A Qualitative Approach
to the Influence of Smart Mobility on the Regional Resilience of the Randstad

Pedro Mol
Faculty School of Management

Bachelor thesis submitted for the degree of

Spatial Planning

Radboud University

Radboud University

June 22, 2018

A bachelor thesis about identifying the influence of smart mobility measures at an urban level on the regional resilience of the Randstad as a whole, especially related to climate change and the urban density.
A Qualitative Approach to the Influence of Smart Mobility on the Regional Resilience of the Randstad

A bachelor thesis submitted for the degree of spatial planning

Radboud University
Nijmegen School of Management
BSc of Spatial Planning

Supervisor
dr. ir. D.A.A. Samsura

Author
Pedro Mol (P.M. Mol)
Molpedro1996@gmail.com
Student number: 1009490

Keywords
Smart mobility, regional resilience, resilience, climate change, Randstad, Amsterdam, Rotterdam, Utrecht, Den Haag, urban density
Acknowledgement

This research is an obligatory part of the pre-master programme at the Radboud University in Nijmegen. It forms the basis of the acquired research competences and program specific competences from the study and prepares the student for the master’s programme of Spatial Planning.

This research has been completed thanks to the feedback provided by my supervisory professor D.A.A. (Ary) Samsura. He has given me feedback during the process and guided me to this final result. Furthermore, I would like to extend my gratitude to the Radboud University and all the staff of the Nijmegen School of Management faculty for providing me with knowledge over the past year that formed the basis for completing this research. Also, I would like to extend my gratitude to all interviewees from the municipalities of Amsterdam and Den Haag as well as advisors from Sweco Rotterdam, Witteveen+Bos, Kennisinstituut voor Mobiliteitsbeleid and the province of Zeeland. Without their help I wouldn’t have come to the results I have now. I can look back on this research period with great pleasure.

Pedro Mol

Nijmegen, June 2018
Abstract

The Netherlands is one of the most significant countries concerning urban infrastructure. 92% of its population lives in cities, with the Randstad as the urban heart, housing roughly seven million inhabitants. It consists of the four biggest cities in the Netherlands: the capital Amsterdam, Rotterdam, Utrecht and Den Haag. The Randstad is an area with an increasing urban density, where each city is growing rapidly. Put this together with the changing climate and the Randstad’s vulnerable location and many threats arise. The Randstad needs a flawless mobility network that is both optimized and resilient to external shocks. The new smart mobility developments may aid to influence the resilience of the mobility network in the Randstad. That is why the main research question was defined as: To what extend do smart mobility measures at an urban level influence the regional resilience of the Randstad region, especially related to climate change and the urban density?

Data were collected via a literature study, where the definition of both the terms smart mobility and regional resilience were defined. Then, case studies of the G4 cities and interviews with municipalities and external experts formed the basis for the data analysis. Six variables were developed for the smart mobility definition: mobility service, smart vehicles, smart infrastructure, infra-vehicle communication, traffic flow management and inter-modal access. Via the interpretation of the interviewees the link is made between regional resilience variables, consisting of: liveability, resources, adaptive capacity and regional interconnection, all related to the Randstad’s vulnerability. Based on these methods, the most important smart mobility developments were defined and their link with the resilience variables were analysed.

The results suggest a significant link between the smart mobility and resilience variables. A network view shows a complex link system where each variable is connected to one of the resilience variables. Many of the described smart mobility developments are accompanied by a threat that needs to be tackled. This is only possible if a capable cooperation occurs between all organizational bodies as well as a change in behaviour of network users, shifting away from possession towards sharing. Combining the smart mobility measures and connecting them to provide inter-modal access, the overall pressure on the Randstad’s mobility will decrease and will make it more resilient to external shocks such as negative impacts of climate change. The data does not directly support a link between smart mobility and the regional part of resilience but it does provide an opportunity. This study offers a possible solution where a new regional organizational body could be developed that tries to enhance the possibilities for smart mobility developments.
Keywords

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Change</td>
<td>Any change in climate over time, whether due to natural variability or as a result of human activity (IPCC, 2007).</td>
</tr>
<tr>
<td>Urban density</td>
<td>The number of people living in a particular urban area that defines how a city functions (Roberts, 2007).</td>
</tr>
<tr>
<td>Randstad</td>
<td>The Randstad is megalopolis in the central-western Netherlands consisting primarily of the four largest Dutch cities (Amsterdam, Rotterdam, Utrecht and Den Haag) and their surrounding areas.</td>
</tr>
<tr>
<td>Smart city</td>
<td>A Smart City is a well performing city built on the ‘smart’ combination of endowments and activities of self-decisive, independent and aware citizens (Dameri, 2013).</td>
</tr>
<tr>
<td>Smart mobility</td>
<td>The overall transportation systems in an urban area that uses technology and innovation to create a transportation that focuses on safety, sustainability and smart physical infrastructure (Author, 2018).</td>
</tr>
<tr>
<td>Regional resilience</td>
<td>The ability of a region to respond to external disturbances divided in two abilities: the ability to respond and the factors within adaptive capacity (Author, 2018)</td>
</tr>
</tbody>
</table>
List of tables and figures

Table 1 The interview population and their relevance to the research (Author, 2018) 14
Table 2 Data analysis framework (Author, 2018) .. 16
Table 3 Existence mobility service in cities (Author, 2018) .. 21
Table 4 Existence smart vehicles in cities (Author, 2018) ... 23
Table 5 Existence smart infrastructure in cities (Author, 2018) .. 25
Table 6 Existence infra-vehicle communication in cities (Author, 2018) .. 27
Table 7 Existence traffic flow management access in cities (Author, 2018) 29
Table 8 Existence inter-modal access in cities (Author, 2018) ... 31
Table 11 Data analysis framework filled in .. 73
Figure 1 Smart City Framework (Author, 2018) .. 6
Figure 2 A framework developed for smart mobility (Author, 2018) ... 7
Figure 3 Regional resilience framework (Author, 2018) .. 10
Figure 4 Bubblediagram that shows the concentrations of inhabitants in the Randstad (Randstad) 11
Figure 5 Conceptual framework (Author, 2018) .. 12
Figure 6 Redeveloped causal scheme of the conceptual framework (Author, 2018) 46
Contents

Acknowledgement .. iii

Abstract .. iv

Keywords .. v

List of tables and figures .. vi

1. Introduction ... 1
 1.1 Background ... 1
 1.2 Research question .. 2
 1.3 Scientific relevance ... 3
 1.4 Outline ... 4

2. Theoretical framework .. 5
 2.1 Key concepts ... 5
 2.1.1 Climate change and urban density .. 5
 2.1.2 Smart city and urban mobility .. 6
 2.1.3 Regional resilience ... 9
 2.2 Framing the Randstad .. 11
 2.3 Conceptual framework .. 12

3. Methodology ... 13
 3.1 Research design ... 13
 3.2 Data collection literature review ... 13
 3.3 Data collection qualitative analysis ... 14
 3.4 Data analysis .. 17
 3.4.1 Literature study analysis ... 17
 3.4.2 Qualitative analysis: coding ... 17
 3.5 Validity & reliability ... 18

4. Results ... 19
 4.1 Smart mobility variables in cities .. 19
 4.1.1 Mobility service .. 19
 4.1.2 Smart vehicles .. 22
1. Introduction

1.1 Background

Cities are the future. The United Nations Population Division’s world Urbanization Prospects says that 55% of the world population are living in urbanized areas. This is an increase of 30% since 1960, according to the World Data Bank (World Data Bank, 2016). On top of that, During the last 50 years, city dimensions have been increasing whereas it is believed that 70% of population will live in cities by 2050 (C. Benevolo, 2016). These highly urbanized areas are all accompanied by complex infrastructure networks. The infrastructure networks need to be innovated and redeveloped every year for the cities to cope with the high urbanization rate and changing transport dynamics. These cities and its infrastructure have to deal with the increasing pressure of the changing climate.

The most significant impacts of climate change such as sea level rise, increasing storm surges and heavier rainfall, in combination with the increasing population density within cities cause an increasing damage to physical infrastructure as a whole (IPCC, 2015). The urban physical infrastructure in cities such as road networks, rail networks and other public transport networks, are vulnerable to the damaging effects of climate change. Consequently, a country’s economy, security and culture depends on the resilience of urban infrastructure (U.S. Global Change Research Program, 2014). The Netherlands is one of the most significant countries concerning urban infrastructure. 92% of its population lives in cities (World Data Bank, 2016), with the Randstad as the urban heart. The Netherlands is one of the leading countries in adopting climate adaptation measures. The whole world takes the Netherlands as leading example to create a sustainable future. Of course, this is the result of the world-wide rise in relevance of climate change and the Dutch history of battling the water and its climate. These adaptation measures must come back in the infrastructure network, with a specific focus to the Randstad (H. Priemus, 1995).

The Randstad is perceived as the urban heart of The Netherlands housing roughly seven million inhabitants. It consists of the four biggest cities in the Netherlands: the capital Amsterdam, Rotterdam, Utrecht and Den Haag (Centraal Bureau voor de Statistiek, 2018). The area has the highest population density and needs a well-structured infrastructure network between the different cities. The Randstad has to deal with increasing urbanization until at least 2025 in an already densely populated area (Centraal Bureau voor de Statistiek, 2016). This results in pressure on the infrastructure network, air pollution and increasing traffic noise. Furthermore, the Randstad’s location close to the North Sea causes increasing problems of the rising sea level and extreme rainfall periods, as well as higher river discharges (Lasage, 2007). The combination of these problems ask for smart solutions and innovations (D. Kashraian, 2016).

Programs have been created to improve the development of climate adaptation strategies on infrastructure within each separate city such as the Rotterdam Climate Initiative and the Amsterdam Smart City (Amsterdam Smart City, 2018) (Rotterdam Climate Initiative, 2018). These measures can
be called *smart measures* and aid to the overall resilience of the cities. However, these programs solely look at the problems and solutions in their own city and focus on small-scale innovations. It is important that a view is taken to the regional resilience of combined cities with one network. The Randstad must therefore be seen as one big infrastructure node, where rail networks, road networks and waterways are an intertwined system. That is why this research will try to define a broader perspective to the influence of smart mobility measures on the urbanization and climate change of the whole Randstad. This will fill in the research gap that is present in society now, where there is a lack of an integrated research approach between the cities in the Randstad. This research ‘gap’ is elaborated in chapter 2: theoretical framework. This research does not seek to come up with new innovations, but is rather trying to identify the existence of smart mobility and its influence on the regional resilience of the Randstad. Also, the most important long-term bottlenecks and issues will be analysed, by providing an overview of smart mobility solutions as well as opportunities for cooperation between different cities.

This research will be focused on the Smart City concept, with a specific focus on the transportation sector in the form of smart mobility. The smart mobility concept consists of many aspects related to transportation, but this study restricts itself to innovations in travel and transport. This research will be executed as part of the pre-master program: Geografie, Planologie & Milieu at the Radboud University in Nijmegen. **The main goal of this research is about identifying the influence of smart mobility measures at an urban level on the regional resilience of the Randstad as a whole, especially related to climate change and the urban density.**

1.2 Research question

In order to achieve the research’s main goal, the following main research question has been identified:

To what extend do smart mobility measures at an urban level influence the regional resilience of the Randstad region, especially related to climate change and the urban density?

To answer the main research question, four sub-questions have been formulated:

1. **Based on a literature review, what is the definition of smart mobility in a smart city and what is the importance in an urban and regional area?**

2. **What are the most important smart mobility measures within the four biggest cities in the Randstad and how do the variables operate in smart mobility?**

3. **How do the smart mobility measures make the Randstad more resilient to climate change, taking into account the urban density?**

4. **How can the smart mobility measures on urban level be linked to create a more integrated approach on a regional level (Randstad)?**
1.3 Scientific relevance

As is defined in the previous paragraph, a gap is occurring between the differences in approaches to smart solutions. One might ask why do we need to define the program in a broader perspective and what would be the scientific value of it, and whether this kind of issue has been discussed in the literature and what is still missing in the literature? Infrastructure has overlap between different cities, but various papers and reports show that the Randstad does not operate as a collaborative network. (Ruimtelijk Planbureau Den Haag, 2006)

‘The idea of enhancing the Randstad as one metropolis can be found in past and present policy documents.’ (Nes, 2009, p. 121:1)

This quote shows the ideas of making Randstad a central hub in the Netherlands. Until now, this has not been a valued perspective. With the continuous upcoming changes in the Randstad’s dynamics such as climate change and the increasing urban density, a more integrated planning approach is necessary due to a lack of space. Also, previous research to smart cities show a lack of looking beyond city borders, while an integrated approach between different cities could be more efficient (A. Caragliu C. D., 2011). The best way is to look at it from a regional perspective, since studies show that the Netherlands can be seen as one metropole city. Secondly, one might assume smart measures might contribute to the regional resilience, however the proof has been lacking. Furthermore, the concept of regional resiliency has a broad diversity and its definition is a difficult one to explain. This research tries to contribute to academic knowledge in identifying the most important values in regional resilience and its relevance to smart mobility.

1.4 Societal and practical relevance

This study is relevant because it will lead to improved planning of space, transportation systems and further urban mobility. This academic research strives to tackle the lack of a regional perspective, to create better planning in regional resilience, which will ultimately lead to the development of a smart region. This can be achieved by providing a clear overview towards smart mobility developments. By providing clear examples, it is possible to identify possible practical measurements that can be taken in order to improve the above-mentioned goals. Smart mobility contributes towards improved accessibility, safety and sustainability. In addition, mobility and a sound infrastructure are of crucial importance to the Dutch economy (TNO, 2016). Improving these aspects, especially the continuity of the Dutch economy, will result both directly and indirectly to better regional resilience, if all organizational bodies cooperate accordingly. The societal and practical relevance is also elaborated in chapter 6.2, where recommendations are given that show steps to be taken to improve the planning of smart mobility. Furthermore, the Netherlands, especially the Randstad, has the right ingredients to be a testing ground for smart mobility developments. It has a high density, compact road network and high diversity of modalities and this asks for an integrated system.
1.5 Outline

This research will consist of both exploratory and explanatory research. First, the background of several terms must be described such as the physical infrastructure in a city and the various smart solutions. This will be done by literature review and will mostly have an exploratory aspect. To answer the main research question, a more explanatory approach must be applied to explain the link between smart mobility and climate change. Also, a link could be identified between individual cities and the Randstad as a whole. The most important research methods used in this thesis are explained in chapter 3: methodology. The second chapter will consider what concepts and theories have been used to get to conclusion of the main question. This is called the theoretical framework. The third chapter will describe the methods and materials and captures the methods used in data collection and data analysis. Chapter 4 will be the results, which consists of a thorough data analysis of the interviews and literature study. This is followed by the discussion, including a reflection of the research. The report will end with a conclusion and follow-up recommendations.
2. Theoretical framework

The theoretical framework consists of a conceptual model and desk research that will search for scientific explanations of specific notions. The theoretical framework will explain how scientific research defines specific themes that are important to this study. The most important concepts are elaborated and the study’s relevance is explained.

2.1 Key concepts

During this research, various concepts are used and described, based on academic literature. This research touches upon two main concepts: smart mobility and regional resilience, where climate change and urban density are closely related to both of them. Both these concepts need a literature review to identify its nature, variables and indicators. This chapter will also provide the frame of the research area: the Randstad region. The theoretical framework forms the basis for the data analysis, elaborated later in this study.

2.1.1 Climate change and urban density

Over the years, climate change has become a well incorporated term. The IPCC (International Panel on Climate Change) defines climate change as: ‘Any change in climate over time, whether due to natural variability or as a result of human activity.’ (IPCC, 2007) Especially the last part of this definition 'as a result of human activity' has raised many issues lately. According to the latest IPCC report written in 2014, the most important climate change impacts related to the case study area are the rising sea-level, since most of the Randstad is located below the mean sea level, and the extreme weather events, which will cause disruption of infrastructural system (IPCC, 2014). Extreme weather events include heavy precipitation and coastal flooding, which are of high relevance to the Netherlands and specifically the Randstad. The exact impacts have been calculated over various years and the risks have been identified. Climate change has severe impacts on densely populated areas, especially in low-lying areas such as the Randstad. Therefore, it is important to define urban density and how it can influence measures on climate change adaptation.

As has been concluded in various studies (Hatt, 2004) (Newman, 1981), it is difficult to identify the meaning of urban density. In these article debates it often refers to buildings being too tall, too many people in a neighbourhood or overcrowded buildings and regions. To define urban density, it is essential to get a thorough understanding of a city’s dynamics. The easiest definition for urban density is: ‘the number of people living in a particular urban area that defines how a city functions’ (Roberts, 2007, p. 722). However, urban density can also describe the social and economic behavioural aspects. This research tries to identify a relation between the urban density of a region and the implemented mobility measures and its environmental impact.
2.1.2 Smart city and urban mobility

A smart city is still a recent phenomenon, but the developments have been rapidly increasing over the past few years. Cities are trying to move to smarter urban spaces, using high technologies to face the crucial problems that have been described earlier such as traffic, pollution, city crowding and poverty (Dameri, 2013). One of the key aspects in a smart city resolves around the fact that it has a bottom-up approach instead of a top-down approach. This way a strategic vision can be created where all parties come together at the start of a process. This way governance and technology can form a strong collaboration. The main driver for smart city developments derive from technology, especially ICT, that is able to link and connect different actors, measures provided by both public and private institutions. The most used smart city definition found in literature is: ‘A Smart City is a well performing city built on the ‘smart’ combination of endowments and activities of self-decisive, independent and aware citizens.’ (Dameri, 2013)

A smart city consists of several interconnected elements. For example, the Barcelona Smart City model integrated three model foundations: ubiquitous infrastructure, information and human capital. These three pillars all contain all operating bodies in a city such as transportation, governance, economy, people and smart living (Bakici, 2013). There are various studies that all try to develop a smart city framework. The framework in figure 1 shows how governance, mobility, environment, people, living and economy should all cooperate in an inter connected way to become a smart city. This research acknowledges that regional resilience is not dependent on one of these variables, this study tries to identify one of the main variables: smart mobility. The definition of smart mobility is explained in the next paragraph.

Smart mobility is one of the most important facets in the functioning of an urban area (A. Schafer, 2000) (P. Mariarty, 2008). Transport can have both beneficial or disastrous impacts on the city dynamics. Transport has severe negative impacts such as pollution, traffic jam, street congestion, extensive travel times and expensive public transport. These negative impacts form a network of opportunity and that is why smart mobility is such a promising topic within the smart city concept (C. Benevolo, 2016). Extensive literature study and especially the study of Benevolo et al. (2016) has resulted in the identification of the main objectives in smart mobility:

- Reducing pollution;
- Reduce traffic congestion;
- Increasing people’s safety;
- Reducing noise pollution;
- Reducing public transport costs.

To achieve these objectives, various stakeholders are part of the smart mobility concept, the most important ones being: public transport companies, private companies, citizens and local governments. To achieve an integrated approach in mobility, it is crucial that all of the actors are cooperating. Most studies however, establish a mere attention to their own city dynamics and often forget that mobility transcends the city perspective. Infrastructure doesn’t stop at the border of a city and it is the regional infrastructural network that needs attention. Road and public transport networks operate on both a regional, national and international scale and are complex systems in areas with high urban density (C. Benevolo, 2016). To develop a framework that combines the essential variables various studies were analysed. However, each study researches a different part of the mobility network. For example, Debnath et al. (2013) focuses on a smartness index on sub-system scale, whereas Lumsden (2008) puts an emphasis on freight transport (A. Debnath, 2013) (Lumsden, 2008). There is one research that stands out and develops an enclosing framework containing information, sustainability, infrastructure, safety and payments (Kapadia Associates, 2016). However, these variables can be seen as results occurring from the execution of smart mobility. Also, the variables remain too vague and can’t be seen as direct measures. Another mobility report from the municipality of Utrecht showed a measurement driven approach to smart mobility. In this report, the most important variables are mobility service, smart vehicles, smart infrastructure, infra-vehicle communication, traffic flow management and inter-modal access (Gemeente Utrecht, 2016)

Though these studies might not be as scientific, they come close to a profound conceptual model and they will be used to define smart mobility in this study. Figure 2 shows the framework developed to define smart mobility.

Smart mobility is a result from the high advancements in technology. One of the main goals of smart mobility is to make life easier for people in society. That is where the concept ‘mobility as a service’ was born. Essential in this concept is a shift in perspective, where one thinks in the different services the mobility network can provide. New services will form a combination between public transport, demand driven transport and ITS (sustainable and balanced transportation solutions) (G. Dimitrakopoulos, 2010). ITS technologies are able to provide immediate feedback and data to traffic managers and road-users. Through the integration of intelligent transportation systems, travellers, freight, vehicles, information and communication technology are able to operate together. To indicate
whether the *mobility service* variable is existing the most important indicators are defined. Digital communities and sharing platforms such as apps should be existing, where individual traffic information and park guidance systems are available. Demand dependant transport systems should be developed in for example car sharing projects.

The second variable in smart mobility concerns all mobility measures that operate on the physical infrastructure. With the rapid development of technological advancements, vehicles are becoming smarter every year. *Smart vehicles* are developing in a few directions. First, the main long-term future goal is the development of autonomous vehicles. Self-driving cars form the basis of all smart developments but is no short-term solution. Electric cars on the other hand, are widely implemented already but still have many issues. Electric bicycles are an alternative transport modality to car usage in the city and may release pressure on the system as a whole. Lastly, the stimulation of non-motorised options in the form of pedestrians and bicycle use is part of the smart vehicles variable. These are also the main indicators that show the developments of smart vehicles.

Smart infrastructure refers to the physical infrastructure developments in a city, especially the robustness of the physical infrastructure and its efficiency. Furthermore, new technologies can take care of higher efficiency in the infrastructure. The most important indicators are the generation of energy from road surfaces, dynamic road marking, the existence of charging stations for electric vehicles, increasing pedestrian and bicycle space and more P+R areas. It must be said that these measures are only a few of the numerous possibilities that the infrastructure brings. Smart infrastructure focuses on long-term land-use planning to create a sustainable, reliable and diverse network. The goal of the infrastructure network also is to increase its safety. For example, new transport modes make sure that less road networks are needed. It might be possible to use this free space for new developments that are urgent in cities such as green areas.

Data collection and smart infrastructure measures allow for a better *infrastructure-vehicle communication*. Infrastructure-vehicle communication is a communication model that allows vehicles to share information with the components that support a country's highway system (Rouse, 2018). The most important indicators in this subject are the sharing of real-time information of traffic lights and the in-car advice about routes and parking availabilities. The main goal of infrastructure-vehicle communication is about increasing road safety and the enhancing the flow of traffic (Gemeente Utrecht, 2016). As has been said before, data collection via ICT is another main variable in smart mobility. Using the car as a sensor all traffic flows can be tracked and measured. By acquiring this type of information new smart measures can be implemented such as smart traffic lights, that are able to influence traffic flows.
To create a diverse and interconnected mobility network, the last variable is called *inter-modal access*. In order to release pressure on the infrastructure network, the encouragement of the use of more infrastructure modalities is essential. (Kapadia Associates, 2016). Diversity in modalities is not the only thing that is important in mobility, also the connection between these modalities is of high importance. How easy is it to transfer from one modality to another and how efficient is this transition?

Based on these variables together with the literature study, this study has made a general definition for smart mobility. Smart mobility is about allowing seamless, efficient and flexible travel across various modes while improving the environment in the form of resource efficient transport as well as aiding the economy in the form of higher productivity and while aiding society as a whole, providing a higher quality of life for the network users, where all these developments are supported by the technological advancements of the 21st century (A. Caragliu C. D., 2011).

2.1.3 Regional resilience

Since the uprising interest in climate change, a relatively new concept has come up in several studies namely *regional resilience* (Eraydin, 2016) (S. Christopherson, 2010). This concept has become popular among researchers, but difficulties arise at finding an all-encompassing definition, due mainly to the ‘fuzziness’ of the resilience concept (Eraydin, 2016). It can both be found in subjects such as climate change, but also in an area’s long-term agglomeration power. How a region responds to disturbances can be split up in two main variables: the ability to respond and the factors within adaptive capacity. This study has a limited time factor and it can not cover resilience as a complete subject as has been defined by the Rockefeller City Resilience Framework (The Rockefeller Foundation, 2014). This research mainly focuses on the regional resilience of the mobility network. Although these variables are mainly based on the studies of Eraydin (2016) and Christopherson (2010) and they come close to providing an all-encompassing definition, it must be said that defining regional resilience is speculative and there is no absolute right answer since it is hard to quantify this concept. This study tries to make the concept accessible by creating a framework based on variables.

The ability to respond to external shocks is a result of two main variables: the existing *vulnerabilities* and the available *resources*. Vulnerability can be defined as the degree to which people, property, resources, systems, and cultural, economic, environmental, and social activity are susceptible to harm, degradation, or destruction on being exposed to a hostile agent or factor (C. Ionescu, 2009). Regions with high import/export rates, or important economic and industrial structures are more vulnerable than other regions. Vulnerability in this research concerns the dependency of the system on one or more critical aspects. Also, the higher problems in urban density are present, the higher the system’s vulnerability. For example, congestions and busy streets form high vulnerability rates. The available resources are important in the ability to recover from a crisis. The available resources are based on the availability of high quality infrastructure and the availability of information for the inhabitants in case
of a crisis. Resources are dependent on a few aspects: the system’s specialization and diversity. Since this study tries to focus on smart urban mobility, diversity and specialization are two broad subjects that can be interpreted differently. Diversity is seen as the coping capacity of the infrastructure network as well as diversity in transportation system’s such as public transport modes and new types of transport modes such as electric vehicles. Secondly, the existence of high-technology transportation systems and innovative infrastructure solutions contribute to the adaptive capacity of a region. The higher the ‘level of smartness’, the better a region is resistant to external shocks. For example, information data generated for citizens, that show vulnerabilities and risks make them less susceptible to shocks. While there are many needs that contribute to regional resilience as a whole, such as human capital, connected universities, financial resources and skills of a region’s workforce, Erayding (2016) raises the importance of modern transportation needs as one of the main sources to create regional resilience (Erayding, 2016).

The adaptive capacity is the third causal variable in explaining regional resilience. The adaptive capacity of a region is based on the recovery rate, robustness and flexibility. How well a system is able to recover from an external shock is closely related to the available resources and the system’s vulnerability. Recovering is not only about going back to how it was, but should be about learning from previous mistakes and how to develop an improved system after the shock. The robustness is about the system’s property of being strong healthy, and therefore needs a high adaptive capacity. Last, the system’s flexibility refers to the design that can adapt when external changes occur (Erayding, 2016).

Lastly, this research incorporates regional interconnection as one of the central elements in resilience. The better governmental cooperation, connections between urban mobility modes and local involvement, the higher the regional resilience will be. This has been incorporated into the regional resilience framework as can be seen in figure 3.

To analyse whether the objectives are met in a regional perspective rather than an urban perspective, a specific research area has been chosen, namely the Randstad in the Netherlands. This region with a high urban density is widely known as the urban heart of the Netherlands and has sometimes been called a megacity, conurbation or megalopolis (Oosthoek, 2015).
2.2 Framing the Randstad

The main goal of this research is about identifying the influence of smart mobility measures on regional resilience. This is a broad subject that contains many researches. This research therefore needs framing, where the most important boundaries are described.

This research project only focuses on the most fundamental and well-known smart mobility measures, concentrated on the four biggest cities in the Randstad region: Amsterdam, Rotterdam, Utrecht and Den Haag. To structure these measures, literature review and interviews will provide enough data to create an overview in the form of a table. This table is used to identify links between the different cities. The study of Benevolo et al. (2016) shows a helpful tool to the usefulness of certain measures.

The second frame around this research project is about the decision of a specific research area. The research merely focuses on one region in the Netherlands: the Randstad. The research focuses on linkages between cities and regions and the Randstad region has both of these aspects. Furthermore, the Randstad is an area with high urban density and a complex transportation system. This increases the relevance of doing this research within this area.

The Randstad, located in the centre of the Netherlands, is called a conurbation. It is an agglomeration consisting of multiple large-scale cities, which are connected due to increasing population rates and urbanization.

The Randstad as a whole is the biggest conurbation in the Netherlands and consists of approximately 7 million inhabitants. Because of its strategic location between London, Paris and the Ruhr-area in Germany, the Randstad belongs to the most important conurbations in Europe (Deltametropolis, 2015). The region consists of the four biggest cities in the Netherlands, namely Amsterdam, Rotterdam, the Hague and Utrecht. These agglomerations, together with the smaller city regions in-between, form an interconnected complex system of various functions. Located around ‘Het Groene Hart’, a more rural area that serves as the centre, the Randstad serves as the economic, residential, cultural and political centre of the Netherlands. However, previous studies (B. de Pater, 1992) have shown that it proves difficult to put borders around the Randstad. This research uses the Randstad to connect the four biggest agglomerations and is therefore not looking at surrounding smaller-
scale areas. Figure 4 shows a figure with the municipalities that have more than 30,000 inhabitants in a bubble diagram. This gives a profound overview of the concentrations of inhabitants in the Randstad and shows ‘het Groene Hart’ as the green centre.

2.3 Conceptual framework

The conceptual framework will represent the synthesis of literature on how to explain the courses of actions executed in this research. This framework will show how the defined variables are connected to each other. It also serves as an abstract of both the introduction and the theoretical framework chapter. In order to successfully complete this research, the relation between the variables of smart urban mobility with the variables of regional resilience is going to be identified.
3. Methodology

Within this chapter, first the research nature, type and design are discussed. Afterwards the data collection, data analysis, research validity and research reliability will be explained. This chapter will provide an overview of the most important research variables and indicators that are used during the interviews. This serves as the main threat through the data analysis.

3.1 Research design

The introduction chapter shortly mentioned the key approach this research will apply. A mixed methods approach will be applied, since this study will use an exploratory analysis as well as an explanatory analysis. This mixed methods approach is used since the main goal of this research embodies both a descriptive and causal path. In the main research objective the two most important variables can be identified. On the one hand, smart mobility on an urban level is one of the variables and can be seen as the independent variable, since we are looking at the effects and influences of these measures. On the other hand, regional resilience is one the variables that needs to be interpreted and can be seen as the dependent variable. An exploratory analysis made this research get familiar with the analyzed data and will define the key concepts elaborated. To determine whether a causal path was occurring, an exploratory approach has been applied. The main goal of this research was to identify a causal path between smart mobility and regional resilience. Furthermore, a link between the urban measures and a more integrated approach is analyzed. Both of these goals served as the basis for the explanatory analysis. A mixed methods approach is applied since it contains both a literature review and a qualitative study. Sub research question is the basis of the literature review. The other sub research questions are answered by using a combination of continuous literature review and a qualitative study with field research in the form of interviews (Lincoln, 2011).

3.2 Data collection literature review

A literature review has been conducted. A literature review can be described as a search and evaluation of the available literature in a given subject or area in a systematic manner. The aim of a literature review is to document the state of the art with respect to the given subject (Aveyard, 2014).

This research has identified two main concepts, namely smart mobility and regional resilience. It is important to identify and describe these measures as specific as possible and this has been done via a thorough literature review. There is enough data available about these subjects and a comprehensive study about the most important subjects is implemented. The databases used for this literature review were mostly the University Library of Radboud and online databases such as Google Scholar for scientific articles. A search plan with key definitions relevant to this research is included in Appendix I. This literature review is split up into several parts. First, it was important to identify and define the key concepts via scientific research. This partly answered the first sub-question, which has been defined in the theoretical framework chapter. Defining infrastructure and the criteria for smart mobility is part of
the results of this research and aided in answering the main question. The type of data that has been used the most is external data. External data concerns published material, computerized databases and syndicate services (Aveyard, 2014). The second objective in literature review concerned the identification of the most important smart mobility measures within the four biggest cities in the Randstad: Amsterdam, Rotterdam, Den Haag and Utrecht. This objective wasn’t solely accomplished via literature review and that is why further qualitative research was necessary to gain a complete insight. Only studies from the past fifteen years were relevant to this research, and they need full text availability.

3.3 Data collection qualitative analysis
The data to answer sub research question two, three and four is collected via interviews with professionals within the municipalities of the four biggest cities in the Randstad. Also, professionals in the work field that have enough knowledge on the subject of smart mobility are interviewed. Table 1 shows the interview population of this study. The choice has been made to keep the interviewees anonymous since it didn’t add a significant result to the study when they are named. Therefore, the job functions are described and this shows enough significance.

<table>
<thead>
<tr>
<th>Interviewee</th>
<th>Relevance to research</th>
<th>Answering question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor sustainable mobility at Province of Zeeland</td>
<td>Knowledge of specific smart measures and external view to the regional aspect of the Randstad.</td>
<td>Sub question 1, 2 & 3</td>
</tr>
<tr>
<td>Advisor Municipality of Amsterdam</td>
<td>Knowledge of smart mobility policy in the urban area of Amsterdam.</td>
<td>Sub question 2 & 3 & 4</td>
</tr>
<tr>
<td>Advisor Knowledge institute for mobility policy</td>
<td>Broad cross-city view of smart mobility, as well as knowledge of Den Haag.</td>
<td>All sub questions</td>
</tr>
<tr>
<td>Head of innovation program Municipality of Amsterdam</td>
<td>Detailed knowledge of smart mobility measures in Amsterdam</td>
<td>Sub question 3</td>
</tr>
<tr>
<td>Senior Advisor Witteveen & Bos</td>
<td>Detailed knowledge of global trends for the future of mobility</td>
<td>All sub-questions</td>
</tr>
<tr>
<td>Advisor mobility Municipality of Den Haag</td>
<td>Detailed knowledge of smart mobility measures in Den Haag</td>
<td>All sub-questions</td>
</tr>
</tbody>
</table>

Table 1 The interview population and their relevance to the research (Author, 2018)

Baarda (2012) separated doing interviews into two types: structured and unstructured. Structured interviews are quick and easy to administer since they are mostly about following a certain questionnaire. Unstructured interviews on the other hand, do not reflect any preconceived theories or ideas and are performed with little or no organisation. Unstructured interviews are time consuming and therefore this research tries to meet the structures halfway: semi-structured interviews. This type of interview tries to follow a guideline of several key questions that helped to define the areas to be
explored and in this research, this was the most suitable option. The detailed interview guide can be seen in appendix II. Doing interviews was the main data collecting method in this research (Baarda B., 2012). The choice of using professionals of the municipalities has been made because they most likely have the required knowledge of smart mobility and they are most likely working with an urban perspective within their own cities. The goal of this research was to execute six interviews, including four respondents with one of each researched municipality. The other two interviewees were external experts that could have a different perspective of smart mobility. In the end, three interviews were held with municipalities and three interviews were held with external experts. The key to create a successful interview is whether they were able to think about links and connections between the different cities.

The table on the next page shows what data was needed per concept and variable and what measurements were necessary to take. Most of the measurements are measured via the interviews, case studies and literature study. The data analysis framework also forms the outline of the interviews. The indicators have been defined in the theoretical framework. The whole table can be seen in table 2 on the next page.

Results of the literature review are used in these interviews. The municipalities were sent an email containing a voluntary invitation to take part in the interview. The interviews were recorded and transcribed for scientific purposes. After the study, the interview recordings were destroyed.
<table>
<thead>
<tr>
<th>Concept</th>
<th>Variables</th>
<th>Indicators</th>
<th>Measurement</th>
<th>Cities</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart urban mobility</td>
<td>Mobility services</td>
<td>Digital communities and sharing platforms</td>
<td>Updated information for network users, apps</td>
<td>Amsterdam, Rotterdam, Den Haag, Utrecht</td>
<td>Q4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demand dependant systems</td>
<td>OV, car sharing, bicycle sharing</td>
<td></td>
<td>Q5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park guidance systems</td>
<td>The existence of park guidance systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual traffic information</td>
<td>Data tracking, integrated ITS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart vehicles</td>
<td></td>
<td>Electric vehicles</td>
<td>Developments and accessibility</td>
<td></td>
<td>Q6, Q9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autonomous vehicles</td>
<td>Long-term impact of self-driving cars on society</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric bicycles</td>
<td>Development and implementation of speed padsilces</td>
<td></td>
<td>Q10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-motorised transport options</td>
<td>Public bicycle systems, pedestrian oriented land use</td>
<td></td>
<td>Q11</td>
</tr>
<tr>
<td></td>
<td>Infra-vehicle communication</td>
<td>Real-time information of traffic lights</td>
<td>Road network oriented on innovative ideas</td>
<td></td>
<td>Q12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In-car advice about routes and parking</td>
<td>Interconnection between apps and infrastructure</td>
<td></td>
<td>Q13</td>
</tr>
<tr>
<td></td>
<td>Traffic flow management</td>
<td>Smart traffic lights</td>
<td>Execution of smart traffic lights</td>
<td></td>
<td>Q15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICT managing flows of people</td>
<td>Data is used to track people</td>
<td></td>
<td>Q16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICT influencing flows of people</td>
<td>Data is used to influence traffic flow</td>
<td></td>
<td>Q17</td>
</tr>
<tr>
<td>Smart infrastructure</td>
<td></td>
<td>Generating energy from road surface</td>
<td>Developments and accessibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic road marking</td>
<td>Sufficient and pressure on network</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charging stations for electric vehicles</td>
<td>Plans on non-motorised infrastructure options</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>More pedestrian and bicycle space</td>
<td>Long-term infrastructure ideas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inter-modal access</td>
<td>Existence of diverse infrastructure modes</td>
<td>Number of infrastructure modes</td>
<td></td>
<td>Q18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connection between modalities</td>
<td>Are modalities well connected?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional resilience</td>
<td>Vulnerability</td>
<td>Location</td>
<td>Location vulnerability</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urban density</td>
<td>Urban density of the region</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resources</td>
<td>Connected key areas</td>
<td>Well-connected transportation between universities, economic centres, exits</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information for crisis management</td>
<td>Crisis management system for inhabitants</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High quality infrastructure</td>
<td>Infrastructure able to withstand high pressure</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modern transportation modes</td>
<td></td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adaptive capacity</td>
<td>Diversity of transport modes</td>
<td>Number of transportation modes</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Productivity</td>
<td>Ability to react quickly after a shock</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
<td>Ability to recover from a shock to its former state</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regional interconnection</td>
<td>Local involvement</td>
<td>Bottom-up involvement from citizens</td>
<td>Q27</td>
<td>Q28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connection between cities</td>
<td>Connection in terms of infrastructure, aid methods, resource sharing</td>
<td>Q26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Governmental cooperation</td>
<td>Policies on regional perspective</td>
<td></td>
<td>Q27</td>
<td>Q28</td>
</tr>
<tr>
<td>Relation</td>
<td>Mobility services > Resilience</td>
<td></td>
<td></td>
<td></td>
<td>Q21</td>
</tr>
<tr>
<td></td>
<td>Smart vehicles > Resilience</td>
<td></td>
<td></td>
<td></td>
<td>Q22</td>
</tr>
<tr>
<td></td>
<td>Smart infrastructure > Resilience</td>
<td></td>
<td></td>
<td></td>
<td>Q23</td>
</tr>
<tr>
<td></td>
<td>Infra-vehicle communication > Resilience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traffic flow management > Resilience</td>
<td></td>
<td></td>
<td></td>
<td>Q24</td>
</tr>
<tr>
<td></td>
<td>Inter-modal access > Resilience</td>
<td></td>
<td></td>
<td></td>
<td>Q25</td>
</tr>
</tbody>
</table>
3.4 Data analysis

The acquired data from both the literature review and qualitative research via semi-structured interviews was adequately analyzed.

3.4.1 Literature study analysis

In order to successfully analyze the studied literature, each article is read carefully following a certain guideline. In order to answer sub-question one, a structured analysis to the various definitions and principles of a smart city was needed. Sub-question two (What are the most important smart mobility measures within the four biggest cities in the Randstad?) was also partly answered using a literature study. Based on project research, an overview of the smart mobility measures that have the biggest impact on the four cities was developed. This overview served as a basis and result from the interviews and were the surface for creating links in influencing the regional resilience. The analysis has tried to formulate results in the form of developing a new conceptual framework that directly links the smart mobility criteria to the resilience criteria. This way, a model is created that shows to what extend smart mobility influences the resilience criteria and how they are linked. The next step concerned the addition of the regional interconnection variable to the framework. Adding this criterion later showed a more sophisticated view of how the regional resilience is affected. The redevelopment of the conceptual framework was continuously linked to the qualitative data and the Randstad conurbation and formed the basis of the research results.

3.4.2 Qualitative analysis: coding

Based on the literature study, semi-structured interviews with experts are executed. These interviews consisted of raw data that needed analyzing. In order to achieve the best possible outcome and to not forget any important aspects a certain methodology is applied. Since there is only a small suspicion on the researches’ hypothesis, the use of the ‘grounded theory’ methodology was best to apply partly.

'We gather data, compare them, remain open to all possible theoretical understandings of the data, and develop tentative interpretations about these data through our codes and nascent categories. Then we go back to the field and gather more data to check and refine our categories.'

(K. Charmaz, 2008, p. 241)

This all-encompassing quote by Charmaz and Henwood (2008) shows what a grounded theory consists of. Via the software of Atlas.ti the semi-structured interviews are coded and categorized via open coding, axial coding and analyzed coding, to get the desired results. The most important theories acquired in the analyzed data form the basis of the results that are substantiated by the previously mentioned literature review (A. Bryant, 2007). The complete coding analysis can be seen in appendix 5.
3.5 Validity & reliability

Validity is the degree to which a research study measures what it intends to measure. This research aims to identify the influence of smart mobility on the regional resilience of the Randstad, and tries to find possible links between the separate cities. The validity in this study is guaranteed in several different ways. First, to correctly conduct a literature review, the researcher will not commit any fraud. Second, a proper list of search terms was formulated (appendix I). Besides, the methodological quality of the studies included was assessed. These measures increased and ensured the construct validity of the literature review. To increase the validity of the interviews, a summary is made after the interview and is send to the interviewee to correctly examine the report. The interviewee must respond to the email and provide appropriate feedback, this will make sure the researcher interprets the interview in the right way, increasing the validity of this research. Second, The quality of the topic list will be ensured because, a supervisor from the Radboud University must give consent during several key moments in this research. These factors combined ensured the validity of the qualitative study.

Reliability is the degree to which the result of a measurement, calculation, or specification can be dependent on to be accurate. The mixed-methods approach as well as the grounded theory method that has been used resulted in a more reliable research conclusion since more approaches are taken into account. To ensure that interim findings are realistic, member checking will be used (Baarda B., 2010). Interim research results were discussed with fellow colleagues at the Radboud University.
4. Results

This chapter discusses the results of the research and will contain all relevant information to answer the main question and remaining sub questions. This chapter’s structure will follow the order of the sub-research questions, which have been defined in the introductory chapter. First, an overview of the most relevant smart urban mobility measures are defined. Then, two explanatory paragraphs go further into explaining the resilience of the Randstad. The last paragraph will elaborate on the regional resilience perspective applied to the Randstad region.

4.1 Smart mobility variables in cities

The qualitative study, including the interviews with six professionals in the field and the accompanying case study research, have shown the most important developments that are part of the smart mobility framework, which has been defined in the theoretical framework. These developments and concepts are elaborated in the following paragraph.

4.1.1 Mobility service

According to all interviewees, the variable mobility service includes a few of the most important developments related to smart mobility. According to interviewee 3 the ‘mobility as a service’ (MaaS) concept is widely used by all municipalities. The MaaS concept tries to be demand-driven and its goal is to meet customer’s wishes (see appendix 4.3). Now, it has seven implemented pilots in different cities with the goal to make the mobility network more accessible, payable and comfortable. Interviewee 5 forms a link between MaaS and the ‘Beter Benutten’ program from the Dutch government. He says that smart mobility should not be about developing new roads, but should be about making better use of the existing network and its available technology (see appendix 4.5). This comes back in the measures for the variable mobility service.

Travel apps

One of the main customer driven measures is the development of mobility apps. Interviewee 5 explains that by creating an app, one is able to connect all mobility services that are available. By combining all sorts of travel data the app is able to identify the best travel options in all modalities and giving you all alternatives. He describes this by using the example of Scheveningen, where such a pilot (Natsa) has been implemented during the fireworks event (see appendix 4.5). A link is made between car sharing, where the app can also provide the best options for a group of individuals, which enhances social contacts in society. Amsterdam has also implemented a travel app, that shows people how to explore the charms of Amsterdam’s neighbourhoods (IAmsterdam, 2018). Travel apps are able to provide a new experience of travelling, where one doesn’t necessarily follow the fastest route (see appendix 4.1).
Car sharing

Interviewee 3 states that ‘Amsterdam is the car sharing capital of the Netherlands’ (see appendix 4.3). However, he also highlights that despite exponential growth, it is still only 1.5% of total transport. Based on appendix 3, all cities implement certain measures towards car sharing, however this is not representative for the total amount of transport. Car sharing has both positive and negative effects. On the one hand, it can change the mindset of people, raising their awareness (see appendix 4.5). Driving becomes cheaper and more accessible. On the other hand, because of the higher accessibility it increases mobility use, thus increasing traffic and pressure on the infrastructure. Car sharing also makes sure that cars don’t need to stand still for a longer period, resulting in efficient use of space. This results in a decrease of necessary parking space (see appendix 4.5). It should both be easier and cheaper than possessing a car according to interviewee 3 (see appendix 4.3). A strong addition highlighted by interviewee 3 shows that a normal car is not used for at least 23 hours of the day. A shared car drives more often, which means it is amortized more quickly and innovations can be implemented faster. Now, car sharing is mostly addressing people without a car, generating the ‘lazy’ choice (see appendix 4.5). This means that individuals rather take a car than to go as a pedestrian or by bicycle. It should be promoted by both punishment for owning a car, and promotion when sharing a car. However, the most important development raised by most interviewees states that car sharing only helps when combined with carpooling. A high supply of cars is needed, where social involvement is essential (appendix 4.1). When individual drives are combined, where multiple people travel together, firms are able to create their own car sharing system (appendix 4.5). A start-up called Beamer tries to connect travel and social involvement. To summarize: car sharing only decreases traffic by changing people’s mindset, combining it with carpooling, changing from possession to using cars.

Individual traffic information

This development is closely related to all data and ICT collection methods, as well as apps and parking guidance systems. The G4 cities are working on developing parking guidance systems to prevent senseless driving. For example, the above-mentioned PRIS measure will develop a system that shows a detailed information network that shows where parking spaces are still available. This is a system developed by Utrecht (appendix 3.4). All cities are investing widely in ITS systems. For example, a new 5g network that influences the internet of things (Rijksoverheid, 2015). This will change the entire dynamic in a city centre since people are guided to their parking space rather than searching for it (see appendix 4.1 and 4.3). However, it is stated by interviewee 1 that these measures ‘are a short-term solution’ (see appendix 4.1). It is stated by interviewee 6 that individual traffic information might not be needed for the long-term because the mobility system will deal with it himself, when becoming autonomous (see appendix 4.6). This will be explained in the next paragraph.

To summarize, all cities in the Randstad are developing programs to live up to the MaaS expectations, however MaaS will increase traffic and therefore it is questionable whether this could be the solution.
To strengthen the interview results, the following table shows the implementation of smart mobility developments in all four cities based on their mobility plan and a literature study. This serves as an overview of the case study research, which can be seen in appendix 3.

Table 3 Existence mobility service in cities (Author, 2018)

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>According to the mobility plan of Amsterdam, there is no complete app that shows updated information of traffic flows yet. However, with the exchange of information with Google and TomTom, this will become available in the short-term future. Apps on car sharing are available via a new pilot called Toogethr. This car sharing network is a pioneer in the rest of the Netherlands. There are projects developed that try to lessen the impact of parking problems in Amsterdam. Projects such as ‘predictive parking’ try to identify problems and how to predict busy parking areas. However, this is still in a research phase. Mobility as a service is in its pilot phase, where more opportunities can be taken such as cost reduction in public transport.</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>One of the most important trends is raised by Rotterdam and they play right into it with the Mobility as a Service (MaaS) program, together with Den Haag. On top of that, Rotterdam tries to integrate Intelligent Transportation Systems (ITS) into their network and this provides many of the indicators in this variable such as traffic real-time traffic information. Via the Rotterdam Mobility Lab, car sharing is stimulated. These measures make Rotterdam a city where mobility services are well implemented.</td>
</tr>
<tr>
<td>Den Haag</td>
<td>MaaS stands for a transition in mobility, where the consumer has access to all mobility in the form of services, instead of investing in the possession of means of transport or separate services such as public transport. This is the most important mobility service measurement that covers all the indicators. By implementing this program, smart mobility is used to the fullest. Furthermore, Den Haag offers a wide research program on digital communities and sharing platform where demand dependant systems operate.</td>
</tr>
<tr>
<td>Utrecht</td>
<td>Utrecht raises the importance of clear travel information in combination with dynamic traffic management. When the most suitable route is clear and transparent, the least disruption to the environment will occur. Utrecht is aiming for a shift of classic static route information to dynamic travel information that changes with the circumstances. This can be achieved by individualizing travel information via social media and in-car systems. Users get customized information and large traffic flows can be better managed. The most important implementations are: DRIP (Dynamic Route Information Panels): a combination of sensors to measure traffic. People will get the most updated information.</td>
</tr>
</tbody>
</table>
| - PRIS (Parking Route Information System): A system that shows a detailed information network where parking spaces are still available. This also applies to bicycles.
- App developers can use real-time mobility data to provide up-to-date and personal traveller information. Considerations can be given to information about congestion during work, real-time passenger information about parking spaces or public transport bicycles. There are several implementations such as TIS, GoAbout, TimesUpp, Mobile Ninja. By making this more available, new initiatives may arise.

They call their mobility service program: De Gebruiker Centraal. |

4.1.2 Smart vehicles
Based on all interviews, the smart vehicle variable includes several smart developments related to transport of individuals. This includes the development of autonomous vehicles, electric vehicles as well as electric public transport, and non-motorized options (see appendix 4).

Autonomous vehicles

‘The eventual main goal is autonomous driving’, as is stated by interviewee 3 (see appendix 4.3). The idealistic view shows a world where everything operates autonomous and no human failure is present. No parking spaces are needed when combined with car sharing and no traffic lights are needed anymore (see appendix 4.2). However, the urban complexity halts the rise of autonomous vehicles in cities. Cities consist of slow traffic including bicycles and pedestrians (see appendix 4.6) and this generates unsafe situations. Apart from that, interviewee 3 states that ethical problems form the main issue in the rise of autonomous vehicles. He states that technical failures are worse than human failures (see appendix 4.3). An option should be where autonomous functions aid the driver instead of taking over the complete rear. An example stated by interviewee 1 shows compulsory autonomous driving on highways (see appendix 4.1).

Electric vehicles

One of the biggest new alternative modality are electric bicycles, including speed pedelecs. Electric bicycles allow individuals to travel bigger distances without an increased usage in time (see appendix 4.3). However, many uncertainties come with the arrival of the electric bicycle. Interviewee 6 states that ‘statistics show that more accidents happen on bicycles than in cars’ (see appendix 4.6). An example given by interviewee 6 are the elderly that have easier access to electric bicycles and don’t control their speed (see appendix 4.6) This increases their vulnerability in traffic (see appendix 4.3, 4.4 and 4.6). Furthermore, electric cars form another type of infrastructure. All G4 cities claim to have a good infrastructure in terms of providing charging stations. However, the share of electric cars is still only
1% of the transport network (see appendix 4.4). Interviewee 1 states that it is important to keep track of the rise in charging stations that are needed, since the existing energy grid will not be able to cope with an explosive change (see appendix 4.1). However, it is still stated that in 2030 70% of transport network will be electric (see appendix 4.1). Also, a statement by Interviewee 6 says: ‘it is very much appreciated if one changes to an electric car now, instead of in the future when its obligatory’ (see appendix 4.6). A pilot project called Vehicle2Grid has developed a new way of storing energy in cars in Amsterdam. The use of both electric vehicles and renewable energy sources is encouraged and this adds to the sustainability of the city of Amsterdam (Amsterdam Energy Lab, 2015).

Non-motorized options

In order to create a viable city centre, many municipalities stimulate the use of non-motorized options. Apart from slow traffic increasing a cities’ health (see appendix 4.5), it also remains highly efficient in space and travel time (see appendix 4.4). Especially the municipalities of Amsterdam and Utrecht state the importance of non-motorized options in city centres. However, one threat that plays in these two comes back many times in the interviews: ‘all places one makes car-free, will generate a ‘Florence’-effect, where roads are purely used by tourists’ (see appendix 4.4).

The following table shows the most important implementations in each city, based on their mobility plans and serves as a summary to the case study research in appendix 3.

Table 4 Existence smart vehicles in cities (Author, 2018)

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>A pilot project called Vehicle2Grid has developed a new way of storing energy in cars. The use of both electric vehicles and renewable energy sources is encouraged and this adds to the sustainability of the city of Amsterdam. The city tries to anticipate the impacts of self-driving vehicles via the STAD research and this offers a long-term perspective. Furthermore, the city encourages bikes and pedestrians in the city, but this is not nearly enough however due to the increasing urbanization.</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>Rotterdam acknowledges a trend where car usage will decrease in the coming 20 years, which means that alternative transportation modalities such as electric bicycles, scooters will rise. They developed Scoozy, which is a smart scooter. Furthermore, Rotterdam is a platform for the innovation of electric vehicles as well as research to autonomous cars. The universities in and around Rotterdam are used to develop the risks and impacts autonomous cars could have. Also, Rotterdam wants to decrease car usage in the city centre, but this has not yet been achieved.</td>
</tr>
<tr>
<td>Den Haag</td>
<td>Den Haag is making a head start in the development of smart vehicles. The developments of new car models, new buses and new loading and battery technology will cause a slow shift from fossil transport to electric driven vehicles. This change is necessary to achieve the target to become climate-neutral by 2040. According to the</td>
</tr>
</tbody>
</table>
municipality of Den Haag, these developments offer a lot of opportunities, for example, improving the traffic flow, improving road safety and the possibility to drive cleaner and more efficient. Den Haag wants to be ahead of these developments and take part in the technological advancements. Den Haag also tries to give more room to pedestrians and hikers, thus improving the quality of non-motorized options.

Utrecht

There are many opportunities described in the mobility plan: Bicycle sharing, E-scooter, electric bikes, speed padillacs, taxi, car sharing, electric cars and autonomous cars. Electric cars are encouraged by providing subsidies and charging stations at residential areas. The developments of autonomous cars are not well formulated in the mobility plan. The issue is raised and social theories are developed, however no real scenario development is created. One of main goals is to give more space to pedestrians and bicycles, since they form the future in the historical city centre. Better road networks and parking lots for bicycles should provide enough space to successfully expand the non-motorized infrastructure.

4.1.3 Smart infrastructure

Smart infrastructure is a broad term that needs further specifying and this also results from the interviews. The term can be divided in two parts: physical infrastructure and smart solutions on the infrastructure network (see appendix 4.3). In order to execute and implement smart mobility developments, the question raises how far the infrastructure network needs change.

Smart solutions

Smart solutions as part of the existing infrastructure form the basis for any type of change. The biggest change occurring are the increasing necessity charging stations for electric vehicles. The importance of the location of charging stations is high since it can bring both problems or strengths. One of the strengths they can bring is the opportunity to place them at the border of city centres, so that the centres can become car-free (see appendix 4.1). This way, the use of last-mile slow traffic is promoted in city centres. When these charging stations are placed at the right node, traffic congestion can be prevented (see appendix 4.1). So far, the municipality of Amsterdam and most other municipalities claim they have enough charging stations for the current demand. However, when more measures and policies rise that demotivate the use of ‘dirty’ cars, an explosion of electric cars will occur. Exploration is done on what this explosion will do to energy grid and the supply of charging stations (see appendix 4.1 and 4.2). While the municipalities claim they have enough plans ready to cope with the above-mentioned explosion, interviewee 2 states that ‘we can’t exactly predict when the explosion will happen’ (see appendix 4.2). Apart from charging stations, more smart solutions are developed for existing infrastructure. An example stated by interviewee 5 is being developed on the boulevard of Scheveningen, where smart sensors are placed on roads to measure sound, fire trucks, police cars, while
it can also send signals when necessary (see appendix 5). Overall, it is important to note that there are still many opportunities for smart infrastructure solutions, especially in combination with vehicles, which is elaborated in the next paragraph.

Physical infrastructure

Interviewee 2 gave an interesting quote: ‘Je moet roeien met de ruimte die je hebt’ (see appendix 4.2). It reveals that there is a restricted amount of space left in the Randstad and shows the urge of good physical infrastructure planning. The existing infrastructure has been build up over many years and interviewee 1 states that it has become outdated, yet it is difficult to change (see appendix 4.1). Many examples of changes in physical infrastructure resulted from the interviews, but one of them stands out. When the Randstad develops transition hubs at the border of the cities rather than in the city centre, the pressure might be released from the centres (see appendix 4.5). This could change the entire network and could result in a surplus of infrastructure. This surplus infrastructure can be re-used for different purposes. An example could be to use it for climate adaptation measures, for example water squares, green roofs or urban agriculture (see appendix 4.1). This urban agriculture idea also increases people’s self-sufficiency, which could lead to a decrease of people in super markets resulting in decreasing use of mobility (see appendix 4.1). Overall, this can increase the viability of a city. However, this is an idealistic view. In reality, the government is still adding physical infrastructure in the form of roads and public transport, rather than making smart use of the existing infrastructure. New types of physical infrastructure will not lead to a decrease in mobility, as stated by interviewee 2 (see appendix 4.2). He takes the Noord-Zuid Lijn as example. It will result in a broader network, which becomes more accessible.

To summarize, there are two types of smart infrastructure: smart solutions for the existing network, and new physical infrastructure measures. Resulting from the interviews, the main trends and goals for the infrastructure network should revolve around an increase of transition hubs outside city centres, while efficiently using the existing network by developing dynamic roads, which offers opportunities to re-use surplus infrastructure for climate adaptation purposes. The following table shows the implementations for each city, based on the case study research in appendix 3.

Table 5 Existence smart infrastructure in cities (Author, 2018)

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Amsterdam is making major changes in stimulating non-motorized options such as pedestrians and bicycles. They want to create a car-free city centre where there is major space for non-motorized options. They have executed several new roads where bicycles are used as the main transport modality. This is one of the many changes Amsterdam wants for their existing infrastructure.</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>One of the main elements in infrastructural developments is the increasing amount of charging stations for electric vehicles. Rotterdam has enough charging stations for</td>
</tr>
</tbody>
</table>
now, but an increase in electric vehicles will result in an increased pressure on the energy grid. How Rotterdam will deal with that is not yet defined. Furthermore, Rotterdam wants to increase the emphasis on non-motorized modalities and they are going to start by changing the infrastructure in the city centre such as plans for redeveloping the Coolsingel to make it more accessible for pedestrians.

Den Haag
The Den Haag mobility plan mentions the decreasing need of parking spaces when autonomous vehicles are going to be implemented. They also want to increase the way for pedestrians and bicycle users, to increase the liveability of the city and to decrease the car use in the city centre. In 2014, Den Haag developed a strategy to create enough charging stations throughout the city. They are prepared for the increasing pressure on the network.

Utrecht
In their framework of smart mobility, Utrecht raises several important innovative road surfaces that need to be researched: Dynamic road marking, generating energy from road surfaces. These innovative ideas are not yet implemented but are in a research phase. Electric charging is sufficiently present in the city, as well as a reasonable pressure on the energy grid. However, future perspectives show a rise in electric car usage. Therefore, thorough is to be done to the impact of mass usage of electric cars in a city. The complete mobility plan for Utrecht is a relatively short-term perspective until 2025, which means that their future perspectives may be outdated. On the other hand, it must be said that technological advancements are unpredictable which questions the applicability of long-term scenario planning.

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Den Haag</td>
<td>The Den Haag mobility plan mentions the decreasing need of parking spaces when autonomous vehicles are going to be implemented. They also want to increase the way for pedestrians and bicycle users, to increase the liveability of the city and to decrease the car use in the city centre. In 2014, Den Haag developed a strategy to create enough charging stations throughout the city. They are prepared for the increasing pressure on the network.</td>
</tr>
<tr>
<td>Utrecht</td>
<td>In their framework of smart mobility, Utrecht raises several important innovative road surfaces that need to be researched: Dynamic road marking, generating energy from road surfaces. These innovative ideas are not yet implemented but are in a research phase. Electric charging is sufficiently present in the city, as well as a reasonable pressure on the energy grid. However, future perspectives show a rise in electric car usage. Therefore, thorough is to be done to the impact of mass usage of electric cars in a city. The complete mobility plan for Utrecht is a relatively short-term perspective until 2025, which means that their future perspectives may be outdated. On the other hand, it must be said that technological advancements are unpredictable which questions the applicability of long-term scenario planning.</td>
</tr>
</tbody>
</table>

4.1.4 Infra-vehicle communication
Communication between vehicles and its underlying infrastructure is one of the newer smart mobility developments. The fundamental aspect includes the collection and exchange of data. Pace, weather and brake data are important car data measurements and its relevance improves when exchanged with infrastructure data such as smart traffic lights and dynamic road marking (see appendix 3). A pilot project stated by interviewee 3 called ‘talking traffic’, raises the importance to increase the smart level of traffic lights, which makes them able to communicate with vehicles. The main goal is to increase safety and efficiency (see appendix 4.3). Because of infra-vehicle communication, cars know where bicycles are moving through Amsterdam. This can be made available to the car-user (see appendix 4.4). However, data exchange is a commercial process (see appendix 4.1) and therefore the transparency is still questionable. Many interviewees, especially interviewee 2, state that infra-vehicle data has no feedback to the user yet. According to interviewee 1, the question remains how the market will create transparency (see appendix 4.1) The following table shows how each city develops infra-vehicle communication based on the case study research in appendix 3.
Table 6 Existence infra-vehicle communication in cities (Author, 2018)

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>At the moment, there is no real proof of the infrastructure network communicating with in-car apps or devices. However, Amsterdam is working on a system that gives real-time information of certain infrastructure measures, parking spaces etc. This is still in an early research process.</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>Rotterdam is trying to come up with many innovative ideas in terms of the infrastructure network. This way, cars, pedestrians and roads can communicate. Examples are sensors under the Erasmus bridge, smart traffic lights that can detect rain. However, a lot of advantage can still be found here. There is no real information on real-time apps that are being developed that show the connection between infrastructure and vehicles.</td>
</tr>
<tr>
<td>Den Haag</td>
<td>Den Haag wants to realize a system where personal travel information is available for the inhabitants that is in combination with road network data exchange. These developments are not yet executed since tracking data is still the sole purpose.</td>
</tr>
<tr>
<td>Utrecht</td>
<td>The mobility plan of Utrecht plays widely on the transparency between the use of the network and its infrastructure. Smart traffic lights provide data for the users in rush hours, and this makes sure there is a good interconnection between apps and infrastructure.</td>
</tr>
</tbody>
</table>

4.1.5 Traffic flow management

Traffic flow management has two routes: tracking traffic flows and influencing traffic flows. According to interviewee 3, traffic flow management is able to respond to one of the policy goals, increasing traffic flow cities (see appendix 4.3). The main objectives of this policy goal are increasing traffic efficiency, optimizing traffic flows and increasing its safety (see appendix 3).

Tracking traffic flows

Tracking traffic flows is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network. According to several interviewees there are multiple ways to track traffic. For example, interviewee 2 states that:

‘the municipality of Amsterdam has contracts with TomTom and Google to combine their data, to optimize the tracking system’ (see appendix 4.2).

Furthermore, interviewee 1 raises the importance of ‘free floating car data’. By using this data, one is able to find out where a car is and at what speed it is driving, which can be connected to other types of data (see appendix 4.1). Other data tracking examples are: licence plates, OV-chip card and bicycle data.
An example in Amsterdam shows how bikers travel through the city after installing a tracking app. Tracking traffic flows forms the basis for influencing traffic flows.

Influencing traffic flows

Interviewee 2 states that ‘the first step is about informing’ and that is also the sole focus at the moment (see appendix 4.2). However, current technology and the quick developments of data tracking provides new opportunities to influence traffic flows. According to interviewee 4 ‘the whole market is digitalizing, and we don’t manage this market digitally enough yet’ (see appendix 4.4). If the government digitalises their systems, they are able to influence traffic by changing price incentives and accessibility. Another option to influence traffic is also raised by interviewee 4, where a discussion arose about why people always get the fastest route instead of the most favourable route. There are opportunities to play with the way users get to see their travel options. This argument is strengthened by interviewee 6, where he explains that people are becoming ignorant and blindly follow their GPS system (see appendix 4.6). This means that it is easier to influence the GPS-systems such as TomTom and Google Maps to accomplish a certain vision. Interviewee 6 says ‘as long as the travel time doesn’t increase significantly, people won’t complain.’ (see appendix 4.6) Another widely implemented measure implemented in all G4 cities is crowd management during events. For example, at carnival in Brabant people are managed via GPS-systems (see appendix 4.1), or during events in Amsterdam, such as Amsterdam-Zuid or Sail (see appendix 4.2 and 4.4). Crowd management should come back in the form of ‘city management’, where everyone is tracked and when necessary, a municipality is able to influence the traffic (see appendix 4.2). There are multiple measures to achieve this type of influence, but the one that comes back the most is the implementation of smart traffic lights.

Smart traffic lights

Smart traffic lights provides the opportunity to optimize mobility flows when implemented correctly and used adequately (see appendix 4.6). By using smart traffic lights the network is able to decrease one-sided flows as well as analysing flow-through and predicting travel density (see appendix 4.1). The ability to prioritize certain modalities is stated by interviewee 4.3, but this only works when the ability of a full network view is possible (see appendix 4.3). Smart traffic lights are still called ‘smart’ at the moment, but interviewee 4 states that ‘smart traffic lights and digital infrastructure are not smart, but necessary. It needs to be implemented no matter how small the percentage.’ (see appendix 4.4) Smart traffic lights do not make a system necessarily safer and this should also not be the main goal. The main goal of these measures are to optimize the traffic flow, where safety becomes an additional benefit, as is stated by interviewee 3 and 4 (see appendix 4.3 and 4.4).

To conclude with, tracking and influencing traffic flows are closely related, where digital measures can aid in better managing the mobility network. However, traffic management is very reactive. It is nearly impossible to manage and predict when people come to the city on a normal day. This asks for a different
approach. A shift is possible to occur where it goes from traffic management to mobility management (see appendix 4.4). An example of a new form of mobility management is given by interviewee 4, where he explains when someone buys a ticket for the Amsterdam Arena, one directly gets travel advice. By combining data from weather, infrastructure and traffic, the best advice can be given. The user can be influenced by ways of rewarding by giving a discount to a certain modality (see appendix 4.4). This is just one of many examples in terms influencing traffic flows. The following table shows a summary of the implementations in the four cities based on appendix 3.

Table 7 Existence traffic flow management access in cities (Author, 2018)

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Traffic data is primarily focused on the flow of car traffic. Some of the projects in Amsterdam are crowd management, real-time management, bicycle innovations and predictive parking. So far, the primary focus is on managing car traffic rather than influencing the flow of traffic. This is only possible during large-scale events and possibly during calamities such as events in Amsterdam-Zuid.</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>One of the main tasks is to make Rotterdam more accessible. One of these opportunities is to store data from traffic management. Information about bicycle and pedestrian flows in the city are now collected via mobile phone. This data is used to identify the bottlenecks and to make prognoses within traffic models more productive. Managing traffic flow is now happening, however influencing traffic flows is still non-existent.</td>
</tr>
<tr>
<td>Den Haag</td>
<td>Den Haag mainly focuses on the various transport modalities rather than tracking data of traffic in the form of traffic flow management. The mobility plan has no mentioning of ICT managing or influencing the flow of people.</td>
</tr>
<tr>
<td>Utrecht</td>
<td>Utrecht describes dynamic traffic management as the regulation of the traffic flows, increasing coherence across multiple intersections and routes. For example, it concerns crossroads that mutually align their green and red times. Looking at current technological developments, it is possible to coordinate not only intersections and routes, but also coordinate larger networks. This has several advantages for Utrecht: Traffic flows are followed over a larger area where traffic lights respond to each other prematurely with subtle adjustments. The aim is to guarantee good public transport and car accessibility, better spatial environment quality, quality of life, crossover and/or safety. Utrecht raises an important issue though, route signage that indicates traffic via the desired routes is insufficient to achieve the desired effect. Travelers choose, often supported with personal travel information, the route with the shortest travel time. It is therefore important that the municipality uses dynamic traffic management to control travel times: the desired routes for car traffic must have the shortest travel time. In all redevelopment projects, the municipality takes a regulatory approach for dynamic...</td>
</tr>
</tbody>
</table>
traffic management, if this contributes to the objectives of the mobility plan. Utrecht has well-thought plan for traffic flow management.

4.1.6 Inter-modal access

The interviews showed that there are two trends happening related to inter-modal access: the first one being the development of new modalities, next to the car, bicycle, pedestrian and public transport. The second trend concerns an increase in connection between these modalities.

New modalities

Interviewee 2 states that ‘developments are not focusing on the realization of new modalities, but rather focus on the mix and cooperation between the existing modalities and how these can be optimized and changed’ (see appendix 4.2). This argument is further intensified by interviewee 3, who states that there are no real new modalities and that new modalities such as slow electric vehicles are alternatives to existing transport network. He argues that new mobility apps can be seen as new modalities as well (see appendix 4.3). However, interviewee 6 is working on developing a new form of public transport: the city coaster.

‘The city coaster is lighter, compacter and faster than the current public transport system and has possibilities to go through buildings. One is able to add a new layer of public transport’ (see appendix 4.6).

He compares the city coaster to the ‘ski lift system’, since the possibility rises to change the way we look at public transport. A ski lift has high frequencies, is quick, and has a social acceptance that we sit together when it is busy. When the possibility arises to work on various layers, frequency will increase (see appendix 4.6). Nonetheless, this is the only new type of modality mentions by the interviewees, since they rather look at how the existing modalities are connected.

Inter-modality

Inter-modality is a term that comes back often in the interviews but various issues are included in this analysis. First, to create inter-modality all market parties need to cooperate, but many parties have an interest in not doing so. The parties related to transport often possess a ‘monopoly position’, where they own most of a certain modality such as the NS for public transport, who are called ‘concessie houders’ by interviewee 4 (see appendix 4.4). Secondly, interviewee 6 states that it is difficult to change the existing infrastructure, since this network has been developed over many years (see appendix 4.6). Instead of changing the existing network, opportunities arise in connecting them in the best way possible. For example, the ministry is now busy to create network interoperability, where start-ups can buy tickets from all transport parties to offer a ‘totaalreis’ (= total journey) for each individual(see appendix 4.4). An important example stated by interviewee 6, shows how new transition hubs that connect modalities should be placed at the border of cities next to highways. Applying this method, it is
easier to change from car to another modality and prevents the car from going inside the city. However, this asks for a profound last-mile network (see appendix 4.6). The following table shows the most important developments in each city based on the case study research in appendix 3.

Table 8 Existence inter-modal access in cities (Author, 2018)

<table>
<thead>
<tr>
<th>City</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>There is a large amount of infrastructure modalities available in Amsterdam. Bicycles, pedestrians, buses, trams, metro’s, trains, cars, shared cars, electric bikes all operate in the city. However, there is no real connection available between all of them. Only the public transport system is well connected and can be traced in the NS-app.</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>Rotterdam wants to increase transport over water, especially via water taxis and buses over the river Maas.</td>
</tr>
<tr>
<td>Den Haag</td>
<td>Den Haag has the possession of an extensive public transport network, together with the metropole region Rotterdam/Den Haag. On top of that, they are trying to achieve the best interconnection between the different modalities, by applying Mobility as a Service.</td>
</tr>
<tr>
<td>Utrecht</td>
<td>There are many opportunities described in the mobility plan: Bicycle sharing, E-scooter, electric bikes, speed padillacs, taxi, car sharing, electric cars and autonomous cars. So far, the interconnection between public transport and all other modalities is still questionable.</td>
</tr>
</tbody>
</table>

This paragraph has shown the most important smart mobility developments in each city. An overview of the existence of these developments is made and can be seen in appendix 3.5. This table has been based on this paragraph, case study research and literature study.
4.2 Regional resilience Randstad

The Randstad as a region has a certain current state of resilience. Regional resilience, as has been defined in the theoretical framework, consisted of four important variables: vulnerability, resources, adaptive capacity and regional interconnection. However, during the interviews two other important variables became visible namely: liveability, as the quality of life in a region and social relevance. These will also be elaborated in this paragraph. As quoted by interviewee 1:

‘Cities are all about resilience nowadays and need to prepare for the impacts of climate change’ (see appendix 4.1).

4.2.1 Vulnerability

First, there were two main indicators that were directly related to the vulnerability of the Randstad. These were the location of its cities and the increasing urban density. Since the Randstad is located in a delta area, it is susceptible to negative impacts of climate change, such as floods and the rising sea level (see appendix 4.1) (IPCC, 2015). Secondly, the Randstad is still growing as a region and nearly each G4 city is growing rapidly each year (appendix 3). Interview results show the current problems that arise when nothing is done concerning the mobility network. The more people live in the Randstad, the denser the area will become in transportation. This will automatically decrease the flexibility of the whole system. Examples can be given of the problems in city centres such as Amsterdam (see appendix 4.2). An increase in traffic congestions and overall traffic will increase the Randstad’s vulnerability as well as causing an increasing pressure on the whole network.

Resulting from the research, it can be said that vulnerability is not a stand-alone variable, but is closely related the availability of resources and a system’s adaptive capacity. The higher the Randstad’s adaptive capacity and availability of resources, the lower its vulnerability. Chapter 4.3 will show how vulnerability is closely related to the other variables.

4.2.2 Resources

The second variable revolves around the availability of resources in the Randstad. While ‘resources’ can be seen as a broad term: this research focuses on the availability of high quality infrastructure, the system’s diversity, connection between key areas and its productivity. A few main Randstad trends form as the result for the existing resources. First, according to interviewee 4 there are enough charging stations in Amsterdam, but when a rise will occur quickly, the energy grid will not be able to cope with the increasing demand. It is safe to say that he speaks for the whole Randstad since all cities have comparable charging station policies (see appendix 4.4). Secondly, there is an existing high-quality infrastructure network existing in the Randstad, connecting all major and smaller cities. The Randstad possesses a diverse network with many transportation modalities. The higher the diversity of modalities, the higher the regional resilience will be. However, due to the increasing urban density, this network will be overloaded in the coming period, if no changes are made. This overloading of the network will
have impact on the productivity of the Randstad and eventually the economy, as has been stated by interviewee 5 (see appendix 4.5). Thirdly, the continuous ICT developments form another issue to resilience. According to interviewee 6, ‘ICT will cause too much planning.’ (see appendix 4.6) He is referring to the fact that humanity is not able to do anything by free will anymore, since everything is written down in policies and needs to be planned ahead, due to further digitalization. Lastly, urban density in the Randstad forms many issues. However, it can also be perceived as an opportunity. Urban developments are happening with a rapid pace due to an increasing amount of inhabitants in all cities. This is also happening in the smaller cities in-between the G4. This means that these less connected areas need better transportation. Developments are happening now where inhabitants develop their own modalities, where they are able to cooperate in their own neighbourhoods. It is stated by interviewee 4 that ‘urban density stimulates local innovation’ (see appendix 4.4).

4.2.3 Adaptive capacity
The adaptive capacity of the Randstad is among the most important abilities in regional resilience. It concerns the robustness of the system, the ability to recover from shocks and the network’s flexibility. Interviewee 1 quotes:

‘We need to look more adaptive rather than preventive’ (see appendix 4.1).

He refers to the fact that climate change impacts are happening anyway and the Randstad network should preferably be able to cope with the negative damage, than to prevent it from happening. As has been said in the previous paragraph, the Randstad has a high number of modalities and they serve as an adaptive framework. However, it has proven to be hard to create a profound adaptation scheme for the Randstad. The Randstad is susceptible to the negative impacts of climate change such as precipitation extremes, high river discharges, rising sea level and enduring heat and drought. This in combination with the high urban density and economic importance of the Randstad, makes for the urge of a resilient and adaptive system. While this is existing in several individual cities, the Randstad asks for a higher level of flexible planning and preparedness. A resilience approach that is flexible and adaptive, makes the Randstad less prone to disturbances, enables quick and flexible responses, and is better capable of dealing with external shocks. Examples that need adaptive planning are: connecting key institutions such as hospitals and universities, flexible transition hubs outside city centres, well-planned economic functions such as the port of Rotterdam or Schiphol Airport (J. Wardekker, 2010). This is also stated by interviewee 4, who quotes that the ‘accessibility of the Randstad is more important than only connecting the most important nodes’ (see appendix 4.4).

4.2.4 Liveability
One of the variables that wasn’t mentioned before has come up from the results of the interviews. When a system becomes resilient, an essential aspect is people’s quality of life in this system. Smart mobility often refers to people’s safety, air quality, spatial quality and ‘mobility luck’. There are several plans
that increase the liveability in the Randstad region. Interviewee 3 states that one of the trends is to increase the use of non-motorized options in the Randstad such as bicycles and pedestrians. Furthermore, he states that all new developments need to have a certain amount of greenery (see appendix 4.3). Interviewee 2 states the importance of the urban heat island effect (see appendix 4.2). This is defined as

‘an urban area or metropolitan area that is significantly warmer than its surrounding rural areas due to human activities.’ (Bornstein, 1968, p. 875)

Also, quality of life is increased when there is a restriction of noise, when there is high air quality and the urban heat island effect is diminished. Now, the Randstad can be called one of the greenest metropole regions of the world, but inside city problems arise concerning the previously mentioned indicators.

4.2.5 Social relevance
One of the variables that wasn’t mentioned before has additionally come up from the results of the interviews. There are three major trends that make social relevance important in the Randstad. First, there is an overall changing mind-set occurring in the Randstad. A few months ago, the political party Groenlinks has won in two of the four major cities (Utrecht, Amsterdam) and raises the awareness of climate change. The importance of changing the mind-set still needs to rise more according to interviewee 1.

‘It is ‘smart’ that we make sure we change the mind-set of people from possessing cars, to sharing cars.’ (see appendix 4.1)

This quote has been stated by multiple interviewees (see appendix 4.2 and 4.4) where they see smart mobility will only work when social change is occurring. Secondly, interviewee 1 states that an overall top-down approach is not the right direction and he says that people need a smaller scale to feel comfortable. He gives the example of people preferring to live in smaller neighbourhoods (see appendix 4.1). And third, a new concept comes up in the interviews called ‘mobility luck’. This term describes the accessibility of mobility to all different types of social classes. An example is given by interviewee 5, where mobility forms an issue for people who can’t afford to buy a car and can’t afford to live in cities. This isolates them from the rest of society and is called mobility poverty (see appendix 4.5). Mobility should focus on generating and improving accessibility for lower social classes, instead of improving the accessibility of higher social classes.

4.2.6 Regional interconnection
The last variable revolves around the regional connection of the Randstad. The study of Wardekker (2010) perfectly describes the problem of no integrated approaches in the Randstad:

‘for the metropolitan area, urbanisation and housing, economic development, and mobility/accessibility pose significant challenges with uncertain spatial claims. Uncoordinated communication by various governmental units results in ‘information overload’. Governmental
anticipation on changes is slow, and public support for adaptation policy is lacking due to low participation’ (J. Wardekker, 2010, p. 989).

According to interviewee 5, there is an existing manifest that touches upon the trends around the growing economy and increasing demand for mobility. However, this plan is only about opportunities and less about smart mobility measures (see appendix 4.5). At the moment, long-term planning is not about smart mobility. Municipalities separately all have their own smart mobility plans, as can be seen in appendix 3. This might form unnecessary work since most of the G4 cities have the same trends and problems, which means comparable developments are created in different cities. As interviewee 5 states: ‘all cities are unnecessarily trying to re-invent the wheel’ (see appendix 4.5). On the other hand, this does provide the opportunity for competition between the cities. At last, interviewee 2 states that the connection between rural areas is bad, in comparison with the bigger cities. He especially refers to the public transport system and he states that regional accessibility between rural areas and big cities (first-mile connection) is the worst aspect of the regional resilience in the Randstad (see appendix 4.2).

To summarize, there are six important variables present relevant to the regional resilience of the Randstad. While the Randstad can be seen as a resilient region when compared to other metropole regions, this study has identified various problems that are able to become opportunities. This will be elaborated in the next paragraph, where smart mobility measures can make the Randstad more resilient.
4.3 From smart to resilient

Via exploratory research, both the most important developments of smart urban mobility and regional resilience have been identified. This paragraph will provide linkages and causal connections between the above-mentioned concepts, that are a result from the network creation and axial coding process, as can be seen in appendix 5. First, each smart mobility variable will be further analysed as to what the influence is on the regional resilience variables. Then, regional interconnection will be added as variable, to see exactly how the ‘region’ perspective can influence the overall resilience of the Randstad.

4.3.1 Influence of smart mobility criteria on resilience criteria

Mobility service

There are three main indicators that can have significant influence on the resilience of the Randstad. First, parking guidance systems are one of the developments that could solve major problems in cities. Interviewee 5 states that parking guidance systems have a direct causal connection between the liveability of an area (see appendix 4.5). Less parking space is needed as well as senseless through cities is prevented since users don’t need to search for parking spaces anymore. This results in an influence on spatial quality, air quality and safety. Apps can provide direct individual traffic information that works inter-modal. According to interviewee 3 this directly influences the resources and adaptive capacity variable. The system becomes more flexible because it is easier to identify alternative modalities and an app may show more options, resulting in a robust system (see appendix 4.3). Car sharing is in an early phase and still has room for improvement. Many interviewees said that car sharing will only influence resilience when combined with carpooling. Sharing rides could significantly decrease traffic, which results in a decrease of pressure on the infrastructure network. Furthermore, car sharing could have a positive influence on the liveability since it will increase people’s ‘mobility luck’, which is proven in a pilot stated by interviewee 5 called the Vrijstraat (see appendix 4.5). Overall, the MaaS-concept can influence the adaptive capacity, liveability and resource variables of the regional resilience concept. The mobility service variable therefore has significant influence.

Smart vehicles

The smart vehicle variable consists of three indicators that can influence the resilience of the Randstad. First, the long-term development of autonomous driving has many possible advantages. It can have positive impact on the safety of the traffic network. This is due to the decrease of human failure on the road network. However, according to interviewee 5 the implementation of autonomous driving is only possible on high-ways and not in city centres due to its high complexity (see appendix 4.5). It does influence the regional resilience, but not cities itself. Because the system is able to optimize itself with autonomous cars, it will enhance the Randstad’s economic productivity. The second indicator revolves around smart vehicles such as electric vehicles and smart data cars. Safety is a profound measure that is part of smart vehicles. Various smart sensors such as driver support measures, including brake systems and detection system positively influence the network’s safety (see appendix 4.3). Electric vehicles will
also positively influence the liveability. This is due to the fact that they produce less noise and less pollution. Interviewee 1 quoted:

‘Autonomous and electric driving can result in less traffic and vehicles on the network, which generates more space’ (see appendix 4.1).

This will result in a reduction of the Randstad’s vulnerability. However, there are not nearly enough smart vehicles on the network to make this effective. Lastly, light electric vehicles can influence both the robustness and flexibility of the network. This is grounded by interviewee 5, who states that this can be achieved by focusing light electric vehicles on first and last mile traffic (see appendix 4.5). Overall, the smart vehicle variable has significant influence on the resilience if executed correctly and carefully. The system will increase in productivity, safety, liveability, robustness and flexibility.

Smart infrastructure

The study of Gallego-Lopez and Essex (2016) quoted that: ‘Typically infrastructure investment is based on a return on investment and lifespan that is short’ (Gallego-Lopez, 2016, p. 9). They refer to the fact that infrastructure normally lasts a long time, which makes it important that climate and disaster risks are considered in the new development. This urges the importance that ‘infrastructure must be planned as part of wider climate resilient, low carbon development strategy’ (Gallego-Lopez, 2016 p. 10). The smart infrastructure variable has many influences on the resilience of the Randstad. According to interviewee 5, physical measures can decrease the pressure on the network. His example is making roads one-way in Amsterdam. By making certain areas car free, such as city centres, there will be an increase of liveability. Interviewee 5 states that car free areas in cities should be combined with car sharing (see appendix 4.5). He raises the importance that smart developments should always be combined, especially when it comes to decreasing the pressure on the network. When the infrastructure network is optimized, opportunity rises to use the excess infrastructure for greenery or other measures that increase spatial quality. Interviewee 1 states that:

‘The free space can be used to generate high spatial quality that decreases pollution’ (see appendix 1).

One of the larger infrastructural changes occurring in the Randstad that can influence resilience are the changing city dynamics. Grounded in three interviews, they all state that cities should move away from having one city centre. Interviewee 1 states that if we move from one city centre to multiple transition hubs, a region is less dependent on this one nodal point and this makes it robust (see appendix 1). Interviewee 5 then complements this statement with the importance of locating these hubs in resilient areas. He continues by saying that we need to place the key institutions in locations that are least susceptible to external shocks such as hospitals, economic centres and health care facilities. This is all part of smart infrastructure. On the other hand, there are also direct negative impacts on the resilience. Interviewee 6 states that the Beter Benutten program increases the pressure on the network.
‘If an external shock occurs, and everything is planned without enough flexibility, the damage will increase’ (see appendix 4.6).

Apart from this issue, the development of charging stations will cause a future problem. As it is seen now, the energy grid will not be able to cope with the increasing use of electric vehicles (see appendix 4.2 and 4.3). Interviewee 2 continues by stating the importance of flexibility in the charging station network (see appendix 4.2). Overall, each newly developed infrastructure program takes the climate change principles into account but it is questionable whether this is enough to cope with the increasing pressure.

Infra-vehicle communication

Resulting from the interviews, there is only one indicator for infra-vehicle communication that can have significant impact on the resilience. Infra-vehicle communication can be seen as a result from developments in smart infrastructure and smart vehicles. The combination of these variables show that real-time navigation, which is closely related to traffic flow management as well. Because of the data that becomes available in cars, the infrastructure is able to respond the traffic. This can increase the system’s robustness, as is stated by interviewee 1 (see appendix 4.1). However, since there are not many results concerning this variable, it is questionable whether this should be a separate variable, but be part of the other variables.

Traffic flow management

As is said in the infra-vehicle communication paragraph, navigating flows of people has a significant influence on the resilience of the Randstad. As is defined before, two types are part of traffic flow management: informing and influencing. First, informing network users with live traffic information will increase their responsive ability. Any problems can be solved more quickly when network users know what is going on. Interviewee 2 gives the example of a busy summer night in Amsterdam, where one part of the city is too busy. People can be informed to change directions (see appendix 4.2). Apart from informing, traffic flows can be influenced. This has a bigger impact on the adaptive capacity of the Randstad. For example, calamity management in Amsterdam (see appendix 4.2). Any external shock can be crowd managed and this results in a faster responsive and recovery period. Another addition that people navigation can achieve is spreading traffic over the whole city to decrease the warmth it is causing. This will result in better air quality and increase the overall liveability of the Randstad (see appendix 4.1). The main influence traffic flow management has on the resilience is that mobility flows can be optimized by using the available information (see appendix 4.6). By tracking and analysing the whole network, a region knows its weak spots and this will decrease the overall vulnerability. However, this can only be achieved when the system incorporates enough flexibility. When the network capacity is increased, the flexibility will also increase. Also, navigating people will only work when they put
enough trust in the system, as is stated by interviewee 3 (see appendix 4.3). Overall, interviewee 3 further quotes that:

‘Traffic management needs to be combined with the technological advancements of the road network’ (see appendix 4.3).

Traffic flow management can have significant influence on the resilience in the form of increasing the adaptive capacity.

Inter-modal access

In the smart infrastructure paragraph, the importance of increasing the network capacity was already widely highlighted. It comes back in this paragraph, as well as the importance of increasing diversity. Interviewee 2 stated that that ‘an increase in diversity of modalities will decrease the network’s vulnerability’ (see appendix 4.2). He means that when network users have the ability over a different set of transport options, the pressure on the network will decrease. If one modality will fail because of an external shock, there are enough modalities as alternatives. This will increase both the recovery rate, robustness and flexibility of the Randstad. Not only increasing the system’s diversity has impact on the Randstad, also providing connections between the modalities will significantly influence the resilience. As has been stated in the smart infrastructure paragraph as well, location hubs at the border of cities function as a main development. If these location hubs operate together with a system that provides inter-modal access, the dependency of the system will decrease and its flexibility will increase. As is stated by interviewee 5, the positioning of these transition hubs is essential (see appendix 4.5). Resulting from the interviews, it can be said that inter-modal access is fundamental when increasing the resilience of the Randstad. This is further strengthened by the study of Wang (2011), who states that ‘the most reasonable structure is to have almost even degrees of all nodes’ (D.Wang, 2011, p. 197). He refers to the fact that inter-modal transition hubs are necessary to deal with external shocks.

4.3.2 Adding regional interconnection

When looking at the regional interconnection of the Randstad, three main indicators were defined: local involvement, connection between cities and governmental cooperation. The study has shown that all smart mobility variables influence the resilience of the Randstad. However, when looking at the question how regional interconnection adds extra value to its resilience, it is hard to see how each individual smart mobility variable influences the regional interconnection variable. The interviews have not shown a direct relation, but offered more of an opportunity. This opportunity concerns the necessity of an integrated approach between the municipalities in the Randstad to optimize the mobility system. As is stated by interviewee 5, regional interconnection is a direct result of the Beter Benutten program (see appendix 4.5). The urge for a regional approach comes from the following quote:
‘The pressure on the mobility network is becoming so big that the need for optimisation and transition is a necessity. The Randstad needs to be able to act quickly but this is not well organized yet’ (see appendix 4.4).

This quote further intensifies when both interviewee 2 and 6 state that smart mobility developments have unclear policies and that the governmental bodies do not cooperate accordingly (see appendix 4.2 and 4.6). The current market will slow smart mobility measures due to commercial purposes and these unclear policies (see appendix 4.1). Furthermore, interviewee 3 from the Knowledge Institute of Mobility policy provides an external look, where he states that cities all operate on their own. The long-term mobility plans do not focus on smart mobility as a different entity, while smart mobility offers many opportunities. In order to make sure that the G4 cities do not develop the same smart measures, they should integrate their plans. Interviewee 4.5 stated the importance with a remarkable quote:

‘We must prevent us from reinventing the same wheel everywhere’ (see appendix 4.5).

The next paragraph will examine the opportunities for an integrated Randstad approach.
4.4 Linking urban measures: an integrated Randstad approach

The last part of the interview question guide revolved around the urge for a regional Randstad approach towards smart mobility, and whether the interviewees believe in such an approach. In order to analyse their perspective, different sets of questions all led to one question: Do you believe in an integrated Randstad approach for smart mobility? (see appendix 2)

First, an example was given by interviewee 6, where he states that many foreign cities such as Kopenhagen are built around one nodal point. All roads lead to that centre, whereas the Randstad has multiple nodal points and is therefore unique in the world (see appendix 4.6). Each Randstad city is growing as a whole, which leads to negative trends. The metropole ‘rural’ areas are badly connected to the big cities’ nodal points. The first-mile connection is not well implemented (see appendix 4.2). This is further intensified by a statement of interviewee 3, where he says that:

‘The institutional borders of municipalities do not match with the mobility borders. The daily urban system operates in cities and between cities’ (see appendix 4.3).

The urge for a mobility plan is further strengthened by the fact that the G4 cities all have the same trends and problems, as is described by many interviewees. Furthermore, the current plan only revolves around opportunities and not around smart mobility (see appendix 4.5). The interviewees also acknowledge that technology is not city restricted. Why exactly is the regional approach to smart mobility necessary?

- Mobility should be about cooperation between all cities.
- To optimize mobility in the Randstad, interurban connections are needed.
- The Randstad consists of multiple nodal points that need transitioning to achieve inter-modal access.
- A regional approach generates volume for smart mobility developments.
- The existing policy towards smart mobility is outdated or non-existent.
- The biggest cities of the Randstad (Amsterdam, Rotterdam, Utrecht, Den Haag) are all willing to work together.

These trends all ask for a long-term perspective. However, this long-term perspective is damaged by the 4-year governmental change (see appendix 4.5). This study offers a possible solution where a new regional organizational body could be developed that tries to enhance the possibilities for smart mobility developments.
4.4.1 The integrated Randstad approach

Developing a new regional organizational body is stated by interviewee 3, 4 and 6. First, interviewee 3 states that a new regional perspective can offer opportunities to develop a more integrated mobility network. Interviewee 4 states that ‘if problems become bigger, we need to organize it on an appropriate scale, because we operate shredded now’ (interviewee 4.4). There are five main developments this study identifies that could be implemented by such a regional approach, that could eventually increase the system’s robustness and lead to an overall increase in regional resilience.

Integrated plan to tackle trends and develop knowledge platforms

This study has shown some important positive and negative trends. All cities are becoming more densely populated. There is an increasing lack of space in the Randstad. How will the flow of people in the Randstad continue? A new policy should rise for solutions of these trends and it shouldn’t be done separately as a city (see appendix 4.5). This policy should use the opportunity trends to tackle the possible negative impacts. Possible positive trends that need an integrated policy are:

- The development of autonomous vehicles (see appendix 4.4)
- Commercial car manufacturers that want to make smart vehicles (see appendix 4.3)
- The shift from car possession to car sharing (see appendix 4.2)
- The increasing platform economy and monopoly positions (see appendix 4.4)
- Information acquiring through data (see appendix 4.4 and 4.6)
- Becoming ‘smart’ through internet connection (see appendix 4.4)
- Stimulating non-motorized transport and light electric vehicles (see appendix 4.3)

In order to adjust the smart mobility trends to an integrated policy the following developments are suggested: Development of first and last-mile traffic, long-term smart mobility goals connected to short-term goals, behavioural change and the development of interurban hubs.

Development of first and last-mile traffic

This study has shown the importance of the development of first-mile traffic and last-mile traffic. While first-mile traffic is closely related to the smaller cities and rural areas of the Randstad, last-mile traffic is related to the most densely populated areas, mainly the city centres of the larger cities. This shows that a regional approach is necessary between the cities to accommodate both first-mile and last-mile traffic.

First-mile traffic: interviewee 4 describes that the focus in first-mile traffic should be on the availability and continuity of public transport and how many alternatives there are available. The Randstad approach should make sure that the public transport system is fast enough so that people living in these areas are discouraged from using their cars. This way, the pressure on the mobility network in these regions will diminished (see appendix 4.4).
Last-mile traffic: interviewee 5 describes that last-mile traffic in city centres can be successful when people are encouraged to park their car or other modality at the border of the city centres, from where they continue by foot, public transport mode, bicycle or light electric vehicle. This will decrease car-usage in city centres substantially and will enhance mobility flows.

Long-term smart mobility goals connected to short-term goals

Interviewee 5 states that the main basis for smart mobility are the long-term goals and how smart mobility is going to change the mobility network in the Randstad. He says that in order to achieve the goals, a translation from long-term goals to short-term measures has to be made (see appendix 4.5). However, the Dutch politics system provides various problems. They system changes every 4-years and this means that long-term goals are hard to achieve. Furthermore, politics only have a restricted amount of knowledge about a certain topic, in this case smart mobility developments. This further raises the importance to create a organizational body that passes the institutional borders.

Behavioural change

This study highlighted the importance of social change before, and this should also be incorporated in the integrated Randstad approach. The mindset of both government and network users has always been on accommodating more mobility, such as new roads and more public transport. However, it is good to look at how a regional perspective can change people’s behaviour. Much less has been invested in this, but it is raised on the agenda that we can’t keep adding mobility because it doesn’t decrease pressure anymore, it only increases it. For example, the change of behaviour from car possession to car sharing. Also, the change of behaviour of the government is necessary, where they look for possibilities to optimize the existing mobility network rather than increasing by building more mobility (see appendix 4.4).

Interurban hubs

This study has described it before, but interviewee 5 raises the idea of interurban hubs as a good solution to spread the density out of the city centres. Inside the city centres it is possible the control the traffic by promoting sharing, but if one looks at the total mobility system, all forms of modalities should be accessible and connected. It requires a regional approach in which transfer points or hubs are no longer organized in the city centres. For example, Amsterdam is already developing transfer hubs outside the city such as Hilversum or Hoofddorp. These mobility hubs must provide inter-modal access where the transition between first-mile traffic and last-mile traffic is possible. A range of higher-order transportation options is available with seamless transfer. This way, people don’t feel the need to go into cities via one modality and they rather pass via these hubs (see appendix 4.5). If these hubs become successful, they offer opportunities for commercial business to provide the area with facilities and residences, which will further intensify the shift from city centres. This could change the existing city structure of the Randstad and will spread mobility and inhabitants over the whole region. Interviewee 6
further states that this changing dynamic is already occurring. Based on the previous results, spreading
the mobility system via mobility hubs will decrease the pressure on the Randstad and will enhance its
robustness and flexibility, which will increase the regional resilience.
5. Discussion

From the beginning of this research process, it became clear that there is a lot of unclarity about the definition of smart cities and what it consists of. The cities in the Randstad however, try to incorporate a smart city concept in their long-term perspectives as can be seen in the visions for 2040. One of the most important variables in a smart city is ‘mobility’, and it is even more relevant in the Randstad, since the urban density is one of the highest in the world. Smart mobility is a relatively new concept and no real definition is given in previous research apart from technology being an essential part of it. This study has shifted from focus and added the spatial future of the mobility system to the smart mobility definition. This way, the opportunity rises to analyse whether smart mobility can influence the regional resilience of the Randstad. By interviewing six experts of smart mobility from the four biggest municipalities (Amsterdam, Rotterdam, Utrecht and Den Haag) it was possible to show their perspectives and to connect links between the variables of smart mobility and regional resilience.

A literature study was done to define the most important variables of both smart mobility and regional resilience. First, five variables were found from the study of Kapadia (2016) containing information, sustainability, infrastructure, safety and payments (Kapadia Associates, 2016). However, along the process it became clear these variables are not measures of smart mobility and based on the interviews and literature study new variables were defined. These variables served as the new basis for the data analysis. Based on the indicators of each variable, interview questions are formulated that best structure the analysis. After each interview, the questions are adjusted to get the most information out of the interviewee.

The validity of this research can be guaranteed because of the various research methods used. The case studies researched have proven to be useful in the research and the extensive amount of knowledge available on the case studies used increases the reliability. The prepared research methods described in chapter three were all used during the process and all delivered valuable information. The involvement of experts in the field of smart mobility and climate change contributed to the validity of the research. This has led to the following results.

During the analysis it came forward that the interviewees not really talked about smart mobility measures, but rather see them as developments. On the one hand, this shows that smart mobility is an extensive concept with many subjects but on the other hand, this makes it harder to quantify the links between other variables, since developments have so many complex overlaps. Furthermore, the idea was to analyse smart mobility measures for each city. However, this makes the analysis repetitive and the choice is made to structure the analysis via the variables including some examples from the cities.

When analysing the regional resilience variables, it became clear that it is hard to distinguish the different variables. Vulnerability should be a direct result from resources and adaptive capacity. Also, based on the interviews, liveability and social relevance in the region have proven to be essential when
defining resilience. These are unexpected findings that were not implemented in the initial theoretical framework and data scheme.

Based on the interviews and data analysis each variable has shown a significant influence on one of the resilience variables. While it is questionable that each of the links is as significant as the other, each variable has a certain amount of links, which makes the result more grounded. A modified version of the conceptual framework has been made to show all the direct connections that smart mobility has on the resilience variables. Each line resembles a significant influence and they all have been described before. The full complex causal scheme can be seen in appendix 5. Based on the interviews, the vulnerability variable has been changed from a direct resilience variable to the result of the availability of resources and adaptive capacity. There is a close causal connection present.

![Redeveloped causal scheme of the conceptual framework (Author, 2018)](image)

It is hard to see how each individual smart mobility variable influences the regional interconnection variable. The interviews have not shown a direct relation, but offered more of an opportunity. This study has shown how a regional approach could help smart mobility increase the regional resilience of the Randstad. **This indirect relation is an unexpected result that strengthens the study as a whole.** The regional approach is about working towards an integrated story, where government, provinces, metropole areas, municipalities and inhabitants have to work together to optimize the mobility system. When optimizing the mobility system, the use of smart measures in the form of technological advancements are needed. This will increase the Randstad’s liveability, availability of resources, robustness, productivity, flexibility and overall: its regional resilience.
The research results continue the studies of Erayding (2016) and Christopherson (2010), where regional resilience was already defined in a systematic way. This academic research filled in the academic gap in the Randstad by tackling the lack of regional perspective, to create better planning in regional resilience, which will ultimately lead to the development of a smart region. By looking at one smart city variable in the form of smart mobility, a more detailed look at possible links and connection was given.

Smart mobility in itself is a broad concept and it has proven to be hard to narrow it down to a single measure. Having a broad view of smart mobility is one of the limitations of this study. This study has tried to structure the definition in six variables: mobility service, smart infrastructure, smart vehicles, traffic flow management, infra-vehicle communication and inter-modal access. An overview for each city has been given at each variable, which might result in some information being mentioned multiple times. This might come off as repetitive, it does show the urge for a combined approach and strengthens the research results.

Another limitation is that regional resilience is a vague term that many studies have used in different contexts. The causal connections laid out by this research are reliable and based on grounded information, however, the definition of resilience is based on my interpretation and literature study. It is clear how resilience is defined because the study has stayed abstract enough and each process step has been described carefully. Also, some of the causal connections made by the interviewees have been strengthened by accompanying literature.
6. Conclusion & recommendations

6.1 Conclusion

The Randstad is an area with an increasing urban density, where each city is growing rapidly. Put this together with the changing climate and the Randstad’s vulnerable location and many threats arise. The Randstad needs a flawless mobility network that is both optimized and resilient to external shocks. The new smart mobility developments may aid to influence the resilience of the mobility network in the Randstad. That is why the main research question was defined as: To what extend do smart mobility measures at an urban level influence the regional resilience of the Randstad region, especially related to climate change and the urban density? The main research question was divided into four sub-research questions and they will be answered in this conclusion.

Based on a literature review, what is the definition of smart mobility in a smart city and what is the importance in an urban and regional area?

Smart mobility is about allowing seamless, efficient and flexible travel across various modes while improving the environment in the form of resource efficient transport as well as aiding the economy in the form of higher productivity and while aiding society, providing a higher quality life for the network users, where all these developments are supported by the technological advancements of the 21st century. Smart mobility is important on an urban scale because in the future, nearly everyone will live in cities. This asks for an optimized mobility system with seamless inter-modal access that ensures the liveability in cities. Smart mobility is important on a regional scale because cities need flawless connection between each other as well as connecting important nodal points.

What are the most important smart mobility measures within the four biggest cities in the Randstad and how do the variables operate in smart mobility?

By looking at case studies from each of the biggest Randstad cities (Amsterdam, Rotterdam, Utrecht, Den Haag), a thorough literature review and the interview analysis, it became clear that smart mobility consists of six main variables: mobility service, smart vehicles, smart infrastructure, infra-vehicle communication, traffic flow management and inter-modal access. However, the measures defined in these variables are not city-bound, which makes it irrelevant to look at each city individually. The most leading smart mobility developments are: car sharing, apps, autonomous vehicles, electric vehicles, light electric vehicles, non-motorized options, smart traffic lights, influencing traffic flows and inter-modality.

How do the smart mobility measures make the Randstad more resilient to climate change, taking into account the urban density?

The MaaS-concept can influence the adaptive capacity, liveability and resource variables of the regional resilience concept in the form of optimizing the system via parking guidance and car sharing. Autonomous vehicles and electric vehicles will decrease pollution in the Randstad and improve air...
quality. Light electric vehicles can influence both the robustness and flexibility of the network and this can be achieved by focusing light electric vehicles on first and last mile traffic. When traffic flows are optimized less infrastructure is needed and this could be used for climate adaptation measures. Many of the described smart mobility developments are accompanied by a threat that needs to be tackled. This is only possible if a capable cooperation occurs between all organizational bodies as well as a change in behaviour of network users, shifting away from possession towards sharing. Combining the smart mobility measures and connecting them to provide inter-modal access, the overall pressure on the Randstad’s mobility will decrease and will make it more resilient to external shocks such as negative impacts of climate change.

How can the smart mobility measures on urban level be linked to create a more integrated approach on a regional level (Randstad)?

The trends all ask for a long-term perspective. However, this long-term perspective is damaged by the 4-year governmental change. Nearly all interviewees agree that a regional approach towards smart mobility would aid the developments and optimization of the mobility network. This study offers a possible solution where a new regional organizational body could be developed that tries to enhance the possibilities for smart mobility developments. This organizational body should focus on the following developments:

- Develop an integrated plan to tackle trends and develop knowledge platforms.
- Development of first and last-mile traffic.
- Connect long-term smart mobility goals to short-term measures.
- Behavioural change of all mobility users.
- Develop interurban hub at the border of cities.
- Use technological advancements to optimize the mobility system.

Then to answer the main question all sub-questions are combined together with all the data analyses: Based on the defined smart mobility variables including their measures, or rather called developments, the most important links between the regional resilience variables were made. This research has proven that the smart measures influence the resilience of the Randstad, mostly in the form of optimizing the system, influencing tracking flows, increasing its efficiency, changing dynamics with inter-urban and changing behaviour. However, the direct regional influence is questionable. Therefore, the study states that smart mobility developments form an opportunity for municipalities in the Randstad to develop an integrated approach or new organizational body that could enhance the efficiency and productivity and could decrease the pressure on the overall network.
6.2 Recommendations

The results discussion explained several limitations and recommendations for Marsaki to execute. This bachelor thesis can be continued by doing more in-depth research, to strengthen its outcomes and to integrate more disciplines and opportunities. Therefore, an overview of essential recommendations is developed for the continuation of this project.

The last paragraph of the results and the sub research question analysed the idea to develop a new organizational body that operates next to the other institutional bodies such as Rijkswaterstaat and Waterschap. As a start, it is important that the biggest municipalities of Amsterdam, Rotterdam, Den Haag and Utrecht organize meetings where they analyse the opportunities to develop such an organization. The main recommendation is therefore to organize in-depth organization between municipalities, provinces and metropole regions whether such an approach would be suitable and could have added value for the Randstad.

The six smart mobility variables and the links this study has provided with resilience are based on a literature study and six interviews. In reality, this is not enough to determine links on such a broad scale. It is important that further research is done to each specific variable to determine whether there are more links between smart mobility and resilience. This research started of analysing smart mobility measures for each one of the big cities in the Randstad. However, during the research process it came to light that for this research it was not suitable to develop a framework for each city. It is valuable for further research to do the analysis again for each city to determine their level of smart mobility and their knowledge of each subject. This way, a more in-depth conversation can be held between the previously mentioned municipalities.

This research has identified many trends in the form of technological advancements. These trends have been rapidly growing since the 21st century with the coming of the internet of things. When identifying future opportunities for smart mobility developments, it is important to identify the pace to which these technological advancements grow. It is impossible to create long-term goals for smart mobility is not all possible scenarios are thought out. Therefore, the recommendation is about doing further research to technological advancements and their pace.

The resilience framework that has been developed during the analysing phase is purely based on qualitative methods and comes from the interpretation of interviewees. Though these interviewees are all experts on the issue, it would be reliable if a framework is developed that is able to quantify the regional resilience of an area through quantitative data. The start has been made by identifying the most important variables, now it is time to develop a framework that can make resilience quantifiable via reliable indicators.
Bibliography

Gemeente Amsterdam. (2016). *Smart mobility.* Amsterdam: City of Amsterdam.

Appendix 1: Search plan literature review

This appendix will provide an overview of the search terms used in the various databases, such as Scholar Google and Science Direct, to find the most relevant articles for literature review.

<table>
<thead>
<tr>
<th>Climate Change</th>
<th>Climate change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impacts of climate change</td>
</tr>
<tr>
<td></td>
<td>IPCC</td>
</tr>
<tr>
<td></td>
<td>Climate change and resilience</td>
</tr>
<tr>
<td>Smart city</td>
<td>Most used smart city frameworks</td>
</tr>
<tr>
<td></td>
<td>Smart city</td>
</tr>
<tr>
<td></td>
<td>Principles of smart city</td>
</tr>
<tr>
<td></td>
<td>Smart city applications</td>
</tr>
<tr>
<td></td>
<td>Smart city variables and indicators</td>
</tr>
<tr>
<td></td>
<td>Smart city definition</td>
</tr>
<tr>
<td>Smart mobility</td>
<td>Smart mobility</td>
</tr>
<tr>
<td></td>
<td>Smart transportation</td>
</tr>
<tr>
<td></td>
<td>Smart infrastructure</td>
</tr>
<tr>
<td></td>
<td>Smart transport</td>
</tr>
<tr>
<td></td>
<td>Future of transportation</td>
</tr>
<tr>
<td></td>
<td>Smart mobility in the city</td>
</tr>
<tr>
<td></td>
<td>Smart urban mobility</td>
</tr>
<tr>
<td></td>
<td>Smart urban transportation</td>
</tr>
<tr>
<td></td>
<td>Smart mobility characteristics and attributes</td>
</tr>
<tr>
<td></td>
<td>Smart mobility framework</td>
</tr>
<tr>
<td>Regional resilience</td>
<td>Regional resilience</td>
</tr>
<tr>
<td></td>
<td>Regional resilience characteristics and attributes</td>
</tr>
<tr>
<td></td>
<td>Regional resilience variables</td>
</tr>
<tr>
<td></td>
<td>Resilience</td>
</tr>
<tr>
<td></td>
<td>Resilience definition</td>
</tr>
<tr>
<td></td>
<td>Urban resilience</td>
</tr>
<tr>
<td></td>
<td>Resilience in the Randstad</td>
</tr>
</tbody>
</table>
Appendix 2 ‘Interview questionnaire’

Hoofdvraag: In hoeverre beïnvloeden Smart mobiliteitsmaatregelen op stedelijk niveau de regionale veerkracht van de Randstad, met name gerelateerd aan klimaatverandering en de stedelijke dichtheid?

Smart city en smart mobility

1. Ik heb een raamwerk ontwikkeld met betrekking tot slimme mobiliteit, hoe denkt u dat deze variabelen (Informatie en data, Duurzaamheid, Infrastructuur, Veiligheid, diverse transportmiddelen) invloed hebben op slimme mobiliteit?
2. Waarom denkt u dat smart mobility belangrijk is in een stad?
3. Met de slimme mobiliteitsvariabelen in gedachten, wat zijn de belangrijkste maatregelen die gepland of uitgevoerd zijn binnen één van de desbetreffende steden? (Rotterdam, Amsterdam, Utrecht, Den Haag)

Data analysis

4. In hoeverre wordt de auto als sensor gebruikt en krijgen transportgebruikers updated informatie over de ontwikkelingen in de stad?
5. In hoeverre kan ICT de ‘flow’ van mensen beïnvloeden door middel van parkeerhulp of verandering van verkeersstromen?
6. In hoeverre worden de mensenstromen in het transport gemeten in de stad?
7. Hoe is ITS toegepast in de stad?
8. Hoe zijn de ontwikkelingen van elektrische auto’s in de stad en hoe toegankelijk zijn ze?
9. Hoe zijn de ontwikkelingen van elektrische laadpalen in de stad? Zijn er al genoeg?
10. Hoe duurzaam zijn de nieuwe infrastructuur maatregelen met betrekking tot ‘groen’, klimaatadaptatie?
11. In hoeverre wordt er gekeken naar niet gemotoriseerde transport opties zoals voetgangerspaden, fietssystemen en denkt u dat dit de toekomst voor de stad is?
12. Welke maatregelen zorgen voor minder druk op de infrastructuur en is dit voldoende in de stad?
13. Is er een lange-termijn plan voor het veranderen van de infrastructuur netwerken?
14. Hoe is de stad op gebied van infrastructuur verbonden met andere steden en is dit voldoende volgens u?
15. In hoeverre is ‘traffic management’ toegepast zoals bijvoorbeeld smart verkeerslichten, parkeerhulpsystemen?
16. In hoeverre zijn deelauto programma’s opgestart en zorgen deze voor vermindering van files?
17. Zijn auto-ongelukken aan het verminderen door middel van smart maatregelen of gaat dit in de toekomst gebeuren?
18. Hoeveel infrastructuur modaliteiten zijn er aanwezig in de stad?
Resilience naar bevolkingsdichtheid en klimaatverandering (Relation)

19. De stedelijke dichtheid in de Randstad heeft een hoge prioriteit. Zou je het beschrijven als een toekomstig probleem of een kans? En waarom?
20. Wat zijn de belangrijkste valkuilen van bevolkingsdichtheid op de ‘resilience’ van de Randstad?
21. Hoe kan een nieuwe vorm van informatie en data verzamelen, zoals bijvoorbeeld mensenstromen en autostreamen meten, van invloed zijn op de ‘adaptive capacity’ van een stad?
22. Hoe kan duurzaamheid, zoals elektrische rijden en vergroening in bestaande infrastructuur, van invloed zijn op het verminderen van de kwetsbaarheid van een stad?
23. Hoe kan het slim regelen van bestaande infrastructuur van invloed zijn op de ‘adaptive capacity’ van een stad?
24. Hoe kunnen veiligheidsmaatregelen zoals ‘smart verkeerslichten’ zorgen een veiliger straatbeeld?
25. Wat zijn de nieuwe vormen van transport en hoe kan een stijging van diversiteit in transport zorgen voor ‘resilience’ in een stad?

Linking urban measures to regional resilience

26. Hebben de slimme maatregelen overlappingen tussen andere steden? Kunt u enkele voorbeelden geven?
27. Bestaat er een geïntegreerd plan voor de Randstad als geheel tussen verschillende gemeenten?
28. Hoe goed is de samenwerking tussen de andere gemeenten in de Randstad op het gebied van ‘smart mobility’?
29. Door de snelle ontwikkelen in technologie wordt de reistijd voor mensen steeds korter. Is het mogelijk dat de stadsstructuur in de toekomst gaat veranderen? Daarmee doel ik op een transitie van 1 stadskern naar meerdere stadskernen.
30. Over het algemeen denkt u dat een regionale 'Randstad'-benadering van slimme mobiliteit tot een betere veerkracht voor het hele gebied zou kunnen leiden?
Appendix 3 ‘Case study research’

3.1 Amsterdam

Amsterdam is the capital of the Netherlands and is also the biggest municipality in the country. In 2017, the city had 853,312 inhabitants and among its inhabitants Amsterdam has one of the most diverse nationalities and cultures in the world (Centraal Bureau voor de Statistiek, 2017). It has 5148 inh./km² and therefore can be marked as one of the most densely populated cities in the Netherlands. There is a broad and diverse existing public transport system consisting of trains, tram, bus and underground and airplane. Amsterdam has the biggest airport in the Netherlands called Schiphol Airport. This is an airport that has high European significance and is an important economic hub.

Smart mobility

A new smart mobility programme has been developed in Amsterdam with some important goals:

- Gaining understanding of technological and other developments and innovations in relation to mobility and their significance to the city.
- Anticipating technological innovations and using them in order to realise objectives.
- Encouraging and accelerating innovations in the city.
- Becoming smarter, as a municipality, by working in a data driven manner and by working together with knowledge and private sector parties (Gemeente Amsterdam, 2016)

The city of Amsterdam is growing more rapidly than initially expected and this growth will continue to increase in the future as well. The main question that needs to be answered in Amsterdam is: ‘How do we keep Amsterdam, accessible and safe, with attractive public spaces and clear air?’ (Gemeente Amsterdam, 2016)

There are various programs being developed concerning smart mobility in Amsterdam. However, most of these programs are still in their research and pilot phase and therefore less implemented results can be analysed. However, many of the projects offer short-term perspective since they are part of the action program smart mobility 2016-2018 City of Amsterdam. The most important smart mobility solutions are part of the analysis in this paragraph:

- A research program called Vehicle2Grid developed an innovative idea that uses the car as a battery. When inducing solar and wind power, supply and demand do not always go together.
Generally, households only use 17% of their solar power directly and 83% is given back to the energy grid. By storing this energy in the household’s own car, it becomes available for later use, will spare costs and will be more sustainable since more renewable energy is being used by the household. Many smart mobility variables are covered with this development. The use of both electric vehicles and renewable energy sources is encouraged and this adds to the sustainability of the city of Amsterdam (Amsterdam Energy Lab, 2015).

- A new car sharing project developed in Amsterdam called Toogether, tries to remove all barriers that usually occurred with traditional carpooling. Many institutions joined in the program, where an app chooses the best car sharing matches automatically while rewarding points when car sharing occurred. Using this way of car sharing it results in more parking space, reduction of traffic jams, reduction of CO2 emissions and less travel expenses. Furthermore, it opens up opportunities for new social contacts. The data provided by people and colleagues at a company results in a fun way share a ride. This measure also covers many smart mobility measures such as integrating ICT, via data using to create social and travel connections. Also, less traffic jams means an increase in safety, and sharing cars makes the city more sustainable.

The action program smart mobility 2016-2018 City of Amsterdam strives for a smarter and more future proof accessibility of Amsterdam. This has resulted in a report where 24 projects are highlighted that all offer research perspectives. The focus is on a few main smart options:

The internet of things

This involves targeted solutions for parking, logistics and cycling. For parking, there is an emphasis on the reduction of travel time to find a parking space and this can be solved by making better use of this space. Also, it involves developing digital infrastructure to better improve the means of traffic control installations (Gemeente Amsterdam, 2016).

Clear picture of the city and smart use of space

Currently, traffic data is primarily focused on the flow of car traffic. However, mobility does not only concern car traffic but includes various forms of transportation. That is why it is necessary to acquire more data sources. Some of the projects in this subject are crowd management, real-time management, bicycle innovations and predictive parking (Gemeente Amsterdam, 2016).

Mobility as a service

Mobility as a service has its main focus on the reduction in car ownership through car sharing communities. One of the examples has been describe above. Furthermore, research has to be done to the future of public transport and the influence of cost reduction in public transport (Gemeente Amsterdam, 2016).
Self-driving transport

So far, the development of all self-driving vehicles is making a head start. However, a lot of research is still needed. ‘Amsterdam is anticipating the development of self-driving vehicles by performing short-term research, an impact study and long-term STAD research and by carrying out targeted pilot schemes in order to gain a picture of the implications of the development.’ (Gemeente Amsterdam, 2016)

Praktijk Proef Amsterdam

People are always looking for the fastest way to get from A to B. But if everyone chooses the same fast route, we are still stuck together. That is why PPA is testing new technologies, such as intelligent traffic lights and smart apps, to spread traffic across the Amsterdam road network. Speed up here, wait there and divert somewhere else. This way traffic as a whole improves and everyone is ultimately better off. Even if you have to wait a little longer now and then (S.P. Hoogendoorn, 2012).
3.2 Rotterdam

Rotterdam is the second biggest city in the Netherlands and has 639,587 inhabitants in 2017 (Centraal Bureau voor de Statistiek, 2017). It is located in the Western part of the Netherlands and has a big port that serves as the economic and logistic heart. The city has 3043 inh./km² and is less densely populated than Amsterdam. The city is well-known for its big university called the Erasmus University. Furthermore, the lively culture, riverside setting and maritime heritage create a famous city located between the rivers Rhine and Maas. During World War II, this city centre has nearly been completely destroyed, and has resulted in a varied architectural landscape all built after the war. This also created the platform to build new and better infrastructure since historical sites had to be rebuild completely. Now, Rotterdam has become a world-wide exemplary city in sustainable building.

Smart mobility

The city has a new urban mobility plan since 2017 and it tries to elaborate on a few important trends:

- The population growth and increasing urban density to 690,000 inhabitants in 2035.
- The sustainable economy and its energy transition to tackle the negative impacts of climate change.
- The urban mobility transition from decreasing car use to the increased use of cycling and public transport (Gemeente Rotterdam, 2017).

The mobility strategy mostly concerns seeking a balance between the different infrastructure modalities, such as hiking, cycling, car use and public transport. There are nine main policy goals present in the document, including smart mobility. The smart mobility policy goal concerns the exchange of information and data and the use of this information and data to redevelop the city. Rotterdam seeks to be leader in the developments of smart mobility measures (Gemeente Rotterdam, 2017).
First, the municipality of Rotterdam acknowledges the trend shift in mobility. Where the use of bikes and public transport in the centre of Rotterdam are increasing, car usage is decreasing as can be seen in the figure. It is assumed that the demand for new and sustainable transport modes is representative for other larger Dutch cities as well. The changing trend in mobility makes Rotterdam the ideal city to test with smart mobility measures. The municipality therefore raises the idea of Intelligent Transportation Systems (ITS) as an example to develop these smart mobility measures. This is defined as ‘an advanced application which, without embodying intelligence as such, aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and ‘smarter’ use of transport networks’ (G. Dimitrakopoulos, 2010).

There are a few developments that are highlighted in Rotterdam concerning smart mobility next to the plans for changing the physical infrastructure in certain areas. Creating a healthy and vivid city for inhabitants and especially hikers and bikers is one of the key aspects in future perspectives. Smart mobility measures come back in some of the subjects:

- The accessibility task: one of the main goals concerning accessibility is about developing smart measures to tackle the issue of traffic jams and busy public transport. This asks for a greater diversity in transport modalities, which results in complementing the existing struggling modes. One example is to implement a wider network of transportation over the river Maas.
- Electric vehicles are also one of the main smart solutions available in Rotterdam. Implementing electric vehicles in all forms such as electric bicycles and electric cars will reduce the CO2 emission in the city centre and will generate a healthier living environment.
- Multimodal travel information is one of the key aspects in smart mobility since this requires the extensive usage of data and information from all types of transport platforms. Examples of this subject are the weather sensors that can be placed at bikers traffic lights that sense rainfall and make the light green more often for bikers.
- Placation of charging stations for electric cars stimulates individuals to use electric cars to drive around the city. A network of 2000 charging stations is already present in Rotterdam, with more to come in the future. The electricity coming from the charging stations is completely
sustainable. Furthermore, Rotterdam believes that inductive charging forms the long-term future. This is defined as the wireless charging of cars. So far, it has proven to be inefficient but research is being done to make it work for the long-term (Gemeente Rotterdam, 2017) (McDonald, 2017).

- **Experiments via the Rotterdam Mobility Lab**: the Rotterdam Mobility Lab consists of several start-up companies that got the ability to test their smart mobility products on a small-scale. Some of the products are automatic bike parking, car sharing, sensor under the Erasmus bridge and the Scoozy: a new smart scooter (Verkeersonderneming, 2017).

- **Self-driving transport** is being developed in cooperation with universities in and around Rotterdam, where many opportunities arise to decrease traffic and improve air quality (Gemeente Rotterdam, 2017)
3.3 Den Haag

Den Haag (The Hague) is the third largest city in the Netherlands with 527,748 inhabitants in 2017 (Centraal Bureau voor de Statistiek, 2017). It is located in the South-Western part of the Randstad conurbation and forms the political centre of the Netherlands. Den Haag has most of the embassies and is one of the world cities that is able to host the United Nations meetings. In terms of transport, Den Haag is one of the cities that has the most diverse public transport. It shares an airport with Rotterdam called the Rotterdam-The Hague Airport. The city itself has numerous tramlines and bus routes.

Smart mobility

In 2017, Den Haag developed their own long-term mobility plan, including various trends related to their city (Gemeente Den Haag, 2017). The mobility plan includes several important trends, which some of them are related to smart mobility:

- More inhabitants and growth of the city;
- Transition to the next economy;
- Accessible and attractive;
- Climate neutral and clean air;
- Changing role of the car;
- Rise of new technologies;
- Using the ‘Den Haag’ qualities.

The most important trends in Den Haag will be elaborated in this paragraph. The continuous flow of technological and economic innovations lead to far-reaching changes in the labour market and the regional economy. The service economy is making place for the international knowledge economy. This means that a concentration on multimodal accessible places is occurring.

Den Haag is aiming to become climate neutral by 2040. A transition to sustainable transport is necessary. Strong promotion of sustainable transport such as walking and cycling is an important key. Also the promotion of public transport will serve as an important contribution. The condition is that public transport will continue to become fully electric.

Smart mobility comes back the most in the trends they describe in the form of new technologies. The report describes the most important smart mobility measures: electric cars and bicycles, travel apps, dynamic travel information, in-car systems, intelligent traffic lights, self-driving vehicles. These are all
kinds of technological developments that make it possible to travel in a different way and ensure that old habits and behavioural patterns are broken. At the same time old acquaintances are present for a long time. For example, the train system hasn’t changed since the 19th century. The most important current innovation is the high-speed train. The average car in Den Haag is over 11 years old, which means they will be around until 2027. Trams last more than 30 years and they have been implemented recently.

As part of the transition to a climate-neutral city there is a lot of work on sustainable, climate-neutral energy supply. That has impact on mobility. Vehicles powered by fossil fuels make way for sustainable cars. Together with these developments, Den Haag is looking for new opportunities to organize mobility smarter and energy efficient. The most important smart measures Den Haag describes in their trends are:

- An accelerated introduction of electric cars and buses;
- New technologies and new car sharing systems will lead to a larger and more varied range in the city. As a result, car usage and parking space can decrease;
- Autonomous cars and public transport can be restricted outside the city at first. The complexity of traffic in the city inhibits the applicability of this type of techniques in the urban area (Gemeente Den Haag, 2017).

One of the later chapters in the report exactly describes the implementation options for smart mobility. They call it ‘more room for innovation and experiment’. There are a number of technological trends that have a major impact on the way in which the accessibility of the city is organized. The global megatrends are driven by ICT and global climate agreements. The municipality of Den Haag wants to respond to this together with Metropole Region Den Haag/Rotterdam. The most important smart mobility measures for Den Haag are shown in the table below.

| **Autonomous driving** | Car manufacturers, provides, invest word wide in public transportation and software companies to develop self-driving vehicles. It varies from autonomous functions like independent parking and adaptive cruise control to fully a fully autonomous car. BMW and Ford have indicated that they are able to introduce self-driving cars on the road in 2021. According to the municipality of Den Haag, these developments offer a lot of opportunities, for example, improving the traffic flow, improving road safety and the possibility to drive cleaner and more efficient. |
| **The internet of things and big data** | Not only people communicate with each other via ICT, nowadays objects, vehicles, houses and perhaps entire cities communicate via the online network. The internet of |
things is a result from developments in the smart city concept. Big data allows us to identify the current performance of the transport system and people’s transport needs. For example, Den Haag wants to realize a system where personal travel information is available for the inhabitants.

Digital platforms and sharing economy

Digital platforms have the purpose of using the market’s supply and demand. For example, there is Spotify for music, AirBnB for overnight stays, Uber for journeys and Snappcar for car sharing. These are all developments that have been implemented on a mass-scale. Innovations in the field of mobility follow each other in rapid succession and provide new and sometimes unexpected products and mobility concepts. This makes it hard to keep track of all the developments. One of the examples is Mobility as a Service, which is explained below.

Electric driving

Electric transport is an important development when going to climate-neutral mobility. The developments of new car models, new buses and new loading and battery technology there will be a slow shift from fossil transport to electric driven vehicles. This change is necessary to achieve the target to become climate-neutral by 2040.

Mobility as a service program (Maas)

MaaS stands for a transition in mobility, where the consumer has access to all mobility in the form of services, instead of investing in the possession of means of transport or separate services such as public transport. Therefore, people become more flexible and become more relieved. MaaS offers a service that makes sure that owning a car is not a condition for a flexible and relaxed journey anymore. The existing vehicle capacity is used more efficient by the MaaS-concept. Owning a car results in the car not being used 96% of the time in cities.

There are still many uncertainties in the field of technological developments. Which new applications and services will arise and survive? For self-driving vehicles for example, it is not the question whether they will come, but especially when and under which conditions. This is a good conclusion from the
report of Den Haag. Self-driving cars combined with an increase of car sharing will have an impact on the use of space from the car in the city. Despite the uncertainties, it is clear that there are important opportunities to make mobility more efficient and sustainable to organize. For considerations about future investments and interventions it is important to keep an eye on the technological developments. Targeted pilots and experiments can help determine what works and what not. The success and failure factors can then be looked up by practice and be determined. This also requires the willingness of the municipality to take risks and learn from mistakes. Not every pilot will succeed (Connekt ITS Netherlands, 2017).
3.4 Utrecht

Utrecht is the fourth largest city in the Netherlands with 345,080 inhabitants in 2017 (Centraal Bureau voor de Statistiek, 2017). It is located in the eastern corner of the Randstad conurbation and is closely located to the capital of the Netherlands. Utrecht’s has an ancient city centre dating back to the Middle Ages. The city is host to the international oriented Utrecht University, the largest university in the Netherlands, and makes it therefore a broad student city. Since Utrecht has a central location in the Netherlands, it forms the central hub for transport in both rail and road transport. This results in the most well-connected city of the country including heavy and light rail transport, bus routes, an extensive network of cycle paths, road networks and an industrial port located on the Amsterdam-Rijnkanaal.

Smart mobility

The municipality of Utrecht has a detailed smart mobility vision since 2016. They show a focus on three main smart concepts in mobility: ‘Smart routes, Smart regulation, Smart appointing’ (Gemeente Utrecht, 2016). They describe the trend that Utrecht is a growing city in population and they expect a rise to at least 400,000 in 2030. There are ten main mobility goals present in the municipality document:

1. More accommodation quality and better liveability
2. Choosing customized solutions: attach measure to location in the city
3. More room for the pedestrian
4. More space for the cyclist, both urban and regional
5. Improvement of public transport
6. Good car accessibility and better use of asphalt
7. Efficient and clean freight transport, deployment on water where possible
8. Traffic-safe city
9. Make better use of the available public space by means of traffic management and mobility measures.
10. New spatial developments follow the capacity of infrastructure

The developments described in this report show a well-thought integration plan for the future of mobility. They still see cars, bicycles, pedestrians, bus, metro, train and trams as the main modalities of transport. However, they describe that a shift from motorised options, especially the car, to non-
motorised options should occur. Utrecht will achieve this by giving the pedestrians more space along roads. It should become more attractive to walk through the city. In the report, some smart mobility measures and pilot projects are highlighted and they can be seen in the table below.

Table 9

<table>
<thead>
<tr>
<th>Pedestrians</th>
<th>Provide more space in the infrastructure for pedestrians, especially in the historical city centre. Increase the safety of pedestrians.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycles</td>
<td>Better stalling of bikes and improving the main flows of people through the historical city centre.</td>
</tr>
<tr>
<td>Public transport</td>
<td>Apart from the shift from one nodal point to multiple-nodal points, Utrecht wants to implement innovative public transport ideas. An example is: demand driven public transport.</td>
</tr>
<tr>
<td>Cars</td>
<td>The improvement of the flow of cars through the RING part of the city. Furthermore, the city centre should become as car-free as possible.</td>
</tr>
</tbody>
</table>

Apart from changing the infrastructure to aid in the existing modalities, the policy document also defines the most important technological advancements and new modalities, which can be seen as smart mobility measures. The following table defines the most important extra modalities that are able to operate in Utrecht.

Table 10

<table>
<thead>
<tr>
<th>Bicycle sharing</th>
<th>Utrecht is researching how bike sharing is possible on the busiest nodal points. Also, the rise of ‘Swap-fiets’ is the proof that people are able to join in a bike sharing community which can contribute to decreasing the pressure of other modalities in the city.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-scooter</td>
<td>Utrecht is cooperating with the other big Randstad cities to develop a plan where scooters are obliged to drive on the normal traffic road. On top of that, they want to make the scooter traffic cleaner, which contributes to a better liveability and decreases the impacts on the climate. Utrecht stimulates the use of e-scooters. The e-scooter is an electric scooter.</td>
</tr>
<tr>
<td>Electric bike</td>
<td>Utrecht stimulates the use of electric bikes in the city. Not only does it decrease the use of other modalities, this modality is also suitable for longer, regional distances. Electric bikes can replace car usage in an environmental friendly way.</td>
</tr>
<tr>
<td>Speed padillac</td>
<td>A speed padillac is a type of electric bike, that is able to go beyond 25 km/h. This means that the usage of this bike is more dangerous. To use this bike, one needs a helmet.</td>
</tr>
<tr>
<td>Taxi</td>
<td>Taxis are still an important modality in cities, since some of the areas don’t have good public transport connections.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Car sharing</td>
<td>When private car users change their car use to car sharing, they are subsidised by the municipality of Utrecht. Furthermore, the provision of parking spaces is happening on the request of car-sharing organizations. This should stimulate car sharing in Utrecht.</td>
</tr>
<tr>
<td>Electric cars</td>
<td>The municipality of Utrecht rather sees electric cars in the city than traditional fuel cars. They are cleaner and quieter. With rapid technological developments, the share of electric cars is expected to increase strongly. The range will also develop further, making the electric car a fully-fledged alternative to traditional cars. Utrecht creates a network of charging stations in the public space and supports private individual opportunities in realizing charging facilities on their own premises.</td>
</tr>
<tr>
<td>Autonomous car</td>
<td>Apart from social issues related to road safety and legal liabilities, the technological developments for autonomous cars are fast. Autonomous cars mix with other traffic on streets within the city are not expected to be common in 2025. Given possible opportunities in the longer term, the municipality will discuss the determination of whether and how these developments should be incorporated in the municipal mobility policy.</td>
</tr>
</tbody>
</table>
3.5 Overview of key measures

After doing research to the most important smart mobility measures in the above-mentioned cities, a broader overview can be developed that shows what areas these measures operate in. By making this overview, general smart measures can be identified that have been implemented in each city. From this starting point, links between these cities can be made to develop the regional perspective. While all cities have a certain ‘smart mobility’ programme, Utrecht and Amsterdam are the most advanced in their planning. Utrecht developed a framework that perfectly captures the most important smart mobility measures. These measures also account for the other cities.

![Figure 12 Smart-mobility from the municipality of Utrecht (Gemeente Utrecht, 2016)](image)

The table below shows the most important variables related to smart mobility according to this research. The most important measures are described as well, that are used as indicators for the variables. The table serves as an overview of the most significant measures related to smart mobility. While some measures might be missing, this research frames itself within these measures to avoid unreliability.
| Mobility services | - Digital communities and sharing platforms (apps)
| | - Demand dependant systems (OV, car sharing)
| | - Individual traffic information
| | - Park guidance systems
| Smart vehicles | - Autonomous vehicles
| | - Electric bicycles (Speed padillacs)
| | - Electric cars
| | - Transport over water (Watertaxi’s)
| | - Non-motorised transportation options
| Infra-vehicle communication | - Real-time information of traffic lights
| | - In-car advise about routes and parking availabilities
| Traffic flow management | - Smart traffic lights
| | - Tracking traffic flows
| | - Influencing traffic flows
| Smart infrastructure | - Generating energy from road surface
| | - Dynamic road marking
| | - Charging stations for electric vehicles
| | - More pedestrian and bicycle space & P+R
| Inter-modal access | - Number of connected modalities
| | - Connection between modalities

Based on the interviews, literature review and case study research, the data analysis framework has been filled in to see how each city has implemented smart mobility measurements. This framework can be seen on the next page. As can be seen in the table, the cities have been categorized with a high, medium or low indication. These indications are based on the findings from the interviews and this case study research. The measurements have been identified for each variable and indicator. Part of this data analysis is further elaborated in chapter 4.1.
Table 11 Data analysis framework filled in

<table>
<thead>
<tr>
<th>Concept</th>
<th>Variables</th>
<th>Indicators</th>
<th>Measurement</th>
<th>Cities</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility services</td>
<td>Digital communities and sharing platforms</td>
<td>Updated information for network users, apps</td>
<td>Low Medium High High</td>
<td>Q4, LS</td>
<td></td>
</tr>
<tr>
<td>Demand dependent systems</td>
<td>OV, car sharing, bicycle sharing</td>
<td></td>
<td>Low Low Low Low</td>
<td>Q5, LS</td>
<td></td>
</tr>
<tr>
<td>Park guidance systems</td>
<td>The existence of park guidance systems</td>
<td>Medium Low Medium High</td>
<td>Q5, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual traffic information</td>
<td>Data tracking, integrated ITS</td>
<td>Medium High Medium High</td>
<td>Q6, Q7, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart vehicles</td>
<td>Electric vehicles</td>
<td>Developments and accessibility</td>
<td>Medium High Medium High</td>
<td>Q8, Q9, LS</td>
<td></td>
</tr>
<tr>
<td>Autonomous vehicles</td>
<td>Long-term impact assessment of self-driving cars on society</td>
<td>Medium Medium Medium Low</td>
<td>Q5, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric bicycles</td>
<td>Development and implementation of speed pads</td>
<td>Low Medium Low High</td>
<td>Q10, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-motorised transport options</td>
<td>Public bicycle systems, pedestrian oriented land use</td>
<td>Medium Low High High</td>
<td>Q11, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility information and traffic</td>
<td>Real-time information of traffic lights</td>
<td>Road network oriented on innovative ideas</td>
<td>Low High Low Medium</td>
<td>Q12, LS</td>
<td></td>
</tr>
<tr>
<td>In-car advice about routes and parking</td>
<td>Interconnection between apps and infrastructure</td>
<td>Low Low Medium Medium</td>
<td>Q13, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic flow management</td>
<td>Smart traffic lights</td>
<td>Execution of smart traffic lights</td>
<td>Medium Low Medium Low</td>
<td>Q15, LS</td>
<td></td>
</tr>
<tr>
<td>ICT managing flows of people</td>
<td>Data is used to track people</td>
<td>High High Low Medium</td>
<td>Q16, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT influencing flows of people</td>
<td>Data is used to influence traffic flow</td>
<td>Low Low Low Low</td>
<td>Q17, LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart infrastructure</td>
<td>Innovative road surfaces</td>
<td>Dynamic road marking, generating energy from road surface</td>
<td>Low Low Low Low</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td>Charging stations for electric vehicles</td>
<td>Sufficient and pressure on network</td>
<td>Medium Medium High Medium</td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More pedestrian and bicycle space</td>
<td>Plans on non-motorised infrastructure options</td>
<td>High High Medium Medium</td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term infrastructure plan</td>
<td>Long-term infrastructure ideas</td>
<td>High High Medium Medium</td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-modal access</td>
<td>Existence of diverse infrastructure modes</td>
<td>Number of infrastructure modes</td>
<td>Medium High High High</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td>Connection between modalities</td>
<td>Are modalities well connected?</td>
<td>Medium Medium High Low</td>
<td>Q18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional resilience</td>
<td>Vulnerability</td>
<td>Location</td>
<td>Location vulnerability</td>
<td>High High High Medium</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urban density</td>
<td>Urban density of the region</td>
<td>High High High High</td>
<td>LS</td>
</tr>
<tr>
<td>Resources</td>
<td>Connected key areas</td>
<td>Well-connected transportation between universities, economic centres, exits</td>
<td></td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td>Information for crisis management</td>
<td>Crisis management system for inhabitants</td>
<td></td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High quality infrastructure</td>
<td>Infrastructure able to withstand high pressure</td>
<td></td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern transportation modes</td>
<td></td>
<td></td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive capacity</td>
<td>Diversity of transport modes</td>
<td>Number of transportation modes</td>
<td></td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td>Productivity</td>
<td>Ability to react quickly after a shock</td>
<td></td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>Ability to recover from a shock to its former state</td>
<td></td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional interconnection</td>
<td>Local involvement</td>
<td>Bottom-up involvement from citizens</td>
<td></td>
<td>Q27</td>
<td></td>
</tr>
<tr>
<td>Connection between cities</td>
<td>Connection in terms of infrastructure, aid methods, resource sharing</td>
<td></td>
<td>Q26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governmental cooperation</td>
<td>Policies on regional perspective</td>
<td></td>
<td>Q27, Q28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation</td>
<td>Mobility services > Resilience</td>
<td>Causal connection shown in network view</td>
<td></td>
<td>Q21</td>
<td></td>
</tr>
<tr>
<td>Smart vehicles > Resilience</td>
<td>Causal connection shown in network view</td>
<td></td>
<td>Q22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart infrastructure > Resilience</td>
<td>Causal connection shown in network view</td>
<td></td>
<td>Q23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-vehicle communication > Resilience</td>
<td>Causal connection shown in network view</td>
<td></td>
<td>Q24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic flow management > Resilience</td>
<td>Causal connection shown in network view</td>
<td></td>
<td>Q25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-modal access > Resilience</td>
<td>Causal connection shown in network view</td>
<td></td>
<td>73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4 ‘Interviews’

Appendix 4.1 ‘Transcript mobility advisor Province of Zeeland’
Provincie Zeeland and Sweco Rotterdam, May 3, 2018

Location: Van der Valk, Ridderkerk
Attendants: Pedro Mol, Respondent

P = Pedro Mol
B = Respondent

Transcript

P: Ik ben Pedro Mol dan, ik weet niet of u precies weet waar ik mee bezig was.

B: Ik heb alleen een mail gekregen van Richard Koops, oud-collega van Sweco.

P: Daar heb ik inderdaad een gesprek mee gehad.

B: Die zei, volgens mij moet je ook eens een keer met hem praten, en toen heb ik een paar interview vragen gekregen en heb je iets gestuurd over je onderzoek.

B: Wat versta je onder smart mobility?

P: Eigenlijk heb ik een raamwerk ontwikkeld, ik zal hem even erbij pakken. Uhm, waarin ik vijf aspecten van smart mobility aanpak, wat ik denk dat de belangrijkste zijn. De eerste is integraal ICT, dus invloed van ICT op de mobiliteit. Uhm, de derde is dan de infrastructuur zelf, heel veel smart mobiliteit pakt alleen alles aan wat ver op het wegennetwerk gebeurd, maar stel als er in de toekomst minder auto’s nodig zijn is het misschien mogelijk dat er infrastructuur vrijkomt die niet meer nodig is. Wat zou je met die ruimte doen? Zou je dat kunnen vergroenen of zou je het een andere ingeving kunnen geven, is er een plan om die infrastructuur een nieuwe ingeving te geven? De vierde is
dan veiligheid, dat is dan ook: kan smart mobility zorgen voor minder ongelukken in het verkeer? De laatste is dan uhm, diversiteit aan infrastructuur modaliteiten.

B: infrastructuur of modaliteit of allebei?

P: Modaliteiten bedoel ik. Dus dat je elektrische fiets, in hoeverre die in opkomst is. En of dat dan ook naast publiek transport, auto’s en treinen zouden kunnen opereren. Hoe meer diversiteit, hoe meer robuust het systeem zou kunnen worden.

B: Ja, ja.

P: Dat versta ik dan onder smart mobility.

B: Ja, oke helder.

P: Ik heb hier een framework opgeschreven, dit zijn die factoren die ik net opnoemde. Daartegenover heb ik regional resilience gefocust op de Randstad die ook weer vier variabelen hebben. Dus de kwetsbaarheid, locatie, bevolkingsdichtheid. Dan de beschikbare resources, dus bijvoorbeeld ook hoort daarbij denk ik dan. Dan de adaptieve capaciteit, heeft dan ook te maken met hoe een gebied zich kan aanpassen en hoe kunnen ze tegen schokken van buitenaf. De laatste is: hoe is de regionale samenwerking, connectie tussen de verschillende steden. Stel dat één stad een groot probleem heeft, kan een andere stad zich daar dan mee bemoeien of daarin helpen.

B: Jij denkt dat mobiliteit in de handen van de stad is.

P: Nou, ik denk dat er meer een regionale aanpak moet komen. Dat mobiliteit stadsoverschrijdend is.

B: Ja, dat is het zeker. Mobiliteit verplaatst zich van de ene stad naar de andere. Maar laten we maar met de vragen beginnen.

P: Om in te komen: Waarom denkt u dat smart mobility belangrijk is in de stad?

B: Smart mobility is belangrijk omdat we nu domme mobiliteit hebben. Die domme mobiliteit zijn wij en wij mensen zijn niet sociaal, mensen zijn haantjes, zeker als in de auto of op de fiets zit en denken alleen aan hun eigen dingetje. Hoe slimmer dat je dat maakt en hoe meer systemen de mens overnemen hoe veiliger en beter het wordt.

P: Met het oog op mijn framework: Zou u daar andere variabelen aan toevoeugen? Of is er één die minder relevant?

B: Wat ik denk is dat de technologische ontwikkelingen op het gebied van en wat je met mobiliteit kan bovenal, dat het zomaar kan zijn dat steden helemaal niet klaar zijn voor nieuwe mobiliteit en dat er partijen komen die nieuw zijn. Bijvoorbeeld als zelfrijdende auto’s komen die volgens de regelgeving wel gewoon toegestaan zijn, dan komen die systemen er gewoon. Dan komen de bedrijven gewoon zoals
bijvoorbeeld Uber. Zij zeggen dan, wij willen de mobiliteit van Rotterdam regelen en zij vragen dan is dat goed? Kan Rotterdam dan zeggen, daar hebben wij helemaal geen beleid voor dus dat mag niet. Dit loopt allemaal spaak op de weerstand tegen verandering. De technische ontwikkeling loopt wel maar er wordt verwacht dat de regelgeving niet klaar is om het omarmen of te versnellen. Dus wat ik mis is de snelheid van technologische ontwikkeling in jou verhaal. Als ik een bedrijf die zelfrijdende auto’s heeft en die mogen op de markt, en ik heb aangetoond dat de auto een rijbewijs heeft dan kan niemand dat eigenlijk tegenhouden. Dat betekent dat elke stad en dorp zit met regelgeving en dat kost gewoon een aantal jaar.

P: Naast die technologie, dat ik daar misschien nog een stuk beleid en regelgeving aan zou moeten toevoegen.

B: Je kan het vergelijken met je mobiele telefoon. Als een smartphone ingevoerd zou moeten worden door de overheid was het er nu nog steeds niet. Die hebben daar geen rol in gehad. Die moesten alleen zorgen dat de regelgeving was van 3g, 4g.

P: de ontwikkelingen komen sowieso en het is de vraag hoe we daarmee omgaan.

B: Ja, omarm je die en versnel je daarmee het proces? Of ga je het remmen? De politiek heeft natuurlijk verschillende belangen te behartigen. De huidige markt zal voor een groot deel last krijgen van nieuwe mobiliteit. Die zullen het remmen en zullen alle manieren uitoefenen om het tegen te werken. Als je nu bijvoorbeeld naar Shell kijkt, die proberen met alle middelen te bereiken dat zij in de toekomst hun verdienmodel nog gewoon kunnen uitvoeren. Onder het motto van werkgelegenheid en economische groei en dat soort dingen, proberen ze dat in stand te houden, alleen wat je nu ziet is dat studenten van de TU Delft, die willen niet meer bij Shell werken. Er ontstaat een ander probleem, een lonkend perspectief naar een duurzaam beeld is zo groot. Shell wil het volhouden tot 2100. De sociale acceptatie van smart mobility die is super belangrijk. Hoe ga je ervoor zorgen dat mensen het ook gaan gebruiken. Anders gaan ze remmen en invloed uitoefenen om niet te veranderen. Dat geld voor taxi’s, vrachtwagenchauffeurs, diesel motoren repareren, parkeerbeheerder. Elk verdienmodel van de huidige mobiliteit kan niet meer bestaan. Er komt een heleboel voor terug, maar dat is er nog niet op het moment dat verandering komt.

P: Het sociale aspect is dus heel belangrijk om mee te nemen.

B: De vraag is nu inderdaad of de regelgeving en politiek dat bij gaan houden.

P: Dan heb ik hier een hele lijst met vragen maar die heb ik later nog toegevoegd.

B: Die heb ik ook gekregen toch?

P: Ik heb er nog een paar later toegevoegd.
B: Brand los. Ik werk nu bij de provincie en ben weer bezig met mobiliteit dus ik heb nog wel kennis van de steden in de Randstad. We zitten erg in de regelgeving en beleidskant. Dus ik zit vaak om de tafel met de grote steden die hun dingetje door willen drukken zal ik maar zo zeggen.

P: Is dat dan vooral Rotterdam?

B: Nee, Rotterdam, Amsterdam, Utrecht, Den Haag. Dat zijn de grote steden die toch graag willen samenwerken. In Zeeland hebben we nu een ander probleem, we hebben veel last van iemand die niet slim is. Als iemand een fout maakt heeft dat grote invloed op de doorstroom van zeeland omdat dat provinciale wegen zijn met twee baantjes. Als iemand zich daar doodrijdt dan is er veel last voor anderen.

P: Dan heb je weinig uitwijkmogelijkheden.

B: Dat is één van de doorvoerrichtingen, en zal het elders druk worden. Van daaruit vind ik dus bij smart mobility het belang erg groot. Het uitschakelen van het menselijk falen vind ik erg belangrijk omdat dat enorm veel helpt in de doorstroom en het aantal slachtoffers. Maar dat is natuurlijk totaal andere smart mobility dan in de stad. Meer interactie met fietser en voetgangers. Ik denk ook dat het zoeken van parkeergelegenheden in de toekomst verleden tijd is. De druk op zero emission is zo groot. Daar zal je zien de komende jaren gaat bijhouden hoeveel laadpalen er moeten zijn en mensen zullen de elektrische auto’s gewoon gaan kopen en dat gaat dan super snel omhoog.

P: Dat gaat bijna exponentieel omhoog.

B: Ja, dat beseffen mensen niet. En dat straalt dan uit naar vrachtverkeer en bussen en daar zie je wel wat beleid opkomen. Gemeentes hebben ingezet op zero emission. In 2025, alle vrachtwagens die stad in willen moeten elektrisch zijn. Dat betekent of je moet allemaal gaan overladen aan de rand van de stad of je wordt gewoon zero emission. Dat wordt steeds makkelijker, als je naar Tesla kijkt die gaan een truck ontwikkelen waarmee je 8 uur kan rondrijden. Dit zijn snelle veranderingen die niemand zag aankomen maar die er wel zijn. Als je dat in de laad infrastructuur inzet heb je daar enorme kabels voor nodig etc.

P: Dan moet er weer een nieuw netwerk gelegd worden eigenlijk.

B: Ik zat net een stukje te lezen. Een bericht op Linkedin. Er is een economische groei in energietransitie en een gebrek aan vakman krachten waardoor we dus vastlopen. Want jij bent nog niet afgestudeerd hahaha. Schiet eens op.

P: Ik ben er zelf ook nog niet zo lang mee bezig, met smart mobiliteit. Het is ook nog natuurlijk een best wel vaag onderwerp, en dan pak ik de twee vaagste onderwerpen.

B: Resilience is super belangrijk, steden moeten zich voorbereiden zowel op de gevolgen van klimaatveranderingen als het voorkomen van de effecten daarvan. Steden gaan nu gewoon over

P: Dan is Nederland daar een perfect voorbeeld van.

B: Als wij hier een probleem door zeespiegelstijging. Geef je dan geld uit aan dijken, gaan we verhuizen of gaan de rest versterken.

P: Af en toe een duin erbij.

B: Ja.

P: Dan wil ik specifieker per onderwerp/variabele een vraag stellen en kijken hoe die per stad geïmplementeerd zijn. Want ik wil kijken welke stad nu vergevorderd zijn en welke misschien minder. Mijn vraag nu is: In hoeverre wordt op dit moment de auto als sensor gebruikt en dat gebruikers van het verkeer informatie over ontwikkelingen in de stad beïnvloed worden?

B: Er wordt wel gemeten in de auto. Maar dat gaat nu naar de maker van de auto. De vraag is in hoeverre dat wordt gedeeld. Er is wel zoiets als free floating car data. Daar kan je gebruik van maken en dat weet je eigenlijk vanuit GPS systemen waar de auto is, wat voor snelheid die heeft maar je kan er meer aan koppelen. Als de ruitenwissers aan gaan dan weet je waar de bui plaatsvindt of hoe hevig die is. Dat kan je allemaal al meten. De vraag is hoe de markt die transparantie creeërt. De sensor van de veringen bijvoorbeeld. Als je met de Tesla door de straat rijdt en er zit een gat in de weg dan meet hij dat, dan rijdt de volgende Tesla dus niet meer in het gat.

P: Dat is vooral data vanuit binnen je auto.

B: Snelheid, weersomstandigheden, vering, abrupt remmen etc. Als je op google maps rijdt ben je data voor Google aan het verzamelen. Je bent aan het zeggen welke route jij het liefst zou rijden. Hij kan meten hoe lang je erover doet. Hij weet elke keer weer hoe snel een route is. Dat is real-time updaten

P: Dat is inderdaad het perfecte voorbeeld van smart mobility.

B: Als je kijkt naar de routeplanners in auto’s, die zijn allemaal vier jaar geleden ontwikkeld. Die mist al een aantal metingen. Die leert ook niet van wat hij doet. Ze hebben wel de data. Maar er zit een ander verdienmodel achter dan bij Google. Street View, Google Maps. Als je naar WEMO kijkt, hebben ze door alle gebruikers van Google enorm veel data over alle wegen en routes en zelfs voor voetgangers en fietsers, hebben zij in de WEMO geschikt. Ze weten in principe hoe iemand door Amsterdam fietst. Die kunnen ze dus aan de auto beschikbaar stellen, die ontwikkeling in de kennis van de auto. Je kan daar veel meer mee, maar nu komt dat bij de grote bedrijven maar de overheid weet het niet en die kan het wel kopen. Uitwisseling van data is een commercieel proces. Er is een heleboel, we hebben ook open data van het KNMI, zoals voorspellingen. Je kan zeker voor steden op basis van weersvoorspellingen
inschatten wat voor verkeer er gaat plaatsvindt. Als het regent heb je een ander verkeersbeeld dan dat het droog is.

P: Dat is ook gelijk mijn volgende vraag: In hoeverre mensenstromen kunnen worden gemeten in de stad?

B: Dat gebeurt nu al he, zoals bijvoorbeeld ‘crowd management’ zoals bij de politie.

P: Wordt dat in een stad meer gebruikt dan in een andere stad?

B: Ik weet alleen dat Amsterdam een data van parkeren stellen ze beschikbaar aan Google. Dus zij weten hoeveel kaartjes er bij de automaten gekocht worden en hoeveel parkeerplaatsen er in een straat liggen en hoeveel abonnementen er zijn. Dan kan je rekenen hoeveel plekken er vrij zijn. Dan kan je mensen sturen naar een parkeerplaats. De eerste ontwikkelingen zijn er al en daar heb je ook al apps van. Daar zie je nu steden aan meewerken, om te voorkomen dat mensen gaan rondrijden.

P: Volgende vraag ook alweer beantwoord.

B: Dat is natuurlijk op de korte termijn. De eerste vraag die je stelde over hoe snel gaan de technologische ontwikkelingen. Als vanaf 2021 zelfrijdende auto’s op de markt komen zal je dat op snelwegen eerst verplicht. Mensen moeten dan hun systemen aan zetten zoals bijvoorbeeld het vrachtverkeer. 80% van de ongelukken gebeurt toch door menselijk falen. Maar ook door het niet handelen zoals bijvoorbeeld een vrachtwagen die een klapband krijgt en dat niet op tijd aangegeven is. De sensoren op de banden kunnen dat dat al meten. Dat zou al helpen om ongelukken te kunnen voorkomen. Als je dan ook nog de bestuurder vervangt door de computer zou je bijna alles kunnen oplossen.

P: Krijg je dan ook minder files omdat je dichter op elkaar kan gaan rijden?

B: Het moment dat je de haantjes uit het verkeer haalt, heb je minder files. Wat zie je gebeuren als dat je op de snelweg rijdt dan zie je dat de borden knipperen: 70. Iedereen geeft dan gas. Iedereen wil vooraan in de rij staan. Als iedereen zich aan de 70 houdt zouden er veel minder files zijn. Het gedrag van de mens helpt zichzelf vast te rijden. Als je dat uit kunt schakelen, het verplicht stuur loslaten, dan zouden er geen files meer zijn. De interactie tussen een zelfrijdend voertuig en een fietser in de stad is alleen heel anders. In de stad heb je een andere snelheid, andere manier van verplaatsing, bussen die een vast traject rijden. Die interactie die gestuurd wordt is complexer en anders.

P: Dan wil ik de overstap maken naar elektrisch rijden. Hoe zijn die ontwikkelingen van elektrisch rijden in de stad? Zijn ze toegankelijk genoeg voor de mensen? Daarmee doel ik bijvoorbeeld naar de hoeveelheid laadpalen in bepaalde steden. Zijn er al genoeg en hoe zijn die ontwikkelingen?

B: Nee, er zijn er niet genoeg. Als je de route uitstippelt van elektrisch rijden zie je een bepaalde groei in staan. De meest progressieve voorspellingen zijn dat in de toekomst van 20e0 alles wat nieuw op de
markt komt elektrisch zal zijn en dat alles wat al bestaat duurder zal worden. Als er minder benzine auto’s zijn, zullen er minder benzinesstations komen. Tanken wordt dan moeilijker, dat is nog niet voor te stellen. Ik denk dat er dan een versnelling komt in de overstap. Ik verwacht dat in 2030 70% van het vervoer elektrisch is en daar hoeven we ook niks meer aan te doen. Het enige wat de overheid moet doen is zorgen dat er voldoende laadpunten zijn. Daar zit weer een remmende factor in, we kunnen niet elke straat volzetten met laadpalen. Het moet netjes blijven blabla. Waar ga je dus de laders neerzetten. Dat je misschien verder moet laden en dat je dan op een andere manier naar je huis gaat. Er ontstaan veel deelsystemen. Dan ga je dus indirect zorgen voor een autoluwe stad. Dat zijn allemaal stapjes richting autonoom rijden, want zodra die auto dat allemaal zelf kan hoeft je daar niet meer aan te denken.

P: Dat is eigenlijk het hoofddoel van smart mobility, autonoom rijden.

B: Ja, op het moment dat jij een kostensprong kan maken door autonoom rijden in te voeren, dan gaat dat gewoon super snel. Ik denk dat elektrisch rijden snel gaat, zeker in steden omdat de uitstoot problemen daar het grootst zijn. Het leefklimaat is gewoon slecht vanwege alle diesels.

P: Wat ik heb gezien is dat Rotterdam het meest gevorderd is.

B: Amsterdam, Rotterdam, Utrecht zullen elkaar niet veel ontlopen in het aantal laadpalen. Die drie steden zijn eigenlijk wel goed voorzien. Den Haag doet daar ook aan mee. Op een gegeven moment kan je het alleen niet meer bijhouden, omdat laadpalen mee moeten met het aantal auto’s. Hoe kunnen laadpalen dan beter gebruikt worden binnen slimme maatregelen. We zijn niet goed voorbereid op het aantal elektrische auto’s. Met de huidige markt ga je dat niet bereiken omdat er niet genoeg mensen. Er zijn te lange wachttijden. De markt is er niet klaar voor want het faciliteren van de auto’s gaat gewoon te snel. Dus we moeten eigenlijk anders moeten denken. Wat je ook ziet is zero emission stadsdistributie, daar zet men zwaar op in, zoals duurzame bussen, elektrische bussen. Maar die hebben ook infrastructuur nodig.

P: In hoeverre kan het netwerk dat aan?

B: Ik denk niet per se dat daar een probleem in zit, maar we moeten ons daar wel op aanpassen. Als ik rond de stad een snel-lader heb op het juiste knooppunt, hoe ik bijvoorbeeld maar één keer te laden op een bepaald punt. Dit gaat allemaal komen met de veranderende technieken.

P: Volgende vraag kijk ik naar niet gemotoriseerd transport. Voetgangers en fietsers. In hoeverre denk je dat dit de toekomst is in de stad en hoe ver zijn die ontwikkelingen naar smart transport mogelijkheden voor voetgangers en fietsers binnen die steden?

B: Dat weet ik niet helemaal zeker. Fietsers fietsen ook met Google Maps en wandelaars ook. Dat is nog niet super omdat je met GPS tussen gebouwen nog wel eens problemen hebt. Als je LPS erin zou bouwen kan je veel beter je wandelroutes opereren. Sweco is bezig met smart traffic en ik weet dat stoplichten

P: Die interactie is heel belangrijk.

B: Naarmate jij beter beloont wordt door het delen van bedoelingen in de stad ook al heeft het moeite met privacy. Het gaat allemaal elkaar helpen om zo efficiënt mogelijk door de stad te verplaatsen.

P: Dat is ook gelijk mijn volgende vraag dat over ‘traffic management’ gaat. In hoeverre worden de smart verkeerslichten nu al geïmplementeerd?

B: Daar zijn ze nu al mee bezig. Je moet maar eens smart traffic googelen, zoals bij Sweco. Ze zijn bezig met aansturen van verkeerslichten op basis van de hoeveelheid verkeer dat er aan komt. Je kan bijvoorbeeld zorgen dat een rij auto’s weg is voordat een bus aankomt door middel van het goed regelen van het verkeer. Bijvoorbeeld: de koning komt eraan, heb je misschien geen politiemensen meer nodig en kan je het met smart traffic regelen.

P: Dat wordt ook al in alle steden uitgevoerd?

B: We zijn nu een aantal testen in Helmond aan het doen. We zijn de pilot fase net voorbij en het moet nu toegepast worden in werkelijke situaties. Het enige waar ik daar mijn kanttekening bijzet. Als ik een zelfrijdende auto heb, heeft een auto dan nog stoplichten nodig? Ik denk het niet. De voetganger nog wel, tenzij hij op zijn telefoon als die stoppen zegt. Dat is afhankelijk van hoe dit zich gaat ontwikkelen. Maar het bestaat dus al.

P: Dat is al belangrijk om te weten. Wat ik er veel over lees is dat het allemaal ideeën, maar in hoeverre die dan ook uitgevoerd worden.

B: Er zijn al veel dingen uitgevoerd zoals het koppelen van KNMI data. The next step is om het op grote schaal uit te voeren.

P: Volgende vraag gaat over deelauto programma’s. In hoeverre denk je dat deze kunnen zorgen voor vermindering van files? Als jij bedrijven inschakelt om deelauto programma’s in te zetten voor bijvoorbeeld spitstijden.

P: Dat voegt ook weer toe aan het sociale netwerk van de mensen.

B: Ja, het algoritme van de telefoon helpt je daarbij. Die kan ervoor zorgen welke mensen waar moeten zijn en op welk tijdstip. Er zijn eindeloos veel mogelijkheden die deze data kunnen verwezenlijken. Dat moet je gewoon zodanig makkelijk maken dat het efficiënter en makkelijker is dan je eigen auto. Hoe meer mensen nu een deelauto gebruiken hoe makkelijker de overstap naar zelfrijdende auto’s. Als de mindset veranderd naar het niet meer bezitten van een auto. Deelsystemen zorgen ervoor dat mensen leren delen en dat je afscheid neemt van je bezit. Er is een Belgische professor die kijkt naar de snelheid van ontwikkelingen van elektrisch rijden. Een auto staat iets van 80% thuis geparkeerd. 20%, misschien iets meer, op werk. En 5% doet ie eigenlijk waar we hem voor gekocht hebben. Er zijn dan verhalen dat je een batterij kan gebruiken om energie op te slaan. Het is veel slimmer dat we zorgen dat we mindset verandert om dat we er dan vervolgens veel minder nodig hebben en dat de resilience van de stad verbeterd. Dan kunnen we meer groen maken en de leefbaarheid verbeteren.

P: Dan wil ik een bruggetje maken naar de perceptie van resilience. Hoe kan de nieuwe vorm van informatie en data verzamelen zoals het meten van mensenstromen, hoe kan dat van invloed zijn op de adaptieve capaciteit van de stad?

B: De aanpassing aan het klimaat, ja. Ik weet niet hoeveel warmte de mens uitstoot en hoeveel CO2. Zou je daar iets mee kunnen doen en dat je de warmte over de stad kan verspreiden. Dat je mensen bepaalde routes kan laten lopen.

P: Als er iets fout gaat dat je dan nog beter mensen kan sturen naar de juiste plekken.

B: Ja, dat zou ook kunnen. Dat is meer crowd management. Als er iets misgaat. Als je daar kan sturen zou het wel helpen en dan moet je dus goed in kaart hebben hoe je infrastructuur eruit ziet, waar de vluchtwegen zijn, zijn die bereikbaar, hoe meet je dat. Dat er een overstroming en je hebt bedacht: de Maasboulevard ga ik de stad uit en vervolgens staat die blank of hij is doorgeslagen omdat er een zwakke plek in zit. Dan moet je in 1x in paniek een andere vluchtroute kiezen. Dat is belangrijk dat dat goed gestuurd wordt. Er zit dus veel resilience in in de vorm van calamiteiten, dat zit hem in real-time sturen op dat moment wat de vluchtroute is en waar de mensen zich bevinden. Dat gebeurt nu bijvoorbeeld al bij feesten en partijen. Dat heb je met carnaval dat ze al crowd management toepassen. Bij grote evenementen hebben ze al een crowd management, dan zitten mensen gewoon op basis van GPS data te kijken hoe de massa’s door de stad bewegen. Misschien dat er bepaalde gebieden te druk wordt en dat
ze met borden langs de weg aangeven dat je anders moet lopen. Crowd management wordt nu al veel gebruikt in dat opzicht en dan zou je natuurlijk klaar kunnen zetten voor calamiteit situaties.

P: De volgende was dan: Hoe kan duurzaamheid van invloed zijn op het verminderen van de kwetsbaarheid van de stad?

B: Autonoom en elektrisch rijden kan, als je dat goed deelt, kan zorgen voor minder verkeer en voertuigen in de stad opleveren waardoor je meer ruimte krijgt door andere dingen te doen. Zero emission zorgt er vervolgens ook voor dat CO2 veel lager ligt in de stad. Als je de ruimte die vrijkomt ook nog gebruikt voor meer groen waardoor je nog een extra zuurstof en fijnstof uit je stad haalt dan kan je stad gezonder worden.

P: Nog twee vragen heb ik: Wat zijn de nieuwe vormen van transport en hoe kan een stijging in diversiteit van de modaliteiten zorgen voor meer resilience in de stad?

B: Dat weet ik eigenlijk niet precies, ik kan me er wel iets bij voorstellen. Nieuwe vormen van transport is een APP. Jou mobilitieitsapp. Die helpt jou om voor jou situatie, dus ook voor iedere persoon in de stad, de meest efficiënte, beste of aantrekkelijkste keuze te maken voor jou op dat moment. Dat kan ook heel anders zijn. Ik ben bijvoorbeeld klaar met school, ik hoef pas om 5 uur bij mijn medestudenten het eten klaar te maken. Ik hoef pas om 5 uur thuis te zijn, doe mij dan maar een leuke fietseroute naar huis. Dit kan een oplossing zijn waardoor jij dan een nieuw stukje van de stad beleef je anders nooit zou zien. Als die app en het hele algoritme dat erachter goed wordt gebruikt, ontstaan er dingen die je nu niet kan bedenken. Stel je voor dat wij allemaal een mobiliteits en flexwerkplek hebben, kunnen we kantoren sluiten. Dan kunnen we elkaar nog altijd ontmoeten op bepaalde plekken en werken kan gewoon thuis. Pedro en Pablo willen elkaar ontmoeten. Ik ben op Locatie A en hij is op Locatie C, doe mij de beste optie. Ik geef jou toegang tot mijn agenda en ik zie waar je moet zijn etc. Die app zegt dan wat de beste mogelijkheid is. Je zou door dat mobiliteitssysteem comfortabel, betaalbaar en super efficiënt worden. Hierdoor verandert de totale maatschappij als we dat willen. Als we ons daar voor openstellen hebben we dus eigenlijk geen kantoren meer nodig. Dan kan ik werkelijk waar overal gaan zitten. Ik heb een connectie met mijn cloud dus ik hoef ook niet per se op één plek te zitten. Dan zou het kantoor veel kleiner kunnen zijn en zijn de kosten ook lager. Je hebt minder grote kantoorparken nodig want er hoeft niemand meer te zitten. En dan ga je eigenlijk alleen maar quality time ontmoetingen doen. Dat is bijna onvoorstelbaar maar met de ontwikkelingen zoals die nu gaan gaat dat echt gebeuren en het is zeker de toekomst. Als reistijd iets heel anders wordt zullen we een andere denkwijze creëren. De utopie gaat het gewoon snel naar toe. Een elektrische of autonome auto is niks anders dan een telefoon met een wat grotere batterij.

P: De laatste vraag is over het algemeen: Denkt u dat een regionale randstad benadering in plaats van kijken naar individuele steden, tot een betere resilience voor het hele gebied zou kunnen leiden.
B: Ja, dat denk ik zeker. Mobiliteit is samenwerking tussen elkaar. Je kan het wel voor je eigen stad doen maar dan heb je geen connectie met de stad ernaast. De samenwerking is belangrijk, maar in totaal kan je met smart mobility het comfort en efficiëntie hard omhoog brengen.
Appendix 4.2 ‘Transcript mobility advisor Municipality of Amsterdam’

Gemeente Amsterdam, May 8, 2018

Attendants: Pedro Mol, Michel van Gelder

P = Pedro Mol

G = Michel van Gelder

Note: The start of this interview was not related to the content of my bachelor study. This means that the transcript is starting half way the interview. Furthermore, this interview was held in Dutch which means that the transcript will be in Dutch.

Transcript

P: Ik zal dit transcript versturen als dat nodig is na het interview. Eens even kijken. Ik denk dat het het beste is om gewoon door de vragen heen te gaan. Ik probeer van alle grote steden iemand te spreken en dat ik dan nu vooral richt op wat er in Amsterdam gebeurt. Als ik dat voor elke stad doe kan ik zien in hoeverre smart mobility bestaat. Ik zoek ook veel naar perceptie omdat dit weinig onderzocht, in hoeverre denken steden dat er invloed is op resilience en of de stad ook echt robuuster kan worden. Het gaat dat nu vooral om Amsterdam.

G: daar weet ik ook het meest vanaf.

P: Gelukkig, mijn eerste vraag: Het raamwerk dat ik heb ontwikkeld, wat vind je van die variabelen of zou je er één aan toevoegen of weghalen?

G: Waar ik heel erg mee zat, ik kijk even naar andere voorbeelden. Één van de voorbeelden die je zelf al noemt is de zelfrijdende auto. Daar hebben wij een enorme effect studie naar gedaan. De belangrijkste dat daar in zit is dat we eigenlijk niet meer hoeven te parkeren. Daar zijn we nog lang niet. Maar een van de belangrijkste effecten is dat het grootste probleem dat wij hebben voor bereikbaarheid in de stad is de parkeerbelasting. Op het moment dat mensen niet meer hoeven te parkeren missen wij onze grootste parkeerinkomstenbron. Moet ik dan andere instrumenten gaan inzetten zoals een nieuwe vorm van belasting. Het economische belang komt misschien nog niet zo ver terug in jou verhaal. Dit soort dingen komen natuurlijk wel terug in die variabelen maar ik zit nog te zoeken naar komen die dan terug? Wijzigen van kwaliteitsbeleid naar aanleiding van alle slimme oplossingen die zich voordoen, bijvoorbeeld Maas zorgt ervoor dat heel veel transport eigenlijk veel democratischer en makkelijker toegankelijker wordt voor meer mensen. Dat betekent dat mensen mobieler worden, kosten gaan omlaag en mogelijkheden gaan omhoog. De kans dat mensen verder gaan reizen is aanwezig. Dat betekent dat daar ook beleidsconsequenties achter.
P: Beleid zou nog een variabele kunnen zijn. Het vorige gesprek kwam ook sociale factor aan het licht. In hoeverre zijn mensen bereid om volledig over te stappen op het weg gaan van bezit.

G: De psychologie, maar ook de economische prikkels die erachter zitten. Alle voorbeelden die ik gaf gaat over het goedkoper worden van de mobiliteit. Er ontstaat een nieuwe werkelijkheid, daar moet je weer goed over nadenken. Hoe belast ik mensen, hoe stimuleer ik ze, hoe duw ik ze in een bepaalde richting. Dat bestaande instrumentarium moet misschien wel grotendeels de prullenbak in. Daarop anticiperen is één van de belangrijkste variabelen. Het is moeilijk of die aan de voor of de achterkant komt van jou verhaal.

P: Ik richt met dan vooral op resilience dus om te diep in te gaan op die kwestie dat is misschien alweer een onderzoek opzich. Het is wel echt belangrijk om het aan te halen.

G: Dat is het enige wat ik nog mis, verder zijn ze allemaal duidelijk. Voor een zelfrijdende auto heb je niet een andere weg, maar soms toch wel handig als ze wat gelijken of kunnen praten met de VRI’s.

P: Waarom denkt u dat smart mobility in Amsterdam? Vooral gericht aan de bevolkingsdichtheid en de veranderende manier van denken van mensen?

G: Hoe zeg je dat. Het is niet een ontwikkeling waar we heel veel aan kunnen sturen. Waarom is het belangrijk? Het is belangrijk omdat het gaat gebeuren, dus dat we ons erop aan moeten passen. Het is niet zozeer dat wij als gemeente, Tijs zal daar iets anders over denken aangezien hij voor alle vormen van Smart mobility is. Wij als gemeente, als verkeersdienst. Wij hebben niet per se zoiets van dat het gunstig. Het is een ontwikkeling waar we nou eenmaal mee te maken hebben. We moeten nu gaan kijken naar het gebruik en niet op eigendom. Dat er dus minder auto’s voor de deur staan. Maar het kan ook echt een bedreiging zijn. Het gaat niet zozeer voor of tegen smart mobility zijn, maar of we de ontwikkelingen kunnen bijhouden die op dit moment plaatsvinden.

P: Even kijken.

G: Dus omdat het gaat gebeuren.

P: We moeten dus echt mee met de ontwikkelingen. Dan denk ik dat ik nu even verder ga naar mijn analyse van de data. Ik ga per variabele kijken in hoeverre dat in Amsterdam wordt gebruikt en hoe ik dat kan linken. Mijn eerste vraag is dan over Technologie en ICT. Jij had het net al over al die mensenstromen die je al hebt gemeten. In hoeverre wordt de auto nu als sensor gebruikt en krijgen transport gebruikers die informatie ook al binnen?

G: 2 dingen: 1 is een auto heeft een heel fijn persoonlijk identificatienummer zoals het kenteken. Dat maakt het veel makkelijker om auto’s te meten dan bijvoorbeeld personen te meten of voetgangers of fietsers. Dat betekent dat wij alles meten van de auto en kijken naar kentekens. Wij kunnen auto’s volledig door de stad heen volgen. We hebben onze hele parkeerhandhaving gedigitaliseerd op kenteken
niveau. Dat betekent dat we alle informatie over geparkeerde auto’s daar ook aan kunnen verbinden. Denk bijvoorbeeld ook aan het type auto’s en waar die dan staan. Dat betekent dat wij met dat kenteken veel meer informatie kunnen verzamelen over die auto’s dan als we in een paar auto’s een paar sensors installeren. Maar andersom hebben we daar ook weer heel veel informatie van Google en TOMTOM en hebben daar ook contracten mee om data te verzamelen. Die informatie kunnen we gebruiken op de plekken waar we geen camera’s hebben staan. Die data bestaat vooral uit telefoondata en in-car systemen en kunnen ook sensoren genoemd worden. Wij gebruiken dat nu heel veel om data te verzamelen, wij gebruiken het niet om terug te koppelen aan de gebruikers. We hebben wel wat systemen voor bijvoorbeeld reistijd informatie. Maar deze informatie is vaak niet geheel transparant. Maar we koppelen daarin heel weinig terug aan de gebruiker. We zijn het wel aan het ontwikkelen.

P: Dat er misschien een soort app komt. Of een in-car systeem dat je die data wel aan gebruikers kunt geven. Dat gebruikers ook weten wat voor mensenstromen er zijn en hoe je die kan ontwijken.

G: Wat we bijvoorbeeld wel doen met koningsdag is dat wij veel doen aan ‘crowd management’ en kijken we op basis van hoeveelheid voetgangers en fietsters hoe druk het wordt. Dan geven we een signaal dat het de druk wordt op een bepaalde en dat dit dus vermeden moet worden. Maar dat doen we eigenlijk vooral in bijzondere situaties wanneer het heel druk is en niet vol continue. We zijn wel bezig met de instrumenten te ontwikkelen. We hebben al die verkeersinformatie, hoe druk het is in het verkeer. We rijden continue door de stad heen om te kijken of er foutparkeerders zijn. Die informatie willen we dan weer terugkoppelen aan Google of Tomtom zodat zij weer kunnen voorspellen hoe druk het is op een bepaalde weg, kan je er parkeren of niet, en dat meenemen in hun reisadvies. We proberen het wel zoveel mogelijk te doen met bedrijven die daar meer op gericht zijn dan anderen.

P: Oké. Ik snap het. De volgende was: Hoe kan dan die ICT en technologie de ‘flow’ van mensen beïnvloeden door middel van veranderen van verkeerstromen of door middel van parkeerhulp. Een voorbeeld is dan smart traffic lights, of een app die laat zien waar parkeren nog vrij is.

G: Ik denk dat we daar nog heel veel te halen hebben. Daarin gaat het vooral om informeren. De eerste stap is informeren en daar zijn we nu mee bezig. Met sturen zijn we eigenlijk nog helemaal niet mee bezig. Dat betekent niet dat onze VRI’s niet afgesteld kunnen worden. Als het druk wordt kunnen we alsnog aanpassen. Het echte dynamische regelen bestaat nog niet. We gaan er wat pilots mee doen, maar we zoeken nog naar de echte toegevoegde waarde. We zitten nu heel erg op het informeren en het sturen gebeurt gewoon nog niet echt, onze kennis en ervaring is nog niet veer genoeg.

P: Oké dat is duidelijk. De mensenstromen heb je net eigenlijk al wel verteld.

G: OV-chipkaart data is natuurlijk ook een belangrijke. Het voordeel is dat steeds meer reizen zijn met een digitaal iets waardoor je dit soort data en informatie goed bij kan houden. Dat begint nu een beetje los te komen.
P: Dan is de OV-chipkaart een goed voorbeeld.

G: Kenteken, OV-chipkaart, fiets data. We vragen mensen om een app te installeren en dan twee weken lang met die te fietsen. Die app houdt bij wat de penetratiegraad is en op basis daarvan kun je een beeld schetsen van waar fietsers zijn en hoe ze zich door de stad bewegen.

P: Ik maak het sprongetje naar de elektrische auto’s. Hoe zijn die ontwikkelingen in de stad en zijn ze toegankelijk genoeg op dit moment? Dan denk ik aan de hoeveelheid laadpalen bijvoorbeeld.

G: We hebben heel lang beleid gehad waarbij we iedereen die een elektrische laadpaal kocht een laadpaal kreeg + subsidie. Er worden altijd twee parkeerplekken vrijgemaakt. Ééntje die de laadpaal nodig heeft en eentje voor de bezoekers. Dat kost natuurlijk heel veel geld, want parkeerplekken leveren ongeveer 13000 euro per jaar op. En ze zijn heel schaars. Als de plek dan niet gebruikt wordt ontstaat er veel discussie over. Je ziet wel dat er nu een beetje geschoven naar dat auto’s die niet schoon zijn veel nadeel te geven. Maar in principe stellen we op dit moment nog veel laadpaal infra ter beschikking. Voor aparte rijstroken en dat soort dingen doen we niet zoveel aan. Wat je wel ziet is dat we taxi staanplaatsen regelen. Er zijn een aantal plekken waar je alleen nog maar met een elektrisch voertuig mag staan zoals het Leidscheplein.

P: Het vorige gesprek ging het ook over hoe ver steden nu zijn met het openbaar vervoer elektrisch maken. Is dat al zo in Amsterdam?

G: We hebben nu veel bussen die rondom Schiphol rijden en die zijn allemaal elektrisch. Dus dat is wel een groot deel. GVB is daar ook mee bezig. Er komen geloof ik ongeveer 39 bussen aan die elektrisch worden. Het grootste probleem daarvan is dat de betrouwbaar nog niet altijd goed is. Dat hebben ze op Schiphol ook gemerkt maar dat is nog wel te overkomen. De bussen moeten ook ergens kunnen opladen.

P: De bussen kunnen natuurlijk nog niet te lang zonder stroom.

P: De techniek is nog niet zozeer dat ze extreem snel opgeladen kunnen worden.

G: Je hebt nu op Schiphol Noord een groot laadpunt. Bij Schphol zijn ze in staat om de dienstregeling aan te passen aan het laden. Wij hebben hier de discussie dat we allemaal bovenleidingen voor de trams hebben. Moeten we die bussen niet wat meer aan de tram koppelen.

P: Dan zou je het tram netwerk kunnen uitbreiden.

P: Bussen zijn ook mobieler natuurlijk.

G: Ja, je hebt ook minder versperringen nodig. We willen eigenlijk wel wat meer naar bussen toe. Maar de elektrische bussen zijn nog niet helemaal klaar.

P: De hoeveelheid laadpalen in de stad. Zijn er al genoeg?

G: Dat zijn er nu wel genoeg. Naarmate je meer maatregelen om vieze auto’s te weren en je gaat meer stimuleren op elektrische auto’s. Er gaat een explosie komen van elektrische auto’s komen. Het wordt natuurlijk echt wel een probleem. Er is wel verkenning gaande over hoe we de explosie aan kunnen.

P: Dus niet dat je gaat ontwikkelen op basis van hoeveel er bij gaan komen.

P: Oké duidelijk. In hoeverre zijn de ontwikkelingen van niet-gemotoriseerd transport en wat is de toekomst?

G: Sowieso is de belangrijkste ontwikkeling dat er overal ontwikkelingen zijn om voetgangers en fietsers meer ruimte te geven. We laten bijvoorbeeld auto’s en fietsers samen rijden. Het gaat vooral heel erg om ruimte creëren en als je het hebt over wat grotere afstanden worden er slimme snelwegen aangelegd. We kijken daar ook over hoogwaardige fietspaden waar je met je elektrische fiets overheen zou kunnen rijden. Het gaat vooral om kleine innovatie om de bereikbaarheid en doorstroom te verbeteren. Alles wat we bij de auto al hadden wordt nu toegepast op het fietsverkeer. Heel lang was het idee dat de capaciteit van een fietspad veel groter was dan de vraag. Dat is nu dus niet meer zo. Dat zie je dus veel in Amsterdam en ook in Utrecht.

P: Dat is duidelijk. Welke maatregelen verminderen de druk op de infrastructuur en is dat tot nu toe voldoende in Amsterdam?

G: Eigenlijk hebben wij gewoon structureel ruimtegebrek in Amsterdam. Het lukt ons eigenlijk niet om in een straat en auto’s, fietsers, ov en voetgangers te laten opereren zonder dat er problemen ontstaan. We moeten toch proberen om keuzes te maken. Sommige plekken faciliteren meer de auto en op andere plekken meer het OV. Dat betekent heel erg keuzes maken maar er is gewoon ruimschoots onvoldoende capaciteit voor alle modaliteiten op heel veel plekken in de stad. Het is een stad die gebouwd is toen er
nog geen auto was en ook geen fiets was. Dus je moet roeien met de ruimte die je hebt. Het gaat ook nooit lukken om voldoende infrastructuur te krijgen in Amsterdam.

P: De volgende is: Is er een lange-termijn plan over het veranderen van de infrastructuur?

G: We hebben sowieso gewoon een beleidsstuk waarin staat welke modaliteit belangrijk is. Er zijn wel plannen over hoe je alles kan faciliteren. We zijn de afgelopen tien jaar bezig geweest woningbouw. Er komen 150000 woningen bij tot 2040 dus heel veel extra inwoners. Er komen in het stadscentrum 5000 a 6000 banen bij in een periode van 3/4/5 jaar. De stad is enorm aan het verdichten. Dat betekent dat je dus nog meer de focus moet leggen op grootschalige infrastructuur zoals bijvoorbeeld de Noord-Zuid lijn en nog meer die keuzes moet maken van hoe wil ik het wel en hoe wil ik het niet. Daar moet je dus ook weer flexibel blijven en dat noemen we dan risico management. Je moet niet denken dat door de Noord-Zuid lijn minder auto’s in de stad rijden. Het zal vooral als extra fungeren en weer meer mobiliteit tweedeg brengen.

P: Hoe is de stad verbonden op het gebied van infrastructuur met andere steden en is het voldoende?

G: Wat je heel erg ziet is dat de stad groeit, zowel in verdichting als de regio. De regio wordt langzaam een onderdeel van de stad. Veel van mijn collega’s die tien jaar geleden niet buiten de Ring wilden wonen, wonen daar nu wel. De enorme druk op de woningmarkt is hiervan de oorzaak, je kan geen huis meer kopen. Druk op de arbeidsmarkt. Er zijn veel mensen die hier willen wonen, er zijn veel mensen die hier werken en dat duwt zich in een soort waterbed naar Haarlem, Leiden en ook naar de Regio rondom Amsterdam. De verbinding met de andere middelgrote steden is nog wel goed, de regio gemeenten komen er slecht vanaf. Je bent veel aangewezen op het OV voor de middellange afstanden. Het OV is daar nog niet goed genoeg voor. Als je mij vraagt is het grootste tekort wat we hebben is de regionale bereikbaarheid van voornamelijk Amstelveen, Hilversum, Diemen.

P: In principe is hij tussen de grote steden prima, maar niet bij alles wat daar tussen ligt. De kleine steden en dorpen zijn niet goed bereikbaar.

G: En dan vooral in de metropoolregio. Daar zie je gewoon dat mensen echt een hele tour moeten uithalen om bij een treinstation te komen. Dat werkt gewoon nog niet goed. Aan de andere kant worden die stromen nu wat dikker en worden ze interessant om nu uit te voeren. Het is niet zo gek dat het er nog niet was en het begint nu ook wel echt nodig te worden.

P: Eens even kijken. Ik had het net al even over de smart verkeerslichten en parkeerhulp systemen. Wordt er in Amsterdam ‘traffic management’ toegepast? Wordt dat continue toegepast?

G: We doen het sowieso in Zuid-oost, het evenementen gebied. Daar zit de Arena, Ziggo Dome, Amsterdam Rai etc. En ook veel meer dingen. Daar is echt gewoon traffic management uitgevoerd. De regie wordt hier volledig overgenomen. Na afloop proberen we dan iedereen zo snel mogelijk weer weg
te sturen. We gaan er nu langzaam naar toe dat op bepaalde momenten in de binnenstad, eigenlijk ook als evenement gezien moeten worden. Bijvoorbeeld Sail is een gigantisch evenement. Je ziet eigenlijk dat de meivakantie zoals vorige week, met kerst, sinterklaas. Dit zijn meer evenementen aan het worden door de immense drukte. We doen het heel erg op die enorme piekmomenten. Daarbuiten is het vooral incidenten management. Als er een hier een ongeluk is gebeurd. Daar zijn we niet structureel bezig met het verkeer om ze in een bepaalde route te sturen. Dus we doen het ook vooral op piekmomenten en evenementen.

P: Ik denk dat dat duidelijk is. De Zuid-oost regio is een zeer goed voorbeeld van compleet ‘traffic management’ op het gebied van smart mobility. Dan deelauto programma’s. In hoeverre zijn die in Amsterdam al opgestart?

G: We hebben hier veel deelauto’s in vergelijking met andere steden. We zijn deelauto stad van Nederland. Als je dan kijkt naar het totale transport is dat helaas maar rond de 1,5%. Het neemt een enorme vlucht. De exponentiële groei zet zich al een aantal jaar door en uiteindelijk is het nu 1,5% van het totale verkeer. Ik denk dat de komende jaren de vergunningtarieven verhoogd gaan worden en dat het beter is om voor een deelauto te kiezen. Het eerste pakketje deelauto’s hebben vooral mensen aangesproken die geen auto in het bezit hadden. In eerste instantie zorgden ze voor meer verkeer. Je gaat nu bereiken dat mensen met een auto in bezit gaan kiezen voor deelauto’s.

P: Ik had eerst in mijn hoofd dat het wel zou gebeuren. Dat als iedereen bezit afstaat, dat iedereen dat ook moet doen voordat je files zou gaan verminderen. Hoeveel infrastructuur modaliteiten zijn er nu in Amsterdam en hoe gaat dat stijgen?

G: Uiteindelijk heb je in de basis heb je collectief vervoer, dus bussen, taxi’s, treinen, je hebt individueel vervoer, dat kan zowel privaat, zoals je eigen auto hebben, of het kan een deelauto zijn. Je hebt de fiets die van jezelf kan zijn en je hebt voetgangersverkeer. Dan heb je wat mij betreft de belangrijkste vormen. Je hebt nog wel elektrische fiets. Je hebt niet meer mobiliteitsvormen die erbij komen maar meer ontwikkelingen ertussen en hoe de mix en samenwerking tussen die soorten mobiliteiten gaat verbeteren en veranderen.

P: Dat is heel duidelijk en ik denk dat dat ook een goed antwoord is voor mij. Ik denk dat ik dan de belangrijkste vragen heb over de variabelen zelf. Dan ging ik nu verder kijken naar de verbinding tussen resilience. Daarmee is dan mijn eerste vraag: Kan een nieuwe vorm van informatie en data verzamelen, zoals mensenstromen en autostromen meten, van invloed zijn op de adaptieve capaciteit van Amsterdam?

G: Eigenlijk zit hem dat al een beetje in wat ik net zei, als je weet wat mensen doen. Naarmate je langer informatie verzameld kun je deels ook gaan voorspellen wat mensen gaan doen voor grotere groepen. Dat betekent dat je ook kan gaan sturen. Een van de voorbeelden is als het op een drukke zomeravond
te druk wordt op de wallen kun je in ieder geval mensen gaan informeren dat ze niet meer naar de wallen komen. We kunnen mensen sturen naar andere delen van de stad. Een van de grootste vraagstukken waar we hier heel erg mee spelen is de drukte. Bewoners hebben het gevoel dat ze overlopen worden door toeristen. Ik denk dat informatie daar een enorme bijdrage voor kan geven. We informeren mensen eigenlijk niet op welk moment ze waar in de stad het beste iets kunnen. Daar zit een grote kans. Je hebt ook dingen als luchtkwaliteit. Je kunt mensen sturen in de richting van plekken waar minder smog is. Er zitten allemaal kansen in het verzamelen van informatie omdat je mensen goed kan informeren op welk gedrag ze moeten vertonen op bepaalde momenten. We zijn daar alleen nog lang niet zoals ik eerder al vermeldde.

P: Het zou in de toekomst wel veel van hulp kunnen zijn. Hoe kan duurzaamheid als elektrisch rijden en vergroening van de bestaande infrastructuur of overtollig infrastructuur, hoe kan dat van invloed op het verminderen van de kwetsbaarheid van de stad?

G: We hebben hier een enorm programma. Het idee hiervan is dat we de klimaatverandering kunnen aanpakken. Dat betekent dat we een beetje inzicht krijgen in wat het klimaat gaat doen. We leggen wegen voor 30 jaar aan. Het probleem is over 15 jaar toch wel aanzienlijk toegenomen. Als we nu niks veranderen aan het water bergen, opslag, verbreden van riool, dan hebben we grote problemen. Sowieso in elk nieuw project proberen we dit mee te nemen. Er zijn gebieden aangewezen die direct actie nodig hebben. Ook het urban heat island, zorgen dat we de juiste bomen kiezen die voor verkoeling kunnen zorgen in het stadscentrum. Ik kan niet zeggen dat het nou een enorme beweging al is, het gaat ook niet in elk project vanzelf er moet echt wel achteraan geduwd worden. Je merkt ook wel dat het steeds meer gaat spelen. Je ziet bijvoorbeeld een stroomstoring, in dat geval was het iets dat mis ging in de stad, maar als we allemaal een airco gaan installeren kan ons stroomnetwerk het echt niet aan. We hebben nu in het centrum best wel vaak stroomstoringen omdat het net het gewoon niet aan kan. Dit gaat ook gebeuren met laadpalen.

P: Hoe kan het slim regelen van de bestaande infrastructuur van invloed zijn op de adaptieve capaciteit?

G: Wat we sowieso nu al doen. Denk bijvoorbeeld met calamiteiten kunnen wij vanuit de verkeerscentrale dingen aansturen. Dit kunnen wij handmatig in een ander programma zetten. Op het moment dat er iets is waardoor je het handmatig dingen moet besturen als er een grote calamiteit is kan daarop gestuurd worden. Hoe je daar nog een extra dimensie aan kan toevoegen ben ik nog niet helemaal over uit. Inmiddels is in Amsterdam het autoverkeer de hele dag door druk. Het is altijd spits. Dat betekent dat je geen uitloop hebt, het is niet dat als je in de spits een ongeluk hebt dat de problematiek na de spits weer afneemt. Elke vorm die we hebben om daar net ietsje efficiënter met het verkeer kunnen omgaan, dat werkt gewoon om de capaciteit van het netwerk kunnen vergroten. Op het moment dat je alles net iets efficiënter kan doen is de impact iets minder pittig. Slim helpt.
P: Dat is heel duidelijk ook. Hoe kan de stijging van diversiteit in transport zorgen voor resilience in de stad?

G: Je hebt gewoon meer opties. Dat betekent dat als je bus niet rijdt en je kan naar een deelfiets overstappen, dan helpt dat natuurlijk. Of op het moment dat de trein niet rijdt naar schiphol kan je een uber nemen. Ik ben nooit meer in paniek als er iets met het OV uitvalt en ik moet naar het vliegveld. Er is altijd een manier om ergens te komen tegenwoordig. Het feit dat er zoveel keuze is tegenwoordig, vermindert dat de kwetsbaarheid. Dat heeft ook weer nadelen, de bussen rijden ook rond als de vraag er niet is. Of bijvoorbeeld ook de taxi’s. We hebben wel meer autoverkeer in de stad door die hoge diversiteit en flexibiliteit. De flexibiliteit heeft dus voordelen en nadelen. Je moet altijd kijken naar de negatieve kanten.

P: Ik denk dat ik dan overga op de laatste vragen. Over het algemeen is een regionale benadering, Randstad benadering, metropool regio benadering van smart mobility, denk je dat dat tot een betere resilience zal leiden voor het hele gebied in plaats van alleen kijken naar Amsterdam?

Appendix 4.3 ‘Transcript Knowledge Institute for mobility policies’

Kennisinstituut voor Mobiliteitsbeleid, May 8, 2018

P = Pedro Mol
R = Respondent

Note: The start of this interview was not related to the content of my bachelor study. This means that the transcript is starting when data got relevant. Furthermore, this interview was held in Dutch which means that the transcript will be in Dutch.

Transcript

P: Uitleg van het onderzoek.

T: Op zich helder. Ik denk wel dat het lastige aan je onderzoek is dat je zelf misschien ook al een beetje zegt. Je hebt te maken met twee enorme containerbegrippen en vage onderwerpen waar niemand het eigenlijk over eens is.

P: Dat is het moeilijke inderdaad. Een van mijn deelvragen is inderdaad: Wat is nu de definitie van die begrippen?

T: één van de beide is inderdaad al een onderzoek op zich. Zorg dat je het voor jezelf goed inkadert.

P: Dan had ik eigenlijk die vragenlijst bedacht want ik wil per variabele behandelen in de vragen. Ik wilde een paar vragen stellen over de aanwezigheid van smart mobility. Het tweede deel is de link tussen die twee grote aspecten, als derde hoe je denkt over het regionale onderdeel van de Randstad. Het zijn veel vragen maar sommige zijn ook dubbelop. Mijn eerste vraag gaat dan over het framework. Ik heb nu in gesprek met de Gemeente Amsterdam driekwart van de tijd over beleid gepraat en mijn vraag is nu dan wat vind je van het framework en zou je er eentje toevoeggen of weghalen? Ik zit er nu over te denken om beleid nog toe te voegen als variabele.

T: Op zich kan dat altijd goed zijn om mee te nemen. De vraag is of beleid van een zelfde soort dimensie is. Dit zijn allemaal natuurlijk kenmerken van het systeem en beleid is iets heel anders dan kenmerken van het systeem. Beleid kan keuzes binnen de variabele beïnvloeden. Je zou beleid aan beide kanten in kunnen vullen. Je hebt beleid dat ingaat op smart mobility en rondom weerbaarheid en resilience heb je natuurlijk ook beleid. Vaak zullen dat ook weer andere beleidsambtenaren. Aan de ene kant gaat het over verkeer, en aan de andere kant zit je meer met planologen. Het zijn dus andere afdelingen per concept. Je ziet dat beleid op nationaal en regionaal en lokaal niveau nog altijd zeer sectoraal geregeld is. Ik denk wel dat het interessant is om beleid aan beide kanten mee te nemen en dan te kijken welke type sectoren belangrijk zijn. Qua smart mobility: De vraag is of die factoren allemaal van dezelfde orde zijn, niemand weet inderdaad wat precies de definitie van smart mobility is. Wat is het ‘smart’ punt in

P: Ik denk dat je ook al veel van de komende vragen hebt aangetikt.

T: Veiligheid: Wat is smart safety? Ik denk dat er veel dingen in de auto technologie, veel zaken die nog gaan over bestuurder ondersteunende systemen, die zijn allen gericht op om de veiligheid te vergroten. Dat je door bijvoorbeeld door remsystemen, detectiesystemen, of dat je binnen je rijstrook blijft.

P: Het verminderen van menselijk falen?

T: Dat is wel nog een vraagpunt. Het wordt natuurlijk heel erg vanuit safety aspecten bekeken. Alleen de vraag is: hoe snel ga je dat bereiken als bestuurder? Wat ik het gevoel heb is dat we snel doorschieten naar de hype van zelfrijdende auto’s waar de mens eigenlijk helemaal niet meer in de loop zit omdat dat technisch veiliger zou zijn. Als je rekensommen in doet die in Amerika zijn gedaan. Als je kijkt naar hoeveel doden er in het verkeer vallen en kijkt hoe lang mensen in het verkeer rijden. Als je dat doorrekenen valt er eigenlijk eens per 100 jaar een dode in het verkeer. De vraag is als techniek dat nog moet verbeteren is dat eigenlijk wel een zeer grote stap. Misschien zit er dus wel een belangrijke tussenfase, dat je dus via bestuurder ondersteunende systemen veel winst kunt behalen. De mens is goed in improviseren, wij zien makkelijk of er een steen op de weg ligt. De techniek is juist weer goed in de reactietijden en om je scherp te houden. Dat noemen we ook wel de human machine interaction. Als je het echt over zelfrijdende auto’s hebt, dat er dus heel vaak gekeken wordt naar de volledig zelfrijdende
auto terwijl we daar nog echt niet zijn. Een ander punt bij veiligheid: Een afstudeerder heeft naar
veiligheid rondom zelfrijdende voertuigen gekeken. Hij heeft een discrete keuze mode gemaakt. Hij
heeft gekeken naar veiligheid als een ongeluk gebeurd door menselijk falen ten opzichte van een ongeluk
dat gebeurt ten opzichte van techniek, en dan kijkend naar per ongeluk of opzettelijk falen. Hij kwam
erop uit dat mensen een ongeluk door technisch falen vier keer zo erg vinden dan door menselijk falen.
Eigenlijk zou dat kunnen impliceren dat het systeem met automatische voertuigen nog veel veiliger zou
moeten zijn om het dezelfde werking te geven in het verkeer en om het sociaal geaccepteerd te krijgen.
Als je verder nadenkt vind ik het ook wel logisch. Nu is het allemaal ook niet ideaal, maar als de techniek
er komt moet je vooraf programmeren: vind een systeem dat hij de bestuurder moet laten dood rijden of
de voetganger doodrijden. Dit zijn allemaal ingewikkelde ethische kwesties terwijl het nu eigenlijk
allemaal zomaar gebeurd.

P: Ja, je hebt al veel vragen beantwoord die zo nog terugkomen denk ik haha. Waarom denkt u dat smart
mobility belangrijk is in de stad?

T: Vanuit beleid hier, en dat zal waarschijnlijk vanuit gemeente ook zo zijn, je wilt iets stimuleren als
het bijdraagt aan je maatschappelijke doelen. Waarom zou je nu smart mobility willen? Het zou dus
moeten bijdragen aan een hogere verkeersveiligheid. Een ander beleidsdoel is een betere doorstroming.
Het derde beleidsdoel is bijvoorbeeld milieu. Kan smart mobility een bijdrage leveren aan die
doelstellingen? Een vierde doelstelling zou dan kunnen zijn: een efficiënter tijdsbesteding. Als je andere
dingen kunt doen tijdens de rit dan is dat ook een soort van meerwaarde.

P: Dan krijg je misschien weer een nieuw probleem: Moeten mensen dan afstand nemen van hun bezit
en meer in een deelsysteem moeten opereren?

T: Er zijn twee studies op het gebied van zelfrijdende auto’s en we hebben daar scenario analyses op
gedaan. We hebben vier toekomstbeeldjes gemaakt. Twee toekomsten gaan over een deel economie en
privé bezit. De andere twee gaan over veel technologische ontwikkelingen en twee zonder
technologische ontwikkelingen. Het zal hoe dan ook veel effecten hebben op je stadsverkeer. Als je
massaal gaat delen, heb je veel minder voertuigen nodig. Als je echt over zelfrijdende auto’s spreekt.
Dat die auto jou gewoon thuis kan oppikken en afzetten, dat je een soort taxi vorm krijgt. Hier kan je
dan ook nog met meerdere inzitten. Daar zijn dus model studies die laten zien dat je maar 10% van het
huidige verkeer nodig hebt. De gemiddelde bezettingsgraad is ongeveer 1,4 personen in een auto. Dat is
berekend over alle motieven. Ik verbaas me inderdaad ook wel als ik op de fiets zit en ik zie al die grote
auto’s rijden met één persoon erin. Misschien zouden we dus maar wat efficiënter met het systeem om
cunnen springen. Delen kan veel implicaties hebben voor doorstroming, auto’s gaan echter wel vaker
rijden. Als je uitgaat van het principe dat iedereen nog steeds op het moment dat hij of zij dat wil op een
bepaalde bestemming moet zijn, dan moet jij als persoon nog steeds evenveel reizen. Doordat je
sommige delen combineert met anderen zul je enige winst bereiken waardoor je dus minder files krijgt.
Maar nog steeds gaan die auto’s per stuk veel meer rijden. Een gewone auto staat 23 van 24 uur stil en een deelauto rijdt alleen maar door. De auto’s zijn dus sneller afgeschreven, waardoor innovaties sneller doorgevoerd kunnen worden. Als je nu een nieuwe technologie hebt kan het nog wel minimaal 20 jaar duren voordat alle auto’s dat hebben omdat het lang duurt voordat alle nieuwe auto’s het hebben er voordat mensen een nieuwe auto nemen. Als voorbeeld kan je adaptive cruise control gebruiken. Als je uiteindelijk naar een deelsysteem gaat zien we misschien sneller de voordelen van intelligente systemen. Als privé bezit de dominante factor blijft dat minder snel gaan waarschijnlijk. Niemand weet het en iedereen heeft het over de deel economie. Bij het KIM hier zien we nog niet explosieve ontwikkelingen op dit moment. We zien wel dat het aantal deelauto’s toeneemt maar het is nog steeds misschien maar 100.000 maximaal, of misschien zelfs nog minder. En dat op 8.000.000 auto’s. Er zijn rapporten die beschrijven dat we over 10 jaar nog bijna alleen maar deelauto’s hebben. Wat vinden mensen belangrijk uiteindelijk. Een auto voor de deur en waar je lekker alleen in kan zitten heeft bij veel mensen nog steeds de voorkeur. Hoe belangrijk is de prijs ook uiteindelijk? Je ziet nu bijvoorbeeld de opkomst van private lease. De prijs is van groot belang. Het moet attractiever zijn om een auto te delen. Hoe goedkoop gaat het uiteindelijk worden is natuurlijk de vraag.

P: Dan gaan we even verder. Vraag 4 tot en met 14 zijn niet allemaal even interessant. In hoeverre kan ICT de flow van mensen beïnvloeden en het veranderen van de verkeersstromen, bijvoorbeeld parkeerhulp, dat mensen minder doelloos door een stad gaan rondrijden. Hoe kan dit de kwetsbaarheid van een stad verminderen?

T: Een lastige vraag, want wat is kwetsbaarheid van een stad. Bedoel je door doorstroming van de stad?

P: Ja.

T: Op zich, ik denk dat de grote meerwaarde in de stad is dat je minder zoek verkeer hebt. Als je sneller je parkeervak kunt vinden. Als je daar apps voor hebt, ik weet niet wat dat uiteindelijk voor de doorstroming doet. Ik weet dat binnen het ministerie dat we onderzoeken naar wat er met de reistijd en files is gebeurd. Wat is het effect geweest van verkeersmanagement en hoe kunnen we dat Beter Benutten. Ik kan me voorstellen dat het wel invloed kan hebben, maar hoe groot die invloed is zou ik niet durven zeggen. Als je sneller bent op je bestemming en minder hoeft te zoeken dan gaat het natuurlijk altijd beter. Ik heb geen getallen paraat hoe groot die hoeveelheid zoekverkeer eigenlijk is. Kwetsbaarheid van een stad, als je minder zoekverkeer hebt is je systeem wat robuuster en heb je minder snel files.

P: Stel bij calamiteiten, als je minder doelloos hebt rondrijden dat je inderdaad die stromen sneller op kan lossen.

T: We hebben wel van die proeven gedaan, onder andere bij de Praktijkproef Amsterdam. Hier hebben ze gekozen naar grote evenementen.
P: Ze hebben bij Amsterdam Zuid bij alle evenementen sturing van verkeersstromen gebruikt.

T: Je moet ook steeds meer naar real-time informatie toe. Dat kost ook weer heel veel capaciteiten en data capaciteiten. Het gaat nu al goed met google maps.

P: Dan ga ik nu naar vraag 6 door: Hoe zijn de ontwikkelingen van elektrische auto’s en zijn ze al toegankelijk genoeg? Denk bijvoorbeeld aan de hoeveelheid laadpalen of hoe duur ze zijn ze. Is het aantrekkelijker om een elektrische auto te nemen?

T: Qua laadpalen weet ik het niet. Ik denk dat de auto’s verder nog steeds te duur zijn voor de gemiddelde Nederlander. Ik heb nooit zelf die hele doorrekeningen gedaan. Als je een Opel Astra koopt kan je die voor 250000 kopen ongeveer. Als je zo een Opel Ampera E die dan ongeveer net zo groot is dan zit je volgens mij zo rond de 40000 als het niet meer is. Dat betekent dat je voor dezelfde uitrusting in het begin 15000 meer betaald. Ga je dat ooit in deze levenscyclus goed maken. Je betaalt misschien wat minder per kilometer omdat het goedkoper is. Bij gewoon gebruik haal je het er bijna niet uit. Dan moet je het dus via subsidies of via belastingvoordelen eruit halen. Je moet het dus eerder vanuit de groene gedachte doen. De mind-set is er misschien wel, maar voor de ‘early adopter’ wel. Voor de gemiddelde Nederlander kijk je gewoon naar prijs, terwijl ze helemaal niet tegen een elektrische auto zijn.

P: Om daarop door te gaan, ik heb veel onderzoeken gelezen over het stroomnetwerk. Denk je dat elektrisch rijden in de toekomst de veerkracht kan verminderen van een regio omdat er zoveel druk komt te staan op het stroomnetwerk dat dat in gaat storten?

P: In hoeverre wordt er nu gekeken naar niet-gemotoriseerd transport? Denk je dat hierin de toekomst ligt?

T: Je ziet twee verschillende trends. De denkers die vanuit auto’s kijken en auto’s ook steeds slimmer maken, dat je straks lekker kunt vergaderen als je in de stad rijdt, dat is dus de technische insteek. Je hebt aan de andere kant de insteek om de stad steeds groener te maken en in te zetten op fiets en voetgangers. Er is bij het ministerie ook een heel programma voor fietsers ontstaan. Elektrisch fietsen is nu natuurlijk hot. Als je kijkt naar het aandeel, dat vond ik wel opvallend, het aandeel in de modal split, hoeveel ritten worden per fiets afgelegd ten opzichte van hoeveel rit per auto, dit is stabiel gebleven in de afgelopen 20 jaar. Het aandeel in de steden is dat ongeveer 25%, en dat is dus gelijk gebleven. Het is dus niet zo dat over de afgelopen jaren dat dus veel groter is geworden. De afstanden die we afleggen met fietsen zijn wel groter geworden. Dat komt ook door de elektrische fiets natuurlijk. Er wordt dus

P: Denk je dat elektrische fietsen voor een veiligere of onveiligere stad gaan zorgen?

T: Je ziet het tussen het aantal ritten terug. Je ziet wel dat het aan de andere kant drukker op de fietspaden wordt en dus een soort fietsfile problematiek. Hier in Den Haag heb je al veel van die knooppunten. Als de elektrische fietsers ook gewoon netjes 15 a 20 km/u gaan fietsten is er niet zoveel aan de hand. Ik fietste gister op Hemelvaartsdag een beetje rond, hoeveel senioren je voorbij komt en dus zoveel als de hand. Ik fietste gister op Hemelvaartsdag een beetje rond, hoeveel senioren je voorbij komt omdat die met een elektrische fiets veel harder gaan. Dit zal inderdaad wel tot onveiligere situaties zorgen. Je ziet in de stad wel een paar ongelukken en dat fietsongelukken ook nog toenemen. Dit probleem is sterker dan ongelukken met de auto. Ik denk wel dat daar wat aan gedaan moet worden. Wat moet je dan doen. Bredere fietspaden, of moet je bepaalde fietser ergens anders stallen. Ik denk voor de gewone elektrische fiets, dat ik hoop dat dat gewoon op fietspaden blijft. Voor ‘speed paddilacs’ die 45 km/u gaan, die mogen al niet op de fietspaden als het goed is. In sommige gevallen moeten die al op de openbare weg. Daar heeft het SWOV, een groot experiment gedaan. Ze hebben mensen een speed padillac en gevolgd door de straten. Het blijkt dus nog redelijk onveilig te zijn om met een gewone fiets door de steden te rijden.

P: Je gaat wel weer hard genoeg om een ongeluk niet te kunnen vermijden.

T: Je hoort ze ook niet aankomen, een fietser komt je gewoon voorbij met 45 km/u, en ik denk dus niet dat dat een veilige situatie is.

P: Duidelijk, dan denk ik dat ik nu naar de link ga met resilience. We gaan bij vraag 16 verder. De stedelijke dichtheid in de Randstad heeft natuurlijk een hoge prioriteit en hier kan smart mobility ook bij helpen. Zou je het beschrijven als een probleem of als een kans en waarom?

T: Wat bedoel je met de stedelijke dichtheid en zijn prioriteit?

P: Dat urbanisatie nog steeds plaatsvindt en dat de steden steeds drukker en dichtbebouwer gaan worden. Zoals het beleid er nu naar is, of hier genoeg mee wordt omgegaan of dat het alleen maar damage control is.

en je hoeft niks meer zelf te doen, dan kan dat zonder extra beleid ook leiden tot extra verkeersgeneratie. Aan de ene kant zal het voordelen hebben, maar als je niks doet kan het leiden tot verslomen van steden.

P: Oke, wat zijn de belangrijkste valkuilen bij bevolkingsdichtheid? Één van die dingen is dat het nog meer verkeer zal genereren. Zijn er nog meer valkuilen?

T: Inderdaad, het wordt makkelijker waardoor je nog meer gaat reizen. Aan de andere kant als het allemaal smart wordt, hoe ben je gevoelig voor systeem hack. Voor misbruik. Kan het makkelijk gaan dat je systeem platgelegd wordt? Als alles met elkaar samenwerkt en je hebt een hacker, kan hij dan het hele systeem platleggen en kan dit zorgen voor een grote economische klap? Dit is natuurlijk heel erg relevant voor het resilience aspect, aangezien een robuuste economie erg belangrijk is. Hoe ga je daar mee om?

P: Die hack heb ik zelf nog niet veel naar gekeken, dus dat is een goede om mee te nemen. De volgende: Hoe kan een nieuwe vorm van informatie en data verzamelen, dus die technologie, zoals bijvoorbeeld mensenstromen en autostromen meten, hoe kan dat van invloed zijn op de adaptieve capaciteit?

T: Als voertuigen en infrastructuur, digitale infrastructuur en er is realtime informatie. Door deze factoren kan je de stromen beter sturen. Dan is de vraag: Blijf je alleen informeren of kun je ook gaan sturen? Dan kun je natuurlijk je netwerk beter benutten. Dat is als het ware beter voor je stad in de vorm van je hele systeem en maak je je stad robuuster.

P: Daarmee ben je ook robuuster bij calamiteiten.

T: Je kunt inderdaad ook beter evacueren omdat je beter weet hoe het moet. Dan moet het systeem wel werken natuurlijk en je moet ook niet alle technologie die het moet regelen onder de waterspiegel leggen.

P: Als het nog geen zelfrijdende auto’s zijn moeten mensen ook gehoor geven aan de sturing van de systemen.

P: Hoe kan duurzaamheid, zoals elektrisch rijden en vergroenen van bestaande infrastructuur, hoe kan dat van invloed zijn bij het verbeteren van de leefbaarheid van de stad?

T: Als je elektrisch rijdt heb je minder uitstoot. Vanuit dat perspectief is dat goed. Als je voor die leefbaarheid in de steden zal het ook minder geluid teweeg brengen. Als je beter en geleidelijk verkeer begeleidt komt dit ook ten goede. Aan de andere kant, elektrische auto’s zijn op dit moment wel nog zwaarder, dus het komt zwaarder op de remmen aan waardoor je meer fijnstof zult krijgen, meer dan in de huidige auto’s. De vraag is waar de balans dan ongeveer ligt. Ik heb wel stukjes gelezen waarin gezegd werd waar elektrisch niet voor verbetering zal zorgen.
P: Hoe kan het slim regelen van de bestaande infrastructuur van invloed zijn op de adaptieve capaciteit? Nu kijk ik meer naar de fysieke infrastructuur.

P: Gelijk door naar de volgende: Hoe kunnen veiligheidsmaatregelen zorgen voor een veiliger straatbeeld?

T: Ik denk dat smart verkeerslichten voornamelijk gericht zijn op een betere doorstroming, niet per se veiligheid. Veiligheid is wel een pre, anders heb je ook geen verkeerslichten nodig. Maar, het optimaliseren van die doorstroming met daarbij de vraag hoe optimaler kun je het nog maken? Nu hebben wij in Nederland drie/vier fase regelingen waarbij de kruispunten al redelijk zijn geoptimized. Smart mobility kan er meer voor zorgen dat je bepaalde voertuigen een prioriteit geeft. Als je andere prioriteiten geeft moeten andere voertuigen weer langer wachten. Ik denk dat je iets beter kunt optimaliseren door vanuit een netwerk perspectief te kijken. Ik denk dat daar wel enige winst te behalen is. Als zelfrijdende auto’s communiceren zijn er misschien niet eens meer verkeerslichten nodig. Maar in hoeverre dat snel realiteit wordt is maar zeer de vraag.

P: Wat zijn de nieuwe vormen van transport? De nieuwe modaliteiten? Hoe kan een stijging van diversiteit in transport zorgen voor een robuustere stad?

P: Ik wil kijken hoe stadsmaatregelen en hoe die kunnen opereren in een Randstad perspectief? Hebben de smart maatregelen overlappingen tussen andere steden?

T: Autotechnologie etc. heb je altijd, en dat is natuurlijk niet afhankelijk van de steden. De NS is ook niet afhankelijk van steden. Er overlapt inderdaad wel tussen steden. Ik weet alleen niet of steden geïntegreerde systemen hebben. Alle grote steden doen het allemaal zelf. Misschien dat je hier met de metropoolregio een beter netwerk kan creëren. Nog even terugkomend op het tussengravige terrein,
vaak is ook de rijksoverheid hoofd persoon. Je hebt hier de snelwegen etc. dat wordt allemaal op
landelijk niveau geregeld door Rijkswaterstaat.

P: Denk jij smart mobiliteit, bijvoorbeeld als we naar autonoom rijden gaan en nu die elektrische fietsen
al zal reistijd verminderen, denk je dat gebieden tussen de Randstad een grotere boost krijgen dan de
trek naar de grotere steden?

T: Dat is een lastige vraag. We hebben wel hier ook een modelstudie. Wat kan een zelfrijdende voor
effect hebben en op zich wordt het makkelijker om wat langere afstanden af te leggen. We hebben ook
een huisprijs analyse gedaan. Gebieden buiten de stad kunnen ook interessanter worden en dan vooral
wat aan de Rand van de Randstad ligt. Tegelijkertijd, als het reizen makkelijker wordt is maar zeer de
vraag of iedereen dan opeens om 5 uur in de auto te zitten. De vraag of mensen nu langer willen reizen
om verder aan de rand van de stad willen wonen. Ik denk niet dat als het makkelijker wordt om te reizen,
dat iedereen dan verder weg wil gaan wonen. Er zal wel een groep zijn die dat wel doet, maar niet
iedereen.

P: De stroom van mensen zal niet veranderen qua urbanisatie.

T: Er zal wel een nieuw evenwicht komen. In een stad als Amsterdam is het te duur om in de binnenstad
tewoonen. Je ziet dat in alle steden de huur gewoon fors stijgt waardoor mensen dus verder naar buiten
worden gedreven. Een beter vervoerssysteem kan dat wel deels faciliteren natuurlijk. In de steden is
gewoon veel dynamiek dus ik weet niet of die trend veel verandering teweeg zal brengen. Er geldt ook
zoiets als de constante reistijd budgetten. Als misschien wel 100/200/300 jaar, dat mensen toch vaak
niet meer dan 1 uur en een kwartier reizen per dag. Door de toegenomen snelheid zijn ze wel steeds
verder weg gaan wonen maar ze reizen niet opeens 3 uur per dag. De vraag is leidt smart mobility dat je
sneller kan reizen waardoor mensen verder weg kunnen gaan wonen of dat de reisop zich gaat
veranderen. ICT is ook altijd nog onzeker, je kunt nu thuiswerken maar dat heeft er niet toe geleid dat
mensen ook echt thuis gaan werken. Mensen zijn toch ook wel sociale wezens en vinden het ook leuk
om op het werk te zijn omdat ze met mensen contact zijn.

P: Ze willen thuis ook niet associëren met werk. Dan ben ik bij mijn laatste vraag aangekomen. Over
het algemeen denkt u dat een regionale randstad benadering van slimme mobiliteit voor een betere
veerkracht voor het gebied?

T: Een afgestemde benadering die stadsoverschrijdend is. Dat is altijd het moeilijke, waar leg je de grens
op den duur. Het is algemeen bekend en onderkend, als je kijkt naar het werk van Bertulini, hoogleraar
in Amsterdam. De institutionele grenzen van gemeenten, dus de bestuurlijke grenzen komen niet
overeen met de grenzen van je mobiliteitssysteem. We zitten toch in een ‘daily urban system’. Mensen
reizen tussen steden en tussen gemeenten. Daily urban system is groter dan je stad. Wil je dit
optimaliseren zal je toch over die bestuurlijke grenzen moeten kijken. Is de metropoolregio dan de ideale
grootte omdat je dan weer met tussen vervoersstromen zit. Je blijft altijd met moeilijkheden zitten, maar als je het op elkaar afstemt zal het toch tot een betere regio moeten leiden.
Appendix 4.4 ‘Transcript ‘Head of innovation program Municipality of Amsterdam’

Municipality of Amsterdam, May 22, 2018

Attendants: Pedro Mol, Respondent

P = Pedro Mol

R = Respondent

Note: The start of this interview was not related to the content of my bachelor study. This means that the transcript is starting when data got relevant. Furthermore, this interview was held in Dutch which means that the transcript will be in Dutch.

Transcript

P: Uitleg van het onderzoek. Wat vind je van de variabelen van smart mobiliteit en hoe zou je het anders doen?

R: Goeie vraag. Misschien kort: Ik ben Tijs Roelofs, verantwoordelijk voor alle innovatieprogramma’s voor de Gemeente Amsterdam. We hebben afgelopen 2 jaar een mobilitieitsprogramma ontwikkeld, zowel op regionaal als lokaal gebied. We kijken naar dingen die nu effect hebben zoals digitaliseren van foutparkeren, tot impact studies van zelfrijdende voertuigen. Hoe kunnen we nu oplossingen voor morgen bedenken en wat is de impact van morgen. We hebben een beleidsafdeling gericht op ruimte, die maken vooral beleid vanuit het verleden. Als je kijkt naar het begrip smart mobility, ik denk dat het vooral gaat voor connected voertuigen, slimme voertuigen. In stedelijke context gaat dat echt over heel weinig percentages wat je daarmee kan beïnvloeden. Ik kijk meer naar de trends van bezit naar gebruik, van inzicht naar informatie door data, dingen die slimmer worden door internetverbinding, auto’s of trams die steeds meer autonoom gaan rijden. Dat zijn de trends. Afgelopen periode hebben we een heel programma gemaakt die inspelen op de trends. Nu gaan we richting een nieuwe periode na de verkiezingen en gaan we strategischer kijken. Twee grote uitdagingen: Er zijn meer evenementen dan dagen in Amsterdam. Hoe organiseer je dat? Met behulp van data en slimme interventies. De ander is meer delen: mobiliteit als a service. De laatste zit meer in de regionale functie die de stad, hoe houd je het bereikbaar? De ruimte is schaars, er is geen ruimte in de metro, in de tram, het is gewoon echt super druk maar ook in en naar de stad. Dat zijn de grote uitdagingen. Als je dan kijkt naar de onderverdeling, prima volgens mij. In je definitie die je gaf is denk ik nog wel belangrijk is: wil je echt impact maken met technologie, moet je echt mensen gaan bereiken, dus hoe beïnvloed je nu gedrag. Tegelijkertijd vraagt dat om een hele andere rol van de overheid. Ik noem maar iets: als het zo doorgaat met de platform economie, als Uber bijvoorbeeld deals gaat maken creëren zei een monopoly positie. De vraag wat je daarmee doet.
P: Hoe ga je dat misschien tegenhouden?

R: Wij gaan over de toegang van de ruimte, dus wij hebben best veel instrumenten om dat te remmen en reguleren. Ik zeg ook niet dat dat per se fout is, maar ik denk dat de platform economie langzaam voor steeds minder bezit zorgt in de mobiliteit. Of dat nou een hele reis is die je multi-modaal kan doen, van bezit naar gebruik. Dat is voor een stad zeer kansrijk als je die ook goed kan reguleren.

P: De ontwikkelingen gaan ook zo snel dat je ze bijna niet meer kan remmen, dus dat je op een bepaalde manier moet meedoen en of je het dus gaat faciliteren of reguleren.

R: Als je echt kijkt naar smart. Slimme stoplichten en digitale infrastructuur moet je gewoon doen en dat is niet meer smart. Je weet dat het effect heeft ook al heeft het maar een klein percentage. Wat wel echt baanbrekend zou zijn is dat werknemers op de zuid-as afstand kunnen doen van hun eigen lease auto en alleen nog maar met MaaS gaan rijden en hiermee ruimte teruggeven aan de openbare ruimte.

P: Doelloos rondrijden gebeurt dan niet meer.

R: Het is wel interessant denk ik maar het is ook zeker mogelijk. TomTom is nu zo een service aan het ontwikkelen voor smart parking. De vraag is dan wat is de volgende stap? In de opbouw, je hebt MaaS, smart vehicles, traffic flow management. Wij zien voor hier voor de strategie om het goed op de opgave aan te sluiten zien we twee dingen: 1 is echt een volwaardig alternatief voor je eigen bezit, hoe gaan we dat voor mensen zo aantrekkelijk maken met marktpartijen, dat je dus niet meer je eigen auto hebt en gaat spreiden in tijd en ruimte. 2: verkeersmanagement is erg reactief. We weten niet wanneer mensen hier naartoe komen, hoe ga je van verkeersmanagement naar mobiliteitsmanagement. Dat je mensenstromen kan gaan voorspellen. Hoe doe je dat nou, real-time en voorspellen? Daar zijn we nog lang niet maar dat is wel een aardig toekomstbeeld en we zijn dat ook aan het testen.

P: Duidelijk. Waarom is smart mobility verder belangrijk?

R: Ik denk dat veel klassieke maatregelen gepaard gaan met slimme toepassingen. Ik noem maar iets: we hebben hier een probleem met leeg rondrijdende taxi’s snachts. Als we zeggen dat ze alleen nog maar vraaggestuurd mogen rijden vraagt dat om een online systeem. Dat is dus een combinatie tussen die twee factoren. Je ontkomt niet aan samenspel van slimme technologie en klassieke maatregelen. We kunnen hier investeren in allerlei infrastructuur die toegankelijkheid verbeteren. Al dat soort maatregelen heeft als het goed is iets met ICT te maken. Ze zijn allemaal verbonden.

P: In hoeverre kan ICT mensenstromen beïnvloeden? En hoe kan het de kwetsbaarheid van de stad verminderen?

R: Ik denk dat dat kan, ook daar weer is het altijd een combinatie. Waarom geef je mensen altijd de snelste route vroegen we aan TomTom, aangezien dat niet altijd de gunstigste route is. Ze zeiden dat is ons verdienenmodel dus die discussie ga je niet ver komen. Toen zeiden we dat we wel wat wegen kunnen
afsluiten digitaal. Dan ben je er dus ook. ICT opzich is gewoon een hulpmiddel om iets te kunnen bereiken in een soort samenspel met klassieke maatregelen.

P: Zou je door het sturen van verkeersstromen de drukte zou kunnen spreiden?

R: Als je de hele markt digitaliseert, en wij managen die markt nog niet digitaal. Als je dat wel zou doen kan je spelen met prijs incentives, toegang voor betalen van gebruik. Je kan allerlei maatregelen bedenken zie je zo in een digitaal systeem zou kunnen stoppen. Dat is nu ook al zo. De Nationale overheid heeft ervoor gezorgd dat je lease auto erg aantrekkelijk is. Als je digitaliseert kan je sneller wisselen in je keuzes voor mobiliteit.

P: Volgende vraag: Hoe zijn de ontwikkelingen van elektrische auto’s in Amsterdam en hoe toegankelijk zijn ze?

R: Volgens mij het gaat het in Amsterdam vrij goed, je ziet een stijgende lijn. Maar net als met delen is het nog steeds maar 1% van het aantal in mobiliteit. Ik denk dat er een uitdaging bij komt, als het van 1 naar 25% zou gaan moeten we een slim grid hebben en dat hebben we niet.

P: Wat zou het met het energienetwerk doen?

R: Daar weet je het antwoord al op. Ik denk dat we daar wel snel slimme maatregelen op zouden kunnen bedenken maar dat is nu nog niet geregeld.

P: In hoeverre wordt er gekeken naar niet-gemotoriseerd transport zoals voetgangers en fietssystemen en in hoeverre ligt hier de toekomst?

R: Fiets blijkt nog altijd echt super efficiënt, zowel qua innemen van ruimte en qua reistijd. Je kan in een half uur ben je echt van de ene naar de andere kant van de stad. Voor Amsterdam blijft dat zeer relevant. Voetgangers ook. De vraag is wel: Overal waar je bent is er de discussie of je wel of geen auto’s toelaat. Overal waar de auto weghaalt krijg je een Florence effect. Dit is een politieke keuze, vindt je dat oké of niet.

P: Zou dit voor een veiliger of onveiliger straatbeeld zorgen?

R: Het kan beide kanten op maar het is net hoe we er mee omgaan. Nu is het nog een klein aandeel. Het verschil in snelheden is groot, we krijgen een verbod op scooters op fietspaden. Het verschil in snelheden is wel iets dat gevaar kan opleveren. Ik denk dat als je meer klein last-mile transport over fietspaden krijgt, moet je ook weer snel kijken of dat wel kan. Geen pas klaar antwoord. Misschien is dat wel een fundamentele uitspraak: Technologie op zichzelf lost niet de maatschappelijke uitdagingen op, het vraagt echt een soort samenspel van de markt en overheden over hoe we er mee omgaan. Past ons beleid dan nog of moeten we het aanpassen om het richting te geven.
P: En het sociale aspect is zeker het meest belangrijke hierin. Welke maatregelen zorgen voor minder druk op de infrastructuur?

P: In hoeverre is traffic management toegepast?

R: Ik denk dat het enerzijds door de markt zelf wordt opgepakt zoals de parkeerhulpsystemen en verkeersmanagement doen we hier best veel mee. Nieuwe vorm van mobiliteitsmanagement is wat we doen bij de Amsterdam Arena. Als je een kaartje koopt voor een concert krijgt degene die een kaartje koopt direct reisadvies en wordt anders gestuurd. Je krijgt bijvoorbeeld korting op je treinkaartje, je probeert de reis te beïnvloeden door ze te belonen. In dit geval maken we dus een soort platform waarin andere partijen een service kunnen aanbieden.

P: In hoeverre zijn deelauto programma’s opgestart en kunnen deze zorgen voor minder files?

R: Ik denk waar we nu naar aan het kijken zijn. Ik denk niet dat het direct voor minder files zorgt trouwens. Er zit wel echt een tweedeling in. Ik denk dat als je echt ritten gaat delen zou je echt wel het aantal files kunnen terugdringen. Maar ook daar heb je een voorbeeld van san francisco, doordat je ritten gaat delen gaat de prijs omlaag en krijgen meer mensen toegang tot mobiliteit en wordt het alsnog drukker. Het kan gaan concurreren met de prijs voor de tram. Het is mogelijk dat je overweegt om niet meer te gaan fietsen. Dat soort ontwikkelen opzich zelf kunnen we er wel voor zorgen maar moeten we wel beïnvloeden. Ik denk dat we de markt moeten uitdagen waar ze goed in zijn, het beste creëren voor de eindgebruiker en dat wij daar dan goede randvoorwaarden moeten bedenken die daar bij passen. Dat de stad leefbaar blijft voor iedereen. Mobiliteit wordt steeds persoonlijker, als iedereen dat voor iedereen aan tafel krijgt, wordt het niet per se voor elkaar beter. Ik denk dat wij ervoor zijn dat het voor iedereen prettig blijft.

P: Zijn auto ongelukken aan het verminderen door middel van smart maatregelen?

R: Nog niet.

P: Zie je dat in de toekomst gebeuren als je kijkt naar de lange termijn?

R: Ik denk het wel, vooral interstedelijk. Als auto’s zelf gaan rijden gaat dat zeker gebeuren. In de stad zitten we met een te complex systeem. We zitten met fietsers en voetgangers dus dat is gewoon lastig. Als je er aan gewend bent dat auto’s zelf rijden en die rijden maar 10/15 km/u kan je daar als voetganger ook weer prima mee omgaan maar deze ontwikkelingen kosten gewoon veel tijd.
P: Tussen modaliteiten, waar liggen de beste connecties en is er al een systeem?

R: Waar we nu met het ministerie en andere steden mee bezig zijn is om interoperabiliteit te creëren. Dat wil zeggen dat jij als start-up ook kaartjes in kan kopen bij de NS en een totaalreis kan aanbieden aan jou gebruikers. Dat iedereen onderling met elkaar praat en de eindgebruiker daar dus niks van merkt. Dat is echt een opgave waarin we met marktpartijen samen gaan optrekken. Veel marktpartijen hebben er ook belang bij om het niet zo te organiseren. Concessiehouders: alle ov-partijen die werken in opdracht van een overheidspartij om iets realiseren. Het openstellen van hun dienst om doorverkocht geeft hun een andere onderhandelingspositie richting hun eigen beleid. Ze willen zelf contact houden met de eindgebruikers anders gaat iemand anders voor jou de prijs bepalen.

P: Dan wil ik nu verder door de link te leggen met resilience. Daar heb ik ook een paar vragen voor: de stedelijke dichtheid heeft een hoge prioriteit? Zou je dit beschrijven als een toekomstig probleem of als een kans?

R: Beide, probleem bij de strategie van de stedelijke ontwikkeling is dat we besluiten zonder erover na te denken. Het is gewoon aantrekkelijk voor mensen om in de stad te wonen waar veel functies samen komen dus we blijven ook echt verdichten. Tegelijkertijd weten we eigenlijk dat de bereikbaarheid daarmee achteruit gaat en dat de druk daarmee toeneemt. Dan is het ook nog is zo dat het niet werkt als je eerst gaat investeren in het OV en daarna gaat bouwen. We hebben hier een situatie waar 200.000 woningen bij gaan komen allemaal in binnenstedelijk gebied wat veel hoogbouw waar een lage parkeernorm is. Dit wordt gebouwd dat op sommige plekken waar ook nog geen OV is. Dit is ook een kans, want mensen moeten eigen dingen gaan bedenken om goede mobiliteit te creëren. Dus de bevolkingsdichtheid stimuleert weer innovatie. Deze ontwikkelingen vragen ander gedrag.

P: Hoe kan ICT van invloed zijn op de adaptieve capaciteit van een stad?

R: Ja dat kan zeker denk ik. We hebben al projecten gedaan bij Sail: crowd management projecten waarbij verschillende bronnen zoals social media, politie en verkeersdata. De eerste dag zie je hoe het gaat, de tweede dag kan je op basis van de eerste dag stromen gaan voorspellen waarmee je onveilige situaties kan voorkomen. Dat zie je ook weer terug in social media.

P: Ik zie twee dingen gebeuren: door beter te voorspellen kan je onveilige situaties voorkomen, en tijdens een calamiteit kans je mensen in de juiste richtingen sturen, waarbij moeten kunnen vertrouwen op het systeem.

R: Ja.

P: Hoe kan elektrisch rijden en vergroening in de bestaande infrastructuur van invloed zijn op het verbeteren van de leefbaarheid van de stad?
R: Geen auto’s? haha. Ik denk dat deelmobiliteit ook veel kan toevoegen. Het niet hebben van een eigen auto en dus daardoor ruimte voor andere dingen. Het gedeeld gebruik maken van mobiliteit. Dat is natuurlijk prima. Dat kan. We investeren veel in dit soort dingen, alleen is het aandeel nog te laag. Het blijft een combinatie van restrictieve maatregelen. We moeten echt zorgen dat het onaantrekkelijk wordt om met een diesel auto de stad in te rijden. Daarnaast bedenken we stimulerende maatregelen.

P: Hoe kunnen veiligheidsmaatregelen, zoals smart verkeerslichten zorgen voor een veiliger straatbeeld? Bijvoorbeeld fietsers en voetgangers onderling.

R: Geen idee.

P: Zelf zou ik zeggen: door die maatregelen als smart verkeerslichten dat je voetgangers beter kan sturen, dat je ze op een andere manier groen geeft bij bijvoorbeeld regen dat je fietsers langer groen geeft of dat je fietsers een andere kant op kan sturen. Als het in een deel van een stad te druk is dat je door het afstemmen van verkeerslichten die drukte weer kan opheffen. Zijn daar ontwikkelingen in?

R: Je hebt groene golven voor auto’s en fietsers. Ik denk dat je het zo moet zien: het is geen doel op zich, alle assets die we hebben in de stad zoals verkeerslichten, camera’s. Die kan je allemaal inzetten om bepaalde doelstellingen te bereiken. Als je iets veiliger wilt, moet je kijken naar wat hebben we staan en hoe kun je dat bedienen. Meer technologie en data erachter, en dan kijken hoe kom je tot wenselijke effecten. Ik denk wel dat het ook wel een kern is dat we steeds meer kijken naar de effecten en dan weer door ontwikkelen.

P: Het stimuleren van niet-gemotoriseerde opties, zorgen die voor meer gevaren?

R: De nieuwe politieke werkelijkheid hier is is dat groenlinks flink heeft gewonnen. Als er meer langzaam verkeer is: active modes, kan dat bijdragen aan de veiligheid en leefbaarheid van een stad. Het kan ook zo zijn dat als jij alle auto’s weer weghaalt en alleen maar voetgangers hebt dat je nog meer toeristen krijgt. Je moet goed nadenken. Mobiliteit is niet alleen van achter een bureau, maar ook kijken wat de effecten nu zijn. We hebben nu ook een straat waar de auto te gast is, waar de auto niet harder mag dan 15 km/u. Er staat heel duidelijk auto’s te gast. Nu wordt weer bekeken of dat nu goed werkt en hoe niet.

P: Hebben de slimme maatregelen overlappingen tussen andere steden?

R: Iedereen is tegenwoordig met MaaS, elektrisch, zelfrijdend, overal mee bezig.

P: Gaat dit dan alleen om de grote steden of ook over kleinere steden in de Randstad?

R: Ik denk steeds meer, voor ons is het wat makkelijker in die zin dat we hier met de vervoer regio Amsterdam, waarin weer heel veel kleine gemeenten zijn vertegenwoordigd. First-mile en last-mile is dus belangrijk. Je moet kijken naar de first-mile wat voor openbaar vervoer mogelijkheden er zijn en wat voor alternatieven er zijn. Ik denk dat dat wel key is, zeker als je kijkt naar de functie van de
Randstad. Die gaat over de bereikbaarheid van en naar de Randstad en dus niet alleen Amsterdam. We zien natuurlijk in die zin natuurlijk als één stad.

P: Daar heb ik ook een onderzoek over gelezen inderdaad dat Nederland wordt gezien als groenste metropoolstad. Bestaat een geïntegreerd plan nu al voor de Randstad voor het smart mobility ontwikkeling?

P: Zijn er smart mobility ontwikkelingen die bij een regionale aanpak beter tot zijn recht zouden kunnen komen?

R: Binnenstedelijk kunnen we kijken hoe we de drukte beheersbaar kunnen door mensen te laten delen. Als je kijkt naar het totaal aan mobiliteitssystemen moeten alle vormen van mobiliteit toegankelijk zijn. Het vraagt om een regionale aanpak denk ik waarbij die hubs, overstapplekken, het liefst niet meer zo dicht op de stad organiseert. Zo heb ik nog wel wat voorbeelden dat geldt voor de logistiek eigenlijk hetzelfde. In het geval van Amsterdam zou je als hub kunnen zien: Hilversum, Hoofddorp etc. Dat gebeurt steeds meer al dat zo wordt ingericht.

P: Door de snelle ontwikkelingen wordt de reistijd steeds korter als je tussen steden kijkt. Is het mogelijk dat de stadsstructuur in de toekomst gaat veranderen?

R: Dat kan zeker. Ik denk dat het al gebeurde. We bouwen eigenlijk nog een stadsdeel erbij de komende jaren. Minimaal 200.000 inwoners. Bij die plekken probeer je al te zorgen dat het een stad is en dat er een mix van functies is. Een land als Japan bouwt eerst de stations en zorgt eerst voor de bereikbaarheid en gaat dan ontwikkelen. Dan krijg je hele andere bewegingen. Wij kijken eerst naar de vraag voordat de bereikbaarheid belangrijk wordt. Als de Noord-Zuid lijn opengaat, het winkelcentrum van Noord krijgt daardoor een grote impuls.

P: Denk je dat een regionale benadering naar slimme mobiliteit tot een betere veerkracht kan leiden voor het hele gebied?

R: Ik denk en, en, en. Het makkelijke antwoord is Ja uiteraard, een integraal plan is altijd beter dan een niet integraal plan. De grote uitdaging waar we nu voor staan, is dat we wel aardig plannen kunnen
komen en we kunnen het goed bespreken vanuit ieders rol. Vanuit provincie, stad, regio en rijk. Die
druk op de mobiliteit wordt zo groot waar we dus naar een vorm transitie moeten denken en niet alleen
denken maar ook doen. We moeten snel kunnen handelen en dat hebben we nog niet goed georganiseerd.
Dat vraagt om een andere organisatie en het liefst dus ook op een regionale schaal. Soms is het ook weer
heel prettig om iets lokaal uit te proberen. Het gaat nu best goed maar als de problemen groter worden
moeten we het sneller op een schaal organiseren waarbij het past, aangezien we het nu vrij versnipperd
organiseren.
Appendix 4.5 ‘Transcript smart mobility advisor Municipality of Den Haag’

Municipality of Den Haag, May 28, 2018

Attendants: Pedro Mol, Respondent

P = Pedro Mol

R = Respondent

Note: The start of this interview was not related to the content of my bachelor study. This means that the transcript is starting when data got relevant. Furthermore, this interview was held in Dutch which means that the transcript will be in Dutch.

Transcript

R: Introduction. Wat bijzonder is aan Den Haag is dat de binnenstad helemaal is afgesloten voor autoverkeer. Dat is handig, maar fiets en wandelverkeer is nu shared space gemaakt, door elkaar heen. Dit kan het ook wel eens een beetje onveilig maken. Er is laatst een documentaire gemaakt, waarin hij inzoomt op al die interacties tussen mensen als ze elkaar kruisen. Dat dat allemaal gewoon goed gaat, wat toch wel bijzonder is. In Den Haag zijn we heel erg pro fiets en denk ik het grootste probleem is het verbeteren van het parkeerbeleid. Dat doen we wel met autodeel programma’s, een andere manier van kijken naar je parkeerbeleid. Van bezit naar gebruik.

P: Niet zozeer je parkeernorm verhogen, maar veranderen van je autogebouw.

R: Het punt met parkeernorm verhogen is en waarom dat lastig is. Het is ontzettend duur, de politiek heeft een hele grote invloed als je bij een gemeente werkt. De politiek vertegenwoordigd een bepaalde kleur. Als je te maken hebt met een aantal wethouders zijn die pro auto zijn. Bij het nieuwe college waarbij Richard de Mos de grootste partij is, en hij is echt pro auto. Hoe zorgen we dan wel dat die stad gewoon goed bereikbaar blijft. De economie blijft natuurlijk groeien, brengt meer woningbouw, logistiek en groei van de gehele stad. De stad wordt alleen maar drukker en voller.

P: Waar ben jij mee bezig binnen Den Haag?

R: Ik hou me bezig met beleidsadvies, innovatie en strategie. Ik ben bezig met een aantal dingen met de mobiliteitsagenda voor Den Haag. We proberen autodelen te stimuleren door mensen die net hun rijbewijs halen bewust te maken. Je kan een auto natuurlijk gewoon kopen dat ontzettend veel geld kost. Als je gaat autodelen bespaar je geld, goed voor het milieu, het is flexibel. Voor de rest zijn we veel bezig met ontwikkelen van een innovatieprogramma. Dat gaat over slimme pilots, light electric vehicles, over mobility as a service. Bij gebiedsontwikkeling deelmobiliteit mogelijk maken. Bijvoorbeeld, waar mensen binnen de VVE dat je een deelbijdrage kan implementeren waar ze een deelauto voor kunnen terugkrijgen. Verder proberen we te kijken hoe we binnen de infrastructuur kunnen omgaan met de

P: Wat vind u van mijn framework dat ik heb bepaald voor smart mobility? Dan ga ik kijken wat de invloed is op resilience waarvan ik hier vier variabelen heb gevonden. Eerste is kwetsbaarheid, tweede is resources, wat heeft de stad tot zijn beschikking. Dan heb je de adaptieve capaciteit, hoe snel kun je reageren bij calamiteiten. De laatste die ik wil toevogen is de regionale connectie. Hoe kijken steden nu tegen een Randstad perspectief in plaats van alleen te kijken naar je eigen stad en of dit ook beter zou zijn?

R: Het is wel heel breed. Bij regionale interconnectie zie ik veel terug in het delen van de kennis. Dat we dus moeten voorkomen dat we overal het wiel opnieuw gaan uitvinden. Daar zie je bij G4 steden dat we allemaal met dezelfde opgaven staan. De stad wordt dichterbevolkt. Hoe gaan we om met het toenemende gebrek aan ruimte. Hoe gaan we ervoor zorgen dat de stroming door gaat. We moeten voor deze opgaven beleid gaan verzinnen en dat moeten we niet afzonderlijk als stad gaan doen. Je hebt natuurlijk wel een regionale samenwerking, maar je hebt ook heel erg het Rijk nodig. Zonder het Rijk kom je er sOWIos niet, want het Rijk heeft een regeerakkoord en dat geeft een bepaalde richting aan van hoe iets zou moeten en daar worden ook bepaalde voorzieningsbijdragen aan gekoppeld om zoiets mogelijk te maken. Zeker in een wereld waarbij we alles testen. Volgens mij is het gewoon goed om samen op te trekken. Daarom is het MaaS project goed waarbij in 7 steden testen, waarbij je alle verschillende karakteristieken terugziet in de verschillende steden. In Rotterdam-Den Haag zitten we met de Airport en de internationale connectiviteit. In opzicht vanuit het Rijk worden er dus pogingen gedaan om dat op te pakken. Regional interconnection zie je wel met die programma’s ontstaan zoals het vervolg van Beter Benutten. Daar worden pogingen gedaan om regio’s dichter bij elkaar te brengen.

P: Dat is eigenlijk wel naar op zoek. Ik zal snel verder gaan. Dan kijk nu vooral eerst even naar de aanwezigheid van de slimme mobiliteit voorzieningen. In hoeverre kan de ICT de flow van mensen beïnvloeden door middel van parkeerhulp of veranderen van verkeerstromen? Zou dit de kwetsbaarheid van je stad kunnen verminderen?

R: Kwetsbaarheid op het infrastructurele netwerk dus. Ja, wel degelijk. We hebben vorige organisatie hadden we een Mobility Lab waar 20 start-ups zich hebben ingeschreven. Hier kwamen allerlei slimme ideeëén naar voren. Parkeerhulptoestellen bijvoorbeeld, zijn een van de fundamentele aspecten. Hiermee ga je veel informeren, en kan je koppelen aan faciliteren en stimuleren. Als je die parkeerplek bijvoorbeeld gebruikt dat je daarmee het gedrag gaat beïnvloeden. In Scheveningen hebben we ook een start-up gehad: Natsa. Die hebben een systeem voor het vuurwerk festival bedacht op het gebied van
Artificial Intelligence. Een vrouw die je een vraag kan stellen via je telefoon. Je vraagt ik ga nu naar Scheveningen en je krijgt dan antwoord. De AI gaat dit dan analyseren door alle modaliteiten en als eindstand geeft ie een reisadvies. Bijvoorbeeld: Het is voor jou om vanaf die plekken met het openbaar vervoer inclusief weertdata. Als het slecht weer is ben je minder likely om op de fiets te gaan. Ik geloof zeker dat ICT de flow van verkeermobiliteit kan verbeteren waarbij ik nu twee voorbeelden noem die in mijn ogen succesvol zijn. Ik geloof wel dat er nog meer geprobeerd moet worden.

P: Het is lastig misschien omdat het ook een commercieel proces is.

P: In hoeverre wordt er gekeken naar niet-gemotoriseerd transport? Zorgt dit dan voor een veiliger of onveiligere stad?

P: De combinatie tussen de nieuwe alternatieven zou misschien redelijk gevaarlijk kunnen zijn.

R: Ja, zeker op het fietspad. Waar moeten die nieuwe voertuigen hun plek nu gaan krijgen. Dat zit hem dus heel erg ook in de verkeersveiligheid. Dat heb je natuurlijk heel snel met langzaam verkeer.

R: Als je kijkt op hoofdlijnen waar je het verkeer dus wilt verminderen, zorgt dit voor minder druk op de infrastructuur omdat mensen minder hoeven te overstappen op andere modaliteiten. Verder werken we samen met Bereikbaar Haaglanden, waarbij we werkgevers proberen te stimuleren dat ze vaker overstappen het fietsnetwerk. In mijn verhaal geef ik automatick aan dat het autonetwerk het grootste probleem is. Door juist andere modaliteiten te stimuleren en in de picture te zetten, daardoor wordt het voor de autogebruiker minder interessant. Je hebt stimuleren en beprijzen, dat je tolwegen gaat maken, vrachtwagenheffing, dat soort dingen.

P: In hoeverre is traffic management nu toegepast?

R: Je hebt een aantal intelligente verkeerslichten heb je wel staan, want je hebt wel bepaalde plekken in Den Haag zoals groene golven. Verder wel heel weinig als ik het zo hoor. Je hebt wel dat we in zee zijn
met een startup die heet ParkBe. ParkBe maakt beter gebruik van onbenutte parkeergarages in de stad, want die staan vaak halfleeg. Ze checken waar de parkeergarage is, en ze gaan die ruimte dan beter benutten. Heel smart zijn de verkeerslichten nog niet. We hebben wel ook een smart city afdeling maar dat gaat weer heel abstract. Dat gaat niet in op bepaalde vakgebieden. Ze noemen het slimme lantaarnpalen. Het gaat vooral over smart sensing, om op de boulevard van Scheveningen van die slimme sensor palen neer te zetten en die informatie weer uit te geven aan het netwerk. Dat valt dan weer onder smart infrastructuur. Dit gaat over sensoren, geluidsopname, signaleren van een brandweerauto.

P: In hoeverre zijn deelauto programma’s opgestart?

R: Volop. Ik denk dat we in Den Haag best wel een voorloper van deelauto’s zijn. We hebben veel investeringsprogramma’s opgestart.

P: Kunnen deze zorgen voor minder files als je dit combineert met carpoolsen?

R: Dat is nogal een sturende vraag dit haha. Ik vind dat deelauto’s en carpoolsen niet gezien moeten worden als een combinatie. Ik denk dat deelauto’s wel gewoon wat anders is. Deelauto’s als je kijkt naar bedrijven onderling. Nationale Nederlanden hebben in de vier grote steden deelauto’s geïmplementeerd waardoor minder lease auto’s nodig zijn. In een verder stadium heb je wel wat profijt voor je file inductie. Deelauto’s zorgen ervoor dat auto’s veel minder stil hoeven te staan en dat ze efficiënter worden gebruikt. Daardoor is er meer ruimte in de stad en is er minder parkeergelegenheid nodig en minder capaciteit. Dus ze hebben allebei een effect, maar ik denk dat carpoolsen sneller effect kan hebben op file reductie.

P: Veel mensen hebben wel gezegd dat het autodelen goedkoper wordt dan bezit waardoor meer mensen toegang krijgen tot mobiliteit.

R: Dat denk ik niet. Misschien snap ik de vraag niet helemaal. De filosofie achter deelauto’s gaat over het wegdoen van je eigen auto en dat die deelauto efficiënt wordt gebruikt, maar er moet wel schaal achter zitten. Als het maar een beetje gebeurd kan je niet de filosofie naleven die eigenlijk bij deelauto’s horen. Op korte termijn, ben ik het met de andere mensen eens. Als je allerlei deelauto’s gaat neer zetten additioneel dan wat er al stond. Dan ga je misschien krijgen dat mensen en een eigen auto en dat ze het af en toe leuk vinden om een deelauto te gebruiken. Deelauto’s gaan ook over communicatie, gedrags verandering, bewustwording. Als je dat niet doet in een programma dan is het gedoemd, als je dat niet meeneemt. Het gaat om communicatie maatregelen en het gaat om dat er een goede business case gaat lopen na een jaar.

P: Duidelijk ook. Dan ga ik nu meer naar de link tussen resilience. Dan wil ik het eerst hebben over de stedelijke dichtheid. De stedelijke dichtheid in de Randstad heeft een hoge prioriteit en de urbanisatie die nog steeds plaatsvindt. Zie jij het meer als een kans of een probleem?
R: Alles is natuurlijk een kans. Wordt er genoeg aan gedaan? Ja, volgens mij wel. Strategisch wordt er heel veel over nagedacht hoe we dat op een goede manier in goede banen kunnen leiden. Maar er moet wel echt iets gedaan worden anders hebben we wel echt een groot probleem. Anders staat over een aantal jaar de stad gewoon vol.

P: Wat zijn dan de belangrijkste valkuilen voor invloed hebben op de robuustheid van je infrastructuur systeem?

R: Dat je wegennetwerk komt vol te staan. Luchtvervuiling en CO2 uitstoot. Je stad wordt niet meer leefbaar. Uiteindelijk heeft dat vaststaan in de stad heeft effect op de economie. Een goede infrastructuur is de basis voor een goede economie. Ja, wel degelijk dat het heel belangrijk en dat we zeker de komende jaren er iets aan moeten doen. Er moet echt iets blijvends gebeuren. Dat zit niet alleen in nieuwe wegen, het gaat veel meer over het beter benutten van wat we al hebben met de huidige technologie die we al hebben en alle slimme toepassingen die we moeten doen.

P: Hoe kan traffic flow management van invloed zijn op de adaptieve capaciteit van een stad?

R: Ik noemde net twee start ups, eentje in Rotterdam en eentje in Den Haag. Dat zijn twee aansprekende voorbeelden waarin wordt aangegeven hoe zoiets ingezet zou kunnen worden om adaptief te reageren op iets wat gebeurt in je stad.

P: Misschien ook wel preventief?

R: Dat zie je inderdaad al gebeuren. We hebben binnenkort de Volvo Ocean Race, daar zie je dat ook al gebeuren. Hoe kan je dat in goede banen leiden. Als je het hebt over de nieuwere route informatie systemen, ik vind dat dat nog relatief slecht benut wordt en dat dat nog beter benut zou kunnen worden.

P: Hoe kan elektrisch rijden en het vergroenen van de bestaande infrastructuur, als bijvoorbeeld ruimte over is doordat parkeerhulp beter wordt benut, hoe kan dat van invloed op de verbetering van de leefbaarheid in de stad?

R: Dat zie ik echt als directe verbetering van je leefomgeving. Het antwoord zit eigenlijk al in je vraag.

P: Misschien iets specifieker waarin we leefbaarheid iets ontleden?

R: Ik heb wel een mooi voorbeeld. We hebben een pilot Vrijstraat en de The Guardian in Engeland heeft er zelfs over gepraat. Het gaat erover dat mensen tijdelijk hun parkeerviguning inleveren. Als ze die vergunning inleveren ontstaat er een plekje ruimte in de stad. Die plek mogen ze zelf een ingeving geven in de stad. Willen ze groen, terras, of iets anders. Die auto wordt ergens anders geparkkeerd tijdelijk in een afgesloten ruimte. Het zorgt natuurlijk voor vermindering van uitstoot etc. dat is natuurlijk vrij voor de hand liggend. Je kan natuurlijk als overheid tot een bepaald punt gaan sturen, mensen springen op in de wijken als er veranderingen komen. Als je natuurlijk bottom-up gaat, kan je veel negativiteit. Als één iemand ineens wel positief reageren dat ontstaat er een soort kuddegedrag en worden meer mensen wat
positief over de pilot. Dat was wel mooi om te zien. Nu doen er wel wat mensen mee. Je kan zo een andere invulling als je het hebt over deelauto’s.

P: Dan gaan we even verder. Wat zijn de nieuwe alternatieven tussen die modaliteiten. Je hebt natuurlijk een paar hoofdmodaliteiten, daar tussen heb je nu de elektrische fiets. Hoe kan die stijging van diversiteit zorgen voor een robuustere stad en betere veerkracht.

R: Ik denk dat als je het hebt over de light electric vehicles kan je erg inspelen op de robuustheid van je netwerk door meer in te spelen op de first en last mile van je transport en vervoer. Je hebt natuurlijk stukken die niet meer te lopen zijn. Als je daar een vorm van langzaam verkeer inzet kan het aantrekkelijkheid van bepaalde punten natuurlijk verhogen. Als sommige dingen niet meer aan te lopen zijn pakken mensen sneller de auto en staan dan in de file. Als je voor het laatste stuk een alternatief kan bieden gaan mensen de auto niet gebruiken. Je moet wel weten wat er speelt in het gebied.

P: Je moet eerst de mensenstroom geanalyseerd hebben

R: Je moet weten wat er aan de hand is, spreken met bedrijven.

P: Dan ga ik nu naar de link met een regionaal perspectief. Hebben de slimme maatregelen die nu worden geïmplementeerd overlappingen tussen andere steden?

R: Absoluut. Deelauto’s zie je gewoon in heel veel gemiddelde gemeentes terugkomen. Wat ik net vertelde over die deelfietsen zie je ook in veel steden terugkomen. Light electric vehicles zie je ook overal terugkomen. Beter Benutten en Mobility as a Service zijn wel twee ministriële machines geweest om de regio en steden meer kennis te laten maken met het innovatief regelen van mobiliteit. Nu gaat het erover dat die dingen meer verankerd worden in de regio’s. Dat soort slimme maatregelen als parkeersensoren. Het zit hem echt in veel meer dingen, ook in rijgedrag en belevingswaarde. Ik heb een voorbeeld waar ze bij NS mee bezig waren. Een lichtstrip op de buitenkant van de trein laat zien hoe druk het is in de coupé van de trein. Rood/oranje en groen, zodat je weet op voorbaat hoe druk het is en je dus op de juiste plek gaat staan. Het voertuig communiceert dus met de mensen. Het heeft dus zeker ook een bredere werking. Er is wel degelijk ook al wel een samenwerking.

P: Dat is ook mijn volgende vraag: Of er een geïntegreerd plan tussen de grootste steden in de Randstad.

R: Van het G4 hebben we wel een manifest. Vanuit het Rijk hebben we gezegd dat de steden vorder worden en we willen dat de economie zijn ding wil doen. Dat gaat alleen niet over slimme mobiliteit. Je hebt veel studies in verschillende regio’s dat gaat over kansen. We zetten daar dus niet echt in op slimme mobiliteit. Je ziet dat de lange-termijn plannen in de regio betrekkelijk weinig over slimme mobiliteit. Je ziet wel in regio Den Haag-Rotterdam dat de nieuwe maatregelen alleen op korte termijn geregeld zijn. Dat past ook wel een beetje bij innovatie. Je kan niet zeggen we gaan over 30 jaar mobility as a service doen. En hoe ziet dat er dan over 30 jaar uit. Je weet helemaal niet hoe we dan reizen. Innovatie
is gewoon learning by doing. Op een gegeven moment werken er 8 pilots niet en 2 wel. Daar ga je dan je energie op zetten. Dat is dan een proven concept dus daar gaan we mee verder. Voor de rest hebben we hier dus ook een werkplan, dat gaat heel erg over afwegingkaders. Waarom is het nuttig om een innovatie op te schalen, wat is de doelgroep etc. Het gaat ook veel over inspelen op mondiale megatrends.

P: Ik heb ook gevonden dat het moeilijk is om te weten van zelfrijdend vervoer nu gaat doen met de mobiliteit. Ik kijk dus nu iets meer naar korte termijn maatregelen.

R: Autonoom vervoer is nog te ver weg misschien. Mobility as a service is iets tastbaars. Je hebt bijvoorbeeld een app waar alle mobiliteitsdiensten op elkaar kunnen worden aangesloten. Door middel van data en ICT corresponderen die mobiliteitsmaatregelen en kan alles gereguleerd worden. En dan wordt voor jou de beste optie bedacht op basis van wat jij hebt gekozen.

P: Klopt ja, als ik dan iets verder de toekomst in kijk. Door de snelle ontwikkeling wordt de reistijd voor mensen steeds korter. Is het mogelijk dat de stadsstructuur gaat veranderen? Net hadden we het over de stadskernen en hubs. Je kan nu verder reizen zonder dat de reistijd verkort.

R: Wat je ziet dat succesvol is park and ride, en park and bike. Dat je voor het laatste stuk de fiets pakt in het stadcentrum. Ik zie niet echt stadsstructuur wezenlijk veranderen omdat de stad zo gegroeid. Je kan de stad veel efficiënter indelen. Als je de binnenste ring langzaam verkeer doet. Als je op de buitenste ring van die mobiliteitshubs neerzet. De stad gaat dus wel veranderen maar op kernpunten geloof ik zeker dat er mobiliteitshubs gaan ontstaan waarbij niet alleen mobiliteit samenkomt maar dat er ook daadwerkelijk voorzieningen zijn. In die zin denk ik dat dat echt gaat komen. Ik denk ook zeker dat zelfrijdend vervoer gaat komen maar dat dit begint met shuttlebusjes voor de last mile.

P: Dan mijn laatste afsluit vraag. Over het algemeen denk je dat een algemene Randstad benadering voor mobiliteit tot een betere veerkracht kan leiden voor de Randstad?

R: We werken er nu wel aan. Daar moeten we echt nog meer toewerken naar een geïntegreerd verhaal. Het basis punt zijn wel de verkenningen op de lange termijn. Er moet een vertaling gemaakt worden met de korte termijn en de lange termijn en de hogere doelen die daaraan te koppelen zijn.

P: Het blijft ook misschien moeilijk omdat je elke jaar vier jaar weer een andere regering hebt.

R: Politiek is echt het probleem in het werken met mobiliteit. Politiek heeft maar een beperkte kennis op een bepaald thema. Als je een wethouder hebt die heel erg pro auto is, dan moet je wel even nadenken en gaat het waarschijnlijk weer de andere kant op. Ik heb in je verhaal nog niet echt door, probeer de gebruiker niet uit het oog te verliezen. Er is vervoers armoede. Bijvoorbeeld in Putten, heb je allerlei werklozen op de rand van Zeeland. Daar wonen allemaal mensen en in de haven worden mensen verzocht maar er is geen openbaar vervoer lijn richting die haven waardoor die mensen niet kunnen
komen bij hun werk. Het is een voorbeeld maar je hebt ook mensen die in Den Haag in zuidwest niet eens geld hebben voor überhaupt mobiliteit. De tegenhanger van vervoersarmoede is mobiliteitsgeluk. Hoe zou je nu mobiliteit kunnen verbeteren waardoor mensen dus gelukkiger zijn. Mobiliteitsgeluk is echt wel een interessante kant van mobiliteit. Het gaat veel over de sociale kant van mobiliteit.

P: Dat komt ook wel terug bij MaaS.

R: Er wordt ook nog steeds te weinig gekeken naar doelgroepen bepalen voor mobiliteit. Wie gebruikt nu welke vormen van mobiliteit. Het is zo moeilijk om bepaalde typen mensen te linken aan de verschillende vormen van mobiliteit. Je hebt natuurlijk Rode, Groene, Gele en Blauwe mensen. De link met mobiliteitsvoorkeuren vind ik nog een beetje dun. Je kan specifiek nadenken over de positionering van de mobiliteitshubs om de klappen van je netwerk in die zin in betere banen zou kunnen leiden.
Appendix 4.6 ‘Transcript mobility advisor Witteveen+Bos’
Witteveen+Bos, May 24, 2018

Attendants: Pedro Mol, Respondent

P = Pedro Mol

R = Respondent

Note: The start of this interview was not related to the content of my bachelor study. This means that the transcript is starting when data got relevant. Furthermore, this interview was held in Dutch which means that the transcript will be in Dutch.

Transcript

P: Introduction.

R: Ja. Er zijn wel eens discussies geweest over niet een soort van autoriteit voor mobiliteit en verkeer moet zijn voor de hele Randstad en dat die over alle infrastructuur moet gaan.

P: Er zijn ook zoveel technologische ontwikkelingen die je niet meer bij kan houden.

R: De Randstad is in die zin wel redelijk uniek. Als je Kopenhagen als voorbeeld stelt. Dit is een grote stad waar een aantal wegen naar toe gaat. Met één kernpunt dus zie je veel in het buitenland. In de Randstad hebben we gewoon een aantal steden en er zijn een heleboel mensen die tussen die diverse kernpunten reizen. De infrastructuur rondom de stad is dus van essentieel belang in plaats van alleen van en naar de stad. Tokio heeft bijvoorbeeld ook meerdere kernen, daar hebben ze ook nog veel minder ruimte. Ze hebben daar echt geen ruimte tussen de bergen. De ruimte waar je kan wonen en bouwen is gewoon heel beperkt vandaar dat de steden zo compact zijn. Dit maakt het speciaal en dit vraagt ook om een zekere vorm van regie. Terwijl in een stad met één kernpunt je dat in mindere mate nodig hebt. Dit is echt wel een serieus probleem in Nederland, met die afstanden tussen verschillende steden. Je kunt heel Nederland als 1 stad noemen. Als je kijkt naar Nederland, 17 a 18 miljoen inwoners. Het aantal inwoners is gelijk aan een metropoolstad.

P: Dan zullen we maar met de vragen beginnen. Sommige vragen zijn niet meer zo van belang want sommige vragen vallen in herhaling.

R: Waarom is smart mobility belangrijk. Als je denkt aan digitalisering en cijfertjes en dergelijke. In die zin vind ik smart mobility overschat, het hoort namelijk gewoon bij deze tijd om alles te optimaliseren. De uiteindelijke winst die je daarmee pakt is beperkt, het zit hem puur in de optimalisering.

P: Zie je smart mobility ook als elektrisch rijden en autonoom rijden?

P: Hoeveel ruimte wil je nog aan de auto geven?

R: Met name de barriere werking van die stromen die je krijgt. Of mensen nu hard of langzaam rijden, dat moet je gewoon niet willen. Wat wij eigenlijk doen, de auto’s zijn nu nog smerig en onveilig. Het wordt nu enorm gewaardeerd als je omschakelt naar schone auto’s. De vraag is of we dat straks gaan vinden, als de auto straks niet meer onveilig of smerig is. Hoe wordt dan het sentiment, dan gaat het alleen nog om ruimtegebruik. Hoe claimen we dan dat ruimtegebruik? Willen we een aantrekkelijke omgeving hebben of geven we de ruimte aan de mobiliteit.

P: Misschien kan je mensen dan ook trekken om kosten te verlagen. Als het aantrekkelijker wordt om hun auto weg te doen.

R: Als je kijkt naar kosten en kijkt naar het wagenpark. Als je gewoon een VW Polo koopt, kost dat natuurlijk niks. Als je kijkt naar het verschil in kosten dat je dan maakt tussen die twee voertuigen, als je bereid bent dat verschil in kosten te lappen omdat je dat maatschappelijk nodig vindt. Er zijn talloze mensen die hebben auto’s die maar 5000 kilometer per jaar. Meer niet. Voor hetzelfde geld kunnen ze gewoon taxi’s nemen als vergelijking. Of af en toe een auto huren. Dat doen we niet omdat ze zelf in die cocon zitten. In Amsterdam is het zo dat de car to go, die worden gebruikt door mensen die geen auto hebben. Toen car to go er niet was ging je fietsen of met het openbaar vervoer. Sinds car to go beschikbaar is gaan ze met de auto. Dat is over het algemeen de negatieve keuze om geen auto meer te hebben. Het is logisch als je geen auto hebt in het centrum maar uiteindelijk is het een negatieve keus. Want als je hem wel zou kunnen hebben had je hem wel gehad omdat je hem wel kan betalen, zeker als je in Amsterdam woont. Dat merk je wel. In die zin zeg ik, we moeten meer fundamentele keuzes maken van hoe wil je je verplaatsen in de stad. Dat is wat je nu ook in het beleid ziet, dat is gister weer vernieuwd. Kilometerheffing en andere termen. Je moet ze laten betalen per kilometer, maar dat is ook weer te gemakkelijk. Als je de auto gratis geeft en laat betalen per kilometer, dan ga je hem veel uitbundiger gebruiken. Dan ga je hem meer gebruiken wanneer het niet druk is maar dan worden die momenten ook druk. Wat we nu zeggen is de neiging krijgen om anti auto te worden, maar er is geen
alternatief. Je kunt ook maatregelen doen op grotere schaal waardoor je de behoefte voor mobiliteit verminderd. Je had vroeger gewoon een andere cyclus. Man en vrouw, man die werkt 500 meter van zijn woning. Hierdoor stond de auto heel de dag stil. Het heeft ook natuurlijk met werktijden te maken. Als je om 5 uur naar huis vertrekt sta je gewoon klem. Als je dus eerder vertrekt zou je minder file hebben. Waarom zijn die werktijden zo afgestemd. 'S Morgens hebben we dus ook het probleem om op je werk te komen. Als je de werktijden iets verschuift heb je dus dat probleem niet meer. Dan is er nu een discussie je werkt te kort, maar die ben je kwijt als je wat eerder begint. Aan de andere kant hebben we een steeds breder wordende spits. Als je in Antwerpen kijkt is de ochtend en avondspits in elkaar overlopend. Het is de vraag wat we willen met zijn allen en daarom ook leuk dat planologen zich daarmee bezig houden. Misschien nog even over de smart mobility term, ik vind deze manier van denken de echte smart mobility. Echte smart mobility is de visie op mobiliteit en hoe we daarmee omgaan.

P: Ik vind ook inderdaad ICT en data een onderdeel daarvan, het is alleen om sommige dingen te meten.

R: In het stenen tijdperk gebruikten we steen, in het ijzeren tijdperk ook ijzer, in de digitale tijdperk ook ICT. Het is een hulpmiddel. Het hele verhaal van big data vind ik een beetje in die categorie passen, je moet het zeker verder voornemen, je kan beter voorspellen, service verlenen maar het heeft ook een bepaalde druk. Krijg je straks dat mensen gaan zeggen: had nu maar gereserveerd. Je moet alles gaan plannen in de toekomst. Sommige mensen weten al maanden van te voren dat ze in het weekend gaan doen. Dat moet misschien ook in de toekomst door de big data.

P: In het begin keek ik puur naar instrumentale maatregelen, maar het gedrag en de sociale aspecten heb ik ook echt wel als een van mijn resultaten daarin verwerkt omdat veel gemeenten dat ook weer betrekken.

R: We hebben nu het recht om te gaan en te staan waar je wil. Dat is allemaal waanzin natuurlijk. Ik bestel bijvoorbeeld alles via internet, en er zou één bestelmoment per week zijn zou je veel meer efficientie hebben dan dat het busje 3 a 4 keer per week langs moet komen. De vraag is of we dat recht op mobiliteit nog moeten krijgen. Bejaarden rijden nu bijvoorbeeld op de e-bikes overal, het is dus noodzaak om sommige gebieden te veranderen op het gebied van infrastructuur. Is het nu duurzaam om die bejaarden overal te laten fietsen. Wat je ziet met die speed padillac zie je eigenlijk een beetje dat het gedrag van die mensen anders is. Het is heel erg het doorgaand verkeer karakter.

P: Dat is ook één van mijn vragen verder. Ik vraag me af of bijvoorbeeld het gebruik van de nieuwe fietssystemen voor een onveiliger of veiligere stad krijgen.

R: Afgelopen statistieken zeggen dat er meer doden in het fietsverkeer zijn gevallen in de steden. De manier waarop op dit moment de fietsers denken is iedereen heel erg tegen een helm. Omdat er dan 15 tot 20% minder mensen gaan fietsten. Mensen zeggen ook wel, omdat er meer mensen gaan fietsten heb je ook meer slachtoffers. Stel nu dat we een auto compleet veilig kunnen maken. Nu zijn we bij
verkeersveiligheid veel beter dan belgie. Dan zijn we wel het lachertje, want overal waar straks niet meer gefietst wordt is alles veilig terwijl wij overal fietsers hebben. Dat is dus een zeer dubieus systeem. Als je dan kijkt, je hebt fietsfiles in alle grote steden zoals Utrecht. Je hebt plekken waar je amper over kan steken. Er is nog veel onduidelijkheid in de regelgeving daarin.

P: Je hebt altijd gehad dat fietsers niet echt deelnemen aan het verkeer. Nu met die speed padillacs is dan weer de vraag hoe die in het verkeer zitten.

R: Je hebt veel status in het buitenland bij het niet fietsen. In Nederland valt dat wel mee. Die cultuur van speed padillacs is wel weer een nieuwe subcultuur. Die mensen willen doorrijden met snelheid. Dat brengt dus gevaren met zich mee. Dan krijg je weer mensen die te hard rijden binnen de bebouwde kom. Een ander punt van de fiets is dat je ziet in Amsterdam waar nu grote parkeergarages zijn gemaakt voor fietsen. Wat je eigenlijk faciliteert is de fietsier die uit de stad komt die stuur je naar het centrum, waar ook de mensen die in het centrum moeten zijn hun fiets zullen zetten, dan laten ze hun fiets achter bij het station en dan vertrekken ze uit Utrecht. Je gaat dus naar het centrum, waar het overigens enorm druk is met de fiets. Daar zet je je fiets neer, waar zoveel fietsen zullen staan voor mensen die als ze van hun stappen het eerste wat ze zullen doen de stad verlaten. In Amsterdam zie je dat nu al verschuiven, ze willen geen fietsen meer bij het Centraal station want daar is geen ruimte. Ga naar Station Lelylaan, of Zuidas. Dan verandert eigenlijk ook de vorm van de stad. Amsterdammers hebben steeds minder te zoeken in het centrum. Waarom zou je nog naar het centrum gaan met al die toeristen.

P: Dan krijg je dus een Venetiaans centrum.

R: Dit willen ze dus voorkomen door middel van bussen niet meer toe te laten. Maar ze vergeten dus dat je met deze maatregelen minder Amsterdammers in het centrum krijgt. Je ziet voor je dat de grachtengordels gewoon voetgangers gebied is voor toeristen omdat andere mensen daar gewoon niks meer te zoeken hebben. En dan gaan centrum voorzieningen zich ontwikkelen voor de toeristen. Dus de dynamiek van de stad verandert. In Utrecht zie je dat niet gebeuren omdat dit centraal ligt in Nederland. Het lukt ze niet om meerdere hubs te creëren. Ik heb wel eens gezegd: Lang level de fiets, investeer in het openbaar vervoer. De auto moet uit de stad, en we moeten investeren in het openbaar vervoer. Als je een stukje lopen introduceert in je overstap van openbaar vervoer. Als je goed en snel openbaar vervoer maakt, van hoge kwaliteit, comfortabel en hoge frequentie, dan is het stukje lopen er naartoe niet zo erg en is ook nog eens heel gezond. Gezondheid, fiets is gezond, maar lopen is ook gezond en veel veiliger dan fietsen. Je moet het lopen promoten, maar niet het fietsen in de stadscentra. Vorig jaar was ik in Italië, wat zie je dan, een groepje mensen fietsen, dat zijn dan Nederlanders. Nederlanders vinden het fantastisch dat je ook in dat soort steden kan fietsen. Waarom je daar nu willen fietsen? Het is de drang om te willen fietsen daar. Je kunt alles wat je kunt zien ook zien als je gewoon gaat lopen. De kilometerkosten in dorpen bijvoorbeeld zullen laag zijn omdat we daar mobiliteit willen promoten,
waardoor de fietsen daar ook gaan verdwijnen. Als je dan je eigen energie kan opladen kost een auto bijna niks meer.

P: Dan wil ik nu toch even terug naar het ICT aspect. Hoe kan ICT de flow van mensen beïnvloeden? Kan dit de kwetsbaarheid van een stad verminderen?

P: Ze hebben het nu eigenlijk over informeren. In de toekomst is het ook mogelijk om mensen meer te gaan sturen. Hoe zie jij dat?

R: Een deel van de mensen die je ziet zijn steeds onwetener aan het worden. Mensen rijden gewoon de route die de tomtom aangeeft. Dit zal nog steeds sterker worden. Je kunt mensen dus makkelijker anders sturen en je kan gaan ingrijpen op de tomtoms vanuit een bepaalde visie. Zolang de aankomsttijd oké is zullen ze ook niet zoveel bezwaar hebben. In die zin kun je dat doen, informeren is straks ook niet meer nodig omdat het systeem zichzelf regelt. Daarnaast kun je gaan rekenen om het ook te optimaliseren en het wegennetwerk nog verder te benutten. Dat klopt, de vraag is even hoeveel je daarmee wint, hoe ver dat zich verhoudt tot mobiliteit als geheel. Als je 2% verbetering kan maken maakt het allemaal niet zoveel uit. Hoeveel los je daar de problemen mee op?

P: Het zou eerder een combinatie van mogelijkheden moeten zijn dan één van die aspecten aanpakken. We hadden het net over niet-gemotoriseerd transport dus daar hoef ik niet veel meer over te vragen. Welke maatregelen zorgen voor minder druk op de infrastructuur?

R: Ik denk dat als je gaat kijken waar mensen werken, is ook weer een dilemma. Het thuis kunnen werken, gaan mensen in Groningen wonen en in Amsterdam werken omdat ze twee thuis kunnen werken. De Wever-wet, de tijd die mensen maximaal willen werken, gaat die wet niet meer op als de totale reistijd voor normaal een week in 2 dagen terecht komt. Dat zorgt dus ook weer voor meer verkeer. De reistijd gaat dus omlaag, waardoor mensen langere afstanden dus eerder accepteren. Dit zorgt misschien voor een dilemma werking want dit zorgt ook weer voor meer verkeer. Je moet echter de mindset veranderen, of je moet gaan zeggen dat mensen geen recht hebben op mobiliteit.

P: Je wil dus eerder gedragsverandering promoten dan fysieke maatregelen nemen.

R: We hebben altijd gezegd dat we moeten investeren in het faciliteren van meer mobiliteit. Dat doen we ook eigenlijk nog steeds. We breiden alles nog steeds uit, Schiphol uitbreiden, nieuwe snelwegen,
meer investeren in het openbaar vervoer. We kunnen ook gewoon zeggen dat we meer in het investeren in het openbaar vervoer. Dat is helemaal niet zo moeilijk maar dat is niet dus niet onze mindset.

P: In hoeverre zijn deelauto programma’s opgestart? Ik wil daarin ook een link leggen met carpoolen.

R: Het is belangrijk dat je dus kijkt naar de combinatie. Als je deelauto’s alleen gebruikt voor individuele verplaatsingen, dan is het aanbieden van deelauto’s, die worden met name gebruikt door mensen die ze gaan gebruiken in plaats van fiets of wandelaars. Je ziet dat in het algemeen het beschikbaar stellen van vervoersmiddelen en de prijs goed is, mensen die graag willen gebruiken. Deelauto’s zijn goedkoop, beschikbaar, makkelijk verkrijgbaar. Het algemene economische beeld is dat als je iets verkoopt en het beschikbaar wordt gaan we het ook echt gebruiken. Als we nu alleen maar deelauto’s gaan doen, zal het het probleem niet gaan oplossen omdat je mobiliteit wordt vergroot. Er wordt meer gebruikt en er ontstaat meer verplaatsing. De wegen zelf worden veel drukker. In San Fransisco zijn er al geluiden dat het aantal Uber taxis, dat ze zo gemakkelijk beschikbaar, dat mensen niet meer 300 meter lopen, die bellen even digitaal en dan komt er al een auto. Het wordt allemaal zo makkelijk beschikbaar gesteld en het maakt je qua kosten ook niet meer uit. Ondertussen zorgt dat wel voor meer verkeer. Het trekt weer chauffeurs aan die daar rond gaan rijden. Het is een zichzelf versterkend effect.

P: Dus in combinatie met carpoolen zou het groot effect kunnen hebben.

R: Als je zegt ik maak er openbaar vervoer van, op een gegeven moment is dat wel een vage grens. Je moet dan zeggen, oke, ik wil niet dat jij overal opstapt. Het ultieme deelauto idee, is dat je voor de deur uitstapt en de auto weer wegrijdt. Als je een kantoor hebt met 1000, zie je hét al voor je dat er 1000 auto’s op die plek willen stoppen. Dat gaat dan uren duren voordat iedereen in en uitgestapt is. Dat gaat niet werken en hoe ga je er dan mee om? Wat je dan kan zeggen, we gaan vaste plaatsen regelen waar je in kan stappen. Dan moet je ook accepteren dat iemand die naar de dezelfde bestemming moet, dat je dan iemand erbij krijgt en dat moet je dan accepteren. Dan krijg je een beetje het idee van skiiën. Liften die allemaal dezelfde kanten opgaan. Als het druk is wordt het sociaal geaccepteerd om samen in de lift te gaan zitten. Als het niet druk is wordt dat niet sociaal geaccepteerd. Dit is een goed voorbeeld. Dan gebruik je je vervoersmiddelen wel efficiënt. De vraag is dan voor wie zijn die auto’s, is het privaat of via de overheid geregeld? Als het privaat is, zullen ze zorgen dat er in de spits altijd te weinig vervoer is want dan kunnen de prijzen omhoog gaan. Buiten de spits zullen ze juist mensen uitlokken om te gaan reizen door aanbiedingen. Ze willen dan gewoon alle kleine beetjes geld binnen krijgen. MaaS, lijkt heel leuk en zorgt voor een stukje efficiency en het gemak, maar het product van MaaS is mobiliteit. Wil een MaaS bedrijf groeien moeten ze meer mobiliteit hebben, waardoor nog meer mensen gebruik moeten maken van het systeem. Het feit dat mobiliteit een product is is al een verkeerde incentive. De mobiliteit blijft groter worden. Er zal geen MaaS bedrijf zeggen dat ze mensen minder mobiel moeten maken. In die zin, deelauto’s heeft op dit moment in de pers, als je dat doet is het eigenlijk milieubesparend. Een start-up Beemers willen graag ritten gaan combineren. Ze willen dus deelauto’s opzetten maar ze richten
zit heel erg op het combineren van mensen. Mensen die dus bij elkaar in de buurt wonen en bij elkaar in de buurt werken kunnen dan ritten gaan combineren. Maar als de auto heel goedkoop wordt, waarom zou je dan nog samen gaan reizen.

P: Dan wil ik nu kijken naar de relatie met resilience. Eerst even beginnen met de stedelijke dichtheid in de Randstad. In hoeverre zie je dat meer als een kans of als een probleem?

R: Er ligt een enorme mobiliteitsmarkt in dichtbevolkt gebied. Dus, de markt voor slimme systemen is daar ook groter. Aan de andere kant, als de slimme systemen er uiteindelijk voor zorgen dat mobiliteit goedkoper wordt. Hoe kun je dan scoren als bedrijf als mobiliteit alleen maar goedkoper wordt, dan wordt het probleem dus niet wordt opgelost. Het kan zijn dat je het systeem efficiënter maakt, dat je nog meer mensen vervoert binnen het systeem, maar het blijft de druk vergroten om nog meer mensen te vervoeren. Dat vind ik niet handig. Tenminste, daar zou je planologisch over na moeten denken willen we dat we want het kost wel ruimte. Dat besef moet je hebben en dat hebben we nog te weinig. Verkeer gaat niet meer over milieu, maar het over ruimte. Ruimte en vrijheid van bewegen, barriërewerking.

P: Milieuoplossingen komen toch wel, het gaat inderdaad meer om de ruimte. Even kijken, hoe kan het slim regelen van de bestaande infrastructuur van invloed zijn op de adaptieve capaciteit van de stad?

R: Ik denk dat je het dus kan optimaliseren, dus je systeem nog beter benutten. Maar wat je je wel moet bedenken, van natuur hebben mensen dat als er nog ergens ruimte is om van A naar B te reizen waar geen file is, dat mensen dat prettiger vinden. Totdat het op een gegeven moment de druk wordt, dan kun je dus beter in C gaan wonen. Eigenlijk zie je dus dat die Randstad al steeds verder gevuld is. Dat zie je ook weer terug in waar de files zich voorkomen. Ook daar weer geldt, het kan twee kanten op.

P: Verder. Hoe kunnen veiligheidsmaatregelen zoals smart verkeerslichten zorgen voor een veiliger straatbeeld?

R: Smart verkeerslichten maakt het niet direct veiliger. Allerlei systemen zorgen voor meer veiligheid en dat is ook via maatschappelijke druk dat alles veiliger moet worden. Dat is natuurlijk positief. De vraag is of dat veiliger ook daadwerkelijk betekent hoe dat mobiliteit bevorderd. Veiliger betekent soms ook dat sommige delen voor een bepaalde modaliteit worden afgesloten. Om bijvoorbeeld de slimme auto te faciliteren. Dan denk ik dat als het uiteindelijk leidt tot meer scheiding en dus meer barriërewerking, dan zeg ik dat het weer een beetje gaat tegenwerken.

P: Het gemak gaat dus achteruit.

R: Er zit ook een einde aan de veiligheid. Je komt er mee weg dat er op den duur een x aantal doden vallen. Wat de fietsenbond zegt, als we minder gaan fietsen dan is dat ongezond. Fietsen is gezond, dus als we minder gaan fietsen gaan de mensen eerder dood, en het eerder doodgaan van de mensen is erger dan dat er af en toe een paar doden vallen in het fietssysteem. Daar komt het in feite op neer. Het is maar
hoe je veiligheid bekijkt. Het is cynisch als ik het op die manier vergelijk. Je ziet de fietssystemen daar wel mee worstelen.

P: Wat zijn er voor nieuwe vormen van transport en kan steiging van die diversiteit zorgen voor een robuuster systeem?

R: Ik denk dat je voor een bepaald vervoer, als je met slimme manieren van openbaar vervoer. Citycoaster bijvoorbeeld, is een idee dat veel compacter, lichter en sneller is en dat ook dwars door gebouwen gaat kan je dus meer mobiliteit gaan scheiden. Als je je mobiliteit voor een deel in je gebouwen kan afhandelen zorg je er weer voor dat je je openbare ruimte vrijhoudt.

P: Dan creëer je weer een nieuwe infrastructuur laag.

R: Het is ook heel licht, want als je kijkt naar tramlijnen en spoorlijnen, die zijn heel zwaar dat is zware infrastructuur. Het is zo ontzettend duur om nieuwe lijnen aan te leggen. Als nevenwerking gaan we nog meer treinen laten rijden op dezelfde lijnen. Daardoor werkt het eigenlijk averechts. Ik denk dat we de technieken die we nu hebben moeten gebruiken voor nieuw openbaar vervoer. Maar niet het openbaar vervoer dat we nu hebben want dat is allemaal van 150 jaar geleden. We kunnen het openbaar vervoer heel anders inrichten. Zeker op het moment als je meer vrijheid hebt om op verschillende lagen te werken. Dan kun je ook veel sneller voertuigen zonder chauffeurs kan laten rijden en je veel hogere frequenties. Dan krijg je ook weer een vergelijking met het wintersport gebeuren waar ik het net over had. Op het moment dat er geen behoefte is, staan ze stil. Als je in daluren een trein ziet rijden is hij grotendeels leeg. Die trein rijdt dus voor die twee/drie mensen. Ik denk dat we een andere manier van openbaar vervoer moeten creëren.

P: De connectie tussen die modaliteiten. Hoe is de connectie nu en zie jij als er betere connectie komt dat je dan ook betere adaptieve capaciteit?

R: ja, als je nu Rotterdam binnenkomt bij Kralingse Zoom. Je gaat met de auto naar Rotterdam, je gaat de snelweg af en je rijdt zo de parkeergarage binnen. Dat is de enige plek in heel Nederland waar dat zo is geregeld. Je hebt in Amsterdam bijvoorbeeld de Ringweg met daaromheen allemaal wijken. De metro stopt nu dus midden in de wijk, omdat daar mensen wonen. Wil je bij de metrostation komen met de auto is bijna niet te doen omdat dit midden in de woonwijk is. Dat is natuurlijk gek. Waarom zit het station niet gewoon naast de snelweg. Dan kun je namelijk veel makkelijker overstappen. Als je dan naar het centrum moet, ga je niet meer met de auto. Vroeger ging je met de auto van A naar B. Je gaat tegenwoordig niet meer van A naar B, maar van A naar P en dan naar B. Als je ziet dat er in Amsterdam een parkeernorm van 0,2 is krijg je straks dus dat eerst dat je van A naar P naar P naar B gaat. Dan wordt het dus aantrekkelijker om heel veel overstappunten te creëren aan de rand van de stad. In Ede zijn ze nu bezig met een nieuw station Ede-West. Waar moet dat dan komen? Juist bij de snelweg in plaats van midden in de woonwijk. Je moet makkelijke overstapmogelijkheden creëren. Dat soort uitwisseling
hebben we eigenlijk helemaal niet. Ik heb in Deventer op 50 meter afstand van het station en ik had een
deeleauto. Ik gebruik ook regelmatig OV-fiets, 20 jaar geleden was dat allemaal nog niet zo
vooruitstrevend. Als je overstappen heel makkelijk maakt, denk een auto de volgende keer ik zet hier
mijn auto neer en kan ik makkelijk in het centrum komen. Dat is dus veel first-mile en last-mile. De
connecties tussen die verschillende modaliteiten moeten dus echt verbeteren. Het is ook heel duur om
je bestaande systeem aan te passen. We hebben dat systeem natuurlijk geleidelijk aan gebouwd en de
ontwikkelingen gaan nu snel dat we niet meer bij kunnen houden qua bouwen.

P: Nog even snel de laatste: Hebben slimme maatregelen overlappingen tussen andere steden?

R: Als je dit doet wat ik net allemaal zei, dan heb je dus dat tussen steden veel gemakkelijker reis
vervoer. Openbaar vervoer kan heel veel beter in Nederland. Dan moet het dus wel in die andere steden
ook georganiseerd worden en ook daartussen in.

P: Is het mogelijk dat de stadsstructuur zal gaan veranderen door kortere reistijden?

R: Amsterdam gaat eigenlijk al verschuiven naar meerdere kernen. Daar krijg je dus cafés, bioscopen.
Mensen gaan straks niet meer uit in Amsterdam Centrum omdat dat toch overloopt van toeristen.
Mensen willen liever met hun eigen mensen in hun eigen buurt uitgaan als het zo doorgaat. Dit is echt
een transferium.

P: Geloof jij in een regionale randstad benadering richting slimme mobiliteit?

R: Je creërt een groter volume, als je een keer iets innovatief wil gaan doen. Dus als je echt een keer een
verschil wint maken en je dus ook veel geld nodig hebt. En je kunt ook makkelijker op elkaar af gaan
stemmen. Aan de andere kant moet je ook een beetje eigenheid houden. Elke stad mag nog wel enigszins
zijn eigen systeem houden. Tot op een bepaalde schaal moet je systeem wel gelijk zijn.

P: Je systeem als geheel moet misschien hetzelfde zijn.

R: Je moet het systeem snappen.
Appendix 5 ‘Coding method’

This document will provide a detailed description of this studies’ coding methodology. Coding is an analytical tool and process in which data, in this case qualitative form is categorized to facilitate the analysis as is done in the results chapter. This research is partly using the grounded theory approach, which is a systematic methodology in the social sciences involving the construction of a theory through methodologic gathering and analysis of data (K. Charmaz, 2007). While grounded theory research might not be the most suitable coding method for a research of this type, it has proven to be a handy tool when coding the interviews, since various important new insights have been found. These insights would not have been found if another coding method had been used.

First, the interviewees were defined. A table of the six interviewees can be seen in chapter 3 methodology.

5.1 Semi-structured interviews

Baarda (2012) separated doing interviews into two types: structured and unstructured. Structured interviews are quick and easy to administer since they are mostly about following a certain questionnaire. Unstructured interviews on the other hand, do not reflect any preconceived theories or ideas and are performed with little or no organisation. Unstructured interviews are time consuming and therefore this research tries to meet the structures halfway: semi-structured interviews. This type of interview tries to follow a guideline of several key questions that help to define the areas to be explored and in this research, this is the most suitable option. The detailed interview guide can be seen in appendix II. Doing interviews is the main data collecting method in this research (Baarda B., 2012). The choice of using professionals of the municipalities has been made because they most likely have the required knowledge of smart mobility. The goal of this research is to execute six interviews, including four respondents with one of each researched municipality. The other two interviewees are external experts that have a different perspective of smart mobility. The key to create a successful interview is whether they are able to think about links and connections between the different cities. During the interviews, the interview questionnaire has been changed several times to make sure getting the same information is prevented. The next paragraph describes the different coding phases that underwent to execute the analysis. The analysis phase was always a continuous process and phases went backwards and forwards.

5.2 Coding

5.2.1 Open coding

After doing the first two interviews, data was collected. The interviews were recorded and therefore the opportunity arose to transcribe the recorded material. This resulted in two transcripts for the first two interviews with Sweco Rotterdam and the Municipality of Amsterdam. The data was put into the software program Atlas.ti. This is a software program that serves as a workbench for the qualitative analysis of large bodies of text or other type of qualitative data. This way, it is easier to analyse the
found data and to generate links between the variables and indicators. The first interviews were coded using the open coding method, where the data was not analysed based on the existing theory, but based on the meaning that emerges from the data. After the open analysis, it became clear that some of the information found was not relevant to the research and therefore the interview questions had to be adjusted. For example, the interview questions were too much based on whether smart mobility measures are existing in the cities. The questions were not enough based on the link between smart mobility and resilience. Therefore, more questions were formulated to generate deeper insight in the link between the above-mentioned concepts.

Then, all interviews were executed and a thorough coding scheme was developed. Atlas.ti helped to go through each one of the six interviews. Figure shows a screenshot of one of the interviews that was coded.

This screenshot shows that parts of sentences were coded individually with the variables in mind. While nearly every sentence was coded, the important codes were given a small label to keep track of them. For example everything related to ‘charging stations’ was given the label charging stations and so on. After everything had been coded, a total of 367 codes were created. A screenshot of part of the open coding results can be seen in figure ...

When multiple quotations had the same meaning, they were grounded with the same code. At the end of the open coding phase, the researcher read through all codes and deleted a few codes that were not relevant.

This has resulted in around 300 open codes that were ready to be analysed.
5.2.2 Axial coding

Axial coding consists of identifying relationships among the open codes. What are the connections among the codes? This will be easier to understand when you see the last chart of this blog post.

Axial coding is about the process of relating codes to each other. It consists of identifying relationships among the open codes. First, it is important to identify different categories. What are the connections among the codes? Because of the open coding process, the most important categories were identified via the conceptual framework. This caused the opportunity to order the codes into the most important code groups, to create a better overview. For example, everything related to infra-vehicle communication became a separate category as well as everything related to smart infrastructure. The different code groups and how many codes they have can be seen in figure...

It is possible that some codes occur in multiple code groups.

During the axial coding process, the main variables from both smart mobility and regional resilience were re-analysed and adjusted. This resulted in the addition of liveability and social relevance variables for regional resilience since this came back many times in the interviews. During this process, the opportunity to create a better overview making a smart mobility SWOT-analysis, since the influences on regional resilience are not only positive but could also be negative. The process has led to the creation of a complex linking scheme, where all codes and indicators were linked to each other, proven by the quotations from the interviewees. Figure … shows the network view. The network view in the figure is not complete but this can be found in the Atlas.ti file. Based on this network, a new simplified version serves as the adjustment of the defined conceptual framework. The direct links from the smart mobility measures are made to the variables from regional resilience. Furthermore, it is highlighted that the vulnerability variable is closely connected to the other variables in the regional resilience side. Vulnerability is not operating on its own.
5.2.3 Selective coding

Normally, selective coding is about figuring out the core variable that includes all of the data. However, this research’s main goal is not about identified one variable, it is more about giving a better insight in what most likely influences regional resilience. Resulting from the interviews and previous coding, it does become clear that the research results are heading in one directing: the development of an integrated plan for the Randstad concerning smart mobility. This is also the main driver that comes back in each interview and serves as the main conclusion for this research. The main goal of this research was about identifying the influence of smart mobility measures at an urban level on the regional resilience of the Randstad as a whole, especially related to climate change and the urban density. The several developments have been analysed and the various variables have a certain influence on the regional resilience. But the most influence will occur when these measures and developments are combined in an integrated plan.