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Abstract: In sleep research, the relationship between objective and subjective
scores of sleep quality is still an open question. In particular, sleep
patterns change naturally during pregnancy. In this study, we analyze
sixty three nocturnal sleep data from 39 women, pregnant in their sec-
ond and third trimester, collected in an earlier study at Philips. The data
consists of various polysomnographic measures as well as Groningen
Sleep Quality Scale (GSQS) questionnaire evaluation. A combination
of two sets of hand-crafted and EEG features directly extracted by con-
volutional neural network (CNN) has been used to find subjective rel-
evant features in the data.

Conclusions: A LASSO analysis of the first set of hand-crafted sleep parameters
yields to two predictors: N1 and sleep efficiency (SE) with 0.61 corre-
lation to the subjective scores and three predictors for the second set of
sleep parameters: the number of transition from REM to N2, SWS to
N2 and N2 to N1 with 0.51 correlation value. The obtained results con-
firm previous findings. Moreover, CNN was able to predict the binary
GSQS from raw EEG with 0.79 accuracy.
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1 Introduction

1.1 Background

One of the interesting questions in sleep research is how the relationship between objec-
tive and subjective sleep scores can be addressed. Usually, objective sleep measurements
are derived from the recorded body responses during sleep (e.g. EEG, heart rate, body po-
sition), while subjective measure is referred to the self-reported sleep experience [Rosipal
et al., 2013; Argyropoulos et al., 2003; ÅKERSTEDT et al., 1994].

To understand the humans’ sleep architecture, a typical hypnogram of a healthy adult
is shown in figure 1.11(National Institutes of Health). The relevant terminology and defi-
nition of human sleep stages as recommended by [AASM and Iber, 2007] follows:
• Stage W (wakefulness) represents the waking state before or after subject expe-

riences other sleep stages. Usually the corresponding EEG signals contain alpha
rhythms (8-13 Hz).
• Stage N1 (NREM - non-rapid eye movement - 1 sleep) is a transition from wakeful-

ness to sleep. The brain signal contains mixed frequency while the alpha rhythms
amplitude has decreased.
• Stage N2 (NREM 2 sleep) mainly contains theta wave (4-7 Hz).
• Stage N3 (NREM 3 sleep) represents slow-wave sleep (SWS) and contains delta

wave (0.5- 2 Hz). It is also known as deep sleep. This stage was previously con-
sidered to be two different stages: stage 3 and stage 4.
• Stage R (REM sleep) has the same frequency characteristics as stage W. It is as-

sumed most of dreams occur in this stage.
The sleep architecture is the key to derive and analyze the objective measures of sleep
[Rosipal et al., 2013].
Table 1.1 reviews several sleep studies that investigated various kinds of objective mea-

sures and subjective scores in multiple target groups. Some of these studies illustrate the
relation between self-reported stress scores and objective sleep measurements. [Åkerstedt
et al., 2007] reported chronic stress negatively affects the quality of sleep by increasing
slow wave sleep (SWS) latency and wake time after sleep onset (WASO). [Hall et al.,
2000] have shown that chronic stress increases the beta power while life acute stress

1https://science.education.nih.gov/supplements/nih3/sleep/guide/info-sleep.html
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Figure 1.1: A typical hypnogram from a young, healthy adult. Light-gray areas represent
NREM

attenuates the delta power. Furthermore, REM latency in the presence of acute stress
decreased in healthy subjects but was unaffected in depressed subjects [Williamson et al.,
1995].

The studies that specifically focused on subjective sleep quality scores reported vari-
ous parameters as predictors.[Westerlund et al., 2016] indicates that stage N2 is negatively
related to karolinska sleep questionnaire (KSQ) while SWS is positively correlated. An-
other Study by [Riedel and Lichstein, 1998] shows stage N1 as a negative indicator of
the quality of sleep while SWS is positively associated with subjective sleep satisfac-
tion in older adults with insomnia(OAWI). [Keklund and ÅKerstedt, 1997] shows sleep
efficiency and SWS as the positive predictors of Karolinska Sleep Diary (KSD) scores.
Stage N1 is introduced as a negative indicator of sleep quality in depressed target group
in [Argyropoulos et al., 2003].

While it can be concluded that the relationship between subjective and objective qual-
ity is sensitive to type of questionnaires or subjects’ demographic and medical condi-
tions, most of these research have tried to predict this relationship by setting up a high-
maintenance laboratory experiment by either having a control group or recording the data
for a long period [Williamson et al., 1995; Hall et al., 2000; Kumar et al., 2012].

1.2 Problem description

The focus of the project is to recognize physiological markers from bodily responses
during sleep which can explain and predict subjective quality of sleep scores. From a

2 © koninklijke philips electronics nv 2016
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machine learning perspective, the problem can be divided into two steps:
• Identification of a set of significant predictors of sleep quality
• Classification of the sleep data using the predictors.
Target group: In order to have a comprehensive model of subjective and objective

sleep quality, the target group needs to be defined explicitly, since the sleep parameters
are sensitive to additional subject specific characteristics such as age or gender [Kryger
et al., 2011]. In this study, we focus on pregnant women. Despite the fact that 79%
of pregnant women experience sleep disorders [Rezaei et al., 2013], they are one of the
less-studied target groups.

Having sleep disturbances during pregnancy is associated with preterm labor and low
birth weight and length, as well as increased risk of spontaneous abortion [Lobel et al.,
2008; Mulder et al., 2002]. Moreover, it increases increases mother’s likelihood of getting
permanent sleep disorder later on in her life[Pien and Schwab, 2004]. Daily sleep moni-
toring could prevent reaching a threatening level of sleep disturbances. If there is enough
evidence to support the hypothesis of the relationship between subjective and objective
sleep scores and a predictive model can be conceived, a smart gadget can be developed to
monitor sleep score. For example, a recent personal health product at Philips records the
heart beats and can also perform it during sleep. Deploying the classifier on this product
can provide the user with compelling information regarding the subjective sleep score
[de Zambotti et al., 2016; Kumar et al., 2012].

1.2.1 Research Questions

Two main research questions will be addressed in this project:
1. Which sleep parameters/macro features during pregnancy are characteristics of

sleep quality?
2. How to apply a representation learning algorithm on time series PSG data to clas-

sify the objective sleep quality?

1.3 Solution approach

In order to answer our research questions two sets of sleep parameters, here called macro-
features, were extracted form polysomnographic (PSG) data and two different models
have been achieved to predict the GSQS value. These models were used for classification
task, later. In this study, macro-features refer to the hand-crafted sleep parameters while
micro-features are the features that are extracted by the classifiers. A convolutional neural
network (CNN) is applied on image representation of time series signals, to extract micro-
feature. In the following chapter, the methods that we used will be explained. Chapter 3
details the results. In chapter 4, the obtained result will be discussed.

© koninklijke philips electronics nv 2016 3
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2 Materials and Methods

2.1 Materials

2.1.1 Participants

Sleep data from 45 pregnant women (age: 21 − 38, BMI in 2nd trimester: 23 ± 3, BMI
in 3rd trimester: 24 ± 3) was collected from June to November 2015, in their second
trimester as well as in their third trimester, using Alice PDx ambulatory EEG system
(Philips Respironics, Monroeville)1. Data collection consisted of two nights of test ses-
sions in participants’ own homes.

By the end of data recording procedure, ten subjects quit the experiment (one sub-
ject in the first night and nine in the second night) due to increased discomfort during
pregnancy and as such not able to participate. Details of data are available in A.1.2.

2.1.2 Data description

The physiological data consists of PSG recordings (EEG, ECG, EOG, EMG, respiratory
effort, and body position). Subjects were also asked to measure their blood pressure three
times with a few minutes in between and to fill out several subjective sleep and stress
assessments (Pittsburgh Sleep Quality Index (PSQI) [Buysse et al., 1989], Groningen
Sleep Quality Scale (GSQS) [Meijman et al., 1988], Perceived Stress Scale (PSS) [Cohen
et al., 1983], Pregnancy-related Anxiety Questionnaire (PRAQ-R) [Huizink et al., 2004]
and single-item stress symptoms measure).

The score distribution of the questionnaires and the correlation between each two of
them are shown in figure 2.1. This figure shows that the distribution is not balanced in
any of the questionnaires except for GSQS. In order to have a good model, we need to
have uniformly distributed random scores and GSQS is the only subjective measurement
that fits this definition. Therefore, it is considered to be the ground truth for the subjective
sleep measurement.

GSQS is a measurement that indicates the subjective quality of sleep and contains
15 items. The maximum score of 14 indicates extremely poor sleep quality. In further

1http://www.usa.philips.com/healthcare/product/HC1043941/alice-pdx-portable-sleep-diagnostic-system

© koninklijke philips electronics nv 2016 7
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Figure 2.1: The relation between PSS, stress, PRAQ-R, PSQI, GSQS. Diagonal plots: score
distributions, upper diagonal plots: scattered scores and lower diagonal plots: scores correlation.

analysis in this project, a total score of less than 8 demonstrates high quality of sleep and
the score equal or greater than 8 represents poor quality of sleep[De Weerd et al., 2004;
Kis et al., 2014].

Sleep stage annotation of PSG has been done visually by a sleep expert, using the
American academy of sleep medicine (AASM) guideline.

Several samples are excluded from annotation process by the expert. Due to the
availability of the sleep annotation and questionnaire scores, the number of samples has
been narrowed down to 39 for the first night and 24 for the second night.

Furthermore, for frequency analysis in this study, only one EEG channel of PSG data
(channel A1-C4) is analyzed. Details of PSG data are available in A.1.1.

2.2 Methods

The aim of the research is to extract those features from the collected PSG data that are
necessary to obtain a predictive model of sleep quality during pregnancy. This model will
help us distinguish between poor quality and high quality of sleep, later.

8 © koninklijke philips electronics nv 2016
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2.2.1 Sleep Parameters

For each subject, the macro-sleep features are calculated from the sleep stage annotation
of the entire recorded signal. Each sleep stage-annotation refers to one of the events of
sleep as introduced by [Rechtschaffen and Kales, 1968]. These events are the aforemen-
tioned sleep stages (awake, N1, N2, SWS, and REM) and arousal. The length of each
annotated time-window excluding arousal is fixed at 30 seconds [AASM and Iber, 2007].

Finally, the physiological data is labeled with the results from the self-reported sleep
quality score, GSQS.

The final dataset is an N × M matrix where N is the number of subjects, and M is
the number of sleep parameters (i.e. features). Trimester is also considered as a sleep
parameter. The corresponding labels (GSQS) form an N × 1 vector. Figure 2.2 shows the
setup of the feature matrix.

Figure 2.2: Feature-matrix

In this study, two different sets of features have been derived from the sleep stage-
annotation. The first set of features contains well-known sleep parameters while the
second one gives information of the number of transitions of each stage. The list of the
parameters is shown in table 2.1.

The number of parameters or predictors is relatively large in comparison with the
number of available observations and it is plausible that a model with all predictors faces
over-fitting. Hence, first, the features should be reduced to a reasonable number. In order
to find the parameters that are relevant to quality of sleep, Least Absolute Shrinkage
and Selection Operator (LASSO) regression has been applied to the feature matrix. A
simple linear regression method minimizes the least square error to find the optimum
coefficients. LASSO uses same methodology by adding a regularization parameter λ to
the error function. By choosing the right value of λ, the irrelevant coefficients to data
tend toward zero and the parameters that are useful for explaining the data remain.

After obtaining the robust model of the predictors, the regression problem can be
shifted to a classification problem. By setting a threshold on GSQS, the labels become

© koninklijke philips electronics nv 2016 9
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Table 2.1: The list of sleep parameters in the two feature set

First Feature Set Second Feature Set

Total Sleep Time (TST) N1-W
Total Stage1 / TST (N1 index) N1-N2
Total Stage2 / TST (N2 index) N1-SWS
Total SWS / TST (SWS index) N1-REM
Total REM/ TST (REM index) N2-W
Total Arousal/ TST (Arousal index) N2-N1
REM Latency N2-SWS
Wakeness After Sleep Onset (WASO) N2-REM
Total Sleep Period (TSP) SWS-W
Wakefulness/ TST (W index) SWS-N1
TST/TSP (Sleep Efficiency) SWS-N2
N1/N2 SWS-REM

REM-W
REM-N1
REM-N2

binary representing two classes of poor quality and high quality of sleep.
The Z-scored dataset is divided as follows: 80 percent train set and 20 percent test

set. Since we have a small sample set, the split process has been performed in a 1000-
iteration loop. Namely, we have performed 1000 random splits of the data into training
and test set. Additionally, the trained model’s parameters were obtained using 10-fold
cross-validation on the training set. To evaluate the performance of the classification
model Cohen’s kappa coefficient is used [Cohen, 1968]. The new setup of the data set
has been shown in figure 2.3.

2.2.2 EEG features

Dealing with EEG time series signals in this scope is not trivial. Besides the common
challenge on EEG analysis, like low signal to noise ratio (SNR) [Stober et al., 2015],
the difficulties of this specific dataset stem from two challenges. First, the number of
observations is limited. Second, not all parts of the time series signal contain the features
relevant to sleep quality and if so, it is not clear what kind of features are expected to be
extracted. To overcome the addressed issues, we enlarge the number of observation, first,
and then we ”clean” the dataset by the following approaches.

To augment the number of samples, we define a new setup of dataset which is shown
in figure 2.4. The dimension of the new dataset is WN × L where W is the sum of the
number of windows for each signal, and L is the length of one epoch. Considering 30-
second epoch, according to AASM 2007 standard criteria, and 200 Hz sampling rate, L

10 © koninklijke philips electronics nv 2016
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Figure 2.3: Feature-matrix setup for classification task

contains 6000 time samples. Each epoch gets the label corresponding to binary GSQS.
Since the sleep stage is known, it is also possible to investigate the quality of sleep for
each stage, separately.

Figure 2.4: A rough sketch of PSG annotation in each stage-window corresponding with
the subjective sleep score reported by binary GSQS

As a first step of cleaning the dataset, the time series signal for each subject is divided

© koninklijke philips electronics nv 2016 11
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to four quarters. Each quarter roughly represents one cycle of sleep. The frequency
features of a specific quarter are extracted by applying Fast Fourier Transformation (FFT)
to the corresponding epochs. Six frequency ranges are introduced to represent frequency
features: delta [0-3.9 Hz], theta [3.9-7.02 HZ], alpha [7.02-11.7 Hz], sigma [11.7-14.04
Hz], beta1 [14.04-21.84 Hz] and beta2 [21.84-30.03 Hz] [Bastien et al., 2003]. The
average of the power spectrum of each frequency range is considered as a parameter. The
same feature matrix setups, explained in figure 2.2 and figure 2.3, are used to find the
quarter of sleep which contains the most information about the quality of sleep. Note that
the number of parameters ends up to six here (M = 6). The frequency analysis provides
the approximate location of relevant features. This information later will be used to feed
the classifier.

Having a rich and almost clean dataset, now it is possible to apply more complex
classifiers on data. One of the powerful algorithms of feature learning of high dimen-
sional data is Deep Neural Networks (DNNs). In particular, given the success of CNNs
in visual processing tasks, it is the first choice for providing the flexible map from high-
dimensional observations to the task-relevant features [Finn et al., 2015; Koutnik et al.,
2014].

In order to use CNN, the dataset needs to be represented as an image dataset. Con-
verting one dimension signals to image is a common approach in speech recognition tasks
[Abdel-Hamid et al., 2012, 2014]. The following steps explain how one single epoch can
be converted to an image:

1. Defining three frequency ranges R[0-10 Hz], G[10-20 Hz], B[20-30 Hz].
2. Applying FFT on Hamming window of size l = 1200 and overlap of 1150 in order

to calculate power density.
3. Removing power density of frequencies greater than 30 Hz.
4. Mapping R, G, and B frequencies’ power densities to gray-scale values [0, 255].
5. Moving the Hamming widow to the next point (which is the next 50th time sample)

and repeating the steps 2-5 till the end of the epoch.
6. Concatenating R, G, and B matrices as RGB image.

The steps are shown in figure 2.5.
The size of the obtained image is 100 × 100. The image size can be modified de-

pending on the structure of the network. It is also possible to feed the network with one
gray-scale image contains 0-30 Hz frequency range, instead of an RGB image.

The generated images often contain similar features at different horizontal locations.
Hence, the data augmentation is only possible by mirroring the image. The size of the
input kernel or window is chosen relatively large to ignore the temporal properties of the
signal while the stride is two. Max-pooling layer is used after each convolutional layer
to reduce the size and make the network robust in spite of the small changes in image
features. After investigating several network structures, a structure inspired by Lenet
net[LeCun et al., 1998] is chosen.
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Figure 2.5: Single epoch representation as an image

Figure 2.6 shows that the structure has been used as a classifier in the following anal-
ysis on EEG signals. The network has two convolutional layers and two fully connected
final layers. To ovoid over-fitting, the dropout is also used to randomly remove some of
the nodes during training with probability of p = 0.5. Rectified Linear Units (ReLu) is
used as an activation function to boost the nonlinear properties of the decision function.
Caffe has been used as a deep network framework and the rest of analysis is done by
MATLAB.

In order to have a baseline for evaluating the network performance, Support Vector
Machine (SVM) is applied on the frequency features of dataset.

© koninklijke philips electronics nv 2016 13
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Figure 2.6: The architecture of the convolutional neural network
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3 Results

3.1 Subjective sleep measurement

Figure 3.1 shows how GSQS values change through second trimester to third trimester
for each subject. We cannot conclude that the trimester of pregnancy has a specific impact
on sleep quality, as we did not find a pattern in changing subjective sleep quality from
second trimester to third.

Figure 3.1: The change of GSQS through second trimester to third for each participate.

3.2 Objective sleep measurement

3.2.1 Macro-features

The first set of features that have been analyzed is a set of well-known sleep parameters.
The properties and the correlation of a single sleep parameter and GSQS are shown in
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table 3.1. The trimester is also considered as a feature to investigate if it does have any
impact on the final model.

Table 3.1: Sleep parameters statistics

Sleep Parameters GSQS < 8 GSQS ≥ 8 Correlation

TST (min) 439 ± 41 399 ± 89 -0.29∗
N1 index 0.1 ± .03 0.14 ± 0.04 0.51∗∗
N2 index 0.46 ± 0.06 0.47 ± 0.07 0.00
SWS index 0.21 ± 0.06 0.2.0 ± 0.07 -0.07
REM index 0.23 ± 0.04 0.20 ± 0.04 -0.36∗
Arousal index 0.04 ± 0.01 0.05 ± 0.02 0.30∗
REM latency (min) 95 ± 31 102 ±0.59 0.10
WASO (min) 70 ± 91 61 ± 50 -0.07
TSP (min) 535 ± 52 532± 115 -0.02
W index 0.06 ±0.04 0.11 ± 0.07 0.33∗
TST/TSP 0.82 ± 0.05 0.75 ±0.07 -0.51∗∗
N1/N2 0.21 ± 0.06 0.30 ±0.14 0.48∗∗

∗p < 0.02
∗ ∗ p < 0.0001

Feature selection is performed by using a LASSO reduction model. As mentioned
earlier in Methods chapter, the optimum value of λ leads to find the coefficients of the
parameters that are supported by data. The trace plot of Mean Square Error (MSE) for
different values of λ is shown in figure 3.2. The MSEs of 10-fold cross-validated data are
calculated for each specific λ value. The minimum standard deviation of MSEs indicates
a robust and optimum λ. The corresponding coefficients to the robust λ are introduced as
the predictors. Note that these results are obtained after 100 iterations. Figure 3.2 shows
the average MSE of 100 of 10-fold cross-validations of data.

By finding the optimum λ, irrelevant parameters are removed from the model and
features space is narrowed down from thirteen to two parameters which are N1 index
and sleep efficiency (SE). The obtained Pearson correlation is r=0.61, p < 10−7. The
models show that the amount of N1 and SE correlates with the reported sleep quality in
the morning such that the individuals who reported poor sleep have shown more N1 sleep
and a lower SE.

A set of linear classifiers is applied to the binary GSQS-labeled model. The average
of achieved accuracy and kappa index of each classifier after 1000 iterations are reported
in table 3.2.

Figure 3.3 shows the scattered values of N1 and SE and the separability of the sam-
ples. For a better visualization, red dots represent the poor quality of sleep while the blue
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Figure 3.2: The trace plot of standard deviation of MSE against the Lambda regulariza-
tion parameter for the first feature set

ones indicate high quality of sleep.

Table 3.2: The performance of listed classifiers on model (N1, SE)

Accuracy Kappa Chance

Logistic Regression 0.76 0.51 0.60
Support Vector Machine (SVM) 0.77 0.53 0.60
Naive Bayes 0.80 0.56 0.60

The second set of sleep parameters that has been analyzed is a set of sleep-stage tran-
sition numbers. Each parameter indicates the number of transition from a specific stage to
another for each subject. Table 3.3 shows the correlation of a single stage transition (from
the current stage to the new stage) and GSQS. LASSO regression was able to reduce the
number of parameters (including trimester) from sixteen to three with the same setup that

© koninklijke philips electronics nv 2016 17



Research Project 2016/– Unclassified

Figure 3.3: The predictor model (N1,SE) for the first set of feature set

has been explained for the first feature set (100 iterations and 10-fold cross-validation).
The obtained model contains three predictors: REM-N2, SWS-N2, and N2-N1. The
correlation of the predicted scores and GSQS is r=0.53 with p < 10−5.

Table 3.3: Sleep-stage transitions statistics

Sleep Parameters GSQS < 8 GSQS ≥ 8 Correlation

N1-W 4.94 ± 3.77 6.24 ± 4.02 0.17
N1-N2 33.94 ± 12.26 40.83 ± 16.04 0.24
N1-SWS 0.06 ± 0.34 0.03 ± 0.19 -0.04
N1-REM 3.09 ± 1.76 2.31 ± 2.95 -0.16
N2-W 5.15 ± 2.27 4.97 ± 2.63 -0.04
N2-N1 25.03 ± 12.93 31.52 ± 14.35 0.23
N2-SWS 25.41 ± 7.92 19.38 ± 10.21 -0.32
N2-REM 4.82 ± 1.78 4.34 ± 1.65 -0.14
SWS-W 0.62 ± 0.85 0.55± 0.63 -0.04
SWS-N1 0.94 ±1.01 0.79 ± 0.86 -0.08
SWS-N2 23.76 ± 7.70 17.79 ±9.97 -0.32
SWS-R 0.18 ± 0.39 0.28 ±0.53 0.11
R-W 1.47 ± 1.24 1.52 ±1.35 0.02
R-N1 4.35 ± 2.50 4.34 ±3.88 0.00
R-N2 2.29 ± 1.85 1.14 ±1.13 -0.35

The same set of linear classifiers has been applied to binary GSQS-labeled model.
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Figure 3.4: The trace plot of standard deviation of MSE against the Lambda regulariza-
tion parameter for the second feature set

The average performance has been shown in table 3.4.
Figure 3.5 shows the scattered selected parameters by LASSO. The number of tran-

sitions from REM to N2 and SWS to N2 are positively correlated with GSQS while the
number of transitions from N2 to N1 has a negative correlation with GSQS.

Table 3.4: The performance of listed classifiers on model (REM-N2, SWS-N2, N2-N1)

Accuracy Kappa Chance

Logistic Regression 0.71 0.42 .60
Support Vector Machine (SVM) 0.70 0.39 0.60
Naive Bayes 0.72 0.44 0.60
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Figure 3.5: The predictor model(REM-N2, SWS-N2, N2-N1) for the second set of feature
set
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3.2.2 Micro-features

As it is mentioned in Methods section, in order to find the most informative part of sleep
regrading the frequency features, we analyse the average power spectrum of the six fre-
quency ranges (delta [0-3.9 Hz], theta [3.9-7.02 HZ], alpha [7.02-11.7 Hz], sigma [11.7-
14.04 Hz], beta1 [14.04-21.84 Hz] and beta2 [21.84-30.03 Hz]) for each sample. Each
specific average power spectrum is considered as a predictor. The estimated sleep quality
is obtained by applying regression analysis on the six power spectrum values. The corre-
lation of the predicted sleep quality score and GSQS for each quarter and for each stage
has been shown in table 3.5.

Table 3.5: The average frequency features analysis for each quarter and each stage of
sleep

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total
N1 0.10 0.17 0.13 0.09 0.10
N2 0.13 0.29 0.21 0.20 0.18
N3 0.10 0.26 0.16 0.15 0.15
R 0.10 0.33 0.20 0.19 0.13
W 0.41 0.43 0.32 0.34 0.42
ALL 0.23 0.36 0.21 0.20 0.25

The average frequency features analysis for each quarter reports that the second quar-
ter (r = 0.36) and wakefulness (r = 0.42) have the highest correlation values among the
sleep quarters and sleep stages, respectively.

The second quarter of sleep draws out from each participant’s EEG signal and is
converted to images. The image dataset feeds to CNN, later. The performance of the
network for 15219 input images (75% train dataset and 25% test dataset) is shown in
figure 3.6

The network is able to predict poor sleep quality and high sleep quality directly from
EEG signals with 78% accuracy. In this analysis, the chance is 54.5% (dataset is not
exactly balanced). In order to have a baseline, SVM is applied to EEG epochs with the
same setup of the train and test dataset. The features are the average power densities of six
ranges of frequencies introduced previously in Methods section. The obtained accuracy
of SVM is around 57% which is slightly above the chance level.
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Figure 3.6: The test loss, training loss and accuracy of the network for 30 network-epoch
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4 Discussion

This study investigated the relationship between subjective and objective sleep scores.
The outcome of applying LASSO regression on the first set of sleep parameters indicated
that N1 index and sleep efficiency are associated with self-reported sleep quality in GSQS.
Particularly, the high amount of N1 index is a strong predictor of low quality of sleep.
N1 index indicates how much of total sleep time is spent in transition from wakefulness
to sleep. Hence, it is notable how this parameter plays a role in sleep quality score. In the
other hand, the high amount of the sleep efficiency is seemed to be evident to predict the
high quality of sleep.

Having a larger number of subjects can be helpful to set a certain N1 index as a
threshold for recognizing low quality of sleep, immediately. For example in this particular
dataset, 31% of the samples can be recognized as poor quality of sleep with probability of
P = 1 by setting a threshold for N1 index > 0.127. In other words, if the subject spends
more than 12.7% of sleep in stage N1, she suffers from poor quality of sleep.

In support of our findings, [Riedel and Lichstein, 1998; Keklund and ÅKerstedt, 1997;
Argyropoulos et al., 2003] reported sleep efficiency and stage N1 as the sleep quality
predictors. Although, as it is mentioned before, the effective parameters are strongly
related to the subject’s profile (age, gender, health condition). Therefore, there is a variety
of predictive models reported in different studies.

The result obtained from the number of stage transitions set shows that the number
of transitions from stage R and SWS to N2 are positively, and the number of transition
from stage N2 to N1 are negatively, correlated with sleep quality scores. It is interesting
to observe that the content of sleep, specifically SWS and REM, are not important for
predicting the subjective score while their number of transitions to N2 might be useful to
make a predictive model. [ÅKERSTEDT et al., 1994].

One of the important drawbacks of PSG analysis is the limited number of observa-
tions. Initially, the PSG data from 39 and 24 subjects were available for their second and
third trimesters, respectively. One way of analysis the data was splitting the trimesters
and doing the analysis separately. The result of this approach is available in A.2.2. Al-
ternatively, by combining these two trimesters, not only the the number of samples is
increased but also it is possible to investigate the effect of the trimester on sleep quality
score by including it as a predictor. One might argue that the data from a certain sub-
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ject appears in both test and training sets (24 subjects share the data in both trimesters),
hence the classifier’s outcome might be disturbed. In general, this seems to be a valid
point, although the result has shown no evidence that the second or third trimester can be
important to predict the score in this study. This leads to an interesting remark that the
relationship between objective and subjective sleep quality measures is independent from
the trimester.

Regarding to micro-feature analysis, the result of EEG frequency analysis indicates
that the second quarter of sleep carries the most frequency information to predict the
sleep score. The result of CNN shows that it is possible to classify the sleep data in two
classes of poor and high sleep quality by having several epochs of EEG. The structure
of the network can be improved using sets of horizontal and vertical rectangular kernels
instead of square kernels. Applying deconvolutional network on the trained network, it is
possible to observe the most important frequency features.

Apart from the common constraints in sleep study (e.g. the limited number of obser-
vations), unequally distributed subjective scores have an important effect on the identi-
fying of the sleep quality predictors. This might not be an issue as long as the samples
are divided into two groups of high and poor sleep quality. The nature of the experiment
can be improved by including broader types of participants in regard to age, gender and
medical conditions. Precisely, the reported result in the present study is interpretable for
pregnant target group, only. It will be interesting to test the predictive models in a larger
group of subjects with a different profile.
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5 Conclusion

N1 index and sleep efficiency are correlated with the reported sleep quality in the morn-
ing. Individuals that reported poor sleep quality show more N1 index and a lower sleep
efficiency.

Low number of transitions from REM and SWS to N2 in association with high num-
ber of transitions from N2 to N1 indicate poor quality of sleep.

The most distinguishable frequency features relevant to sleep quality can be identified
mostly in the second quarter of sleep.

The quality of sleep has been predicted by CNN with 78 percentage accuracy while
the baseline accuracy obtained by SVM is about 57 percentage.
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A Appendix

A.1 Materials

A.1.1 PSG data properties

Table A.1: The properties of PSG data

Channel Name Sampling Rate Channel’s Number

ECG II 200 Hz Ch 1
Effort THO 100 Hz Ch 2
Effort ABD 100 Hz Ch 3
EMG chin 200 Hz Ch 4
EOG-R 200 Hz Ch 5
EEG O2- A1 200 Hz Ch 6
EEG A1- A2 200 Hz Ch 7
EEG F4- A1 200 Hz Ch 8
EEG C4- A1 200 Hz Ch 9
EEG C3-A2 200 Hz Ch 10
L-EOC 200 Hz Ch 11
Body 1 Hz Ch 12
ECG I 1 KHz Ch 13

A.1.2 Missing PSG data

The list of available PSG data, GSQS and corresponding sleep annotation is shown in
table A.2-A.4.
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Table A.2: PSG Data subject 1-16

Subject Trimester PSG Annotated PSG Questionnaire

2 D D D
ID01 3 D D D

2 D D D
ID02 3 D D D

2 D D D
ID03 3 D D D

2 D D D
ID04 3 D D D

2 D D D
ID05 3 D D D

2 D D D
ID06 3 D D D

2 D D D
ID07 3 D D D

2 D D D
ID08 3 D D D

2 D D D
ID09 3 D D D

2 D D D
ID10 3 D D D

2 D D DID11 3 - - -
2 D D D

ID12 3 D D D

2 D D D
ID13 3 D D D

2 D D D
ID14 3 D D D

2 D D D
ID15 3 D D D

2 D D D
ID16 3 D - D
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Table A.3: PSG Data subject 17-32

Subject Trimester PSG Annotated PSG Questionnaire

2 D D DID17 3 - - -
2 D D D

ID18 3 D D D

2 D D D
ID19 3 D D D

2 D D D
ID20 3 D D D

2 D D D
ID21 3 D D D

2 D D D
ID22 3 D - D

2 D D D
ID23 3 D D D

2 D D D
ID24 3 D - D

2 D D D
ID25 3 D - D

2 D D D
ID26 3 D - -

2 D D DID27 3 - - -
2 - - -ID28 3 - - -
2 D D D

ID29 3 D D D

2 D D D
ID30 3 D - D

2 D D D
ID31 3 D D D

2 D - -
ID32 3 D - D

© koninklijke philips electronics nv 2016 33



Research Project 2016/– Unclassified

Table A.4: PSG Data subject 33-45

Subject Trimester PSG Annotated PSG Questionnaire

2 D D D
ID33 3 - - D

2 D D D
ID34 3 D D D

2 D D D
ID35 3 D D D

2 D D D
ID36 3 - - D

2 D D D
ID37 3 D - D

2 D D D
ID38 3 D - D

2 D - -
ID39 3 D - D

2 D D DID40 3 - - -
2 D D D

ID41 3 - - D

2 D D D
ID42 3 - - D

2 D - -
ID43 3 D - D

2 D D DID44 3 - - -
2 D - -ID45 3 - - -
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A.1.3 GSQS

1. I had a deep sleep last night
2. I feel that I slept poorly last night
3. It took me more than half an hour to fall asleep last night
4. I woke up several times last night
5. I felt tired after waking up this morning
6. I feel that I didn’t get enough sleep last night
7. I got up in the middle of the night
8. I felt rested after waking up this morning
9. I feel that I only had a couple of hours’ sleep last night

10. I feel that I slept well last night
11. I didn’t sleep a wink last night
12. I didn’t have trouble falling asleep last night
13. After I woke up last night, I had trouble falling asleep again
14. I tossed and turned all night last night
15. I didn’t get more than 5 hours’ sleep last night

The first question does not count for the total score.
One point if answer is ’true’: questions 2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15.
One point if answer is ’false’: questions 8, 10, 12.
Maximum score 14 points.

A.2 Result

A.2.1 Objective and Questionnaire’s scores

Figures A.1-A.4 show the correlation between a single parameter and the questionnaire.
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Figure A.1: Correlation of a single sleep transition parameter and questionnaires’ scores
in 2nd trimester

Figure A.2: Correlation of a single sleep transition parameter and questionnaires’ scores
in 3rd trimester
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Figure A.3: Correlation of a single sleep parameter and questionnaires’ scores in 2nd
trimester

Figure A.4: Correlation of a single sleep parameter and questionnaires’ scores in 3rd
trimester
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A.2.2 Individual trimester analysis

Table A.5: Result of predictive model (N1, SE) for 2nd and 3rd trimester

Correlation with GSQS Navie Bayes SVM Logistic Regression

2nd Trimester 0.63 0.78 0.79 0.76
3rd Trimester 0.60 0.72 0.73 0.71

Table A.6: Result of predictive model (REM-N2, SWS-N2, N2-N1) for 2nd and 3rd
trimester

Correlation with GSQS Navie Bayes SVM Logistic Regression

2nd Trimester 0.57 0.78 0.72 0.76
3rd Trimester 0.32 0.47 0.55 0.53
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