
The right delay
Detecting spike patterns with STDP and axonal delays

Arvind Datadien
ArvindDatadien@student.ru.nl, ADatadien@gmail.com

s0417491

Bachelor thesis

Supervisors:
Pim Haselager

Ida Sprinkhuizen-Kuyper

April 2010

Abstract

Axonal conduction delays are often ignored in simulations of spiking
neural networks. Here, models of spiking neural networks with spike-
timing-dependent plasticity, and conduction delays, are used in three sim-
ulation experiments. The first two are based on studies by Masquelier
et al. [10, 11], and the third is an expansion on their work. First, it
is confirmed that a neuron can learn to detect the start of a repeating
spatio-temporal spike pattern. Then, we confirm that multiple neurons
can learn to detect multiple patterns, when they compete with each other
through lateral inhibition. Finally, we show in a new experiment that by
using axonal conduction delays, we can make a neuron sensitive to specific
spatio-temporal spike patterns.

1 Introduction

The brain is a network of neurons. Exciting indeed, such an organ full of
potential. Now that your interest has been spiked, let’s not delay any longer.
After all, timing is everything.

Our sensory organs convert stimuli from the outside world into electrical
signals (spikes) that can be processed by neurons in the brain. When a stimulus
is presented, it will result in multiple neurons that fire at certain times. A group
of neurons that fire at certain times, create what we call a spatio-temporal spike
pattern, which may be transmitted to other neurons. Presenting a stimulus
repeatedly should result in the same spike patterns arriving at the same neurons
each time. If a neuron could learn to detect a spike pattern, it could (among
other things) trigger an appropriate response to the stimulus. Fortunately for
us, it can.

1



Figure 1: A) A stick figure is crushed by a falling object. B) A stick figure
avoids a falling object. The movement of an object in space, over time, may be
converted by the retina into a spatio-temporal spike pattern. As shown here,
it is sometimes convenient to detect such patterns early. STDP allows neurons
to learn to detect the start of a spatio-temporal spike pattern, so that fatal
outcomes such as the one in part A of this figure may be avoided.

It was shown in [10] that a neuron can learn to detect a spatio-temporal
spike pattern, by using a learning mechanism called Spike-Timing-Dependent
Plasticity (STDP). This neuron will learn to fire only during the spike pattern
it has learned to respond to, and not when it receives randomly timed spikes.
Also, the neuron will learn to fire earlier and earlier into the pattern, until it
fires near the very start of it.

We can imagine many practical applications for the detection of spike pat-
terns in the brain. One theoretical example is the visual detection of movement
of an object. If an object moves from top to bottom, it may first activate cells
at the top of the retina, then the middle, and then the bottom (or the reverse
if you take into account the lens). This may cause retinal cells to create a
spatio-temporal spike pattern that corresponds to this downward motion, and
would be transmitted to neurons in the visual cortex. After repeatedly seeing
objects moving from top to bottom, some cells in the visual cortex may learn to
detect the corresponding spike pattern, and thus learn to fire during downward
motion. As we can see in Figure 1, having neurons that can detect this may
save one’s life.

Now, it is clear that finding the start of a spatio-temporal spike pattern can
be very useful, but what if we want to detect not just the start, but the entire
pattern? After all, two patterns may have similar beginnings, but very different
endings. It was shown in [11] that this can be achieved by using multiple
neurons that inhibit each other. Such competition between neurons prevents
them from all firing simultaneously near the start of a pattern. Instead, one
neuron will fire near the start, one several milliseconds after, and another some
milliseconds after that. The sequential firings of these three neurons will then
signify the occurrence of the entire pattern. If multiple patterns are presented,

2



the inhibition between neurons also allows certain neurons to detect parts of one
pattern, and other neurons parts of another pattern. In this way, given enough
neurons, all patterns will be detected.

In this study, I have conducted three simulation experiments. The first
experiment is an attempt to detect spatio-temporal patterns in a Spiking Neural
Network (SNN) using STDP, and is based on the work of [10]. The second
experiment is inspired by [11], and attempts to detect multiple patterns using
a SNN, STDP, and lateral inhibition between the output neurons. Software
was created to conduct these experiments with a different neuron model than
that used in the original studies, a different STDP rule, and while taking into
account axonal conduction delays.

The third experiment is entirely new. Here, the effect of conduction delays
(the difference between the moment a neuron fires, and the moment that the
corresponding spike arrives at another neuron) is investigated. I expect that,
using these delays, we can create a neuron that is sensitive to patterns of a
certain type. Then, when presenting two neurons with two different patterns,
we should be able to determine which neuron will detect which pattern.

To summarize, the tasks to be learned in the three simulations conducted in
this study are the following:

1. Detect the start of a spatio-temporal spike pattern.

2. Detect multiple spike patterns.

3. Detect only a specific spike pattern.

If these tasks can be performed by an artificial neural network that shares
many characteristics with biological neural networks, then it is likely that the
tasks can be performed in the same way in certain areas of the brain. In this
way, simulation studies allow us to test or create hypotheses about the workings
of the brain.

In this paper, I will first discuss the basics of spiking neural networks and
spike-timing-dependent plasticity. Then, the software and methods that were
used to conduct the experiments will be described. After that, the three ex-
periments and their results will be discussed. Finally, I will talk about some
interesting findings concerning STDP, and possible future work.

1.1 Spiking neural networks

According to Maass [9], three generations of artificial neural networks can be
distinguished if we look at the computational units that are used in them. The
first generation consists of McCulloch-Pitts neurons, also called perceptrons, and
give only digital output. The second generation use neurons with activation
functions to provide analog output. These values may be interpreted as the
equivalent of the mean firing rate of a biological neuron. It has however been
shown that the brain does not solely rely on firing rates to work, but also on
individual spike timings. The third generation of neural networks are called
Spiking Neural Networks (SNN), and do model these individual spikes.

A SNN contains neurons with a membrane potential (an activation level)
and axons that connect to the dendrites of other neurons through synapses.
Once a neuron’s membrane potential has been increased to a certain threshold,

3



it is said to “fire”, and an action potential (a spike) travels from the cell body,
along the axon, to the synapse. Neurotransmitters are then released at the
synapse, causing a change in the postsynaptic neuron’s membrane potential.
An excitatory synapse will increase the postsynaptic potential, possibly causing
the neuron to fire, while an inhibitory synapse will do the opposite. The strength
(or weight) of a synapse may vary, meaning that a spike may cause much or
little change in a postsynaptic neuron’s membrane potential.

The delay that is caused by a spike traveling along an axon is often disre-
garded in models of spiking neural networks. However, Izhikevich [7] showed
that the presence of axonal conduction delays (also known as transmission de-
lays) of various lengths might be very important to the functioning of the brain.
Conduction delays between neurons, can be as small as 0.1 ms, or as large as
44 ms. Because the brain can reproduce spike timings with sub-millisecond
precision, it seems likely that these delays should not be ignored in simulations.

1.2 Spike-timing-dependent plasticity

One of the great strengths of the brain is its ability to learn. Although there
are effective learning mechanisms for the first and second generation of neural
networks, much research is still done on finding mechanisms with which a spik-
ing neural network may learn. Learning may occur as a result of the change of
synaptic weights, but also the creation of new, or the pruning of old connections,
the addition, removal, or alterations of neurons, the adjustment of axonal con-
duction delays, or possibly other changes. Some may be biologically plausible,
meaning that they are observed in the brain, while others may not.

One learning method that has been observed to occur in the brain is Spike-
Timing-Dependent Plasticity (STDP). It is the alteration of a synaptic weight,
based on the difference between firing times of two connected neurons, or when
we take into account conduction delays, the difference between the arrival time
of a spike at a neuron, and the firing time of that neuron. Weight changes
caused by STDP remain over longer periods of time. A decrease in weight is
therefore called Long Term Depression (LTD), and an increase is called Long
Term Potentiation (LTP). Mechanisms for short term synaptic plasticity also
exist, but will not be used or discussed in this paper.

In 1949, Hebb [4] stated that “When an axon of cell A is near enough to excite
cell B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased”. This effect has been observed to occur
in neurons as a result of STDP. STDP is therefore sometimes called a Hebbian
learning rule [2].

Multiple STDP rules have been observed [2]. The one that will be discussed
here is often found in excitatory to excitatory connections, and shown in Figure
2. When neuron A fires, a spike travels along the axon, to the synapse connected
to neuron B. When it arrives there at time t1, it may cause neuron B to fire
shortly after, at time t2. If this happens, the interval t = t2 − t1 is positive.
When looking at the STDP rule in Figure 1, we see positive values for t > 0, so
the weight of the connection from A to B should be increased. The smaller the
interval, the more likely it was that A was the cause of B’s firing, so the larger
the weight gain, or LTP.

Suppose neuron A fires. A spike travels along the axon towards neuron B,

4



Figure 2: A classic STDP rule, copied from [7]. The y-axis shows the change in
synaptic weight ∆w. The x-axis shows the interval t in milliseconds, which is the
last postsynaptic firing time minus the last presynaptic spike arrival time of a
connection between two neurons. A positive value for t causes LTP according to
A+e

−t/τ+ , and a negative value causes LTD according to A−e
t/τ− . The smaller

the interval t, the larger the resulting weight change. The variables A+, A−,
τ+, and τ− are manually chosen parameters.

but before it arrives there at time t1, B already fires at t2. This can happen
because B is connected to other neurons that can make it fire. So the spike
from A was too late to make B fire, the interval t = t2− t1 is negative, and now
according to the STDP learning rule, the weight from A to B will be decreased.
LTD will occur.

An important requirement for the STDP rule is that the surface beneath the
graph for the LTD part (t < 0) should be greater than the LTP part (t > 0).
This allows a neuron to disregard random inputs. Suppose neuron A’s spikes
arrive at random times t1 at neuron B, which fires at times t2. Because times t1
are random, on average, LTD (t1 > t2) will occur as often as LTP (t1 < t2). If
the LTD part of the STDP rule is greater than the LTP part, the weight from A
to B will eventually be reduced to zero. It should be noted that in this example,
neuron A does not necessarily fire at random times. Rather, neuron A’s firing
times are uncorrelated to those of neuron B, and therefore, from the perspective
of neuron B, seem random. There may very well be a neuron C whose firings
times are correlated to those of neuron A, so that from the perspective of C, A
does not fire randomly.

In its normal unsupervised form, STDP can result in classical conditioning,
or Pavlovian or respondent conditioning. When STDP is modulated through
feedback, it can be a mechanism for operant conditioning, also known as in-
strumental conditioning. This is discussed in an article by Izhikevich [8], and
another by Florian [3]. In this paper however, we will not use modulated STDP.
We will use standard STDP, in a way that is discussed in detail in the following
section.

5



Figure 3: Izhikevich Simple Model, copied from [5]. A model of a neuron’s
membrane potential over time. The variable v is the membrane potential, and
u is a recovery value. v′ = dv/dt and u′ = du/dt. The variables a, b, and c are
manually chosen parameters; typical values for them are discussed in [5]. The
variable I is the incoming potential, usually from spikes received from other
neurons. All values are chosen so that time is in ms scale, and weight is in
mV scale. The neuron is considered to have fired when its membrane potential
reaches 30 mV, after which the values of v and u are reset.

2 Materials and methods

To conduct the three experiments, I have constructed a Java program that
simulates a spiking neural network with STDP. It allows easy inspection of the
firing times and weight changes, as they occur during simulation.

Neurons in the network are simulated with Izhikevich’ Simple Model [5]
which is shown in Figure 3. This model can exhibit many characteristics of
biological neurons, at a reasonably low computational cost. By simply changing
parameters, different types of neurons can be simulated. Two alternative models
are the more simple Leaky Integrate-and-fire model which was also used in the
papers by Masquelier et al. [10, 11], or the more complex Hodgkin-Huxley
model. For a more elaborate comparison of models of spiking neurons, see [6].

In the following experiments, unless stated otherwise, the output neurons
were configured to behave as regular spiking neurons, by using the parameter
values (a = 0.02), (b = 0.2), (c = −65), (d = 6). For the input neurons, the
values (a = 0), (b = 0), (c = −65), (d = 0) were used to obtain a neuron
type that will fire instantly when it receives a large current I of 100 mV for 1
ms as input, and do nothing else. The regular spiking neuron model was not
suitable to use for the input neurons, because it could not always fire exactly
when needed. It was too realistic for our purposes.

Connections between neurons are determined at the start of the simulation,
they can not be added or removed when the program is running. The con-
nections can be excitatory, meaning that spikes there will increase the value of
I, or inhibitory, meaning the opposite. The axonal conduction delay for each
connection remains the same during simulation, but weights of connections may
change. Any neuron in the network can have a connection to any other neuron,
or to itself. Every such connection has a minimum conduction delay of 1 ms,
meaning that a spike will arrive at the target neuron 1 ms after the source neu-
ron has fired. Circular connections (from A to B, and from B to A) are possible.
Multiple connections from A to B are not used.

The network algorithm used here is synchronous, or “clock-driven”, meaning
that there is a clock that is advanced by a small time step every tick, after which

6



each neuron’s state is updated to reflect possible changes. The alternative is an
asynchronous, or “event-driven” algorithm [1], in which updates are only made
when an event (such as the firing of a neuron) occurs. Such a system can have
precise firing times that are not limited to the size of a chosen time step, and
may run faster at times when not many events occur. However, they are more
difficult to implement, especially when using transmission delays. I did not use
this type of algorithm because the increased timing precision seemed initially
unnecessary, although, as will be seen in the second experiment, higher precision
would have been useful.

Each tick of the simulated clock represents 1 ms of real time. After each tick,
the new state of the network must be determined. This is done in the following
steps:

• For each input neuron that we want to fire at this time, add an incoming
potential of 100 mV.

• For each neuron, advance all the spikes that are currently traveling along
each of its axons by 1 ms. If a spike arrives at a neuron, add an incoming
potential to that neuron equal to the weight of the connection. If a spike
arrives at a neuron, apply STDP. The weight from the neuron that fired
will (usually, depending on the STDP rule) be decreased (LTD will occur).

• For each neuron, update its membrane potential, and note if it has fired.
The new membrane potential is determined by using Euler’s method to
approximate the solutions to the differential equations given in Figure 3.
In a MATLAB program by Izhikevich (available on his website), two steps
of 0.5 ms were used. For extra precision, I used 5 steps of 0.2 ms.

• For each neuron that has fired during this time step, create a spike on
each of its axons, and apply STDP. The weights from neurons having
connections to the firing neuron will be increased (LTP will occur).

• For each neuron, apply the net change to its weights, according to the
determined LTP and LTD values.

We see that the final weight change that results from STDP is determined
in two separate steps:

1. When a spike from neuron A arrives at neuron B, we look at the last time
B has fired. This will be a point in the past, so the spike will always
be considered to be “too late”, and so this step will result in Long Term
Depression (LTD).

2. When neuron B fires, we look at the last time a spike from neuron A
arrived at B. Because the firing time of B will always be greater than the
last time a spike arrived, this step will result in Long Term Potentiation
(LTP).

During testing, at first the STDP rule in Figure 2 was used. However, deter-
mining suitable values for the parameters proved to be a problem. Masquelier
et al. used the values τ+ = 16.8, τ− = 33.7, A+ = 0.03125, A− = 0.85 ∗ A+

with a maximum post-pre time window of [−7τ−, 7τ+]. These values did not

7



Figure 4: The STDP rule that was used in the experiments here. It is based on
the STDP rule that was used in [12]. The variable t is the postsynaptic firing
time minus the presynaptic spike arrival time, and ∆w is the resulting change
in weight. The values ∆w = 0.01 ∗ 5 for (0 < t < 10), and ∆w = 0.01 ∗ −0.6
for (−200 < t <= 0), and (10 <= t < 200) were used, based on good results
with empirical testing. The numbers that are mentioned don’t match the graph
exactly.

work for the network configuration used in this study. Hopes that the values
used by Izhikevich (2006) (τ+ = 20, τ− = 20, A+ = 0.1, A− = 0.12) would per-
form better, were crushed when each test resulted in an inactive output neuron
due to low synaptic weights. Experimenting resulted in some parameters that
worked reasonably well, but eventually the best performance was achieved with
an STDP rule with a different form, as can be seen in Figure 4. It was inspired
by an article by Nessler, Pfeiffer, and Maass [12].

The STDP rule in Figure 2 has basically the same attributes as the one in
Figure 4; it has LTD for negative values, and LTP for positive values of t. One
difference is that when t is positive and becomes too large, the rule again states
that LTD should occur. The reason for this is that, when a spike arrives at
a neuron and after a longer period of time, that neuron fires, the effect of the
spike will have disappeared and therefore it could not have caused the firing.
Tests with the neuron configuration used here, showed that a presynaptic spike
causes an increased membrane potential in the postsynaptic neuron for about
8 to 10 ms. After that, the membrane potential has returned to its resting
state. The size of the synaptic weight does not affect this period. Therefore,
we can assume that if a presynaptic spike arrived more than 10 ms before the
postsynaptic neuron fired, that spike did not (help) cause the neuron to fire,
and the change in weight should not be positive but negative.

At the end of each time step, the net weight change for each neuron based
on the STDP rule, is applied. The weights are then clipped to stay within a
maximum and minimum value. For excitatory connections, a minimum weight
of 0 mV was chosen, and a maximum of 5 mV, although in the last experi-
ment, a lower maximum value of 2 mV was used. A high maximum value for
excitatory connections resulted in neurons firing often more than once during
pattern presentation, but also resulted in more false positive firings. A maxi-
mum value that was too low resulted in many cases where the pattern could not

8



be learned. For inhibitory connections, STDP was not applied, so the weights
were not changed and therefore no clipping was needed.

Now that the software has been described, we will discuss the simulations
that were conducted with it.

3 Experiments

In this section, three simulation experiments are described. In the first ex-
periment, we allow a SNN to learn to detect spatio-temporal spike patterns.
The following two expand on this; multiple patterns are detected in the second
experiment, and specific patterns in the third.

3.1 Detecting the start of a spatio-temporal pattern

In this first experiment, the goal was to let a SNN with STDP learn to fire only
when a spatio-temporal pattern was presented, as was done by Masquelier et
al. [10]. When no pattern was presented, the network was given random input,
and should not fire.

The network consisted of 100 input neurons, and 1 output neuron. Each of
the input neurons was connected to the output neuron with an initial randomly
determined weight between 3 and 5 mV, and a time delay of 1 ms.

The network was given cycles of input similar to those in Figure 5 which
lasted for 100 ms. Each cycle consisted of 5 parts of 20 ms: a random part, the
pattern, and three more random parts. Each part contained an average firing
rate of 20 Hz for each of the 100 input neurons. This means that each neuron has
a probability of 0.02∗20 = 0.4 to fire during each part, so that on average, each
part of 20 ms contained 0.4 ∗ 100 = 40 firings. The only difference between the
pattern and the random parts was that after each cycle, the random parts were
recreated with new random firing times, while the pattern remained exactly the
same. The cycles were presented continuously with no breaks in between, until
the simulation was stopped.

Twenty trials were conducted. The results can be seen in Table 1. The
output neuron learned to fire during the pattern, and remain quite silent during
random input, in all 20 trials. This does not mean an absolute 100% success
rate; failed attempts to learn the pattern were observed during testing, but by
chance no failures occured during these 20 trials. In the 5th and 13th trial, the
large number of firings during the second random input part, occured right at
the beginning of that part. They were obviously caused by the pattern that
preceded it. We see that in some trials, the neuron learned to fire twice during
a pattern. Interestingly, in these cases the number of false positive firings also
increased. It is not clear to me why most of the false positive firings occured in
the random input period that preceded the pattern.

Learning was sometimes finished after 100 cycles, or pattern presentations,
while at other times the weights did not fully settle until 1400 cycles. A learning
period of 400 to 500 cycles seemed average.

It should be noted that these results were obtained after much tweaking of
parameters, such as the STDP function, the maximum weight for neurons, and
the firing rate for input patterns.

9



Figure 5: Firing times. The y-axis shows the neuron, the x-axis shows the time
step (left is new, right is old). Red dots are firings by excitatory neurons, green
dots are firings by inhibitory neurons. In this case, the top 100 neurons are
excitatory input neurons. The bottom neuron is an inhibitory output neuron.
Each cycle consists of 20 ms random input R1, 20 ms of the pattern P, 20 ms
random input R2, and 20 ms random input R3. In this case the order of these
parts remains the same, they are not shuffled. We see that the output neuron
fires during every occurrence of the pattern P.

10



Figure 6: Membrane potentials at a point in time. Each line represents the
current membrane potential of a neuron. The far left corresponds to -100 mV,
the far right to 100 mV. The top 100 neurons are input neurons. The bottom
one is an output neuron. Here, most neurons are at their resting potential at
about -70 mV. No neurons are currently firing (they are all < 30 mV), but the
output neuron is probably about to fire.

11



Figure 7: Synaptic weights at a point in time. Values on the X and Y axes
correspond to neurons. Here there are connections from neuron 1-100, to neuron
101. A gray square means there is no connection between the neurons, a white
square means that there is a connection, but its weight is at 0%, a red square
indicates an excitatory, and a green square an inhibitory connection. Various
degrees of brightness of red or green indicate weights between 0% and 100%, but
all connections here are at 100%, because the network has stabilized. Inhibitory
connections are not present in this figure.

12



Figure 8: Firings of output neurons per time-bin. The four cycle-parts of Figure
5 are represented by these four graphs. Each graph shows the number of times
an output neuron fired during the corresponding cycle-part, per time-bin of 1000
ms. Here, only one output neuron was used, so there is only one line per graph.
Pattern P occurred 12 times during half the time-bins, and 13 times during the
others, because the 80 ms cycles fit 12.5 times in the 1000 ms time-bins. We see
that the output neuron never fired during the periods with random input, and
always during the pattern P. The simulation was stopped after 70000 simulated
ms.

13



T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Random 1 0 40 4 6 84 1 0 0 13 23
Pattern 1000 1957 995 1000 1206 999 1002 1000 1985 1971
Random 2 0 0 0 0 698 0 0 0 0 0
Random 3 0 0 1 0 3 0 0 0 0 0
Random 4 0 3 0 0 9 0 0 0 2 1

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
Random 1 3 43 36 6 59 49 6 5 2 4
Pattern 997 1954 959 994 1931 1948 994 995 998 995
Random 2 0 0 1000 0 0 0 0 0 0 0
Random 3 0 1 1 1 3 0 0 0 0 0
Random 4 0 7 4 3 16 3 0 1 1 3

Table 1: The result of twenty trials where a pattern surrounded by 4 periods
of random input was presented to an output neuron. The numbers correspond
to the number of times the output neuron fired during each part of the cycle,
counted over 1000 cycles. These numbers were recorded after the 2000th cycle,
when learning was completed, and the weights were stable.

In conclusion, we can clearly see that the output neuron learned to fire during
the pattern, and remain silent in most other cases. Although not visible in Table
1, it was also observed that the output neuron learned to fire increasingly early
into the pattern, up until about 5 to 10 ms after the start of the pattern.

3.2 Detecting multiple spatio-temporal patterns

In this second experiment, based on a different paper by Masquelier et al. [11],
we will see if lateral inhibition between multiple output neurons will allow them
to fire during different (parts of) patterns. This experiment will expand on
the first one in three steps. First we will see what happens when we simply
increase the number of output neurons. Then, we will add inhibitory connections
between these output neurons. Finally, we will increase the number of patterns
per cycle, and see what happens.

At first, I took the configuration of the first experiment, but with three in-
stead of one output neuron. Each output neuron received an excitatory synaptic
connection from each of the input neurons. At this point, there were no con-
nections between the output neurons. The network was again repeatedly given
an input cycle which was 100 ms long, and consisted of 5 parts of 20 ms: two
random parts, the pattern, and two more random parts.

Twenty trials were conducted. Because each trial contained 3 output neu-
rons, after twenty trials there were a total of 20 ∗ 3 = 60 output neurons. In the
end, 59 out of 60 output neurons successfully learned to fire during the pattern,
and almost never during random input. The results were (not surprisingly) sim-
ilar to those of the previous experiment. In most cases the output neurons fired
synchronously near the start of the pattern, and all three had nearly identical
weights from the input neurons.

Following this, I added inhibitory connections between the three output
neurons. These weights were effectively set at -25 mV, so that each output
neuron should be able to prevent its neighbors from firing in most cases. The
connections had a 1 ms delay, meaning that the spike of a firing output neuron
would arrive at the other output neurons one millisecond later. STDP was

14



Figure 9: Firing times with 1 pattern and 3 competitive output neurons at the
bottom. We see that the top output neuron (third from the bottom) fires first
during pattern presentation. The other two output neurons fire about 8 ms
later.

not applied to these inhibitory connections. As before, only one pattern was
presented to the network.

As can be seen in Figure 9, the neurons would often learn to fire at different
times within the pattern; one neuron near the start of the pattern and another
about 5 to 10 ms later. Unfortunately, when two neurons fire at (almost) the
same time, the lateral inhibition loses its effect because the inhibiting spikes
arrive too late. As was described in “Materials and methods”, a clock-driven
algorithm was used for these simulations, with a time resolution of 1 ms. Because
of this, it was not uncommon for two output neurons to fire simultaneously,
resulting in ineffective lateral inhibition. In a biological neural network where
time is continuous, and conduction delays can be as small as 0.1 ms, this would
not be such an issue.

Finally, multiple patterns were presented to the output neurons. Because
lateral inhibition was sometimes ineffective, as described above, I used five in-
stead of three output neurons. The network was repeatedly given an input cycle
which was 120 ms long, and consisted of 6 parts of 20 ms: one random part,
the first pattern, two random parts, the second pattern, and one more random
part. After each cycle presentation, the parts were shuffled, meaning that their
position within the next cycle was randomly determined.

Testing showed that many neurons would indeed learn to fire at different
parts of the patterns (see Figure 10 and 11). Looking at the network output,
one might know when either of the two patterns was presented at a certain
time. In one case for example, the firings of neurons 2 and 4 would indicate
that pattern A was present, and the firings of neurons 1, 3, and 5 would indicate
the presence of pattern B.

To conclude, multiple spatio-temporal spike patterns can effectively be de-
tected by using lateral inhibition between output neurons, but it should be
noted that a relatively high time resolution, and a low axonal conduction delay
between the output neurons is required for this to work effectively.

15



Figure 10: Firing times. Two patterns were presented to 5 output neurons.
There was lateral inhibition between the output neurons. Neurons 1, 3, and 5
learned to fire during pattern B, and neurons 2 and 4 during pattern A.

3.3 Detecting specific types of spatio-temporal patterns

This final experiment is new, and an expansion on the other two experiments.
Previously, all conduction delays were set to a minimum of 1 ms. Here, we will
investigate if the delays can be used to make output neurons sensitive to certain
types of patterns.

For this experiment, I created two spatio-temporal spike patterns (see Figure
12), and set the delays between the input neurons and the first output neuron
so that they would match the first pattern. The same was done for the second
output neuron and the second pattern. The two patterns were presented each
cycle in random order, together with four parts of random input. All parts
lasted for 20 ms, making each cycle 120 ms long.

An example may clarify the concept of delays that “match” the firing times
of a pattern. When input neuron A fires at 0 ms, and input neuron B at 6 ms,
the delay from neuron A to the output neuron would be 7 ms, and the delay
from neuron B to the output neuron would be 1 ms, so that both spikes would
arrive at the output neuron simultaneously, at 7 ms.

Results showed that in every trial, each neuron fired at 100% of the presen-
tations of its matching pattern (an example can be seen in Figure 12). However,
because the two patterns are spatially the same (they use exactly the same in-
put neurons), the weight distributions of the two neurons were similar, and this
caused the neurons to also fire during the non-matching patterns in nearly 30%
of their occurrences. Although the non-matching delays made it more difficult to
fire during the non-matching pattern, the highly similar weight distribution ap-
parently overcame this obstacle. Fortunately, decreasing the maximum weight
from 5 to 2 mV eliminated the problem entirely; all false positive firings disap-
peared. So, setting the right conduction delays succesfully made the neurons
sensitive to a specific pattern. To test the robustness of this method, two more
tests were conducted.

In the first test, only half of the connections to input neurons that fired
during the patterns had matching delays. The other delays were set at 1 ms.
Here we saw similar results as before, but with more false positive firings. The

16



Figure 11: Firing results. Each graph shows the number firings of each output
neuron per time-bin of 1000 ms, during a specific cycle-part. The top 3, and the
bottom graph correspond to random input periods, the others correspond to
pattern A, and B. Here there is lateral inhibition between the output neurons.
We see that output neurons 2 and 4 (blue and yellow) fired during pattern A,
and output neurons 1, 3, and 5 (red, green, and cyan) fire during pattern B.
The simulation was stopped after about 124000 simulated ms.

17



Figure 12: Firing times. The conduction delays of each output neuron match
one of the patterns. We see that each output neuron fires during a different
pattern.

Figure 13: Input patterns A, and B, with varying levels of jitter (0, 1, 2, 3, and
4 ms)

neurons fired at 100% of the occurrences of their matching pattern, and at
almost 50% of their non-matching pattern. Reducing the maximum weight
from 5 to 2 mV again removed nearly all the wrong firings, however in this
case, the successful firing rate dropped from 100% to about 78%. The weights
were apparently not high enough to ensure a firing at every occurence of the
matching pattern. Still, this shows that the delays do not need to match the
entire pattern for it to be recognised by the intended neuron.

In the second test, we look at the performance when patterns become dis-
torted. Each firing was randomly moved forward or backward in time, from 0
ms to a maximum jitter value (see Figure 13). Delays that matched the entire
original patterns were used, and the maximum weight was set to 2 mV. The
success rates with jitter values of 1, 2, 3, and 4 ms were tested over 6 trials each
time, and can be seen in Table 2. We see that as jitter increases, the number
of dead neurons (neurons that didn’t learn the pattern and stopped firing) also
increases. The performance of the neurons that still learned to fire during oc-
currences of their matching pattern, decreased, from 99% with 1 ms jitter, to
72% with 4 ms jitter.

In conclusion, we have seen that axonal delays in combination with STDP,
can indeed make neurons sensitive to specific spike patterns. The delays do not
need to match the pattern entirely, and the pattern does not need to match the
delays precisely. In these cases, although performance drops, neurons can still
often detect their matching pattern.

18



Jitter Dead Alive Success rate Success rate among living neurons
1 ms 0 12 99% 99%
2 ms 0 12 93% 93%
3 ms 2 10 65% 77.9%
4 ms 9 3 19% 72%

Table 2: The first two columns show the number of live and dead neurons after
learning. The last two columns show the percentage of times that a neuron fired
during its matching pattern. For each jitter value, six trials were conducted, and
in each trial, two output neurons were used (one for each pattern). Therefore,
for each jitter value, there are 12 neurons.

4 Discussion

We have seen that the results of Masquelier et al. are robust; even with an
entirely different implementation, the results are largely the same. We were
able to detect the start of a spatio-temporal spike pattern using STDP in a
SNN. It was also possible to detect multiple patterns, and multiple parts of
patterns, by using lateral inhibition.

In the third experiment, we saw that by using conduction delays and STDP,
we can create a neuron that can detect specific spike patterns. It was seen
that the spike patterns don’t need to match the delays exactly; jittered patterns
lower the performance, but can still be detected to some degree. Matching delays
cause the firings of a pattern to arrive simultaneously at an output neuron, and
so will usually make the output neuron fire, even if the weights are relatively
low. Therefore, STDP may not always be needed to increase the weights of
connections that are used in a pattern, but it is needed to lower the other
weights down to zero, so that the output neuron will not fire during periods of
random input.

Concerning STDP, the rule used in this paper (see Figure 4) has a limited
window of (−200 < t < 200) in which it can cause a change in weights. The
traditional STDP rule used by Masquelier and Izhikevich (see Figure 2), also
loses its effect (but gradually) as t becomes very large or small. At first, this
limitation seemed unnecessary to me, but it actually is. It is required, in order
for a neuron to remember its weights for a pattern, even when the pattern is not
presented for a long period of time. During that time, random spikes will arrive.
Because they all arrive after the last time the neuron fired (during a pattern),
they are all “too late”, and would cause LTD, were it not for the limited time
window of STDP. Because of the window, as long as a neuron doesn’t fire too
often outside of its pattern, it will not forget.

Masquelier et al. [11] mentioned that in their study, a neuron almost never
became selective to two different patterns, unless the patterns (or parts of them)
were very similar. However, in the second experiment in this paper, a neuron
quite frequently ended up firing during two patterns. Apparently, these neurons
found parts of patterns that were similar enough to learn to fire upon, while
keeping weights low enough so as not to fire too often during random input.
They did however have slightly larger false positive rates than the neurons that
detected only one pattern. The reason for this difference between the studies
might be that, because only 100 inputs are used here, instead of 1000 in the

19



study by Masquelier et al., (parts of) the patterns used here are more likely to
be similar to each other.

In the second experiment, the output neurons inhibited each other directly.
However, it is also possible for them to excite an inhibitory neuron which in
turn inhibits the other output neurons. I found this to work, but because of
the software used here, it adds at least another millisecond of delay between the
firing of an output neuron and the arrival of the inhibiting spike at the other
output neurons. This decreases the effectiveness of this method of competition
between output neurons.

In the third experiment, we sensitized a neuron to a pattern by setting its
delays to certain values. It should also be possible to sensitize a neuron to a
certain pattern by pre-setting the weights of its connections. One might call
the first method temporal sensitization, because the neuron is made sensitive to
patterns with certain spike timings, and the second method spatial sensitization,
because the neuron is made sensitive to patterns with firings on certain neurons.
However, in the case of patterns that are spatially similar (they fire upon the
same neurons), spatial sensitization would of course have little effect.

4.1 Future work

The time resolution of 1 ms caused some problems in the second experiment.
Another small issue with the time step of 1 ms is that some neuron models (not
the ones used here) seemed to be able to fire multiple times within one millisec-
ond. By the current software this would be handled as one firing during that
millisecond. Therefore, for future simulation studies, a higher time resolution,
or event-driven software with continuous time, might be preferred.

Here, for STDP I took into account only the last firing time of a neuron,
and the last spike arrival time. As also mentioned by Masquelier et al. [10]
it would be possible to look at triplets of spikes. With spike triplets, two pre-
and one postsynaptic spike, or two post- and one presynaptic spike are taken
into account when deciding what the weight change should be. This may have a
positive or negative effect on pattern recognition performance. I am also curious
to see what effect the addition of short-term synaptic plasticity would have on
performance. As was also mentioned in the introduction, in future simulation
studies, STDP could be modulated (with reward or punishment), to allow for
the learning of some patterns, and not others.

The network configuration used here was very simple: several input neurons
were connected to one or more output neurons. If this setup would be layered,
that is, the “output” neurons were connected to other final output neurons, this
would allow longer patterns to be detected by one final output neuron. Other
changes to the network structure could also be investigated in future work.

Axonal delays have already been found to be used in the brains of barn
owls, for sound localization. New research may find other areas in brains where
axonal delays play an important role.

If, as simulated in the third experiment, neurons in the brain are sensitive
to certain spike patterns due to the delays of their connections, it becomes in-
teresting to know how these delay configurations are formed. Maybe they are
mostly static, and selected by evolution. Perhaps there are mechanisms in the
brain that allow delays to be adjusted, or selected. Or possibly, due to recur-
rent connections, there are so many connections with different delays between

20



neurons, that all possible patterns are already represented in the structure of
the brain, just waiting to be activated.

References

[1] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower,
M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris, et al. Simulation
of networks of spiking neurons: a review of tools and strategies. Journal of
computational neuroscience, 23(3):349–398, 2007.

[2] N. Caporale and Y. Dan. Spike Timing–Dependent Plasticity: A Hebbian
Learning Rule. 2008.

[3] R.V. Florian. Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation, 19(6):1468–1502, 2007.

[4] D.O. Hebb. The organization of behavior: A neuropsychological approach.
NewYork: John Wiley & Sons. Hinton, GE (1989). Deterministic Boltz-
mann learning performs steepest descent in weightspace. Neural Computa-
tion, 1:143–150, 1949.

[5] EM Izhikevich. Simple model of spiking neurons. IEEE Transactions on
neural networks, 14(6):1569–1572, 2003.

[6] EM Izhikevich. Which model to use for cortical spiking neurons? IEEE
transactions on neural networks, 15(5):1063–1070, 2004.

[7] E.M. Izhikevich. Polychronization: Computation with spikes. Neural Com-
putation, 18(2):245–282, 2006.

[8] E.M. Izhikevich. Solving the distal reward problem through linkage of
STDP and dopamine signaling. Cerebral Cortex, 2007.

[9] W. Maass. Networks of spiking neurons: the third generation of neural
network models. Neural Networks, 10(9):1659–1671, 1997.

[10] T. Masquelier, R. Guyonneau, and S.J. Thorpe. Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains.
PLoS ONE, 3(1), 2008.

[11] T. Masquelier, R. Guyonneau, and S.J. Thorpe. Competitive STDP-based
spike pattern learning. Neural computation, 21(5):1259–1276, 2009.

[12] B. Nessler, M. Pfeiffer, and W. Maass. STDP enables spiking neurons to
detect hidden causes of their inputs. 2009.

21


