and who probably have overlapping networks. I chose to take
the 2575 users whose dominant language in recent tweets is Dutch. I assumed that,
when �ltering for a speci�c group of users based on their dominant language, these
users tend to partly follow the same in�uencers.

Distributed sample

Unfortunately, harvesting the unique in�uencers of all 2575 Dutch users would still
take too long. Some of the Dutch users have extremely large networks. For example,

CHAPTER 2. METHODS 27

Figure 2.2: Distribution of dominant language of Twitter users

the user with the most in�uencers has 40, 327 in�uencers. Harvesting the tweets of
these in�uencers would take almost 4 days. Figure 2.3 displays the in�uencer counts
of the 2575 Dutch users.

Figure 2.3: Distribution of in�uencer count

CHAPTER 2. METHODS 28

The available time for harvesting in�uencer tweets was a week. The amount
of time it will take to harvest in�uencer data depends on how many users I wish
to study and how many unique in�uencers they have. Because I wanted to try a
few parameters, I created a Java program that would draw a distributed sample and
compute how long it would take to harvest tweets of in�uencers given:

• A cut o� value
Only users with an in�uencer count below this value will be picked.

• A bin size
This value indicates how large every bin is. A bin size of 50 means that users
with an in�uencer count of 0− 50 (inclusive) will be put in bin 1.

• A reduce-to factor
This factor is a value between 0 and 1 and indicates the proportion of users I
want to have.

• The connections
I had already harvested the in�uencer lists of the 76, 211 users, so for this
program I made a folder with just the in�uencer lists of the 2575 Dutch users.

The sampling program would �rst cut o� users who have an in�uencer count that
is above the cut o� value. Subsequently the bins are �lled. The program computes
the amount of users in the bin and multiplies the amount with the reduce-to factor.
This result is the amount of random draws the program takes of that bin. Once
the program is done drawing users from every bin it computes how many unique
in�uencers these users have combined and shows how long it would take to harvest
tweets for this amount of in�uencers.

I decided on a cut o� value of 3000, because below this threshold the di�erence
between two subsequent users (sorted by in�uencer count) is always less than
100 and above it some gaps are larger than 100. The sudden gaps between two
consecutive users indicate that users with more than 3000 in�uencers are outliers.
This initial cut o� value reduces the amount of Dutch users from 2575 to 2506 users.
This reduction seems useless, but as this cut cuts out users with high numbers of
in�uencers, harvesting time is reduced by twelve days.

Then I tried several reduce factors. A reduction to 0.4 of 2506 led to 979 Dutch
users who have 229, 926 unique in�uencers, which would take a little more than
7 days to harvest. This duration of harvesting was acceptable and I harvested the
tweets of these in�uencers.

CHAPTER 2. METHODS 29

2.5.4 The resulting data

After I harvested the tweet history of the in�uencers of 979 Dutch users I �nished
the harvesting phase. The following summation describes the raw data:

• A list of 177 hashtags that are related to the terrorist attacks in Brussels.

• A folder with 979 �les that contain tweets of 979 Dutch users. These �les
contain the full Tweet objects as returned by the REST API and are compressed
to json.gzip �les.

• A folder with 979 �les that contain a list of in�uencer user ID’s for 979 Dutch
users.

• A folder with 229, 926 �les that contain tweets of the 229, 926 in�uencers.

This data is called raw, because it cannot directly be used to test our hypothesis. The
raw data �rst needs to be processed, as described in the next section.

2.6 data processing

The raw data, described in the previous section needs to be processed so it can be
analysed. I want to analyse the behaviour a user exhibits after he or she has been
exposed to one of the relevant hashtags by one of his in�uencers (exposure 1) and
before one of his in�uencers uses the same hashtag again (exposure 2). Working
with windows between exposure 1 and 2 allows us to control for certain factors, like
the activity of the user within that window and hashtag use of the user before an
exposure.

The �nal data ought to be a CSV �le with a row for every hashtag a user could
have been in�uenced by, which will now be referred to as an in�uence data point.
(footnote: For now I assume that every user always saw every tweet posted by his
in�uencers. Of course, this is very unlikely. Later I �lter the data for windows where
the user used any relevant hashtag. I do keep the exposure counts as I assume that
although the user probably has not seen all exposures, but the count will still be
a good relative frequency count (i.e. presumably the higher the exposure rate, the
higher the actual exposure)).

An in�uence data point is de�ned as any of the 177 relevant hashtags used within
any type of tweet (retweet, tweet, quote or reply) by one of the 229926 in�uencers
at any time between March 22 2016 and April 5 2016. The in�uence data point can
be any type of post. Every follower of an in�uencer can see retweets, quotes and
original tweets. With replies it is more di�cult to verify if the user could have seen
the reply. To simplify the problem, it was assumed that users could see the replies. It

CHAPTER 2. METHODS 30

is possible that therefore hashtags were erroneously counted as exposure. The range
of 2 weeks was chosen to ensure a wide enough range of potential in�uence.

An in�uence data point is matched to all users who follow the in�uencer who
posted the hashtag. This means that there can be multiple rows with the same
in�uence data point as it happens that multiple users follow the same in�uencer.
The algorithm I wrote to create the data for analyses would then search for the
next in�uence data point with the same hashtag tweeted by any in�uencer of the
user. Once the time window of two consecutive exposures to the same hashtag was
constructed, the program would summarize the behaviour of the user before the �rst
in�uence and the behaviour within the time window. The collection of knowledge
of in�uence data point 1, of a user, of in�uence data point 2 and of the behaviour of
the user within and before the window is called a �nal data point and is exactly one
row in the CSV �le for analyses.

See Figure 2.4 for an example timeline. The user is in�uenced by 4 di�erent
in�uencers, of which 3 exposed him to the same hashtag(#brussels). With this

#brussels

#brussels

#bombing

#brussels

#brussels

#brussels #brexit USER

INFLUENCERS

#zaventem

Figure 2.4: Hashtag adoption and data points

timeline the program would create 5 �nal data points (note that there are overlapping
time windows):

1. Start of the time window is the black #brussels

End of the time window is the �rst blue #brussels

The user’s behaviour within this time window is tweeted about something else:
#brexit.

2. Start of the time window is the �rst blue #brussels

End of the time window is the red #brussels

The user’s behaviour within this time window is used another relevant hashtag:
#zaventem.

3. Start of the time window is the black #bombing

There is no next exposure to that same hashtag, so the end of the time window

CHAPTER 2. METHODS 31

is set to April 5 2016.
The user’s behaviour within this time window is used another relevant hashtag:
#zaventem and #brussels.

4. Start of the time window is the red #brussels

End of the time window is the second blue #brussels

The user’s behaviour within this time window is adopted.

5. Start of the time window is the second blue #brussels

There is no next exposure to that same hashtag, so the end of the time window
is set to April 5 2016.
The user’s behaviour within this time window is inactive.

2.6.1 Data processing algorithm

Here I describe exactly how the program for processing the raw data works. The pro-
gram �rst reads the data and �lters for usable data. Then it combines the components
together and computes summaries.

Filtering the raw data

The raw data contained a lot of tweets that are completely unrelated to the Brussels
attacks and the original elaborate JSON �les also had to be compressed. First I read
all of the tweets and user connections in and created instances of the following Java

Classes:

• User data points
Every tweet a user posted between March 22 2016 and April 12 2016 was stored
as either a:

– User relevant data point
This object is created whenever the user tweeted (not retweeted) one of
the relevant hashtags. (Footnote: Hashtags mentioned in a retweet of a
user are not taken into account as it is unclear if the user truly meant
to use that hashtag or if he retweeted a tweet for another reason.). If
a tweet contains multiple relevant hashtags, multiple instances of this
Class are created. This data point also contains additional information
like a timestamp, text of the tweet et cetera.

– User non-relevant data point
This object holds any type of tweet that did not contain any of the
relevant hashtags. These data points were useful to decide if a user
tweeted something within a certain time window.

CHAPTER 2. METHODS 32

• In�uence data points
A hashtag tweeted (any type of tweet) by an in�uencer. If a tweet contains
multiple hashtags, multiple instances were created.

• Connections
Per user I created a list containing the user ID’s of his or her in�uencers.

Reading in the data and creating these datasets took about six hours. Because I often
ran the program that created the �nal data, I stored the data described above as
serialized Java objects. This reduced reading time to a few minutes.

Combining in�uence to user

To combine the in�uence data points to a user and construct the �nal data point I
used the following (pseudo)algorithm:
For every i n f l u e n c e d a t a p o i n t x

with ha sh ta g h p o s t e d by i n f l u e n c e r i a t t ime t0 :
For every u s e r u who f o l l o w s i :

C r e a t e a f i n a l d a t a p o i n t f
F ind f i r s t i n f l u e n c e d a t a p o i n t y with h ,

a t t ime t1 l a r g e r than t0 p o s t e d by any o f u
I f y does not e x i s t , s e t t1 t o A p r i l 5 2016
Get u s e r d a t a p o i n t b e f o r e t0 and

summarize b e h a v i o u r
Get u s e r d a t a p o i n t s between t0 and t1 and

summarize b e h a v i o u r .
Add d a t a p o i n t i n f o r m a t i o n and summaries t o f
P r i n t f t o CSV f i l e

A full description of the columns of the data can be found in the Appendix F. Com-
bining the data led to 287, 799 �nal data points.

Collapsed data

The just described data �le is created to analyse adoption behaviour of a user between
two consecutive exposures, but it could not be used in this format to analyse if users
with smaller networks are more likely to use more, di�erent hashtags. In order to do
such test that hypothesis an additional data �le was created. The resulting data �le
contains a row for every user who used any relevant hashtag in a time window and
describes:

• The number of unique hashtags the user has been exposed to.

CHAPTER 2. METHODS 33

• The number of times the user was exposed to a relevant hashtag.

• The number of hashtags the user used.

• The number of hashtags the user used after one of his in�uencers used that
hashtag.

• The number of in�uencers the user has.

The resulting data will be referred to as the collapsed data.

2.7 analyses

This section describes what the two models that were used for analyses and which
predictors were used.

2.7.1 System speci�cations

The analyses listed were run on a Windows computer with R version 2.9.2, package
LanguageR version 0.955. The method used for the mixed models is called lmer()

and the method used for the linear regression analysis is lm().

2.7.2 Mixed models

Jiang explains how a mixed model works by �rst explaining how a linear regression
model works (Jiang, 2007). A mixed model resembles a linear regression model. A lin-
ear regression model is expressed as y = Xβ+ ε, where y is a vector of observations,
X is a vector of known predictors, β is a vector of unknown regression coe�cients
and ε a vector of errors. When a linear regression model is �t, the regression co-
e�cients and errors are estimated based on the observations and predictor values.
In a linear regression model the regression coe�cients are considered to be �xed.
However, sometimes it is preferred to consider these coe�cients random, e.g. when
observations are correlated. This is the case when, for example, the data consists of
multiple observations of the same participant. In this example it is preferable to add
a random e�ect (that is not observable) that may be di�erent for every participant.
In a mixed model these random e�ects can be added. A linear mixed model can be
expressed as y = Xβ + Zα + ε. The di�erence between this expression and the
linear regression model is obviously the term Zα which denotes the matrix Z of
observed values and a vector of random e�ects α.

Adding slopes to a random e�ect to indicate that the predictor (the slope) has a
special interaction with the random e�ect (Bates, Mächler, Bolker, & Walker, 2014).
This interaction means that the predictor might have di�erent e�ects for every

CHAPTER 2. METHODS 34

level of the random e�ect, e.g. a di�erent e�ect for every participant. Slopes can
have multiple purposes: it can be used to obtain shrinkage estimates of regression
coe�cients (Efron & Morris, 1977) or account for lack of independence in the residuals
due to block structure or repeated measurements (Laird & Ware, 1982).

Selection of predictors

A linear mixed e�ect model was used to analyse the window-based data. The aim
was to test which factors in�uence likelihood of adoption. The dependent measure
is therefore the variable ‘adopted’, which is a factor that equals 1 if the user has used
the hashtag he is in�uenced with before being exposed to the same hashtag again
(i.e. within the time window of two exposures). Of course, one of the predictors is
the social network size of the user, because this is the main research question of this
study. Social network size is de�ned by the number of in�uencers the user has and
is named userInfluencerCount. Several other factors were added to the analysis as
well, because beforehand I hypothesized that these factors could also in�uence the
likelihood of adoption. It is best to add these other factors to the analysis as well,
instead of only using social network size as a predictor. It could be that social network
size in�uences another factor and that factor in�uences likelihood of adoption. For
example, the number of in�uencers a user has, probably in�uences the number of
unique in�uencers who have used the hashtag. It could be that not social network
size predicts likelihood of adoption, but actually the number of unique in�uencers
who used the hashtag does. Without this extra factor, the e�ect is erroneously
attributed to social network size.

The number of in�uencers (named uniqueInfluencers in the CSV �le) who have
exposed the user to this hashtag is used as a predictor as it makes sense that the more
in�uencers in a user’s network the more likely the user is to adopt the hashtag. The
factor is also added, because (as mentioned above) it could be that social network size
in�uences this factor and I do not want to attribute in�uence to the wrong factor.

The language of the in�uence tweet is taken into account. The column named
influencerLanguageIsDominantLanguageUser equals 1 when the user’s dominant
language (between March 22 and April 12) equals the language-label Twitter assigned
to the text of the in�uence tweet. My hypothesis is that an exposure in the same
language as the user’s dominant language will be more likely to cause the user to
adopt the hashtag.

Two other important factors that were added describe how dominant this hashtag
was (until and including the �rst exposure of the time window) in the user’s input
and in the user’s output. The factor isDominantHashtag equals 1 if this hashtag was
the hashtag the user saw most often. This factor is added to the model, because it
makes sense that a hashtag that the user saw the most is more likely to be adopted.

CHAPTER 2. METHODS 35

The factor hashtagDominantPastUse describes the user’s own hashtag usage. This
variable equals 1 if the user used this hashtag most often before the time window, 0
if the user had not used any hashtag yet and −1 if the user used another hashtag
most often before this time window. My hypothesis concerning this factor is that a
user who has not used any hashtag is more likely to adopt the hashtag than when
he was already using another hashtag. A user who was already using the hashtag
will probably use it again.

Factors that indicate with a binary value if this hashtag was seen or used domi-
nantly were used on purpose, because ratio’s can be ambiguous. For example, ratio
of 40% seems very high, but there could be another hashtag that was seen 60% of
the exposures. The same holds for small ratio’s; a ratio of 10% seems small, but
perhaps the user used this hashtag most frequently, because he also used 11 other
hashtags too. So although a binary decision is strict (the second most dominant
hashtag does not matter), the value 1 will always mean that this hashtag was seen
or used most often (or is on a shared �rst place).

Lastly I added a factor (followerCountMostPopularInfluencer) that described
how popular the most popular in�uencer (based on follower count)is that used the
hashtag until this time window. It could be that users are more likely to adopt a
hashtag that is used by a very in�uential user. The reason this factor was added and
not the follower count of the in�uencer of the �rst exposure of the time window is
two-fold. First, this factor will ‘preserve’ the value of the most popular in�uencer
better than the follower count of the current in�uencer and I assume that a high
follower count of any in�uencer that had exposed the user counts more than the
exact follower count of the current in�uencer. Secondly, this preservation of the most
popular in�uencer is helpful, because the data was �ltered and only observations
where the user used any relevant hashtag within the time window remained. This
�lter could have thrown out cases where the current in�uencer’s follower count was
very high and the fact that a very in�uential user had used this hashtag will not be
taken into account anymore. The �lter will be explained later more thoroughly.

Model set-up

The exact model used for analysis has two random e�ects: the user ID and the
hashtag (the text of the hashtag). User ID is a random e�ect, because observations
from the same user are probably correlated. Hashtag is a random e�ect, because it
makes sense that a very frequently used hashtag behaves di�erently from a very
infrequently used hashtag. The �xed predictors are these six factors:

• userInfluencerCount

• uniqueInfluencers

CHAPTER 2. METHODS 36

• influencerLanguageIsDominantLanguageUser

• isDominantHashtag

• hashtagDominantPastUse

• followerCountMostPopularInfluencer

The �xed e�ects need to be added as a slope to a random e�ect, when applicable. A
factor could have a di�erent e�ect for the di�erent user ID’s and /or for the di�erent
hashtags if the value of that factor is not mostly the same. This means that all factors
were added as a slope for both random e�ects except: userInfluencerCount was not
a slope for userid as a user will always have the same number of in�uencers and
since I assume that frequently used or seen hashtags are frequent across observations
isDominantHashtag and hashtagDominantPastUse were no slopes of hashtag.

Interactions were also added to the model: userInfluencerCount * isDominantHashtag
and userInfluencerCount * hashtagDominantPastUse. These interactions were added
to test if the e�ect network size might have for the di�erent levels of isDominantHashtag
and hashtagDominantPastUse. It could be there is no e�ect of network size when
the hashtag is seen very little, e.g. users with large and small networks are not
likely to adopt any hashtag that they did not see most often. It could also be that
users with small networks are more likely to adopt a hashtag that they did not use
dominantly before and users with large networks only use hashtags that they already
used before.

Filters and normalization

The data contains 287, 799 observations and contained many cases where the user
did not tweet anything between two exposures, or the user did tweet, but regarding
something not related to the attacks in Brussels. As I want to test if users with
smaller networks are more malleable observations where users did not use any
relevant hashtag within the time window were discarded. It is di�cult to see if a
user decides to use this hashtag that he has been exposed with, if he did not use any
hashtag whatsoever. Perhaps the user did not adopt the hashtag for other another
reason, like not wanting to use a hashtag at all. This �lter reduced the amount of
observations to 44, 027 rows and from 979 unique users to 504 users. The reduction
in users is caused by the fact that some of the original 76, 211 users that used one of
the relevant 177 hashtags in the Streaming Data could be in that dataset, because
they retweeted a relevant hashtag. These retweets are later not regarded as a use
of a relevant hashtag by a user. It also occured that some users did use a relevant
hashtag in some observations, but they were never exposed to that hashtag by any
of their in�uencers.

CHAPTER 2. METHODS 37

All continuous factors (which are userInfluencerCount, uniqueInfluencers
and followerCountMostPopularInfluencer) were log-transformed (base 2), because
their distribution is skewed and I did not want the large outliers to have a dispro-
portional e�ect. These three factors were also centered around 0 by subtracting the
mean.

The predictor hashtagDominantPastUse is de�ned as a factor in the model. An-
other analysis with hashtagDominantPastUse as an ordened predictor showed that
the relationship between this factor and ‘adopted’ is not linear. Therefore it was
set to be a factor. hashtagDominantPastUse was releveled so 0 would be used as
intercept. This way the results of this factor could be interpreted easier.

False convergence �rst mixed model

The default model as described above did not converge. This can be caused by
many di�erent reasons. For example, it is possible that there is no e�ect in the
data whatsoever, the model cannot compute the e�ects of all slopes combined with
every value of the random e�ects within the maximum number of iterations or it
could be that one variable or slope causes the model to not converge. The in�uencer
popularity factor seemed to have little in�uence on the likelihood of adoption based
on the results of the model and seemed not to interact or interfere with in�uence of
other factors. So a second analysis without followerCountMostPopularInfluencer
was ran and the results of this analysis are listed in the Results section.

2.7.3 Linear regression analysis

The collapsed data �le was used to do two linear regression models. A mixed e�ects
model is not applicable for this dataset as it just contains one observation per user.
The aim of these analyses is to test if social network size in�uences the number
of hashtags the user uses or adopts. There is a di�erence between the number of
hashtags the user adopts and the number he uses. Adopted hashtags is the number of
unique hashtags the user adopted after been exposed to it. Used hashtags describes
the number of unique hashtags the user used. A user could have invented a hashtag
by himself or saw it elsewhere (for example, a Twitter user he does not follow used
that hashtag, or he saw the hashtag on another social media platform). The value of
this latter factor is therefore always higher than the number of adopted hashtags.

Two regression models were created; one with number of adopted hashtags
as a dependent variable and one with the number of used hashtags. To prevent
assigning e�ect size to the wrong predictor two other factors were added that
could be in�uenced by in�uencer count and that could in�uence the number of
adopted/used hashtags. Both models included these three predictors:

CHAPTER 2. METHODS 38

• The number of in�uencers the user has.
The hypothesis is that people with smaller in�uencer counts will be use/adopt
more di�erent hashtags.

• The number of unique hashtags the user saw.
It makes sense that the more unique hashtags a user is exposed to, the more
he will use/adopt hashtags.

• The number of hashtags the user saw.
My hypothesis is that the more hashtags a user sees, the more likely he is to
use/adopt hashtags too.

RESULTS

3This chapter lists and interprets the results from the two analyses as described in
the Methods chapter.

3.1 results mixed model

The results of the linear mixed model show:

• A negative, signi�cant e�ect of network size on adoption.
(β = −1.134e− 03, SE = 1.827e− 04, z = −6.203, p < 0.001)
The number of people a user follows in�uences the likelihood of adoption.
This e�ect is negative, which means that the larger the network, the smaller
the chance of adoption.

• A positive, signi�cant e�ect of unique in�uencers on adoption.
(β = 4.118e− 01, SE = 4.857e− 02, z = 8.480, p < 0.001)
This positive e�ect means that likelihood of adoption increases as the number
of unique in�uencers using the hashtag also increases.

• A positive, signi�cant e�ect of dominant hashtag exposure on likelihood of
adoption.
(β = 6.325e− 01, SE = 9.526e− 02, z = 6.640, p < 0.001)
When the hashtag was indeed the hashtag the user saw most often compared
to other hashtags he has seen, likelihood of adoption increased.

• A positive, signi�cant e�ect of in�uence language on adoption.
(β = 2.490e− 01, SE = 6.776e− 02, z = 3.675, p < 0.001)
The language of the tweet that contained the hashtag in�uences the likelihood
of adoption. If this language is the same as the dominant language of the user,
chances of adoption increase.

• A negative, signi�cant e�ect of past dominant hashtag use (value −1) on
adoption.
(β = −3.052e− 01, SE = 7.997e− 02, z = −3.816, p < 0.001)
This means that if the user already used another hashtag most often compared
to when the user had not used a hashtag at all, likelihood of adoption decreases.

• A positive, signi�cant e�ect of past dominant hashtag use value 1 on adoption.
(β = 1.687, SE = 1.183e− 01, z = 14.262, p < 0.001)
When the user was already using this hashtag, chances of adoption increased.

39

CHAPTER 3. RESULTS 40

• No interaction e�ects.
The fact that we did not �nd any interactions mean that the factors by them-
selves only have an e�ect and that there is no additional e�ect when two
factors are combined.

3.2 linear regression model

The collapsed data was used for two linear regression models. The results are very
similar, so in order to make it easier to compare the β coe�cients and p values the
statistics are listed right underneath each other. The results of the linear regression
models with the collapsed data show:

• A negative, signi�cant e�ect of network size on the number of di�erent hash-
tags used/adopted.
(On used: β = −1.048e− 03, SE = 2.626e− 04, t = −3.990, p < 0.001)
(On adopted: β = −1.006e− 03, SE = 2.332e− 04, t = −4.314, p < 0.001)
This means that users with smaller networks are more likely to use/adopt
more, di�erent hashtags.

• A positive, signi�cant e�ect of the number of di�erent hashtags the user was
exposed to on the number of di�erent hashtags used/adopted.
(On used: β = 2.165e− 02, SE = 7.872e− 03, t = 2.751, p < 0.01)
(On adopted: β = 3.367e− 02, SE = 6.992e− 03, t = 4.816, p < 0.01)
Users who have seen more, di�erent hashtags tend to use/adopt more, di�erent
hashtags too.

• A positive, signi�cant e�ect of the number hashtags a user has been exposed
to on the number of di�erent hashtags used/adopted.
(On used: β = 1.182e− 03, SE = 2.731e− 04, t = 4.329, p < 0.001)
(On adopted: β = 1.018e− 03, SE = 2.426e− 04, t = 4.195, p < 0.001)
Users who have been exposed to more hashtags are more likely to use/adopt
more, di�erent hashtags.

The reason the two models are very similar in output is that the number of hashtags
used and number of hashtags adopted is strongly correlated (ρ = 0.951374). The
high correlation indicates that the number of used hashtags is almost the same as the
number of adopted hashtags. This implies that users are not likely to use hashtags
they have not been exposed to, i.e. they are not very likely to invent hashtags
themselves or to propagate hashtags from other input sources on Twitter.

DISCUSSION

4The aim of this Master thesis research project was to analyse the e�ect network size
has on language malleability. In this study these terms are de�ned as the number of
people a Twitter user follows and how likely that Twitter user is to copy hashtags
from the people he is following, respectively. This study tests the hypothesis that
people with a smaller network assign more weight to non-normative input and
might therefore be more likely to propagate linguistic novelties. Novelties need to
be propagated, because if just one person starts using a new word we cannot speak
of language change.

By studying hashtag malleability on Twitter it was possible to control for di�erent
input channels and to work with real world data. Harvested data consists of tweets
about the tragic terrorist attack in Brussels from users and the users they follow
(also referred to as in�uencers).

4.1 time window data analysis

A mixed model linear regression analysis, with data that describes adoption behaviour
of users between two consecutive exposures to the same hashtag, shows that the
hypothesis is true; i.e. that users with more in�uencers are less likely to adopt
hashtags from their in�uencers. The e�ect is very signi�cant, but unfortunately
it is di�cult to say something about the size of the e�ect social network size has
on adoption. Not because I used a log-transform for the factor network size, but
because a mixed model assumed there are random e�ects and these random e�ects
have di�erent coe�cients for every possible value of that random e�ect. Therefore it
is not possible to construct the linear regression formula of a mixed model analysis
and compute what an additional thousand in�uencers would do the the probability
of adoption.

Other factors like the number of in�uencers who used the hashtag or the user’s
hashtag use in the past also signi�cantly in�uenced the likelihood of adoption, but
do not modulate the e�ect of number of in�uencers on adoption.

4.2 collapsed data analysis

The second models show that in general, users with fewer in�uencers are more likely
to use a higher proportion of the hashtags they have been exposed to than users
with more in�uencers.

41

CHAPTER 4. DISCUSSION 42

The most interesting result of the two models is that apparently the number of
adopted hashtags is strongly correlated to the number of used hashtags. This �nding
implies that the initial reason to use Twitter data in order to capture for (what was
then hoped) most of the exposure the Twitter users had, was correct.

4.3 generalizability to language change

The �ndings of this study show that indeed people with smaller networks, i.e. less
input sources, tend to be more malleable and propagate more, di�erent output on
Twitter. These �ndings may therefore provide insights in how it is possible that rare
events of linguistic novelties can overcome the threshold problem and cause language
to change. But are these �ndings generalizable to the way linguistic novelties that
are not hashtags are propagated?

The �rst concern that I want to raise is the fact that only data from one topic
(about something very extreme; a terrorist attack) was harvested and analysed. I
chose this topic, because it was one of the only topics that would �t the criteria
I drafted. One of these criteria was that data has to be collected right from the
beginning, otherwise the di�erent competing hashtags will already have converged.
So perhaps, what I measured by making the decision to harvest data so close after
the attacks happened, were novel hashtags being created and propagated for only a
very short while. After a few weeks the �uctuation in popular hashtag will disappear
and people will have conformed to only one or a few hashtags to describe this topic.

The convergence is even so extreme that after a while, the hashtags are barely
used (unless there is something to remind people of the tragic day). So has the
Twitter hashtag dictionary actually changed? I think that future research that wants
to build on the results of this thesis should not focus on one likewise topic, but
rather focus on general data. I would advise to harvest a large sample of Streaming
data (serveral months at least). Then start looking for a few new hashtags that are
not used in a very bursty manner (very high frequently used and after a few days
not used anymore), but rather start slow, but will be used more frequently after a
few weeks. Then it is possible to see if users who started propagating the hashtag
in it’s early stages might have small networks. Perhaps the hashtag will make a
sudden jump in popularity, maybe retweets show who caused the sudden increase
in popularity.

However, although I do think this topic might not have been the best decision, I
do believe that the hypothesis is true (that people with less input sources assign more
weight to the utterance of one person). This hypothesis resembles Nettle’s proposed
explanation of parochialism (Nettle, 1999). It sounds reasonable that people with
small networks feel more parochialistic and like it that they share a special variant
of language with each other.

CHAPTER 4. DISCUSSION 43

4.4 conclusion

To conclude, although there is still a lot that can be done in this �eld, this study
provides insights as to why some people tend to be more malleable and propagate
language changes more than others. This will help explain how rare new words or
other linguistic novelties can cause language, used by a larger population, to change.

OPTIONS FOR DATA COLLECTION

ATwitter o�ers three methods for data harvesting: the REST API, the Streaming API
and the Firehose. Each of these three methods has its advantages and limitations. The
Firehose is suited for companies or institutes with budgets to buy large quantities
of data. This method was therefore not applicable. The other two options are free
and were used for data acquisition. This section describes how the REST API and
Streaming API work, starting with authentication and the returned data format.
This information and more can be found in the API documentation of Twitter:
https://dev.twitter.com

a.1 authentication

Both the REST and Streaming API (Application Programming Interface) require
authentication in order to harvest data. Twitter uses an authentication model called
OAuth and this model has two options: a user-application authentication and an
application-only authentication. In the �rst case the data requester need to identify
the application the request is coming from and the user he wishes to obtain data
from. The application-only authentication can be used without user context, but not
all methods work without user authentication. This project only uses the app-only
identi�cation and this required creating an application development account. This
account (that is tied to my personal Twitter account) grants the possibility to enter
three application names and each application name will yield a consumer key and a
consumer secret key. The combination of app name and the two keys can be used to
create an identi�cation-token and this token can be sent along a request to Twitter.

a.2 returned data structure

Twitter returns output in JSON (JavaScript Object Notation) format when responding
to a request in both the REST and Streaming API. JSON data is readable for humans
as it has an intuitive notation for di�erent data structures. Data is stored in <name
: value> pairs. This explicit coupling of names to values makes interpretation by
both humans and machines less error prone. Curly brackets surround objects with
attributes and lists are indicated by square brackets. See Figure ?? for a small example
of what the JSON notation for a tweet could look like (in reality a tweet may have up
to 34 attributes). In this example an object is returned that contains a list of statuses.
This list contains two tweets. A tweet object contains a timestamp, a text and a user

44

APPENDIX A. OPTIONS FOR DATA COLLECTION 45

object. The user object contains a timestamp of when the account was created and a
name.

{

âĂIJstatusesâĂİ : [

{

âĂIJcreated_atâĂİ : âĂIJWed Jun 06 20:07:10 +0000 2012âĂİ,

âĂIJtextâĂİ : âĂIJThis is an example tweet textâĂİ,

âĂIJuserâĂİ : {

âĂIJcreated_atâĂİ: âĂIJWed May 23 06:01:13 +0000 2007âĂİ,

âĂIJnameâĂİ: âĂIJIris MonsterâĂİ

},

{

âĂIJcreated_atâĂİ : âĂIJWed Jun 06 21:17:10 +0000 2012âĂİ,

âĂIJtextâĂİ : âĂIJThis is a second tweetâĂİ,

âĂIJuserâĂİ : {

âĂIJcreated_atâĂİ: âĂIJWed May 23 06:01:13 +0000 2007âĂİ,

âĂIJnameâĂİ: âĂIJIris MonsterâĂİ

}

]

}

Figure A.1: A small example of a TweetArray

a.3 rest api

The REST API (REpresentational State Transfer Application Programming Interface)
can be used to make REST requests. As is common in REST APIs it is possible to
perform get and post requests. A get-request will retrieve data and a post-request
will send data to Twitter, for example posting a tweet on behalf of an authenticated
user. I never used any post-request as they did not apply to this project, so I will not
elaborate more on this type of request.

The REST API is limited by rate limits, a maximum number of returned objects
per request and a maximum number of requests. The rate limits mean that there is a
certain number of requests the app credentials can make per query. An example: The
goal is to receive the post history of 100 users. The GET statuses/user_timeline

request has a rate limit of 300 requests per 15-minute window. The maximum number
of posts that can be received per request is 200 and per user it is possible to get his

APPENDIX A. OPTIONS FOR DATA COLLECTION 46

latest 3200 posts. This means that, if all 100 users have more than 3200 posts and
the goal is to get as much as possible, it takes 16 requests to retrieve the maximum
amount of posts of one user. It takes 1600 requests to get the history of all users. Let
us assume that it takes the program 15 minutes to make 300 requests (the computer
can maximally handle what the rate limit also prescribes). Due to the rate limits this
will take one hour and 20 minutes.

My experience is that doing the requests and processing the data do not take
long, so my program would make requests for 1 minute and then wait 14 minutes
due to the rate limit. I have made this waiting period shorter by creating six app
accounts (with a second personal Twitter account), so I would be able to harvest six
times as much within the same period of time. For this particular type of request
this means that I can now harvest the tweet history of 100 users within 15 minutes
and still not exceed the rate limit of the sixth app account. This decision was not
completely risk free. Nowhere in the documentation of Twitter is mentioned that it
is not allowed to use multiple authentication keys for one app. However, abusing
Twitter’s API may lead to suspension or terminating access. Perhaps it was possible
to add another 3 keys, which would speed up harvesting even more, but the risk of
banning was too great to try that out.

a.4 harvesting lists and timelines with the rest api

JSON objects that Twitter returns for a request often contain cursor information or
search metadata (see Figure 2.1). Cursor information can be used when navigating
through a list that is longer than what is returned in one request. For example: When
calling GET friends/ids method a UserIDArray is returned. This object contains an
array of user ID’s and cursor information. This particular method will return a
maximum count of 5000 user ID’s. When a user follows more people, the cursor can
be used for the subsequent GET friends/ids method to get the next piece of the list.

Twitter has made a special exception for lists that contain timelines, like the GET
statuses/lookup request. To avoid receiving duplicate tweets or missing tweets it is
possible to add a max id or since id to methods where timelines are requested.

a.5 streaming api

The Streaming API is also restricted like the REST API, but in a di�erent manner.
When an application (that has been authenticated) calls the Streaming API returns
a random sample of all tweets posted in real time from around the world. Twitter
does not document a precise percentage and online sources describe percentage
estimations that vary greatly. On average I would receive around 80 tweets per
second, but these include partial tweets or delete noti�cations.

APPENDIX A. OPTIONS FOR DATA COLLECTION 47

I used both APIs for harvesting data and created my own Java code to communi-
cate with the APIs. All code for this research project can be found on GitLab, see
Appendix G.

DESCRIPTION FILE SYNTAX

BHere is the ANTLR4 grammar for a description �le:

grammar D e s c r i p t i o n ;

@header
{
package n l . ru . a i . t w i a p i g e n . d e s c r i p t i o n ;
}

/ / s t a r t i n g p o i n t f o r p a r s i n g a D e s c r i p t i o n f i l e
c o m p i l a t i o n U n i t
: t y p e D e c l a r a t i o n EOF
;

t y p e D e c l a r a t i o n
: Comment? I d e n t i f i e r body
;

body
: ’ { ’ f i e l d D e c l a r a t i o n ∗ ’ } ’
;

f i e l d D e c l a r a t i o n
: Comment? s q l ? key ? type row ? f i e ldName ’ ; ’
;

f i e ldName
: I d e n t i f i e r
;

type
: I d e n t i f i e r
;

row
: ’ [] ’
;

48

APPENDIX B. DESCRIPTION FILE SYNTAX 49

s q l
: ’ SQL ’
;

key
: ’KEY ’
;

I d e n t i f i e r
: J a v a L e t t e r J a v a L e t t e r O r D i g i t ∗
;

f r agment
J a v a L e t t e r
: [a−zA−Z$_]
;

f ragment
J a v a L e t t e r O r D i g i t
: [a−zA−Z0−9$_]
;

/ /
/ / Whi tespace and comments
/ /

WS : [\ t \ r \ n \ u000C]+ −> s k i p
;

Comment
: ’ / ∗ ’ . ∗ ? ’ ∗ / ’
;

LINE_COMMENT
: ’ / / ’ ~ [\ r \ n] ∗ −> s k i p
;

MYSQL DATABASE

CThe �rst version of TwiApiGen could process Twitter data and allowed me to call
methods to access the information I needed. It was necessary to store data in a
structure that is easy to access, fast and can be queried in a complex and structured
fashion. Therefore, I chose to create a MySQL (My Structured Query Language)
database.

MySQL is a database management system that consists of one or more tables.
Every table consists of a number of columns and a column usually has a name and
a type for the values in the column. Every row describes a data entry and �lls one
value for every column. A column can be left empty. A column cannot be left empty
if it is an identi�er for the rows. It is common to use an incrementing integer as the
identi�er for a row in a table, but for instance a name can also be used as long as an
identi�er when it is unique for every row. One of the features of MySQL is that these
identi�ers can be used to connect a row to data from another table. The connections
are called foreign keys and are also used in the database structure of the Twitter
data.

I added the possibility to add the word SQL before the type of a �eld in the
description �les, which indicates that this �eld needs to be added to a MySQL database
structure.

c.1 java types to sql

Since the classes were generated based on the description �les, I also wanted to
generate the database access routines and a database template based on these �les.
To do so, I extended the ANTLR grammar so that the keyword SQL could be added
to �elds in the description �les. Placing SQL in front of a �eld type speci�es that
this �eld should be part of the database. In some cases it was necessary to indicate
which �eld should be used for identi�cation of that object in the database. The tag
KEY denotes the identifying �elds. For Classes without a KEY �eld, an implicit auto
incrementing integer identi�er is created.

Besides the distinct Java Class that TwiApiGen creates it also creates a MySQL

table template, e.g. a table ‘Tweet’ and table ‘User’. A table contains rows per data
entry and a column for every �eld. As with the Java objects, the original JSON basic
data types can be easily mapped to SQL native data types like numbers or strings.
The value in the corresponding column would be the value of the �eld. If the �eld is
a nested object, the value is an identi�cation key pointing to the place where that
object is stored. See �gure C.1 for an example of a generated table.

50

APPENDIX C. MYSQL DATABASE 51

#

SQL table definition for Contributor generated by

TwiApiGen version 0.1 on Tue Mar 15 12:41:51 CET 2016

#

CREATE TABLE Contributor

(

#

Automatically created auto-increment key,

not part of Twitter API

#

‘key‘ INT NOT NULL AUTO_INCREMENT,

#

The integer representation of the ID of the user who

contributed to this Tweet.

#

‘id‘ BIGINT,

#

The string representation of the ID of the user who

contributed to this Tweet.

#

‘idStr‘ TEXT CHARACTER SET utf8mb4,

#

The screen name of the user who contributed

to this Tweet.

#

‘screenName‘ TEXT CHARACTER SET utf8mb4,

PRIMARY KEY (‘key‘)

) ENGINE=INNODB;

Figure C.1: Example generated table by TwiApiGen

APPENDIX C. MYSQL DATABASE 52

TwiApiGen generates special tables for arrays, one for each array the data contains.
For example, both the class Hashtag and the class Symbol contain a LongArray. In
this particular case it happens to be that both are for indices (indicating where the
hashtag or symbol is within the tweet text). However I did not create a general indices
table that would store them both. The database contained a table for SymbolIndices
and one for HashtagIndices. Tables for arrays consist of two columns: parent and
child. So the �rst column contains an id to the object that the array belongs to (for
example a tweet id) and the second column contains either an element from the list
or the id of an element from the list. So for every element from a list a row would be
added to the table.

In practice it happened that certain objects did not have an id from Twitter or
an id from Twitter was not called ID (like userid). To solve these issues I added the
keyword KEY to the description �le grammar. If a �eld has that keyword, TwiApiGen
knows that that �eld should be used in the SQL database as the unique identi�er. It
would happen that no �eld had that keyword and that object had to be linked to
another object, like in the case of the bounding box (this is part of the object Places
and Places belongs to a Tweet). TwiApiGen always �rst inserts nested structures
before inserting an object, so �rst the Bounding Box would be inserted. The index in
the table of that object would then serve as the identi�er that the parent contains.

See �gure C.2 for the full EER diagram of the database. Here you can see links
between the tables. These are called foreign keys. It a good habit to use foreign keys
wherever possible, because MySQL is then able to report inconsistencies. For example,
it will raise a red �ag when you want to delete something that is linked to from
somewhere else. And, when deleting the parent object, it will delete everything that
links to that object. However, with this dataset I switched o� foreign keys checking,
because there are circular references in the database. For example a Tweet contains
a User object, but User also contains a Tweet object (the latest post). Although there
are methods to deal with circularity, implementing these methods would increase
the complexity of TwiApiGen, so foreign key checking is disabled.

APPENDIX C. MYSQL DATABASE 53

Figure C.2: EER diagram of database

SAMPLE GENERATED TWIT TER CLASS

Dpackage nl.ru.ai.twitter.api;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.ResultSet;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Set;

import java.util.Arrays;

import java.util.Date;

import java.util.Locale;

import java.text.SimpleDateFormat;

import java.text.ParseException;

import org.json.simple.JSONArray;

import org.json.simple.JSONObject;

import org.json.simple.JSONValue;

/*

** Class Hashtag generated by TwiApiGen version 0.1

** on Sun Jan 10 22:49:35 CET 2016

** Represents hashtags which have been parsed out of the Tweet text.

*/

public class Hashtag

{

private static SimpleDateFormat dateFormat = new

SimpleDateFormat("EEE MMM dd HH:mm:ss Z yyyy", Locale.US);

private static Set<String> knownFields=new

HashSet<String>(Arrays.asList(new String [] {"indices","text"}));

private LongArray indices;

private String text;

private Integer key;

/**

* Constructor

*/

public Hashtag(LongArray indices,String text)

{

54

APPENDIX D. SAMPLE GENERATED TWITTER CLASS 55

this.indices=indices;

this.text=text;

}

/**

* Parse function

* @param object object to parse

* @return Hashtag object

* @throws ParseException

*/

public static Hashtag parse(Object object) throws ParseException

{

if(object==null)

return null;

JSONObject o=(JSONObject)object;

LongArray indices=LongArray.parse(o.get("indices"));

String text=(String)(o.get("text"));

for(String key:(Set<String>)o.keySet())

if(!knownFields.contains(key))

{

System.err.println(object);

System.err.printf("Found field ’%s’ for type ’%s’ which is not

in description file\n",key,"Hashtag");

knownFields.add(key);

}

return new Hashtag(indices,text);

}

/**

* Parse function

* @param string string to parse

* @return Hashtag object

* @throws ParseException

*/

public static Hashtag parse(String string) throws ParseException

{

return parse(JSONValue.parse(string));

}

@Override

public String toString()

{

return toJSON().toString();

APPENDIX D. SAMPLE GENERATED TWITTER CLASS 56

}

/**

* Reconstruct JSON object from this object.

* @return object in JSON format

*/

public JSONObject toJSON()

{

JSONObject object=new JSONObject();

if(indices!=null)

object.put("indices",indices);

if(text!=null)

object.put("text",text);

return object;

}

/**

* INSERT/UPDATE rows into SQL table

* @param connection connection to SQL database

* @param parent id of parent

* @throws SQLException

*/

public void insertUpdateRowIndices(Connection connection, Integer

parent) throws SQLException

{

for(Long child : indices)

{

PreparedStatement

statement=connection.prepareStatement(String.format("INSERT

INTO HashtagIndices (parent,child) VALUES (?,?)"));

int arg=1;

statement.setInt(arg++,parent);

statement.setLong(arg++,child);

statement.executeUpdate();

}

}

/**

* INSERT/UPDATE into SQL table

* @param connection connection to SQL database

* @throws SQLException

*/

public void insertUpdate(Connection connection) throws SQLException

APPENDIX D. SAMPLE GENERATED TWITTER CLASS 57

{

if(key==null)

{

StringBuffer select=new StringBuffer();

if(text!=null)

select.append("text=? AND ");

else

select.append("text IS NULL AND ");

if(select.length()!=0)

{

select.setLength(select.length()-5);

PreparedStatement

statement=connection.prepareStatement(String.format("SELECT

‘key‘ FROM Hashtag WHERE %s",select));

int arg=1;

if(text!=null)

statement.setString(arg++,text);

ResultSet resultSet=statement.executeQuery();

if(resultSet.next())

key=resultSet.getInt("key");

resultSet.close();

statement.close();

}

}

if(key==null)

{

PreparedStatement

insertStatement=connection.prepareStatement(String.format("INSERT

INTO Hashtag VALUES ()"));

insertStatement.executeUpdate();

insertStatement.close();

PreparedStatement

selectStatement=connection.prepareStatement("SELECT

LAST_INSERT_ID() AS ‘key‘ FROM Hashtag");

ResultSet selectSet=selectStatement.executeQuery();

if(selectSet.next())

key=selectSet.getInt("key");

selectSet.close();

selectStatement.close();

}

APPENDIX D. SAMPLE GENERATED TWITTER CLASS 58

if(indices!=null)

insertUpdateRowIndices(connection,getKey());

StringBuffer update=new StringBuffer();

if(text!=null)

update.append("text=?,");

if(update.length()>0)

{

update.setLength(update.length()-1);

PreparedStatement

statement=connection.prepareStatement(String.format("UPDATE

Hashtag SET %s WHERE ‘key‘=?",update));

int arg=1;

if(text!=null)

statement.setString(arg++,text);

statement.setInt(arg++,key);

statement.executeUpdate();

statement.close();

}

}

/**

* An array of integers indicating the offsets within the Tweet text

* where the hashtag begins and ends.

* The first integer represents the location of the # character in

* the Tweet text string.

* The second integer represents the location of the first character

* after the hashtag.

* Therefore the difference between the two numbers will be the

* length of the hashtag name plus one (for the âĂŸ#âĂŹ character).

* @return the indices

*/

public LongArray getIndices()

{

return indices;

}

/**

* Name of the hashtag, minus the leading âĂŸ#âĂŹ character.

* @return the text

*/

public String getText()

{

APPENDIX D. SAMPLE GENERATED TWITTER CLASS 59

return text;

}

/**

* This field is added for SQL and was not part of the description

* file

* @return the key

*/

public Integer getKey()

{

return key;

}

}

UNIQUE HASHTAGS

E#airport #attack #attacks

#attentats #banislam #belgi

#belgian #belgica #belgique

#belgium #belgiumairport #belgiumattack

#belgiumattacks #belgiumstrong #belgiumunderattack

#belguim #blast #bomb

#bombing #bombings #borders

#breakingnews #bru #brublasts

#bruessel #bruessels #brus

#bruselas #bruss #brusse

#brussel #brusselairport #brusselattack

#brusselattacks #brussells #brussels

#brusselsa #brusselsairport #brusselsat

#brusselsatta #brusselsattack #brusselsattacks

#brusselsblast #brusselsblasts #brusselsbomb

#brusselsbombing #brusselsexplosions #brusselslift

#brusselslockdown #brusselsmetro #brusselssubway

#brussles #brusslesattacks #brusssels

#brux #bruxelles #bruxellesattack

#bruxellesmabelle #bruxells #deportallmuslims

#dontstopislam #espacepourlavie #explosion

#explosions #fuckislam #fuckterrorists

#heartgoesouttobrussels #icantbelieveijustsaw #ikwilhelpen

#ilovebelgium #ilovebruxelles #isis

#islam #islamholdspeace #islamispeace

#islamistheproblem #islamkills #islamophobia

#istandwithbrussels #jesuisbelge #jesuisbrussel

#jesuisbrussels #jesuisbruxel #jesuisbruxelle

#jesuisbruxelles #jmahers #lockdown

#lovebrussels #loveislam #lovemuslims

#maalbeck #maalbeek #maalbek

#maelbeek #maketheworldsafeagain #malbeek

#mannekenpis #metro #metrostation

#multipleattacks #muslimneighborhood #muslims

#muslimsforpeace #muslimslivematters #noalterrorismo

#notallmuslims #peace #peaceforbrussels

60

APPENDIX E. UNIQUE HASHTAGS 61

#peaceonearth #porteouverte #pray

#prayers #prayersforbelg #prayersforbelgium

#prayersforbru #prayersforbrussels #prayf

#prayforbel #prayforbelgium #prayforbruessels

#prayforbruselas #prayforbrusells #prayforbrusels

#prayforbrussel #prayforbrusseles #prayforbrussels

#prayforbrussles #prayforbruxelle #prayforbruxelles

#prayforourworld #prayforpeace #prayfort

#prayforth #prayforthewholeworld #prayfortheworld

#prayforworldspeace #prayingforbelgium #prayingforbrussels

#solidaritywithbrussels #somethingneedstochange #standwithbrussels

#startislam #station #staysafebrussels

#staystrongbelgium #staystrongbrussels #stopblamingislam

#stopbombingnow #stophate #stopis

#stopisalm #stopisis #stopislam

#stopislamophobia #stopislamphobia #stopreligion

#stopterrorism #subway #suicideattack

#terreur #terrorattack #terrorinbrussels

#terrorism #terrorismhasnoreligion #terroristattacks

#terrorists #thisistheworldwelivein #thoughtsandprayers

#tousensemble #waronmuslims #whenwillitstop

#whitegenocide #zavantem #zavente

#zaventem #zaventemairport #zaventem

Table E.1: Unique hashtags

CSV TABLE

Fname type Description
hashtag String The text of the hashtag.
influenceTimestamp Date When the user was exposed to the hashtag.

This is the start of the timewindow.
influenceTweetID Long The ID of the tweet that contains the hashtag.

This tweet will be referred to as this exposure.
influenceIsReply Binary Equals 1 if the in�uence tweet is a reply.
influenceReplyToUser Binary Equals 1 if the in�uence tweet is a reply to

the user.
influenceLanguage String Language of the in�uence tweet according to

Twitter.
influenceIsQuote Binary Equals 1 if the in�uence tweet is a quote.
influenceQuoted

TweetText

String Contains, if in�uence tweet is a quote, the text
of the tweet that is quoted.

influenceQuotedUser Binary Equals 1 if the in�uence tweet quotes the user.
influenceRetweeted

Count

Integer Number of times the in�uence tweet is
retweeted by Twitter users.

influenceTweetText String Text of the in�uence tweet.
influenceIsTruncated Binary Equals 1 is the in�uence tweet is truncated.
influencer

FavoriteCount

Integer Number of times the in�uence tweet is favor-
ited by Twitter users.

influencer

FollowersCount

Long Number of followers the in�uencer has.

influencer

InfluencersCount

Long Number of in�uencers the in�uencer has.

influencerUserID Long The ID of the in�uencer.
influencer

ScreenNameUser

String The screenname of the in�uencer.

influencerTweetCount Long Number of tweets the in�uencer posted on
Twitter since he created his account.

influenceNumberOf

HashtagsInTweet

Integer Number of hashtags that were in the text of
the in�uence tweet.

userId Long The ID of the user.
userScreenName String The screenname of the in�uencer.
userInfluencerCount Long Number of in�uencers the user has.
userFollowersCount Long Number of followers the in�uencer has.

62

APPENDIX F. CSV TABLE 63

usersFavoritesCount Integer Number of times the user has been favorited
by Twitter users.

usersTweetCount Long Number of tweets the user posted on Twitter
since he created his account.

ratioHashtag

DominantHashtag

Double Number of times the user has been exposed to
this hashtag divided by the number of times
the user has been exposed to any hashtag until
and including this exposure.

isDominantHashtag Binary Equals 1 if this hashtag is the hashtag the user
has been exposed to the most until and includ-
ing this exposure (also in case of a shared �rst
place with other hashtags).

nextInfluence

Timestamp

Date The next time the user is exposed to the same
hashtag by the same or another in�uencer.
This is the end of the timewindow.

tagExposure Integer Number of times the user is exposed to this
hashtag until and including this exposure.

uniqueInfluencers Integer Number of in�uencers who used this hashtag
until and including this exposure.

followerCountMost

PopularInfluencer

Long Number of followers of the in�uencer with
the highest number of followers of all in�u-
encers who have used this hashtag until and
including this exposure.

medianFollowerCount

Influencers

Long The median of the follower counts of in�u-
encers who have used this hashtag until and
including this exposure.

windowSize Long Number of milliseconds between the times-
tamps of the start and end of the time window.

adopted Binary Equals 1 if the user has used this hashtag
within the time window at least once.

usedWithinWindow Integer Number of times the user has used this hash-
tag within the time window.

userUsedHashtag

Dominant

WithinWindow

Binary Equals 1 if the user used this hashtag the most
(also in case of a shared �rst place) within the
time window.

usedHashtag

BeforeInfluence

Binary Equals 1 if the user had used the hashtag be-
fore this exposure.

usedOtherHashtags

BeforeInfluence

Binary Equals 1 if the user had used other hashtags
before this exposure.

APPENDIX F. CSV TABLE 64

countUsedOther

RelevantHashtag

WithinWindow

Integer Number of times the user used any other rel-
evant hashtag within the time window.

tweetedWithoutAny

RelevantHashtag

WithinWindow

Binary Equals 1 if the user has tweeted without any
relevant hashtag within the time window.

hashtagDominant

PastUse

-1/0/1 Equals 1 if the user used this hashtag mostly
(also in case of a shared �rst place) before this
exposure. Equals 0 if the user had not used
any relevant hashtag yet before this exposure.
Equals -1 if the user mostly used another rel-
evant hashtag before this exposure.

countUserUsed

HashtagsBeforeWindow

Integer Number of times the user used hashtags be-
fore this time window.

countUserUsedUnique

HashtagsBeforeWindow

Integer Number of unique hashtags the user used be-
fore this time window.

userUsedKeyWord

WithinWindow

Binary Equals 1 if the user used one of the hashtags
without the #-symbol within this time win-
dow.

userUsedAnyRelevant

HashtagWithinWindow

Binary Equals 1 if the user used any relevant hashtag
within this time window.

userOnlyTweetedAbout

OtherStuffWithin

Window

Binary Equals 1 if the user did not use any relevant
hashtag and did not use any relevant hashtag
as a keyword (so without the #-symbol.)

countHashtags

CompleteHistory

Integer Number of hashtags the user used within
three weeks after the attacks happened.

countUniqueHashtags

CompleteHistory

Integer Number of unique hashtags the user used
within three weeks after the attacks hap-
pened.

influenceLanguageIs

DominantLanguageUser

Binary Equals 1 if the language of this exposure is
also the dominant language of the user (also
in case of a shared �rst place).

influenceLanguageIs

DominantLanguageUser

WithinWindow

Binary Equals 1 if the language of this exposure is the
same as the dominant language of the user’s
tweets he posted within this time window
(also in case of a shared �rst place).

userUsedLanguage

OfInfluenceWithin

Window

Binary Equals 1 if the user has used the language of
this exposure at least once within this time
window.

allLanguagesGeneral String All languages and frequency counts the user
used within 3 weeks after the attacks.

APPENDIX F. CSV TABLE 65

allLanguagesBefore

NextInfluence

String All languages and frequency counts the user
used within this time window and before this
exposure.

amountUserMentioned

Influencer

Integer Number of times the user mentioned the in-
�uencer of this exposure.

firstAdoption

Timestamp

Date First adoption �elds are �lled if the user used
this hashtag within the window and will de-
scribe the (�rst, if there are multiple tweets
the user posted within this window with this
hashtag) tweet the used posted with this hash-
tag. This is the time stamp.

firstAdoption

Language

String Language of the �rst adoption.

firstAdoptionTweetID Long The ID of �rst adoption tweet.
firstAdoptionText

Tweet

String Text of the �rst adoption tweet.

firstAdoptionNumber

OfHashtagsInTweet

Integer Number of hashtags the �rst adoption tweet
contains.

firstAdoptionIs

Truncated

Binary Equals 1 if the �rst adoption tweet is trun-
cated.

firstAdoption

RetweetedCount

Integer Number of times the �rst adoption is
retweeted by Twitter users.

firstAdoptionIsReply Binary Equals 1 if the �rst adoption tweet is a reply.
firstAdoptionIsReply

ToInfluence

Binary Equals 1 if the �rst adoption tweet is a reply
to the in�uencer of this exposure.

firstAdoptionIsQuote Binary Equals 1 if the �rst adoption is a quote.
firstAdoptionQuotes

Influencer

Binary Equals 1 if the �rst adoption quotes a tweet
from the in�uencer of this exposure.

firstAdoptionQuoted

TweetText

String The text of the �rst adoption tweet.

Table F.1: CSV table

CODE

GCode used for this project can be found on my GitLab repository.
The TwiApiGen project can be found on:

https://gitlab.socsci.ru.nl/twitterthesisproject/twiapigen.git
The Stanford parser projects can be found on:

https://gitlab.socsci.ru.nl/twitterthesisproject/stanfordparser.git
Code for the relevance weighting can be found on:

https://gitlab.socsci.ru.nl/twitterthesisproject/twitterwordcloud.git
The code I used to harvest and process data can be found on:

https://gitlab.socsci.ru.nl/twitterthesisproject/twitterharvest.git

66

REFERENCES

Baregheh, A., Rowley, J., & Sambrook, S. (2009). Towards a multidisciplinary
de�nition of innovation. Management Decision, 47(8), 1323–1339. doi: 10.1108/
00251740910984578

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-e�ects
models using lme4. arXiv preprint arXiv:1406.5823.

Croft, W. (2000). Explaining Language Change. An Evolutionary Approach. Pearson
Education.

Efron, B., & Morris, C. N. (1977). Stein’s paradox in statistics. WH Freeman.
Fang, Y. (2016). JSON simple, a toolkit for Java. Retrieved from https://code.google

.com/archive/p/json-simple/ (Last accessed 29 February 2016)
Hargadon, A. (2003). How Breakthroughs Happen: The Surprising Truth About How

Companies Innovate. Harvard Business Review Press.
Harrington, J., Palethorpe, S., & Watson, C. I. (2000). Does the Queen speak the

Queen’s English? Nature, 408(6815), 927–928.
Jiang, J. (2007). Linear and generalized linear mixed models and their applications.

Springer Science & Business Media.
Keller, R. (1995). On Language Change: The Invisible Hand in Language (1st ed.).

Routledge.
Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings

of the 41st Annual Meeting on Association for Computational Linguistics - Vol-
ume 1 (pp. 423–430). Stroudsburg, PA, USA: Association for Computational
Linguistics. doi: 10.3115/1075096.1075150

Laird, N. M., & Ware, J. H. (1982). Random-e�ects models for longitudinal data.
Biometrics, 963–974.

Lev-Ari, S. (2016). Talking to fewer people leads to having more malleable linguistic
representations.

Manning, C. D., Bauer, J., Finkel, J., Bethard, S. J., Surdeanu, M., & McClosky, D. (2014).
The Stanford CoreNLP Natural Language Processing Toolkit. Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, 55–60.

Nettle, D. (1999). Using Social Impact Theory to simulate language change. Lingua,
108(2-3), 95–117.

Parr, T. (2013). The de�nitive antlr 4 reference (2nd ed.). Pragmatic Bookshelf.
Pontoriero, D., & Gillie, E. (2012). Binders Full Of Women: Convergence of

Independently-Generated Hashtags on Twitter. In Class on social and in-
formation network analysis (pp. 1–8).

67

https://code.google.com/archive/p/json-simple/
https://code.google.com/archive/p/json-simple/

APPENDIX G. CODE 68

Robertson, S., & Jones, K. (1976). Relevance weighting of search terms. J. Am. Soc.
Inf. Sci., 27(3), 129–146. doi: 10.1002/asi.4630270302

Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Di�erences in the mechanics
of information di�usion across topics: idioms, political hashtags, and com-
plex contagion on twitter. In Www’11 proceedings of the 20th international
conference on world wide web (pp. 695–704). Hyderabad, India: ACM.

Sapir, E. (1921). Language: An introduction to the study of speech. New York :
Harcourt, Brace and Company.

Yang, L., Sun, T., Zhang, M., & Mei, Q. (2012). We know what@ you# tag: does
the dual role a�ect hashtag adoption? In Www’12 proceedings of the 21st
international conference on world wide web (pp. 261–270). Lyon, France: ACM.

Yu, C. T., & Salton, G. (1976, January). Precision Weighting; An E�ective Automatic
Indexing Method. J. ACM , 23(1), 76–88. doi: 10.1145/321921.321930

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Language Change
	Malleable Linguistic Representations
	Language malleability on Twitter
	Competiveness of hashtags
	Dual role affects hashtag adoption
	Hashtag propagation
	The current study

	Methods
	Preliminaries
	Data processing and storage
	Code to write code
	Exploratory phase
	Data harvesting
	Data processing
	Analyses

	Results
	Results mixed model
	Linear regression model

	Discussion
	Time window data analysis
	Collapsed data analysis
	Generalizability to language change
	Conclusion

	Options for data collection
	Authentication
	Returned data structure
	REST API
	Harvesting lists and timelines with the REST API
	Streaming API

	Description file syntax
	MySQL database
	Java types to SQL

	Sample Generated Twitter Class
	Unique hashtags
	CSV table
	Code
	References

