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Abstract

Automatic Appliance Identi cation refers to the task of identifying household devices given
measurements of its power consumption. Solving this problem is crucial for modern energy mon-
itoring applications but, so far, it has been shown to be non-trivial. In addition, there seems to
be confusion about the practical scenarios on which Appliance Identi cation can be deployed.
In this research project we attempt to untangle the de nition of Appliance ldenti cation by
proposing a distinction of three di erent scenarios. Among these, we describe the Appliance
Load Identi cation scenario that, even though it had been implicitly mentioned in past works, it
was never explicitly de ned. With regards to experiments, we initially replicate results of note-
able past works using open datasets. Next, we propose a novel set of techniques for Appliance
Identi cation that use a mix of VI trajectory data, handpicked features and Multi-Modal Neural
Networks. Finally, we propose three classi ers for the newly-de ned Appliance Load Identi ca-
tion scenario. Through tests we nd that most existing models are not robust to tests across
datasets. We also nd that combining VI trajectory representations with other features leads to
increased performance. Last, we provide the results of our Appliance Load Identi cation models
as baseline for future research.
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Chapter 1

Introduction

Managing the electricity demands of a household has been a topic of great interest, over the
last decades. Inspired by the high economic and ecological relevance of power consumption,
individuals and organisations are increasingly eager to track and optimise their energy usage.
As energy saving devices, home solar panel systems and green architecture are becoming more
widespread, monitoring and understanding the consumption of a home becomes crucial. Such
insight involves the total consumption, as well as ne-grained information about the contribution

of each appliance.

In parallel with the timely concerns about sustainability, we also see a growing interest in
smart houses and ambient intelligence. With cheaper hardware and portable computing devices,
such as smartphones and wearables, the potential increases for infusing traditional houses with
\smart" capabilities. This may include energy consumption tracking, remotely or automatically
controlled houses and sophisticated security systems. Besides automation, all these upgrades
on typical houses generate an abundance of data of high value. They can allow behavioural
monitoring of the occupants, assist occupants in daily tasks and detect issues regarding electric
devices, heating etc. As this notion of making our environment work for us becomes increas-
ingly popular, energy monitoring can prove to be bene cial both in itself and as a general data
acquisition technique.

1.1 Electric Load Monitoring

The potential of monitoring the electrical consumption has been recognised by the research
community since the 1980's. One of the rst proposed approaches for household-level monitoring
is Non-Intrusive Load Monitoring (NILM)[1]. Under the NILM scenario, only one meter is used,
which measures the total power consumption of the house. With this data, a suitable algorithm
can infer the power consumption per-appliance using machine learning. The \Non-Intrusive”
part comes from the notion that the meter does not interfere with the existing in-house circuit
but is installed along the energy meter of the utility company.

An alternative scenario is the installation of several smart meters in-house that are inter-
connected through a network. This method is referred to as Intrusive Load Monitoring (ILM)
and can be split in three sub-categories[2]. The rst category, named ILM 1, involves splitting
the house in regions and using one meter per region. This usually entails installing sensors at
the circuit breaker panel. In ILM 2, more meters are deployed, one per outlet, thus receiving
ne-grained data for each appliance. The nal category, ILM 3, assumes that all devices come
equipped with an embedded meter and a data feedback system. All of the three ILM solutions
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have their own use-cases and the choice usually depends on the trade-o between reliability and
cost of installation. ILM 1 is considered the most cost e ective, due to the low number of smart
meters, but the process of separating the appliance consumption per-device is non-trivial. On
the contrary, smart appliances are not always available or a ordable, therefore rendering ILM 3
the most reliable but least cost-e ective.

1.2 Automatic Appliance ldenti cation

All of the aforementioned approaches are, in theory, capable of providing power consumption
data, for each appliance separately. However, even though power data are available, there is no
information about the type of the device. This is an important component for home automation
and device-speci c control. Manual labelling of appliances is not a viable solution for most
Energy Load Monitoring scenarios. For example, for NILM, the user would have to match
predicted loads to the devices manually, every time there is a new result. For ILM 1 and 2 it is
required to pair the devices to speci ¢ meters. Such a setup is time consuming, not user-friendly
and prevents recon guration of the house circuitry (eg. plugging out the kettle to in order to
plug in the toaster). The ILM 3 approach is the only one that is not a ected by this issue
but assumes a common protocol of data collection for all devices, which is not realistic at the
moment. For all these reasons, it is desirable to be able to infer a label for the appliance using
the available consumption data. This task is referred to as Automatic Appliance Identi cation
and is considered a crucial component of any load monitoring system.

On a rst glance, the feasibility of such a task may not be self-evident. The basis for the con-
ception of Automatic Appliance Identi cation becomes clear when one examines the behaviour
of basic AC electric circuits. The simplest of all can be considered a circuit comprised of a source
and a resistor. In this case, the resistor component draws power that is converted into heat.
To create more circuits, there is a set of components that can be placed alongside the resistor,
the most common of which are capacitors, coils and diodes. By combining these components in
various ways, we can get di erent circuits, each of which displays di erent behaviour.

In order to monitor these simple circuits with respect to their power consumption, we can
measure the voltage that is supplied by the source and the current that is drawn by the com-
ponents. It is expected that the design of the circuit, referring to its components and topology,
will directly a ect the measurements. An example of this can be seen in Figure 1.1 where we
can examine the voltage and current waveforms for three circuits. It is visible, that there are
di erences in the measured current. For the R circuit, voltage and current have the shape of a
sine wave. The same applies for the RL circuit but this time there is phase di erence between
the two. In the third example, the current has no negative values. In general, every component
draws current in a speci c way that depends on its natural properties. Therefore every circuit
will have a characteristic current signal, according to its design.

The main idea behind Automatic Appliance Identi cation is that the principle of identifying
small circuits can be generalised to household electric appliances. Since each appliance has a
unique circuit design, it will also have a distinctive consumption pattern. We can therefore
use the characteristics of the voltage and current signals to infer the device label. Realistically
however, similar devices will display similar power consumption patterns. As such, this task
becomes a classi cation problem for which the input are the voltage and current measurements
and the target classes are the device labels.



Automatic Appliance Identi cation Chapter 1

R
(a) R circuit

R

L
(b) RL Circuit

R

(b) Diode-Resistor Circuit

Figure 1.1: Voltage and Current measurements for three circuits with di erent components.
While the Voltage waveform remains the same among all three, the Current shape changes
depending on the components.
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1.3 Scenarios for Appliance Identi cation

Similarly to energy monitoring, Appliance ldenti cation is a quite broad term and can be dis-
tinguished into categories, according to the target classes. These categories di er mainly with
respect to the use-cases to which they can be applied. In order to make the problem statement
clearer and allow for a fair comparison between approaches we propose the following categorisa-
tion. To the best of author's knowledge, no such categorisation has been formulated before.

1.3.1 Appliance Type ldenti cation

Appliance Type Identi cation refers to the task of inferring the type of the target appliance with
regards to its functionality. Example target classes for this category would be \fridge", \kettle",
\iron" etc. This means that, for example, fridges of di erent manufacturers should be recognised
as the same type.

This approach towards appliance identi cation assumes low within-class variance and high
between-class variance. In other words, it is expected that, in terms of energy consumption,
di erent models of the same type would behave more similar to each other than to other appliance
types. In theory, such a model, should be able to recognise any appliance available anywhere,
even though it is trained on a small subset of them. As such, high generalisability is crucial.

1.3.2 Appliance Instance Identi cation

Appliance Instance Identi cation considers each device a separate entity. The target classes in
this case are not appliance types but the speci ¢ model of a device, referred to dastance. This
means that a particular appliance model should be considered distinct from another model of
the same type. Consequently it allows for more detailed results, meaning that it can infer the
appliance type and the model.

An Appliance Instance ldenti cation system would require data for each specic instance.
Ideally, the manufacturer can provide this type of information. If not, sampling can be done
in-house during installation. Consequently, a model that classi es appliance instances can only
work with the speci ¢ set of devices on which it was trained. As a result, it can be deployed only
in homes with the same exact appliance set. Hence, generalisability is of low priority.

1.3.3 Appliance Load Identi cation

Appliance Load Identi cation focuses on the type of load that an appliance adds to the grid.

In this context, with the term load we refer to the type of behavior a circuit displays, when
regarded as a small circuit. This means that, in order to identify an appliance, we regard it
as a much simpler circuit, based on its most prominent components. For example an iron and
a toaster both fall into the class of 'resistive loads' as their main components are the resistors
that generate heat. Similarly, an LCD TV and a laptop charger have electronic power supplies
and can be grouped as such. With this categorisation, appliance types are abstracted into more
general categories. In parallel, appliances such as air conditioners or washing machines have more
than one modes of operation, and therefore, can be characterised by more than one loads. With
a load identi cation system, we can get valuable insight on the way that the device operates and
what are its most characteristic components.
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Figure 1.2: The Crownstone chip. It is installed behind the traditional power socket and controls
the power ow.

1.4 Crownstone

Crownstone ! is chip that can add smart capabilities to a traditional electric outlet. As seen in
Figure 1.2, it can be installed behind the socket and is capable of measuring current and voltage
from the devices that are plugged into it. Among other features, it can react to the position of
occupants in the house, switch devices on/o and dim lights. It also o ers communication via
Bluetooth and is technically capable of high-frequency sampling of voltage and current data. To
sum up, the use of Crownstones in a home, creates an ILM 2 scenario.

Crownstones can o er easy control of devices but they lack the ability to identify the con-
nected appliance. The addition of this functionality would allow for intelligent control of devices
depending on their type. Some example scenarios for this are:

1. Dierent types of lamps require di erent dimming methods. By di erentiating LED from
uorescent lamps this process can be made automatic.

2. Plugging in a dangerous device (e.g. iron, power drill) when no adult is present near the
outlet can be detected and prevented.

To achieve the above, it is necessary to identify appliances in real-time using high-frequency
measurements of voltage and current.

1.5 Research Questions and Overview

Given the previous description of the Appliance Identi cation problem, this research aims to
tackle a number of tasks. Initially, we investigate how existing appliance identi cation algo-
rithms generalise in unseen datasets and we evaluate their performance. Next, we examine, to
the best of our ability, if visual representations of the collected data can be used to improve per-
formance, especially when combined with convolutional neural networks. Finally, we expand on

Lhttps://crownstone.rocks
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our de nition of appliance load identi cation, and explore the feasibility of a load identi cation
system.

With the above questions in mind we hypothesise the following:

h,: Existing algorithms perform worse on unseen datasets compared to the dataset from which
the training set was collected.

h,: CNN architectures that use raw timeseries or visual representations of the data as input,
outperform algorithms that use handpicked features.

hs: A load identi cation system is feasible given labelled data.

In the following chapters we attempt to explore the topic and address the questions above.
Initially, in Chapter 2, we explore the related literature on Appliance Identi cation and detect
issues with the task itself and the existing methodology. In Chapter 3 we establish the method-
ology for experimentation, namely the datasets that are used, the necessary data preprocessing
and nally the set of features deployed in this project. In Chapter 4 we apply this methodology
on techniques retrieved from past literature, attempting to replicate their results and discover
strengths and weaknesses. Then, we explain our proposed models and list their performance for
Appliance Type Identi cation in Chapter 5 and Appliance Load Identi cation in Chapter 6. In
Chapter 7 we answer the research questions based on the results and comment on interesting
ndings of the experimental process. Finally, in Chapter 8 we summarise the contribution of this
research work and propose steps for the future, on the task of Appliance Identi cation.

This manuscript is accompanied by two Appendices that contain technical details about
the experiments. Speci cally, Appendix A contains circuit schematics for the arti cial dataset
introduced in Chapter 3 and Appendix B lists devices that are taken from an open dataset and
are used in the experiments of Chapters 5 and 6.



Chapter 2

Related Work

2.1 Related Work

Several attempts have been published in the past on the problem of automatic appliance identi-
cation with varying degrees of success. Since it is closely coupled with the engineering task of
developing a smart meter, most past literature considers the Appliance Identi cation system as
a sub-component of a NILM or ILM solution[3{5]. The fundamental element of all approaches
is that appliance identi cation is considered a classi cation problem that exploits voltage and
current measurements.

2.2 High Frequency Appliance Identi cation

The main target of this research project is appliance identi cation in real time. This means that
there is a need for obtaining descriptive data in a short amount of time. For this reason, we focus
on literature that works with high-frequency measurements ¢ 1kHz) and exclude bibliography
that processes timeseries collected over hours of monitoring.

The common component of all Automatic Appliance Identi cation works is the fact that
Machine Learning is deployed as a solution to the classi cation problem. Often, there is an
extensive preprocessing phase to transform the raw signals into a descriptive feature vector.
Kato et al. [3] opted for automatic feature extraction with PCA and classi ed appliances using
an SVM. On the contrary, Reinhardt et al. [6] handpicked a set of features from the time and
frequency domain. The performance of the these features was then examined through popular
machine learning techniques such as Random Forest, Bagging, Bayesian Networks etc. Other
pieces of literature tried to extract features such as Active and Reactive power [7] or used FFT [5].
Nevertheless, the main methodology remains the same and involves three step: data collection,
feature extraction and classi cation.

In the more recent years, with the advancement of Deep Learning especially on the eld
of Computer Vision, researchers turned to Neural Networks for appliance identi cation systems.
Barsim et al. [8] experimented with an ensemble of Neural Networks that classify appliances using
a window of raw voltage and current signals. This way, the feature extraction part is omitted.
Another methodology was proposed by De Baetst al. [9] that involves Convolutional Neural
Networks on images of plots of the Voltage-Current Trajectories (VI trajectories). VI trajectory
images have been established by several studies [10], [11] as a descriptive visualisation of raw
voltage and current signals. In Figure 2.1 you can see example VI trajectories for four appliance
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(a) Air Conditioner (b) Hairdryer (c) Laptop

(d) Washing Machine

Figure 2.1: VI trajectories of four appliances. VI trajectories vary in terms of shape, depending
on the current waveform. Some di erences that are clearly visible is that the Air Conditioner (a)
shows self-crossings that are not present in the even shape of the Hairdryer (b). The Laptop (c)
seems to form the shape of a rotated \Z" while the Washing Machine (d) encircles bigger area
compared to the rest.

types. It is noticeable that the trajectories can vary greatly in terms of shape, depending on
the current waveform. Apart from conveying a lot of information about the original signals, VI
trajectories are also invariant to changes in the main voltage from region to region[12]. Therefore
they are a robust representation, regardless of the outlet voltage.

Given the above information we see that existing work is split into two methodologies. One
focuses on extracting descriptive features from the data that are used to create a \ ngerprint"
for the appliance. The alternative is to use Neural Networks that use either the raw signal or
the VI representation as input. Both approaches seem to perform very well in their respective
datasets. However, direct comparison is not possible due to di erent test sets across literature.

2.3 Relevant problems in Appliance Identi cation

Inspecting the literature pertaining to Appliance Identi cation, we notice a few issues. These
mainly concern the de nition of the problem itself as well as the data that are available for
experimentation.

2.3.1 Insu cient datasets

Appliance identi cation has been consistently tackled using machine learning. This methodology
requires high quality measurements for training and testing. These measurements are di cult
to acquire, mainly because the setup of a data collection environment is a challenging and
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time consuming task. Firstly, it is necessary to acquire a high-frequency smart meters and
a wide selection of devices to sample from. Secondly, collecting representative samples is not
straightforward for many devices, as they may have parameters that alter their behaviour (e.g.
washing machine cycles, hair dryer settings). As such, acquiring data to train and test models
is non-trivial.

Fortunately, there are several open energy consumption datasets suitable for appliance iden-
ti cation. Unfortunately, each dataset comes with its own properties that make it quite di cult
to merge them or cross-test. The rst distinction between datasets is the sampling frequency
used to collect energy data. Low frequency datasets usually sample values with a resolution of
seconds and mainly focus on wattage. High frequency measurements are necessary to acquire
voltage and current measurements, due to the periodic nature of the signals. Another point of
discrepancy between datasets lies in the variances of mains electricity supplies. This refers to
the voltage and frequency used by each country. For example, most European countries have a
mains supply of 240V/50Hz while North America uses 120V/50Hz. This di erence implies that
the same device models will display slightly di erent behaviour when used in di erent regions.

In addition, this variation a ects the frequency response of the signal, therefore making models
trained on one mains network, incompatible with the devices that use the other. Kholeifet al.
[12] examined the most popular features for appliance identi cation and has found that several
of them are independent of the supply voltage. Through these speci c features, it is possible to
combine data with di erent origins.

As a result of the above issues with most datasets, literature regarding appliance identi cation
mostly focuses on training and testing on one dataset using a splitting strategy. While this is
a valid experimentally, we nd that it is not su cient in order to fully investigate the capacity
of the models. Firstly, most datasets provide a very limited set of appliances instances or types.
Secondly, sets collected with the same sensors may contain biases or characteristic noise. In
conclusion, we nd that experimenting with di erent data sources can be of great use when
evaluating Appliance Identi cation techniques.

A major point that most datasets are lacking in is su cient labelling. As mentioned in
Section 1.3.1 each approach to the task requires specic labels. Some datasets provide device
model names[13], which are useful for appliance instance identi cation, while others just mention
the type[14]. The type of the appliance is often ambiguous (PC monitor vs TV, space heater vs
air conditioner etc) which may also cause issues. Finally, according to the author's knowledge,
there is no open dataset with labelled appliance loads.

2.3.2 Ambiguous testing scenarios

The testing scenario, as described in Section 1.3, is not always made clear in the literature. On
one hand, Kato et al. and Reinhardt et al. [3, 6] regard appliance identi cation as identi cation
of previously seen devices. On the other hand, Barsinet al. and De Baetset al. [8, 9] attempt
to generalise to unseen devices by inferring classes such as \fridge", \hair dryer”, \laptop" etc.
Gisler et al. [15] attempted to separate these two tasks into two testomg protocols. However,
Du et al. [16] and Lam et al. [17] reformulated the task once again and focused on groupin
similar devices into general categories. Similarly, Iksaret al. [18] attempted to group devices
semantically, essentially focusing on the load.

As we can see there is confusion with respect to the de nition of Appliance Identi cation.
Comparison between techniques of di erent scenarios is not only unhelpful but also misleading.
For this reason it is crucial to clearly state the task at hand and the target classes.
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2.3.3 Within and Between class variance

A major problem in appliance identi cation, especially when it comes to Appliance Type Iden-
ti cation, is the high variance in behaviour between devices of the same type. This means that,
especially in more complex devices such as washing machines and air conditioners, the operation
cycles may dier a lot. As such, it is a di cult task to generalise su ciently when training on
a small dataset. In addition to this, there are often major contradictions even between states of
operation of the same device. For example a microwave has several settings, sometimes works
only as a timer or may come equipped with an oven function. Similarly, a washing machine goes
through the stages of spinning and pumping water for which it uses very di erent components.
Overall, de ning a coherent class is not always possible when working with electric appliances.
At the same time, there are often similarities between devices of di erent classes. For example
a kettle and an iron are devices with just heating elements. Heating usually comes from a resistor
which will display a very generic pattern of operation. This problem is widespread considering
that most electric devices are comprised by a limited set of components: heating elements, motors,
recti ers, evaporators, electronic power supplies etc. All in all, from a physical perspective, the
appliance identi cation task seems to su er from high within-class variance and low between-class
variance.

10



Chapter 3

Methods

In order to tackle the questions posed in Section 1.5, it is hecessary to conduct several experi-
ments, using existing and novel methods. Since we investigate two di erent scenarios, hamely
Appliance Type Identi cation and Appliance Load Identi cation, it is necessary to formulate
two di erent methodologies. In the next sections we explain the parts of the methodology that
apply to both scenarios including the data and the handpickced features.

3.1 Open Energy Consumption Datasets

Due to the high research interest in smart houses and energy consumption, there are several open
datasets on the topic. For the needs of this project, it is necessary that the measurements are
on a per-device basis. It is also mandatory that samples are labelled in terms of appliance type.
Since generalisation is crucial for Appliance Type Identi cation, the samples need to come from
di erent instances of the same type, to ensure that the model captures the characteristics of the
entire class. Given the above constraints, we focus on the datasets PLAID [14], the extension
to PLAID (PLAID 2) [19] and WHITED [13]. The relevant properties of these datasets can be
found in Table 3.1. PLAID o ers high variation regarding the number of instances per type. The
same holds for PLAID 2, that, besides adding more data, it caters for balancing the number of
samples for each type, which was an issue in PLAID 1. Finally, WHITED has a very small set
of devices per type which make it unsuitable for training but useful for cross-dataset tests.

Name Sampling # Houses # Types # Instances # Samples
Frequency per Type per Instance
PLAID 30kHz 55 11 7-38 26-92
PLAID 2 | 30kHz 9 11 5-9 75-248
WHITED | 44.1kHz No house| 46 1-5 1-20
data

Table 3.1: Properties of energy consumption datasets. All of them provide high-frequency mea-
surements. The number of available appliance Types directly a ects the di culty of identi ca-
tion. The number of Instances per Type indicate the variety of devices for each type which is
important for generalisation. A high number of samples provides a more complete picture of the
device behaviour.

11
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(a) No noise (b) Arti cial phase shift (c) Additive sine noise

Figure 3.1: VI trajectory of RL circuit taken with di erent types of arti cial noise. In the left,
there is no added noise. In the centre, the VI trajectory encloses a greater area due to the
phase shift in the current signal. In the right, the addition of high-frequency sine noise causes
high-frequency uctuations, creating an irregular line.

3.1.1 Arti cial Dataset

With regards to Appliance Load Identi cation, to the author's knowledge, there are no available
labelled data. For this reason, an arti cial dataset is generated using a circuit simulation software.
The design and simulation of the circuit of a realistic device is not an easy task. Since the data
should be labelled with respect to the load and not the type of the appliance, there is no need
to implement the actual circuit. Instead, it is su cient to acquire data from equivalent, small
circuits. With this information we can verify the classes are indeed separable and cohesive to
allow for high accuracy classi cation.

For this purpose, use theNGSPICE [20] software that allows for the design, simulation and
inspection of electrical circuits. We design 8 di erent circuits, consisting of Resistors, Capacitors,
Coils and Diodes. Details regarding the designed circuits are listed in Appendix A. The circuits
are simple enough to be designed manually and hand-labelled in terms of load. We randomise
the values of the components, within a range, in order to get slightly di erent results. Next,
realistic noise was added randomly. Speci cally we introduce:

(a) a slight phase-shift representing capacitive coupling between wires

(b) a low-voltage, high-frequency sine wave representing uctuations in the source or resistive
components

The impact of the noise techniques on the VI trajectories can be seen in Figure 3.1. Speci cally,
we see that the arti cial phase shift results in a trajectory that encloses a greater area whereas
the high frequency wave causes slight uctuations in the shape. Using this procedure, we obtain
800 voltage-current samples labelled by load.

3.1.2 Labelling PLAID and WHITED for Load Identi cation

To test the models on realistic data, we also label PLAID and part of WHITED manually. This

is a time consuming but nevertheless feasible task. The load of most samples can be identi ed
manually based on (a) the physical properties of the appliance type and (b) the shape of the
VI trajectory. Knowledge about the internal components and the general design of an appliance

was very helpful to categorise them. For example, devices that mostly produce heat (light bulbs,

toasters) typically contain a large resistor which is the most characteristic component of the
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(a) Resistive Load (b) Reactive Load (c) Electronic Load

(d) Electronic Load with (e) Complex Load
Power Factor Correction

Figure 3.2: Examples of manually labelled VI trajectories. Each load displays distinct shapes.
Resistive Loads (a) typically resemble an anti-diagonal line with a small enclosed area. Reactive
loads (b) contain a greater area. Electronic Loads have a rotated \Z" shape with a middle
segment that remains close to zero in the y-axis. Electronic Loads with Power Factor Correction
also have the zero middle segment which is much smaller. Complex Loads display irregular
shapes often containing self-crossings.

circuit. Similarly, electronic devices have comparable power supplies and can be easily grouped.
For the rest, the VI trajectory is investigated. This involves looking at the shape and noticing
the following criteria, inspired by Du et al. [16]:

(a) Trajectories that form clearly de ned circles with big enclosed area fall into the reactive
category.

(b) When trajectories are composed of a part where current remains zero, followed by a sudden
increase of amperage, it is an indication of a power supply for a DC circuit.

(c) Self-crossings in the VI trajectory, or abrupt modulations, indicate complex loads.

Following this procedure we are able to label PLAID in terms of load. Example trajectories
for each of the above criteria are displayed in Figure 3.2. In these trajectories we can see that
resistive devices resemble an anti-diagonal line while reactive have a circular shape. As indicated
by criterion (b), the electronic loads have a middle part that remains stable towards the centre
of the shape. And nally the complex load of Figure 3.2e has two self-crossings.

13
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Figure 3.3: Phases of operation for an Air Conditioner. With the blue line we see the current
measurement over time. In the red area on the left, the device is o and therefore the current
amplitude is zero. When the device is powered-on there is an abrupt increase in the current
amplitude, signifying the start-up phase in the orange segment. Finally, the current reaches
the Steady-state Phase where device consumption remains relative stable, as seen in the green
segment.

3.2 Data Preprocessing

All of the sources mentioned in Section 3.1 provide timeseries of voltage and current, longer than
5 seconds. The rst part of the timeseries is usually a short period for which the device is o
and therefore the measured current is 0. As soon as the device is switched on, there is an initial
state of unexpected operation, referred to as the start-up phase During this period, the device

is not functional but is preparing parts of the circuit (motor spinning up, capacitors charging
etc). After some arbitrary time has passed, the circuit is expected to have reached the steady-
state phase during which it operates normally. Looking at an example of an Air Conditioner in
Figure 3.3 we can notice that the phases can be easily distinguished by the di erence in current
Amplitude.

Most previous attempts on appliance identi cation skip the start-up phase and focus on
extracting features from the steady-state phase, which is considered to be the characteristic part
of the device. Our investigation of the data seems to hint that there are uctuations of the current
even within the steady-state phase. This hints the appliance may go through di erent states
during this operation. This is known to be true with several appliances that change behaviour as
time passes. For example, an air conditioner cycles through the states of circulating cooling uid
and spinning the fans while a washing machine may be washing, spinning or pumping water.
Therefore, there are cases for which we can distinguish several steady-states. This is especially
useful, for Appliance Load Identi cation, as di erent states may represent di erent loads.

To detect transitions between states in the timeseries, we found points at which the consump-
tion (Wattage) of the appliance changes abruptly, by an amount that exceeds a threshold. This
threshold was handpicked for each appliance. A quick and clearly de ned change in wattage
indicates that di erent parts of the circuit are in-use and therefore the device has transitioned
to another state. By detecting these state changes, we split the timeseries and thus get a more

1This phase is also mentioned as inrush current in the literature.
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(a) Initial VI trajectory (b) Discretized VI trajectory

Figure 3.4: Mapping of a VI trajectory to a xed a matrix of size 50x50. This process converts the
continuous line into a rasterised representation which allows the image to be fed to a convolutional
layer.

varied representation of the device behaviour.

3.3 Feature Extraction

Voltage and current signals are periodic with a frequency that depends on the mains supply of
electricity (e.g. 50Hz for Europe, 60Hz for the USA). Since the signal remains relatively stable
within a state, examining a small number of cycles should be enough to capture the characteristic
performance of the device. For this reason, a signi cant part of existing literature [9, 12, 16, 21]
uses a single AC cycle of data to extract features and representations. In this research project we
combine the VI trajectory of a single cycle with metrics from the whole measured signal. These
features are grouped in three categories: VI trajectory shape, time-domain and frequency-domain
features.

VI trajectory shape features are features extracted not from the shape of the trajectory. The
form of the trajectory depends on the waveform of current cycles in relation to mains voltage
signal. It is a visual representation that indicates properties of the device operation. For usage
with Convolutional Neural Networks, the image of the trajectory is discretized into a binary
matrix of xed dimension, as explained in [16] (see Figure 3.4). For machine learning models
that do not typically handle images directly, feature extraction is necessary. In this case, a list
of measures were calculated to capture the shape of the trajectory into an 1-dimensional vector.

Area The area enclosed by the trajectory. It is proportional to the phase di erence be-
tween voltage and current (proposed by [10]).

Self-Intersection  The number self-intersections that appear in the trajectory (proposed
by [10]).

Asymmetry A measure of detecting whether the positive and the negative part of the
cycle have the same shape. This can be calculated by multiplying anti-diagonal cells (pro-
posed by [16]).

Curvature of the mean line A measure of harmonic distortion in the signal and can be
calculated by measuring the vertical distance between the VI trajectory and the trajectory
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Figure 3.5: Graphical description of the curvature of the mean line for an electronic load. The
mean line of the trajectory is depicted as the dotted black line. The curvature is measured as the
maximum distance between a theoretical linear load (in red) and the mean line of the trajectory.

of a perfectly linear device. An example is shown in Figure 3.5 (proposed by [18]).

Slope of the middle segment  The middle segment of a VI trajectory is de ned as the
part where voltage is taking values in the range ( %max(V); %max(V)). The slope of the
VI in this segment can distinguish electronic devices, that typically have a near-zero slope
(proposed by [10]).

Peak of the middle segment  Similarly to the slope, this feature can di erentiate reac-
tive loads.

Width variance  The width of a segment is de ned as the horizontal distance between the
lines of the VI trajectory. The width can be measured in various points on the trajectory.
High variance in these values is an indication of an \uneven", complex load.

The VI trajectory representation is not a ected by the amplitude or the frequency of the
mains supply [12]. By extension, the features extracted from its shape are very robust and easy
to use across di erent datasets.

Time-domain features refer to properties of the signal that appear over multiple AC cycles,
and are not conveyed in the VI trajectory representation.

Current Amplitude This refers to the max current value that is measured within a cycle
of operation. This is quite important as it can help distinguish appliances according to
their consumption. One crucial point to notice here is that the max current is inversely
proportional to the mains voltage, given that a device puts a steady load on the supply. As
such, to make datasets from di erent regions compatible, we normalised the max current
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(a) Light Bulb (b) Hairdryer

Figure 3.6: Frequency response of the current signal for two appliance types. On the left we
see that the amplitude of all harmonics is very low relative to the fundamental frequency. This
is a hint of a mainly resistive circuit. On the right we notice high amplitudes in every other
harmonic, indicating the presence of a DC motor.

values with the mains voltage.

Phase shift A measure that refers to the phase dierence phase between voltage and
current. The absolute value is conveyed in the area of the VI trajectory. However, using
trajectories it is not possible to detect its sign. A positive phase shift (voltage lagging cur-
rent) indicates an inductive circuit while the opposite (voltage leading current) a capacitive
one. Therefore, information about the sign of the phase shift can aid in the di erentiation
between capacitive and inductive loads.

In the frequency domain, Kahl et al. [11] detected some interesting properties for some
devices types. The intensity of speci c harmonics imply presence of certain components. For
example linear loads have very low harmonic content while motor-equipped appliances typically
show high amplitudes for odd harmonics. An example of this phenomenon can be seen in Figure
3.6. Therefore, we found tting to extract a small number of features using the Fast Fourier
Transform.

~ Total Harmonic Distortion (THD) A measure of harmonic distortion which is pro-
portional to the amount of noise or high order components in the signal. Withf, the
amplitude of the fundamental frequency andf; the amplitude of the i-th harmonic, THD

is de ned as:
s|35 -
THD = —i=t'

= (3.1)

" Odd-Even Ratio (OER) The ratio of odd to even harmonics can also aid the identi ca-
tion of a device as certain components introduce only odd or even harmonics. The OER is
de ned as:

mean(f 1;f3;fs)

OER=z —FMM———~
mean(f2;f4;fe)

(3.2)
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~ Spectral Flatness (SPF) . Represents the distribution of energy in the frequency spec-
trum, with high values representing white noise and low values strong individual compo-
nents. It is de ned as:
s

2 f
SPF= —p— (3.3)
5 =1

The frequency response of a device is dependent of the frequency domain of the mains supply.
In fact, the fundamental frequency of current wave is the frequency of the energy grid. Conse-
qguently, the features are incompatible between samples collected in di erent regions. To account
for this, we acquire the fundamental frequency using the mains frequency and then calculate the
harmonics in relation to that. With this technique, the aforementioned features are suitable for
comparisons across data of di erent regions.
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Chapter 4

Replication of existing studies

The rst stage of this research project involves the replication of existing approaches to Appliance
Identi cation. Besides validating the ndings of other research works, this step is an opportunity

to gain insight on the data and the algorithms. For this purpose, three pieces of past literature
are implemented and tested using the PLAID dataset. The selection of studies encompasses
techniques that use various methods for feature extraction, namely automatic feature extraction,
handpicked features and VI trajectories. Moreover, they are all techniques that are considered
central to the domain literature. In Table 4.1 there is some key information about each body of
work. In the following sections, we outline the methodology for the replication and the results.

4.1 Replication of Reinhardt et al.

The purpose of this study is to formulate a system that is comprised of a smart meter that samples
and preprocesses data, accompanied by a computational system that classi es the appliances.
The application scenario of this attempt is not clear. The data used for the research are labelled
according to the device type, therefore posing the problem as Appliance Type Identi cation.
However, there is only one appliance instance per category which is present both in test and
train sets. Hence, it is more akin to Appliance Instance Identi cation. However, in order to
remain true to the original vision, we also regard this attempt as a Type Identi cation scenario.
The original data used for training and testing are unavailable. For this reason, PLAID
is deployed as a substitute which means that there is a di erence in the set of target classes.
However, the features are not speci ¢ to the appliance types that Reinhardtet al. used, and

Reference Identi cation Preprocessing Algorithms
Scenario Methods
Reinhardt et al. [6] | Type Identi cation Handpicked Features | WEKA Algorithms
Kato et al. [3] Instance Identi cation | PCA SVM Classi er
De Baetset al. [19] | Type Identi cation VI trajectory Images Convolutional Neural
Network

Table 4.1: Key components of replicated studies. The studies are picked to re ect three di erent
preprocessing and feature extraction pipelines. Each study also uses a di erent identi cation
algorithm.
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Algorithm | Accuracy
Bagging 0.86
Bayesian Network 0.78
J48 0.86
Jrip 0.82
LogitBoost 0.82
Naive Bayes 0.64
Random Committee | 0.93
Random Forest 0.93
Random Tree 0.84

Figure 4.1: Confusion matrix for Random
Forest experiment for Reinhardt et al. No-
tice that misclassi cation happens in pat-
terns. This is visible in the 14 Heater ex-
amples that are identi ed as Hairdryer.

Table 4.2: Results of replication of Reinhardtet
al. [6] on PLAID.

therefore this change should not be an signi cant. Next, the feature extraction process, involves
extracting 10 handpicked features such as phase shift, the root mean square of the current and
several features from the frequency domain. The models are created using machine learning
algorithms, provided by the WEKA&2] software. We test this approach with 25-cross validation.
Results are listed in Table 4.2 and the confusion matrix for the best attempt can be seen in 4.1.

The replication results show that there is a noticeable drop in accuracy. There are multiple
reasons for this. Firstly, since we are using PLAID there are several instances per appliance type.
This makes it necessary for the algorithms to learn the characteristics that apply to the whole
class and not a speci c device. Secondly, due to the nature of PLAID, there is a class imbalance
that may have an impact on the prediction accuracy. However, from this study we deduct that
the 10 handpicked features can su ciently capture the components that di erentiate appliance
types. It should also be noted that, due to the train-test split of the data, samples from the same
instances will be present in both sets. Therefore, we expect that the score of this experiment is
higher than in the case of a test set with unseen instances.

4.2 Replication of Kato et al.

In this study, Kato et al. attempted to tackle the Appliance Instance Identi cation scenario. The
novel part of this research is the automatic feature extraction method, that uses PCA on the raw
current signal. The hypothesis is that PCA is able to extract the most important components
from a single cycle of current data. The component vector that is extracted is then used to train
an SVM classi er to di erentiate between the target appliances.
The data used in the original experiments are not available and for this reason we use

WHITED. WHITED o ers a wide range of di erent appliance instances, hence it is suitable
for Appliance Instance Identi cation. Since the speci ¢ number of PCA components is not men-
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Number of PCA Accuracy

Components

20 0.85
40 0.87
60 0.88

Table 4.3: Results of replication of Kato et al. [3] on WHITED. Higher number of PCA compo-
nents causes an increase in accuracy.

tioned, we execute the experiment with a range of values. All results can be found in Table 4.3.
The PCA and SVM classi er were taken from the sklearn Python library [23].

Compared to the 99% accuracy reported in the original paper, in our experiments we nd a
maximum accuracy of 88%. This indicates a considerable drop of performance. Unfortunately,
due to the di erent datasets, it is not easy to hypothesise on the cause of this. However, one
point that we notice during the replication of this study is that there are often hidden biases in
datasets. One critical bias that we found is that the samples of speci ¢ appliances were phase-
locked. This means that all of their traces were collected with a speci ¢ phase shift. This was
captured in the feature vector and resulted in very high classi cation accuracy. By randomising
the phase, this bias is eliminated.

4.3 Replication of De Baets et al.

This approach proposed by De Baerset al. [9] takes advantage of the recent advances in deep
learning, utilising a Covolutional Neural Network(CNN) for appliance identi cation. In this
methodology, VI trajectory images of dimension 50x50 are created. These are then passed to
a CNN of speci ed architecture in order to classify appliances into types. We test the network
with the PLAID dataset with the \leave-one-house-out” strategy. This means that the classi er

is trained on appliance types sampled fromN houses and tested on appliances from a di erent
house. This is the same strategy deployed by the original research.

Averaging the results from all test houses produces an F1-score of the results in Figures 4.2
and 4.3. Our implementation scores an Fl-score of 0.74 which is slightly lower than the 0.77
reported in the original paper. However the di erence is not signi cant and may be due to the
stochasticity in the training of the neural network.

While the study has been successfully replicated, we notice some warning signs in the imple-
mentation and training. The rst one is that the network learns the train-set perfectly in just
two epochs which is a sign of possible over- tting. This is reinforced by the very big number of
trainable parameters (10 million) compared to the number of training examples (  20000).
Therefore, we believe that this study can benet from tests on other datasets or with more
conservative architectures.
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Figure 4.2: Confusion matrix for the Figure 4.3: Fl-score per class for the replication ex-
replication experiment of De Baets et periment of De Baetset al.
al.
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Chapter 5

Appliance Type Experiments

When it comes to Appliance Type Identi cation, this project expands on the previous literature
by De Baetset al. [9] and Barsim et al. [8]. The focus in placed on high-frequency techniques
that use visual representations of the source signal. For this purpose, VI trajectories and Neural
Networks have been shown to perform well and are further investigated in these experiments.
Working in the same manner as De Baetst al. in Chapter 4, we aim to improve accuracy and
evaluate and ability to generalise to unseen datasets.

5.1 Models

Our attempts in this task stem from the architecture used in Section 4.3 and aim to remedy the
weaknesses of the original. In this section we describe two models, a Multi-Modal Convolutional
Neural Network and an Ensemble of Neural Networks.

5.1.1 Multi-Modal CNN

The rst model that we propose is a Multi-Modal neural network. This architecture comes with
three main enhancements. First, we fuse the VI trajectory with extra features. Second, we aim
to tackle over tting. Last, we take measures to account for class imbalances between datasets.

The rst improvement, lies in the data representation itself. To overcome the limitations of
the VI trajectory, we introduce the features Maximum Wattage, Phase Shift THD, OER and
SPF. To combine the numerical features with the 2D-trajectory matrix we propose a Multi-
Modal Convolutional Network with two inputs. The trajectory matrix is fed into a stack of
Convolutional and Max Pooling layers. The numerical features are fed to a fully connected layer,
which is then concatenated with the output of the Convolutional layers. In this manner, the two
input branches are merged into one and produce a latent space representation. This technique
is widely used in sensor fusion, to combine data collected with from di erent sensors [24].

An important point that is mentioned in Section 4.3, is that the network seems to overt
to the training set, due to its disproportionately large number of parameters. In many cases,
decreasing the layer sizes of a large network can act as a regularisation technique [25] as the
network is forced to extract generic features from the data. Using this rationale, we reduce the
sizes of dense layers and lower the number of Iters of the convolutional layers. In addition|2
regularisation is applied on Convolutional and Dense layers.

A small but substantial point in the design of the model, is noticing the class imbalance in the
training set. While this has been pointed out before in the literature [19], no counter measures
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Figure 5.1: Architecture of proposed Multi-Modal Convolutional Neural Network. The network
has two input layers that accept di erent data representations. The two branches are concate-
nated deeper in the network to produce a single prediction.

have been applied. For this reason, we introduce class weights depending on the number of
samples per class. The weights are computed using
N;

W = P—— (5.2)
j=1 Nj

where w; is the weight for classi, N; the number of examples per class andl the total number
of classes.

The resulting architecture can be seen in Figure 5.1. The network is trained using Stochastic
Gradient Descent with a learning rate of 0.1 and momentum of 0.8.

5.1.2 Ensemble of Multi-Modal CNNs

Examining the Appliance Type Identi cation problem from a practical point of view, hints that

the de nition of the target classes is problematic. When working with a dataset there is a de ned
set of appliance types. However, in a realistic setting, every household has its own distinct set
of appliances which may be larger or smaller than the one used during training. Having a model
that can infer more appliance types than those that are present may be unnecessarily complex
and cause false positives. At the same time, if there is a device in the test set that is unknown to
the model, there is no way to reject it. Hence, it is convenient to have a exible set of appliance
types and, as such a variable number of outputs.

In order to get a model that can be adjusted to the set of appliance types, we assembled
several binary classi ers. Each of the binary classi ers is trained to recognise only one type of
appliance. In this way, it is possible to remove redundant classi ers or add more. This method
of creating separate binary models is referred to asne-vs-all classi cation and it is commonly
used in multi-class tasks [26]. The architecture of each binary classi er is the same as the one
speci ed in Figure 5.1. The nal class prediction is done by selecting the most con dent positive
prediction of all classi ers.

5.2 Experiment setup

To evaluate the performance of the two proposed models, we use the PLAID and WHITED
datasets. We consider as target classes the 11 appliance types available in PLAID. We train and
test using the leave-one-house-out method, as described by De Baet$ al. This means that,
we can pick one house for testing and then train on the rest of the data. There are 64 houses
in datasets PLAID and PLAID 2 and therefore, 64 experiments are to be run. However, due
to time constraints we test only on the 9 houses of PLAID 2. WHITED is also used to test
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Model \ PLAID 2 \ WHITED
Baseline by De Baetset al. 0.57 0.32
Multi-Modal CNN 0.62 0.48
Ensemble of Multi-Modal CNN | 0.66 0.47

Table 5.1: F1-score for Appliance Type ldenti cation experiments. All models are trained on
PLAID and tested on PLAID 2 and WHITED. The scores can be compared to evaluate the
performance.

for generalizability to other datasets. The data in WHITED are not split in houses and so, we
picked some of them to create an arti cial house. The list of appliances in the arti cial house
can be found in Appendix B. The performance of all networks is evaluated using F1-score in
order to take into account the imbalances of the test set.

5.3 Results

Executing the above experiments yields the scores that are listed in Table 5.1. In addition to
the F1-score, we also include the confusion matrices that are displayed in Figures 5.2-5.4. These
can help detect patters in the classi cation errors and allow for observations regarding the weak
points of each model.

Inspecting the results we notice that there is a clear performance boost in the architectures
that we proposed on both datasets, compared to the baseline. We manage to reach the highest
score of 0.66 for PLAID 2 and 0.48 for WHITED. This is signi cantly higher compared to the
scores of the baseline. Between the two classi ers that we propose, there is no clear winner as the
Multi-Modal CNN performs better on WHITED while the Ensemble scores higher on PLAID 2.
Overall, the WHITED set remains the hardest one to classify and, clearly, there is a large gap
in the performances for each dataset.

Looking at the confusion matrices for WHITED we can notice interesting patterns. First,
there are certain devices that are never recognised correctly over all experiments. Namely, the
class \Compact Fluorescent Lamp" is misclassi ed in a distinct way for each of the classi ers.
Similarly, the class \Heater" is universally regarded as \Hairdryer". Second, the devices \In-
candescent Light Bulb" and \Washing Machine", are recognised much better with the proposed
Multi-Modal Network (Figure 5.3b) than with the baseline (Figure 5.3b).
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(a) PLAID (b) WHITED

Figure 5.2: Confusion matrices for baseline.

(a) PLAID (b) WHITED

Figure 5.3: Confusion matrices for Multi-Modal CNN.
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(a) PLAID (b) WHITED

Figure 5.4: Confusion matrices for Ensemble of Multi-Modal CNN.
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