
RADBOUD UNIVERSITY

BACHELOR THESIS

Drum and Melody Generation using
LSTM - based Neural Networks

Author:
Clemens Carl Christopher
BEISSEL

Supervisor:
Umut Güçlü and Luca

Ambrogioni

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Social Science

in the

Artificial Creativity Group
Department of Artificial Intelligence

February 12, 2019

https://www.ru.nl/
https://imgur.com/a/l8QYBon
https://imgur.com/a/l8QYBon
https://guc.lu/
https://guc.lu/
http://researchgroup.university.com
http://department.university.com

Contents

1 Introduction ii
1.1 Neural Networks ii

1.1.1 Recurrent Neural
Networks iii

2 Literature Research iii

3 Creativity in Artificial Intelli-
gence iv
3.1 Applications iv
3.2 Discussion and Limitations v

4 General Idea v

5 The Dataset v

6 Preprocessing the Data vi
6.1 Drum Generation vi
6.2 Melody Generation vi

7 Implementation of the Networks vii
7.1 Network Structure vii

7.1.1 EmbedID vii
7.1.2 LSTM vii
7.1.3 Linear viii
7.1.4 Dropout viii
7.1.5 Temperature mod-

ulated Softmax . . viii
7.2 Training the Models viii

7.2.1 Parallel Sequential
Iterator ix

7.2.2 BPTT Updater . . . ix

8 Results ix
8.1 Generating Patterns ix

8.1.1 Drums ix
8.1.2 Melodies x

8.2 Analysis x
8.2.1 Drums x
8.2.2 Melody xi

9 Conclusion xi
9.1 Discussion xi
9.2 Future Prospects xii

References xiii

Abstract

For this project, I constructed two LSTM
- based neural networks that can gen-
erate monophonic melodies and poly-
phonic drum patterns. As opposed to
projects which were conducted in the
past, this attempt was focused on a
combination of genres rather than train-
ing on only one instrument from one
genre. When generating melodies, the
patterns that resulted from this challenge
were somewhat chaotic with some po-
tentially inspirational exceptions. Gen-
erated drums, on the other hand, often-
times converged to an "average of all
genres" when no controlled randomness
was introduced (section 7.1.5). A bet-
ter imitation of the training data can cer-
tainly be achieved by using only one
genre. But the involvement of several
different genres led to a more unpre-
dictable and creative outcome.

1 Introduction

The creation of music has been part of
the human race since the beginning of
mankind. It has always been an art that
can only be performed by humans. But
now, in the 21th century, technology
has been evolved so far that computers
are showing signs of intelligence and
creativity.

A creative process is usually highly
dependent on a sequence of contex-
tual actions. These actions are, by
themselves, not considered creative,
but it is the interaction in which they
are executed that forms a creative
product. Movies, paintings and dance
performances are examples of creative
performances, that are constructed from
a sequence of actions where every action
depends on the history of previous
actions. Music also belongs to this cate-
gory where the sequential actions can be
represented by notes, ranging from the

FIGURE 1: Deep neu-
ral network with 3
hidden layers (Feed-
forward Deep Learning

Models)

lowest C0 to the highest C11.

In order to concatenate notes in such
a way that they form a coherent piece
of music, a basic understanding of har-
monics and note dynamics is necessary.
Teaching a human about which note
arrangements result in a pleasant piece
of music, is rather trivial but there occur
many difficulties and roadblocks when
it comes to training a computational
network.

1.1 Neural Networks

Machine learning works by feeding
a network different input files from a
specific category and then evaluating
the network’s output while adjusting its
parameters. The input can hereby take
the form of images or videos, but it can
also be in the form of music. The most
popular example of a neural network is
the feed forward network (FFN) which
consists of an input and output layer and
multiple hidden layers in between where
every layer consists of a varying number
of perceptrons that are connected to
all perceptrons of the next layer (From
perceptron to deep neural nets).

FIGURE 2: Single per-
ceptron in a neural
network (From percep-
tron to deep neural nets)

A perceptron is a single neuron /
node in a network’s layer that receives
the accumulated result of every other
perceptron of the previous layer multi-
plied by its connection strength (weight).
Based on this information, it outputs
either 0 or 1, depending on its threshold
function.

A network has to be trained with
values that match the dimensions of its
input layer so music pieces have to be
encoded into a particular datastructure.
For this purpose, I have processed the
information of MIDI files that contain
information about starting times, ending
times and pitch of all notes for every
instrument in a music track, rather than
rich audio signals. However, due to the
length of a music track, which varies
from piece to piece, I cannot use a simple
FNN for generating music since the
size of the input dimensions are not
fixed. Therefore, I used a special type of
network, the recurrent neural network
(RNN).

1.1.1 Recurrent Neural Networks

Generally speaking, a RNN is a special
type of neural network which computes
its output based on the current input and
its computational history. This makes
it possible to feed the network single
notes which are used to predict the next

note. However, the output of RNNs
can be corrupted by vanishing gradients
that cause the network’s information to
be multiplied by very small numbers
(TIME, 2015). This happens because
normal RNNs have to feed their entire
information through all cells to get
to the cell that is currently processed.
For this reason, I implemented a more
complicated type of RNN strucutre, the
long short-term memory (LSTM). The
salient properties of this building block
are discussed in section 7.1.2.

With this knowledge, I trained two
RNNs with a large number of in-
struments from different genres. The
networks should be able to generate
monophonic melodic midi files and
polyphonic drum patterns. Due to the
numerous possible combinations of
notes and the subjective quality of a
piece of music, these two tasks are a
challenging exercise for artificial intel-
ligence. Especially, when the networks
are fed with several genres.

This leads me to ask the following re-
search question:
Can LSTM-based neural networks generate
subjectively pleasant percussive and melodic
patterns when fed with several different gen-
res?

This question, creativity in computers,
implementation, results and alternative
approaches are discussed in this paper.

2 Literature Research

There has been a lot of research in the
field of generative modelling of music
with artificial neural networks. Most of
the research is done by implementing
LSTMs (long short-term memory), a
special kind of RNN structure, which
have been proven to be very powerful
in combination with music generation
and genre classification. Furthermore,
the vast majority of research appears
to be focused on one specific genre or

musical instrument, as opposed to my
approach of combining several genres
and instruments into two models.
I would say that "Google" is currently
the leader, when it comes to artificial
music production. Among other things,
their latest project "Magenta" is capable
of composing music that is pleasant to
a lot of people. They have had a lot of
success using RNNs as can be seen in
one of their latest models "Performance
RNN", which can generate classical
polyphonic piano music based on live
performances of real artists (Hutson,
2017). It incorporates dynamics and
expressive timings in order to give the
generated music a human touch. Also,
they only trained their model on piano
performances to keep the output in a
confined range.
Another successful state-of-the-art
model by Magenta is the "Music Trans-
former" (Huang et al., 2018). It is
a sequence model that is based on
self-attention in contrast to the LSTM
"Performance RNN" model. Normal
LSTMs cannot generate music with long-
term coherence, which is quite important
for whole pieces of music. They are ca-
pable of generating music that sounds
familiar to a specific start sequence for
a couple of moments but they deviate
from the main theme relatively quickly.
A transformer-based model, however,
has direct access to all previous states,
as opposed to a LSTM based model that
compresses all previously encountered
notes into a fixed-size hidden state
(music transformer magenta). This makes
it able to form long-term coherences for
common song structures that contain
reoccuring themes. However, when it
comes to music, relative timing of notes
is essential. Modulating self-attention
based on pairwise distances turned
out to be quite memory-expensive so
that minute-long compositions were
computationally intractable (Huang
et al., 2018). Magenta tackled this prob-
lem by introducing relative positional

information, which allows attention to
be modulated by how far two notes are
apart in a sequence (Huang et al., 2018).
This made it possible to generate minute
long sequences of coherent music due to
the now linear memory dependency.
Another successful approach has been
researched by Nicolas Boulanger-
Lewandowski, Yoshua Bengio and
Pascal Vincent. They modelled temporal
dependencies using a combination of
a restricted Boltzmann machine and a
recurrent structure to be able to gen-
erate and predict polyphonic music
(Boulanger-Lewandowski, Bengio, and
Vincent, 2012). The accuracy of their
models were slightly higher than the
accuracy of a traditional LSTM. Thus
they have shown that LSTMs might not
be the best network structure when it
comes to generating music.

My motivation for building a LSTM
based neural network originates from
the thought that drum patterns are
highly repetitive and can therefore be
modelled quite well by LSTMs since they
do not rely on reoccuring themes of any
kind. Melodies, on the other hand, are
very "theme-dependent" and LSTMs are
not able to make predictions based on a
specific chunk of events (Huang et al.,
2018). Despite this fact, I want to com-
pare the performance of both models
based on their accuracy with which they
predict MIDI events and their ability of
generating creative note patterns.

3 Creativity in Artificial In-
telligence

3.1 Applications

Modelling human creativity is an impor-
tant aspect in artificial intelligence, espe-
cially when looking at it from a psycho-
logical perspective. It can aid the process
of understanding creativity in humans
and it can help by specifying or alter-
ing the definition of creativity in general.

Also, creative programs could support
the work in laboratories and the market
place (Boden, 1998) by guiding the devel-
opment of tools via a better understand-
ing of human intelligence and creativity.
When it comes to music, an artificially
generated note pattern could help inspire
the user in terms of producing subjec-
tively better tracks.

3.2 Discussion and Limitations

Many people believe that creativity is a
purely human phenomenon and that cre-
ative brilliance, in particular, can only be
achieved by humans (Bringsjord and Fer-
rucci, 1999). But there are some people
who think of creativity as a more ratio-
nal process than first meets the eye.
Computers work in a very rational way:
You can retrace a computer’s output by
analyzing the functions that processed
the input. But if there are thousands of
connections between input and output
that are all functioning in a slightly dif-
ferent way, it is hard to determine if the
output is indeed of rational nature.
It is important to note that real creativ-
ity is hard to define because it is difficult
to evaluate. A network can predict the
genre of a piece of music without some-
one questioning its creativity due to the
non-ambiguous targets through which
the network learns. But when it comes to
generating something that matches the
input space, evaluation tends to be hard
just like in the real world.
There are people who are asking them-
selves whether humans are merely ma-
chines (Bringsjord and Ferrucci, 1999)
since, just like our brains, a neural net-
work consists of a vast amount of inter-
connected nodes. This is an interesting
theory because of the fact that contem-
porary networks do not have nearly as
many neurons as a real brain and would
lack the computational resources for ef-
ficiently using them. The truth value of
this theory can therefore better be deter-
mined in a future where the limits of a

neural network are not bound to process-
ing power.

4 General Idea

The goal of this project was, to create
two artificial neural networks, that can
generate drum patterns and melodic
sequences. The general idea was taken
from a language modelling approach,
where a network is trained to predict
the next word, based on the history of
the previous words. This approach was
simply transformed into predicting the
next note (or percussive combination),
based on the history of the previous
events.
The models had to be able to generate
a sequence of notes, when feeding the
output back into the model. This is why
a convolutional network, that Fourier
transforms a synthesized audio file
into a frequency spectrum, is out of
question, despite its good classification
accuracy for genres and instruments
(Choi et al., 2017). Of course, a frequency
representation of a sound is much more
informative, than only information
about the pitch, but especially when
generating drums, the frequency stays
quite stable over the set of percussive
instruments, so pitch and timing of
notes should be adequate for an accurate
prediction.

5 The Dataset

I used the Lakh MIDI dataset (Raffel,
2016) for the purpose of building gen-
erative models. It contains over 170.000
MIDI files, but training on that many
midi files would take too much time,
therefore I used a subset of around 3.000
files that are matched to the entries of the
"Million song database" (Bertin-Mahieux
et al., 2011). The dataset consists of a
great variety of genres, reaching from
Classic to Deathmetal. When training the

models, I used MIDI files from numerous
genres to achieve an evenly distributed
set of possible outputs.

6 Preprocessing the Data

The processing differs slightly from
model to model, but both pre-processed
lists contain a large number of intervals
where no note is played. This would bias
the models in a direction where only suc-
cessive sequences of zeros would be pre-
dicted. To prevent this, I experimented
with deleting all sequences from the data
that overshoot a specific amount of suc-
cessive zeros.

6.1 Drum Generation

For the drum generating network, it
is important that the input and output
are polyphonic since there are a lot of
times when two or more percussive
instruments are played simultaneously.
It is essential to capture those time points
since they define the groove of a drum
pattern.
Magenta provides powerful func-
tions for this purpose: I used the
DrumExtractor to extract drum tracks
from a quantized note-sequence. The
quantization was achieved by the
Quantizer.transform function from
the note_sequence_pipelines. I trans-
formed the resulting drum tracks into
a binary representation by using a de-
fault list of drum pitches consisting of
9 percussion types. Thus, every note
from a drum track was matched to a
percussive instrument in the drum list.
This allowed me to squash the whole
pitch range into a concise group of 9
drums, making it possible to keep the
polyphonic aspect of the midi files intact.
The binary representation is saved as
an array with length 9, where every
value can either be 1 or 0. This makes a
total of 29 possible combinations, where
every combination can be expressed
as a binary number. For instance, the

combination [0, 0, 0, 0, 1, 0, 1, 1, 1] can
be decoded into the integer 23. Since
the EmbedID function takes an array of
integers, every encoded binary time
stamp has to be decoded into an integer
and to be appended to a list.
This process was repeated for training,
validation and test sets, where each set
has its own share of midi files. This is
important in order to validate the model
with data that it has never seen before
during training.

6.2 Melody Generation

Since melodies are very often poly-
phonic, it would be desirable to also rep-
resent them in a binary fashion. How-
ever, my approach made this impossi-
ble due to the enormous number of po-
tential combinations (2128). Luckily, a
polyphonic representation is not manda-
tory since melodies can also be gener-
ated without chords. This is why the in-
put and output of the melody generating
network is monophonic.
The (mostly) polyphonic information
of instruments has to be converted
into monophonic information, which
was done using the MelodyExtractor
from Magenta, which extracts mono-
phonic melodies from a quantized note-
sequence while filtering percussive infor-
mation. I squashed the pitch range of 128
notes into a range of 35 pitches to con-
strict the number of possible predictions
while preserving the pitch relative to the
octave.
The resulting one-hot matrix consists of
only one active note at a time step and
can therefore be converted into an ar-
ray of indices where an index stands for
the position of the 1 in a one-hot array.
The resulting integers of every midi file
are then simply concatenated after each
other to form the data arrays.

Layer In Out Nr
EmbedID 512 512 1
LSTM 512 256 2
LSTM 256 128 3
Linear 128 512 4

TABLE 1: Network
structure of drum

generation model

Layer In Out Nr
EmbedID 36 36 1
LSTM 36 18 2
LSTM 18 9 3
Linear 9 36 4

TABLE 2: Network
structure of melody

generation model

7 Implementation of the
Networks

In order to generate music, the net-
works had to make predictions based on
their history of previously encountered
notes. Therefore a recurrent neural net-
work structure (RNN) has been used to
encapsulate this idea. Given an input
stream x0, x1, x2, ..., xn and an initial state
h0, a RNN iteratively updates its state by
ht = f (xt, ht−1) (Chainer Documentation).
For the network, this is essential in order
to predict notes that stay in a particular
context to each other. A traditional deep
neural network would not suffice in this
case, as it assumes a fixed dimensional
input size, rather than an input stream of
undefined length.

7.1 Network Structure

The networks consists of an EmbedID
link, two long short-term memory
(LSTM) layers and a linear output
layer. Furthermore, Chainer’s dropout
function is called on the output of every
layer except the last.

7.1.1 EmbedID

The EmbedID link converts the input pitch
/ binary decoded integer into an array
that fits the number of possible notes /
combinations. The possible notes for the
melody generating model is 36, whereas
the possible drum combinations for the
drum generating model is 512, including
the time step where no note is played. I
used the EmbedID link (over a one-hot
vector input) because integers are com-
putationally much more efficient than
one-hot vectors.

7.1.2 LSTM

The two LSTM instances are fully con-
nected layers, which handle the se-
quential input. They are the core of the
network where the internal state of the
current computation is stored and the
dimension of the input is compressed,
like in a normal fully connected hidden
layer. LSTMs enable the network to
make long-term dependency-based
predictions for the next combination of
notes.
A LSTM link consists of multiple ’gates’,
which control the cell state of a layer.
The first gate is essentially a sigmoid
function, that takes the last output h− 1
and the current input x and puts out
a number between 0 and 1, which is
element-wise multiplied with the cell
state. This tells the cell state which in-
formation to keep and which to "forget".
(Understanding LSTM networks)
The next cluster of layers decides, what
new information to add to the cell state.
This is done by another sigmoid func-
tion, that determines which values to
update, combined with a tanh layer, that
creates an array of potentially new in-
formation. This filtered new information
than is added to the cell state in order to
update the state.
Finally, the output of the cell state can be
computed by another gate mechanism,
that filters what parts of the cell state
should be put out at a particular time

FIGURE 3: Structure
of LSTM layer (Un-
derstanding LSTM net-

works)

step t. (Understanding LSTM networks)
A graphical representation of a LSTM is
depicted in figure 3.
Chainer’s lstm function implements
this functionality efficiently via those
computations:

c = tanh(a)σ(i) + cprev(σ(f))
h = tanh(c)σ(o)

7.1.3 Linear

The linear layer acts as a normal fully
connected output layer, where a predic-
tive variable for the next note / combina-
tion is computed. Its output is computed
by f (x) = W ∗ x + b, where W and b are
the weights and biases of the link, that
are updated over time.

7.1.4 Dropout

This function drops elements of the input
variable with a chance of 50% to prevent
the network of getting overfitted on the
training data. Overfitting occurs when a
network excessively is trained on a spe-
cific dataset. So the model is biased to-
wards predicting only values that make
sense in context with the training data.
That means the accuracy for other dis-
tinct datasets would be poor since the
network’s weights would have an in-
creased strength towards the right values
of the training data.

7.1.5 Temperature modulated Softmax

The datasets are filled with values that
make out a dominating proportion of the
whole set of notes. This can result in
a model which is biased towards notes
that have a high occurrence percentage.
The result can be long sequences of one
and the same note without any change at
all. To prevent this, I introduced a tem-
perature variable T that controls the en-
tropy E of predicted note sequences. It
does so by dividing the "raw" predicted
values Ppre of the network by T in or-
der to compress the difference between
notes that have a high occurrence proba-
bility and those that probably won’t oc-
cur naturally. Therefore, high values of
T modulate predicted sequences to be
rather chaotic and low values keep the
entropy of sequences flat. T is increased
if E drops under a certain threshold and
vice versa.
E is computed after a certain number of
time steps after which T gets adjusted in
order to keep E in the optimal range. If
V is a note sequence with length n, then
E is computed like this:

E =
1
n

n

∑
i=0

{
1, if Vi 6= Vi+1

0, otherwise

After Ppre is divided by T it is passed
to a softmax function that computes the
normalized probability for every possi-
ble event 1 . . . d like this:

Ppost = Ppre/T

P =
exp(Ppost)

∑d exp(Ppostd)

In order to generate a note / combina-
tion I sampled an index from the proba-
bilistic distribution P that represents the
corresponding event.

7.2 Training the Models

In both models, I had to implement a par-
allel sequential iterator that iterates over
the data sets and returns mini batches

and an updater which performs back-
propagation through time and updates
the weights and biases of the layers. Both
of those classes were copied from the
Language Model from Chainer and mod-
ulated, to fit the needs of my model
(Chainer Documentation).

7.2.1 Parallel Sequential Iterator

Built-in iterators from Chainer do not
support aggregation into mini-batches
from different locations (Chainer Docu-
mentation). This is, however, necessary in
order to iterate over an extremely large
sequence of notes.
The parallel sequential iterator creates
mini-batches consisting of pairs of cur-
rent and next notes at different positions
in the data. Doing so, it creates index off-
sets that are equally spaced in the note
sequence and it uses them to extract dif-
ferent chunks from the data dependent
on the current iteration.

7.2.2 BPTT Updater

Since the data sequences consist of a
large list of concatenated notes, it is
not possible to perform backpropagation
over the whole sequence. This would far
exceed the memory capacities of the pro-
gram. Therefore I had to think of another
approach of updating the parameters of
the network. This problem was solved
by truncating the computation graph by
unchaining the computation history of
the loss variable. This way, the back-
propagation can only be performed on a
small range of time steps that has been
controlled via a hyperparameter called
"bproblen".
The updater works by accumulating the
loss of a specific number of note pairs for
the size of bproblen and then calling the
backward function on the loss variable
followed by unchaining the computation
history.
Truncated backpropagation is heuristic
and makes the gradients biased but it

works well if the backpropagation length
is long enough (Chainer Documentation).

8 Results

8.1 Generating Patterns

In order to generate note patterns, I
fed a starting note to the networks.
The predicted output note is then fed
back into the networks to generate a se-
quence. This is repeated until the se-
quence reaches a desired length.

8.1.1 Drums

I decoded every predicted percussive
combination back into a binary represen-
tation consisting of 9 bits. After creat-
ing the corresponding MIDI file, it was
plucked into the FPC drum machine of
the digital audio workstation FL Stu-
dio. The default percussive samples of
the drum machine where mapped to the
first 9 notes, starting from C0, in exactly
the same order in which the drum se-
quences were extracted in the prepro-
cessing stage.
When generating percussive combina-
tions by always picking the index with
the highest value from the probability
distribution the generated output after a
while converges to drum patterns that
sound like an average of all genres with
which the model was trained. By that I
refer to a consistent 1/16 hi hat, a 1/2
snare drum and two 1/4 kick drums at
the start of each beat. This is modulated
by an occasional 1/32 hi-hat hit.
At the beginning of the generated se-
quences, the hi-hat appears to be hitting
in a quite consistent 1/8 or 1/16 pat-
tern. The kick and snare drum mostly
appear in an alternated fashion that can
sound slightly random at some times.
However, the drum model only gener-
ates beats that consist of a hi hat, a snare
drum and a kick drum. This is proba-
bly caused by a dominating number of

appearances of those percussive instru-
ments as can be seen in figure 6 where,
for instance, the combination 64 stands
for a single hi-hat hit. There certainly
are tom fills and cymbal hits in the train-
ing data but they only occur very sel-
dom. These are more likely to occur
when sampling events from a probabil-
ity distribution with the corresponding
chance. When applying this technique,
the output is a lot more unpredictable,
especially when modulating the proba-
bilities with a dynamic temperature as
discussed in section 7.1.5.

8.1.2 Melodies

As opposed to drum patterns, melodies
are a lot more dynamic with regard to
possible note sequences due to the vast
range of harmonics that fit to a partic-
ular note. Only picking the index with
the highest predictive value therefore
only produces sequences with very lit-
tle change since the network becomes bi-
ased towards predicting long sequences
of the same note. You can see that there
are multiple notes to choose from when
sampling from the probability distribu-
tion as shown in figure 4.

FIGURE 4: Probabili-
ties of predicting note

after softmax

Since every index in a predicted se-
quence corresponds to a single note, I
could generate a MIDI file based on the
raw samples from the softmax distribu-
tion. As for the output instrument, I used

a regular sine wave with a short decay-
low sustain envelope on the cutoff of a
12-dB lowpass filter accentuated with a
hint of tube distortion and some reverb. I
figured that the output instrument had to
be of neutral electronic nature since the
network was trained on so many differ-
ent genres.

8.2 Analysis

FIGURE 5: Accuracy
of drum and melody
models of all phases

8.2.1 Drums

FIGURE 6: combina-
tion occurrences for
all 512 possible drum

events

The drum model’s accuracy and loss
appear to be stabilizing after only two
epochs with 0.77% and 0.86 respectively.
The high accuracy can be explained by
the mostly repetitive structure of the

training and validation data. The occur-
rence probability of a percussive com-
bination is often only modulated by
the previous three combinations, which
makes a correct prediction quite proba-
ble.
Predicting the next combination of per-
cussive instruments by feeding the net-
work some testing data works quite well
with a stable accuracy of 69% which is
only slightly worse than the accuracy of
the training model. However, the net-
work does not predict uncommon com-
binations very often due to the increased
strength of weights that are connected to
more common combinations. But still,
modulating the entropy of sequences
with a volatile temperature gives gener-
ated drum patterns a touch of controlled
randomness.

8.2.2 Melody

FIGURE 7: Note
occurrences for all
36 possible melody

events

The accuracy of the melody model is
at around 40% for both, the training and
testing phase. Considering the 36 possi-
ble combinations that are relatively uni-
formly distributed (figure 7), this is quite
high. The accuracy of the validation
phase lays at around 55%. This can be
explained by the dropout functions that
are only active in the training phase.

9 Conclusion

Looking back at this project, there are
many things which could be done dif-
ferently in order to generate patterns
that sound more musically. But still,
experimentally combining several differ-
ent genres into two models gave me
some insight into the creative capacities
of LSTM-based neural networks. There
are certainly limitations regarding genre
combination since the resulting patterns
exhibit some events that sound contextu-
ally unpleasant. Some sections, however,
could be used for inspirational purposes
to guide the production process of man-
made music.
Therefore, I cannot answer the research
question in a nonambiguous way. On
the one hand, the networks produce pas-
sages that are definitely usable in a mu-
sical context. On the other hand, the out-
put can sometimes be a concatenation of
MIDI events that sound rather meaning-
less.

9.1 Discussion

The state-of-the-art networks are able
to produce melodic patterns that are
hard to differentiate from original
performances. Only focusing on one
instrument from one genre is probably
the biggest reason for that. However,
if I trained my network under this
condition, one could argue that the re-
sulting output is a mere imitation of the
training data. By definition 1, this would
defeat the purpose of programming a
network capable of generating creative
output since originality does not include
mimicking. On the other hand, the com-
bination of multiple genres can result in
unusual ideas which are considered to
be creative.
Expressive timings and dynamic veloc-
ity changes are from equal importance
since they dissolve the electronic sterility

1https://dictionary.cambridge.org/de/
worterbuch/englisch/creativity

https://dictionary.cambridge.org/de/worterbuch/englisch/creativity
https://dictionary.cambridge.org/de/worterbuch/englisch/creativity

of perfectly quantized note sequences.
Implementing these features consumes a
vast amount of computational resources
because every note can be played at
127 different velocities, combined with
several inter-positional time points at
which a MIDI event can occur. This
increases the training-time of the model
tremendously but it is also a powerful
tool for humanizing a generated piece of
music.
Another successful approach involves
the implementation of a transformer-
based model with self-attention. Direct
access to previous states is helpful es-
pecially when generating music with
reoccurring themes as shown in the
Magenta project "Music Transformer"
conducted by Google (Huang et al.,
2018). Furthermore, there is a good
chance that the majority of LSTM and
convolutional based networks will be
replaced by attentional networks since
the prediction accuracy is usually higher
and the training time decreases dramati-
cally (Vaswani et al., 2017).

9.2 Future Prospects

How will the listener’s preferences
change when considering the future de-
velopment of artificially generated mu-
sic? There is no denying that neural
networks are getting better and faster
with regard to music generation. As a
result, the gap between artificially gen-
erated patterns and music created by
humans is getting smaller and smaller.
Only recently, a neural network was used
to complete the two missing movements
of Schubert’s famous "Unfinished Sym-
phony". According to a critical comment,
the artificially added passages only sel-
dom remind of Schubert and the pat-
terns tend to move around an empty mu-
sical center 2. This gives strength to
the assumption that this network might

2Rheinische Post 6.2.19 - "Vollendung klingt
anders" by Regine Müller

be LSTM-based and that other computa-
tional structures might be a better choice
for a fitting completion. But further work
in this area might result in a finaliza-
tion of Schubert’s work - and that of
other artists -, which would not be easy
to differentiate from their original style.
If this was the case, then there would
only be little doubt about the existence
of musical artificial creativity, and the
bounds of humans and digital constructs
would blur even further. This would
also strengthen the assumption that our
brains are mere machines and that our
actions and thoughts are only projections
of neural impulses which are controlled
by environmental and biochemical pro-
cesses.
Machines are still far away from exhibit-
ing all mandatory properties to resem-
ble human intelligence but when consid-
ering the current progress, I would say
that, at some point, human-like artificial
intelligence will be inevitable.

References

Bertin-Mahieux, Thierry et al. (2011).
“The Million Song Dataset”. In: Pro-
ceedings of the 12th International Confer-
ence on Music Information Retrieval (IS-
MIR 2011).

Boden, Margaret A (1998). “Creativity
and artificial intelligence”. In: Artificial
Intelligence 103.1-2, pp. 347–356.

Boulanger-Lewandowski, Nicolas,
Yoshua Bengio, and Pascal Vin-
cent (2012). “Modeling temporal
dependencies in high-dimensional
sequences: Application to polyphonic
music generation and transcription”.
In: arXiv preprint arXiv:1206.6392.

Bringsjord, Selmer and David Ferrucci
(1999). Artificial intelligence and literary
creativity: Inside the mind of brutus, a sto-
rytelling machine. Psychology Press.

Chainer Documentation. http : / / docs .
chainer.org/en/stable/examples/
rnn.html. Accessed: 2018-12-11.

Choi, Keunwoo et al. (2017). “Convolu-
tional recurrent neural networks for
music classification”. In: 2017 IEEE
International Conference on Acoustics,
Speech and Signal Processing (ICASSP).
IEEE, pp. 2392–2396.

Feedforward Deep Learning Models. http:
//uc-r.github.io/feedforward_DNN.
Accessed: 2018-12-23.

From perceptron to deep neural nets. https:
/ / becominghuman . ai / from -
perceptron-to-deep-neural-nets-
504b8ff616e. Accessed: 2018-12-23.

Huang, Cheng-Zhi Anna et al. (2018).
“An improved relative self-attention
mechanism for transformer with ap-
plication to music generation”. In:
arXiv preprint arXiv:1809.04281.

Hutson, Matthew (2017). “How Google
is making music with artificial intel-
ligence”. In: DOI: http : / / www .
sciencemag.org/news/2017/08/how-
google- making- music- artificial-
intelligence.

music transformer magenta. https : / /
magenta . tensorflow . org / music -
transformer. Accessed: 2018-12-30.

Raffel, Colin (2016). Learning-based meth-
ods for comparing sequences, with appli-
cations to audio-to-midi alignment and
matching. Columbia University.

TIME, BACKPROPAGATION
THROUGH (2015). “Recurrent
Neural Networks Tutorial, Part 3–
Backpropagation Through Time and
Vanishing Gradients”. In:

Understanding LSTM networks. http://
colah . github . io / posts / 2015 -
08-Understanding-LSTMs/. Accessed:
2018-12-19.

Vaswani, Ashish et al. (2017). “Atten-
tion is all you need”. In: Advances in
Neural Information Processing Systems,
pp. 5998–6008.

http://docs.chainer.org/en/stable/examples/rnn.html
http://docs.chainer.org/en/stable/examples/rnn.html
http://docs.chainer.org/en/stable/examples/rnn.html
http://uc-r.github.io/feedforward_DNN
http://uc-r.github.io/feedforward_DNN
https://becominghuman.ai/from-perceptron-to-deep-neural-nets-504b8ff616e
https://becominghuman.ai/from-perceptron-to-deep-neural-nets-504b8ff616e
https://becominghuman.ai/from-perceptron-to-deep-neural-nets-504b8ff616e
https://becominghuman.ai/from-perceptron-to-deep-neural-nets-504b8ff616e
https://doi.org/http://www.sciencemag.org/news/2017/08/how-google-making-music-artificial-intelligence
https://doi.org/http://www.sciencemag.org/news/2017/08/how-google-making-music-artificial-intelligence
https://doi.org/http://www.sciencemag.org/news/2017/08/how-google-making-music-artificial-intelligence
https://doi.org/http://www.sciencemag.org/news/2017/08/how-google-making-music-artificial-intelligence
https://magenta.tensorflow.org/music-transformer
https://magenta.tensorflow.org/music-transformer
https://magenta.tensorflow.org/music-transformer
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

	Introduction
	Neural Networks
	Recurrent Neural Networks

	Literature Research
	Creativity in Artificial Intelligence
	Applications
	Discussion and Limitations

	General Idea
	The Dataset
	Preprocessing the Data
	Drum Generation
	Melody Generation

	Implementation of the Networks
	Network Structure
	EmbedID
	LSTM
	Linear
	Dropout
	Temperature modulated Softmax

	Training the Models
	Parallel Sequential Iterator
	BPTT Updater

	Results
	Generating Patterns
	Drums
	Melodies

	Analysis
	Drums
	Melody

	Conclusion
	Discussion
	Future Prospects

	References

